这是用户在 2025-4-7 22:52 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

1.INTRODUCTION
1. 引言

Coral reefs are literally rainforests of the sea(Brown, 1997) and coral reef systems are extremely rich in marine resources and provide a home for many species. According to research statistics, coral reefs around the world support more than a quarter of marine species with 0.25% of the ocean area, such as sponges, mollusks and various fish (Marhaver et al., 2008; Rosenberg et al., 2007). Coral reefs mainly composed of reef-building coral remains, reef-building animal bones, coral reef community (这句话看看你能到出处—参考文献,添加参考文献) and its surrounding environment. Among them, the algae attached to the surface of coral reefs are important marine bait, and Goniopora is also an important material source of some medical drugs, which is of great economic value. Moreover, in many seas, coral reefs play an important role in ecotourism, such as scuba diving. coral reef ecosystems provide rich biological resources for human beings and are indispensable for the sustainable development of the marine environment.
珊瑚礁实际上是海洋的雨林(Brown, 1997),珊瑚礁系统富含海洋资源,为许多物种提供家园。根据研究统计数据,全球珊瑚礁支持超过四分之一的海洋物种,占海洋面积的 0.25%,如海绵、软体动物和各种鱼类(Marhaver 等,2008;Rosenberg 等,2007)。珊瑚礁主要由造礁珊瑚残骸、造礁动物骨骼、珊瑚礁群落(这句话看看你能到出处—参考文献,添加参考文献)及其周围环境组成。其中,附着在珊瑚礁表面的藻类是重要的海洋诱饵,而 Goniopora 也是某些药物的重要原料,具有很高的经济价值。此外,在许多海域,珊瑚礁在生态旅游中扮演着重要角色,如潜水。珊瑚礁生态系统为人类提供了丰富的生物资源,对于海洋环境的可持续发展至关重要。

However, many studies have shown that coral reef ecosystems are facing serious threats, especially large-scale Goniopora bleaching (Sun et al., 2022). First, Goniopora bleaching is widespread, covering more than 50 countries (Ehud Banin et al., 2001). During 2015-2017, over 30% (Hughes et al.,2018) of Goniopora were lost due to bleaching (Gardner et al.,2018). In 2016, coral reefs in the Western Indian Ocean were unable to withstand the rising sea surface temperature, resulting in a large area of Goniopora bleaching and death (Hughes et al., 2018). In 2020, Goniopora bleaching event occurred in the Great Barrier Reef of Australia for the third time in the past five years, and severe Goniopora bleaching event occurred in beibu Bay of south China Sea, Xisha Islands and Nansha Islands in China ( Maire et al,2021). As far back as 1998, seychelles reefs also experienced severe Goniopora mass bleaching events (Graham et al., 2006; Wilson et al., 2012). Secondly, large-scale Goniopora bleaching leads to the death of a large number of Goniopora, resulting in a sharp decrease in Goniopora coverage and diversity in this area (Harris et al., 2014), which leads to a decrease in the diversity of other species and a devastating blow to the development of fisheries. Even marine ecosystems are damaged (Ehud Banin et al., 2001).
然而,许多研究表明,珊瑚礁生态系统正面临严重威胁,尤其是大规模的孔珊瑚白化(Sun 等人,2022 年)。首先,孔珊瑚白化现象广泛,覆盖了 50 多个国家(Ehud Banin 等人,2001 年)。在 2015-2017 年期间,超过 30%的孔珊瑚因白化而消失(Hughes 等人,2018 年;Gardner 等人,2018 年)。2016 年,西印度洋的珊瑚礁无法承受上升的海面温度,导致大片孔珊瑚白化和死亡(Hughes 等人,2018 年)。2020 年,澳大利亚大堡礁在过去五年内第三次发生孔珊瑚白化事件,中国南海的北部湾、西沙群岛和南沙群岛也发生了严重的孔珊瑚白化事件(Maire 等人,2021 年)。早在 1998 年,塞舌尔珊瑚礁也经历了严重的孔珊瑚大规模白化事件(Graham 等人,2006 年;Wilson 等人,2012 年)。 其次,大规模的孔珊瑚漂白导致大量孔珊瑚死亡,使该地区的孔珊瑚覆盖率和多样性急剧下降(Harris 等人,2014 年),这导致其他物种的多样性下降,并对渔业发展造成毁灭性打击。甚至海洋生态系统也受到损害(Ehud Banin 等人,2001 年)。

Therefore, the cause of Goniopora bleaching is hotly debated. Studies have pointed out that Goniopora bleaching areas show high sponge diversity and richness, which means that Goniopora may be invaded by sponges (Bautista et al., 2012). There have also been some studies suggesting that above-normal sea surface temperatures under solar radiation are the cause of Goniopora bleaching (Hoegh-Guldberg 1999), resulting in large numbers of Goniopora deaths, richness and reduced Goniopora cover (Y.Loya et al. 2001). However, the most fundamental reason is likely to be the change in the structural composition and diversity of some bacterial colonies in Goniopora tissues and mucus, leading to large-scale Goniopora bleaching (Zhou et al., 2022). For example, some studies have proved that Goniopora bleaching is caused by Vibrio pathogens (Ehud Banin et al., 2001;Kushmaro et al., 1997;Higuchi et al.,2013). High temperature reduces Goniopora-related bacterial toxins (Kushmaro et al., 1996), leading to a large decrease in symbiotic zooxanthellae (Hoegh‐Guldberg, 1999), which leads to large-scale bleaching of Goniopora
因此,Goniopora 漂白的原因存在激烈争论。研究指出,Goniopora 漂白区域表现出高海绵多样性和丰富度,这意味着 Goniopora 可能被海绵入侵(Bautista 等人,2012 年)。也有研究提出,在太阳辐射下,异常的海面温度是 Goniopora 漂白的原因(Hoegh-Guldberg 1999 年),导致大量 Goniopora 死亡、丰富度和 Goniopora 覆盖度降低(Y.Loya 等人,2001 年)。然而,最基本的原因可能是 Goniopora 组织和粘液中某些细菌群体的结构组成和多样性的变化,导致大规模 Goniopora 漂白(周等人,2022 年)。例如,一些研究已经证明 Goniopora 漂白是由弧菌病原体引起的(Ehud Banin 等人,2001 年;Kushmaro 等人,1997 年;Higuchi 等人,2013 年)。高温降低了与 Goniopora 相关的细菌毒素(Kushmaro 等人,1996 年),导致共生海藻的大幅减少(Hoegh-Guldberg,1999 年),这导致 Goniopora 大规模褪色。
.

Indeed, there is a lot of current research on the relationship between Goniopora bleaching and bacterial communities. Some studies indirectly demonstrate Goniopora bleaching resistance through bacterial diversity, species richness and community evenness, such as Stephanie G. Gardner et al. 's study in seychelles, The results showed that p. lutea and C.aspera had high bacterial diversity, species richness and community evenness. Other laboratories have speculated about the causes of Goniopora bleaching from the antibiotic resistance and antagonistic activity of Goniopora-associated bacteria. For example, Patel et al used Porites spp..And Turbinaria spp.. Augmented Reality(AR) analysis showed that the antagonism of bacteria on the surface of healthy Goniopora was better than that of bleached Goniopora. While these studies may shed some light on the relationship between Goniopora bleaching and bacterial communities, which have some common shortcomings. For example, some studies did not understand the internal cause between bacterial community and Goniopora bleaching from the structure of bacteria and other microorganisms themselves, and some studies only selected bleached and unbleached Goniopora when selecting samples, so they could not fully understand the change process of Goniopora' own microorganisms during bleaching. In our study, we used high-throughput sequencing method and added Goniopora samples between bleaching and unbleaching, which can not only increase the comprehensivity of the sample and increase the rigor of the study, but also make a deeper analysis of the structure composition of Goniopora-related bacteria in different states. By comparing the bacterial structure composition of Goniopora in different states, we can know the changes of bacteria in Goniopora bleaching process more intuitively. In other words, this study can explore the process of Goniopora bleaching from the structural changes of bacteria, and explain the relationship between the two at a more microscopic level, which is more convincing.
确实,目前有很多关于 Goniopora 漂白与细菌群落之间关系的研究。一些研究通过细菌多样性、物种丰富度和群落均匀度间接证明了 Goniopora 的漂白抗性,例如 Stephanie G. Gardner 等人关于塞舌尔的研究。结果显示,p. lutea 和 C.aspera 具有高细菌多样性、物种丰富度和群落均匀度。其他实验室推测 Goniopora 漂白的原因可能与 Goniopora 相关细菌的抗生素耐药性和拮抗活性有关。例如,Patel 等人使用 Porites spp.和 Turbinaria spp.增强现实(AR)分析表明,健康 Goniopora 表面的细菌拮抗性优于漂白 Goniopora。尽管这些研究可能为 Goniopora 漂白与细菌群落之间的关系提供一些启示,但它们存在一些共同的不足之处。 例如,一些研究没有理解细菌群落与 Goniopora 褪色之间的内在原因,没有从细菌和其他微生物自身的结构来理解,有些研究在选取样本时只选择了褪色和未褪色的 Goniopora,因此无法完全理解 Goniopora 自身微生物在褪色过程中的变化过程。在我们的研究中,我们使用了高通量测序方法,并在褪色和未褪色之间增加了 Goniopora 样本,这不仅增加了样本的全面性,提高了研究的严谨性,还可以对 Goniopora 相关细菌在不同状态下的结构组成进行更深入的分析。通过比较 Goniopora 在不同状态下的细菌结构组成,我们可以更直观地了解细菌在 Goniopora 褪色过程中的变化。换句话说,这项研究可以从细菌的结构变化来探索 Goniopora 褪色的过程,并在更微观的层面上解释两者之间的关系,这更具说服力。

实验主要内容(老师来写)

TMATERIALS AND METHOD
材料与方法

2.1Goniopora sample collection
2.1Goniopora 样本采集

Samples of Goniopora sp. were collected from the Sanya Coral Reef Conservation District (18°10′N, 109°25E) in the South China Sea, in October 2021.Within a sampling area of 1km², samples were taken from Goniopora of three states with a hammer and chisel, such as one piece from each of four healthy Goniopora(HG), one piece from each of four partly bleached Goniopora(PBG) and one piece from each of three bleached Goniopora (BG). This sampling method is not harmful to Goniopora. Cut samples quickly transferred to safety after aseptic sampling bag and tags, preserved in low temperature storage tank, sent to the laboratory, sample with ethanol solution(75%) and sterile water wash, to clean the surface of the sample and remove loose bacteria and mucus, then put the sample in a sterile state incised into small pieces after put in 0.8 ml of TE buffer cryopreservation
样品于 2021 年 10 月从南海三沙珊瑚礁保护区(北纬 18°10′,东经 109°25E)采集。在 1km²的采样区域内,使用锤子和凿子从三种状态的 Goniopora 中取样,例如从每个健康的 Goniopora(HG)中取一块,从每个部分褪色的 Goniopora(PBG)中取一块,以及从每个褪色的 Goniopora(BG)中取一块。这种采样方法对 Goniopora 无害。将切割后的样品迅速转移到无菌采样袋和标签中,低温储存罐中保存,送至实验室,用乙醇溶液(75%)和无菌水清洗样品,以清洁样品表面并去除松散的细菌和粘液,然后将样品放入 0.8 ml 的 TE 缓冲液中进行冷冻保存。

2.2.DNA extraction and 16sDNA amplification sequencing
2.2. DNA 提取和 16sDNA 扩增测序

For Goniopora samples, E.Z.N.A. Soil DNA Kit (Omega Biotek, Winooski, USA) was used to make template DNA according to the experimental steps provided by the manufacturer. Then, the template DNA to be amplified was placed at a high temperature (93-94℃) for 20 seconds to make DNA double-stranded denatured and uncoiled into single strand. Primers 515F and 907R were added to complement the two single strands on both sides of the target gene at a suitable temperature (about 52℃), and the time was about 20s. The heat-resistant DNA polymerase (Taq enzyme) incorporated the single nucleotide from the 3 'end of the primer at 72 ° C and used the target gene as a template to extend from 5' to 3 'to synthesize a new complementary strand of DNA. All PCR products were then purified with the GeneJET Gel Extraction Kit (Thermo Scientific, Vantaa, Finland) according to the manufacturer's instructions
对于 Goniopora 样本,使用 E.Z.N.A.土壤 DNA 试剂盒(Omega Biotek,Winooski,美国)根据制造商提供的实验步骤制备模板 DNA。然后,将待扩增的模板 DNA 置于高温(93-94℃)下 20 秒,使 DNA 双链变性并解开成单链。在适宜的温度(约 52℃)下,将引物 515F 和 907R 添加到目标基因两侧的两个单链上,时间为约 20 秒。耐热 DNA 聚合酶(Taq 酶)在 72℃下从引物的 3'端结合单核苷酸,并以目标基因为模板从 5'到 3'延伸,合成新的互补 DNA 链。所有 PCR 产物随后根据制造商的说明使用 GeneJET 胶回收试剂盒(Thermo Scientific,Vantaa,芬兰)进行纯化。

RESULTS (一般情况下,结果的描述要用过去式的)
结果(一般情况下,结果的描述要用过去式)

3.1Illumina sequencing and sequence analysis
3.1 美国 Illumina 测序和序列分析

After denoising and chimera detection in the research process, a total of 599,003 16S V3-V4 sequences were obtained, which could be classified as 509 operational taxonomic units (OTUs). The number of bacterial sequences obtained from healthy Goniopora was 58457±2799, that from partly bleached Goniopora was 55418±5087, and that from bleached Goniopora was 50617±1774. The above OTU averages were 742±14, 2685±169 and 1421±177 respectively (Table 1) for more intuitive display results. A rarefaction curve of OTUs and bacterial sequence number was constructed . The asymptotes of sequence tracks of samples under various states were nearly parallel. This indicated that the number of bacterial sequences obtained in the study was close to saturation(Fig. 2). This result could also be proved by the chao 1 index, which was very close to the sequence similarity of the observed OTUs, reaching 99.4% (Table 1). Furthermore, Shannon's index calculated for healthy, partly bleached and bleached Goniopora samples were 5.81±0.22, 5.23±0.78 and 4.10±1.02, respectively. All these data indicated that these Goniopora were rich in bacterial diversity (table1) (Fig. 1)
在研究过程中进行去噪和 chimera 检测后,共获得 599003 条 16S V3-V4 序列,可归类为 509 个操作分类单元(OTU)。从健康 Goniopora 中获得的细菌序列数为 58457±2799,从部分漂白 Goniopora 中获得的序列数为 55418±5087,从漂白 Goniopora 中获得的序列数为 50617±1774。上述 OTU 平均值分别为 742±14、2685±169 和 1421±177(表 1),以更直观地显示结果。构建了 OTU 和细菌序列数的稀疏曲线。各种状态下样本的序列轨迹渐近线几乎平行。这表明研究中获得的细菌序列数量接近饱和(图 2)。这一结果也可由 chao 1 指数证明,它与观察到的 OTU 序列相似度非常接近,达到 99.4%(表 1)。此外,对健康、部分漂白和漂白 Goniopora 样本计算出的 Shannon 指数分别为 5.81±0.22、5.23±0.78 和 4.10±1.02。所有这些数据表明,这些 Goniopora 充满了细菌多样性(表 1)(图 1)。

(这里的表格和图要重新弄)
(这里的表格和图需要重新处理)

3.2Phylum-level composition and dynamics change in different states of the Goniopora.
3.2 珊瑚不同状态下的门水平组成和动态变化

5094 bacterial OTUs from 45 phyla were detected in all coral samples. After the statistics and classification of the OTUs tables, The Proteobacteria (46.77%) was the most abundant organism, Then, Planctomycetota(15.49%), Actinobacteriota (6.13%), Acidobacteriota (4.91%), Bacteroidota (4.7%), Verrucomicrobiota(2%), Chloroflexi(1.28%), Dadabacteria (0.92%), Dependentiae (0. 83%), unclassified norank Bacteria(0.66%), the above were the relatively high levels of microbial communities in the main table. The subtable showed the relatively low microbial community, they were Campilobacterota (0.64%), Gemmatimonadota (0.61%), NB 1-j (0.55%), Patescibacteria (0.53%), Cyanobacteria (0.52%), Nitrospinota (0.52%), BdelloVibrionota (0.51%), Desulfobacterota (0.47%), Myxococcota (0. 47%), Firmicutes(0.45%), SAR324_cladeMarine_group_B(0.41%), Latescibacterota(0.18%), Nitrospirota(0.17%), Deinococcota(0.08%), Hydrogenedentes(0.07%), Fusobacteriota(0.03%), Sumerlaeota(0.03%), Spirochaetota(0.03%), MBNT15(0.03%), Marinimicrobia_SAR406_clade(0.01%), RCP2-54(0.01%), Calditrichota (0.01%), PAUC34f(0.01%), WS2(0.01%).
5094 个细菌操作分类单元(OTUs)在所有珊瑚样本中被检测到。在 OTUs 表格的统计和分类后,变形菌门(46.77%)是最丰富的生物,接着是浮游细菌门(15.49%)、放线菌门(6.13%)、酸杆菌门(4.91%)、拟杆菌门(4.7%)、疣微菌门(2%)、黄杆菌门(1.28%)、达达菌门(0.92%)、依赖菌门(0.83%)、未分类的细菌(0.66%),上述是主要表格中相对较高水平的微生物群落。子表显示了相对较低的微生物群落,包括弯曲菌门(0.64%)、芽孢杆菌门(0.61%)、NB 1-j(0.55%)、帕特斯菌门(0.53%)、蓝细菌(0.52%)、硝化螺菌门(0.52%)、贝德洛菌门(0.51%)、脱硫杆菌门(0.47%)、粘细菌门(0.47%)、厚壁菌门(0.45%)、SAR324_海洋群_B(0.41%)、拉特斯菌门(0.18%)、硝化螺旋菌门(0.17%)、辐射菌门(0.08%)、氢化菌门(0.07%)、梭杆菌门(0.03%)、苏美拉菌门(0.03%)、螺旋菌门(0.03%)、MBNT15(0.03%)、海洋微生物_SAR406_分支(0.01%)、RCP2-54(0.01%)、卡利特里科塔(0.01%)、PAUC34f(0.01%)、WS2(0.01%)。

下面的内容写得非常好(但句子可能还得到时再来仔细推敲,现在有点单调)。

After further classification, There are three trends in the proportional variation of the microorganisms. The first was that the bacterial content remains rising from HG to PBG to BG, For example, Planctomycetota rose from 0.57% at HG to 17.46% at PBG to 28.44% at BG, Actinobacteriota from 0.94% at HG to 5.32% at PBG to 12.13% at BG, Verrucomicrobiota from 0.37% at HG to 1.19% at PBG to 4.46% at BG, and Chloroflexi from 0.01% at HG to 1 at PBG. 83% to 1.99% at BG, Dependentiae from 0.12% at HG to 0.56% at PBG to 1.82% at BG, Patescibacteria from 0.09% at HG to 0.41% at PBG to 1.09% at BG, Cyanobacteria from 0.21% at HG to 0.62% at PBG to 0.73% at BG, and BdelloVibrionota from 0.45% at HG to 0.00% at PBG. 53% again to 0.55% at BG, Nitrospirota from 0.00% at HG to 0.09% at PBG to 0.42% at BG.
经过进一步分类,微生物的相对变化趋势有三个。第一个趋势是细菌含量从 HG 到 PBG 再到 BG 持续上升,例如,浮游细菌门从 HG 的 0.57%上升到 PBG 的 17.46%,再到 BG 的 28.44%,放线菌门从 HG 的 0.94%上升到 PBG 的 5.32%,再到 BG 的 12.13%,疣微菌门从 HG 的 0.37%上升到 PBG 的 1.19%,再到 BG 的 4.46%,黄杆菌门从 HG 的 0.01%上升到 PBG 的 1%,再到 BG 的 1.99%,依赖菌门从 HG 的 0.12%上升到 PBG 的 0.56%,再到 BG 的 1.82%,帕特西菌门从 HG 的 0.09%上升到 PBG 的 0.41%,再到 BG 的 1.09%,蓝藻门从 HG 的 0.21%上升到 PBG 的 0.62%,再到 BG 的 0.73%,芽孢杆菌门从 HG 的 0.45%上升到 PBG 的 0%,再回到 BG 的 0.55%,硝化螺旋菌门从 HG 的 0%上升到 PBG 的 0.09%,再到 BG 的 0.42%。

The second scenario was that the bacterial content has remained decreased from bleaching to partial to bleaching corals, For example, Proteobacteria decreased from 63.67% at HG to 40.79% at PBG to 35.85% at BG, unclassified norank Bacteria from 27.01% at HG to 2.72% at PBG to 2.26% at BG, Interestingly, Campilobacterota accounts for 1.92% in HG but was almost absent in PBG and BG, Fusobacteriota Although it only accounts for 0.08% in HG, it was almost absent in PBG and BG.
第二种情况是,从漂白到部分漂白的珊瑚,细菌含量一直保持下降。例如,变形菌门从 HG 的 63.67%下降到 PBG 的 40.79%,再到 BG 的 35.85%,未分类的无等级细菌从 HG 的 27.01%下降到 PBG 的 2.72%,再到 BG 的 2.26%。有趣的是,在 HG 中,毛螺菌门占 1.92%,但在 PBG 和 BG 中几乎不存在。虽然它在 HG 中只占 0.08%,但在 PBG 和 BG 中也几乎不存在。

Another was the parabolic state of bacterial content from HG samples to BG samples, Specifically, it showed an upward trend from HG samples to PBG samples and then a downward trend from PBG samples to BG samples, For example, Acidobacteriota increased from 0.05% in HG to 9.94% in PBG to 4.75% in medium, Bacteroidota from 4.10% in HG to 8.02% in PBG to 1.99%, Dadabacteria from 0.03% in HG to 1.69% in PBG to 1.03%, and Gemmatimonadota from 0.01% in HG to 1.71% to 0 in PBG. 12%, NB 1-j increased from 0.01% in HG to 1.57% in PBG to 0.22%, SAR324_cladeMarine_group_B from 0.03% in HG to 1.14% in PBG to 0.06%, Desulfobacterota from 0.08% in HG to 0.78% in PBG to 0.54%, Firmicutes from 0.18% in HG to 0.61% in PBG. 57%, Deinococcota from 0.00% in HG to 0.20% in PBG to 0.03%, Nitrospinota from 0.01% in HG to 0.81% in PBG to 0.73%, Desulfobacterota from 0.03% in HG to 0.96% in PBG to 0.42%, It was worth noting that, Spirochaetota, Latescibacterota, Hydrogenedentes, and MBNT15 were present in PBG samples, The proportions were 0.07%, 0.54%, 0.20%, and 0.07%, respectively.(Fig.2)
另一个是从 HG 样品到 BG 样品的细菌含量抛物线状态,具体来说,它显示了从 HG 样品到 PBG 样品的上升趋势,然后是从 PBG 样品到 BG 样品的下降趋势。例如,Acidobacteriota 从 HG 中的 0.05%增加到 PBG 中的 9.94%,然后减少到培养基中的 4.75%,Bacteroidota 从 HG 中的 4.10%增加到 PBG 中的 8.02%,然后减少到 1.99%,Dadabacteria 从 HG 中的 0.03%增加到 PBG 中的 1.69%,然后减少到 1.03%,Gemmatimonadota 从 HG 中的 0.01%增加到 PBG 中的 1.71%,然后减少到 0。12%,NB 1-j 从 HG 中的 0.01%增加到 PBG 中的 1.57%,然后减少到 0.22%,SAR324_cladeMarine_group_B 从 HG 中的 0.03%增加到 PBG 中的 1.14%,然后减少到 0.06%,Desulfobacterota 从 HG 中的 0.08%增加到 PBG 中的 0.78%,然后减少到 0.54%,Firmicutes 从 HG 中的 0.18%增加到 PBG 中的 0.61%,然后减少到 0.57%,Deinococcota 从 HG 中的 0.00%增加到 PBG 中的 0.20%,然后减少到 0.03%,Nitrospinota 从 HG 中的 0.01%增加到 PBG 中的 0.81%,然后减少到 0.73%,Desulfobacterota 从 HG 中的 0.03%增加到 PBG 中的 0.96%,然后减少到 0.42%。值得注意的是,Spirochaetota、Latescibacterota、Hydrogenedentes 和 MBNT15 存在于 PBG 样品中,比例分别为 0.07%、0.54%、0.20%和 0.07%。(图 2)

At the genus level,在属一级水平,除去一些未被分类的菌群,本研究获得了一些占比较高的的微生物群落,其中含量尤其高的是Ruegeria,占总序列的10.11%,除此之外占比在总序列中超过1%的是Woeseia和Blastopirellula、Cohaesibacter、Roseovarius、Mycobacterium、Vibrio、Subgroup_23、Amphritea、BD1-7_clade、Kiloniella、Sva0996_marine_group、Rubripirellula和Rhodopirellula,它们的占比分别是3.23%、3.21%、2.91%、1.96%、1.86%、1.79%、1.35%、1.15%1.09%、1.05%、1.04%、1.03%和1.01%.剩下的微生物按照占比从高到低排序依次是Candidatus_Berkiella、Endozoicomonas、Coxiella、Pirellula、Pir4_lineage、Halarcobacter、Nitrospira和Blastocatella,与微生物相对应的占比排序为0.84%、0.67%、0.61%、0.59%、0.53%、0.52%、0.49%、0.49%和0.49%.
在属一级水平,除去一些未被分类的菌群,本研究获得了一些占比较高的微生物群落,其中含量尤其高的是 Ruegeria,占总序列的 10.11%,除此之外占比在总序列中超过 1%的是 Woeseia 和 Blastopirellula、Cohaesibacter、Roseovarius、Mycobacterium、Vibrio、Subgroup_23、Amphritea、BD1-7_clade、Kiloniella、Sva0996_marine_group、Rubripirellula 和 Rhodopirellula,它们的占比分别是 3.23%、3.21%、2.91%、1.96%、1.86%、1.79%、1.35%、1.15%、1.09%、1.05%、1.04%、1.03%和 1.01%。剩下的微生物按照占比从高到低排序依次是 Candidatus_Berkiella、Endozoicomonas、Coxiella、Pirellula、Pir4_lineage、Halarcobacter、Nitrospira 和 Blastocatella,与微生物相对应的占比排序为 0.84%、0.67%、0.61%、0.59%、0.53%、0.52%、0.49%、0.49%和 0.49%。

值得注意的是这些讨论的微生物群落中,Ruegeria、Woeseia、Cohaesibacter、Roseovarius、Vibrio和Kiloniella属于Proteobacteria,Blastopirellula、Rubripirellula、Rhodopirellula、Pirellula和Pir4_lineage属于Planctomycetota,Mycobacterium和Sva0996_marine_group属于Actinobacteriota,Subgroup_23和Blastocatella则属于Acidobacteriota,Halarcobacter属于Campilobacterota,Nitrospira属于Nitrospirota,Haliangium属于Myxococcota
值得注意的是这些讨论的微生物群落中,Ruegeria、Woeseia、Cohaesibacter、Roseovarius、Vibrio 和 Kiloniella 属于 Proteobacteria,Blastopirellula、Rubripirellula、Rhodopirellula、Pirellula 和 Pir4_lineage 属于 Planctomycetota,Mycobacterium 和 Sva0996_marine_group 属于 Actinobacteriota,Subgroup_23 和 Blastocatella 则属于 Acidobacteriota,Halarcobacter 属于 Campilobacterota,Nitrospira 属于 Nitrospirota,Haliangium 属于 Myxococcota
.

After further classification, There are three trends in the proportional variation of the microorganisms.首先在HG、PBG和BG之间呈现是下降趋势的是从1.48%降至1.14%再降至0.77%的BD1-7_clade、从3.67%降至0.31%再降至0.00%的Kiloniella和从2.39%降至0.15%再降至0.01%的Endozoicomonas.
经过进一步分类,微生物的相对比例变化呈现三个趋势:首先在 HG、PBG 和 BG 之间呈现下降趋势的是从 1.48%降至 1.14%再降至 0.77%的 BD1-7_clade、从 3.67%降至 0.31%再降至 0.00%的 Kiloniella 和从 2.39%降至 0.15%再降至 0.01%的 Endozoicomonas。

除此之外,本研究发现比例变化趋势HG、PBG和BG之间呈现抛物线状态,但是与门一级水平有不同的地方在于出现了两种情况,一种情况是在HG和PBG之间占比上升然后在PBG和BG之间占比下降。例如,在HG和PBG之间从3.77%上升到22.44%然后在PBG和BG之间从22.44%下降至2.27%的Ruegeria、在HG和PBG之间从0.02%上升到7.77%然后在PBG和BG之间从7.77%下降至0.07%的Cohaesibacter、在HG和PBG之间从0.27%上升到4.65%然后在PBG和BG之间从4.65%下降至0.46%的Roseovarius、在HG和PBG之间从0.08%上升到4.58%然后在PBG和BG之间从4.58%下降至0.20%的Vibrio、在HG和PBG之间从0.01%上升到2.97%然后在PBG和BG之间从2.97%下降至0.12%的Amphritea、在HG和PBG之间从1.20%上升到1.31%然后在PBG和BG之间从1.31%下降至0.14%的Candidatus_Berkiella和在HG和PBG之间从0.00%上升到1.41%然后在PBG和BG之间从1.41%下降至0.00%的Halarcobacter.
除此之外,本研究发现比例变化趋势 HG、PBG 和 BG 之间呈现抛物线状态,但是与门一级水平有不同的地方在于出现了两种情况,一种情况是在 HG 和 PBG 之间占比上升然后在 PBG 和 BG 之间占比下降。例如,在 HG 和 PBG 之间从 3.77%上升到 22.44%然后在 PBG 和 BG 之间从 22.44%下降至 2.27%的 Ruegeria、在 HG 和 PBG 之间从 0.02%上升到 7.77%然后在 PBG 和 BG 之间从 7.77%下降至 0.07%的 Cohaesibacter、在 HG 和 PBG 之间从 0.27%上升到 4.65%然后在 PBG 和 BG 之间从 4.65%下降至 0.46%的 Roseovarius、在 HG 和 PBG 之间从 0.08%上升到 4.58%然后在 PBG 和 BG 之间从 4.58%下降至 0.20%的 Vibrio、在 HG 和 PBG 之间从 0.01%上升到 2.97%然后在 PBG 和 BG 之间从 2.97%下降至 0.12%的 Amphritea、在 HG 和 PBG 之间从 1.20%上升到 1.31%然后在 PBG 和 BG 之间从 1.31%下降至 0.14%的 Candidatus_Berkiella 和在 HG 和 PBG 之间从 0.00%上升到 1.41%然后在 PBG 和 BG 之间从 1.41%下降至 0.00%的 Halarcobacter。

另一种是在HG和PBG之间占比下降了之后才在在PBG和BG之间占比上升。例如在HG和PBG之间从0.49%下降至0.05%然后在PBG和BG之间从0.05%上升到8.21%的Woeseia、在HG和PBG之间从1.04%下降至0.04%然后在PBG和BG之间从0.04%上升到0.88%的Coxiella、在HG和PBG之间从8.21%下降至0.11%然后在PBG和BG之间从0.11%上升到2.89%的Blastopirellula、在HG和PBG之间从2.11%下降至0.06%然后在PBG和BG之间从0.06%上升到1.27%的Rubripirellula、在HG和PBG之间从2.38%下降至0.02%然后在PBG和BG之间从0.02%上升到1.06%的Rhodopirellula、在HG和PBG之间从1.62%下降至0.03%然后在PBG和BG之间从0.03%上升到0.45%的Pirellula、在HG和PBG之间从1.09%下降至0.03%然后在PBG和BG之间从0.03%上升到0.66%的Pir4_lineage、在HG和PBG之间从3.27%下降至0.66%然后在PBG和BG之间从0.66%上升到2.07%的Mycobacterium、在HG和PBG之间从2.30%下降至0.02%然后在PBG和BG之间从0.02%上升到1.20%的Sva0996_marine_group、在HG和PBG之间从1.22%下降至0.02%然后在PBG和BG之间从0.02%上升到2.74%的Subgroup_23、在HG和PBG之间从0.66%下降至0.01%然后在PBG和BG之间从0.01%上升到0.85%的Blastocatella和在HG和PBG之间从0.73%下降至0.01%然后在PBG和BG之间从0.01%上升到0.85%的Nitrospira.
另一种是在 HG 和 PBG 之间占比下降后,才在 PBG 和 BG 之间占比上升。例如在 HG 和 PBG 之间从 0.49%下降至 0.05%,然后在 PBG 和 BG 之间从 0.05%上升到 8.21%的 Woeseia,在 HG 和 PBG 之间从 1.04%下降至 0.04%,然后在 PBG 和 BG 之间从 0.04%上升到 0.88%的 Coxiella,在 HG 和 PBG 之间从 8.21%下降至 0.11%,然后在 PBG 和 BG 之间从 0.11%上升到 2.89%的 Blastopirellula,在 HG 和 PBG 之间从 2.11%下降至 0.06%,然后在 PBG 和 BG 之间从 0.06%上升到 1.27%的 Rubripirellula,在 HG 和 PBG 之间从 2.38%下降至 0.02%,然后在 PBG 和 BG 之间从 0.02%上升到 1.06%的 Rhodopirellula,在 HG 和 PBG 之间从 1.62%下降至 0.03%,然后在 PBG 和 BG 之间从 0.03%上升到 0.45%的 Pirellula,在 HG 和 PBG 之间从 1.09%下降至 0.03%,然后在 PBG 和 BG 之间从 0.03%上升到 0.66%的 Pir4_lineage,在 HG 和 PBG 之间从 3.27%下降至 0.66%,然后在 PBG 和 BG 之间从 0.66%上升到 2.07%的 Mycobacterium,在 HG 和 PBG 之间从 2.30%下降至 0.02%,然后在 PBG 和 BG 之间从 0.02%上升到 1.20%的 Sva0996_marine_group,在 HG 和 PBG 之间从 1.22%下降至 0.02%,然后在 PBG 和 BG 之间从 0.02%上升到 2.74%的 Subgroup_23,在 HG 和 PBG 之间从 0.66%下降至 0.01%,然后在 PBG 和 BG 之间从 0.01%上升到 0.85%的 Blastocatella 和在 HG 和 PBG 之间从 0.73%下降至 0.01%,然后在 PBG 和 BG 之间从 0.01%上升到 0.85%的 Nitrospira。

3.3Ubiquitous and unqiue bacterial communities in Goniopora (放在差异分析后面)
3.3.广布且独特的珊瑚虫属细菌群落(置于差异分析之后)

A total of 301 OTUs jointly derived from HG, PBG and BG, Part of the OTUs were Ruegeria, Cohaesibacter , Roseovarius , Woeseia , Vibrio, Amphritea, Kiloniella, BD1-7_clade, Candidatus_Berkiela And Blastopirellula, Rubripirellula and noank affiliated with Planctomycetota Rubinisphaeraceae (approximately 1.80% of the total sequence), There was also Mycobacterium attached to Actinobacteriota, norank DEV007 attached to Verrucomicrobiota (approximately 1.37% of total sequence) and norank PAUC267 attached to Acidobacteriota (approximately 1.07% of total sequence). (Fig.3) In addition to the common OTUs, specific microbial communities existed in coral samples from different states. Marinimicrobia _ SAR406 _ clade was only detected in HG, Elusimicrobiota and Fibrobacterota was only present in BG, and more specific bacteria in PBG were RCP 2-54, Calditrichota, Acetothermia, PAUC34f and WS2, and the genera attached to Calditrichota were Caiorithrix, JdFR-76 and SM23-31
从 HG、PBG 和 BG 中共同衍生出的 301 个 OTU,其中一部分为 Ruegeria Cohaesibacter、Cohaesibacter、Roseovarius、Woeseia、Vibrio、Amphritea、Kiloniella、BD1-7_clade Candidatus_Berkiela 和 Blastopirellula、Rubripirellula 以及与 Planctomycetota Rubinisphaeraceae 相关的 noank(占总序列的大约 1.80%),还有附着在 Actinobacteriota 上的 Mycobacterium,附着在 Verrucomicrobiota 上的 norank DEV007(占总序列的大约 1.37%)和附着在 Acidobacteriota 上的 norank PAUC267(占总序列的大约 1.07%)。(图 3)除了常见的 OTU 外,不同状态的珊瑚样本中还存在着特定的微生物群落。Marinimicrobia _ SAR406 _ clade 仅在 HG 中检测到,Elusimicrobiota 和 Fibrobacterota 仅在 BG 中存在,而 PBG 中更具体的细菌有 RCP 2-54、Calditrichota、Acetothermia、PAUC34f 和 WS2,附着在 Calditrichota 上的属为 CaiorithrixJdFR-76 和 SM23-31
.

接上面的内容,这里可以在属水平也写一个组成结果(对应上面门的结果)
接上面的内容,这里也可以在属的水平上写一个组成结果(对应上面的门的结果)

3.4差异性比较
3.4 差异性比较

After PCA analysis (R=0.9267, P=0.001000) and NMD comparison (R=1.0000, P=0.001000), we found that the different microbial communities varied in the three coral samples studied. At the gate level, Actinobacteriota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, Dadabacteria, Dependentiae, Gemmatimonadota, NB 1-j and Patescibacteria showed the most significant differences in content changes between HG, PBG and BG, Emted in their Pvalue values were all 0.01163, Among them, the content changes of Actinobacteriota, Verrucomicrobiota, Dependentiae and Dependentiae showed an increasing trend, The content changes of Acidobacteriota, Bacteroidota, Dadabacteria, NB 1-j and Gemmatimonadota showed a parabolic trend. Immediately following Campilobacterota has a Pvalue of 0.01941, and it was noteworthy that Campilobacterota was found only present in HG and was largely absent in PBG and BG. Then Planctomycetota with Pvalue value of 0.02379, its content change also showed an upward trend; then the Pvalue value of Proteobacteria was 0.02716, the corresponding content change showed a downward trend; finally, the content change difference was relatively less significant unclassified norank Bacteria with Pvalue value of 0.02941, and the corresponding content change also showed a downward trend.
在主成分分析(R=0.9267,P=0.001000)和 NMD 比较(R=1.0000,P=0.001000)之后,我们发现所研究的三个珊瑚样本中的不同微生物群落存在差异。在门水平上,放线菌门、酸杆菌门、拟杆菌门、疣微菌门、Dadabacteria Dependentiae、Gemmatimonadota、NB 1-j 和 Patescibacteria 在 HG、PBG 和 BG 之间的内容变化差异最显著,它们的 P 值均为 0.01163。其中,放线菌门、疣微菌门、Dependentiae 和 Dependentiae 的内容变化呈上升趋势,酸杆菌门、拟杆菌门、Dadabacteria、NB 1-j 和 Gemmatimonadota 的内容变化呈抛物线趋势。紧随 Campilobacterota 之后的是 P 值为 0.01941,值得注意的是,Campilobacterota 仅在 HG 中发现,而在 PBG 和 BG 中几乎不存在。 然后,计划菌门(Planctomycetota)的 P 值(0.02379)表明其内容变化也呈现上升趋势;接着,变形菌门(Proteobacteria)的 P 值(0.02716)显示对应的内容变化呈现下降趋势;最后,未分类的无等级细菌(unclassified norank Bacteria)的内容变化差异相对不显著,其 P 值(0.02941)对应的含量变化也呈现下降趋势。

At the genus level, The most significant content changes were observed for Blastopirellula, Woeseia, Cohaesibacter, Roseovarius, norank DEV007 and Kiloniella, Emted in their Pvalue values were all 0.01163, Among them, the content changes of Blastopirellula and norank DEV007 between HG, PBG and BG showed a continuous increasing trend along with the affiliated bacterial phyla, Cohaesibacter and Roseovarius show a continuous downward trend, It was noteworthy that Woeseia and Kiloniella produce different trends from the Proteobacteria they belong to, When the Woeseia content actually rises between HG and PBG before falling between PBG and BG, However, the content of Kiloniella decreased between HG and PBG, but increased between PBG and BG. Following unclassified GammaProteobacteria with a Pvalue value of 0.01556, it had an opposite trend with the Proteobacteria, maintaining an upward trend among the three coral samples, and otherwise the Vibrio content change maintained a downward trend. Furthermore, Ruegeria, Mycobacterium and unclassified Pirellulaceae with a Pvalue value of 0.01976, Where Mycobacterium and unclassified Pirellulaceae show an upward trend like the Actinobacterium and Planctomycetota to which they belong, respectively, But the Ruegeria was more special, Because its decrease between HG and PBG showed a rising trend between PBG and BG, This was quite different from the variation of Proteobacteria content. Then was norank Rubinisphaeraceae, which corresponds to a Pvalue value of 0.02716, consistent with the Planctomycetota performance it belongs to. Finally, unclassified norank Bacteria, unclassified Rhodobacteraceae and norank Subgroup_9, which were less significant in content variation, have a Pvalue value of 0.02941, consistent with the Planctomycetota and Acidobacteriota performance they belong to。(Fig.4)
在属水平上,对于 Blastopirellula Woeseia、Cohaesibacter、Roseovarius、norank DEV007 和 Kiloniella,它们在 P 值上的显著内容变化均为 0.01163,其中,Blastopirellula 和 norank DEV007 在 HG、PBG 和 BG 之间的内容变化显示出与所属细菌门类一致的持续上升趋势,Cohaesibacter 和 Roseovarius 则显示出持续下降趋势。值得注意的是,Woeseia 和 Kiloniella 的趋势与它们所属的变形菌门不同,当 Woeseia 在 HG 和 PBG 之间实际上升,然后在 PBG 和 BG 之间下降时,然而 Kiloniella 在 HG 和 PBG 之间下降,但在 PBG 和 BG 之间上升。紧随其后的是具有 P 值 0.01556 的未分类 GammaProteobacteria,它与变形菌门呈现相反的趋势,在三个珊瑚样本中保持上升趋势,而其他 Vibrio 的内容变化则保持下降趋势。此外,Ruegeria、Mycobacterium 和具有 P 值 0.01976 的未分类 Pirellulaceae,其中 Mycobacterium 和未分类 Pirellulaceae 分别显示出与它们所属的放线菌门和浮游微生物门一致的上升趋势,但 Ruegeria 更为特殊,因为其在 HG 和 PBG 之间的下降趋势在 PBG 和 BG 之间转为上升趋势,这与变形菌门的内容变化截然不同。然后是具有 P 值 0.02716 的未分类 Rubinisphaeraceae,与其所属的浮游微生物门的表现一致。最后,具有 P 值 0.02941 的未分类细菌、未分类红螺菌科和未分类 Subgroup_9,在内容变化上不太显著,与它们所属的浮游微生物门和酸杆菌门的表现一致。(图 4)

4讨论
4 讨论

4.1研究意义
4.1 研究意义

Some species of microbial communities may bleaching corals and the threat of different species is inconsistent, and when coral bleaching occurs, some microbial communities in coral tissues may increase, and thus some beneficial microorganisms may decrease. Studying coral bleaching at the microbial level can grasp the mechanism of coral bleaching more comprehensively, and may partly reduce the negative impact of coral bleaching on coral reef ecosystems.
一些微生物群落可能会使珊瑚褪色,不同物种的威胁程度不一致,当珊瑚发生褪色时,珊瑚组织中的某些微生物群落可能会增加,从而某些有益微生物可能会减少。在微生物层面研究珊瑚褪色可以更全面地掌握珊瑚褪色的机制,并可能在一定程度上减少珊瑚褪色对珊瑚礁生态系统的不利影响。

4.2证明微生物群落多样性
4.2 微生物群落多样性的证明

Survey of culturable microbial communities associated with Goniopora by using high-throughput sequencing. In this study, a total of 45 bacterial phyla were identified, suggesting that Goniopora contains an unexpected and diverse microbial community. This result is also supported by the sparse curve reaching a clear asymptote (Figure 1), while the chao 1 index and the Shannon index are superior to other studies (Liu et al.2018), meaning that these Goniopora are rich in bacterial diversity.
利用高通量测序对与 Goniopora 相关的可培养微生物群落进行调查研究。本研究共鉴定出 45 个细菌门,表明 Goniopora 含有意外且多样的微生物群落。这一结果也得到了稀疏曲线达到明显饱和点(图 1)的支持,同时 chao 1 指数和 Shannon 指数优于其他研究(刘等,2018),这意味着这些 Goniopora 富含细菌多样性。

4.3与其他珊瑚对比微生物群落差别
4.3 与其他珊瑚对比微生物群落差异

Among the 54 bacterial phyla detected in this study, Proteobacteria, Planctomycetota, Actinobacteriota, Acidobacteriota, Bacteroidota, Verrucomicrobiota and Chloroflexi were the most abundant in Goniopora, which were prevalent in stony corals and could also be found in black corals, such as A.dichotoma(Liu et al.2018)(这里还需要再找多一点珊瑚来证明)。
在本研究中检测到的 54 个细菌门中,变形菌门、浮游球衣菌门、放线菌门、酸杆菌门、拟杆菌门、疣微菌门和绿弯菌门在 Goniopora 中最为丰富,这些门在石珊瑚中普遍存在,也可以在黑珊瑚中找到,如 A.dichotoma(刘等,2018)(这里还需要再找多一点珊瑚来证明)。

4.4提出拮抗作用
4.4 提出拮抗作用

In addition, among the 54 bacterial phyla detected in this study, In Goniopora, Proteobacteria, Planctomycetota, Actinobacteriota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, and Chloroflexi were the most abundant, These phyla are prevalent in stony corals, Can also be found in the black coral, For example, A.dichotoma (Liu et al.2018) (more coral to prove here). An interesting finding is that, Of 12 where bacterial phyla including Dadabacteria, Dependentiae, Campilobacterota, NB1-j, Deinococcota, Hydrogenedentes, Fusobacteriota, Sumerlaeota, MBNT15, Marinimicrobia_SAR406_clade, RCP2-54 and Calditrichota were detected in corals, This not only increases the number and diversity of known bacterial phyla in corals, And to increase the multiple possibilities of this study for studying coral bleaching.
此外,在本研究中检测到的 54 个细菌门中,在 Goniopora 中,变形菌门、浮游球衣菌门、放线菌门、酸杆菌门、拟杆菌门、疣微菌门和黄杆菌门最为丰富,这些门类在石珊瑚中普遍存在,也可以在黑珊瑚中找到,例如,A.dichotoma (Liu et al.2018)(此处还有更多珊瑚作为证明)。一个有趣的发现是,在珊瑚中检测到的 12 个细菌门,包括 Dadabacteria、Dependentiae、Campilobacterota、NB1-j、Deinococcota、Hydrogenedentes、Fusobacteriota、Sumerlaeota、MBNT15 Marinimicrobia_SAR406_clade、RCP2-54 和 Calditrichota,这不仅增加了已知珊瑚细菌门的数量和多样性,而且增加了本研究研究珊瑚白化的多种可能性。

Studies found that the proportion of Firmicutes in Goniopora is relatively low, in sharp contrast to the results of black coral, normal coral Firmicute 5% -10% of qualified bacterial sequence (literature), and Firmicutes in Goniopora is only 0.44% of the total sequence, in addition to this study also found that the same microorganism in the same coral of different state between the difference.
研究发现,在孔珊瑚中,厚壁菌门的比例相对较低,与黑珊瑚的结果形成鲜明对比,正常珊瑚的厚壁菌门占合格细菌序列的 5%-10%(文献),而在孔珊瑚中,厚壁菌门仅占总序列的 0.44%,此外,这项研究还发现,同一珊瑚中相同微生物在不同状态下存在差异。

In this case, it is reasonable to speculate that some factors, such as an increase in the abundance of pathogenic bacteria in the antagonism of certain probiotics and opportunistic pathogens, have led to the bleaching of Goniopora. Cohaesibacter, Roseovarius, Vibrio and unclassified from Proteobacteria were detected The decreasing trend of Rhodobacteraceae content can reasonably be inferred that Proteobacteria is a beneficial bacterium against Goniopora bleaching and most of its bacteria genera play a positive role in the antagonism.The implication is that the proportion of Firmicutes(Alvarez-Yela et al., 2019) is high in black Goniopora (Spindola et al., 2021) and relatively low in Goniopora. It should be noted that the content of Firmicutes in healthy Goniopora and bleached Goniopora is lower than that in partly bleached Goniopora. Bacillus in Firmicutes is a beneficial bacterium (F et al., 2022) with strong anti-interference ability.Therefore, in the bleaching process of Goniopora, taking Firmicutes as an example, the content of colonies in the three Goniopora states increased first and then decreased, which can basically be considered to play a positive role in the fight against Goniopora bleaching. However, due to the weak resistance, the final content decreased and the Goniopora bleaching occurred.
在这种情况下,合理推测某些因素,如某些益生菌和机会性病原体对抗中致病菌丰度的增加,导致了孔珊瑚的白化。检测到固氮菌科、玫瑰科、弧菌和未分类的变形菌。可以合理推断红螺菌科含量的下降趋势,表明变形菌是抵抗孔珊瑚白化的有益细菌,其大部分细菌属在拮抗中发挥积极作用。这意味着厚壁菌门(Alvarez-Yela 等人,2019 年)在黑色孔珊瑚(Spindola 等人,2021 年)中的比例较高,而在孔珊瑚中相对较低。需要注意的是,健康孔珊瑚和白化孔珊瑚中厚壁菌门的含量低于部分白化孔珊瑚。 枯草芽孢杆菌是厚壁菌门中的一种有益细菌(F 等,2022),具有强大的抗干扰能力。因此,在孔珊瑚的漂白过程中,以厚壁菌门为例,三种孔珊瑚状态中的菌群含量先增加后减少,基本上可以认为在对抗孔珊瑚漂白中发挥了积极作用。然而,由于抵抗力较弱,最终含量减少,导致孔珊瑚发生漂白。

This study did not investigate the species of Vibrio in Goniopora in depth, but some studies have shown that some Vibrio species are pathogenic bacteria that cause Goniopora bleaching. For example, Vibrio fortis(Xiaohui et al., 2023) and Vibrio shiloi(Ngoc et al., 2023) also reported that some Vibrio bacteria are beneficial bacteria (Yingying et al., 2023). What is beneficial to bioremediative or exhibits metal resistance, including ThermodesulfoVibrionia detected in this study (Fonseca et al., 2023). However, the content of thermofoVibrionia in this research is relatively low, and the data shows that Vibrio content has been decreasing in the process of Goniopora bleaching, and basically does not exist in partly bleached Goniopora and bleached Goniopora, which means its role is getting weaker and weaker. Therefore, it is reasonable to assume that Vibrio in Goniopora does not pose a major threat to its bleaching, and it is excluded that Vibrio replaces beneficial Goniopora bacteria (Ritchie, 2006)
这项研究并未深入调查 Goniopora 中弧菌的种类,但一些研究表明,某些弧菌种类是致病菌,会导致 Goniopora 褪色。例如,Vibrio fortis(Xiaohui 等,2023)和 Vibrio shiloi(Ngoc 等,2023)也报道说,某些弧菌细菌是有益菌(Yingying 等,2023)。对生物修复或表现出金属抗性有益,包括在本研究中检测到的 ThermodesulfoVibrionia(Fonseca 等,2023)。然而,本研究中 thermofoVibrionia 的含量相对较低,数据显示,在 Goniopora 褪色过程中,弧菌含量一直在下降,在部分褪色的 Goniopora 和褪色的 Goniopora 中基本上不存在,这意味着其作用越来越弱。因此,合理地假设 Goniopora 中的弧菌不会对其褪色构成主要威胁,并排除弧菌取代有益的 Goniopora 细菌(Ritchie,2006)。
.

In addition, some species of Ruegeria have growth inhibiting activity against the Goniopora pathogen Vibrio Gonioporalinae (Ruriko et al., 2021), and the content of Ruegeria continues to increase during the process of bleaching from small horn to complete bleaching. In other words, Ruegeria has been exerting an antagonistic effect to inhibit the growth of pathogenic Vibrio during the bleaching of Goniopora, which also proves that pathogenic Vibrio in Goniopora is in a weak position and weakened under the antagonistic effect (Xiaohui et al., 2023).
此外,某些种类的鲁格氏菌对冈比珊瑚病原体弧菌冈比珊瑚弧菌(Ruriko 等,2021 年)具有生长抑制作用,鲁格氏菌的含量在从小角到完全褪色的过程中持续增加。换句话说,鲁格氏菌在冈比珊瑚褪色过程中对病原性弧菌的生长产生了拮抗作用,这也证明了冈比珊瑚中的病原性弧菌在拮抗作用下处于弱势和被削弱的状态(晓辉等,2023 年)。

Some of the dominant flora in Goniopora have abnormally elevated levels during partial bleaching and bleaching, especially Mycobacterium. In other studies, compounds isolated from hexane from Pseudomonas Elisabeth of Gillium have been shown to moderately inhibit the growth of Mycobacterium tuberculosis (I. et al., 2022). Moreover, a strain closely related to Proteobacteria isolated from soft Goniopora has antibacterial activity against Mycobacterium tuberculosis (Sulistiyani et al., 2010). Pseudomonas Elizabethan is almost absent from Goniopora. However, it is obvious from the data that the content of Proteobacteria has decreased during the Goniopora bleaching process, especially in the large span between healthy Goniopora and partly bleached Goniopora. Therefore, Proteobacteria has been playing a role in the fight against Goniopora bleaching. According to the results of complete Goniopora bleaching in the end, bacteria represented by Mycobacterium, such as Blastopirellula, Rubinisphaeraceae and Pirellulaceae, have shown a rising trend in the content of Goniopora bleaching. Therefore, these flora are likely to play a negative role in the Goniopora bleaching process against beneficial bacteria and dominate the outcome.
一些在孔珊瑚中的优势植物在部分褪色和褪色期间具有异常升高的水平,尤其是分枝杆菌。在其他研究中,从吉尔乌姆假单胞菌的己烷中分离出的化合物已被证明可以适度抑制结核分枝杆菌的生长(I. et al., 2022)。此外,从软孔珊瑚中分离出的与变形菌密切相关的菌株对结核分枝杆菌具有抗菌活性(Sulistiyani et al., 2010)。假单胞菌在孔珊瑚中几乎不存在。然而,从数据中可以明显看出,在健康孔珊瑚和部分褪色孔珊瑚之间的大跨度中,变形菌的含量在孔珊瑚褪色过程中有所下降。因此,变形菌在对抗孔珊瑚褪色中发挥了作用。根据最终完全褪色孔珊瑚的结果,以分枝杆菌为代表的细菌,如裂片菌、鲁宾斯菌科和皮雷卢菌科,在孔珊瑚褪色中的含量呈现上升趋势。 因此,这些植物群可能对对抗有益细菌的 Goniopora 漂白过程起负面作用,并主导结果。

部分参考文献

Alvarez-Yela AC, Mosquera-Rendón J, Noreña-P A, Cristancho M & López-Alvarez D (2019) Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Goniopora Atoll of the Seaflower Biosphere Reserve %J Frontiers in Marine Science. 6
Alvarez-Yela AC, Mosquera-Rendón J, Noreña-P A, Cristancho M & López-Alvarez D (2019) 在 Serrana Bank 海洋宿主中的微生物多样性探索,Serrana Bank 是加勒比海花岛生物圈保护区的一个 Goniopora 环礁。%J《海洋科学前沿》。6
.

F MH, Amro A, Rongshuo C, Zhaohe L & Changan X (2022) The bacterial signature offers vision into the machinery of Goniopora fitness across high-latitude Goniopora reef in the South China Sea. %J Environmental microbiology reports. 15
F MH, Amro A, Rongshuo C, Zhaohe L & Changan X (2022) 细菌特征为南中国海高纬度 Goniopora 礁的 Goniopora 适应性机制提供了洞察。%J《环境微生物学报告》。15
.

Fonseca PGM, Rodrigues dSKM, Gomes CLH, Frederigi BR, Regina DM & Bueno GG (2023) Effects of metal contamination with physicochemical properties on the sediment microbial communities in a tropical eutrophic-hypereutrophic urban reservoir in Brazil. %J Environmental science and pollution research international. 30
Fonseca PGM, Rodrigues dSKM, Gomes CLH, Frederigi BR, Regina DM & Bueno GG (2023) 金属污染及其物理化学性质对巴西热带富营养-超富营养城市水库沉积物微生物群落的影响。%J《环境科学与污染研究国际》。30
.

I. RI, D. RA & L. BC (2022) Isolation, Structural Analysis and Biological Activity Assays of Biselisabethoxanes A and B: Two Dissymmetric Bis-Diterpenes from the Southwestern Caribbean Sea Gorgonian Goniopora Pseudopterogorgia elisabethae %J Molecules. 27
I. RI, D. RA & L. BC (2022) 从西南加勒比海海葵 Goniopora Pseudopterogorgia elisabethae 中分离得到的双异构双二萜 Biselisabethoxanes A 和 B 的分离、结构分析和生物活性测定 %J 分子. 27
.

Jin Z, Zi-Jun L, Zhong-Hua C, Yan-Hua Z, Jian-Ming Z & Xiao-Peng D (2020) Opportunistic bacteria use quorum sensing to disturb Goniopora symbiotic communities and mediate the occurrence of Goniopora bleaching. %J Environmental microbiology. 22
金子, 李子军, 陈中华, 赵艳华, 张建明 & 杜晓鹏 (2020) 机会性细菌利用群体感应扰乱 Goniopora 共生群落并介导 Goniopora 白化现象的发生 %J 环境微生物学. 22
.