你說:
can you explain george lackoff's conceptual metaphor theory?你能解釋一下喬治·萊奧夫的概念隱喻理論嗎?
George Lakoff's Conceptual Metaphor Theory (CMT), first introduced in his seminal work "Metaphors We Live By" (1980) with Mark Johnson, proposes that metaphors are not just linguistic expressions but fundamental structures of human cognition. CMT challenges the traditional view that metaphors are mere stylistic devices used in language, arguing instead that they shape how we think, perceive, and act. According to this theory, metaphors are conceptual in nature and deeply embedded in our cognitive processes, influencing how abstract concepts are understood and framed through more familiar experiences.喬治‧萊考夫 (George Lakoff) 的概念隱喻理論 (CMT)首次在他與馬克‧約翰遜 (Mark Johnson) 合作的開創性著作《我們賴以生存的隱喻》(Metaphors We Live By) (1980) 中提出,提出隱喻不僅是語言表達,也是人類認知的基本結構。 CMT 挑戰了傳統觀點,即隱喻只是語言中使用的文體手段,而是認為隱喻塑造了我們的思考、感知和行為方式。根據這個理論,隱喻本質上是概念性的,並深深嵌入我們的認知過程中,影響著如何透過更熟悉的經驗來理解和建構抽象概念。
Conceptual Metaphors as Mappings:作為映射的概念隱喻:
Embodied Cognition:具身認知:
Pervasiveness of Metaphors:隱喻的普遍性:
Metaphor and Cultural Influence:隱喻與文化影響:
Systematicity of Metaphors:隱喻的系統性:
Cognition Beyond Language:超越語言的認知:
Relevance in Multiple Disciplines:多元學科的相關性:
Influence on Framing and Thought:對框架和思想的影響:
George Lakoff's Conceptual Metaphor Theory provides a groundbreaking framework for understanding how metaphors influence thought, language, and behavior. By emphasizing the cognitive and embodied nature of metaphors, CMT challenges traditional views of metaphors as mere linguistic devices. It has had wide-ranging influence across disciplines, sparking debates about how metaphors frame not only individual cognition but also collective cultural and political discourse.喬治·萊考夫的概念隱喻理論為理解隱喻如何影響思想、語言和行為提供了一個開創性的框架。透過強調隱喻的認知和體現本質,CMT 挑戰了將隱喻視為純粹語言手段的傳統觀點。它在跨學科領域產生了廣泛的影響,引發了關於隱喻如何建構個人認知以及集體文化和政治話語的爭論。
Handling multiple papers?處理多篇論文?
Speed up your research with Sider! Our AI-powered sidebar features 10+ one-click tools including a more advanced Search Agent, ChatPDF, context-aware utilities and more to help you work smarter and faster.使用 Sider 加速您的研究!我們的人工智慧側邊欄具有 10 多個一鍵式工具,包括更高級的搜尋代理、ChatPDF、上下文感知實用程式等,可協助您更聰明、更快速地工作。
Level up your research game here在這裡提升你的研究遊戲水平
Cognitive Linguistics is an interdisciplinary field that focuses on the relationship between language, cognition, and human experience. It challenges traditional views of language by emphasizing that language reflects general cognitive abilities and that meaning is grounded in human perception and experience. Below are some of the most important theories in cognitive linguistics:認知語言學是一個跨學科領域,專注於研究語言、認知和人類經驗之間的關係。它透過強調語言反映一般認知能力以及意義基於人類的感知和經驗來挑戰傳統的語言觀點。以下是認知語言學中一些最重要的理論:
Cognitive Linguistics offers a rich framework for understanding how language reflects and shapes human thought and experience. The theories listed above illustrate the central principles of cognitive linguistics: that meaning is grounded in bodily experience, that language is closely tied to general cognitive processes, and that grammar reflects patterns of conceptualization. Each theory provides unique insights into how we use language to make sense of the world.認知語言學為理解語言如何反映和塑造人類思想和經驗提供了豐富的框架。上述的理論說明了認知語言學的核心原則:意義以身體經驗為基礎,語言與一般認知過程密切相關,語法反映了概念化的模式。每個理論都為我們如何使用語言來理解世界提供了獨特的見解。
These theories continue to evolve and influence research in psychology, linguistics, artificial intelligence, and philosophy, providing deep insights into how human cognition and language are intertwined.這些理論不斷發展並影響心理學、語言學、人工智慧和哲學的研究,為人類認知和語言如何相互交織提供了深刻的見解。
Certainly! Below are more detailed explanations of Frame Semantics, Cognitive Grammar, and Image Schema Theory—three key theories within cognitive linguistics.當然!以下是對框架語義學、認知語法和圖像圖式理論(認知語言學中的三個關鍵理論)的更詳細解釋。
Proponent: Charles Fillmore (1976)支持者:查爾斯·菲爾莫爾 (1976)
Overview:概述:
Frame Semantics argues that words evoke mental structures called "frames"—sets of experiences, knowledge, or scenarios related to a word or concept. Words are not isolated units of meaning but depend on these broader cognitive frameworks. Understanding a word requires familiarity with the frame it invokes, which reflects background knowledge and experience.框架語意學認為,單字會喚起稱為「框架」的心理結構——與單字或概念相關的經驗、知識或場景的集合。單字不是孤立的意義單位,而是依賴這些更廣泛的認知框架。理解一個單字需要熟悉它所調用的框架,這反映了背景知識和經驗。
Proponent: Ronald Langacker (1987)支持者:羅納德·蘭加克 (1987)
Overview:概述:
Cognitive Grammar suggests that grammar is not separate from meaning but reflects general cognitive abilities and conceptual structures. Unlike formal linguistic theories that see grammar as a set of rules, Cognitive Grammar argues that grammar and meaning are intertwined, and grammatical constructions arise from patterns of conceptualization.認知語法認為語法並非與意義分離,而是反映一般認知能力與概念結構。與將語法視為一組規則的正式語言理論不同,認知語法認為語法和意義是相互交織的,語法結構源自於概念化模式。
Proponent: Mark Johnson (1987)支持者:馬克‧約翰遜 (1987)
Overview:概述:
Image Schema Theory posits that recurrent patterns from sensory and motor experiences—called image schemas—serve as the building blocks for understanding abstract concepts. These schemas provide the structure for both concrete and metaphorical thinking.圖像圖式理論認為,來自感覺和運動經驗的循環模式(稱為圖像圖式)是理解抽象概念的基石。這些模式為具體和隱喻思維提供了結構。
Together, Frame Semantics, Cognitive Grammar, and Image Schema Theory provide foundational insights into how language reflects and shapes human cognition. Frame Semantics focuses on how words are understood within the context of background knowledge, Cognitive Grammar shows how grammar reflects patterns of thought, and Image Schema Theory reveals how bodily experiences ground abstract concepts. These theories demonstrate that meaning in language is deeply connected to experience, context, and cognition.框架語意學、認知語法和圖像圖式理論共同為語言如何反映和塑造人類認知提供了基礎見解。框架語義學關注如何在背景知識的背景下理解單詞,認知語法展示語法如何反映思維模式,圖像圖式理論揭示身體體驗如何基礎抽象概念。這些理論表明,語言的意義與經驗、脈絡和認知密切相關。
Frame Semantics, developed by Charles Fillmore, plays a critical role in computational linguistics and artificial intelligence (AI), especially in areas such as word embeddings, semantic networks, and natural language processing (NLP). The influence lies in how frames capture contextual meaning, which helps computers understand the relationships between words beyond their surface meanings. Below is a deeper look at this impact.由 Charles Fillmore 開發的框架語義學在計算語言學和人工智慧 (AI)中發揮著至關重要的作用,特別是在詞嵌入、語義網絡和自然語言處理 (NLP)等領域。影響在於框架如何捕捉上下文含義,這有助於電腦理解單字之間超越其表面含義的關係。下面更深入地探討了這種影響。
In Frame Semantics, the meaning of a word or phrase is inseparable from the broader frame or scenario it evokes. This context-based view is essential for computational models of language.在框架語義學中,單字或短語的含義與其所引發的更廣泛的框架或場景密不可分。這種基於上下文的視圖對於語言的計算模型至關重要。
Word Embeddings (e.g., Word2Vec, GloVe, BERT):詞嵌入(例如,Word2Vec、GloVe、BERT) :
Significance:意義:
Frame Semantics has also contributed to the development of semantic networks and ontologies—structured models that represent concepts and their relationships.框架語義也為語義網絡和本體(表示概念及其關係的結構化模型)的發展做出了貢獻。
How Frames Contribute:框架如何貢獻:
Applications in AI:人工智慧中的應用:
Semantic parsing—the process of converting text into structured meaning—benefits from frame-based representations.語義解析(將文字轉換為結構化意義的過程)受益於基於框架的表示。
FrameNet Project:框架網項目:
Impact:影響:
In sentiment analysis and opinion mining, Frame Semantics helps AI systems capture subtle nuances in emotional language.在情緒分析和意見挖掘中,框架語意有助於人工智慧系統捕捉情緒語言中的細微差別。
Frame Semantics plays a crucial role in improving conversational AI by helping systems understand dialogue contexts. Human conversations are often structured around recurring frames (e.g., booking travel, ordering food).框架語義透過幫助系統理解對話上下文,在改善對話式人工智慧方面發揮著至關重要的作用。人類對話通常是圍繞著重複出現的框架而建構的(例如,預訂旅行、點餐)。
Example:例子:
Impact:影響:
Frame Semantics helps AI models address ambiguity by focusing on the broader scenario implied by a sentence, rather than just individual words.框架語義透過關注句子所暗示的更廣泛的場景,而不僅僅是單個單詞,幫助人工智慧模型解決歧義。
Example:例子:
Impact:影響:
Frame Semantics has had a profound impact on computational linguistics and AI by providing insights into how meaning is structured within contextual frames. It improves word embeddings by emphasizing contextual usage, enhances semantic networks by grouping related concepts, and powers semantic parsing for applications like chatbots and machine translation. Furthermore, it addresses challenges of ambiguity and polysemy, making AI models better at understanding natural language. This theory serves as a foundation for NLP systems that aim to achieve human-like understanding of language, contributing to fields such as sentiment analysis, dialogue systems, and question answering.框架語義學透過提供上下文框架中意義如何建構的見解,對計算語言學和人工智慧產生了深遠的影響。它透過強調上下文使用來改進詞嵌入,透過對相關概念進行分組來增強語義網絡,並為聊天機器人和機器翻譯等應用程式提供語義解析。此外,它還解決了歧義和一詞多義的挑戰,使人工智慧模型能夠更好地理解自然語言。該理論是NLP 系統的基礎,旨在實現類似人類的語言理解,為情緒分析、對話系統和問答等領域做出貢獻。
Frame Semantics was proposed by Charles J. Fillmore in the 1970s. Fillmore, a renowned linguist, introduced this theory to explain how word meanings are tied to broader conceptual structures called frames, which represent mental scenarios or background knowledge associated with specific words or linguistic expressions. His work was influential in cognitive linguistics, helping to bridge the gap between language, thought, and real-world knowledge.框架語意學由Charles J. Fillmore在 20 世紀 70 年代提出。著名語言學家菲爾莫爾引入這一理論來解釋單字意義如何與更廣泛的概念結構(稱為框架)聯繫起來,框架代表與特定單字或語言表達相關的心理場景或背景知識。他的工作在認知語言學領域具有影響力,有助於彌合語言、思想和現實世界知識之間的差距。
One of Fillmore's most well-known projects related to this theory is FrameNet, a lexical database that catalogs words and their associated frames, widely used in natural language processing (NLP) and computational linguistics.菲爾莫爾與該理論相關的最著名的項目之一是FrameNet ,這是一個對單字及其相關框架進行分類的詞彙資料庫,廣泛應用於自然語言處理 (NLP) 和計算語言學。
FrameNet is a lexical database created under the leadership of Charles Fillmore at the International Computer Science Institute (ICSI) in Berkeley, California. It is an essential resource for linguists and computer scientists, providing structured mappings of words to semantic frames—the underlying scenarios or knowledge structures they evoke.FrameNet是在加州柏克萊市國際電腦科學研究所 (ICSI)的Charles Fillmore的領導下創建的詞彙資料庫。它是語言學家和電腦科學家的重要資源,提供單字到語義框架的結構化映射——它們引發的底層場景或知識結構。
FrameNet catalogs the frames associated with different words and phrases, along with the semantic roles that entities play within those frames. This database aids in understanding how language reflects real-world scenarios and how meaning is constructed in context.FrameNet 對與不同單字和短語相關的框架以及實體在這些框架中扮演的語義角色進行了編目。該資料庫有助於理解語言如何反映現實世界場景以及如何在上下文中建立意義。
Frames:框架:
Frame Elements (Roles):框架元素(角色) :
Lexical Units:詞彙單位:
Natural Language Processing (NLP):自然語言處理(NLP) :
Machine Translation:機器翻譯:
Semantic Role Labeling (SRL):語意角色標籤(SRL) :
Information Extraction:資訊提取:
Frame: Travel鏡框: 旅行 |
---|
Lexical Units: travel, go, leave, arrive詞彙單位:旅行、去、離開、到達 |
Roles/Elements: Traveler, Source, Path, Destination角色/元素:旅行者、來源、路徑、目的地 |
Example Sentence: "Alice traveled from Paris to London by train."例句:“愛麗絲乘火車從巴黎到倫敦。” |
Semantic Role Labeling: Alice (Traveler), Paris (Source), London (Destination), train (Path)語意角色標籤:愛麗絲(旅行者)、巴黎(來源)、倫敦(目的地)、火車(路徑) |
FrameNet is accessible online at the following website:FrameNet 可透過以下網站線上存取:
FrameNet Website框架網站
On the website, you can explore:在該網站上,您可以探索:
FrameNet, as an extension of Frame Semantics, provides a rich resource for understanding how words gain meaning through the conceptual frames they evoke. It is particularly valuable in NLP, aiding in semantic parsing, word disambiguation, machine translation, and chatbots. Charles Fillmore's pioneering work has had a profound influence on both cognitive linguistics and computational applications, bridging the gap between language and meaning.FrameNet 作為框架語意的擴展,提供了豐富的資源來理解單字如何透過它們所引發的概念框架來獲得意義。它在 NLP 中特別有價值,有助於語義解析、單字消歧、機器翻譯和聊天機器人。查爾斯·菲爾莫爾的開創性工作對認知語言學和計算應用產生了深遠的影響,彌合了語言和意義之間的差距。
Yes, you can use FrameNet in Python to enhance Natural Language Processing (NLP) tasks, such as semantic role labeling (SRL), word sense disambiguation, and information extraction. FrameNet data is available as a resource you can query via various tools and APIs.是的,您可以在 Python 中使用FrameNet來增強自然語言處理 (NLP) 任務,例如語義角色標記 (SRL) 、詞義消歧和資訊擷取。 FrameNet 資料以資源提供,您可以透過各種工具和 API 進行查詢。
Below is a detailed guide on how to use FrameNet with Python.以下是有關如何透過 Python 使用 FrameNet 的詳細指南。
There are multiple ways to access FrameNet in Python:在Python中有多種方式存取FrameNet :
allennlp
for semantic role labeling)使用預訓練模型(例如,用於語義角色標記的allennlp
)The NLTK (Natural Language Toolkit) provides basic access to the FrameNet lexical database. You can install NLTK and download the FrameNet data as shown below.NLTK(自然語言工具包)提供對FrameNet 詞彙資料庫的基本存取。您可以安裝 NLTK 並下載 FrameNet 數據,如下所示。
Install NLTK:安裝NLTK :
bash巴什pip install nltk
Download FrameNet Data: Open a Python shell and run:下載 FrameNet 資料:開啟 Python shell 並運行:
pythonimport nltk
nltk.download('framenet_v17')
Access FrameNet in Python:在Python中存取FrameNet :
pythonfrom nltk.corpus import framenet as fn
# List all available frames
frames = fn.frames()
print(f"Total number of frames: {len(frames)}")
# Look up a specific frame by name
frame = fn.frame('Commerce_buy')
print(f"Frame Name: {frame.name}")
print(f"Frame Definition: {frame.definition}")
# List the lexical units associated with this frame
lexical_units = frame['lexUnit']
print("Lexical Units:")
for lu in lexical_units:
print(lu)
You can query FrameNet’s data through APIs like FrameNet REST API (if hosted). While the direct FrameNet database may not always be available as an open API, projects like FrameNet Brasil or FrameNet Global may offer access.您可以透過FrameNet REST API (如果託管)等 API 查詢 FrameNet 的資料。雖然直接的 FrameNet 資料庫可能不會總是作為開放 API 提供,但 FrameNet Brasil或FrameNet Global等項目可能會提供存取權限。
Here’s a template for querying an API (if available) with Python:以下是使用 Python 查詢 API(如果可用)的範本:
pythonimport requests
# Example FrameNet API endpoint (replace with actual endpoint if available)
url = "https://api.framenet.com/frames/Commerce_buy"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
print(f"Frame: {data['name']}")
print(f"Definition: {data['definition']}")
else:
print("Failed to retrieve frame data")
If you want to apply semantic role labeling (SRL) directly (based on frames like those in FrameNet), you can use AllenNLP’s SRL model, which identifies semantic roles in sentences.如果你想直接應用語意角色標籤(SRL) (基於像FrameNet中的框架),你可以使用AllenNLP的SRL模型,它可以辨識句子中的語意角色。
bash巴什pip install allennlp allennlp-models
pythonfrom allennlp.predictors.predictor import Predictor
# Load the pre-trained semantic role labeling model
predictor = Predictor.from_path("https://storage.googleapis.com/allennlp-public-models/structured-prediction-srl-bert.2020.12.15.tar.gz")
# Input sentence for SRL
sentence = "John bought a book from Mary for $20."
# Get SRL predictions
output = predictor.predict(sentence=sentence)
# Display results
for verb in output['verbs']:
print(f"Verb: {verb['verb']}")
print(f"Description: {verb['description']}")
You can easily use FrameNet data in Python through tools like NLTK or via API queries if available. For more advanced semantic role labeling, you can integrate pre-trained models from AllenNLP, which reflect concepts derived from FrameNet.您可以透過NLTK等工具或透過API 查詢(如果可用)在 Python 中輕鬆使用 FrameNet 資料。對於更高階的語意角色標記,您可以整合AllenNLP的預訓練模型,這些模型反映了源自 FrameNet 的概念。
FrameNet enhances NLP tasks by providing deeper contextual meaning and role information, improving the performance of applications like chatbots, information extraction, and machine translation.FrameNet 透過提供更深入的上下文含義和角色資訊、提高聊天機器人、資訊提取和機器翻譯等應用程式的效能來增強 NLP 任務。
Proposed by: Mark Johnson (1987) in collaboration with George Lakoff.提出者:Mark Johnson (1987) 與George Lakoff合作。
Overview:概述:
Image Schema Theory suggests that repeated bodily experiences form fundamental mental patterns—called image schemas—that shape both concrete and abstract thinking. These schemas are pre-linguistic cognitive structures that allow us to understand and organize our experiences, and they provide a foundation for conceptual metaphors in language.圖像圖式理論認為,重複的身體經驗會形成基本的心理模式(稱為圖像圖式),從而塑造具體和抽象的思維。這些圖式是前語言認知結構,使我們能夠理解和組織我們的經驗,並且它們為語言中的概念隱喻提供了基礎。
The theory is a central part of embodied cognition, which holds that thought is rooted in bodily interactions with the environment. Image schemas serve as building blocks for more complex mental models and are reflected in everyday language, actions, and concepts.該理論是具身認知的核心部分,它認為思想植根於身體與環境的相互作用。圖像圖式作為更複雜的心理模型的建構塊,並反映在日常語言、動作和概念中。
An image schema is a simple but highly general pattern derived from sensory-motor experiences. These patterns help us structure abstract concepts through metaphorical thinking. Although they originate in physical interaction, they are applied metaphorically to understand non-physical concepts.圖像圖式是一種簡單但高度通用的模式,源自於感覺運動經驗。這些模式幫助我們透過隱喻思維建構抽象概念。儘管它們起源於物理交互,但它們被隱喻地應用於理解非物理概念。
For example:例如:
Here are some of the most common image schemas along with examples to illustrate their application in both concrete and abstract concepts:以下是一些最常見的圖像模式以及範例,以說明它們在具體和抽象概念中的應用:
Metaphorical Extensions:隱喻擴展:
Abstract Thinking:抽象思維:
Cultural Variability:文化差異:
Cognitive Linguistics:認知語言學:
Artificial Intelligence & NLP:人工智慧與自然語言處理:
Psychology and Cognitive Science:心理學與認知科學:
Education and Learning:教育與學習:
Overemphasis on Embodiment:過度強調體現:
Lack of Empirical Evidence:缺乏經驗證據:
Variability in Application:應用的可變性:
Image Schema Theory provides a compelling framework for understanding how bodily experiences shape abstract thought and language use. These schemas are fundamental cognitive patterns—like containment, path, and balance—that structure our thinking. They are not limited to physical experiences but extend to complex concepts through metaphorical thinking. The theory bridges the gap between experience, cognition, and language, making it a central component of cognitive linguistics and a useful tool in fields like education, artificial intelligence, and psychology.圖像圖式理論為理解身體經驗如何塑造抽象思考和語言使用提供了一個令人信服的框架。這些圖式是基本的認知模式,例如遏制、路徑和平衡,它們建構了我們的思維。它們不僅限於物理體驗,也透過隱喻思維擴展到複雜的概念。該理論彌合了經驗、認知和語言之間的差距,使其成為認知語言學的核心組成部分,也是教育、人工智慧和心理學等領域的有用工具。