Elsevier

Chemosphere 光化层

Volume 211, November 2018, Pages 775-783
第211卷,2018年11月,页码775-783
Chemosphere

Assessment of natural radionuclides mobility in a phosphogypsum disposal area
评估磷石膏处置区天然放射性核素迁移率

https://doi.org/10.1016/j.chemosphere.2018.07.193Get rights and content 获取权限和内容

Highlights 突出

  • Natural radionuclides mobility in phosphogypsum (PG) coming from Morocco sedimentary ore by using the optimized BCR sequential extraction procedure was studied.
    采用优化的BCR顺序提取工艺,研究了摩洛哥沉积矿磷石膏(PG)中的天然放射性核素迁移率。

  • Uranium is the radioelement that presents the highest mobility (around 70%), while the Th-isotopes are very bound to the PG (mobile fraction < 5%).
    铀是具有最高迁移率(约70%)的放射性元素,而Th同位素与PG(移动部分<5%)非常结合。

  • 210Po and 226Ra present an intermediate mobility (around 50% and 30%, respectively).
    210 Po 和 226 Ra 呈现中间迁移率(分别约为 50% 和 30%)。

  • BCR results were validated by using the natural radionuclides levels in waters from PG piles.
    BCR结果通过使用PG堆水中的天然放射性核素水平进行验证。

Abstract 抽象

The phosphogypsum (PG) stacks located at Huelva (SW Spain) store about 100 Mt of PG, and covers a surface of 1000 ha. It has been very well established in many studies that this waste contains significant U-series radionuclides concentrations, with average activity concentrations rounding the 650, 600, 400 and 100 Bq kg−1 for 226Ra, 210Po, 230Th and 238U, respectively. However, the radionuclide transfer from this repository into the environment by the aquatic pathway will depend on the mobility of each radionuclide.
位于韦尔瓦(西班牙西南部)的磷石膏 (PG) 堆储存了约 100 公吨的 PG,占地 1000 公顷。许多研究已经充分证实,这种废物含有大量的U系列放射性核素浓度, 226 Ra、Po、 210 230 Th和 238 U的平均活性浓度分别约为650、600、400和100 Bq kg −1 。然而,放射性核素通过水生途径从该储存库转移到环境中将取决于每种放射性核素的迁移率。

The mobility of the natural radionuclides (U-isotopes, Th-isotopes, 226Ra, and 210Po) contained in the PG piles were evaluated by using the optimized BCR sequential extraction procedure (BCR “Community Bureau of Reference”). The radionuclides were measured in the liquid fractions by alpha-particle spectrometry with semiconductor PIPS detectors. In addition, to validate the obtained results, waters from different locations of the PG piles (pore-water, perimeter channel and edge outflow leachates) were taken and the alpha emitter radionuclides determined.
PG堆中所含天然放射性核素(U-同位素、Th-同位素、226Ra和210Po)的迁移率通过使用优化的BCR顺序提取程序(BCR“社区参考局”)进行评估。使用半导体PIPS探测器通过α粒子光谱法测量液体组分中的放射性核素。此外,为了验证所获得的结果,取取了PG堆不同位置的水(孔隙水、周长通道和边缘流出渗滤液),并测定了α发射体放射性核素。

Uranium presents the highest mobility, being its total mobile fraction in the PG around 70%, while 210Po and 226Ra present an intermediate mobility of (around 50% and 30%, respectively). And finally, the Th-isotopes have very low mobility (mobile fraction < 5%), being fixed to the residual fraction. It is noteworthy that this behaviour has been also found in the water samples taken from the stacks, demonstrating that this sequential leaching operational methodology is a useful tool for assessing the release capacity of radionuclides by inorganic wastes.
铀的迁移率最高,其在PG中的总迁移率约为70%,而210Po和226Ra的中等迁移率约为50%和30%。最后,Th同位素具有非常低的迁移率(移动部分<5%),固定在残余部分。值得注意的是,在从烟囱中取出的水样中也发现了这种行为,这表明这种顺序浸出操作方法是评估无机废物释放放射性核素能力的有用工具。

Keywords 关键字

BCR sequential extraction
Mobility
Natural radionuclides
Phosphogypsum
Stacks

BCR 顺序萃取迁移率天然放射性核素磷石膏堆栈

1. Introduction 1. 引言

Phosphogypsum (PG) is a waste generated in the production of phosphoric acid, which widely comes from the chemical treatment of phosphate rock (Ca5(PO4)3F) with sulphuric acid (H2SO4) (Eq. (1)). It is estimated that about 4.5–5 tons of PG per ton of phosphoric acid produced are generated (or in other words 1 kg of phosphate rock (PR) produces about 2.5 kg of PG). The phosphate ore contains impurities of major elements (Si, Al, Fe and Ti), trace elements (Sr, Cr, V, Zn, Y, Ni, Ba), and natural radionuclides coming from U and Th series, which are partially transferred into the PG during the industrial process (Bolívar et al., 1995). This waste is currently considered a NORM (naturally occurring radioactive material).(1)Ca5(PO4)3F + 5H2SO4 + 10H2O → 3H3PO4 + 5 CaSO4·2H2O + HF
磷石膏(PG)是磷酸生产过程中产生的废物,广泛来自用硫酸(H 2 SO 4 )对磷矿(Ca( 5 PO 43 F)进行化学处理(式(1))。据估计,每生产一吨磷酸会产生约 4.5-5 吨 PG(换句话说,1 公斤磷酸盐岩 (PR) 产生约 2.5 公斤 PG)。磷矿含有主要元素(Si、Al、Fe和Ti)、微量元素(Sr、Cr、V、Zn、Y、Ni、Ba)的杂质,以及来自U和Th系列的天然放射性核素,这些物质在工业过程中部分转移到PG中(Bolívar等人,1995)。这种废物目前被认为是NORM(天然存在的放射性物质)。 (1)Ca5(PO4)3F + 5H2SO4 + 10H2O → 3H3PO4 + 5 CaSO4·2H2O + HF

PG is often composed by the gypsum mineralogical phase (CaSO4·2H2O). In addition, other minor phases, such as quartz (SiO2), chukhrovite (Ca4AlSi(SO4)F13·12(H2O) and fluorite (CaF2), are also present (Rentería-Villalobos et al., 2010; Azaroual et al., 2012; Khamar et al., 2014). The worldwide PG generation is estimated to be around 160 Mt per year (IAEA, 2013). This waste is mostly disposed of without any treatment, usually by dumping in large stockpiles. These are generally located in coastal areas close to phosphoric acid plants, where they occupy large land areas and cause serious environmental damage (Lysandrou and Pashalidis, 2008; Tayibi et al., 2009; El Samad et al., 2014; El Zrelli et al., 2015).
PG通常由石膏矿物相(CaSO 4 ·2H 2 O)组成。此外,还存在其他次要相,如石英(SiO 2 ),楚克罗维石(Ca 4 AlSi(SO 4 )F 13 ·12(H 2 O)和萤石(CaF 2 ),也存在(Rentería-Villalobos等人,2010;Azaroual 等人,2012 年;Khamar 等人,2014 年)。据估计,全球PG的产生量约为每年160公吨(原子能机构,2013年)。这些废物大多未经任何处理就被处理掉,通常是倾倒在大量库存中。它们通常位于靠近磷酸厂的沿海地区,在那里它们占据了大片土地并造成严重的环境破坏(Lysandrou和Pashalidis,2008年;Tayibi 等人,2009 年;El Samad等人,2014;El Zrelli 等人,2015 年)。

In Spain, concretely in Huelva, the production of phosphoric acid, and hence the generation of PG, began in 1965 and remained active for 45 years until 31 December 2010. During this period about 100 Mt of PG were stored in piles that reach up to 25 m in height in the last active stacking zone (average height of 5 m), and covering a surface of approximately 1000 ha. These deposits are located at the confluence of the Tinto and Odiel rivers, an estuarine area of salt marshes with a high ecological value, declared as Biosphere Reserve by UNESCO in 1983, which is known as “Ría de Huelva”.
在西班牙,特别是在韦尔瓦,磷酸的生产以及PG的产生始于1965年,并一直活跃了45年,直到2010年12月31日。在此期间,大约100吨PG被储存在堆中,在最后一个活动堆放区(平均高度为5米)中,堆高可达25米,覆盖面积约为1000公顷。这些矿床位于廷托河和奥迪尔河的交汇处,这是一个具有很高生态价值的盐沼河口地区,于1983年被联合国教科文组织宣布为生物圈保护区,被称为“韦尔瓦河”。

In 1992, around 30% of the disposal area (zone 1) was restored, covering it with a 30 cm layer of natural soil and vegetation (Más et al., 2001), Fig. 1. Subsequently, another area (zone 4) was restored (20% of the total area) with more complex cover that comprises the following layers (in ascending order): a 1 m layer of building wastes, a 2 m layer of theoretically inert industrial wastes and more than 50 cm of topsoil (Más et al., 2006a, b; Directiva 61/CE, 1996). However, nowadays about 50% of the disposal area is openly exposed to the environment weathering (unrestored areas; zones 2 and 3), see Fig. 1. The piles have a series of perimeter channels for collecting leachates from the PG weathering, but there are numerous points and diffuse sources of edge outflows that discharge pollution to the estuary (Gázquez et al., 2014; Pérez-López et al., 2016).
1992年,大约30%的处置区(1区)被恢复,用30厘米的天然土壤和植被覆盖(Más等人,2001年),图1。随后,恢复了另一个区域(4区)(占总面积的20%),覆盖物更复杂,包括以下层(按升序排列):1米的建筑废物层,2米的理论惰性工业废物层和超过50厘米的表土(Más等人,2006a,b;Directiva 61/CE,1996年)。然而,如今大约50%的处置区域公开暴露在环境风化中(未恢复区域;2区和3区),见图1。这些桩有一系列用于收集PG风化渗滤液的周边通道,但有许多点和边缘流出的扩散源将污染排放到河口(Gázquez等人,2014年;Pérez-López等人,2016)。

Fig. 1
  1. Download : Download high-res image (707KB)
    下载:下载高分辨率图像(707KB)
  2. Download : Download full-size image
    下载 : 下载全尺寸图片

Fig. 1. Location of sampling points and sampling profile in the pile.
图 1.堆中取样点的位置和取样剖面。

The U-series radionuclides activity concentrations of the ore used in Huelva ranged from 1300 to 1700 Bq kg−1, being them in secular equilibrium. During the industrial process of phosphoric acid manufacture the radioactive equilibrium is broken, and each radionuclide is independently distributed according to its chemical behaviour. It has been estimated that more than 95% of the total 226Ra, 210Pb, and 210Po contained in the phosphate rock is transferred into the PG, whereas the uranium is transferred variably between 5% and 20% (Bolívar et al., 2009).
Huelva矿石的U系列放射性核素活度浓度在1300至1700 Bq kg −1 之间,处于长期平衡状态。在磷酸制造的工业过程中,放射性平衡被打破,每种放射性核素根据其化学行为独立分布。据估计,磷酸盐岩中所含的总 226 镭、 210 铅和 210 钡的 95% 以上被转移到 PG 中,而铀的转移率在 5% 到 20% 之间不等(Bolívar 等人,2009 年)。

Several studies have tried to evaluate the potential environmental impact of the PG disposal areas, by measuring the total concentration (Rutherford et al., 1994, 1995; Martin et al., 1995; Bolívar et al., 1996, 2000; 2002; Dueñas et al., 2010). However, the total contaminant content in a waste is not a good marker of its potential risk, since under normal environmental conditions only a proportion of the total contaminant content will be released into the environment. The mobility and toxicity of an element in the environment will depend on the chemical form to which it is bound to the solid phase (Pérez-López et al., 2007).
一些研究试图通过测量总浓度来评估PG处置区的潜在环境影响(Rutherford等人,1994年,1995年;Martin 等人,1995 年;玻利瓦尔等人,1996年,2000年;2002;Dueñas等人,2010)。然而,废物中的总污染物含量并不是其潜在风险的良好标志,因为在正常环境条件下,只有一部分污染物总含量会释放到环境中。元素在环境中的迁移率和毒性将取决于它与固相结合的化学形式(Pérez-López等人,2007)。

Many sequential extraction methods have been widely applied to assess the chemical speciation of metals. The most significant advance in sequential extraction studies came in 1987 when the European Commission launched the BCR (Community Bureau of Reference) programme aimed at the harmonization of extraction procedures. In 1993 a standard sequential extraction procedure, known as BCR (Thomas et al., 1994), was proposed. Inconsistencies in trace element extraction using the BCR protocol led to different investigations (Sahuquillo et al., 1999; Rauret et al., 1999) that recommended the development of an optimized BCR procedure.
许多顺序提取方法已被广泛用于评估金属的化学形态。1987 年,欧盟委员会启动了旨在协调提取程序的 BCR(共同体参考局)计划,这是顺序提取研究最重要的进展。1993 年,提出了一种称为 BCR 的标准顺序提取程序(Thomas 等人,1994 年)。使用BCR方案提取痕量元素的不一致导致了不同的研究(Sahuquillo等人,1999;Rauret 等人,1999 年),建议开发优化的 BCR 程序。

This procedure has been applied in previous studies to determine the dynamic and/or fate of the impurities contained in the PG (Pérez-López et al., 2011), but this BCR procedure has not been applied until this date to evaluate the mobility of natural radionuclides. Nevertheless, several works have studied the mobility of natural radionuclides in PG samples applying only one extractant agent, such as distilled water, seawater or rainwater (Haridasan et al., 2002; Aguado et al., 2005; Santos et al., 2006; Ceballos et al., 2017). But, these extractants do not reproduce all local weathering conditions, which concretely in Huelva stacks exist: (1) acid water leaching not only due to rainy periods but also to tidal cycles with the Tinto River estuarine water, which exhibit low pH values due to abandoned mining activity (Hierro et al., 2014), (2) oxidising conditions in the non-saturated zone of the PG stack, and (3) reducing conditions imposed by the organic matter-rich saltmarsh contacting with the stack in the saturated zone (Pérez-López et al., 2015).
该程序已在以前的研究中应用于确定PG中所含杂质的动态和/或命运(Pérez-López等人,2011),但直到此日期,该BCR程序尚未应用于评估天然放射性核素的迁移率。然而,一些工作研究了天然放射性核素在仅使用一种萃取剂(如蒸馏水、海水或雨水)的PG样品中的迁移率(Haridasan等人,2002年;Aguado 等人,2005 年;Santos 等人,2006 年;Ceballos等人,2017)。但是,这些萃取剂并不能再现所有当地的风化条件,具体存在于Huelva烟囱中:(1)酸性水浸出不仅由于雨季,而且由于与Tinto河河口水的潮汐循环,由于废弃的采矿活动,其pH值较低(Hierro等人,2014),(2)PG烟囱非饱和区的氧化条件, (3)减少富含有机质的盐沼与饱和区烟囱接触所施加的条件(Pérez-López等人,2015)。

Taking into account these previous facts, the main objective of this work has been to assess the mobility of natural radionuclides contained in the PG stored in Huelva (SW Spain), 210Po, U-isotopes, Th-isotopes, and 226Ra, applying the optimized BCR sequential extraction procedure. In addition, the potential application of BCR sequential extraction has been tested by comparison with the radionuclides activity concentrations found in pore-waters, edge outflow leachates reaching the Estuary of Huelva and process water of the perimeter channel. In the same way, this BCR procedure could be used to study the mobility of natural radionuclides for others world inorganic industrial waste stacks.
考虑到这些先前的事实,这项工作的主要目标是评估储存在韦尔瓦(西班牙西南部)、Po、 210 U 同位素、Th-同位素和 226 Ra 的 PG 中所含的天然放射性核素的迁移率,应用优化的 BCR 顺序提取程序。此外,通过与孔隙水、到达韦尔瓦河口的边缘渗滤液和周边通道的工艺水中发现的放射性核素活度浓度进行比较,测试了BCR顺序提取的潜在应用。同样,该BCR程序可用于研究天然放射性核素对其他世界无机工业废物堆的迁移率。

2. Materials and methods 2.材料与方法

2.1. Samplings 2.1. 采样

PG samples were collected at different depths from two bore-holes (U and D cores) using a soil-sampling auger at the unrestored zone 3 of the stack in May 2013 (Fig. 1). The U core (“up”) was taken at the upper zone of the selected area, while the D core was located at the deeper are in the perimeter channel which collect the leaching waters. Seven samples were collected from the U core; whereas six samples were collected from the D core. The samples were taken approximately at intervals of 50 cm in depth, being the thickness of each sample around 5 cm. Every sample presented a mass of around 150–200 g, which was dried at 55 °C, and then homogenized in a 250 mL beaker during at least 1 h by mechanical process. Once the sample was homogenized, different aliquots were taken to measure by alpha spectrometry, gamma spectrometry, physico-chemical parameters, etc. The mean value of the size was around 80 μm.
2013年5月,在烟囱未恢复的3区使用土壤取样螺旋钻从两个钻孔(U和D岩心)的不同深度采集PG样本(图1)。U核(“向上”)位于所选区域的上部区域,而D核位于收集浸出水的周边通道中较深的区域。从U核中收集了7个样品;而从D核中收集了6个样品。样品的深度大约为50厘米,每个样品的厚度约为5厘米。每个样品的质量约为150-200 g,在55°C下干燥,然后在250 mL烧杯中通过机械过程在至少1小时内均质化。样品均质化后,采用α-能谱法、伽马能谱法、理化参数等法测量不同的等分试样。尺寸的平均值约为 80 μm。

The pore-water was extracted from solid samples using suction cup lysimeters and hollow-fibre tube sampler devices (Rhizon samplers; Eijkelkamp Agrisearch Equipment, Netherlands). Subsequently, solid samples were frozen and then lyophilized using a freeze-dryer.
使用吸盘裂解仪和中空纤维管取样器装置(Rhizon 取样器;Eijkelkamp Agrisearch Equipment,荷兰)。随后,将固体样品冷冻,然后使用冷冻干燥器冻干。

In addition, PG wastewaters in zone 3 of PG stack were sampled, corresponding to edge outflow leachates reaching the Estuary of Huelva (from E1 to E12), and process water samples were taken at the perimeter channel (from P1 to P3), in order to confirm the mobility of radionuclides in the PG disposal area conditions.
此外,对PG烟囱第3区的PG废水进行了采样,对应于到达韦尔瓦河口(从E1到E12)的边缘流出渗滤液,并在周边通道(从P1到P3)采集了工艺水样本,以确认放射性核素在PG处置区条件下的流动性。

2.2. Physico-chemical characterization techniques
2.2. 理化表征技术

The pH, redox potential (Eh) and electrical conductivity (EC) of the solutions were measured in the field, except for the pore-waters that were measured immediately in the laboratory after extraction, using a portable MultiparametricCrison Mm 40 + meter, which was calibrated prior to the experiments. Measured redox potential was referenced to standard hydrogen electrode (Eh) as proposed by Nordstrom and Wilde (1998).
溶液的pH值、氧化还原电位(Eh)和电导率(EC)是在现场测量的,除了在提取后立即在实验室中测量的孔隙水,使用便携式MultiparametricCrison mm 40 +仪表,该仪表在实验前进行了校准。测量的氧化还原电位参考了Nordstrom和Wilde(1998)提出的标准氢电极(Eh)。

2.3. Optimized BCR sequential extraction procedure
2.3. 优化的BCR顺序提取程序

In order to study in detail the partitioning of radionuclides in the PG, the following BCR sequential extraction procedure was applied to the solids using around 1 g of each dried and homogenized sample. This sequential procedure presents mainly four steps. Firstly, water/acid soluble and exchangeable fraction (F1), which is designed to extract exchangeable metals soluble in water or in slightly acidic conditions. This fraction is the most mobile in environmental samples, and therefore, the most bioavailable and dangerous for the environment. Secondly, reducible fraction (F2) represents all metals bound to Fe and Mn oxi-hydroxides that can be released if conditions change from an oxic to an anoxic state. Thirdly, oxidizable fraction (F3) is mainly composed of metals bound to organic compounds and sulphides that could be released under oxidising conditions, and finally the residual fraction (F4) known as non-mobile fraction, corresponding to those metals that are strongly associated with crystalline structures of minerals and are therefore unlikely to be released from the samples unless they are exposed to extreme conditions (See Table S1). A summary of the sequential extraction procedure in Supplementary Information (Table S1) is shown.
为了详细研究PG中放射性核素的分配,使用每个干燥和均质化样品约1 g对固体应用以下BCR顺序提取程序。这个顺序过程主要包括四个步骤。首先是水/酸溶性和可交换馏分(F1),旨在提取可溶于水或微酸性条件下的可交换金属。该部分在环境样品中流动性最强,因此对环境的生物利用度最高,对环境最危险。其次,可还原馏分 (F2) 代表所有与 Fe 和 Mn 氧化氢氧化物结合的金属,如果条件从氧状态变为缺氧状态,这些金属可以释放出来。第三,可氧化馏分(F3)主要由与有机化合物结合的金属和硫化物组成,这些金属在氧化条件下会释放出来,最后是残留馏分(F4),称为非移动馏分,对应于那些与矿物晶体结构密切相关的金属,因此除非暴露在极端条件下,否则不太可能从样品中释放出来(见表S1)。补充资料(表S1)中显示了顺序提取程序的摘要。

In order to ensure the comparability of the results obtained, the BCR sequential extraction procedure applied in this work was previously validated in our laboratory by using a certified reference material (CRM), coded as BCR-701, previously validated for heavy metals (Rauret et al., 1999). Once the BCR was verified for heavy metals, it was proved that BCR is also valid (precision, trueness, etc.) for alpha-emitting natural radionuclides (Pérez-Moreno et al., 2018).
为了确保所获得结果的可比性,本工作中应用的BCR顺序提取程序先前在我们的实验室中使用经过认证的参考物质(CRM)进行了验证,该参考物质编码为BCR-701,先前已验证为重金属(Rauret等人,1999)。一旦 BCR 被验证为重金属,就证明 BCR 对发射 α 的天然放射性核素也是有效的(精度、真实度等)(Pérez-Moreno 等人,2018 年)。

The total recovery (R) of a specific radionuclide along the application of the BCR is defined as the sum of the activity concentrations recovered for all fractions (Fi) in relation to the total activity (T) of the PG sample directly measured, and will be given by the Eq. (2):(2)R(%)=i=1i=4FiT·100
应用BCR时特定放射性核素的总回收率(R)定义为所有馏分(F)回收的活性浓度与直接测量的PG样品的总活度(T)的总和,将由方程(2)给出: (2)R(%)=i=1i=4FiT·100

In addition, the transfer factors (TF) were also determined. The transfer factor (%) is defined as the amount of element that is transferred to the liquid phase in each step (Fi), in relation to the total concentration found in the solid sample (sum of concentrations for all fractions, S), so it is calculated by the next equation (Eq. (3)):(3)TF(%)=FiS100
此外,还确定了转移因子(TF)。转移因子 (%) 定义为在每个步骤 (Fi) 中转移到液相的元素量,相对于固体样品中的总浓度(所有馏分的浓度总和,S),因此由下一个公式计算(方程 (3)): (3)TF(%)=FiS100

Finally, it is important to note that the EPA 3052 (SW-846) method was used for digestion of the solid samples.
最后,需要注意的是,EPA 3052(SW-846)方法用于固体样品的消解。

2.4. Alpha spectrometry 2.4. α光谱法

The radiochemical procedure to isolate both U- and Th-isotopes was based on the tributylphosphate (TBP) back-extraction methodology (Holm and Fukai, 1977). The sample is dissolved in 8 M HNO3, and then the actinides are extracted into tributilphosphete (TBP), while in the aqueous nitric fraction are contained the rest of no actinides radioelements (Po, Ra, etc.). The Th is back-extracted by using 1.5 M HCl + Xilen, and after U is back-estracted from the organic phase with distilled water On the another hand, the Po is self-deposited onto silver disks in 2 M HCl by using the method proposed by Flynn (1968), and from the Po remaining dissolution the Ra-isotopes are isolated following the method based on ion-chromatographic cation resins AG50X12 (Hancock and Martin, 1991; Jia et al., 2007). The thin radioactive source for U and Th was obtained by electrodeposition following the methodology reported by Talvitie (1972) and Hallstadius (1984), while the Ra one by BaSO4 microprecipitation was obtained (Blanco et al., 2002). Then, the activity concentrations of the different isotopes were measured using ion implantation Si (PIPS) semiconductor detectors, EG & G Ortec. For these determinations, the samples were spiked with accurately known activities of 232U, 229Th and 209Po. The activity concentration uncertainty has been calculated by using the equation that gives the activity concentration, taking into account the uncertainty of the net counts of the alpha peaks (problem radionuclide and isotopic tracer), precision of balance (0.3 mg), etc. Full details can be found in the Annex I of the Supplementary Information. Quality Assurance and Quality Control (QA/QC) followed in the radiochemical measurements was as follows: one replicate every 10 samples, one blank every 5 samples, one Certified Reference Material (CRM) every 10 samples, and with similar composition matrix to the problem sample; in our case the IAEA-434 (phosphogypsum), IAEA-385 (sea sediment) and CSN 2011 (Intercomparison of spiked Natural water with 226Ra) certified materials were used, obtaining detection limits for the measured radionuclides around 0.4–1.2 mBq. Finally, the obtained average yields, and ranges, for the studied radionuclides were: Ra (46%; 15–72%), U (74%, 35–90%), Th (57%; 30–77%) and Po (92%; 75–95%).
分离U-和Th-同位素的放射化学程序基于磷酸三丁酯(TBP)反萃取方法(Holm和Fukai,1977)。将样品溶解在8M HNO 3 中,然后将锕系元素提取成三丁基磷酸盐(TBP),而在硝酸水性馏分中含有其余的无锕系元素放射性元素(Po,Ra等)。使用1.5 M HCl + Xilen反萃取Th,然后用蒸馏水将U从有机相中回抽出 另一方面,使用Flynn(1968)提出的方法将Po自沉积到2M HCl中的银盘上,并且从Po剩余溶解中分离Ra同位素,方法是基于离子色谱阳离子树脂AG50X12(Hancock和Martin, 1991;Jia 等人,2007 年)。U和Th的薄放射源是按照Talvitie(1972)和Hallstadius(1984)报告的方法通过电沉积获得的,而Ra是通过BaSO 4 微沉淀获得的(Blanco等人,2002)。然后,使用离子注入Si(PIPS)半导体探测器EG&G Ortec测量不同同位素的活性浓度。对于这些测定,样品中加标了准确已知的 232 U、 229 Th 和 209 Po 活性。活性浓度不确定度是通过使用给出活性浓度的方程计算的,同时考虑了α峰(问题放射性核素和同位素示踪剂)的净计数的不确定度、平衡精度(0.3 mg)等。详情载于补充资料附件一。 放射化学测量遵循的质量保证和质量控制 (QA/QC) 如下:每 10 个样品重复 1 个,每 5 个样品重复 1 个空白,每 10 个样品重复 1 个认证标准物质 (CRM),并且具有与问题样品相似的组成基质;在我们的案例中,使用了IAEA-434(磷石膏)、IAEA-385(海洋沉积物)和CSN 2011(加标天然水与 226 Ra的相互比较)认证材料,获得了测得的放射性核素的检测限约为0.4-1.2 mBq。最后,所研究的放射性核素的平均产率和范围为:Ra(46%;15-72%)、U(74%;35-90%)、Th(57%;30-77%)和Po(92%;75-95%)。

2.5. Statistical analysis
2.5. 统计分析

In order to evaluate the significant difference of both samples (U and D cores), Z-score function was used.(4)Z=|X1X2|(σ12+σ22)Where X1, X¯measured is the mean value measured in sampling 1 and X2 is the mean value measured in sampling 2, and σ1 and σ2 the standard deviation of the corresponding averages. The null hypothesis corresponds to no significant differences between both samplings, i.e., the true difference is cero. If the experimental Z-score is lower than 2 will reflect that null hypothesis cannot be rejected with a confidence level of 95% (p-value higher than 0.05).
为了评估两个样本(U 核和 D 核)的显著差异,使用了 Z 分数函数。 (4)Z=|X1X2|(σ12+σ22) 其中 X 1X¯measured 是抽样 1 中测得的平均值,X 2 是抽样 2 中测得的平均值,σ 1 和 σ 2 相应平均值的标准差。原假设对应于两个抽样之间没有显著差异,即真正的差异是 cero。如果实验 Z 分数低于 2,则反映原假设不能以 95% 的置信水平(p 值高于 0.05)被拒绝。

In addition, the Shapiro-Wilk test in order to evaluate the normality of the samples was used. The null-hypothesis of this test is that the population is normally distributed. Thus, on the one hand, if the p-value is less than the chosen alpha level, then the null hypothesis is rejected and there is evidence that the data tested don't came from a normally distributed population. On the other hand, if the p-value is greater than the chosen alpha level, then the null hypothesis (normally distributed population), cannot be rejected at this p significance level (Shapiro and Wilk, 1965).
此外,还使用了Shapiro-Wilk检验来评估样品的正态性。该检验的原假设是总体呈正态分布。因此,一方面,如果 p 值小于所选的 alpha 水平,则原假设将被拒绝,并且有证据表明测试的数据并非来自正态分布的总体。另一方面,如果 p 值大于所选的 alpha 水平,则原假设(正态分布总体)不能在此 p 显著性水平上被拒绝(Shapiro 和 Wilk,1965)。

3. Results and discussion
3. 结果与讨论

3.1. Physico-chemical parameters
3.1. 理化参数

The physico-chemical parameters analysed in the pore-water show small variations along each core (SI, Table S2). In the U core the pH is 3.5 in the first saturated layer (1.5 m), and below remains very uniform with a value around 2.8–3. Contrarily, the pH in D core is one unity lower than in U, constant and around 2, indicating that proton concentration (H+) in D is one order of magnitude higher than in U. The electrical conductivity (EC) found is in agreement with the measured pH around 3.5 ± 0.1 mS cm−1 in the upper part, and increases one order of magnitude (43 ± 4 mS cm−1) in the deeper zone (perimeter channel). Contrarily, there is not significant differences in the redox potential (Eh) for both cores samples and oxidant conditions are found. These results are in agreement with previous hydrogeochemical studies (Aguado et al., 2005), where low pH values are related to content of phosphoric acid.
在孔隙水中分析的物理化学参数显示沿每个岩心的微小变化(SI,表S2)。在U核中,第一饱和层(1.5 m)的pH值为3.5,以下的pH值保持非常均匀,值约为2.8-3。相反,D核的pH值比U低一个单位,恒定且约为2,表明D中的质子浓度(H + )比U中的质子浓度高一个数量级。发现的电导率 (EC) 与上部测得的 pH 值一致,约为 3.5 ± 0.1 mS cm −1 ,并且在较深的区域(周边通道)增加了一个数量级(43 ± 4 mS cm −1 )。相反,两种岩芯样品的氧化还原电位(Eh)没有显着差异,并且发现了氧化剂条件。这些结果与以前的水文地球化学研究(Aguado等人,2005年)一致,其中低pH值与磷酸含量有关。

The main physico-chemical characteristics of the edge outflow leachates (E1-E12) and the process waters collected in the perimeter channels (P1-P3) are their extreme acidity (pH < 2), especially in the perimeter channel (pH = 1.42 ± 0.14), and their high EC values (E¯: 40.3 ± 2.9 mS cm−1; P¯: 59.4 ± 2.5 mS cm−1) (SI, Table S3). The values observed for the edge outflows are very similar to those found in the pore-water of the deeper zone, which is expectable since the excess of groundwater leads to the formation of these acid leakages at the toe of the stack. On the other hand, the Eh values are slightly higher in perimeter channel (583 ± 36) than in the edge outflow leachate (483 ± 15).
边缘流出渗滤液(E1-E12)和周边通道(P1-P3)中收集的工艺用水的主要物理化学特性是其极端酸度(pH < 2),特别是在周边通道(pH = 1.42 ± 0.14)和高EC值( E¯ : 40.3 ± 2.9 mS cm −1 ; P¯ : 59.4 ± 2.5 mS cm −1 ) (SI, 表 S3).在边缘流出处观察到的值与在较深区域的孔隙水中发现的值非常相似,这是可以预期的,因为地下水过量会导致在烟囱脚趾形成这些酸泄漏。另一方面,周长通道(583 ± 36)的 Eh 值略高于边缘流出渗滤液 (483 ± 15)。

3.2. Characterization of phosphogypsum in depth
3.2. 磷石膏的深入表征

Total activity concentrations (Bq kg−1) of radionuclides in PG versus depth are shown in the SI, Figs. S1–S4. The concentrations of 210Po, 226Ra and 230Th range from 500 to 1000 Bq kg−1 in both cores samples (U and D samples), with similar averages, around 650 Bq kg−1. Both 234U and 238U activity concentrations are equals (secular equilibrium), and range from 70 to 500 Bq kg−1 (average of about 100 Bq kg−1 for both cores). In contrast, the concentrations of 232Th are very low, ranging from 5 to 40 Bq kg−1. These results are in agreement with previous studies developed in this zone (Bolívar et al., 2000, 2002; Dueñas et al., 2010). In addition, these radionuclides levels are in accordance with measurements made previously in the production process of phosphoric acid (Bolívar et al., 2009). It is worth highlighting that there are no significant differences between the average concentrations of both cores (Z score < 2 for all radionuclides). Taking into account that there are not significant variations in depth, in the future studies, it will only be needed to measure a composed sample done by mixing the different layers of PG until the supporting substrate. In addition, to point out that for both cores, all the radionuclides concentrations are normally distributed (p > 0.05 for Shapiro–Wilk normality test). The high dispersion of activity concentrations is probably due to differences in the used ore or changes in the phosphoric acid production process. These results show that pH and redox potential do not regulate the radionuclides activity concentrations in the PG.
放射性核素在PG中的总活度浓度(Bq kg −1 )与深度的关系显示在SI中,图S1-S4。 −1 在两个岩心样品(U 和 D 样品)中,Po、 226 Ra 和 230 Th 的 210 浓度范围为 500 至 1000 Bq kg,平均值相似,约为 650 Bq kg −1234 U和 238 U活性浓度相等(长期平衡),范围为70至500 Bq kg −1 (两个核心的平均值约为100 Bq kg −1 )。相比之下,Th的 232 浓度非常低,范围从5到40 Bq kg −1 。这些结果与以前在该地区开展的研究一致(Bolívar等人,2000年,2002年;Dueñas等人,2010)。此外,这些放射性核素水平与先前在磷酸生产过程中进行的测量结果一致(Bolívar等人,2009年)。值得强调的是,两种核心的平均浓度之间没有显着差异(Z评分< 2 表示所有放射性核素)。 考虑到深度没有显着变化,在未来的研究中,只需要测量通过混合不同层的PG直到支撑底物完成的组合样品。 此外,需要指出的是,对于两个核心,所有放射性核素浓度都是正态分布的(夏皮罗-威尔克正态性检验>p 为 0.05)。活性浓度的高分散性可能是由于所用矿石的差异或磷酸生产过程的变化。这些结果表明,pH值和氧化还原电位不能调节PG中的放射性核素活性浓度。

The most relevant activity ratios for both cores are compiled in SI, Table S4. It can be observed that 234U/238U value is the unity by considering the experimental uncertainties, as well as the 210Po/226Ra ratios. At the same time, the 230Th/232Th values are very high, being more than 50 the relation between 230Th and 232Th in the majority of the samples, which is the value found in the raw material used in the industrial process (Bolívar et al., 2009). In contrast, the 234U/230Th activity ratios are about 0.14 and 0.3 in U and D samples, respectively. These values are also reported by other authors (Rentería-Villalobos et al., 2010).
两个核心最相关的活度比汇编在SI表S4中。可以看出, 234 通过考虑实验不确定度以及 210 Po/ 226 Ra比值,U/ 238 U值是统一的。同时, 230 Th/ 232 Th值非常高,在大多数样品中Th和 232 Th之间的关系 230 超过50,这是工业过程中使用的原材料中发现的值(Bolívar等人,2009)。相比之下,U 和 D 样品的 234 U/ 230 Th 活性比分别约为 0.14 和 0.3。其他作者也报告了这些值(Rentería-Villalobos等人,2010)。

3.3. Mobility of natural radionuclides in phosphogypsum
3.3. 天然放射性核素在磷石膏中的迁移率

3.3.1. Polonium 3.3.1. 钋

The activity concentrations (expressed in Bq kg−1 of PG) of 210Po found in each liquid fraction of the BCR sequential extraction are shown in Table 1. The highest activity concentrations of polonium are found in the residual (non-mobile) fraction of both cores. At the same time, an important proportion of 210Po (F1+F2+F3) could be mobilized to the environment depending on the weathering conditions. The water/acid soluble and exchangeable fraction (F1) shows the minimum activity concentration, especially in D core, where is 5 times smaller than in U core, which is the core with greater acidity. This seems indicate that the PG subjected to more leaching conditions in the stack (smaller pH) is more leached and therefore will present a less mobility in F1. On the other hand, polonium does not show a clear tendency for the reducible (F2), due to the activity concentration does not differ except for the first layer of the samples U1 and D1, where the activity concentration is clearly higher than in the rest of core. In addition, for oxidizable fraction (F3) shows a clear tendency in the core U (but not in D core), where the activity concentration is progressively increasing in depth (Table 1). In addition, it is noteworthy that there are only significant differences between average concentration of U-D for F1 (Z-score = 3) while for the average fractions of F2, F3 and F4 the Z-scores found were 1.7, 1.7, and 0.8, respectively.
表1显示了在BCR顺序萃取的每个液体组分中发现的 210 Po的活性浓度(以Bq kg −1 的PG表示)。钋的活性浓度最高的是两个核心的残余(非移动)部分。同时,根据风化条件,很大一部分 210 Po(F1+F2+F3)可以被调动到环境中。水/酸溶性可交换馏分(F1)显示最低活性浓度,特别是在D核中,其小于U核的5倍,U核是酸度较高的核心。这似乎表明,在烟囱中经受更多浸出条件(pH值较小)的PG浸出率更高,因此在F1中的流动性较低。另一方面,钋没有显示出明显的可还原性(F2)趋势,因为除了样品的第一层U1和D1外,活性浓度没有差异,其中活性浓度明显高于核心的其余部分。此外,对于可氧化部分(F3)在核心U(但在D核心中没有)显示出明显的趋势,其中活性浓度在深度上逐渐增加(表1)。此外,值得注意的是,F1 的 U-D 平均浓度之间只有显着差异(Z 分数 = 3),而对于 F2、F3 和 F4 的平均分数,发现的 Z 分数分别为 1.7、1.7 和 0.8。

Table 1. Activity concentration (Bq kg −1) of 210Po in each fraction of both cores samples.
表 1. 210 Po在两个岩心样品的每个组分中的活性浓度(Bq kg −1 )。

Samples 样品F1(Bq kg−1) F1(Bq kg −1F2(Bq kg−1) F2(Bq kg −1F3(Bq kg−1) F3(Bq kg −1F4(Bq kg−1) F4(Bq kg −1
U119 ± 1 19 ± 1335 ± 18 335 ± 186 ± 2 6 ± 2494 ± 18 494 ± 18
U243 ± 2 43 ± 297 ± 5 97 ± 538 ± 3 38 ± 3391 ± 14 391 ± 14
U3106 ± 5 106 ± 579 ± 6 79 ± 682 ± 4 82 ± 4170 ± 12 170 ± 12
U423 ± 2 23 ± 273 ± 7 73 ± 774 ± 4 74 ± 4130 ± 24 130 ± 24
U533 ± 2 33 ± 277 ± 8 77 ± 8103 ± 5 103 ± 5130 ± 9 130 ± 9
U627 ± 2 27 ± 294 ± 9 94 ± 9106 ± 6 106 ± 6180 ± 9 180 ± 9
U738 ± 2 38 ± 2112 ± 28 112 ± 28177 ± 8 177 ± 8121 ± 11 121 ± 11
Averagea 平均 a 41 ± 11124 ± 3684 ± 21231 ± 56
D16.1 ± 1.1 6.1 ± 1.1111 ± 3 111 ± 3121 ± 5 121 ± 5368 ± 14 368 ± 14
D27.8 ± 1.3 7.8 ± 1.347 ± 2 47 ± 289 ± 3 89 ± 3130 ± 7 130 ± 7
D33.1 ± 0.5 3.1 ± 0.551 ± 2 51 ± 2142 ± 4 142 ± 4208 ± 4 208 ± 4
D42.4 ± 0.4 2.4 ± 0.440 ± 2 40 ± 2178 ± 5 178 ± 5601 ± 12 601 ± 12
D515 ± 1 15 ± 166 ± 3 66 ± 3104 ± 3 104 ± 3249 ± 6 249 ± 6
D611 ± 1 11 ± 145 ± 2 45 ± 2124 ± 4 124 ± 4258 ± 6 258 ± 6
Averagea 平均 a 7.6 ± 2.060 ± 11126 ± 13302 ± 68
a

Standard uncertainty (1 σ) has been calculated as the standard deviation of the mean, σ = Sx/(n)1/2.
标准不确定度 (1 σ) 计算为均值的标准差,σ = Sx/(n)1/2。

The transfer factor TF (%) are plotted in Fig. 2. The 210Po is distributed between fractions in both cores as follows: F4 (50%)> F3 ∼ F2 (24%)> F1 (2–9%). It is of standing out that the TF in F1 fraction is slightly higher in U core than in D core. This fact is probably related to the pH conditions, being D samples subjected to lower pH, and part of this polonium has been already released. So, the speciation of 210Po seems to follow the same tendency in both cores with a certain dispersion, independently of the sampling point and the depth.
传递因子TF(%)如图2所示。 210 Po 在两个核心的分数之间分布如下:F4 (50%)>F3 ∼ F2 (24%)>F1 (2–9%)。值得注意的是,F1 部分的 TF 在 U 核中略高于 D 核。这一事实可能与pH条件有关,因为D样品经受较低的pH值,并且该钋的一部分已经释放出来。因此, 210 Po的形态在两个岩心中似乎都遵循相同的趋势,具有一定的分散性,与采样点和深度无关。

Fig. 2
  1. Download : Download high-res image (247KB)
    下载:下载高分辨率图像(247KB)
  2. Download : Download full-size image
    下载 : 下载全尺寸图片

Fig. 2. TF (%) of 210Po in each BCR fraction for both cores of PG samples.
图 2.PG样品的两个核心的每个BCR馏分中Po的 210 TF(%)。

3.3.2. Uranium 3.3.2. 铀

Table 2 shows the activity concentrations (Bq kg−1) measured for uranium isotopes (234U and 238U) in each fraction from BCR procedure for the two sampling points. The total recovery (%) of U-isotopes ranges from 70 to 100%. Similar activity concentrations of 234U and 238U are found in each fraction of both cores. In residual (F4) and oxidizable (F3) fractions are found the highest activity concentrations and the lowest activity is presents in reducible (F2) fraction. It is stand out that the average activity concentration of both 234U and 238U in the four BCR fractions are not statistically different in cores U and D. Thus, the activity concentrations in U core were 12 ± 5, 10 ± 4, 31 ± 8 and 22 ± 10 Bq kg−1 for F1, F2, F3 and F4 respectively for 234U while for 238U the activity concentrations were 13 ± 4, 12 ± 4, 28 ± 7 and 21 ± 9 Bq kg−1, for F1, F2, F3 and F4, respectively. On the other hand, F1fraction presents major activity concentrations in D core than U core, that possibly is related to the pH condition under these samples are subjected, in which U-isotopes are more easily released into the environment.
表2显示了两个采样点的BCR程序中每个馏分中铀同位素( 234 U和 238 U)的活性浓度(Bq kg −1 )。U同位素的总回收率(%)范围为70%至100%。 234 你和 238 你的活性浓度相似,存在于两个核心的每个部分。在残留 (F4) 和可氧化 (F3) 馏分中,活性浓度最高,活性最低,在还原 (F2) 馏分中。值得注意的是,U和 238 U在四个BCR组分中的平均活性浓度 234 在核心U和D中没有统计学差异。因此, 234 U核中的F1、F2、F3和F4的活性浓度分别为12±5、10±4、31±8和22±10 Bq kg −1 ,而 238 U的F1、F2、F3和F4的活性浓度分别为13±4、12±4、28±7和21±9 Bq −1 kg,F1、F2、F3和F4。另一方面,F1分数在D核中比U核中呈现出主要活性浓度,这可能与这些样品下的pH条件有关,其中U同位素更容易释放到环境中。

Table 2. Activity concentration (Bq kg −1) of 234U and 238U in each fraction of both cores samples.
表 2. 234 U和 238 U在两个岩心样品的每个组分中的活性浓度(Bq kg −1 )。

Empty CellF1(Bq kg−1) F1(Bq kg −1F2(Bq kg−1) F2(Bq kg −1F3(Bq kg−1) F3(Bq kg −1F4(Bq kg−1) F4(Bq kg −1
234U
U137 ± 3 37 ± 331 ± 2 31 ± 246 ± 4 46 ± 467 ± 5 67 ± 5
U219 ± 2 19 ± 25.0 ± 1.4 5.0 ± 1.427 ± 3 27 ± 3<LD
U34.1 ± 1.0 4.1 ± 1.00.14 ± 1.23 0.14 ± 1.232.1 ± 2.5 2.1 ± 2.58.6 ± 1.5 8.6 ± 1.5
U46.5 ± 1.6 6.5 ± 1.61.7 ± 1.5 1.7 ± 1.56 ± 2 6 ± 22.6 ± 1.7 2.6 ± 1.7
U55.1 ± 1.6 5.1 ± 1.614 ± 2 14 ± 240 ± 4 40 ± 47.6 ± 1.9 7.6 ± 1.9
U65.1 ± 1.6 5.1 ± 1.65.6 ± 1.5 5.6 ± 1.531 ± 3 31 ± 330 ± 6 30 ± 6
U75.9 ± 1.7 5.9 ± 1.716 ± 2 16 ± 263 ± 4 63 ± 417 ± 3 17 ± 3
Averagea 平均 a 12 ± 510 ± 431 ± 822 ± 10
D133 ± 1 33 ± 110 ± 1 10 ± 147 ± 2 47 ± 230 ± 2 30 ± 2
D226 ± 1 26 ± 19.9 ± 1.0 9.9 ± 1.030 ± 2 30 ± 29.2 ± 0.9 9.2 ± 0.9
D335 ± 1 35 ± 111 ± 1 11 ± 199 ± 5 99 ± 543 ± 2 43 ± 2
D456 ± 2 56 ± 29.4 ± 1.2 9.4 ± 1.2176 ± 13 176 ± 13195 ± 6 195 ± 6
D551 ± 2 51 ± 218 ± 1 18 ± 1137 ± 7 137 ± 750 ± 6 50 ± 6
D620 ± 1 20 ± 17.7 ± 0.7 7.7 ± 0.777 ± 3 77 ± 338 ± 2 38 ± 2
Averagea 平均 a 37 ± 611 ± 194 ± 2352 ± 27
238U
U134 ± 2 34 ± 232 ± 2 32 ± 241 ± 2 41 ± 264 ± 4 64 ± 4
U222 ± 2 22 ± 26.3 ± 1.3 6.3 ± 1.322 ± 2 22 ± 2<LD
U34.3 ± 0.8 4.3 ± 0.80.36 ± 1.09 0.36 ± 1.094.5 ± 1.6 4.5 ± 1.68.3 ± 2.5 8.3 ± 2.5
U48.3 ± 1.4 8.3 ± 1.43.7 ± 1.5 3.7 ± 1.56.1 ± 1.1 6.1 ± 1.12.7 ± 1.1 2.7 ± 1.1
U56.6 ± 1.2 6.6 ± 1.215 ± 2 15 ± 232 ± 2 32 ± 27.7 ± 1.4 7.7 ± 1.4
U68.3 ± 1.4 8.3 ± 1.48.4 ± 1.5 8.4 ± 1.532 ± 3 32 ± 325 ± 2 25 ± 2
U77.3 ± 1.4 7.3 ± 1.418 ± 2 18 ± 256 ± 3 56 ± 316 ± 2 16 ± 2
Averagea 平均 a 13 ± 412 ± 428 ± 721 ± 9
D133 ± 1 33 ± 111 ± 1 11 ± 146 ± 2 46 ± 229 ± 1 29 ± 1
D225 ± 1 25 ± 110 ± 1 10 ± 128 ± 2 28 ± 28.4 ± 0.7 8.4 ± 0.7
D336 ± 2 36 ± 210 ± 1 10 ± 199 ± 5 99 ± 542 ± 1 42 ± 1
D457 ± 2 57 ± 28.5 ± 3.2 8.5 ± 3.2189 ± 7 189 ± 7191 ± 5 191 ± 5
D548 ± 2 48 ± 216 ± 1 16 ± 1133 ± 7 133 ± 749 ± 2 49 ± 2
D620 ± 1 20 ± 17.2 ± 1.2 7.2 ± 1.277 ± 3 77 ± 337 ± 1 37 ± 1
Averagea 平均 a 37 ± 610 ± 195 ± 2459 ± 27
a

Standard uncertainty (1 σ) has been calculated as the standard deviation of the mean, σ = Sx/(n)1/2.
标准不确定度 (1 σ) 计算为均值的标准差,σ = Sx/(n)1/2。

According to the TF (Fig. 3), uranium isotopes present high mobility since about 70–75% of the total concentration found in PG could be released depending on the environmental conditions, where soluble (F1: 21–26%) and oxidizable fractions (F3: 41–47%) are the most relevant. For uranium the reduction conditions are commonly associated with Eh values smaller than 300 mV. However, the more positive redox potentials observed in this study have been also previously described in other anaerobic environments with sufficient organic carbon, where there are pore-water microenvironments that are more reducing than the general solid chemistry (Church et al., 2007). Under these conditions, mainly in deeper zones, an important fraction of U contained in PG samples could be in form of U(IV), that can be oxidized to U(VI), when the conditions change from anoxic to oxic. That specie constitute the most mobile form of uranium (Lee et al., 2017; UNSCEAR, 2016). On the other hand, only 25–30% of the total is bound to the residual fraction.
根据TF(图3),铀同位素具有很高的迁移率,因为PG中发现的总浓度的约70-75%可以根据环境条件释放出来,其中可溶性(F1:21-26%)和可氧化部分(F3:41-47%)是最相关的。对于铀,还原条件通常与小于 300 mV 的 Eh 值相关。然而,在这项研究中观察到的更积极的氧化还原电位先前也在其他具有足够有机碳的厌氧环境中进行了描述,其中孔隙水微环境比一般固体化学更还原(Church等人,2007)。在这些条件下,主要是在更深的区域,PG样品中所含的U的重要部分可能以U(IV)的形式存在,当条件从缺氧变为含氧时,可以氧化成U(VI)。该物种构成了流动性最强的铀形式(Lee等人,2017;UNSCEAR,2016)。另一方面,只有 25-30% 的总数与残余部分结合。

Fig. 3
  1. Download : Download high-res image (194KB)
    下载 : 下载高分辨率图片 (194KB)
  2. Download : Download full-size image
    下载 : 下载全尺寸图片

Fig. 3. TF (%) of 234U in each BCR fraction for both cores of PG samples.
图 3.PG 样品的两个核心的每个 BCR 组分中 U 的 234 TF (%)。

The potential fractionation of uranium isotopes can be also tested by analysing the activity 234U/238U ratios. These activity ratios are one in all fractions taking into account the experimental uncertainties. This fact reveals that both uranium isotopes are transferred in the same way to the liquid fraction, and that the PG material has been formed recently from a dissolution since the preferential leaching mechanisms are not presented (234U does not formed from the 238U decay in the solid particles). Previous studies (Pérez-Moreno et al., 2018) have found a high 234U/238U disequilibria in fraction F1 when BCR is applied to sediments samples.
铀同位素的潜在分馏也可以通过分析活性 234 U/ 238 U比来测试。考虑到实验的不确定性,这些活性比是所有分数中的一个。这一事实表明,两种铀同位素都以相同的方式转移到液体部分,并且PG材料是最近从溶解中形成的,因为没有出现优先浸出机制( 234 U不是由固体颗粒中的 238 U衰变形成的)。先前的研究(Pérez-Moreno等人,2018年)发现,当BCR应用于沉积物样品时,F1馏分的 234 U/ 238 U不平衡很高。

3.3.3. Thorium 3.3.3. 钍

The activity concentrations (Bq kg−1) of thorium isotopes (230Th and 232Th) for each BCR step are compiled in Table 3. The thorium isotopes are practically only detected in the residual fraction (F4) in both core samples, around 98% according the TF (Fig. 4). These results are independent of the pH, CE or Eh conditions in depth. This fact is reported by other studies (Santschi et al., 2006), which indicate that thorium has a very low mobility under most of environmental conditions mainly due to the high stability of the insoluble oxide ThO2 and the strongly resistant nature of its carrier minerals such as monazite ((Ce, La, Th, U)PO4) and zircon (ZrSiO4). The results also indicate that nearly total thorium isotopes are recovered (85–100%).
每个BCR步骤的钍同位素( 230 Th和 232 Th)的活性浓度(Bq kg −1 )汇编在表3中。钍同位素实际上只在两个岩芯样品的残余部分(F4)中检测到,根据TF的数据,大约98%(图4)。这些结果与pH、CE或Eh条件无关。其他研究(Santschi等人,2006)报道了这一事实,这些研究表明,钍在大多数环境条件下具有非常低的迁移率,这主要是由于不溶性氧化物ThO 2 的高稳定性及其载体矿物的强抵抗性,例如独居石((Ce,La,Th,U)PO 4 )和锆石(ZrSiO 4 )。结果还表明,几乎全部的钍同位素被回收(85-100%)。

Table 3. Activity concentration of 230Th and 232Th (Bq kg −1) in each fraction of both cores samples.
表 3.Th和 232 Th(Bq kg −1 )在两个岩心样品的每个组分中的活性浓度 230

Empty CellF1(Bq kg−1) F1(Bq kg −1F2(Bq kg−1) F2(Bq kg −1F3(Bq kg−1) F3(Bq kg −1F4(Bq kg−1) F4(Bq kg −1
230Th
U1< DL< DL18 ± 9 18 ± 9927 ± 27 927 ± 27
U2< DL1.5 ± 1.2 1.5 ± 1.2<DL785 ± 30 785 ± 30
U3<DL< DL1.3 ± 1.2 1.3 ± 1.2348 ± 18 348 ± 18
U4<DL6.0 ± 1.7 6.0 ± 1.74.2 ± 1.3 4.2 ± 1.3251 ± 10 251 ± 10
U5<DL6.2 ± 4.0 6.2 ± 4.04.5 ± 1.4 4.5 ± 1.4365 ± 15 365 ± 15
U6<DL5.1 ± 1.5 5.1 ± 1.5<DL386 ± 17 386 ± 17
U7<DL3.7 ± 1.2 3.7 ± 1.2<DL371 ± 35 371 ± 35
Averagea 平均 a < DL3.9 ± 0.87.0 ± 2.8490 ± 97
D1<DL< DL6.2 ± 1.0 6.2 ± 1.0273 ± 10 273 ± 10
D2< DL< DL9.3 ± 1.6 9.3 ± 1.6416 ± 15 416 ± 15
D3<DL< DL10 ± 1 10 ± 1828 ± 36 828 ± 36
D4<DL<DL6.8 ± 0.8 6.8 ± 0.81166 ± 58 1166 ± 58
D5<DL< DL18 ± 1 18 ± 1510 ± 14 510 ± 14
D6< DL< DL8.2 ± 0.8 8.2 ± 0.8430 ± 12 430 ± 12
Averagea 平均 a < DL< DL9.8 ± 1.8604 ± 135
232Th
U1< DL<DL<DL29 ± 2 29 ± 2
U2< DL<DL<DL7.2 ± 1.5 7.2 ± 1.5
U3<DL<DL<DL11 ± 2 11 ± 2
U4<DL<DL<DL10 ± 2 10 ± 2
U5<DL<DL<DL36 ± 3 36 ± 3
U6<DL<DL<DL6.3 ± 1.4 6.3 ± 1.4
U7<DL<DL<DL3.8 ± 2.7 3.8 ± 2.7
Averagea 平均 a < DL< DL<DL15 ± 5
D1<DL<DL<DL2.8 ± 0.4 2.8 ± 0.4
D2<DL<DL<DL4.1 ± 0.5 4.1 ± 0.5
D3<DL<DL<DL8.9 ± 1.0 8.9 ± 1.0
D4<DL<DL<DL11 ± 2 11 ± 2
D5<DL<DL<DL9.4 ± 0.6 9.4 ± 0.6
D6< DL<DL<DL6.5 ± 0.5 6.5 ± 0.5
Averagea 平均 a < DL< DL<DL7.1 ± 1.3
a

Standard uncertainty (1 σ) has been calculated as the standard deviation of the mean, σ = Sx/(n)1/2. DL = 1 Bq kg−1.
标准不确定度 (1 σ) 计算为均值的标准差,σ = Sx/(n)1/2。DL = 1 Bq kg −1 .

Fig. 4
  1. Download : Download high-res image (208KB)
    下载:下载高分辨率图片(208KB)
  2. Download : Download full-size image
    下载 : 下载全尺寸图片

Fig. 4. TF (%) of 230Th in each BCR fraction for both cores of PG samples.
图 4.PG样品的两个核心的每个BCR馏分中Th的 230 TF(%)。

3.3.4. Radium 3.3.4. 镭

Table 4 displays the 226Ra activity concentration in each fraction from BCR procedure for the two sampling cores. The greatest activity concentrations for PG samples are found in F4 with a mean value of around 275 Bq kg−1. On the contrary, the smallest concentrations are detected in F1 (about 10 Bq kg−1), being very similar the values found in both cores. On the other hand, F3 contains a higher activity concentration of radium when is compared with F2, indistinctly in all the samples.
表4显示了两个取样核心的BCR程序中每个 226 馏分的Ra活性浓度。PG样品的最大活性浓度在F4中,平均值约为275 Bq kg −1 。相反,在F1中检测到的最小浓度(约10 Bq kg −1 ),与两个核心中发现的值非常相似。另一方面,与 F2 相比,F3 含有更高的镭活性浓度,在所有样品中都模糊不清。

Table 4. Activity concentration of 226Ra (Bq kg−1) in each fraction of both core samples.
表 4.两种岩心样品中每个组分中 226 Ra(Bq kg −1 )的活性浓度。

Empty CellF1(Bq kg−1) F1(Bq kg −1F2(Bq kg−1) F2(Bq kg −1F3(Bq kg−1) F3(Bq kg −1F4(Bq kg−1) F4(Bq kg −1
U114 ± 2 14 ± 244 ± 10 44 ± 1059 ± 8 59 ± 8291 ± 55 291 ± 55
U26.5 ± 1.1 6.5 ± 1.124 ± 5 24 ± 571 ± 4 71 ± 4383 ± 64 383 ± 64
U33.5 ± 0.7 3.5 ± 0.719 ± 4 19 ± 469 ± 8 69 ± 8304 ± 37 304 ± 37
U45.1 ± 1.2 5.1 ± 1.27.1 ± 4.6 7.1 ± 4.639 ± 6 39 ± 6298 ± 30 298 ± 30
U56.7 ± 2.1 6.7 ± 2.122 ± 3 22 ± 373 ± 9 73 ± 9167 ± 22 167 ± 22
U68.9 ± 1.8 8.9 ± 1.84.6 ± 2.8 4.6 ± 2.857 ± 14 57 ± 14188 ± 15 188 ± 15
U711 ± 5 11 ± 517 ± 3 17 ± 3138 ± 19 138 ± 19207 ± 10 207 ± 10
Averagea 平均 a 8.0 ± 1.420 ± 572 ± 12263 ± 29
D113 ± 2 13 ± 245 ± 4 45 ± 4257 ± 20 257 ± 20135 ± 13 135 ± 13
D27.2 ± 0.8 7.2 ± 0.832 ± 2 32 ± 2224 ± 17 224 ± 1779 ± 10 79 ± 10
D34.8 ± 0.8 4.8 ± 0.846 ± 6 46 ± 668 ± 6 68 ± 6481 ± 26 481 ± 26
D42.9 ± 0.7 2.9 ± 0.733 ± 3 33 ± 380 ± 11 80 ± 11679 ± 38 679 ± 38
D513 ± 2 13 ± 256 ± 4 56 ± 4212 ± 33 212 ± 33179 ± 8 179 ± 8
D611 ± 1 11 ± 162 ± 7 62 ± 7192 ± 51 192 ± 51175 ± 8 175 ± 8
Averagea 平均 a 8.7 ± 1.846 ± 5172 ± 32288 ± 97
a

Standard uncertainty (1 σ) has been calculated as the standard deviation of the mean, σ = Sx/(n)1/2.
标准不确定度 (1 σ) 计算为均值的标准差,σ = Sx/(n)1/2。

Concerning the TF (Fig. 5), both cores follow the same tendency, but the D core displays more homogeneity in the fraction distribution. All samples are characterised by a high percentage in the non-mobile fraction, being the mobile fraction around 30–50% of total radium contained in the PG.
关于TF(图5),两个核心都遵循相同的趋势,但D核心在分数分布中显示出更多的均匀性。所有样品的特点是非移动镭的百分比很高,即PG中所含镭总镭的30-50%左右的移动馏分。

Fig. 5
  1. Download : Download high-res image (193KB)
    下载:下载高分辨率图片(193KB)
  2. Download : Download full-size image
    下载 : 下载全尺寸图片

Fig. 5. TF (%) of 226Ra in each BCR fraction for both cores of PG samples.
图 5.PG样品的两个核心的每个BCR馏分中 226 Ra的TF(%)。

3.4. Waters from disposal area
3.4. 处置区的水

3.4.1. Pore water 3.4.1. 孔隙水

The activity concentrations of 210Po, U-isotopes (234U and 238U), Th-isotopes (230Th and 232Th) and 226Ra measured in pore-water solutions of both core samples are shown in Table 5. The higher activity concentrations of 210Po and U-isotopes in the D core could be related with pH since it is lower in core D when compared with core U. . Concretely, the activity concentration detected in D core exceed in one order of magnitude to the activity in U core. On the other hand, Th- isotopes and 226Ra activity concentrations are much lower compared with the other radionuclides in both zones. These results are in concordance with the information provided by BCR procedure for Th-isotopes and Ra and, even, with other earlier studies (Haridasan et al., 2002; Santos et al., 2006; Ceballos et al., 2017), which confirm that thorium isotopes and 226Ra tend to be associated with crystalline forms of the PG and their release is limited in environmental weathering conditions.
在两个岩心样品的孔隙水溶液中测得的 210 Po、U同位素( 234 U和 238 U)、Th同位素( 230 Th和 232 Th)和 226 Ra的活性浓度如表5所示。D核中 210 Po和U同位素的活性浓度较高可能与pH值有关,因为与核U相比,D核中的pH值较低。具体而言,在D核中检测到的活性浓度比在U核中检测到的活性浓度高出一个数量级。另一方面,与两个区域的其他放射性核素相比,Th-同位素和 226 Ra活性浓度要低得多。这些结果与Th同位素和Ra的BCR程序提供的信息一致,甚至与其他早期研究一致(Haridasan等人,2002年;Santos 等人,2006 年;Ceballos等人,2017),这证实了钍同位素和 226 Ra往往与PG的晶体形式有关,并且它们的释放在环境风化条件下受到限制。

Table 5. Activity concentration (Bq L−1) of pore-water from PG samples.
表 5.PG样品孔隙水的活性浓度(Bq L −1 )。

Empty CellDepth (m) 深度 (m)210Po (BqL−1)
210 Po (BqL −1
234U(BqL−1)
234 U(BqL −1
238U (BqL−1)
238 U (BqL −1
230 Th(BqL−1)
230 钾(BqL −1
232 Th(BqL−1)
232 钾(BqL −1
226Ra (BqL−1)
226 镭 (BqL −1
U samples U 样本2.04.8 ± 0.2 4.8 ± 0.22.1 ± 0.2 2.1 ± 0.22.1 ± 0.2 2.1 ± 0.20.81 ± 0.09 0.81 ± 0.090.13 ± 0.04 0.13 ± 0.040.33 ± 0.05 0.33 ± 0.05
2.53.44 ± 0.09 3.44 ± 0.091.7 ± 0.1 1.7 ± 0.11.8 ± 0.1 1.8 ± 0.10.18 ± 0.02 0.18 ± 0.020.05 ± 0.01 0.05 ± 0.010.18 ± 0.02 0.18 ± 0.02
3.05.8 ± 0.2 5.8 ± 0.23.4 ± 0.2 3.4 ± 0.23.5 ± 0.2 3.5 ± 0.20.23 ± 0.02 0.23 ± 0.020.06 ± 0.01 0.06 ± 0.010.26 ± 0.03 0.26 ± 0.03
Averagea 平均 a 4.7 ± 0.72.4 ± 0.52.5 ± 0.50.4 ± 0.20.08 ± 0.030.26 ± 0.04
D samples D 样品3.547 ± 1 47 ± 139 ± 5 39 ± 538 ± 5 38 ± 51.1 ± 0.1 1.1 ± 0.10.05 ± 0.03 0.05 ± 0.030.85 ± 0.13 0.85 ± 0.13
4.345 ± 1 45 ± 135 ± 3 35 ± 336 ± 3 36 ± 30.89 ± 0.05 0.89 ± 0.050.03 ± 0.01 0.03 ± 0.010.84 ± 0.06 0.84 ± 0.06
5.044 ± 1 44 ± 112 ± 4 12 ± 413 ± 4 13 ± 40.39 ± 0.04 0.39 ± 0.040.03 ± 0.01 0.03 ± 0.010.42 ± 0.05 0.42 ± 0.05
5.553 ± 2 53 ± 27.3 ± 1.6 7.3 ± 1.67.0 ± 1.6 7.0 ± 1.60.10 ± 0.02 0.10 ± 0.020.02 ± 0.01 0.02 ± 0.010.36 ± 0.03 0.36 ± 0.03
Averagea 平均 a 47 ± 223 ± 824 ± 80.62 ± 0.230.03 ± 0.010.62 ± 0.13
a

Standard uncertainty (1 σ) has been calculated as the standard deviation of the mean, σ = Sx/(n)1/2.
标准不确定度 (1 σ) 计算为均值的标准差,σ = Sx/(n)1/2。

The activity ratios of 234U/238U, 230Th/232Th, 234U/230Th and 210Po/226Ra in the pore-water samples are presented in SI, Table S5. The 234U/238U values are similar in both core samples, being practically close to unit. This confirms that independently of the PG pile conditions both uranium isotopes have the same behaviour, as it was deduced by BCR procedure. Slight differences are found in the ratios 230Th/232Th of both cores, having somewhat higher values in D samples. At the same time, 234U is also preferentially concentrated in pore-water conditions in relation to 230Th. In addition, 210Po is subjected to a preferential leaching in low pH conditions against the 226Ra leaching. However, behaviour of 226Ra and 230Th do not seem to be different in both cores.
孔隙水样品中 234 U/ 238 U、 230 Th/ 232 Th、 234 U/ 230 Th和 210 Po/ 226 Ra的活度比见SI,表S5。两个岩心样本的 234 U/ 238 U值相似,几乎接近单位。这证实了独立于PG堆条件的两种铀同位素具有相同的行为,正如BCR程序所推断的那样。两个核心的 230 Th/ 232 Th比率略有不同,在D样本中具有更高的值。同时, 234 U在孔隙水条件下也优先集中在相对于 230 Th的孔隙水中。此外, 210 Po在低pH条件下 226 优先浸出Ra。然而, 226 Ra 和 230 Th 的行为在两个核心中似乎没有区别。

3.4.2. Process and outflow waters
3.4.2. 工艺水和流出水

The activity concentrations of 210Po, 234U, 238U, 230Th, 232Th and 226Ra found in process water of perimeter channel and edge outflow samples are shown in Table 6. The activity concentrations of 210Po vary from 5 to 67 Bq L−1 in the edge outflow leachates and between 29 and 54 Bq L−1 in process waters. On the other hand, U-isotopes activity concentrations range from 24 to 74 Bq L−1 in the edge outflows and reach up to 561 Bq L−1 in process water samples. The values of edge outflow samples are very similar to those observed in the pore-water of the deepest zone (D samples, Table 5), and also reported by others authors (Bolívar et al., 2000), where the activity concentrations exceed the typical range 0.005–0.5 Bq L−1 for continental waters (Más et al., 2006a, b). It is noteworthy the low activity concentration of Th-isotopes and 226Ra found with respect to the other radionuclides as U-isotopes and 210Po. Concomitantly with pore-water, these results are in agreement with the data provided by BCR procedure.
表6显示了在周界通道和边缘流出样品的工艺水中发现的 210 Po、 234 U、 238 U、 230 Th、 232 Th和 226 Ra的活性浓度。Po的活性浓度 210 −1 在边缘流出渗滤液中为5至67 Bq L,在工艺水中为29至54 Bq L −1 。另一方面,U 同位素活性浓度 −1 在边缘流出处的范围为 24 至 74 Bq L, −1 在工艺水样中高达 561 Bq L。边缘流出样品的值与在最深区的孔隙水中观察到的值非常相似(D样品,表5),其他作者也报告了这些值(Bolívar等人,2000年),其中大陆水域的活动浓度超过0.005-0.5 Bq L −1 的典型范围(Más等人,2006a,b)。值得注意的是,相对于U-同位素和 210 Po等其他放射性核素,Th-同位素和 226 Ra的活性浓度较低。与孔隙水一起,这些结果与BCR程序提供的数据一致。

Table 6. Activity concentration (Bq L−1) of edge outflow leachate and perimeter channel water. (DL: detection limit of thorium isotopes 0.01 Bq L−1; N.M. no measured).
表 6.边缘流出渗滤液和周边通道水的活度浓度(Bq L −1 )。(DL:钍同位素的检测限0.01 Bq L −1 ;N.M.未测量)。

Empty Cell210Po  210234U238U230Th232Th226Ra  226
Edge outflow leachate 边缘流出渗滤液E167.4 ± 1.4 67.4 ± 1.439.6 ± 1.5 39.6 ± 1.539.5 ± 1.5 39.5 ± 1.5<DL<DL0.04 ± 0.01 0.04 ± 0.01
E237.1 ± 0.9 37.1 ± 0.974.4 ± 2.0 74.4 ± 2.074.3 ± 2.0 74.3 ± 2.0<DL<DL0.10 ± 0.01 0.10 ± 0.01
E35.3 ± 0.1 5.3 ± 0.131.3 ± 0.8 31.3 ± 0.831.4 ± 0.8 31.4 ± 0.8<DL<DL0.11 ± 0.01 0.11 ± 0.01
E45.4 ± 0.1 5.4 ± 0.128.4 ± 0.9 28.4 ± 0.928.1 ± 0.8 28.1 ± 0.8< DL<DLN.M
E513.1 ± 0.4 13.1 ± 0.441.9 ± 1.3 41.9 ± 1.342 ± 1.3 42 ± 1.3< DL<DL0.03 ± 0.01 0.03 ± 0.01
E621.0 ± 0.7 21.0 ± 0.730.3 ± 0.9 30.3 ± 0.930.2 ± 0.9 30.2 ± 0.9< DL<DL0.01 ± 0.01 0.01 ± 0.01
E76.3 ± 0.2 6.3 ± 0.229.7 ± 1.0 29.7 ± 1.030.2 ± 1.0 30.2 ± 1.0< DL<DL0.03 ± 0.01 0.03 ± 0.01
E810.6 ± 0.3 10.6 ± 0.324.3 ± 0.8 24.3 ± 0.824.4 ± 0.8 24.4 ± 0.8< DL<DL0.05 ± 0.01 0.05 ± 0.01
E914.2 ± 0.5 14.2 ± 0.572.7 ± 2.2 72.7 ± 2.272.3 ± 2.1 72.3 ± 2.1< DL<DL0.04 ± 0.01 0.04 ± 0.01
E106.6 ± 0.3 6.6 ± 0.340.8 ± 1.5 40.8 ± 1.540.9 ± 1.5 40.9 ± 1.5< DL<DLN.M
E1116.0 ± 0.6 16.0 ± 0.670.5 ± 3.6 70.5 ± 3.671.3 ± 3.6 71.3 ± 3.60.59 ± 0.06 0.59 ± 0.060.04 ± 0.01 0.04 ± 0.010.01 ± 0.01 0.01 ± 0.01
E1216.1 ± 0.6 16.1 ± 0.653.4 ± 1.8 53.4 ± 1.853.8 ± 1.8 53.8 ± 1.8<DL< DL0.14 ± 0.03 0.14 ± 0.03
Average 平均18.3 ± 5.2 18.3 ± 5.244.8 ± 5.3 44.8 ± 5.344.9 ± 5.3 44.9 ± 5.30.59 ± 0.06 0.59 ± 0.060.04 ± 0.01 0.04 ± 0.010.06 ± 0.01 0.06 ± 0.01
Process water of perimeter channel
周边渠道的工艺用水
P130.3 ± 0.7 30.3 ± 0.744.7 ± 1.3 44.7 ± 1.344.0 ± 1.3 44.0 ± 1.30.34 ± 0.08 0.34 ± 0.080.19 ± 0.04 0.19 ± 0.040.28 ± 0.02 0.28 ± 0.02
P229.2 ± 1.0 29.2 ± 1.0557 ± 27 557 ± 27561 ± 27 561 ± 27NMN.M0.39 ± 0.15 0.39 ± 0.15
P353.6 ± 1.6 53.6 ± 1.6464 ± 25 464 ± 25469 ± 25 469 ± 25NMN.M1.53 ± 0.22 1.53 ± 0.22
Average 平均37.7 ± 4.0 37.7 ± 4.0355 ± 79 355 ± 79358 ± 80 358 ± 800.34 ± 0.08 0.34 ± 0.080.19 ± 0.04 0.19 ± 0.040.73 ± 0.20 0.73 ± 0.20

4. Conclusions 4. 结论

This work has been carried out to evaluate the mobility of natural radionuclides (210Po, 234U, 238U, 230Th, 232Th and 226Ra) in the PG disposal area located at Huelva. For this purpose, two cores were subjected to the optimized BCR sequential extraction procedure. In addition, the levels of natural radionuclides were measured in pore-water, edge outflow leachates reaching the Estuary of Huelva and in process water of perimeter channel.
开展这项工作是为了评估天然放射性核素( 210 Po、 234 U、 238 U、 230 Th、Th和 232 226 Ra)在位于韦尔瓦的PG处置区的迁移率。为此,对两个岩心进行了优化的BCR顺序提取程序。此外,还测量了孔隙水、到达韦尔瓦河口的边缘流出渗滤液和周边河道工艺水中的天然放射性核素水平。

The following conclusions have been obtained from the analysed data:
从分析数据中得出以下结论:

  • 1.

    The BCR results indicate an important proportion of 210Po can be released depending of the environmental conditions. Concretely, it is observed that around 45% of the total polonium contained in PG can be mobilized, being the acid soluble (∼10%) and oxidizable fraction (∼25%) the most susceptible.
    BCR结果表明,根据环境条件,可以释放很大一部分 210 Po。具体而言,观察到PG中所含的总钋中约有45%可以被动员,其中酸溶性(∼10%)和可氧化部分(∼25%)最敏感。

  • 2.

    U-isotopes are the radionuclides with the highest mobility, since approximately 70% of the uranium contained in PG (∼20% in acid soluble fraction and ∼43% oxidizable fraction) is in mobile phases.
    U同位素是迁移率最高的放射性核素,因为PG中所含的铀中约有70%(酸溶性馏分约20%,可氧化馏分约43%)处于流动相中。

  • 3.

    In contrast Th-isotopes show the lowest mobility due of their tendency to being bound to the crystalline forms of the PG. It is was found that more than 95% of Th is bound to residual phase (F4).
    相比之下,Th同位素显示出最低的迁移率,因为它们倾向于与PG的晶体形式结合。研究发现,超过95%的Th与残相(F4)结合。

  • 4.

    About 30% of the 226Ra in PG can be released into the environment in oxidizable conditions.
    PG中约30%的 226 Ra可以在可氧化条件下释放到环境中。

  • 5.

    In what concerns the PG piles waters, to point out that very high activity concentrations of 210Po (5–70 Bq kg−1) and U-isotopes (3–500 Bq kg−1) were found, while the Th-isotopes and 226Ra ones were 2 order of magnitude lower (0.01–1 Bq kg−1).
    在PG桩水域中,需要指出的是,发现了非常高的 210 Po(5-70 Bq kg −1 )和U-同位素(3-500 Bq kg −1 )的活性浓度,而Th-同位素和 226 Ra同位素则低2个数量级(0.01-1 Bq kg −1 )。

  • 6.

    These results obtained by the BCR methodology are in agreement with the behaviour of radionuclides found for the waters from PG piles, such as pore-water, process water of perimeter channel and edge outflow leachates.
    通过BCR方法获得的这些结果与PG堆水中发现的放射性核素的行为一致,例如孔隙水,周界通道的工艺水和边缘流出渗滤液。

As final conclusion, it can be emphasized that this study confirms that the BCR procedure is a useful tool for assessing the mobility of different radionuclides under PG stack conditions.
作为最终结论,可以强调的是,本研究证实了BCR程序是评估PG堆条件下不同放射性核素迁移率的有用工具。

Funding information 资金信息

This research has been partially supported by the Spanish Government Department of Science and Technology (MINECO) through the project “Fluxes of Radionuclides Emitted by the Phosphogypsum Piles Located at Huelva; Assessment of the Dispersion, Radiological Risks and Remediation Proposals” (Ref. CTM2015–68628-R).
这项研究得到了西班牙政府科学技术部(MINECO)的部分支持,该项目为“位于韦尔瓦的磷石膏堆排放的放射性核素通量;扩散、辐射风险和补救建议的评估“(参考文献 CTM2015–68628-R)。

Appendix A. Supplementary data
附录 A. 补充数据

The following is the supplementary data related to this article:

Download : Download Word document (101KB)

Multimedia component 1.


以下是与本文相关的补充数据:
Download : Download Word document (101KB)

Multimedia component 1.

References 引用

Cited by (36)

View all citing articles on Scopus
View Abstract