这是用户在 2024-4-2 18:00 为 https://webvpn.cpu.edu.cn/https/77726476706e69737468656265737421e0e2438f69316b4330079bab/doi/10.1021... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Discovery of 1H-Imidazo[4,5-b]pyridine Derivatives as Potent and Selective BET Inhibitors for the Management of Neuropathic Pain
发现 1H-咪唑并[4,5-b]吡啶衍生物作为治疗神经性疼痛的强效选择性 BET 抑制剂
 我的活动出版物
CONTENT TYPES
RETURN TO ISSUEPREVArticleNEXT
返回发行页上一页下一页

Discovery of 1H-Imidazo[4,5-b]pyridine Derivatives as Potent and Selective BET Inhibitors for the Management of Neuropathic Pain
发现 1H-咪唑并[4,5-b]吡啶衍生物作为治疗神经性疼痛的强效选择性 BET 抑制剂

  • Xuetao Chen 陈雪涛
    Xuetao Chen 陈雪涛
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    中国药科大学药物设计与优化重点实验室、天然药物国家重点实验室,江苏南京 210009
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    中国药科大学药学院药物化学系,南京 210009
    More by Xuetao Chen 陈雪涛的更多作品
  • Danyan Cao 曹丹燕
    Danyan Cao
    Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
    More by Danyan Cao
  • Chihong Liu 刘志宏
    Chihong Liu
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Chihong Liu
  • Fanying Meng 孟凡英
    Fanying Meng
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Fanying Meng
  • Zijian Zhang 张子健
    Zijian Zhang
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Zijian Zhang
  • Rujun Xu
    Rujun Xu
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Rujun Xu
  • Yuanyuan Tong 汤媛媛
    Yuanyuan Tong
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
  • Yabing Xin 辛亚兵
    Yabing Xin
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Yabing Xin
  • Weikun Zhang 张伟坤
    Weikun Zhang
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Weikun Zhang
  • Wenjing Kang 康文静
    Wenjing Kang
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Wenjing Kang
  • Qichao Bao 鲍启超
    Qichao Bao
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    More by Qichao Bao
  • Jingkang Shen 沈靖康
    Jingkang Shen 沈靖康
    Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
    中国科学院上海药物研究所药物化学部,上海市祖冲之路 555 号,邮编:201203
    More by Jingkang Shen 沈靖康的更多作品
  • Bing Xiong* 熊兵*
    Bing Xiong
    Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
    University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
    *Email: bxiong@simm.ac.cn
    More by Bing Xiong
  • Qidong You* 尤启东*
    Qidong You
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    *Email: youqd@163.com
    More by Qidong You
  • , and  
  • Zhengyu Jiang* 蒋征宇*
    Zhengyu Jiang
    Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    *Email: jiangzhengyucpu@163.com
Cite this: J. Med. Chem. 2023, 66, 13, 8725–8744
引用此文:J. Med.Chem.2023, 66, 13, 8725-8744
Publication Date (Web):June 29, 2023
出版日期 :2023 年 6 月 29 日
https://doi.org/10.1021/acs.jmedchem.3c00372
Copyright © 2023 American Chemical Society
版权所有 © 2023 美国化学学会
  • Subscribed

Article Views 文章观点

2175

Altmetric

-

Citations 引文

LEARN ABOUT THESE METRICS
了解这些指标
PDF (11 MB)
Supporting Info (3)» 辅助信息 (3)"
SUBJECTS: 主题:

Abstract 摘要

Neuropathic pain (NP) is an intolerable pain syndrome that arises from continuous inflammation and excitability after nerve injury. Only a few NP therapeutics are currently available, and all of them do not provide adequate pain relief. Herein, we report the discovery of a selective and potent inhibitor of the bromodomain and extra-terminal (BET) proteins for reducing neuroinflammation and excitability to treat NP. Starting with the screening hit 1 from an in-house compound library, iterative optimization resulted in the potent BET inhibitor DDO-8926 with a unique binding mode and a novel chemical structure. DDO-8926 exhibits excellent BET selectivity and favorable drug-like properties. In mice with spared nerve injury, DDO-8926 significantly alleviated mechanical hypersensitivity by inhibiting pro-inflammatory cytokine expression and reducing excitability. Collectively, these results implicate that DDO-8926 is a promising agent for the treatment of NP.
神经病理性疼痛(NP)是一种难以忍受的疼痛综合征,由神经损伤后的持续炎症和兴奋引起。目前只有少数几种 NP 治疗药物,而且所有这些药物都不能充分缓解疼痛。在此,我们报告发现了一种选择性强效溴化多域和末端外(BET)蛋白抑制剂,可用于降低神经炎症和兴奋性以治疗 NP。从内部化合物库中的筛选结果 1 开始,经过迭代优化,最终产生了具有独特结合模式和新颖化学结构的强效 BET 抑制剂 DDO-8926。DDO-8926 具有出色的 BET 选择性和良好的类药物特性。在神经损伤小鼠中,DDO-8926 通过抑制促炎细胞因子的表达和降低兴奋性,显著减轻了机械过敏性。总之,这些结果表明 DDO-8926 是一种治疗 NP 的有前途的药物。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。申请重用许可。

Introduction 导言

ARTICLE SECTIONS
Jump To
 条款章节跳转到

Neuropathic pain (NP) is a rather stubborn pain syndrome arising from nerve injury. (1,2) NP affects 7–10% of the general population and severely debilitates patients’ life quality. (3,4) Pharmacological treatments for NP recommended by the International Association for the Study of Pain (IASP) are divided into first-line, second-line, and third-line interventions. (5) First-line treatments mainly contain tricyclic antidepressants, gabapentin, and pregabalin. (6−9) Lidocaine patches, tramadol, and strong opioids are recommended as second- or third-line interventions because of their low tolerability or safety profile, and their clinical use is limited. (10−12) Over the past century, only a few therapies for NP relief have been introduced to the market, and these have not resulted in adequate pain relief for patients. Currently, there remains an unmet need for effective and safe management of this disabling disease.
神经病理性疼痛(NP)是由神经损伤引起的一种相当顽固的疼痛综合征。(1,2)7%-10%的普通人群患有神经病理性疼痛,严重影响患者的生活质量。(3,4)国际疼痛研究协会(IASP)推荐的 NP 药物治疗分为一线、二线和三线干预。(5)一线治疗主要包括三环类抗抑郁药、加巴喷丁和普瑞巴林。(6-9)利多卡因贴片、曲马多和强阿片类药物因其耐受性或安全性较低,被推荐作为二线或三线干预措施,其临床应用有限。(10-12)在过去的一个世纪中,仅有少数几种用于缓解 NP 的疗法推向市场,但这些疗法并未为患者带来充分的疼痛缓解。目前,有效、安全地治疗这种致残性疾病的需求仍未得到满足。
Epigenetic modifications are able to modulate gene expression changes, including in pain circuits. (13−17) There is growing evidence that histone acetylation plays a key role in the development and maintenance of chronic pain. (18−21) Serving as epigenetic “readers” of acetylated lysines on histone tails, the bromodomain and extra-terminal (BET) domain family proteins could regulate the expression of genes involved in chronic pain by enriching the corresponding transcription factors at the promoter regions of these genes. (22−25) Recently, BET bromodomain (BET BD) inhibition has also been revealed to alleviate nerve injury-induced NP by ameliorating nerve inflammation and modulating the expression of critical ion channels to reduce neuronal excitability. (26−30) The BET protein family is composed of bromodomain-containing protein 4 (BRD4), BRD3, BRD2, and testes-specific BRDT, each of which contains two tandem BDs, BD1 and BD2, and an extra-terminal domain. (31−34) BD1 and BD2 are essential domains for the BET proteins to perform their functions. (35−38) Each BD consists of approximately 110 amino acids and forms four reverse parallel α-helices (αZ, αA, αB, and αC) and two hydrophobic loops (ZA loop and BC loop). (39−42) The end of the α-helices and the surfaces of the hydrophobic loops together form the acetylated lysine binding pocket, containing a conserved asparagine that forms a hydrogen bond interaction with the acetylated lysine, a hydrophobic residue called the gatekeeper that controls the entry of the acetylated lysine, a hydrophobic WPF shelf adjacent to the ZA loop, and a ZA channel. (43−47)
表观遗传修饰能够调节基因表达变化,包括疼痛回路中的基因表达变化。(13-17)越来越多的证据表明,组蛋白乙酰化在慢性疼痛的发展和维持中起着关键作用。(18-21)作为组蛋白尾部乙酰化赖氨酸的表观遗传 "阅读器",溴域和外端(BET)域家族蛋白可以通过富集这些基因启动子区域的相应转录因子来调控慢性疼痛相关基因的表达。(22-25)最近,研究还发现,BET溴端域(BET BD)抑制可通过改善神经炎症和调节关键离子通道的表达来降低神经元的兴奋性,从而减轻神经损伤引起的 NP。(26-30)BET 蛋白家族由含溴结构域蛋白 4(BRD4)、BRD3、BRD2 和睾丸特异性 BRDT 组成,每个 BET 蛋白家族都包含两个串联 BD,即 BD1 和 BD2,以及一个末端外结构域。(31-34)BD1 和 BD2 是 BET 蛋白发挥其功能的重要结构域。(35-38)每个 BD 由大约 110 个氨基酸组成,形成四个反向平行的 α 螺旋(αZ、αA、αB 和 αC)和两个疏水环(ZA 环和 BC 环)。(39-42)α-螺旋的末端和疏水环的表面共同形成了乙酰化赖氨酸结合袋,其中包含一个与乙酰化赖氨酸形成氢键相互作用的保守天冬酰胺、一个控制乙酰化赖氨酸进入的称为守门员的疏水残基、一个邻近ZA环的疏水WPF架和一个ZA通道。(43-47)
BET inhibitors have promising therapeutic potential for a variety of diseases by blocking the BDs that recognize and bind the acetylated lysines at histone tails, thereby inhibiting the expression of pathogenic factors. (48) Since the first BET inhibitor, MS417, (49) was discovered, various BET inhibitors have emerged, some of them being in clinical trials, (50) including MK-8628, (51,52) CPI-0610, (53,54) BMS-986158, (55) NHWD-870, (56) ABBV-075, (57) ABBV-744, (58,59) RVX-208, (60) and so forth. Here, we identified a potent and selective BET inhibitor that significantly alleviate nerve injury-induced NP and could be developed as a promising therapeutic option for NP.
BET 抑制剂通过阻断识别并结合组蛋白尾部乙酰化赖氨酸的 BDs,从而抑制致病因子的表达,对多种疾病具有良好的治疗潜力。(48)自第一个 BET 抑制剂 MS417(49)被发现以来,各种 BET 抑制剂不断涌现,其中一些已进入临床试验阶段,(50)包括 MK-8628、(51,52)CPI-0610、(53,54)BMS-986158、(55)NHWD-870、(56)ABBV-075、(57)ABBV-744、(58,59)RVX-208(60)等。在此,我们发现了一种强效且具有选择性的 BET 抑制剂,它能显著缓解神经损伤引起的 NP,可作为治疗 NP 的一种有前途的选择。

Results and Discussion 结果与讨论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

Hit Identification and Optimization
命中识别和优化

An in-house compound library of about 600 small molecules originating from commercially purchased or homemade in the laboratory was screened for new hits. The inhibitory activity of these compounds was then evaluated by using competitive fluorescence-polarization (FP) assay to obtain compound 1, which was found to inhibit recombinant human BRD4 BD1 and BD2 with Ki values of 4.3 and 8.1 μM, respectively (Figure 1A). The one-dimensional Carr–Purcell–Meiboom–Gill (CPMG) experiment, which exploits the differences in NMR relaxation properties between ligands and macromolecular complexes, has long been considered a powerful tool for monitoring the binding of small ligands to large proteins. (61,62) The CPMG experiment was then carried out between BRD4 BD1 and 1, and the result showed that BRD4 BD1 significantly reduced the 1H resonances of 1 signal intensity (Figure 1B), suggesting that compound 1 does bind to BRD4 BD1.
我们在内部化合物库中筛选了约 600 种小分子化合物,这些化合物来自市场购买或实验室自制。然后通过竞争性荧光极化(FP)测定法评估了这些化合物的抑制活性,得到了化合物1,发现它能抑制重组人BRD4 BD1和BD2,K值分别为4.3和8.1 μM(图1A)。一维 Carr-Purcell-Meiboom-Gill (CPMG)实验利用配体和大分子复合物之间核磁共振弛豫特性的差异,一直被认为是监测小配体与大蛋白质结合的有力工具。(61,62)随后在 BRD4 BD1 和 1 之间进行了 CPMG 实验,结果表明 BRD4 BD1 显著降低了 1 的 1 H 共振信号强度。H 共振信号强度(图 1B),表明化合物 1 确实与 BRD4 BD1 结合。

Figure 1 图 1

Figure 1. Hit identification and hit-to-lead optimization. (A) Screening of the in-house compound library to find new hits. (B) The 1H CPMG spectra of hit compound 1 and BRD4 BD1 were superimposed on the 1H NMR spectrum of 1 (up) and the 1H NMR spectrum of 1 (down). (C) The SAR of the pyrrolopyridine core modifications resulted in the lead compound 9. See Table S1 for SD values.
图 1.新药鉴定和新药对先导的优化。(A) 筛选内部化合物库以寻找新的命中点。(B) 将命中化合物 1 和 BRD4 BD1 的 {{0}和 BRD4 BD1 的{{1}H NMR 光谱叠加。}1 的 1 H NMR 光谱(向上)和 1 H NMR 光谱(向下)叠加。1(下)的 1 H NMR 光谱叠加。(C) 吡咯并吡啶核心修饰的 SAR 结果为先导化合物 9。SD 值见表 S1。

Then, we optimized the scaffold of the hit 1 by positioning analogue scanning, which is considered to be an effective strategy for early hit-to-lead optimization. (63) Compounds 2–4 were obtained by exploring the relative positions between the phenyl and pyrroloxypyrazole scaffold, and the results showed that the phenyl at the 4-position (3) was the most potent and the least active at the 6-position (2). Based on compound 3, compounds 5–7 were prepared by systematically exchanging the N atom positions, all with reduced activity compared to compound 3. Subsequently, an additional N atom was introduced into the pyrrolopyridine motif of compound 3, and compounds 810 were obtained by scanning the N atom positions. The results showed that compound 9 showed a 2-fold increase in potency against BRD4 BD1 compared to compound 3. The triazole analogues 11–12 were obtained by arranging the N atom position in the imidazolopyridine motif of compound 9. Compound 11 was almost inactive, and 12 also showed markedly reduced activity. Finally, other heterocyclic substitutions were also explored, and the activity of the isoxazole analogue 13 and the dihydroimidazolone analogue 14 was significantly reduced compared to compound 9 (Figure 1C).
然后,我们通过定位模拟扫描优化了命中 1 的支架,这被认为是早期命中到先导优化的有效策略。(63)通过探索苯基和吡咯氧吡唑支架之间的相对位置,我们得到了化合物 2-4,结果表明 4 位的苯基(3)活性最强,而 6 位的苯基(2)活性最低。在化合物 3 的基础上,通过系统地交换 N 原子位置制备了化合物 5-7,与化合物 3 相比,所有化合物的活性都有所降低。随后,在化合物 3 的吡咯并吡啶基团中引入了一个额外的 N 原子,通过扫描 N 原子位置得到了化合物 8-10。结果表明,与化合物 3 相比,化合物 9 对 BRD4 BD1 的药效提高了 2 倍。通过排列化合物 9 中咪唑吡啶基团的 N 原子位置,得到了三唑类似物 11-12。化合物 11 几乎没有活性,化合物 12 的活性也明显降低。最后,还研究了其他杂环取代物,与化合物 9 相比,异噁唑类似物 13 和二氢咪唑啉酮类似物 14 的活性明显降低(图 1C)。

Optimization of Compound 9
化合物 9 的优化

We investigated the binding mode of 9 to BRD4 BD1 by molecular docking. As expected, the imidazopyridine core of lead compound 9 could act as an acetylated lysine mimic forming hydrogen bond interactions with Asn140 and Tyr97 mediated by a water molecule (Figure 2). In addition, the three methoxy groups on the phenyl ring point to the ZA channel (5′ position), the outer solvent region of the pocket (4′ position), and the WPF shelf (3′ position), respectively, as the trimethoxyphenyl substituent of 9 may engage the WPF shelf, which suggests that the introduction of an aryl substituent can enhance binding. Thus, compounds 15–20 containing different aryl substituents were designed and synthesized. The results showed that the activities of 15–20 were significantly increased compared with those of 9, and among them, compound 16 with the 1,3,5-trimethylpyrazole substituent (Ki = 0.14 μM) was even more effective by about 10-fold (Figure 2).
我们通过分子对接研究了 9 与 BRD4 BD1 的结合模式。不出所料,先导化合物 9 的咪唑吡啶核心可以作为乙酰化赖氨酸的模拟物,在水分子的介导下与 Asn140 和 Tyr97 形成氢键相互作用(图 2)。此外,苯基环上的三个甲氧基分别指向ZA通道(5′位)、口袋的外溶剂区(4′位)和WPF架(3′位),因为9的三甲氧基苯基取代基可能与WPF架接触,这表明引入芳基取代基可以增强结合力。因此,我们设计并合成了含有不同芳基取代基的化合物 15-20。结果表明,与 9 相比,15-20 的活性明显提高,其中含有 1,3,5-三甲基吡唑取代基(K = 0.14 μM)的化合物 16 的活性更是提高了约 10 倍(图 2)。

Figure 2 图 2

Figure 2. Docking of 9 suggested that the trimethoxyphenyl substituent may engage the WPF shelf, which led to the design of several aryl derivatives. Docking analysis of compound 9 (yellow) with BRD4 BD1 (left, PDB ID: 3MXF). Docking analysis of compound 15 (yellow) with BRD4 BD1 (right, PDB ID: 3MXF). Salmon indicates the WPF shelf, red indicates Asn140, orange indicates the BC loop, and green indicates the ZA channel. See Table S1 for SD values.
图 2.对 9 号化合物的 Docking 结果表明,三甲氧基苯基取代基可能会与 WPF 架接合,因此设计出了几种芳基衍生物。化合物 9(黄色)与 BRD4 BD1(左图,PDB ID:3MXF)的对接分析。化合物 15(黄色)与 BRD4 BD1(右,PDB ID:3MXF)的对接分析。鲑鱼色表示 WPF 架,红色表示 Asn140,橙色表示 BC 环,绿色表示 ZA 通道。SD 值见表 S1。

Subsequently, the SAR of the phenyl ring substituents was evaluated, resulting in compounds 21–24 (Figure 3A). The results showed a significant increase in the potency of 21 (BRD4 (1) Ki = 0.031 μM) compared to 16, while the activity of 22 was distinctly decreased (BRD4 (1) Ki = 0.63 μM). This suggests that the effect of fluorine substitution on the activity is not due to electronic factors but by changing the conformation of the compound to be more suitable for BRD4. Next, we replaced the fluorine atom of compound 21 with a larger volume of chlorine atom, leading to compound 23 with a decreased activity. Finally, the introduction of a difluoro substituent at the 4- and 6-positions of the phenyl ring yielded compound 24, whose activity was also reduced compared to compound 21.
随后,对苯环取代基的 SAR 进行了评估,得出了化合物 21-24(图 3A)。结果表明,与 16 号化合物相比,21 号化合物的效力明显提高(BRD4 (1) K = 0.031 μM),而 22 号化合物的活性则明显降低(BRD4 (1) K = 0.63 μM)。这表明氟取代对活性的影响不是由于电子因素,而是通过改变化合物的构象使其更适合 BRD4。接着,我们用更大体积的氯原子取代了化合物 21 中的氟原子,从而得到了活性降低的化合物 23。最后,我们在苯环的 4 位和 6 位引入了二氟取代基,得到了化合物 24,与化合物 21 相比,其活性也有所降低。

Figure 3 图 3

Figure 3. SAR of substitutions to the phenyl ring and the co-crystal structure of compound 21 complexed with BRD4 BD1 and BD2 proteins. (A) SAR of substitutions to the phenyl ring. See Table S1 for SD values. (B) Crystal structure of BRD4 BD1 (light pink) bound to 21 (yellow) (PDB ID: 8IBQ). (C) Crystal structure of BRD4 BD2 (lime green) bound to 21 (yellow) (PDB ID: 8IDH). The ligands and side chains of important residues are shown in a stick model; the hydrogen bond (green) and π–π conjugation (pink) are indicated by the dashed line. (D) Crystal structure of 21 bound to BRD4 BD1 (surface representation: salmon indicates the WPF shelf, cyan indicates Asn140, orange indicates the BC loop, and green indicates the ZA channel).
图 3.取代苯环的 SAR 以及化合物 21 与 BRD4 BD1 和 BD2 蛋白复合物的共晶体结构。(A) 苯环取代的 SAR。SD 值见表 S1。(B)BRD4 BD1(浅粉色)与 21(黄色)结合的晶体结构(PDB ID:8IBQ)。(C) 与 21(黄色)结合的 BRD4 BD2(青绿色)的晶体结构(PDB ID:8IDH)。配体和重要残基的侧链以棒状模型显示;氢键(绿色)和 π-π 共轭(粉红色)用虚线表示。(D) 21 与 BRD4 BD1 结合的晶体结构(表面表示:鲑鱼色表示 WPF 架,青色表示 Asn140,橙色表示 BC 环,绿色表示 ZA 通道)。

To understand the structural basis of this new chemotype for BRD4, we solved the co-crystal structure of 21 bound to BRD4 BD1 and BRD4 BD2. As shown in Figure 3B,C, the imidazolopyridine core of compound 21 acts as a mimic of the acetylated lysine analogue, forming hydrogen bonds with Asn140 (BD1)/Asn433 (BD2) and Tyr97 (BD1)/Tyr390 (BD2). The phenyl ring of 21 forms a π–π stacking interaction with Pro82/Pro375. In addition, the 1,3,5-trimethylpyrazole motif extends into the hydrophobic pocket between the WPF shelf and the BC loop.
为了了解 BRD4 这种新化学型的结构基础,我们解析了 21 与 BRD4 BD1 和 BRD4 BD2 结合的共晶体结构。如图 3B 和 C 所示,化合物 21 的咪唑吡啶核心是乙酰化赖氨酸类似物的模拟物,与 Asn140(BD1)/Asn433(BD2)和 Tyr97(BD1)/Tyr390(BD2)形成氢键。21 的苯基环与 Pro82/Pro375 形成 π-π 堆叠作用。此外,1,3,5-三甲基吡唑基团延伸到 WPF 架和 BC 环之间的疏水袋中。
Having validated the structural basis of how these compounds bind BDs, we then extended the structure into the ZA channel to further enhance the binding. Multiple BET inhibitors effectively enhance the activity by occupying the ZA channel with their sulfonamide substituents. (57,64,65) A series of sulfonamide-substituted derivatives are summarized in Table 1. The alkyl sulfonamide-substituted compounds (25–28) brought more than a 2-fold improvement in potency compared to compound 21. However, compounds 29 and 30 substituted with aryl sulfonamides only showed comparable activity to 21. The binding affinity of 25–30 to BRD4 BD1 was tested by microscale thermophoresis (MST) analysis. The results revealed that 25–30 were significantly bound to BRD4 BD1, among which 26 (DDO-8926) was the optimal compound (Kd = 0.024 μM). The bromodomain protein selectivity of DDO-8926 was evaluated by the BROMOscan (Eurofins DiscoverX) at 1 μM. Pleasingly, DDO-8926 showed excellent selectivity over the non-BET bromodomains (Figure 4 and Table S2).
在验证了这些化合物如何与 BD 结合的结构基础后,我们将该结构扩展到了ZA 通道,以进一步增强其结合力。多种 BET 抑制剂通过磺酰胺取代基占据ZA 通道,从而有效提高了活性。(表 1 总结了一系列磺酰胺取代衍生物。与化合物 21 相比,烷基磺酰胺取代的化合物(25-28)的效力提高了 2 倍多。然而,由芳基磺酰胺取代的化合物 29 和 30 只显示出与化合物 21 相当的活性。通过微尺度热泳(MST)分析检测了 25-30 与 BRD4 BD1 的结合亲和力。结果表明,25-30 与 BRD4 BD1 有明显的结合,其中 26(DDO-8926)是最佳化合物(K d = 0.024 μM)。DDO-8926 的溴域蛋白选择性由 BROMOscan(Eurofins DiscoverX)在 1 μM 时进行评估。令人欣喜的是,DDO-8926 对非 BET 溴域表现出了极佳的选择性(图 4 和表 S2)。

Figure 4 图 4

Figure 4. Selectivity assessment of DDO-8926 against a panel of bromodomains using a DiscoverX BROMOscan platform at 1 μM. Percent control = [(test compound signal – positive control signal)/(negative control signal – positive control signal)] × 100.
图 4.使用 DiscoverX BROMOscan 平台评估 DDO-8926 在 1 μM 时对一组溴结构域的选择性。控制百分比 = [(测试化合物信号 - 阳性对照信号)/(阴性对照信号 - 阳性对照信号)] × 100。× 100.

Table 1. Introduction and Optimization of Substituents for Targeting the ZA Channel
表 1.针对ZA 通道的取代基介绍和优化
a

The binding affinity of the selected compounds to BRD4 BD1 was tested by MST.


a 通过 MST 测试了所选化合物与 BRD4 BD1 的结合亲和力。

Drug-like Property Evaluation of DDO-8926
DDO-8926 的类药物特性评估

After confirming the outstanding selectivity of DDO-8926 within the BET family proteins, drug-like property evaluations were carried out. As shown in Table 2, DDO-8926 exhibited reasonable water solubility and favorable stability in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and rat liver microsomes (RLM). In addition, DDO-8926 showed almost no inhibitory effect on hERG ion channels (Figure S1, IC50 > 30 μM) and the five major CYP450 enzymes (Table S4, IC50 > 10 μM). This suggested a low risk of potential cardiotoxicity and drug–drug interactions for DDO-8926. The mouse plasma protein binding (PPB) rate of DDO-8926 was 99.0% (fraction unbound factor = 0.01) (Table S5). The in vivo pharmacokinetic (PK) profiles of DDO-8926 were tested in mice. DDO-8926 showed a high drug exposure by intravenous (iv) or intraperitoneal (ip) administration, and a half-life of 1.78 h by iv administration (Figure 5). In addition, the PK of DDO-8926 was also tested in rats. DDO-8926 showed a half-life of 2.36 h by iv administration and an acceptable oral bioavailability in rat (F = 21.43%) at a dose of 25 mg/kg (Figure S2). All the above results together indicated that DDO-8926 exhibited favorable drug-like properties.
在确认 DDO-8926 在 BET 家族蛋白中具有出色的选择性之后,我们对其进行了类药物特性评估。如表 2 所示,DDO-8926 在模拟胃液(SGF)、模拟肠液(SIF)和大鼠肝微粒体(RLM)中表现出合理的水溶性和良好的稳定性。此外,DDO-8926 对 hERG 离子通道(图 S1,IC 50 > 30 μM)和五种主要的 CYP450 酶(表 S4,IC 50 > 10 μM)几乎没有抑制作用。这表明 DDO-8926 的潜在心脏毒性和药物间相互作用风险较低。DDO-8926的小鼠血浆蛋白结合率(PPB)为99.0%(未结合因子=0.01)(表S5)。在小鼠体内测试了 DDO-8926 的体内药代动力学(PK)特征。DDO-8926在静脉注射(iv)或腹膜内注射(ip)时显示出较高的药物暴露量,静脉注射的半衰期为1.78小时(图5)。此外,还在大鼠体内测试了 DDO-8926 的 PK。DDO-8926 的静脉注射半衰期为 2.36 小时,大鼠口服生物利用度(F = 21.43%)为 25 毫克/千克(图 S2)。所有上述结果都表明,DDO-8926 具有良好的类药物特性。

Figure 5 图 5

Figure 5. In vivo PK parameters of DDO-8926 in male mice. The values shown are the means ± SEM (n = 4).
图 5.雄性小鼠体内 DDO-8926 的 PK 参数。所示数值为平均值 ± SEM(n = 4)。

Table 2. Solubility, Stability in SIF, SGF and RLM, and hERG Channel Inhibitory Activity of DDO-8926
表 2.DDO-8926 的溶解度、在 SIF、SGF 和 RLM 中的稳定性以及 hERG 通道抑制活性
parameters 参数DDO-8926
solubility (μg/mL)a 溶解度(微克/毫升) a 129.8
SIFb85.4
SGFb86.5
RLM T1/2 (h) RLM T 1/2 (h)1.81
RLM Clint (μL/min/mg) RLM Cl int (微升/分钟/毫克)6.38
CYP450 (1A2, 2C9, 2C19, 2D6, 3A4, (IC50, μM))
CYP450 (1A2, 2C9, 2C19, 2D6, 3A4, (IC 50 , μM))
>10
hERG (IC50, μM)
hERG(IC 50 ,μM)
>30
PPB (mouse, %)c PPB (小鼠,%) c 99.0
a

Solubility testing by the HPLC method.


a 采用 HPLC 方法进行溶解度测试。
b

Remaining (%) after 24 h incubation.


b 培养 24 小时后的剩余量(%)。
c

Plasma protein binding in mice.


c 小鼠血浆蛋白结合

Toxicity Evaluation of DDO-8926 in Mice
DDO-8926 对小鼠的毒性评估

A subacute toxicity assay was performed to investigate the safety of DDO-8926. An oral PK experiment of DDO-8926 (500 mg/kg) was first performed on mice to confirm adequate exposure and effective target engagement of DDO-8926. The results showed that the maximum plasma drug level of DDO-8926 could reach 23,812 ng/mL (unbound plasma drug level: 238 ng/mL (557 nM)), and the plasma drug level could be maintained at more than 4800 ng/mL (unbound plasma drug level: 112 nM) for 4 h (Figure S3A). This suggests that oral administration of DDO-8926 (500 mg/kg) had adequate unbound plasma drug level and effective target engagement. Next, healthy C57BL/6 mice were treated with DDO-8926 at a dose of 500 mg/kg for 2 weeks (po, q.d.). During the dosing period, smooth hair, no significant behavioral abnormalities, and weight loss were observed in the normal and administered groups of mice (Figure S3B). As with normal mice, hematoxylin–eosin (H&E) staining of organs from DDO-8926-treated mice for 14 days showed no significant tissue damage (Figure S3C). On day 14, the mice’s blood was collected and subjected to whole blood cell tests. Compared to the control group, the platelets in the drug-treated mice decreased by 39%, which was below the lowest of the normal range, but the platelets could return to normal levels naturally after 10 days of withdrawal from the drug (Figure S3D). These results indicate that DDO-8926 has a minor impact on normal organs and body weight in mice and that longer continuous administration leads to a decrease in platelets.
为了研究 DDO-8926 的安全性,我们进行了亚急性毒性试验。首先对小鼠进行了 DDO-8926(500 毫克/千克)的口服 PK 实验,以确认 DDO-8926 的充分暴露和有效靶向参与。结果表明,DDO-8926的最大血浆药物浓度可达23812纳克/毫升(非结合血浆药物浓度:238纳克/毫升(557毫微克)),且血浆药物浓度可在4800纳克/毫升(非结合血浆药物浓度:112毫微克)以上维持4小时(图S3A)。这表明口服DDO-8926(500 mg/kg)具有足够的非结合血浆药物水平和有效的靶向参与。接下来,健康的 C57BL/6 小鼠以 500 毫克/千克的剂量连续 2 周服用 DDO-8926(po,q.d.)。在给药期间,正常组和给药组小鼠的毛发光滑,没有明显的行为异常和体重减轻(图 S3B)。与正常小鼠一样,DDO-8926 治疗小鼠 14 天的器官苏木精-伊红(H&E)染色显示没有明显的组织损伤(图 S3C)。第 14 天,采集小鼠血液并进行全血细胞检测。与对照组相比,药物治疗组小鼠的血小板减少了 39%,低于正常范围的最低值,但停药 10 天后血小板可自然恢复到正常水平(图 S3D)。这些结果表明,DDO-8926 对小鼠的正常器官和体重影响较小,而长时间连续给药会导致血小板减少。

Antinociceptive Efficacy of DDO-8926 on the Spared Nerve Injury Model of NP in Mice
DDO-8926 对小鼠无神经损伤模型的抗痛觉作用

First, we evaluated the drug distribution of DDO-8926 (30 mg/kg, ip) into the plasma and the intracerebral space in C57BL/6 mice. The results showed that total plasma drug concentration peaked at 0.5 h (Cmax = 161,57 ng/mL) after a single intraperitoneal injection of DDO-8926 (30 mg/kg), while the total brain homogenate drug concentration peaked at 1 h (Cmax = 2392 ng/mL). Based on Poulin’s method, (66) the fraction unbound factor (fub) in the brain was calculated to be 0.0198 in combination with the plasma protein unbound factor (fup = 0.01), and the unbound drug concentration–time curve in the brain was fitted. The results showed that the unbound-brain drug concentration of the peak was 47 ng/mL (110 nM) (Figure 6A). This suggests that DDO-8926 has sufficient unbound drug exposure in the brain at 30 mg/kg. Next, the in vivo efficacy of DDO-8926 was evaluated in a spared nerve injury (SNI) model, as the study of this animal model is a valuable source of information in the field of NP. Female C57BL/6 mice (7–8 weeks old) were randomly divided into four groups, sham mice and SNI mice were operated according to the method reported by Decosterd and Woolf. (67) Drug treatment (DDO-8926, ip or gabapentin, ip) or SNI (vehicle) started at 1 day post-operation (dpo); then, the drug was administered once daily (Figure 6B). In a pilot study, we found that the peak analgesic effect was reached at 1 h after DDO-8926 treatment, so we chose to perform the mechanical pain response experiment at 1 h after drug treatment. Administration of DDO-8926 at 30 mg/kg started to relieve mechanical hypersensitivity on 5 dpo and reached a therapeutic effect comparable to that of gabapentin at 100 mg/kg on dpo 13–15 (Figure 6C). We tested mechanical hypersensitivity within 4 h after administration on day 15. The results showed that the time to peak and the maximal effect of 30 mg/kg DDO-8926 versus 100 mg/kg gabapentin were comparable (Figure 6D). These results suggest that the compound DDO-8926 effectively alleviates mechanical hypersensitivity after SNI.
首先,我们评估了DDO-8926(30 mg/kg,ip)在C57BL/6小鼠血浆和脑内的药物分布情况。结果显示,单次腹腔注射DDO-8926(30 mg/kg)后,血浆药物总浓度在0.5 h达到峰值(C max = 161,57 ng/mL),而脑匀浆药物总浓度在1 h达到峰值(C max = 2392 ng/mL)。根据 Poulin 方法 (66) 计算出脑中的非结合因子(f ub )与血浆蛋白非结合因子(f up = 0.01)之和为 0.0198,并拟合出脑中非结合药物浓度-时间曲线。结果显示,峰值的脑内未结合药物浓度为 47 ng/mL(110 nM)(图 6A)。这表明 DDO-8926 在 30 毫克/千克的剂量下在脑内有足够的非结合药物暴露。接下来,在幸免神经损伤(SNI)模型中评估了 DDO-8926 的体内疗效,因为这种动物模型的研究是 NP 领域的宝贵信息来源。雌性 C57BL/6 小鼠(7-8 周大)被随机分为四组,假小鼠和 SNI 小鼠按照 Decosterd 和 Woolf 报道的方法进行操作。(67)药物治疗(DDO-8926,ip 或加巴喷丁,ip)或 SNI(载体)从手术后 1 天(dpo)开始;然后,每天给药一次(图 6B)。在一项试验研究中,我们发现 DDO-8926 治疗后 1 小时达到镇痛效果峰值,因此我们选择在药物治疗后 1 小时进行机械痛反应实验。30 mg/kg剂量的DDO-8926从5 dpo开始缓解机械过敏,并在dpo 13-15达到与100 mg/kg剂量的加巴喷丁相当的治疗效果(图6C)。我们在第 15 天测试了用药后 4 小时内的机械过敏性。结果显示,30 毫克/千克的 DDO-8926 与 100 毫克/千克的加巴喷丁达到峰值的时间和最大疗效相当(图 6D)。这些结果表明,化合物 DDO-8926 能有效缓解 SNI 后的机械超敏反应。

Figure 6 图 6

Figure 6. DDO-8926 attenuates NP hypersensitivity. (A) Distribution of DDO-8926 in the plasma and brain of mice. (B) Experimental scheme depicting the in vivo analgesic evaluation of DDO-8926. (C) Analgesic effect of gabapentin (100 mg/kg, ip) and DDO-8926 (30 mg/kg, ip) on SNI-induced NP response tested by ipsilateral stimulation. (D) Analgesic effects of gabapentin (100 mg/kg, ip) and DDO-8926 (30 mg/kg, ip) at 15 days post-operation (dpo). Results were expressed as mean ± SEM (n = 6), (ns) < 0.1, (*) P < 0.05, (**) P < 0.01, (***) P < 0.001, and (****) P < 0.0001 compared with the SNI (vehicle) group, one-way ANOVA with the Tukey–Kramer post-test.
图 6.DDO-8926 可减轻 NP 超敏反应。(A) DDO-8926 在小鼠血浆和大脑中的分布。(B) 描述 DDO-8926 体内镇痛评估的实验方案。(C)加巴喷丁(100 毫克/千克,ip)和 DDO-8926(30 毫克/千克,ip)对同侧刺激测试 SNI 诱导的 NP 反应的镇痛效果。(D) 加巴喷丁(100 毫克/千克,ip)和 DDO-8926(30 毫克/千克,ip)在手术后 15 天(dpo)的镇痛效果。结果以平均值 ± SEM 表示(n = 6),(ns) < 0.1,(*) P < 0.05,(**) P < 0.01,(***) P < 0.001,(****) 与 SNI(车辆)组相比,P < 0.0001,单因素方差分析,Tukey-Kramer 后检验。

DDO-8926 Regulates Genes Involved in the Generation and Transfer of Action Potentials and Inflammatory Response
DDO-8926 可调控参与动作电位的产生和传递以及炎症反应的基因

Following these encouraging results, to clarify the analgesic mechanism of DDO-8926 after SNI, we used RNA sequencing to analyze the effects of DDO-8926 on the expression of genes in the L4–L6 segment of the spinal cord on 15 dpo. Volcano plots were used to show differentially expressed genes (DEGs). 147 genes downregulated and 39 genes upregulated in the SNI group compared to the sham group. 233 genes downregulated and 111 genes upregulated were detected in the DDO-8926-treated group compared to the SNI group. 27 genes downregulated and 187 genes upregulated in the DDO-8926-treated group compared to the sham mice (Figure 7A). For a clearer understanding of DEGs, gene ontology (GO) functional enrichment was performed. The results showed that the DEGs induced by DDO-8926 were mainly related to ion transport, regulation of action potential, glial cell migration and apoptotic processes, and inflammatory response (Figure 7B). To focus on key differential gene sets, gene sets for ion transport, glial cell activation and migration, action potential regulation, and inflammatory response were evaluated by gene set enrichment analysis (GSEA). The structure showed that treatment with DDO-8926 produced statistically significant changes in these gene sets (Figure 7C–F). Overall, DDO-8926 can affect action potential generation and transfer, glial cell activation and migration, and inflammatory response after SNI.
根据这些令人鼓舞的结果,为了明确DDO-8926在SNI后的镇痛机制,我们使用RNA测序分析了DDO-8926对15 dpo时脊髓L4-L6段基因表达的影响。我们使用火山图来显示差异表达基因(DEGs)。与假体组相比,SNI 组有 147 个基因下调,39 个基因上调。与SNI组相比,DDO-8926治疗组检测到233个基因下调,111个基因上调。与假小鼠相比,DDO-8926 处理组有 27 个基因下调,187 个基因上调(图 7A)。为了更清楚地了解 DEGs,进行了基因本体(GO)功能富集。结果显示,DDO-8926 诱导的 DEGs 主要与离子转运、动作电位调节、胶质细胞迁移和凋亡过程以及炎症反应有关(图 7B)。为了聚焦关键的差异基因组,通过基因组富集分析(GSEA)评估了离子转运、胶质细胞活化和迁移、动作电位调控和炎症反应的基因组。该结构显示,用 DDO-8926 处理会使这些基因组发生统计学意义上的显著变化(图 7C-F)。总体而言,DDO-8926 可影响 SNI 后的动作电位产生和传递、神经胶质细胞活化和迁移以及炎症反应。

Figure 7 图 7

Figure 7. DDO-8926 regulates genes involved in the generation and transfer of action potentials and inflammatory response. (A) These volcano maps show DEGs after SNI surgery and DDO-8926 treatment. (B) GO enrichment analysis of DEGs between vehicle and DDO-8926 treatment. GSEA analysis of (C) ion transfer, (D) glial cell migration, (E) action potential, and (F) inflammatory response between vehicle and DDO-8926 treatment.
图 7.DDO-8926 可调控参与动作电位的产生和传递以及炎症反应的基因。(A)这些火山图显示了 SNI 手术和 DDO-8926 治疗后的 DEGs。(B) 车辆和 DDO-8926 治疗后 DEGs 的 GO 富集分析。车辆和 DDO-8926 治疗之间 (C) 离子转移、(D) 神经胶质细胞迁移、(E) 动作电位和 (F) 炎症反应的 GSEA 分析。

DDO-8926 Reduces the Activation of Microglia and Neurons after SNI in the Dorsal Horn Spinal Cord
DDO-8926 可降低背角脊髓 SNI 后小胶质细胞和神经元的活化程度

Considering the tips of RNA sequencing, we subsequently evaluated the effect of DDO-8926 treatment on glial cells and neurons in the dorsal horn, where nociceptive afferents project. At 15 dpo, immunofluorescence staining for microglia and neurons revealed an increase of IBA1-positive cells and NeuN-positive cells after SNI in the dorsal horn, while these positive cells were significantly reduced after DDO-8926 treatment (Figure 8A,B). Notably, this phenomenon was not observed in GFAP-traced astrocytes (Figure 8C). These results suggested that DDO-8926 treatment may inhibit microglial and neuronal activation after SNI.
考虑到 RNA 测序的提示,我们随后评估了 DDO-8926 处理对背角神经胶质细胞和神经元的影响,背角神经胶质细胞和神经元是痛觉传入的投射点。在 15 dpo 时,小胶质细胞和神经元的免疫荧光染色显示,背角的 IBA1 阳性细胞和 NeuN 阳性细胞在 SNI 处理后有所增加,而这些阳性细胞在 DDO-8926 处理后显著减少(图 8A,B)。值得注意的是,在 GFAP 追踪的星形胶质细胞中没有观察到这种现象(图 8C)。这些结果表明,DDO-8926 治疗可抑制 SNI 后的小胶质细胞和神经元活化。

Figure 8 图 8

Figure 8. DDO-8926 reduces microglial and neuronal activation in the spinal cord after SNI and has no effect on astrocytes. Representative microphotographs from the L5 spinal dorsal horn of the ipsilateral hemisections labeled with (A) NeuN, (B) IBA1, and (C) GFAP of Sham, SNI (vehicle), and SNI (DDO-8926 30 mg/kg) groups at 15 dpo. Representative microphotographs (left) and positive cells (right). Results were expressed as mean ± SEM (n = 3), (ns) < 0.1, (***) P < 0.001, and (****) P < 0.0001 compared with the SNI (vehicle) group, one-way ANOVA with the Tukey–Kramer post-test.
图 8.DDO-8926 可减少 SNI 后脊髓中的小胶质细胞和神经元活化,而对星形胶质细胞没有影响。SHAM 组、SNI 组(药物)和 SNI 组(DDO-8926 30 mg/kg)在 15 dpo 时同侧半裂 L5 脊髓背角的代表性显微照片,分别标记有 (A)NeuN、(B) IBA1 和 (C) GFAP。具有代表性的显微照片(左)和阳性细胞(右)。结果以均数 ± SEM 表示(n = 3),与 SNI(载体)组相比,(ns) < 0.1,(***) P < 0.001,(****) P < 0.0001,单因素方差分析,Tukey-Kramer 后检验。

DDO-8926 Regulates the mRNA Level of Proinflammatory Cytokines and Ion Channels and Na+/K+ ATPase Pump after SNI
DDO-8926 可调节促炎细胞因子、离子通道和 Na + 的 mRNA 水平/K + ATPase Pump after SNI

Neuroinflammation is closely associated with active excitability and persistent NP. Therefore, we measured the mRNA expression of pro-inflammatory cytokines at the enlargement of the spinal cord (L5–L6 segment) at dpo 15. The results showed that the vehicle-treated SNI mice increased the expression of IL-1β and TNF-α, which was prevented by DDO-8926 or gabapentin treatment, and the former showed a stronger anti-inflammatory effect (Figure 9A). SNI-induced pain hypersensitivity is manifested by a rise in excitability, which is regulated by the generation and transfer of action potentials. This is consistent with the results of transcriptomics showing an effect on excitability and action potential after SNI. SCNA3A, a subunit belonging to the Nav channel, is associated with the generation of action potentials. At 15 dpo, DDO-8926-treated mice exhibited a significant downregulation of SCNA3A, compared to the vehicle group (Figure 9B). In addition, DDO-8926 treatment significantly inhibited the SNI-induced overexpression of KCNQ2 and KCNQ3, which are subunits of the slow Kv channels that are essential for the maintenance of the membrane potential (Figure 9C). Ion transporters are also an important means of ion transmembrane transport, such as the Na+/K+ ATPase pump. Thus, the mRNA levels of αNKA, a subunit of the Na+/K+ ATPase pump, were detected in the spinal cord. Overexpression of αNKA was observed in vehicle-treated mice, and it was significantly suppressed by DDO-8926 treatment (Figure 9D). The αNKA subunit negatively regulates the Na+/K+ ATPase pump activity, which is antagonized by DDO-8926, leading to hyperpolarization of neurons. The above experimental results showed that DDO-8926 reduced SNI-induced excitability by affecting ion transmembrane transport and Na+/K+ ATPase pump activity. In addition, DDO-8926 also reduced the expression of pro-inflammatory cytokines with protective effects on neuroinflammation after SNI.
神经炎症与活跃的兴奋性和持续的NP密切相关。因此,我们在第15天测量了脊髓扩大处(L5-L6节段)促炎细胞因子的mRNA表达。结果表明,用药物治疗的SNI小鼠IL-1β和TNF-α的表达增加,而DDO-8926或加巴喷丁治疗可阻止IL-1β和TNF-α的表达,前者的抗炎作用更强(图9A)。SNI诱导的痛觉过敏表现为兴奋性升高,而兴奋性是由动作电位的产生和传递调节的。这与转录组学结果显示 SNI 会影响兴奋性和动作电位是一致的。SCNA3A 是 Nav 通道的一个亚基,与动作电位的产生有关。与车辆组相比,DDO-8926 处理的小鼠在 15 dpo 时表现出 SCNA3A 的显著下调(图 9B)。此外,DDO-8926 还能显著抑制 SNI 诱导的 KCNQ2 和 KCNQ3 的过表达,KCNQ2 和 KCNQ3 是慢 Kv 通道的亚基,对维持膜电位至关重要(图 9C)。离子转运体也是离子跨膜转运的重要途径,如 Na + /K + 通道。/K +ATPase 泵。因此,Na + /K + ATPase 泵的一个亚基 αNKA 的 mRNA 水平也会受到影响。/K +ATPase 泵的 mRNA 水平。在用药物治疗的小鼠中观察到αNKA的过表达,DDO-8926治疗显著抑制了αNKA的过表达(图9D)。αNKA亚基对Na + /K + 负调控。/K +ATPase 泵的活性,DDO-8926 可拮抗这种活性,从而导致神经元超极化。上述实验结果表明,DDO-8926 通过影响离子跨膜转运和 Na + /K + ATPase 泵活性,降低了 SNI 诱导的兴奋性。/K +ATPase 泵的活性,从而降低 SNI 诱导的兴奋性。此外,DDO-8926 还能减少促炎细胞因子的表达,对 SNI 后的神经炎症具有保护作用。

Figure 9 图 9

Figure 9. DDO-8926 alleviates inflammation and affects the expression of ion channels and the Na+/K+ ATPase pump in the spinal cord at 15 dpo after SNI. (A) DDO-8926 downregulates the expression of pro-inflammatory factor mRNA in the spinal cord after SNI. DDO-8926 inhibits SNI-induced mRNA expression of (B) voltage-gated sodium channels and (C) voltage-gated potassium channels. (D) DDO-8926 reduces the SNI-induced mRNA expression of the αNKA subunit of the Na+/K+ ATPase pump. Results were expressed as mean ± SEM (n = 6), (**) P < 0.01, (***) P < 0.001, and (****) P < 0.0001 compared with the SNI (vehicle) group, one-way ANOVA with the Tukey–Kramer post-test.
图 9.DDO-8926 可减轻炎症并影响离子通道和 Na + /K + 的表达。/K +ATPase 泵的表达。(A) DDO-8926 下调了 SNI 后脊髓中促炎因子 mRNA 的表达。DDO-8926 可抑制 SNI 诱导的 (B) 电压门控钠通道和 (C) 电压门控钾通道的 mRNA 表达。(D) DDO-8926 可减少 SNI 诱导的 Na + /K + αNKA 亚基的 mRNA 表达。/K +ATPase 泵的 mRNA 表达。结果以平均值 ± SEM 表示(n = 6),与 SNI(载体)组相比,(**) P < 0.01,(***) P < 0.001,(****) P < 0.0001,单因素方差分析,Tukey-Kramer 后检验。

Chemistry 化学

ARTICLE SECTIONS
Jump To
 条款章节跳转到

Compounds 1–14 were synthesized according to Scheme 1. Intermediate 44 was prepared by condensation reaction of 46 and 47. Target compounds 1–14 were synthesized by Suzuki coupling of 31–44 and 45 in the presence of Pd(dppf)Cl2·CH2Cl2 and cesium carbonate.
化合物 1-14 是按照方案 1 合成的。中间体 44 是通过 46 和 47 的缩合反应制备的。在 Pd(dppf)Cl {{0} 存在下,通过 31-44 和 45 的铃木偶联合成了目标化合物 1-14。}-CH 2 Cl 2 和碳酸铯。

Scheme 1 方案 1

Scheme 1. Reagents and Conditions: (a) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h and (b) THF, 80 °C, 4 h
方案 1.试剂和条件: (a) Cs 2 CO 3 Pd(dppf)Cl 2 -CH 2 -CH 2 Cl 2 1,4-Dioxane, H 2 O, 100 °C, 3 h.O, 100 °C, 3 h 和 (b) THF, 80 °C, 4 h
Target compounds 15–20 were synthesized based on Scheme 2. Intermediates 50a–50f were prepared by Suzuki coupling of 48 and 49a–49f in the presence of Pd(dppf)Cl2·CH2Cl2 and cesium carbonate. 50g was obtained by the substitution reaction of 50f and 53. Then, intermediates 50a–50e and 50g were subsequently subjected to reaction with 51 to give boronate intermediates 52a–52e and 52g, respectively. Target compounds 15–20 were synthesized by Suzuki coupling of 52a–52e, 52g, and 42.
根据方案 2 合成了目标化合物 15-20。在 Pd(dppf)Cl {{0} 的存在下,通过 48 和 49a-49f 的铃木偶联制备了中间体 50a-50f。}-CH 2 Cl 2 和碳酸铯。通过 50f 和 53 的取代反应得到 50g。随后,中间体 50a-50e 和 50g 与 51 反应,分别得到硼酸中间体 52a-52e 和 52g。目标化合物 15-20 是通过 52a-52e、52g 和 42 的铃木偶联合成的。

Scheme 2 方案 2

Scheme 2. Reagents and Conditions: (a) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h; (b) AcOK, Pd(dppf)Cl2·CH2Cl2, Dry 1,4-Dioxane, 100 °C, 3 h; (c) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 7 h; and (d) Cs2CO3, DMF, r.t., 5 h
方案 2.试剂和条件: (a) Cs 2 CO 3 Pd(dppf)Cl 2 -CH 2 -CH 2 Cl 2 1,4-Dioxane, H 2 O, 100 °C, 3 h; Pd(dppf)Cl 2 -CH 2 Cl 2 O, 100 °C, 3 h; (b) AcOK, Pd(dppf)Cl { 2 -CH 2 Cl 2 干 1,4-二恶烷,100 °C,3 小时; (c) Cs 2 CO 3 (c) Cs 2 CO 3 , Pd(dppf)Cl 2 -CH 2 Cl 2 1,4-二恶烷,H 2 OO,100 °C,7 小时;以及 (d) Cs 2 CO 3 ,DMF,r.t. ,5 小时
Target compounds 2124 were prepared according to Scheme 3. Commercially available 54a–54d were subjected to Suzuki coupling with 49b to give intermediates 55a–55d, followed by reaction with 51 to give boronate intermediates 56a–56d. 56a–56d were further reacted with 42 to give compounds 2124.
目标化合物 21-24 是根据方案 3 制备的。市售的 54a-54d 与 49b 进行铃木偶联,得到中间体 55a-55d,然后与 51 反应,得到硼酸盐中间体 56a-56d。56a-56d 与 42 进一步反应,得到化合物 21-24。

Scheme 3 方案 3

Scheme 3. Reagents and Conditions: (a) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h; (b) AcOK, Pd(dppf)Cl2·CH2Cl2, Dry 1,4-Dioxane, 100 °C, 3 h; and (c) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 7 h
方案 3.试剂和条件: (a) Cs 2 CO 3 Pd(dppf)Cl 2 -CH 2 -CH 2 Cl 2 1,4-Dioxane, H 2 O, 100 °C, 3 h; Pd(dppf)Cl 2 -CH 2 Cl 2 O, 100 °C, 3 h; (b) AcOK, Pd(dppf)Cl { 2 -CH 2 Cl 2 干 1,4-二恶烷,100 °C,3 小时;以及 (c) Cs 2 CO 3 (c) Cs 2 CO 3 , Pd(dppf)Cl 2 -CH 2 Cl 2 1,4-Dioxane, H 2 O, 100 °C, 7 h.O, 100 °C, 7 h
Target compounds 25–30 were synthesized according to Scheme 4. Commercial 58a–58f were condensed with 57 to give intermediates 59a–59f and then reacted with 49b by Suzuki coupling to give intermediates 60a–60f, and 60a–60f were boronated in the presence of 51 to give boronate intermediates 61a–61f and then further reacted with 42 to give compounds 2530.
目标化合物 25-30 是根据方案 4 合成的。商用 58a-58f 与 57 缩合得到中间体 59a-59f,然后与 49b 通过铃木偶联反应得到中间体 60a-60f,60a-60f 在 51 的存在下被硼化得到硼酸盐中间体 61a-61f,然后进一步与 42 反应得到化合物 25-30。

Scheme 4 方案 4

Scheme 4. Reagents and Conditions: (a) Pyridine, CH2Cl2, r.t., 4 h; (b) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h; (c) AcOK, Pd(dppf)Cl2·CH2Cl2, Dry 1,4-Dioxane, 100 °C, 3 h; and (d) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 7 h
方案 4.试剂和条件: (a) 吡啶、CH 2 Cl 2 4 小时; (b) Cs 2 CO 3 (b) Cs 2 CO 3 , Pd(dppf)Cl 2 -CH 2 Cl 2 1,4-Dioxane, H 2 O, 100 °C, 3 h; Pd(dppf)Cl 2 -CH 2 Cl 2 O, 100 °C, 3 h; (c) AcOK, Pd(dppf)Cl { 2 -CH 2 Cl 2 干 1,4-二恶烷,100 °C,3 小时;以及 (d) Cs 2 CO 3 (d) Cs 2 CO 3 , Pd(dppf)Cl 2 -CH 2 Cl 2 1,4-Dioxane, H 2 O, 100 °C, 7 h.O, 100 °C, 7 h

Conclusions 结论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

Herein, a novel class of BET selective inhibitors were developed by combining iterative structure–relationship studies and crystal structure-guided drug design. Starting with the discovery of the hit 1 (BRD4 (1) Ki = 4.3 μM), derived from an in-house chemical library, a lead compound 9 (BRD4 (1) Ki = 1.1 μM) with an imidazole-pyridine core was obtained by the positioning analogue scanning method. Subsequently, the structure was expanded to the WPF shelf, leading to the identification of compound 16 (BRD4 (1) Ki = 0.14 μM) with significantly improved potency for BRD4 BDs. The SAR of the phenyl ring substituents was subsequently investigated, resulting in compounds 21 (BRD4 (1) Ki = 0.031 μM) with further enhanced activity. The co-crystal structure of 21-BRD4 shows that the imidazole-pyridine core is anchored at the Kac binding site and forms hydrogen bonding interactions with Asn and Tyr, and the trimethylpyrazole group is adjacent to the WPF shelf and forms a hydrophobic interaction. However, the structure still lacks interaction with the ZA channel. Then, the structure was extended into the ZA channel, and the activity was further enhanced, resulting in the identification of DDO-8926 (BRD4 (1) Ki = 0.015 μM). DDO-8926 exhibited excellent selectivity for BET proteins. DDO-8926 had almost no inhibitory effect on hERG ion channels (IC50 > 30 μM) and CYP450 enzymes (IC50 > 10 μM). In vivo, DDO-8926 at 30 mg/kg relieved nociceptive hypersensitivity after SNI to an extent comparable to gabapentin at 100 mg/kg. Further studies revealed that DDO-8926 inhibited the SNI-induced microglial and neuronal activation and decreased the expression of pro-inflammatory cytokine in the dorsal horn of the spinal cord. Also, it reduced neuronal excitability by inhibiting the generation and transfer of membrane potential. Overall, we have identified a potent and selective BET inhibitor DDO-8926, which has the potential to be used as a NP therapeutic agent for further research.
在此,我们结合迭代结构关系研究和晶体结构指导药物设计,开发了一类新型 BET 选择性抑制剂。从发现来自内部化学文库的热门化合物 1(BRD4 (1) K = 4.3 μM)开始,通过定位模拟扫描法获得了以咪唑吡啶为核心的先导化合物 9(BRD4 (1) K = 1.1 μM)。随后,将该结构扩展到 WPF 架,从而鉴定出化合物 16(BRD4 (1) K = 0.14 μM),其对 BRD4 BD 的效力显著提高。随后研究了苯环取代基的 SAR,结果发现化合物 21(BRD4 (1) K = 0.031 μM)的活性进一步增强。21-BRD4 的共晶体结构显示,咪唑吡啶核心锚定在 Kac 结合位点,与 Asn 和 Tyr 形成氢键相互作用,三甲基吡唑基团与 WPF 架相邻,形成疏水相互作用。然而,该结构仍然缺乏与ZA通道的相互作用。随后,将该结构扩展到ZA通道,活性进一步增强,最终确定了 DDO-8926(BRD4 (1) K = 0.015 μM)。DDO-8926 对 BET 蛋白具有极佳的选择性。DDO-8926 对 hERG 离子通道(IC 50 > 30 μM)和 CYP450 酶(IC 50 > 10 μM)几乎没有抑制作用。在体内,30 毫克/千克的 DDO-8926 可缓解 SNI 后的痛觉过敏反应,缓解程度与 100 毫克/千克的加巴喷丁相当。进一步研究发现,DDO-8926 可抑制 SNI 诱导的小胶质细胞和神经元活化,减少脊髓背角促炎细胞因子的表达。此外,它还通过抑制膜电位的产生和传递来降低神经元的兴奋性。总之,我们发现了一种强效且具有选择性的 BET 抑制剂 DDO-8926,它有望作为一种 NP 治疗剂用于进一步研究。

Experimental Section 实验部分

ARTICLE SECTIONS
Jump To
 条款章节跳转到

General Procedures 一般程序

The synthesis of target compounds is shown in Schemes 14. Reactions were monitored by thin-layer chromatography on 0.25 mm silica gel plates (GF254) and visualized under UV light. The 1H NMR and 13C NMR spectra were recorded on a Bruker AV-300 instrument using deuterated solvents with tetramethylsilane as the internal standard. High-resolution mass spectra (HRMS) were recorded on an Aglient 6545 Q-TOF. The purity (≥95%) of the compounds was verified by HPLC (Shimadzu LC-20AT) performed on a Shimadzu C18 (4.6 mm × 150 mm, 3.5 μm) column using a mixture of solvent methanol/water 65:35 or 80:20 at a flow rate of 1 mL/min and peak detection at 254 nm.
目标化合物的合成过程如图 1-4 所示。反应在 0.25 毫米硅胶板(GF254)上进行薄层色谱监测,并在紫外光下观察。 1 H核磁共振和{{1H NMR 和 13 C NMR 光谱。C NMR 光谱由布鲁克 AV-300 仪器记录,使用氚代溶剂,以四甲基硅烷为内标。高分辨质谱(HRMS)由 Aglient 6545 Q-TOF 仪器记录。化合物的纯度(≥95%)由 HPLC(Shimadzu LC-20AT)验证,HPLC 采用 Shimadzu C18(4.6 mm × 150 mm,3.5 μm)色谱柱,使用甲醇/水 65:35 或 80:20 混合溶剂,流速为 1 mL/min,色谱峰检测波长为 254 nm。

General Procedure A: Suzuki Coupling Reactions for the Synthesis of 1–30, 50a–50f, 55a–55d, and 60a–60f
一般程序 A:合成 1-30、50a-50f、55a-55d 和 60a-60f 的铃木偶联反应

Aryl halides (1.0 equiv) and arylboronic acid or arylboronic acid esters (1.3 equiv) were dissolved in dioxane and water (3:1 v/v), and then cesium carbonate (3.0 equiv) and [1,1-bis(diphenylphosphino)ferrocene] palladium dichloride dichloromethane complex (0.15 equiv) were added. After reaction at 100 °C for 3 h under an argon atmosphere, the reaction was cooled to room temperature, equal volumes of ethyl acetate and water were added and extracted three times, and the organic layer was combined and washed with brine. The organic layer was dried over anhydrous Na2SO4 and purified by column chromatography to obtain 1–30, 50a–50f, 55a–55d, and 60a–60f.
将芳基卤化物(1.0 等量)和芳基硼酸或芳基硼酸酯(1.3 等量)溶于二氧六环和水(3:1 v/v)中,然后加入碳酸铯(3.0 等量)和[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(0.15 等量)。在 100 °C 的氩气环境下反应 3 小时后,将反应物冷却至室温,加入等体积的乙酸乙酯和水并萃取三次,合并有机层并用盐水洗涤。有机层在无水 Na 2 SO {{1} 上干燥。SO 4 干燥,用柱层析法纯化,得到 1-30、50a-50f、55a-55d 和 60a-60f。

5-(3,4,5-Trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (1)
5-(3,4,5-三甲氧基苯基)-1H-吡咯并[2,3-b]吡啶 (1)

1 was prepared from 5-bromo-1H-pyrrolo[2,3-b]pyridine 31 (300 mg, 1.52 mmol) and 45 (419.64 mg, 1.98 mmol) according to general procedure A. Yellow solid (317 mg, yield: 73.2%). 1H NMR (300 MHz, DMSO-d6): δ 11.74 (s, 1H), 8.58 (d, J = 2.2 Hz, 1H), 8.26 (dd, J = 2.2, 0.7 Hz, 1H), 7.54 (dd, J = 3.5, 2.5 Hz, 1H), 6.99 (s, 2H), 6.53 (dd, J = 3.4, 1.9 Hz, 1H), 3.91 (s, 6H), 3.73 (s, 3H). HRMS (ESI): calcd for C16H16N2O3 [M + H]+, 285.1161; found, 285.1238. Purity: 99.36% by HPLC (MeOH/H2O = 65:35, tR = 9.588 min).
根据一般程序 A,由 5-溴-1H-吡咯并[2,3-b]吡啶 31(300 毫克,1.52 毫摩尔)和 45(419.64 毫克,1.98 毫摩尔)制备 1。 1 H NMR(300 MHz,DMSO-d 6 ):δ11.74(s,1H),8.58(d,J = 2.2 Hz,1H),8.26(dd,J = 2.2,0.7 Hz,1H),7.54(dd,J = 3.5,2.5 Hz,1H),6.99(s,2H),6.53(dd,J = 3.4,1.9 Hz,1H),3.91(s,6H),3.73(s,3H)。HRMS(ESI):煅烧为 C 16 H { 16 H 16 N 2 O 3 [M + H] + ,285.1161;发现值,285.1238。HPLC 测定纯度:99.36%(MeOH/H 2 O = 65:35,t R = 9.588 分钟)。

6-(3,4,5-Trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (2)
6-(3,4,5-三甲氧基苯基)-1H-吡咯并[2,3-b]吡啶 (2)

2 was prepared from 6-bromo-1H-pyrrolo[2,3-b]pyridine 32 (300 mg, 1.52 mmol) and 45 (419.64 mg, 1.98 mmol) according to general procedure A. Yellow solid (297 mg, yield: 68.8%). 1H NMR (300 MHz, DMSO-d6): δ 11.78 (s, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.50 (dd, J = 3.5, 2.5 Hz, 1H), 7.42 (s, 2H), 6.49 (dd, J = 3.4, 1.8 Hz, 1H), 3.92 (s, 6H), 3.75 (s, 3H). HRMS (ESI): calcd for C16H16N2O3 [M + H]+, 285.1161; found, 285.1234. Purity: 99.79% by HPLC (MeOH/H2O = 65:35, tR = 6.204 min).
根据一般程序 A,由 6-溴-1H-吡咯并[2,3-b]吡啶 32(300 毫克,1.52 毫摩尔)和 45(419.64 毫克,1.98 毫摩尔)制备 2。 1 H NMR(300 MHz,DMSO-d 6 ):δ11.78(s,1H),8.05(d,J = 8.3 Hz,1H),7.73(d,J = 8.3 Hz,1H),7.50(dd,J = 3.5,2.5 Hz,1H),7.42(s,2H),6.49(dd,J = 3.4,1.8 Hz,1H),3.92(s,6H),3.75(s,3H)。HRMS(ESI):煅烧为 C 16 H { 16 H 16 N 2 O 3 [M + H] + ,285.1161;发现值,285.1234。HPLC 测定纯度:99.79%(MeOH/H 2 O = 65:35,t R = 6.204 分钟)。

5-(3,4,5-Trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (3)
5-(3,4,5-三甲氧基苯基)-1H-吡咯并[2,3-b]吡啶 (3)

3 was prepared from 4-bromo-1H-pyrrolo[2,3-b]pyridine 33 (300 mg, 1.52 mmol) and 45 (419.64 mg, 1.98 mmol) according to general procedure A. Yellow solid (327 mg, yield: 75.7%). 1H NMR (300 MHz, DMSO-d6): δ 11.82 (s, 1H), 8.30 (d, J = 5.0 Hz, 1H), 7.57 (t, J = 3.0 Hz, 1H), 7.26 (d, J = 5.0 Hz, 1H), 7.05 (s, 2H), 6.72 (dd, J = 3.5, 1.8 Hz, 1H), 3.91 (s, 6H), 3.77 (s, 3H). HRMS (ESI): calcd for C16H16N2O3 [M + H]+, 285.1161; found, 285.1232. Purity: 93.09% by HPLC (MeOH/H2O = 65:35, tR = 5.951 min).
根据一般程序 A,由 4-溴-1H-吡咯并[2,3-b]吡啶 33(300 毫克,1.52 毫摩尔)和 45(419.64 毫克,1.98 毫摩尔)制备 3。 1 H NMR(300 MHz,DMSO-d 6 ):δ11.82(s,1H),8.30(d,J = 5.0 Hz,1H),7.57(t,J = 3.0 Hz,1H),7.26(d,J = 5.0 Hz,1H),7.05(s,2H),6.72(dd,J = 3.5,1.8 Hz,1H),3.91(s,6H),3.77(s,3H)。HRMS(ESI):煅烧为 C 16 H { 16 H 16 N 2 O 3 [M + H] + ,285.1161;发现值,285.1232。通过 HPLC(MeOH/H 2 O = 65:35,t R = 5.951 分钟)检测,纯度为 93.09%。

3-(3,4,5-Trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine (4)
3-(3,4,5-三甲氧基苯基)-1H-吡咯并[2,3-b]吡啶 (4)

4 was prepared from 4-bromo-1H-pyrrolo[2,3-b]pyridine 34 (300 mg, 1.52 mmol) and 45 (419.64 mg, 1.98 mmol) according to general procedure A. White solid (288 mg, yield: 66.7%). 1H NMR (300 MHz, DMSO-d6): δ 11.92 (s, 1H), 8.42–8.24 (m, 2H), 7.90 (d, J = 2.7 Hz, 1H), 7.19 (dd, J = 8.0, 4.7 Hz, 1H), 6.97 (s, 2H), 3.91 (s, 6H), 3.72 (s, 3H). HRMS (ESI): calcd for C16H16N2O3 [M + H]+, 285.1161; found, 285.1238. Purity: 95.91% by HPLC (MeOH/H2O = 80:20, tR = 4.630 min).
根据一般程序 A,由 4-溴-1H-吡咯并[2,3-b]吡啶 34(300 毫克,1.52 毫摩尔)和 45(419.64 毫克,1.98 毫摩尔)制备 4。 1 H NMR(300 MHz,DMSO-d 6 ):δ11.92(s,1H),8.42-8.24(m,2H),7.90(d,J = 2.7 Hz,1H),7.19(dd,J = 8.0,4.7 Hz,1H),6.97(s,2H),3.91(s,6H),3.72(s,3H)。HRMS(ESI):煅烧为 C 16 H { 16 H 16 N 2 O 3 [M + H] + ,285.1161;发现值,285.1238。纯度:95.91%(HPLC,MeOH/H 2 O = 80:20,t R = 4.630 分钟)。

4-(3,4,5-Trimethoxyphenyl)-1H-pyrrolo[2,3-c]pyridine (5)
4-(3,4,5-三甲氧基苯基)-1H-吡咯并[2,3-c]吡啶 (5)

5 was prepared from 4-bromo-1H-pyrrolo[2,3-c]pyridine 35 (300 mg, 1.52 mmol) and 45 (419.64 mg, 1.98 mmol) according to general procedure A. Yellow solid (293 mg, yield: 67.8%). 1H NMR (300 MHz, DMSO-d6): δ 11.80 (s, 1H), 8.76 (s, 1H), 8.28 (s, 1H), 7.70 (t, J = 2.8 Hz, 1H), 6.99 (s, 2H), 6.83–6.65 (m, 1H), 3.89 (s, 6H), 3.75 (s, 3H). HRMS (ESI): calcd for C16H16N2O3 [M + H]+, 285.1161; found, 285.1233. Purity: 92.46% by HPLC (MeOH/H2O = 80:20, tR = 4.274 min).
根据一般程序 A,由 4-溴-1H-吡咯并[2,3-c]吡啶 35(300 毫克,1.52 毫摩尔)和 45(419.64 毫克,1.98 毫摩尔)制备 5。 1 H NMR(300 MHz,DMSO-d 6 ):δ11.80(s,1H),8.76(s,1H),8.28(s,1H),7.70(t,J = 2.8 Hz,1H),6.99(s,2H),6.83-6.65(m,1H),3.89(s,6H),3.75(s,3H)。HRMS(ESI):煅烧为 C 16 H { 16 sH 16 N 2 O 3 [M + H] + ,285.1161;发现值,285.1233。通过 HPLC(MeOH/H2O = 80:20,t R = 4.274 分钟)测定,纯度为 92.46%。

4-(3,4,5-Trimethoxyphenyl)-1H-benzo[d]imidazole (6)
4-(3,4,5-三甲氧基苯基)-1H-苯并[d]咪唑 (6)

6 was prepared from 4-bromo-1H-benzo[d]imidazole 36 (300 mg, 1.52 mmol) and 45 (419.64 mg, 1.98 mmol) according to general procedure A. Yellow solid (339 mg, yield: 78.4%). 1H NMR (300 MHz, DMSO-d6): δ 12.63 (s, 1H), 8.29 (d, J = 23.4 Hz, 1H), 7.72–7.26 (m, 5H), 6.92 (s, 1H), 3.76 (s, 3H). HRMS (ESI): calcd for C16H16N2O3 [M + H]+, 285.1161; found, 285.1238. Purity: 98.66% by HPLC (MeOH/H2O = 65:35, tR = 4.214 min).
根据一般程序 A,由 4-溴-1H-苯并[d]咪唑 36(300 毫克,1.52 毫摩尔)和 45(419.64 毫克,1.98 毫摩尔)制备 6。 1 H NMR(300 MHz,DMSO-d 6 ):δ12.63(s,1H),8.29(d,J = 23.4 Hz,1H),7.72-7.26(m,5H),6.92(s,1H),3.76(s,3H)。HRMS(ESI):煅烧为 C 16 H { 16 H 16 N 2 O 3 [M + H] + ,285.1161;发现值,285.1238。通过 HPLC(MeOH/H 2 O = 65:35,t R = 4.214 分钟)检测,纯度为 98.66%。

4-(3,4,5-Trimethoxyphenyl)-1H-indazole (7)
4-(3,4,5-三甲氧基苯基)-1H-吲唑 (7)

7 was prepared from 4-bromo-1H-indazole 37 (300 mg, 1.52 mmol) and 45 (419.64 mg, 1.98 mmol) according to general procedure A. Yellow solid (323 mg, yield: 74.7%). 1H NMR (300 MHz, DMSO-d6): δ 12.63 (s, 1H), 8.29 (d, J = 23.4 Hz, 1H), 7.72–7.26 (m, 5H), 6.92 (s, 1H), 3.76 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ 153.70, 141.04, 137.65, 135.60, 134.61, 133.35, 126.71, 121.49, 119.86, 109.73, 105.86, 60.57, 56.38. HRMS (ESI): calcd for C16H16N2O3 [M + H]+, 285.1161; found, 285.1237. Purity: 99.90% by HPLC (MeOH/H2O = 65:35, tR = 4.249 min).
根据一般程序 A,由 4-溴-1H-吲唑 37(300 毫克,1.52 毫摩尔)和 45(419.64 毫克,1.98 毫摩尔)制备 7。 1 H NMR(300 MHz,DMSO-d 6 ):δ12.63(s,1H),8.29(d,J = 23.4 Hz,1H),7.72-7.26(m,5H),6.92(s,1H),3.76(s,3H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 153.70, 141.04, 137.65, 135.60, 134.61, 133.35, 126.71, 121.49, 119.86, 109.73, 105.86, 60.57, 56.38.HRMS(ESI):煅烧为 C 16 H { 16 H 16 N 2 O 3 [M + H] + ,285.1161;发现值,285.1237。纯度:99.90%(HPLC,MeOH/H 2 O = 65:35,t R = 4.249 分钟)。

4-(3,4,5-Trimethoxyphenyl)-1H-pyrazolo[3,4-b]pyridine (8)
4-(3,4,5-三甲氧基苯基)-1H-吡唑并[3,4-b]吡啶 (8)

8 was prepared from 4-bromo-1H-pyrazolo[3,4-b]pyridine 38 (200 mg, 1.01 mmol) and 45 (278.37 mg, 1.31 mmol) according to general procedure A. Yellow solid (152 mg, yield: 53.1%). 1H NMR (300 MHz, DMSO-d6): δ 13.81 (s, 1H), 8.60 (d, J = 4.8 Hz, 1H), 8.45 (s, 1H), 7.44 (d, J = 4.8 Hz, 1H), 7.14 (s, 2H), 3.79 (s, 3H). HRMS (ESI): calcd for C15H15N3O3 [M + H]+, 286.1147; found, 286.1184. Purity: 99.77% by HPLC (MeOH/H2O = 65:35, tR = 9.147 min).
根据一般程序 A,由 4-溴-1H-吡唑并[3,4-b]吡啶 38(200 毫克,1.01 毫摩尔)和 45(278.37 毫克,1.31 毫摩尔)制备 8。 1 H NMR(300 MHz,DMSO-d 6 ):δ13.81(s,1H),8.60(d,J = 4.8 Hz,1H),8.45(s,1H),7.44(d,J = 4.8 Hz,1H),7.14(s,2H),3.79(s,3H)。HRMS (ESI):煅烧为 C 15 H { 15 H 15 N 3 O 3 [M + H] + ,286.1147;发现值为 286.1184。HPLC 测定纯度:99.77%(MeOH/H 2 O = 65:35,t R = 9.147 分钟)。

7-(3,4,5-Trimethoxyphenyl)-3H-imidazo[4,5-b]pyridine (9)
7-(3,4,5-三甲氧基苯基)-3H-咪唑并[4,5-b]吡啶 (9)

9 was prepared from 7-bromo-3H-imidazo[4,5-b]pyridine 39 (200 mg, 1.01 mmol) and 45 (278.37 mg, 1.31 mmol) according to general procedure A. Brown solid (121 mg, yield: 42.4%). 1H NMR (300 MHz, DMSO-d6): δ 13.25 (s, 1H), 8.53 (s, 1H), 8.40 (d, J = 5.1 Hz, 1H), 7.75 (s, 2H), 7.65 (d, J = 5.3 Hz, 1H), 3.92 (d, J = 3.3 Hz, 6H), 3.77 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ 153.93, 153.02, 149.46, 143.15, 138.91, 133.23, 132.91, 115.35, 112.84, 106.06, 60.60, 56.49. HRMS (ESI): calcd for C15H15N3O3 [M + H]+, 286.1147; found, 286.1187. Purity: 99.09% by HPLC (MeOH/H2O = 65:35, tR = 3.982 min).
根据一般程序 A,由 7-溴-3H-咪唑并[4,5-b]吡啶 39(200 毫克,1.01 毫摩尔)和 45(278.37 毫克,1.31 毫摩尔)制备得到 9。 1 H NMR(300 MHz,DMSO-d 6 ):δ13.25(s,1H),8.53(s,1H),8.40(d,J = 5.1 Hz,1H),7.75(s,2H),7.65(d,J = 5.3 Hz,1H),3.92(d,J = 3.3 Hz,6H),3.77(s,3H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 153.93, 153.02, 149.46, 143.15, 138.91, 133.23, 132.91, 115.35, 112.84, 106.06, 60.60, 56.49.HRMS (ESI):煅烧为 C 15 H { 15 H 15 N 3 O 3 [M + H] + ,286.1147;发现值,286.1187。通过 HPLC 测定,纯度为 99.09%(MeOH/H 2 O = 65:35,t R = 3.982 分钟)。

4-(3,4,5-Trimethoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine (10)
4-(3,4,5-三甲氧基苯基)-7H-吡咯并[2,3-d]嘧啶 (10)

10 was prepared from 4-bromo-7H-pyrrolo[2,3-d]pyrimidine 40 (200 mg, 1.52 mmol) and 45 (278.37 mg, 1.31 mmol) according to general procedure A. Yellow solid (169 mg, yield: 59.3%). 1H NMR (300 MHz, DMSO-d6): δ 12.28 (s, 1H), 8.85 (s, 1H), 7.68 (dd, J = 3.6, 2.3 Hz, 1H), 7.46 (s, 2H), 6.96 (dd, J = 3.7, 1.7 Hz, 1H), 3.94 (s, 6H), 3.79 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ 155.80, 153.58, 153.12, 151.29, 139.59, 133.91, 128.12, 114.76, 106.22, 100.63, 60.63, 56.41. HRMS (ESI): calcd for C15H15N3O3 [M + H]+, 286.1147; found, 286.1146. Purity: 99.36% by HPLC (MeOH/H2O = 65:35, tR = 9.588 min).
根据一般程序 A,由 4-溴-7H-吡咯并[2,3-d]嘧啶 40(200 毫克,1.52 毫摩尔)和 45(278.37 毫克,1.31 毫摩尔)制备 10。 1 H NMR(300 MHz,DMSO-d 6 ):δ12.28(s,1H),8.85(s,1H),7.68(dd,J = 3.6,2.3 Hz,1H),7.46(s,2H),6.96(dd,J = 3.7,1.7 Hz,1H),3.94(s,6H),3.79(s,3H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 155.80, 153.58, 153.12, 151.29, 139.59, 133.91, 128.12, 114.76, 106.22, 100.63, 60.63, 56.41.HRMS (ESI):煅烧为 C 15 H { 15 H 15 N 3 O 3 [M + H] + ,286.1147;发现值,286.1146。纯度:99.36%(HPLC,MeOH/H 2 O = 65:35,t R = 9.588 分钟)。

8-(3,4,5-Trimethoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine (11)

11 was prepared from 8-bromo-[1,2,4]triazolo[4,3-a]pyridine 41 (250 mg, 1.26 mmol) and 45 (347.58 mg, 1.64 mmol) according to general procedure A. White solid (178 mg, yield: 62.4%). 1H NMR (300 MHz, DMSO-d6): δ 9.40 (d, J = 3.5 Hz, 1H), 8.70–8.52 (m, 1H), 7.77 (dd, J = 7.2, 3.6 Hz, 1H), 7.63 (d, J = 3.7 Hz, 2H), 7.19–7.03 (m, 1H), 3.91 (d, J = 3.5 Hz, 6H). 13C NMR (75 MHz, DMSO-d6): δ 153.26, 138.61, 137.62, 130.60, 127.24, 125.60, 124.47, 114.40, 106.58, 60.62, 56.53. HRMS (ESI): calcd for C15H15N3O3 [M + H]+, 286.1147; found, 286.1186. Purity: 98.10% by HPLC (MeOH/H2O = 80:20, tR = 3.880 min).
根据一般程序 A,由 8-溴-[1,2,4]三唑并[4,3-a]吡啶 41(250 毫克,1.26 毫摩尔)和 45(347.58 毫克,1.64 毫摩尔)制备 11。 1 H NMR(300 MHz,DMSO-d 6 ):δ9.40(d,J = 3.5 Hz,1H),8.70-8.52(m,1H),7.77(dd,J = 7.2,3.6 Hz,1H),7.63(d,J = 3.7 Hz,2H),7.19-7.03(m,1H),3.91(d,J = 3.5 Hz,6H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 153.26, 138.61, 137.62, 130.60, 127.24, 125.60, 124.47, 114.40, 106.58, 60.62, 56.53.HRMS(ESI):煅烧为 C 15 H { 15 H 15 N 3 O 3 [M + H] + ,286.1147;发现值为 286.1186。纯度:98.10%(HPLC,MeOH/H 2 O = 80:20,t R = 3.880 分钟)。

5-(3,4,5-Trimethoxyphenyl)-[1,2,4]triazolo[4,3-a]pyridine (12)

12 was prepared from 5-bromo-[1,2,4]triazolo[4,3-a]pyridine 42 (250 mg, 1.26 mmol) and 45 (347.58 mg, 1.64 mmol) according to general procedure A. Brown solid (165 mg, yield: 57.8%). 1H NMR (300 MHz, DMSO-d6): δ 9.39 (s, 1H), 7.82 (d, J = 9.2 Hz, 1H), 7.49 (dd, J = 9.2, 6.8 Hz, 1H), 7.11 (s, 2H), 7.09–7.05 (m, 1H), 3.90 (s, 6H), 3.79 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ 153.85, 149.79, 139.22, 137.20, 135.61, 128.68, 128.44, 114.43, 114.06, 106.26, 60.59, 56.59. HRMS (ESI): calcd for C15H15N3O3 [M + H]+, 286.1147; found, 286.1188. Purity: 98.94% by HPLC (MeOH/H2O = 65:35, tR = 9.958 min).
12 由 5-溴-[1,2,4]三唑并[4,3-a]吡啶 42(250 毫克,1.26 毫摩尔)和 45(347.58 毫克,1.64 毫摩尔)按一般程序 A 制备而成。 1 H NMR(300 MHz,DMSO-d 6 ):δ9.39(s,1H),7.82(d,J = 9.2 Hz,1H),7.49(dd,J = 9.2,6.8 Hz,1H),7.11(s,2H),7.09-7.05(m,1H),3.90(s,6H),3.79(s,3H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 153.85, 149.79, 139.22, 137.20, 135.61, 128.68, 128.44, 114.43, 114.06, 106.26, 60.59, 56.59.HRMS (ESI):煅烧为 C 15 H { 15 H 15 N 3 O 3 [M + H] + ,286.1147;发现值,286.1188。HPLC 测定纯度:98.94%(MeOH/H 2 O = 65:35,t R = 9.958 分钟)。

4-(3,4,5-Trimethoxyphenyl)benzo[d]isoxazole (13)
4-(3,4,5-三甲氧基苯基)苯并[d]异恶唑 (13)

13 was prepared from 4-bromobenzo[d]isoxazole 43 (250 mg, 1.26 mmol) and 45 (347.58 mg, 1.64 mmol) according to general procedure A. Brown solid (216 mg, yield: 76.1%). 1H NMR (300 MHz, DMSO-d6): δ 11.21 (d, J = 4.5 Hz, 1H), 7.57 (td, J = 7.9, 2.7 Hz, 1H), 7.14–6.82 (m, 4H), 3.88 (s, 6H), 3.81–3.74 (m, 3H). 13C NMR (75 MHz, DMSO-d6): δ 161.70, 153.21, 146.31, 138.17, 134.51, 134.03, 120.71, 115.10, 106.68, 98.65, 60.57, 56.46. HRMS (ESI): calcd for C16H15NO4 [M + Na]+, 309.0901; found, 309.0929. Purity: 97.92% by HPLC (MeOH/H2O = 65:35, tR = 5.070 min).
13 由 4-溴苯并[d]异恶唑 43(250 毫克,1.26 毫摩尔)和 45(347.58 毫克,1.64 毫摩尔)按一般程序 A 制备而成。 1 H NMR(300 MHz,DMSO-d 6 ):δ11.21(d,J = 4.5 Hz,1H),7.57(td,J = 7.9,2.7 Hz,1H),7.14-6.82(m,4H),3.88(s,6H),3.81-3.74(m,3H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 161.70, 153.21, 146.31, 138.17, 134.51, 134.03, 120.71, 115.10, 106.68, 98.65, 60.57, 56.46.HRMS(ESI):煅烧为 C 16 H { 15 H 15 NO 4 [M + Na] + ,309.0901;发现值为 309.0929。HPLC 测定纯度:97.92%(MeOH/H 2 O = 65:35,t R = 5.070 分钟)。

7-Bromo-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (44)

4-Bromopyridine-2,3-diamine 46 (300 mg, 1.6 mmol) and di(1H-imidazole-1-yl)methanone 47 (517.4 mg, 3.19 mmol) were dissolved by tetrahydrofuran (10 mL) and heated at 80 °C for 4 h. Tetrahydrofuran was removed by concentration under reduced pressure, and 10 mL of dichloromethane was added to dissolve the residue, a large amount of red powder was precipitated, and 44 (283 mg, yield: 82.9%) was obtained after filtration. Without further purification, it was directly fed to the next step.
将 4-溴吡啶-2,3-二胺 46(300 毫克,1.6 毫摩尔)和二(1H-咪唑-1-基)甲酮 47(517.4 毫克,3.19 毫摩尔)溶于四氢呋喃(10 毫升),在 80 °C 下加热 4 小时。减压浓缩除去四氢呋喃,加入 10 mL 二氯甲烷溶解残留物,析出大量红色粉末,过滤后得到 44(283 mg,产率:82.9%)。无需进一步纯化,直接进入下一步。

4-(3,4,5-Trimethoxyphenyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (14)

14 was prepared from 7-bromo-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one 44 (283 mg, 1.33 mmol) and 45 (366.1 mg, 1.73 mmol) according to general procedure A. Pale yellow solid (293 mg, yield: 73.4%). 1H NMR (300 MHz, DMSO-d6): δ 11.47 (s, 1H), 11.08 (s, 1H), 7.95 (d, J = 5.5 Hz, 1H), 7.11 (d, J = 5.5 Hz, 1H), 6.87 (s, 2H), 3.91 (s, 6H), 3.74 (s, 3H). Purity: 97.69% by HPLC (MeOH/H2O = 65:35, tR = 3.891 min).
根据一般程序 A,由 7-溴-1,3-二氢-2H-咪唑并[4,5-b]吡啶-2-酮 44(283 毫克,1.33 毫摩尔)和 45(366.1 毫克,1.73 毫摩尔)制备 14。 1 H NMR(300 MHz,DMSO-d 6 ):δ11.47(s,1H),11.08(s,1H),7.95(d,J = 5.5 Hz,1H),7.11(d,J = 5.5 Hz,1H),6.87(s,2H),3.91(s,6H),3.74(s,3H)。纯度:97.69%(HPLC,MeOH/H 2 O = 65:35,t R = 3.891 分钟)。

4-(3-Bromophenyl)-1-(cyclopropylmethyl)-3,5-dimethyl-1H-pyrazole (50g)
4-(3-溴苯基)-1-(环丙基甲基)-3,5-二甲基-1H-吡唑(50 克)

50f was prepared from 48 (500 mg, 1.77 mmol) and 49f (510.3 mg, 2.30 mmol) according to general procedure A. Brown solid (356 mg, yield: 80.2%). 50f (500 mg, 1.99 mmol) and (bromomethyl)cyclopropane 53 (403.19 mg, 2.99 mmol) were dissolved in DMF (15 mL), followed by addition of cesium carbonate (1.30 g, 3.98 mmol). The mixture was stirred at room temperature overnight. Equal volumes of ethyl acetate and water were added and extracted three times, and the organic layer was combined and washed with brine. The organic layer was dried over anhydrous Na2SO4 and purified by column chromatography (PE/EA = 1:1) to obtain colorless oil 50g (467 mg, yield: 76.9%).
根据一般步骤 A,由 48(500 毫克,1.77 毫摩尔)和 49f(510.3 毫克,2.30 毫摩尔)制备 50f,得到棕色固体(356 毫克,产率:80.2%)。将 50f(500 毫克,1.99 毫摩尔)和(溴甲基)环丙烷 53(403.19 毫克,2.99 毫摩尔)溶于 DMF(15 毫升),然后加入碳酸铯(1.30 克,3.98 毫摩尔)。混合物在室温下搅拌过夜。加入等体积的乙酸乙酯和水并萃取三次,合并有机层并用盐水洗涤。有机层用无水 Na 2 干燥。SO 4 ,并通过柱层析(PE/EA = 1:1)纯化,得到无色油 50 克(467 毫克,产率:76.9%)。

General Procedure B: Preparation of Boronic Esters for the Synthesis of 52a–52g, 56a–56d, and 61a–61f
一般程序 B:制备用于合成 52a-52g、56a-56d 和 61a-61f 的硼酸酯

Aryl halides (1.0 equiv) and 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (1.3 equiv) were dissolved in anhydrous dioxaborolane, followed by the addition of [1,1-bis(diphenylphosphino)ferrocene]palladium dichloride dichloromethane complex (0.1 equiv) and potassium acetate (2 equiv). After reaction at 100 °C for 3 h under an argon atmosphere, the reaction was cooled to room temperature, equal volumes of ethyl acetate and water were added and extracted three times, and the organic layer was combined and washed with brine. The organic layer was concentrated under reduced pressure to obtain arylboronic acid esters, which were directly proceeded to the next step without further purification.
将芳基卤化物(1.0 等量)和 4,4,4′,4′,5,5,5′,5′-八甲基-2,2′-双(1,3,2-二氧杂硼烷)(1.3当量)溶于无水二氧硼戊环,然后加入[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(0.1当量)和醋酸钾(2当量)。在 100 °C 的氩气环境下反应 3 小时后,将反应物冷却至室温,加入等体积的乙酸乙酯和水并萃取三次,合并有机层并用盐水洗涤。有机层在减压下浓缩,得到芳基硼酸酯,直接进入下一步,无需进一步纯化。

4-(3-(1H-Imidazo[4,5-b]pyridin-7-yl)phenyl)-3,5-dimethylisoxazole (15)

50a was prepared from 48 (500 mg, 1.77 mmol) and 49a (512.54 mg, 2.30 mmol) according to general procedure A. Brown solid (400 mg, yield: 89.8%). 52a was prepared from 51 (438 mg, 1.73 mmol) and 50a (334 mg, 1.33 mmol) according to general procedure B. Brown oil (320 mg, yield: 77.3%). 15 was prepared from 42 (258 mg, 1.30 mmol) and 52a (506.7 mg, 1.69 mmol) according to general procedure A. Pale yellow solid (197 mg, yield: 60.6%). 1H NMR (300 MHz, DMSO-d6): δ 13.29 (s, 1H), 8.53 (s, 1H), 8.48–8.37 (m, 2H), 8.29 (d, J = 7.9 Hz, 1H), 7.72–7.61 (m, 2H), 7.53 (d, J = 7.7 Hz, 1H), 3.41 (s, 3H), 2.35 (s, 3H). 13C NMR (75 MHz, DMSO-d6): δ 165.88, 158.72, 149.29, 144.73, 144.19, 137.37, 136.70, 132.37, 130.68, 130.09, 129.73, 128.34, 116.32, 115.74, 11.94, 11.10. HRMS (ESI): calcd for C17H14N4O [M + H]+, 291.1201; found, 291.1239. Purity: 97.01% by HPLC (MeOH/H2O = 65:35, tR = 4.241 min).
根据一般程序 A,由 48(500 毫克,1.77 毫摩尔)和 49a(512.54 毫克,2.30 毫摩尔)制备出 50a。根据一般程序 B,由 51(438 毫克,1.73 毫摩尔)和 50a(334 毫克,1.33 毫摩尔)制备 52a。根据一般程序 A,由 42(258 毫克,1.30 毫摩尔)和 52a(506.7 毫克,1.69 毫摩尔)制备 15。 1 H NMR(300 MHz,DMSO-d 6 ):δ13.29(s,1H),8.53(s,1H),8.48-8.37(m,2H),8.29(d,J = 7.9 Hz,1H),7.72-7.61(m,2H),7.53(d,J = 7.7 Hz,1H),3.41(s,3H),2.35(s,3H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 165.88, 158.72, 149.29, 144.73, 144.19, 137.37, 136.70, 132.37, 130.68, 130.09, 129.73, 128.34, 116.32, 115.74, 11.94, 11.10.HRMS(ESI):煅烧为 C 17 H { 14 H 14 N 4 O [M + H] + ,291.1201;发现值,291.1239。纯度:97.01%(HPLC,MeOH/H 2 O = 65:35,t R = 4.241 分钟)。

7-(3-(1,3,5-Trimethyl-1H-pyrazol-4-yl)phenyl)-1H-imidazo[4,5-b]pyridine (16)

50b was prepared from 48 (500 mg, 1.77 mmol) and 49b (533 mg, 2.30 mmol) according to general procedure A. Yellow solid (413 mg, yield: 88.1%). 52b was prepared from 51 (498 mg, 1.96 mmol) and 50b (400 mg, 1.51 mmol) according to general procedure B. Red oil (390 mg, yield: 82.8%). 16 was prepared from 42 (192 mg, 0.96 mmol) and 52b (390 mg, 1.25 mmol) according to general procedure A. Pale yellow solid (232 mg, yield: 79.7%). 1H NMR (300 MHz, chloroform-d): δ 8.58 (d, J = 5.4 Hz, 1H), 8.50 (s, 1H), 8.10 (d, J = 7.9 Hz, 1H), 8.02 (s, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.56 (d, J = 5.1 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 3.86 (s, 3H), 2.36 (d, J = 2.5 Hz, 6H). 13C NMR (75 MHz, DMSO-d6): δ 149.31, 144.71, 144.19, 143.87, 137.91, 136.51, 136.34, 134.84, 130.24, 129.87, 129.34, 126.75, 118.33, 115.78, 36.33, 13.02, 10.51. HRMS (ESI): calcd for C18H17N5 [M + H]+, 304.1518; found, 304.1502. Purity: 99.88% by HPLC (MeOH/H2O = 65:35, tR = 6.782 min).
根据一般程序 A,由 48(500 毫克,1.77 毫摩尔)和 49b(533 毫克,2.30 毫摩尔)制备 50b。根据一般程序 B,由 51(498 毫克,1.96 毫摩尔)和 50b(400 毫克,1.51 毫摩尔)制备 52b。根据一般步骤 A,由 42(192 毫克,0.96 毫摩尔)和 52b(390 毫克,1.25 毫摩尔)制备出 16。 1 H NMR(300 MHz,氯仿-d):δ8.58(d,J = 5.4 Hz,1H),8.50(s,1H),8.10(d,J = 7.9 Hz,1H),8.02(s,1H),7.65(t,J = 7.7 Hz,1H),7.56(d,J = 5.1 Hz,1H),7.42(d,J = 7.7 Hz,1H),3.86(s,3H),2.36(d,J = 2.5 Hz,6H)。 13 C NMR(75 MHz,DMSO-d 6 ):δ 149.31, 144.71, 144.19, 143.87, 137.91, 136.51, 136.34, 134.84, 130.24, 129.87, 129.34, 126.75, 118.33, 115.78, 36.33, 13.02, 10.51.HRMS (ESI):煅烧为 C 18 H { 17 H 17 N 5 [M + H] + ,304.1518;发现值为 304.1502。HPLC 测定纯度:99.88%(MeOH/H 2 O = 65:35,t R = 6.782 分钟)。

7-(3-(1,4-Dimethyl-1H-pyrazol-5-yl)phenyl)-1H-imidazo[4,5-b]pyridine (17)

50c was prepared from 48 (500 mg, 1.77 mmol) and 49c (510 mg, 2.30 mmol) according to general procedure A. Yellow solid (398 mg, yield: 89.7%). 52c was prepared from 51 (522 mg, 2.05 mmol) and 50c (400 mg, 1.59 mmol) according to general procedure B. Red oil (412 mg, yield: 86.7%). 17 was prepared from 42 (203.9 mg, 1.03 mmol) and 52c (399.3 mg, 1.34 mmol) according to general procedure A. Pale yellow solid (192 mg, yield: 62.7%). 1H NMR (300 MHz, chloroform-d): δ 8.59 (d, J = 5.2 Hz, 1H), 8.43 (s, 1H), 8.28 (d, J = 7.9 Hz, 1H), 8.17 (s, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 5.1 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.47 (s, 1H), 3.92 (s, 3H), 2.14 (s, 3H). HRMS (ESI): calcd for C17H15N5 [M + H]+, 290.1361; found, 290.1367. Purity: 97.66% by HPLC (MeOH/H2O = 65:35, tR = 4.975 min).
根据一般程序 A,由 48(500 毫克,1.77 毫摩尔)和 49c(510 毫克,2.30 毫摩尔)制备 50c。根据一般程序 B,由 51(522 毫克,2.05 毫摩尔)和 50c(400 毫克,1.59 毫摩尔)制备 52c。根据一般程序 A,由 42(203.9 毫克,1.03 毫摩尔)和 52c(399.3 毫克,1.34 毫摩尔)制备出 17。 1 H NMR(300 MHz,氯仿-d):δ8.59(d,J = 5.2 Hz,1H),8.43(s,1H),8.28(d,J = 7.9 Hz,1H),8.17(s,1H),7.73(t,J = 7.7Hz,1H)、7.57(d,J = 5.1Hz,1H)、7.49(d,J = 7.6Hz,1H)、7.47(s,1H)、3.92(s,3H)、2.14(s,3H)。HRMS (ESI):煅烧为 C 17 H { 15 H 15 N 5 [M + H] + ,290.1361;发现值,290.1367。纯度:97.66%(HPLC,MeOH/H 2 O = 65:35,t R = 4.975 分钟)。

7-(2′,6′-Dimethyl-[1,1′-biphenyl]-3-yl)-1H-imidazo[4,5-b]pyridine (18)

50d was prepared from 48 (500 mg, 1.77 mmol) and 49d (533 mg, 2.30 mmol) according to general procedure A. Yellow solid (430 mg, yield: 93.2%). 52d was prepared from 51 (505.6 mg, 1.99 mmol) and 50d (400 mg, 1.53 mmol) according to general procedure B. Brown oil (417 mg, yield: 88.3%). 18 was prepared from 42 (203.9 mg, 1.03 mmol) and 52d (417 mg, 1.35 mmol) according to general procedure A. Pale yellow solid (229.1 mg, yield: 69.2%). 1H NMR (300 MHz, chloroform-d): δ 8.56 (d, J = 5.1 Hz, 1H), 8.45 (s, 1H), 8.38–8.31 (m, 1H), 7.91 (s, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.55 (d, J = 5.1 Hz, 1H), 7.36–7.31 (m, 1H), 7.21 (q, J = 5.8 Hz, 3H), 2.17 (s, 6H). HRMS (ESI): calcd for C20H17N3 [M + H]+, 300.1456; found, 300.1497. Purity: 99.64% by HPLC (MeOH/H2O = 65:35, tR = 13.178 min).
根据一般程序 A,由 48(500 毫克,1.77 毫摩尔)和 49d(533 毫克,2.30 毫摩尔)制备 50d。根据一般程序 B,由 51(505.6 毫克,1.99 毫摩尔)和 50d(400 毫克,1.53 毫摩尔)制备 52d。根据一般程序 A,由 42(203.9 毫克,1.03 毫摩尔)和 52d(417 毫克,1.35 毫摩尔)制备出 18。 1 H NMR(300 MHz,氯仿-d):δ8.56(d,J = 5.1 Hz,1H),8.45(s,1H),8.38-8.31(m,1H),7.91(s,1H),7.68(t,J = 7.6 Hz,1H),7.55(d,J = 5.1 Hz,1H),7.36-7.31(m,1H),7.21(q,J = 5.8 Hz,3H),2.17(s,6H)。HRMS (ESI):煅烧为 C 20 H { 17 H 17 N 3 [M + H] + ,300.1456;发现值,300.1497。HPLC 测定纯度:99.64%(MeOH/H 2 O = 65:35,t R = 13.178 分钟)。

8-(3-(1H-Imidazo[4,5-b]pyridin-7-yl)phenyl)quinoline (19)
8-(3-(1H-咪唑并[4,5-b]吡啶-7-基)苯基)喹啉 (19)

50e was prepared from 48 (500 mg, 1.77 mmol) and 49e (586 mg, 2.30 mmol) according to general procedure A. Brown solid (410 mg, yield: 81.6%). 52e was prepared from 51 (464.7 mg, 1.83 mmol) and 50e (400 mg, 1.41 mmol) according to general procedure B. Red oil (372 mg, yield: 83.3%). 19 was prepared from 42 (178.2 mg, 0.91 mmol) and 52e (372 mg, 1.17 mmol) according to general procedure A. Pale yellow solid (201.7 mg, yield: 69.6%). 1H NMR (300 MHz, chloroform-d): δ 9.03 (dd, J = 4.2, 1.8 Hz, 1H), 8.49 (d, J = 5.2 Hz, 1H), 8.37 (t, J = 1.7 Hz, 1H), 8.31–8.23 (m, 2H), 8.10 (d, J = 7.7 Hz, 1H), 7.87 (ddd, J = 14.3, 7.6, 1.5 Hz, 2H), 7.79 (dt, J = 7.7, 1.4 Hz, 1H), 7.66 (t, J = 7.7 Hz, 2H), 7.52–7.44 (m, 2H). HRMS (ESI): calcd for C21H14N4 [M + H]+, 323.1252; found, 323.1290. Purity: 94.81% by HPLC (MeOH/H2O = 65:35, tR = 13.287 min).
根据一般程序 A,由 48(500 毫克,1.77 毫摩尔)和 49e(586 毫克,2.30 毫摩尔)制备 50e。根据一般程序 B,由 51(464.7 毫克,1.83 毫摩尔)和 50e(400 毫克,1.41 毫摩尔)制备 52e。根据一般程序 A,由 42(178.2 毫克,0.91 毫摩尔)和 52e(372 毫克,1.17 毫摩尔)制备 19。 1 H NMR(300 MHz,氯仿-d):δ9.03(dd,J = 4.2,1.8 Hz,1H),8.49(d,J = 5.2 Hz,1H),8.37(t,J = 1.7 Hz,1H),8.31-8.23(m,2H),8.10(d,J = 7.7Hz,1H),7.87(ddd,J = 14.3,7.6,1.5 Hz,2H),7.79(dt,J = 7.7,1.4 Hz,1H),7.66(t,J = 7.7 Hz,2H),7.52-7.44(m,2H)。HRMS (ESI):煅烧为 C 21 H 14 N 4 [M + H] + ,323.1252;发现值,323.1290。通过 HPLC(MeOH/H 2 O = 65:35,t R = 13.287 分钟)测定,纯度为 94.81%。

7-(3-(1-(Cyclopropylmethyl)-3,5-dimethyl-1H-pyrazol-4-yl)phenyl)-1H-imidazo[4,5-b]pyridine (20)
7-(3-(1-(环丙基甲基)-3,5-二甲基-1H-吡唑-4-基)苯基)-1H-咪唑并[4,5-b]吡啶 (20)

52g was prepared from 51 (432.6 mg, 1.70 mmol) and 50g (400 mg, 1.31 mmol) according to general procedure B. Red oil (383 mg, yield: 83.0%). 20 was prepared from 42 (168.2 mg, 0.85 mmol) and 52g (387.7 mg, 1.10 mmol) according to general procedure A. Pale yellow solid (149 mg, yield: 51.3%). 1H NMR (300 MHz, DMSO-d6): δ 13.24 (s, 1H), 8.50 (s, 1H), 8.44 (d, J = 5.1 Hz, 1H), 8.30 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 6.1 Hz, 2H), 7.41 (d, J = 7.8 Hz, 1H), 3.95 (d, J = 6.9 Hz, 2H), 2.35 (s, 3H), 2.25 (s, 3H), 1.27 (s, 1H), 0.55 (d, J = 7.6 Hz, 2H), 0.41 (d, J = 4.9 Hz, 2H). HRMS (ESI): calcd for C21H21N5 [M + H]+, 344.1831; found, 344.1871. Purity: 97.29% by HPLC (MeOH/H2O = 80:20, tR = 3.165 min).
根据一般步骤 B,由 51(432.6 毫克,1.70 毫摩尔)和 50 克(400 毫克,1.31 毫摩尔)制备 52 克。根据一般程序 A,由 42(168.2 毫克,0.85 毫摩尔)和 52g(387.7 毫克,1.10 毫摩尔)制备 20。 1 H NMR(300 MHz,DMSO-d 6 ):δ13.24(s,1H),8.50(s,1H),8.44(d,J = 5.1 Hz,1H),8.30(s,1H),8.17(d,J = 7.8 Hz,1H),7.61(d,J = 6.1 Hz,2H),7.41(d,J = 7.8Hz,1H)、3.95(d,J = 6.9Hz,2H)、2.35(s,3H)、2.25(s,3H)、1.27(s,1H)、0.55(d,J = 7.6Hz,2H)、0.41(d,J = 4.9Hz,2H)。HRMS (ESI):煅烧为 C 21 H { 21 H 21 N 5 [M + H] + ,344.1831;发现值,344.1871。纯度:97.29%(HPLC,MeOH/H 2 O = 80:20,t R = 3.165 分钟)。

7-(2-Fluoro-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)-1H-imidazo[4,5-b]pyridine (21)

55a was prepared from 54a (530 mg, 1.76 mmol) and 49b (540 mg, 2.29 mmol) according to general procedure A. White solid (400 mg, yield: 80.2%). 56a was prepared from 55a (400 mg, 1.41 mmol) and 51 (466 mg, 1.84 mmol) according to general procedure B. Reddish brown oil (366 mg, yield: 78.5%). 21 was prepared from 42 (128 mg, 0.65 mmol) and 56a (279.5 mg, 0.85 mmol) according to general procedure A. White solid (138 mg, yield: 66.0%). 1H NMR (300 MHz, chloroform-d): δ 8.59 (s, 1H), 8.40 (s, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.55 (s, 1H), 7.38 (p, J = 7.5 Hz, 2H), 3.84 (s, 3H), 2.26 (s, 3H), 2.23 (s, 3H). HRMS (ESI): calcd for C18H16FN5 [M + H]+, 322.1423; found, 322.1475. Purity: 98.83% by HPLC (MeOH/H2O = 80:20, tR = 5.051 min).
根据一般程序 A,由 54a(530 毫克,1.76 毫摩尔)和 49b(540 毫克,2.29 毫摩尔)制备 55a。根据一般程序 B,由 55a(400 毫克,1.41 毫摩尔)和 51(466 毫克,1.84 毫摩尔)制备 56a。根据一般程序 A,由 42(128 毫克,0.65 毫摩尔)和 56a(279.5 毫克,0.85 毫摩尔)制备出 21。 1 H NMR(300 MHz,氯仿-d):δ8.59(s,1H),8.40(s,1H),7.89(d,J = 7.6 Hz,1H),7.55(s,1H),7.38(p,J = 7.5 Hz,2H),3.84(s,3H),2.26(s,3H),2.23(s,3H)。HRMS(ESI):煅烧为 C 18 H { 16 H 16 FN 5 [M + H] + ,322.1423;发现值,322.1475。纯度:98.83%(HPLC,MeOH/H 2 O = 80:20,t R = 5.051 分钟)。

7-(4-Fluoro-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)-1H-imidazo[4,5-b]pyridine (22)

55b was prepared from 54b (530 mg, 1.76 mmol) and 49b (540 mg, 2.29 mmol) according to general procedure A. White solid (372 mg, yield: 74.6%). 56b was prepared from 55b (400 mg, 1.41 mmol) and 51 (466 mg, 1.84 mmol) according to general procedure B. Reddish brown oil (401 mg, yield: 85.9%). 22 was prepared from 42 (128 mg, 0.65 mmol) and 56b (279.5 mg, 0.85 mmol) according to general procedure A. Pale yellow solid (113 mg, yield: 54.1%). 1H NMR (300 MHz, chloroform-d): δ 8.62 (s, 1H), 8.40 (s, 1H), 8.21 (s, 1H), 8.06 (d, J = 6.9 Hz, 1H), 7.52 (s, 1H), 7.38 (d, J = 9.0 Hz, 1H), 3.85 (s, 3H), 2.29 (d, J = 5.9 Hz, 6H). HRMS (ESI): calcd for C18H16FN5 [M + H]+, 322.1423; found, 322.1323. Purity: 97.70% by HPLC (MeOH/H2O = 80:20, tR = 3.788 min).
根据一般程序 A,由 54b(530 毫克,1.76 毫摩尔)和 49b(540 毫克,2.29 毫摩尔)制备 55b。根据一般程序 B,由 55b(400 毫克,1.41 毫摩尔)和 51(466 毫克,1.84 毫摩尔)制备 56b。根据一般程序 A,由 42(128 毫克,0.65 毫摩尔)和 56b(279.5 毫克,0.85 毫摩尔)制备 22。 1 H NMR(300 MHz,氯仿-d):δ8.62(s,1H),8.40(s,1H),8.21(s,1H),8.06(d,J = 6.9 Hz,1H),7.52(s,1H),7.38(d,J = 9.0 Hz,1H),3.85(s,3H),2.29(d,J = 5.9 Hz,6H)。HRMS (ESI):煅烧为 C 18 H { 16 H 16 FN 5 [M + H] + ,322.1423;发现值,322.1323。纯度:97.70%(HPLC,MeOH/H 2 O = 80:20,t R = 3.788 分钟)。

7-(2-Chloro-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)-1H-imidazo[4,5-b]pyridine (23)

55c was prepared from 54c (530 mg, 1.67 mmol) and 49b (512 mg, 2.17 mmol) according to general procedure A. White solid (381 mg, yield: 76.2%). 56c was prepared from 55c (400 mg, 1.34 mmol) and 51 (441 mg, 1.74 mmol) according to general procedure B. Reddish brown oil (351 mg, yield: 75.8%). 23 was prepared from 42 (128 mg, 0.65 mmol) and 56c (292.9 mg, 0.85 mmol) according to general procedure A. Brown solid (96 mg, yield: 43.7%). 1H NMR (300 MHz, chloroform-d): δ 8.59 (s, 1H), 8.38 (s, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.48 (s, 2H), 7.35 (d, J = 7.3 Hz, 1H), 3.84 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H). HRMS (ESI): calcd for C18H16ClN5 [M + H]+, 338.11; found, 338.1129 Purity: 98.18% by HPLC (MeOH/H2O = 65:35, tR = 3.454 min).
根据一般程序 A,由 54c(530 毫克,1.67 毫摩尔)和 49b(512 毫克,2.17 毫摩尔)制备 55c。根据一般程序 B,由 55c(400 毫克,1.34 毫摩尔)和 51(441 毫克,1.74 毫摩尔)制备 56c。根据一般程序 A,由 42(128 毫克,0.65 毫摩尔)和 56c(292.9 毫克,0.85 毫摩尔)制备出 23。 1 H NMR(300 MHz,氯仿-d):δ8.59(s,1H),8.38(s,1H),7.61(d,J = 7.5 Hz,1H),7.48(s,2H),7.35(d,J = 7.3 Hz,1H),3.84(s,3H),2.21(s,3H),2.19(s,3H)。HRMS (ESI):煅烧为 C 18 H { 16 H 16 ClN 5 [M + H] + 纯度:98.18%,HPLC(MeOH/H 2 O = 65:35,t R = 3.454 分钟)。

7-(2,4-Difluoro-5-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)-1H-imidazo[4,5-b]pyridine (24)

55d was prepared from 54d (530 mg, 1.66 mmol) and 49b (510 mg, 2.16 mmol) according to general procedure A. White solid (391 mg, yield: 78.1%). 56d was prepared from 55d (400 mg, 1.36 mmol) and 51 (438 mg, 1.73 mmol) according to general procedure B. Reddish brown oil (376 mg, yield: 79.2%). 24 was prepared from 42 (128 mg, 0.65 mmol) and 56d (294.2 mg, 0.85 mmol) according to general procedure A. Pale yellow solid (105 mg, yield: 47.6%).1H NMR (300 MHz, chloroform-d): δ 8.59 (s, 1H), 8.38 (s, 1H), 7.89 (t, J = 8.3 Hz, 1H), 7.51 (s, 1H), 7.12 (t, J = 9.9 Hz, 1H), 3.83 (s, 3H), 2.26 (s, 3H), 2.25 (s, 3H). HRMS (ESI): calcd for C18H15F2N5 [M + H]+, 340.1329; found, 340.1375. Purity: 95.81% by HPLC (MeOH/H2O = 80:20, tR = 6.516 min).

General Procedure C: The Synthesis of Intermediates 59a–59f

3,5-Dibromo-4-fluoroaniline 57 (1.0 equiv) and pyridine (2.5 equiv) were dissolved in dichloromethane, followed by slow dropwise addition of different sulfonyl chlorides 58a58f (1.1 equiv) at room temperature. The reaction mixture was stirred at room temperature for 4 h, and the initial raw materials disappeared. The reaction mixture was neutralized with 1 M hydrochloric acid to pH 7 and then extracted three times with ethyl acetate. The organic layer was washed with brine and dried with Na2SO4. The solvent was removed under reduced pressure, and column chromatography was performed to obtain intermediates 59a–59f.

N-(4-Fluoro-3-(1H-imidazo[4,5-b]pyridin-7-yl)-5-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)methanesulfonamide (25)

59a was prepared from 57 (2.0 g, 7.44 mmol) and 58a (937 mg, 8.18 mmol) according to general procedure C. Yellow solid (2.47 g, yield: 95.7%). 60a was prepared from 49b (531 mg, 2.25 mmol) and 59a (600 mg, 1.73 mmol) according to general procedure A. Light yellow solid (532 mg, yield: 81.8%). 61a was prepared from 51 (351 mg, 1.38 mmol) and 60a (400 mg, 1.06 mmol) according to general procedure B. Light yellow oil (351 mg, yield: 78.0%). 25 was prepared from 42 (108 mg, 0.51 mmol) and 61a (300 mg, 0.71 mmol) according to general procedure A. Brown solid (193 mg, yield: 65.7%). 1H NMR (300 MHz, DMSO-d6): δ 13.33 (s, 1H), 9.96 (d, J = 9.5 Hz, 1H), 8.52 (s, 1H), 8.45 (d, J = 5.0 Hz, 1H), 7.67 (dd, J = 5.9, 2.8 Hz, 1H), 7.42 (dd, J = 5.0, 1.8 Hz, 1H), 7.22 (dd, J = 6.1, 2.8 Hz, 1H), 3.75 (s, 3H), 3.12 (s, 3H), 2.23 (s, 3H), 2.14 (s, 3H). HRMS (ESI): calcd for C19H19FN6O2S [M + H]+, 415.1308; found, 415.1351. Purity: 98.61% by HPLC (MeOH/H2O = 80:20, tR = 4.298 min).

N-(4-Fluoro-3-(1H-imidazo[4,5-b]pyridin-7-yl)-5-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)ethanesulfonamide (26)

59b was prepared from 57 (2.0 g, 7.44 mmol) and 58b (1.04 g, 8.18 mmol) according to general procedure C. Yellow solid (2.56 g, yield: 95.3%). 60b was prepared from 49b (510 mg, 2.16 mmol) and 59b (600 mg, 1.66 mmol) according to general procedure A. Yellow solid (541 mg, yield: 83.4%). 61b was prepared from 51 (338 mg, 1.33 mmol) and 60b (400 mg, 1.02 mmol) according to general procedure B. Light yellow oil (347 mg, yield: 77.4%). 26 was prepared from 42 (104 mg, 0.53 mmol) and 61b (300 mg, 0.68 mmol) according to general procedure A. Light yellow solid (203 mg, yield: 69.1%). 1H NMR (300 MHz, DMSO-d6): δ 13.32 (s, 1H), 9.99 (s, 1H), 8.57–8.41 (m, 2H), 7.68 (dd, J = 5.9, 2.8 Hz, 1H), 7.43–7.32 (m, 1H), 7.22 (dd, J = 6.0, 2.8 Hz, 1H), 3.75 (s, 3H), 3.21 (dd, J = 8.7, 5.8 Hz, 2H), 2.23 (s, 3H), 2.13 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, DMSO-d6): δ 151.86, 148.90, 144.62, 144.46, 144.26, 137.79, 134.62, 133.85, 132.92, 125.41, 125.18, 123.97, 122.34, 118.34, 112.06, 45.68, 36.40, 12.75, 10.51, 8.56. HRMS (ESI): calcd for C20H21FN6O2S [M + H]+, 429.1464; found, 429.1521. Purity: 99.09% by HPLC (MeOH/H2O = 80:20, tR = 5.010 min).

N-(4-Fluoro-3-(1H-imidazo[4,5-b]pyridin-7-yl)-5-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)propane-1-sulfonamide (27)

59c was prepared from 57 (2.0 g, 7.44 mmol) and 58c (1.17 g, 8.18 mmol) according to general procedure C. Yellow solid (2.61 g, yield: 93.6%). 60c was prepared from 49b (491 mg, 2.08 mmol) and 59c (600 mg, 1.60 mmol) according to general procedure A. Light yellow solid (554 mg, yield: 85.7%). 61c was prepared from 51 (327 mg, 1.29 mmol) and 60c (400 mg, 0.98 mmol) according to general procedure B. Light yellow oil (331 mg, yield: 74.1%). 27 was prepared from 42 (101 mg, 0.51 mmol) and 61c (300 mg, 0.66 mmol) according to general procedure A. Light yellow solid (164 mg, yield: 55.8%). 1H NMR (300 MHz, chloroform-d): δ 8.97 (s, 1H), 8.54 (d, J = 5.1 Hz, 1H), 8.38 (s, 1H), 7.77 (s, 1H), 7.48 (d, J = 4.5 Hz, 1H), 3.78 (s, 3H), 3.15 (dd, J = 9.4, 6.3 Hz, 2H), 2.16 (s, 3H), 2.14 (s, 3H), 1.90 (h, J = 7.4 Hz, 2H), 1.03 (d, J = 7.4 Hz, 3H). 13C NMR (75 MHz, DMSO-d6): δ 155.01, 151.75, 144.78, 144.55, 144.29, 137.77, 134.70, 125.17, 124.95, 124.01, 123.28, 123.04, 122.93, 118.45, 111.98, 52.89, 36.40, 17.36, 13.06, 12.72, 10.49. HRMS (ESI): calcd for C21H23FN6O2S [M + Na]+, 465.1621; found, 465.1484. Purity: 98.84% by HPLC (MeOH/H2O = 80:20, tR = 3.631 min).

N-(4-Fluoro-3-(1H-imidazo[4,5-b]pyridin-7-yl)-5-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl) Cyclopropanesulfonamide (28)

59d was prepared from 57 (2.0 g, 7.44 mmol) and 58d (1.15 g, 8.18 mmol) according to general procedure C. Yellow solid (2.58 g, yield: 93.0%). 60d was prepared from 49b (493 mg, 2.09 mmol) and 59d (600 mg, 1.61 mmol) according to general procedure A. Yellow solid (547 mg, yield: 84.5%). 61d was prepared from 51 (328 mg, 1.29 mmol) and 60d (400 mg, 0.99 mmol) according to general procedure B. Light yellow oil (324 mg, yield: 72.5%). 28 was prepared from 42 (102 mg, 0.52 mmol) and 61d (300 mg, 0.67 mmol) according to general procedure A. Yellow solid (176 mg, yield: 59.8%). 1H NMR (300 MHz, DMSO-d6): δ 9.92 (s, 1H), 8.55 (s, 1H), 8.47 (d, J = 5.0 Hz, 1H), 7.63 (s, 1H), 7.39 (dd, J = 5.0, 1.4 Hz, 1H), 7.25 (dd, J = 6.2, 2.8 Hz, 1H), 3.75 (s, 3H), 2.75 (tt, J = 7.2, 5.2 Hz, 1H), 2.23 (s, 3H), 2.14 (s, 3H), 1.00 (dq, J = 4.4, 2.5 Hz, 4H). HRMS (ESI): calcd for C21H21FN6O2S [M + H]+, 441.1464; found, 441.1495. Purity: 98.54% by HPLC (MeOH/H2O = 80:20, tR = 4.971 min).

N-(4-Fluoro-3-(1H-imidazo[4,5-b]pyridin-7-yl)-5-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)-1-methyl-1H-pyrazole-4-sulfonamide (29)

59e was prepared from 57 (2.0 g, 7.44 mmol) and 58e (1.48 g, 8.18 mmol) according to general procedure C. Yellow solid (2.79 g, yield: 90.8%). 60e was prepared from 49b (446 mg, 1.89 mmol) and 59e (600 mg, 1.45 mmol) according to general procedure A. Brown solid (542 mg, yield: 84.4%). 61e was prepared from 51 (298.5 mg, 1.18 mmol) and 60e (400 mg, 0.90 mmol) according to general procedure B. Brown oil (324 mg, yield: 73.2%). 29 was prepared from 42 (93 mg, 0.47 mmol) and 61e (300 mg, 0.61 mmol) according to general procedure A. Dark brown solid (182 mg, yield: 61.8%). 1H NMR (300 MHz, DMSO-d6): δ 13.31 (s, 1H), 10.59 (s, 1H), 8.56–8.41 (m, 2H), 7.91 (dd, J = 4.7, 2.3 Hz, 1H), 7.58 (dd, J = 5.9, 2.8 Hz, 1H), 7.33 (dd, J = 5.0, 1.7 Hz, 1H), 7.14 (ddd, J = 15.1, 6.1, 2.8 Hz, 1H), 6.71 (d, J = 2.2 Hz, 1H), 3.93 (s, 3H), 3.73 (s, 3H), 2.15 (s, 3H), 2.05 (d, J = 2.9 Hz, 3H). HRMS (ESI): calcd for C22H21FN8O2S [M + H]+, 481.1526; found, 481.1567. Purity: 97.26% by HPLC (MeOH/H2O = 80:20, tR = 2.999 min).

N-(4-Fluoro-3-(1H-imidazo[4,5-b]pyridin-7-yl)-5-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)pyridine-2-sulfonamide (30)

59f was prepared from 57 (2.0 g, 7.44 mmol) and 58f (1.45 g, 8.18 mmol) according to general procedure C. Yellow solid (2.63 g, yield: 86.3%). 60f was prepared from 49b (449 mg, 1.90 mmol) and 59f (600 mg, 1.46 mmol) according to general procedure A. Brown solid (517 mg, yield: 80.4%). 61f was prepared from 51 (301 mg, 1.20 mmol) and 60f (400 mg, 0.91 mmol) according to general procedure B. Brown oil (342 mg, yield: 77.2%). 30 was prepared from 42 (94 mg, 0.47 mmol) and 61f (300 mg, 0.62 mmol) according to general procedure A. Dark brown solid (158 mg, yield: 53.6%). 1H NMR (300 MHz, DMSO-d6): δ 13.35 (s, 1H), 10.73 (s, 1H), 9.09–8.78 (m, 2H), 8.49 (d, J = 25.0 Hz, 2H), 8.24 (d, J = 7.9 Hz, 1H), 7.81–7.51 (m, 2H), 7.33 (s, 1H), 7.02 (s, 1H), 3.72 (s, 3H), 2.09 (s, 3H), 1.99 (s, 3H). HRMS (ESI): calcd for C23H20FN7O2S [M + H]+, 478.1417; found, 478.1446. Purity: 96.35% by HPLC (MeOH/H2O = 80:20, tR = 5.427 min).

Protein Expression and Purification

The expression and purification of the BRD4 BD1 and BD2 proteins were performed according to our prior report. (68) BRD4 BD1 (K57–E168) and BRD4 BD2 (E352–M457) were expressed from the pET-28b (+) and pET-22b (+) vectors, respectively, in Escherichia coli BL21 (DE3) cells. Protein expression was induced by 1 mM IPTG at 37 °C for 6 h. Cells were collected and then lysed by an ultrasonic cracker in 25 mM Tris buffer containing 300 mM NaCl (pH = 7.4), 0.1% Tween 20, and 0.1% PMSF. The proteins were purified in gradient concentration imidazole buffer using an ÄKTA TM pure 25 (GE Healthcare, Life Sciences) automated purification system. Then, the proteins were further purified on a Superdex 75 column equilibrated with 10 mM HEPES (pH 7.4), 100 mM NaCl, and 5 mM DTT. Last, 15% SDS-PAGE was used for confirming the molecular weight of the purified proteins.

FP-Based Competitive Assay

An FP competition assay was performed to evaluate the inhibition activities of the compounds against BRD4 BD1 and BRD4 BD2. Procedures were performed according to our prior report. (68) Briefly, 5-FAM-labeled (+)-JQ1 was selected as a fluorescent probe. BRD4 BD1 (16 nM), BRD4 BD2 (12 nM), and FAM-(+)-JQ1 (3.7 nM) were diluted to the needed concentrations in the assay buffer. The experiment was implemented in 384-well black flat-bottomed polystyrene plates (Corning #3575). The FP values were detected using a Spectra Max multimode microplate reader (Molecular Devices) with excitation and emission wavelengths at 485 and 535 nm, respectively. For each assay, the polarization value of the blank wells (probe only) was recorded as Pmin; the polarization value of the negative wells (probe and protein) was recorded as Pmax, and the polarization value of the test wells (compound, probe, and protein) was recorded as Ptest. The inhibition rates of the compounds at each concentration point were calculated using the equation as follows: inhibition rate (%) = [1 – (PtestPmin)/(PmaxPmin)] × 100%, and the IC50 values were calculated using GraphPad Prism 8.0 software. The binding affinity of FAM-(+)-JQ1 to BRD4 BD1 and BRD4 BD2 by BLI is 21.0 and 13.8 nM, respectively. Ki was calculated as previously reported. (69,70)

MST Assay

The binding affinity of compounds for BRD4 BD1 and BRD4 BD2 was tested by MST. BRD4 BD1 and BRD4 BD2 proteins were labeled using the Monolith TM RED-NHS second-generation protein labeling kit (NanoTemper). The labeled proteins were diluted into MST buffer and mixed with different concentrations of compounds at a ratio of 1:1, and the temperature gradient field was set by an infrared laser on the Monolith N.115 (NanoTemper Technologies) analyzer. The movement of molecules in the temperature gradient field was tracked by fluorescent dye labeling, tryptophan autofluorescence, and fluorescent fusion protein signals. The affinity of small molecules to BRD4 BD1 or BRD4 BD2 was analyzed by PR Therm Control software.

NMR-Based CPMG Assay

The NMR-based CPMG assay was applied to confirm BRD4 BD1 and the test compound interactions based on the protocols previously described. (71) The assay was conducted on a Bruker AVANCE III-600 MHz (proton frequency) spectrometer equipped with a cryogenically cooled probe (Bruker BioSpin, Germany) at 25 °C. Samples composed of 200 μM test compound and 10 μM BRD4 BD1 in the assay buffer (2% DMSO in D2O PBS) were used for NMR date collection.

Crystallization and Data Collection

Aliquots of the purified BRD4 BD1 and BRD4 BD1 proteins were set up for crystallization using the vapor diffusion method. The complex structure of BRD4 BD1 or BRD4 BD2 and its ligand was grown at 18 °C in 1 μL of the protein with an equal volume of reservoir solution containing 1.8–3.8 M sodium formate and 10% glycerol. Crystals grew to diffracting quality within 1–3 weeks. Data on cocrystalline structures were collected at 100 K on beamline BL17U at the Shanghai Synchrotron Radiation Facility (SSRF) (Shanghai, China).

Aqueous Solubility Study

The solubility was measured using an HPLC assay. The DDO-8926 stock solution was first prepared and then diluted to 6.86–5000 μM. Standard curves were established by the corresponding absorption peak areas of different concentrations. DDO-8926 was added into 1 mL of buffer solution to prepare a saturated solution at 37 °C. The saturated solution was centrifuged, and the supernatant was taken for HPLC (Shimadzu LC-20AT). The saturated solubility was calculated using the standard curve equation. The absorption peak area was determined using a Shimadzu LC-20AT system.

Simulated Gastric and Intestinal Fluid Stability

The SGF and SIF stabilities were measured according to the previous method. (72) A solution of DDO-8926 (10 μL, 10 mM in DMSO) was added to 990 μL of SGF or SIF. This mixture was incubated at 37 °C. Samples were taken (90 μL) after 0.25, 0.5, 1, 2, 4, 8, and 24 h and analyzed by HPLC (Shimadzu LC-20AT). This assay was carried out in triplicates.

RLM Stability

Procedures were performed according to the previous method. (72) DDO-8926 was preincubated with RLMs (0.5 mg/mL) for 5 min at 37 °C in phosphate buffer (100 mM, pH 7.4). Then, 1 mM NADPH was added to initiate the reaction. After incubation for different times (0, 15, 30, 60, and 120 min) at 37 °C, cold acetonitrile was added to precipitate the protein. Then, the samples were centrifuged, and the supernatants were analyzed by LC–MS/MS.

CYP450 Enzyme Inhibition Assay

The assay was conducted in phosphate buffer (100 mM, pH 7.4). For each assay, equal volumes (25 μL) of diluted microsomes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) (0.2 mg/mL final), tested compounds, or positive control inhibitors (10 μM final, DMSO as the negative control) and specific substrates of the isozymes (10 μM final) were preincubated at 37 °C for 5 min. Then, 25 μL of NADPH (1 mM final) was added to initiate the reaction. After 20 min of incubation, 100 μL of cold acetonitrile was added to terminate the reaction. The samples were centrifuged, and the supernatants were analyzed by LC–MS/M (SHIMADZU LCMS-8050) to determine the metabolites. The inhibition rate was calculated using the following equation: inhibition rate (%) = [1 – (formation of the metabolite in the presence of test compound)/(formation of the metabolite of negative control)] × 100%.

Mouse Plasma Protein Binding Rate

The prepared membranes were loaded into the dialysis device, and the device was installed again following manufacturer’s guidelines. The final concentration for the test compound was 2 or 2.5 μM. 50 μL of the spiked plasma solution suspension was immediately transferred to a 96-well plate to act as T = 0 control sample. The samples are treated in the same way as the samples after incubation. At the same time, the remaining spiked plasma solution sample in the plastic plate or a separate plastic tube was incubated for 5 h at 37 °C in a constant temperature shaking box. At T = 5 h, 50 μL of the original spiked plasma solution suspension was transferred to the 96-well plate for analysis. Cells with were loaded with 150 μL of plasma sample and dialyzed against equal volume of PBS. The unit was covered with a gas-permeable lid and incubated for 5 h at 37 °C at 100 rpm in a constant temperature shaking box. At the end of incubation, the lid was removed, and 50 μL of post-dialysis samples was pipetted from both buffer and plasma solution chambers into a separated 96-well plate for analysis. 50 μL of the plasma solution was added to the buffer samples, and an equal volume of PBS was added to the collected plasma solution samples. The plate was shaken at 1000 rpm for 2 min, and 600 μL of 50% ACN/MeOH containing an appropriate internal standard was added to the precipitate protein to release the compound. Then, 100 μL of the supernatant was transferred to new 96-well plates for analysis. 100 μL of distilled water was added to each sample and mixed for analysis by LC–MS/MS.
%Unbound=(arearatiobufferchamber/arearatioplasmasolutionchamber)×100
%Recovery=(arearatiobufferchamber+arearatioplasmasolutionchamber)/(arearatiototalsample)×100

In Vivo Pharmacokinetics Study

All animal experiments were performed in accordance with the protocols approved by the Institutional Animal Care and Use Committee of China Pharmaceutical University. Male SD rats (200–250g) or C57BL/6 mice (18–22 g) (GemPharmatech, Jiangsu, China) were randomly grouped (n = 4 for each group) and administered DDO-8926 intravenously, intraperitoneally, and orally. Blood samples were collected into heparinized Eppendorf tubes at predetermined time points (0, 0.016, 0.083, 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, and 24 h) and centrifuged immediately at 4 °C and 8000 rpm for 5 min. Brain tissue sample was taken at 0.083, 0.25, 0.5, 1.0, 2.0, and 4 h, and a 1 g/mL methanol solution of brain homogenate was prepared to measure the total brain drug levels. The samples were analyzed by LC–MS/MS (SHIMADZU LCMS-8050). The unbound brain drug levels were calculated using the plasma protein unbound factor (fup = 0.01) based on Pollin’s method. (66) The equation for the calculation of fub is as follows: fub = 1/(1 + (((1 – fup)/fub)RAt)), where fub and fup = the fraction unbound in the brain and plasma, respectively; RAt = the ratio of albumin concentration found in the tissue over the plasma and brain, and RAt is 0.50 in Poulin’s method.

Toxicity Evaluation in Mice

All animal experiments were performed in accordance with the protocols approved by the Institutional Animal Care and Use Committee of China Pharmaceutical University. Male C57BL/6 mice (18–22 g) were randomly divided into two groups (n = 12). Mice in the administration group were treated with DDO-8926 (500 mg/kg, po, q.d.) for 2 weeks. Mice in the control group were treated (po, q.d.) with a vehicle. Body weight was monitored every other day. At day 14, blood samples from half of the mice were taken into EDTA-K2 anticoagulation tubes (250 μL); these mice were then sacrificed, and the heart, liver, spleen, lung, and kidney organs were collected. After 10 days of withdrawal, blood samples from the other half of the mice were also taken into EDTA-K2 anticoagulation tubes (250 μL). Blood samples in EDTA K2 tubes were subjected to whole blood cell tests by means of an automated blood counter system (ADVIA 2120). The organs were fixed in 4% formalin and embedded in paraffin for sectioning, and the sections were analyzed by H&E staining.

In Vivo Efficacy Evaluation in SNI Mice

All animal experiments were performed in accordance with the protocols approved by the Institutional Animal Care and Use Committee of China Pharmaceutical University. Male C57BL/6 mice aged 7–8 weeks and weighed 18–22 g were housed at 25 °C with free access to food and water under 12 h light/12 h dark cycle. Animals were acclimated to experimental environments and experimenters and randomly divided into four groups. The animal were anesthetized with an intraperitoneal injection of 4 mL/kg of a mixture of ketamine (17 mg/mL) and xylazine (2.5 mg/mL) in saline. The right leg from the knee to the hip was shaved. After skin incision, the sciatic nerve was exposed at the mid-thigh level and freed of adhering tissue. Then, three terminal branches were gently separated proximal to the poplitea fossa; at this level, the tibial and common peroneal nerves were tightly ligated with 5–0 silk and sectioned distal to the ligation. The sham procedure consisted of the same surgery without ligation and transection of the nerves. Care was taken to avoid damage of the sural nerve. The shaved skin layer was sutured and disinfected, and the animals were kept in a warm environment until recovery from anesthesia. Mice received DDO-8926 (30 mg/kg, ip) 2 h post-operation and daily onward until specified. The vehicle-treated animals received only the vehicle solution. The positive control group received gabapentin (100 mg/kg, ip) as mentioned above. Mice that received different treatments were mixed and housed together in animal cages. Animal welfare was followed after injury by using protocols held in the animal facility, including disinfection of surgical wounds, weight monitoring, fur appearance.

Behavioral Tests

The experimenter placed each mouse in a transparent plexiglas box (10 × 10 × 13 cm). Mice in sham, SNI, and drug treatment groups were familiarized with the application of Von-Frey Hairs (RWD Life Science Co.) under the paw. Recordings of pain sensitivity were then performed before and after surgery. The plantar side of the paw ipsilateral or contralateral to the surgery was stimulated with calibrated Von Frey monofilaments. Monofilaments were perpendicularly applied to the glabrous skin with sufficient force to cause filament bending. Ten stimuli were made with each of a series of Von Frey Hairs comprising the first 11 monofilaments supplied by the manufacturer (0.008, 0.02, 0.04, 0.07, 0.16, 0.40, 0.60, 1.0, 1.4, 2.0, and 4.0 g). The withdrawal threshold was calculated as the average of three trials with time interval in between.

RNA Extraction and qRT-PCR

Animals used for the functional assessment were sacrificed at 15 dpo (n = 6 per group). Then, the spinal cord L5-L6 segments were removed and snap-frozen. Tissue was homogenized with the QIAzol lysis reagent (QIAGEN), and RNA was extracted using the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s guidelines. RNA was quantified with a spectrophotometer (Nano-Drop Technologies) and reverse-transcribed using an Applied Biosystems kit (Thermo Fisher Scientific). Then, the expression of target sequences was quantified by qRT-PCR using the SYBR Green QPCR Master Mix (Agilent Technologies) and the corresponding primers.

Immunofluorescence

A 5 mm length of the lumbar spinal cord, containing the L5 segment, was perfused with 4% paraformaldehyde. The tissue was dehydrated, embedded, and sectioned in a cryostat (Leica CM1950, Leica Microsystems). For immunohistochemical staining, the sections were rehydrated in PBS and blocked with 5% normal donkey serum in PBS 0.3% Triton-X100 for 1 h at room temperature. The sections were then incubated overnight at 4 °C with primary antibodies against a neuronal-specific nuclear protein (NeuN) (1:300, Abcam), ionized calcium-binding adapter molecule 1 (IBA1) (1:500, ab178846-Abcam), and glial fibrillary acidic protein (GFAP) (1:500, E4L7M, XP Rabbit mAb, CST). After rinsing in PBS containing 0.01% Triton-X-100, the sections were incubated in secondary antibodies labeled with Alexa Fluor 488 (1:400; Invitrogen) at room temperature for 2 h. Nuclei were labeled with DAPI staining (1:1000; D9564-10MG-Sigma). A LSM 800 laser scanning confocal microscope (Carl Zeiss, Inc Germany) with peak excitation wavelengths of 488 nm and 340 nm was used to acquire representative images with 20× objectives. ZEN software (Carl Zeiss, Inc Germany) was used to analyze the images. ImageJ software was used to determine the number of positive cells after defining a threshold for background correction.

Molecular Docking

Compounds were imported to Schrödinger 2019. a. The crystal structure of BRD4 BD1 was downloaded from the Protein Data Bank (PDB code 3MXF). The protein was prepared by the Protein Preparation Wizard in the Schrödinger module according to the default values. b. The grid file for BRD4 BD1 was generated using the Receptor Grid Generation in the Schrödinger module with default parameters. c. Compounds were prepared using the LigPrep suite with a standard setting. d. The prepared ligands are flexibly docked using the Ligand Docking (Glide) suite with default settings in the standard precision mode. Pymol was applied to display the interaction between the compound and BRD4 BD1.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00372.

  • Activity results of compounds, bromodomain selectivity of the compound, crystallography information for the complex structures, CYP450 isozyme and hERG ion channel inhibition assay, toxicity evaluation of DDO-8926 in mice, in vivo PK parameters of DDO-8926 in rats, mouse plasma binding rate, and compound structure characterization (PDF)

  • Molecular formula strings (CSV)

  • Predicated binding modes of 9 and 15 (ZIP)

Accession Codes

Atomic coordinates have been deposited in the Protein Data Bank (PDB code: 8IBQ and 8IDH). Authors will release the atomic coordinates upon article publication.

Discovery of 1H‑Imidazo[4,5‑b]pyridine Derivatives as Potent and Selective BET Inhibitors for the Management of Neuropathic Pain

8 views

0 shares

0 downloads

S
1
Supporting Information
Discovery of 1
H
-
I
midazo[4,5
-
b
]pyridine Derivatives as
P
otent and
S
elective
BET
I
nhibitors for
the Management of Neuropathic Pain
X
uet
ao Chen,
,
,
#
Danyan Cao,
§
,
#
Chihong Liu,
,
,
#
Fanying Meng,
,
Zijian Zhang,
,
Rujun Xu,
,
Yuanyuan Tong,
,
Yabin
g
Xin,
,
Weikun Zhang,
,
Wenjing Kang,
,
Qichao Bao,
Jingkang Shen,
§
Bing Xiong,
§
,
,
*
Qidong You,
,
,
*
and
Zhengyu Jiang
,
,
*
Jiang Su Key Laboratory of Drug
Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical
University, Nanjing 210009, China
Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
§
Department of Medi
cinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road,
Shanghai 201203, China
University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
*
Corresponding Author
E
-
mail addresses:
bxiong@simm.ac.cn
(Bing Xiong),
youqd@163.com
(Qidong You),
jiangzhengyucpu@163.com
(Zhengyu Jiang)
Table of Contents:
Table S1. FP and MST assay results
................................
................................
................................
....
S
2
Table S2. Selectivity assessment of
DDO
-
8926
................................
................................
..................
S
3
Table S3. Data and refinement statistics for BRD4
-
21
complexes
................................
......................
S
4
Table S4. CYP450 isozyme inhibiton assay of
DDO
-
8926
................................
................................
.
S
5
Table S5. Summary of the binding rate of
DDO
-
8926
in mouse plasma
................................
............
S
6
Figure S1. hERG ion channel inhibition assay.
................................
................................
...................
S
7
Figure S2. In vivo PK parameters of
DDO
-
8926
in rat.
................................
................................
......
S
8
Figure S3. Toxicity evaluation of
DDO
-
8926
in mice.
................................
................................
........
S
9
Structural characterisation of target compounds.
................................
................................
...............
S
1
0
S
2
T
able S1.
FP and MST assay results
(n
≥2).
Cpd.
Brd4 (1)
K
i
M)
Brd4 (2)
K
i
M)
Cpd.
Brd4 (1)
K
i
M)
Brd4 (2)
K
i
M)
Brd4 (1)
K
d
(
MST,
μ
M
)
(
+)
-
JQ1
0
.0
3
7
±
0.0
08
0
.0
2
9
±
0.0
05
1
6
0.
14
±
0.0
5
0.65
±
0.
06
/
1
4.3
±
0.6
8.1
±
0.7
1
7
0.
33
±
0.
07
1.5
±
0.
1
/
2
12
±
1
8.6
±
0.9
18
4.4
±
0.
3
0.50
±
0.0
3
/
3
2
.4
±
0.
4
2.5
±
0.
2
19
0.80
±
0.
06
1.1
±
0.
1
/
4
4.2
±
0.6
4.1
±
0.7
20
0.
18
±
0.
08
0.67
±
0.
08
/
5
6.5
±
0.
3
7.9
±
0.6
21
0.0
3
1
±
0.00
3
0.
092
±
0.
006
/
6
8.4
±
0.8
13
±
2
22
0.63
±
0.
05
5.3
±
0.
4
/
7
6.2
±
0.5
11
±
1
23
0.
22
±
0.
06
0.43
±
0.
09
/
8
2.2
±
0.
1
5.5
±
0.7
24
0.
31
±
0.
07
1.5
±
0.
1
/
9
1.1
±
0.
1
4.0
±
0.
2
25
0.0
11
±
0.00
1
0.0
15
±
0.00
3
0.051
±
0.005
10
5.6
±
0.
3
7.8
±
0.
4
2
6
(
DDO
-
8
926
)
0.0
15
±
0.00
2
0.0095 ± 0.0007
0.024
±
0.003
11
> 100
> 100
27
0.0
25
±
0.0
06
0.0
37
±
0.0
05
0.19
±
0.02
12
31
±
2
38
±
4
28
0.0
13
±
0.00
3
0.0
23
±
0.0
08
0.027
±
0.004
13
11
±
2
32
±
3
29
0.0
22
±
0.0
08
0.
048
±
0.0
09
0.11
±
0.05
14
23
±
1
21
±
2
30
0.0
21
±
0.00
4
0.
071
±
0.0
07
0.062
±
0.006
1
5
0.
28
±
0.
06
0.68
±
0.0
4

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Bing Xiong - Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, ChinaUniversity of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, ChinaOrcidhttps://orcid.org/0000-0001-9776-8136 Email: bxiong@simm.ac.cn
    • Qidong You - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, ChinaOrcidhttps://orcid.org/0000-0002-8587-0122 Email: youqd@163.com
    • Zhengyu Jiang - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, ChinaOrcidhttps://orcid.org/0000-0002-1671-1582 Email: jiangzhengyucpu@163.com
  • Authors
    • Xuetao Chen - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, ChinaOrcidhttps://orcid.org/0000-0003-4137-3949
    • Danyan Cao - Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
    • Chihong Liu - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Fanying Meng - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Zijian Zhang - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Rujun Xu - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Yuanyuan Tong - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Yabing Xin - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Weikun Zhang - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Wenjing Kang - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Qichao Bao - Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
    • Jingkang Shen - Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
  • Author Contributions

    X.C., D.C., and C.L. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This study was supported by the National Natural Science Foundation of China (81930100 and 82173680), the Jiangsu Province Funds for Distinguished Young Scientists (grant BK20220087), the Young Elite Scientists Sponsorship Program by CAST (no. YESS20180146, China), the Jiangsu Funding Program for Excellent Postdoctoral Talent (2023ZB486), and supported by the Fundamental Research Funds for the Central Universities (2632023GR14).

Abbreviations

ARTICLE SECTIONS
Jump To

BDs

bromodomain

BET

bromodomain and extra-terminal domain

CPMG

Carr–Purcell–Meiboom–Gill

DEGs

differentially expressed genes

FP

fluorescence polarization

GO

gene ontology

GSEA

gene set enrichment analysis

IASP

International Association for the Study of Pain

MST

microscale thermophoresis

NP

neuropathic pain

PK

pharmacokinetic

qRT-PCR

quantitative real-time polymerase chain reaction

RML

rat liver microsomes

SGF

simulated gastric fluid

SIF

simulated intestinal fluid

SNI

spared nerve injury

This article references 72 other publications.

  1. 1
    Richner, M.; Pallesen, L. T.; Ulrichsen, M.; Poulsen, E. T.; Holm, T. H.; Login, H.; Castonguay, A.; Lorenzo, L. E.; Gonçalves, N. P.; Andersen, O. M.; Lykke-Hartmann, K.; Enghild, J. J.; Rønn, L. C. B.; Malik, I. J.; De Koninck, Y.; Bjerrum, O. J.; Vægter, C. B.; Nykjær, A. Sortilin gates neurotensin and BDNF signaling to control peripheral neuropathic pain. Sci. Adv. 2019, 5, 9946,  DOI: 10.1126/sciadv.aav9946
  2. 2
    Wang, Z.; Liu, F.; Wei, M.; Qiu, Y.; Ma, C.; Shen, L.; Huang, Y. Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway. J. Neuroinflammation 2018, 15, 179,  DOI: 10.1186/s12974-018-1215-4
  3. 3
    Wang, K.; Wang, S.; Chen, Y.; Wu, D.; Hu, X.; Lu, Y.; Wang, L.; Bao, L.; Li, C.; Zhang, X. Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain. Cell Res. 2021, 31, 904918,  DOI: 10.1038/s41422-021-00479-9
  4. 4
    Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A. H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N. B.; Eccleston, C.; Kalso, E.; Bennett, D. L.; Dworkin, R. H.; Raja, S. N. Neuropathic pain. Nat. Rev. Dis. Prim. 2017, 3, 17002,  DOI: 10.1038/nrdp.2017.2
  5. 5
    Finnerup, N. B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R. H.; Gilron, I.; Haanpaa, M.; Hansson, P.; Jensen, T. S.; Kamerman, P. R.; Lund, K.; Moore, A.; Raja, S. N.; Rice, A. S.; Rowbotham, M.; Sena, E.; Siddall, P.; Smith, B. H.; Wallace, M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. J. Vasc. Surg. 2015, 62, 10911173,  DOI: 10.1016/j.jvs.2015.08.010
  6. 6
    Mathieson, S.; Lin, C.-W. C.; Underwood, M.; Eldabe, S. Pregabalin and gabapentin for pain. BMJ 2020, 369, m1315,  DOI: 10.1136/bmj.m1315
  7. 7
    Tesfaye, S.; Sloan, G.; Petrie, J.; White, D.; Bradburn, M.; Julious, S.; Rajbhandari, S.; Sharma, S.; Rayman, G.; Gouni, R.; Alam, U.; Cooper, C.; Loban, A.; Sutherland, K.; Glover, R.; Waterhouse, S.; Turton, E.; Horspool, M.; Gandhi, R.; Maguire, D.; Jude, E. B.; Ahmed, S. H.; Vas, P.; Hariman, C.; McDougall, C.; Devers, M.; Tsatlidis, V.; Johnson, M.; Rice, A. S. C.; Bouhassira, D.; Bennett, D. L.; Selvarajah, D.; group, O.-D. t. Comparison of amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline, and duloxetine supplemented with pregabalin for the treatment of diabetic peripheral neuropathic pain (OPTION-DM): a multicentre, double-blind, randomised crossover trial. Lancet 2022, 400, 680690,  DOI: 10.1016/s0140-6736(22)01472-6
  8. 8
    Tanabe, M.; Ono, K.; Honda, M.; Ono, H. Gabapentin and pregabalin ameliorate mechanical hypersensitivity after spinal cord injury in mice. Eur. J. Pharmacol. 2009, 609, 6568,  DOI: 10.1016/j.ejphar.2009.03.020
  9. 9
    Kremer, M.; Salvat, E.; Muller, A.; Yalcin, I.; Barrot, M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 2016, 338, 183206,  DOI: 10.1016/j.neuroscience.2016.06.057
  10. 10
    Kuehn, B. M. Gabapentin Increasingly Implicated in Overdose Deaths. JAMA 2022, 327, 2387,  DOI: 10.1001/jama.2022.10100
  11. 11
    Anand, P.; Bley, K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011, 107, 490502,  DOI: 10.1093/bja/aer260
  12. 12
    Romanelli, M. N.; Borgonetti, V.; Galeotti, N. Dual BET/HDAC inhibition to relieve neuropathic pain: Recent advances, perspectives, and future opportunities. Pharmacol. Res. 2021, 173, 105901,  DOI: 10.1016/j.phrs.2021.105901
  13. 13
    Mauceri, D. Role of Epigenetic Mechanisms in Chronic Pain. Cells 2022, 11, 2613,  DOI: 10.3390/cells11162613
  14. 14
    Ghosh, K.; Pan, H. L. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem. Neurosci. 2022, 13, 432441,  DOI: 10.1021/acschemneuro.1c00841
  15. 15
    Descalzi, G.; Ikegami, D.; Ushijima, T.; Nestler, E. J.; Zachariou, V.; Narita, M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015, 38, 237246,  DOI: 10.1016/j.tins.2015.02.001
  16. 16
    Ghosh, K.; Pan, H.-L. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem. Neurosci. 2022, 13, 432441,  DOI: 10.1021/acschemneuro.1c00841
  17. 17
    Spering, M.; Carrasco, M. Acting without seeing: eye movements reveal visual processing without awareness. Trends Neurosci. 2015, 38, 247258,  DOI: 10.1016/j.tins.2015.02.002
  18. 18
    Ligon, C. O.; Moloney, R. D.; Greenwood-Van Meerveld, B. Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. J. Pharmacol. Exp. Ther. 2016, 357, 8493,  DOI: 10.1124/jpet.115.231670
  19. 19
    Odell, D. W. Epigenetics of pain mediators. Curr. Opin. Anaesthesiol. 2018, 31, 402406,  DOI: 10.1097/aco.0000000000000613
  20. 20
    Denk, F.; McMahon, S. B. Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 2012, 73, 435444,  DOI: 10.1016/j.neuron.2012.01.012
  21. 21
    Sun, C.; An, Q.; Li, R.; Chen, S.; Gu, X.; An, S.; Wang, Z. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci. Ther. 2021, 27, 14091424,  DOI: 10.1111/cns.13720
  22. 22
    Wang, J.; Chen, J.; Jin, H.; Lin, D.; Chen, Y.; Chen, X.; Wang, B.; Hu, S.; Wu, Y.; Wu, Y.; Zhou, Y.; Tian, N.; Gao, W.; Wang, X.; Zhang, X. BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats. J. Cell Mol. Med. 2019, 23, 32143223,  DOI: 10.1111/jcmm.14196
  23. 23
    Li, Y.; Xiang, J.; Zhang, J.; Lin, J.; Wu, Y.; Wang, X. Inhibition of Brd4 by JQ1 Promotes Functional Recovery From Spinal Cord Injury by Activating Autophagy. Front. Cell. Neurosci. 2020, 14, 555591,  DOI: 10.3389/fncel.2020.555591
  24. 24
    Rudman, M. D.; Choi, J. S.; Lee, H. E.; Tan, S. K.; Ayad, N. G.; Lee, J. K. Bromodomain and extraterminal domain-containing protein inhibition attenuates acute inflammation after spinal cord injury. Exp. Neurol. 2018, 309, 181192,  DOI: 10.1016/j.expneurol.2018.08.005
  25. 25
    Ferri, E.; Petosa, C.; McKenna, C. E. Bromodomains: Structure, function and pharmacology of inhibition. Biochem. Pharmacol. 2016, 106, 118,  DOI: 10.1016/j.bcp.2015.12.005
  26. 26
    Takahashi, K.; Yi, H.; Liu, C.-H.; Liu, S.; Kashiwagi, Y.; Patin, D. J.; Hao, S. Spinal bromodomain-containing protein 4 contributes to neuropathic pain induced by HIV glycoprotein 120 with morphine in rats. Neuroreport 2018, 29, 441446,  DOI: 10.1097/wnr.0000000000000992
  27. 27
    Palomes-Borrajo, G.; Badia, J.; Navarro, X.; Penas, C. Nerve Excitability and Neuropathic Pain is Reduced by BET Protein Inhibition After Spared Nerve Injury. J. Pain 2021, 22, 16171630,  DOI: 10.1016/j.jpain.2021.05.005
  28. 28
    Vasavda, C.; Xu, R.; Liew, J.; Kothari, R.; Dhindsa, R. S.; Semenza, E. R.; Paul, B. D.; Green, D. P.; Sabbagh, M. F.; Shin, J. Y.; Yang, W.; Snowman, A. M.; Albacarys, L. K.; Moghekar, A.; Pardo-Villamizar, C. A.; Luciano, M.; Huang, J.; Bettegowda, C.; Kwatra, S. G.; Dong, X.; Lim, M.; Snyder, S. H. Identification of the NRF2 transcriptional network as a therapeutic target for trigeminal neuropathic pain. Sci. Adv. 2022, 8, eabo5633  DOI: 10.1126/sciadv.abo5633
  29. 29
    Borgonetti, V.; Galeotti, N. Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacol. Res. 2021, 165, 105431,  DOI: 10.1016/j.phrs.2021.105431
  30. 30
    Borgonetti, V.; Meacci, E.; Pierucci, F.; Romanelli, M. N.; Galeotti, N. Dual HDAC/BRD4 Inhibitors Relieves Neuropathic Pain by Attenuating Inflammatory Response in Microglia After Spared Nerve Injury. Neurotherapeutics 2022, 19, 16341648,  DOI: 10.1007/s13311-022-01243-6
  31. 31
    Liu, Z.; Chen, H.; Wang, P.; Li, Y.; Wold, E. A.; Leonard, P. G.; Joseph, S.; Brasier, A. R.; Tian, B.; Zhou, J. Discovery of Orally Bioavailable Chromone Derivatives as Potent and Selective BRD4 Inhibitors: Scaffold Hopping, Optimization, and Pharmacological Evaluation. J. Med. Chem. 2020, 63, 52425256,  DOI: 10.1021/acs.jmedchem.0c00035
  32. 32
    Hu, J.; Tian, C. Q.; Damaneh, M. S.; Li, Y.; Cao, D.; Lv, K.; Yu, T.; Meng, T.; Chen, D.; Wang, X.; Chen, L.; Li, J.; Song, S. S.; Huan, X. J.; Qin, L.; Shen, J.; Wang, Y. Q.; Miao, Z. H.; Xiong, B. Structure-Based Discovery and Development of a Series of Potent and Selective Bromodomain and Extra-Terminal Protein Inhibitors. J. Med. Chem. 2019, 62, 86428663,  DOI: 10.1021/acs.jmedchem.9b01094
  33. 33
    Zhang, M.; Zhang, Y.; Song, M.; Xue, X.; Wang, J.; Wang, C.; Zhang, C.; Li, C.; Xiang, Q.; Zou, L.; Wu, X.; Wu, C.; Dong, B.; Xue, W.; Zhou, Y.; Chen, H.; Wu, D.; Ding, K.; Xu, Y. Structure-Based Discovery and Optimization of Benzo[ d]isoxazole Derivatives as Potent and Selective BET Inhibitors for Potential Treatment of Castration-Resistant Prostate Cancer (CRPC). J. Med. Chem. 2018, 61, 30373058,  DOI: 10.1021/acs.jmedchem.8b00103
  34. 34
    Huang, Y.; Liu, N.; Pan, Z.; Li, Z.; Sheng, C. BET-HDAC Dual Inhibitors for Combinational Treatment of Breast Cancer and Concurrent Candidiasis. J. Med. Chem. 2023, 66, 12391253,  DOI: 10.1021/acs.jmedchem.2c01191
  35. 35
    Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J. P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Muller, S.; Pawson, T.; Gingras, A. C.; Arrowsmith, C. H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149, 214231,  DOI: 10.1016/j.cell.2012.02.013
  36. 36
    Zhao, Y.; Bai, L.; Liu, L.; McEachern, D.; Stuckey, J. A.; Meagher, J. L.; Yang, C. Y.; Ran, X.; Zhou, B.; Hu, Y.; Li, X.; Wen, B.; Zhao, T.; Li, S.; Sun, D.; Wang, S. Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethy lisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor. J. Med. Chem. 2017, 60, 38873901,  DOI: 10.1021/acs.jmedchem.7b00193
  37. 37
    He, S.; Dong, G.; Li, Y.; Wu, S.; Wang, W.; Sheng, C. Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angew. Chem., Int. Ed. 2020, 59, 3028,  DOI: 10.1002/anie.201915896
  38. 38
    Liu, Z.; Li, Y.; Chen, H.; Lai, H.-T.; Wang, P.; Wu, S.-Y.; Wold, E. A.; Leonard, P. G.; Joseph, S.; Hu, H.; Chiang, C.-M.; Brasier, A. R.; Tian, B.; Zhou, J. Discovery, X-ray Crystallography, and Anti-inflammatory Activity of Bromodomain-containing Protein 4 (BRD4) BD1 Inhibitors Targeting a Distinct New Binding Site. J. Med. Chem. 2022, 65, 23882408,  DOI: 10.1021/acs.jmedchem.1c01851
  39. 39
    Zeng, L.; Zhou, M.-M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002, 513, 124128,  DOI: 10.1016/s0014-5793(01)03309-9
  40. 40
    Liu, Z.; Wang, P.; Chen, H.; Wold, E. A.; Tian, B.; Brasier, A. R.; Zhou, J. Drug Discovery Targeting Bromodomain-Containing Protein 4. J. Med. Chem. 2017, 60, 45334558,  DOI: 10.1021/acs.jmedchem.6b01761
  41. 41
    Tang, P.; Zhang, J.; Liu, J.; Chiang, C. M.; Ouyang, L. Targeting Bromodomain and Extraterminal Proteins for Drug Discovery: From Current Progress to Technological Development. J. Med. Chem. 2021, 64, 24192435,  DOI: 10.1021/acs.jmedchem.0c01487
  42. 42
    Cui, H.; Carlson, A. S.; Schleiff, M. A.; Divakaran, A.; Johnson, J. A.; Buchholz, C. R.; Zahid, H.; Vail, N. R.; Shi, K.; Aihara, H.; Harki, D. A.; Miller, G. P.; Topczewski, J. J.; Pomerantz, W. C. K. 4-Methyl-1,2,3-Triazoles as N-Acetyl-Lysine Mimics Afford Potent BET Bromodomain Inhibitors with Improved Selectivity. J. Med. Chem. 2021, 64, 1049710511,  DOI: 10.1021/acs.jmedchem.1c00933
  43. 43
    Chen, J.; Tang, P.; Wang, Y.; Wang, J.; Yang, C.; Li, Y.; Yang, G.; Wu, F.; Zhang, J.; Ouyang, L. Targeting Bromodomain-Selective Inhibitors of BET Proteins in Drug Discovery and Development. J. Med. Chem. 2022, 65, 51845211,  DOI: 10.1021/acs.jmedchem.1c01835
  44. 44
    Liang, D.; Yu, Y.; Ma, Z. Novel strategies targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery. Eur. J. Med. Chem. 2020, 200, 112426,  DOI: 10.1016/j.ejmech.2020.112426
  45. 45
    Hajmirza, A.; Emadali, A.; Gauthier, A.; Casasnovas, O.; Gressin, R.; Callanan, M. B. BET Family Protein BRD4: An Emerging Actor in NFκB Signaling in Inflammation and Cancer. Biomedicines 2018, 6, 16,  DOI: 10.3390/biomedicines6010016
  46. 46
    Chiang, C. M. Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 Biol. Rep. 2009, 1, 98,  DOI: 10.3410/b1-98
  47. 47
    Duan, Y.; Guan, Y.; Qin, W.; Zhai, X.; Yu, B.; Liu, H. Targeting Brd4 for cancer therapy: inhibitors and degraders. Medchemcomm 2018, 9, 17791802,  DOI: 10.1039/c8md00198g
  48. 48
    Xue, X.; Zhang, Y.; Wang, C.; Zhang, M.; Xiang, Q.; Wang, J.; Wang, A.; Li, C.; Zhang, C.; Zou, L.; Wang, R.; Wu, S.; Lu, Y.; Chen, H.; Ding, K.; Li, G.; Xu, Y. Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer. Eur. J. Med. Chem. 2018, 152, 542559,  DOI: 10.1016/j.ejmech.2018.04.034
  49. 49
    Miyoshi, S.; Ooike, S.; Iwata, K.; Hikawa, H.; Sugahara, K. Antitumor agent. WO 2009084693 A1, 2009.
  50. 50
    Cochran, A. G.; Conery, A. R.; Sims, R. J. Bromodomains: a new target class for drug development. Nat. Rev. Drug Discovery 2019, 18, 609628,  DOI: 10.1038/s41573-019-0030-7
  51. 51
    Coudé, M.-M.; Braun, T.; Berrou, J.; Dupont, M.; Bertrand, S.; Masse, A.; Raffoux, E.; Itzykson, R.; Delord, M.; Riveiro, M. E.; Herait, P.; Baruchel, A.; Dombret, H.; Gardin, C. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget 2015, 6, 1769817712,  DOI: 10.18632/oncotarget.4131
  52. 52
    Vázquez, R.; Riveiro, M. E.; Astorgues-Xerri, L.; Odore, E.; Rezai, K.; Erba, E.; Panini, N.; Rinaldi, A.; Kwee, I.; Beltrame, L.; Bekradda, M.; Cvitkovic, E.; Bertoni, F.; Frapolli, R.; D’Incalci, M. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget 2016, 8, 75987613,  DOI: 10.18632/oncotarget.13814
  53. 53
    Albrecht, B. K.; Gehling, V. S.; Hewitt, M. C.; Vaswani, R. G.; Cote, A.; Leblanc, Y.; Nasveschuk, C. G.; Bellon, S.; Bergeron, L.; Campbell, R.; Cantone, N.; Cooper, M. R.; Cummings, R. T.; Jayaram, H.; Joshi, S.; Mertz, J. A.; Neiss, A.; Normant, E.; O’Meara, M.; Pardo, E.; Poy, F.; Sandy, P.; Supko, J.; Sims, R. J., 3rd; Harmange, J. C.; Taylor, A. M.; Audia, J. E. Identification of a Benzoisoxazoloazepine Inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) Family as a Candidate for Human Clinical Trials. J. Med. Chem. 2016, 59, 13301339,  DOI: 10.1021/acs.jmedchem.5b01882
  54. 54
    Siu, K. T.; Eda, H.; Santo, L.; Ramachandran, J.; Koulnis, M.; Mertz, J.; Sims, R. J.; Cooper, M.; Raje, N. S. Effect of the BET Inhibitor, Cpi-0610, Alone and in Combination with Lenalidomide in Multiple Myeloma. Blood 2015, 126, 4255,  DOI: 10.1182/blood.v126.23.4255.4255
  55. 55
    Gavai, A. V.; Norris, D.; Delucca, G.; Tortolani, D.; Tokarski, J. S.; Dodd, D.; O’Malley, D.; Zhao, Y.; Quesnelle, C.; Gill, P.; Vaccaro, W.; Huynh, T.; Ahuja, V.; Han, W.-C.; Mussari, C.; Harikrishnan, L.; Kamau, M.; Poss, M.; Sheriff, S.; Yan, C.; Marsilio, F.; Menard, K.; Wen, M.-L.; Rampulla, R.; Wu, D.-R.; Li, J.; Zhang, H.; Li, P.; Sun, D.; Yip, H.; Traeger, S. C.; Zhang, Y.; Mathur, A.; Zhang, H.; Huang, C.; Yang, Z.; Ranasinghe, A.; Everlof, G.; Raghavan, N.; Tye, C. K.; Wee, S.; Hunt, J. T.; Vite, G.; Westhouse, R.; Lee, F. Y. Discovery and Preclinical Pharmacology of an Oral Bromodomain and Extra-Terminal (BET) Inhibitor Using Scaffold-Hopping and Structure-Guided Drug Design. J. Med. Chem. 2021, 64, 1424714265,  DOI: 10.1021/acs.jmedchem.1c00625
  56. 56
    Yin, M.; Guo, Y.; Hu, R.; Cai, W. L.; Li, Y.; Pei, S.; Sun, H.; Peng, C.; Li, J.; Ye, R.; Yang, Q.; Wang, N.; Tao, Y.; Chen, X.; Yan, Q. Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nat. Commun. 2020, 11, 1833,  DOI: 10.1038/s41467-020-15290-0
  57. 57
    McDaniel, K. F.; Wang, L.; Soltwedel, T.; Fidanze, S. D.; Hasvold, L. A.; Liu, D.; Mantei, R. A.; Pratt, J. K.; Sheppard, G. S.; Bui, M. H.; Faivre, E. J.; Huang, X.; Li, L.; Lin, X.; Wang, R.; Warder, S. E.; Wilcox, D.; Albert, D. H.; Magoc, T. J.; Rajaraman, G.; Park, C. H.; Hutchins, C. W.; Shen, J. J.; Edalji, R. P.; Sun, C. C.; Martin, R.; Gao, W.; Wong, S.; Fang, G.; Elmore, S. W.; Shen, Y.; Kati, W. M. Discovery of N-(4-(2,4-Difluorophenoxy)-3-(6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)ethanesulfonamide (ABBV-075/Mivebresib), a Potent and Orally Available Bromodomain and Extraterminal Domain (BET) Family Bromodomain Inhibitor. J. Med. Chem. 2017, 60, 83698384,  DOI: 10.1021/acs.jmedchem.7b00746
  58. 58
    Sheppard, G. S.; Wang, L.; Fidanze, S. D.; Hasvold, L. A.; Liu, D.; Pratt, J. K.; Park, C. H.; Longenecker, K.; Qiu, W.; Torrent, M.; Kovar, P. J.; Bui, M.; Faivre, E.; Huang, X.; Lin, X.; Wilcox, D.; Zhang, L.; Shen, Y.; Albert, D. H.; Magoc, T. J.; Rajaraman, G.; Kati, W. M.; McDaniel, K. F. Discovery of N-Ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)-5-(1-hydroxy-1-methyl-ethyl)phenyl]- 6-methyl-7-oxo-1H-pyrrolo[2,3-c]pyridine-2-carboxamide (ABBV-744), a BET Bromodomain Inhibitor with Selectivity for the Second Bromodomain. J. Med. Chem. 2020, 63, 55855623,  DOI: 10.1021/acs.jmedchem.0c00628
  59. 59
    Faivre, E. J.; McDaniel, K. F.; Albert, D. H.; Mantena, S. R.; Plotnik, J. P.; Wilcox, D.; Zhang, L.; Bui, M. H.; Sheppard, G. S.; Wang, L.; Sehgal, V.; Lin, X.; Huang, X.; Lu, X.; Uziel, T.; Hessler, P.; Lam, L. T.; Bellin, R. J.; Mehta, G.; Fidanze, S.; Pratt, J. K.; Liu, D.; Hasvold, L. A.; Sun, C.; Panchal, S. C.; Nicolette, J. J.; Fossey, S. L.; Park, C. H.; Longenecker, K.; Bigelow, L.; Torrent, M.; Rosenberg, S. H.; Kati, W. M.; Shen, Y. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature 2020, 578, 306310,  DOI: 10.1038/s41586-020-1930-8
  60. 60
    Picaud, S.; Wells, C.; Felletar, I.; Brotherton, D.; Martin, S.; Savitsky, P.; Diez-Dacal, B.; Philpott, M.; Bountra, C.; Lingard, H.; Fedorov, O.; Muller, S.; Brennan, P. E.; Knapp, S.; Filippakopoulos, P. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 1975419759,  DOI: 10.1073/pnas.1310658110
  61. 61
    Ayotte, Y.; Marando, V. M.; Vaillancourt, L.; Bouchard, P.; Heffron, G.; Coote, P. W.; Larda, S. T.; LaPlante, S. R. Exposing Small-Molecule Nanoentities by a Nuclear Magnetic Resonance Relaxation Assay. J. Med. Chem. 2019, 62, 78857896,  DOI: 10.1021/acs.jmedchem.9b00653
  62. 62
    Urick, A. K.; Calle, L. P.; Espinosa, J. F.; Hu, H.; Pomerantz, W. C. Protein-Observed Fluorine NMR Is a Complementary Ligand Discovery Method to (1)H CPMG Ligand-Observed NMR. ACS Chem. Biol. 2016, 11, 31543164,  DOI: 10.1021/acschembio.6b00730
  63. 63
    Pennington, L. D.; Aquila, B. M.; Choi, Y.; Valiulin, R. A.; Muegge, I. Positional Analogue Scanning: An Effective Strategy for Multiparameter Optimization in Drug Design. J. Med. Chem. 2020, 63, 89568976,  DOI: 10.1021/acs.jmedchem.9b02092
  64. 64
    Li, Y.; Zhao, J.; Gutgesell, L. M.; Shen, Z.; Ratia, K.; Dye, K.; Dubrovskyi, O.; Zhao, H.; Huang, F.; Tonetti, D. A.; Thatcher, G. R. J.; Xiong, R. Novel Pyrrolopyridone Bromodomain and Extra-Terminal Motif (BET) Inhibitors Effective in Endocrine-Resistant ER+ Breast Cancer with Acquired Resistance to Fulvestrant and Palbociclib. J. Med. Chem. 2020, 63, 71867210,  DOI: 10.1021/acs.jmedchem.0c00456
  65. 65
    Wang, L.; Pratt, J. K.; Soltwedel, T.; Sheppard, G. S.; Fidanze, S. D.; Liu, D.; Hasvold, L. A.; Mantei, R. A.; Holms, J. H.; McClellan, W. J.; Wendt, M. D.; Wada, C.; Frey, R.; Hansen, T. M.; Hubbard, R.; Park, C. H.; Li, L.; Magoc, T. J.; Albert, D. H.; Lin, X.; Warder, S. E.; Kovar, P.; Huang, X.; Wilcox, D.; Wang, R.; Rajaraman, G.; Petros, A. M.; Hutchins, C. W.; Panchal, S. C.; Sun, C.; Elmore, S. W.; Shen, Y.; Kati, W. M.; McDaniel, K. F. Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors. J. Med. Chem. 2017, 60, 38283850,  DOI: 10.1021/acs.jmedchem.7b00017
  66. 66
    Poulin, P.; Theil, F. P. Prediction of Pharmacokinetics Prior to In Vivo Studies. 1. Mechanism-Based Prediction of Volume of Distribution. J. Pharm. Sci. 2002, 91, 129156,  DOI: 10.1002/jps.10005
  67. 67
    Decosterd, I.; Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87, 149158,  DOI: 10.1016/s0304-3959(00)00276-1
  68. 68
    Chen, X.; Meng, F.; Zhang, J.; Zhang, Z.; Ye, X.; Zhang, W.; Tong, Y.; Ji, X.; Xu, R.; Xu, X. L.; You, Q. D.; Jiang, Z. Y. Discovery of 2-((2-methylbenzyl)thio)-6-oxo-4-(3,4,5-trimethoxyphenyl)-1,6-dihydropyrimidine-5 -carbonitrile as a novel and effective bromodomain and extra-terminal (BET) inhibitor for the treatment of sepsis. Eur. J. Med. Chem. 2022, 238, 114423,  DOI: 10.1016/j.ejmech.2022.114423
  69. 69
    Zhang, R.; Mayhood, T.; Lipari, P.; Wang, Y.; Durkin, J.; Syto, R.; Gesell, J.; McNemar, C.; Windsor, W. Fluorescence polarization assay and inhibitor design for MDM2/p53 interaction. Anal. Biochem. 2004, 331, 138146,  DOI: 10.1016/s0003-2697(04)00223-4
  70. 70
    Ran, X.; Zhao, Y.; Liu, L.; Bai, L.; Yang, C. Y.; Zhou, B.; Meagher, J. L.; Chinnaswamy, K.; Stuckey, J. A.; Wang, S. Structure-Based Design of gamma-Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors. J. Med. Chem. 2015, 58, 49274939,  DOI: 10.1021/acs.jmedchem.5b00613
  71. 71
    Jiang, F.; Guo, A. P.; Xu, J. C.; You, Q. D.; Xu, X. L. Discovery of a Potent Grp94 Selective Inhibitor with Anti-Inflammatory Efficacy in a Mouse Model of Ulcerative Colitis. J. Med. Chem. 2018, 61, 95139533,  DOI: 10.1021/acs.jmedchem.8b00800
  72. 72
    Zhu, P. J.; Yu, Z. Z.; Lv, Y. F.; Zhao, J. L.; Tong, Y. Y.; You, Q. D.; Jiang, Z. Y. Discovery of 3,5-Dimethyl-4-Sulfonyl-1H-Pyrrole-Based Myeloid Cell Leukemia 1 Inhibitors with High Affinity, Selectivity, and Oral Bioavailability. J. Med. Chem. 2021, 64, 1133011353,  DOI: 10.1021/acs.jmedchem.1c00682

Cited By

ARTICLE SECTIONS
Jump To
Citation Statements
  • Supporting
    Supporting0
  • Mentioning
    Mentioning1
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 1 publications.

  1. Yangfeng Li, Zhengnan Shen, Kiira Ratia, Jiong Zhao, Fei Huang, Oleksii Dubrovyskyii, Divakar Indukuri, Jiqiang Fu, Omar Lozano Ramos, Gregory R. J. Thatcher, Rui Xiong. Structure-Guided Design and Synthesis of Pyridinone-Based Selective Bromodomain and Extra-Terminal Domain (BET)-First Bromodomain (BD1) Inhibitors. Journal of Medicinal Chemistry 2024, 67 (4) , 2712-2731. https://doi.org/10.1021/acs.jmedchem.3c01837
  • Abstract 摘要

    Figure 1 图 1

    Figure 1. Hit identification and hit-to-lead optimization. (A) Screening of the in-house compound library to find new hits. (B) The 1H CPMG spectra of hit compound 1 and BRD4 BD1 were superimposed on the 1H NMR spectrum of 1 (up) and the 1H NMR spectrum of 1 (down). (C) The SAR of the pyrrolopyridine core modifications resulted in the lead compound 9. See Table S1 for SD values.
    图 1.新药鉴定和新药对先导的优化。(A) 筛选内部化合物库以寻找新的命中点。(B) 将命中化合物 1 和 BRD4 BD1 的 {{0}和 BRD4 BD1 的{{1}H NMR 光谱叠加。}1 的 1 H NMR 光谱(向上)和 1 H NMR 光谱(向下)叠加。1(下)的 1 H NMR 光谱叠加。(C) 吡咯并吡啶核心修饰的 SAR 结果为先导化合物 9。SD 值见表 S1。

    Figure 2

    Figure 2. Docking of 9 suggested that the trimethoxyphenyl substituent may engage the WPF shelf, which led to the design of several aryl derivatives. Docking analysis of compound 9 (yellow) with BRD4 BD1 (left, PDB ID: 3MXF). Docking analysis of compound 15 (yellow) with BRD4 BD1 (right, PDB ID: 3MXF). Salmon indicates the WPF shelf, red indicates Asn140, orange indicates the BC loop, and green indicates the ZA channel. See Table S1 for SD values.

    Figure 3

    Figure 3. SAR of substitutions to the phenyl ring and the co-crystal structure of compound 21 complexed with BRD4 BD1 and BD2 proteins. (A) SAR of substitutions to the phenyl ring. See Table S1 for SD values. (B) Crystal structure of BRD4 BD1 (light pink) bound to 21 (yellow) (PDB ID: 8IBQ). (C) Crystal structure of BRD4 BD2 (lime green) bound to 21 (yellow) (PDB ID: 8IDH). The ligands and side chains of important residues are shown in a stick model; the hydrogen bond (green) and π–π conjugation (pink) are indicated by the dashed line. (D) Crystal structure of 21 bound to BRD4 BD1 (surface representation: salmon indicates the WPF shelf, cyan indicates Asn140, orange indicates the BC loop, and green indicates the ZA channel).

    Figure 4

    Figure 4. Selectivity assessment of DDO-8926 against a panel of bromodomains using a DiscoverX BROMOscan platform at 1 μM. Percent control = [(test compound signal – positive control signal)/(negative control signal – positive control signal)] × 100.

    Figure 5

    Figure 5. In vivo PK parameters of DDO-8926 in male mice. The values shown are the means ± SEM (n = 4).

    Figure 6

    Figure 6. DDO-8926 attenuates NP hypersensitivity. (A) Distribution of DDO-8926 in the plasma and brain of mice. (B) Experimental scheme depicting the in vivo analgesic evaluation of DDO-8926. (C) Analgesic effect of gabapentin (100 mg/kg, ip) and DDO-8926 (30 mg/kg, ip) on SNI-induced NP response tested by ipsilateral stimulation. (D) Analgesic effects of gabapentin (100 mg/kg, ip) and DDO-8926 (30 mg/kg, ip) at 15 days post-operation (dpo). Results were expressed as mean ± SEM (n = 6), (ns) < 0.1, (*) P < 0.05, (**) P < 0.01, (***) P < 0.001, and (****) P < 0.0001 compared with the SNI (vehicle) group, one-way ANOVA with the Tukey–Kramer post-test.

    Figure 7

    Figure 7. DDO-8926 regulates genes involved in the generation and transfer of action potentials and inflammatory response. (A) These volcano maps show DEGs after SNI surgery and DDO-8926 treatment. (B) GO enrichment analysis of DEGs between vehicle and DDO-8926 treatment. GSEA analysis of (C) ion transfer, (D) glial cell migration, (E) action potential, and (F) inflammatory response between vehicle and DDO-8926 treatment.

    Figure 8

    Figure 8. DDO-8926 reduces microglial and neuronal activation in the spinal cord after SNI and has no effect on astrocytes. Representative microphotographs from the L5 spinal dorsal horn of the ipsilateral hemisections labeled with (A) NeuN, (B) IBA1, and (C) GFAP of Sham, SNI (vehicle), and SNI (DDO-8926 30 mg/kg) groups at 15 dpo. Representative microphotographs (left) and positive cells (right). Results were expressed as mean ± SEM (n = 3), (ns) < 0.1, (***) P < 0.001, and (****) P < 0.0001 compared with the SNI (vehicle) group, one-way ANOVA with the Tukey–Kramer post-test.

    Figure 9

    Figure 9. DDO-8926 alleviates inflammation and affects the expression of ion channels and the Na+/K+ ATPase pump in the spinal cord at 15 dpo after SNI. (A) DDO-8926 downregulates the expression of pro-inflammatory factor mRNA in the spinal cord after SNI. DDO-8926 inhibits SNI-induced mRNA expression of (B) voltage-gated sodium channels and (C) voltage-gated potassium channels. (D) DDO-8926 reduces the SNI-induced mRNA expression of the αNKA subunit of the Na+/K+ ATPase pump. Results were expressed as mean ± SEM (n = 6), (**) P < 0.01, (***) P < 0.001, and (****) P < 0.0001 compared with the SNI (vehicle) group, one-way ANOVA with the Tukey–Kramer post-test.

    Scheme 1

    Scheme 1. Reagents and Conditions: (a) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h and (b) THF, 80 °C, 4 h

    Scheme 2

    Scheme 2. Reagents and Conditions: (a) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h; (b) AcOK, Pd(dppf)Cl2·CH2Cl2, Dry 1,4-Dioxane, 100 °C, 3 h; (c) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 7 h; and (d) Cs2CO3, DMF, r.t., 5 h

    Scheme 3

    Scheme 3. Reagents and Conditions: (a) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h; (b) AcOK, Pd(dppf)Cl2·CH2Cl2, Dry 1,4-Dioxane, 100 °C, 3 h; and (c) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 7 h

    Scheme 4

    Scheme 4. Reagents and Conditions: (a) Pyridine, CH2Cl2, r.t., 4 h; (b) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 3 h; (c) AcOK, Pd(dppf)Cl2·CH2Cl2, Dry 1,4-Dioxane, 100 °C, 3 h; and (d) Cs2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-Dioxane, H2O, 100 °C, 7 h
  • References

    ARTICLE SECTIONS
    Jump To

    This article references 72 other publications.

    1. 1
      Richner, M.; Pallesen, L. T.; Ulrichsen, M.; Poulsen, E. T.; Holm, T. H.; Login, H.; Castonguay, A.; Lorenzo, L. E.; Gonçalves, N. P.; Andersen, O. M.; Lykke-Hartmann, K.; Enghild, J. J.; Rønn, L. C. B.; Malik, I. J.; De Koninck, Y.; Bjerrum, O. J.; Vægter, C. B.; Nykjær, A. Sortilin gates neurotensin and BDNF signaling to control peripheral neuropathic pain. Sci. Adv. 2019, 5, 9946,  DOI: 10.1126/sciadv.aav9946
    2. 2
      Wang, Z.; Liu, F.; Wei, M.; Qiu, Y.; Ma, C.; Shen, L.; Huang, Y. Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway. J. Neuroinflammation 2018, 15, 179,  DOI: 10.1186/s12974-018-1215-4
    3. 3
      Wang, K.; Wang, S.; Chen, Y.; Wu, D.; Hu, X.; Lu, Y.; Wang, L.; Bao, L.; Li, C.; Zhang, X. Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain. Cell Res. 2021, 31, 904918,  DOI: 10.1038/s41422-021-00479-9
    4. 4
      Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A. H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N. B.; Eccleston, C.; Kalso, E.; Bennett, D. L.; Dworkin, R. H.; Raja, S. N. Neuropathic pain. Nat. Rev. Dis. Prim. 2017, 3, 17002,  DOI: 10.1038/nrdp.2017.2
    5. 5
      Finnerup, N. B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R. H.; Gilron, I.; Haanpaa, M.; Hansson, P.; Jensen, T. S.; Kamerman, P. R.; Lund, K.; Moore, A.; Raja, S. N.; Rice, A. S.; Rowbotham, M.; Sena, E.; Siddall, P.; Smith, B. H.; Wallace, M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. J. Vasc. Surg. 2015, 62, 10911173,  DOI: 10.1016/j.jvs.2015.08.010
    6. 6
      Mathieson, S.; Lin, C.-W. C.; Underwood, M.; Eldabe, S. Pregabalin and gabapentin for pain. BMJ 2020, 369, m1315,  DOI: 10.1136/bmj.m1315
    7. 7
      Tesfaye, S.; Sloan, G.; Petrie, J.; White, D.; Bradburn, M.; Julious, S.; Rajbhandari, S.; Sharma, S.; Rayman, G.; Gouni, R.; Alam, U.; Cooper, C.; Loban, A.; Sutherland, K.; Glover, R.; Waterhouse, S.; Turton, E.; Horspool, M.; Gandhi, R.; Maguire, D.; Jude, E. B.; Ahmed, S. H.; Vas, P.; Hariman, C.; McDougall, C.; Devers, M.; Tsatlidis, V.; Johnson, M.; Rice, A. S. C.; Bouhassira, D.; Bennett, D. L.; Selvarajah, D.; group, O.-D. t. Comparison of amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline, and duloxetine supplemented with pregabalin for the treatment of diabetic peripheral neuropathic pain (OPTION-DM): a multicentre, double-blind, randomised crossover trial. Lancet 2022, 400, 680690,  DOI: 10.1016/s0140-6736(22)01472-6
    8. 8
      Tanabe, M.; Ono, K.; Honda, M.; Ono, H. Gabapentin and pregabalin ameliorate mechanical hypersensitivity after spinal cord injury in mice. Eur. J. Pharmacol. 2009, 609, 6568,  DOI: 10.1016/j.ejphar.2009.03.020
    9. 9
      Kremer, M.; Salvat, E.; Muller, A.; Yalcin, I.; Barrot, M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 2016, 338, 183206,  DOI: 10.1016/j.neuroscience.2016.06.057
    10. 10
      Kuehn, B. M. Gabapentin Increasingly Implicated in Overdose Deaths. JAMA 2022, 327, 2387,  DOI: 10.1001/jama.2022.10100
    11. 11
      Anand, P.; Bley, K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011, 107, 490502,  DOI: 10.1093/bja/aer260
    12. 12
      Romanelli, M. N.; Borgonetti, V.; Galeotti, N. Dual BET/HDAC inhibition to relieve neuropathic pain: Recent advances, perspectives, and future opportunities. Pharmacol. Res. 2021, 173, 105901,  DOI: 10.1016/j.phrs.2021.105901
    13. 13
      Mauceri, D. Role of Epigenetic Mechanisms in Chronic Pain. Cells 2022, 11, 2613,  DOI: 10.3390/cells11162613
    14. 14
      Ghosh, K.; Pan, H. L. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem. Neurosci. 2022, 13, 432441,  DOI: 10.1021/acschemneuro.1c00841
    15. 15
      Descalzi, G.; Ikegami, D.; Ushijima, T.; Nestler, E. J.; Zachariou, V.; Narita, M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015, 38, 237246,  DOI: 10.1016/j.tins.2015.02.001
    16. 16
      Ghosh, K.; Pan, H.-L. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem. Neurosci. 2022, 13, 432441,  DOI: 10.1021/acschemneuro.1c00841
    17. 17
      Spering, M.; Carrasco, M. Acting without seeing: eye movements reveal visual processing without awareness. Trends Neurosci. 2015, 38, 247258,  DOI: 10.1016/j.tins.2015.02.002
    18. 18
      Ligon, C. O.; Moloney, R. D.; Greenwood-Van Meerveld, B. Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. J. Pharmacol. Exp. Ther. 2016, 357, 8493,  DOI: 10.1124/jpet.115.231670
    19. 19
      Odell, D. W. Epigenetics of pain mediators. Curr. Opin. Anaesthesiol. 2018, 31, 402406,  DOI: 10.1097/aco.0000000000000613
    20. 20
      Denk, F.; McMahon, S. B. Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 2012, 73, 435444,  DOI: 10.1016/j.neuron.2012.01.012
    21. 21
      Sun, C.; An, Q.; Li, R.; Chen, S.; Gu, X.; An, S.; Wang, Z. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci. Ther. 2021, 27, 14091424,  DOI: 10.1111/cns.13720
    22. 22
      Wang, J.; Chen, J.; Jin, H.; Lin, D.; Chen, Y.; Chen, X.; Wang, B.; Hu, S.; Wu, Y.; Wu, Y.; Zhou, Y.; Tian, N.; Gao, W.; Wang, X.; Zhang, X. BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats. J. Cell Mol. Med. 2019, 23, 32143223,  DOI: 10.1111/jcmm.14196
    23. 23
      Li, Y.; Xiang, J.; Zhang, J.; Lin, J.; Wu, Y.; Wang, X. Inhibition of Brd4 by JQ1 Promotes Functional Recovery From Spinal Cord Injury by Activating Autophagy. Front. Cell. Neurosci. 2020, 14, 555591,  DOI: 10.3389/fncel.2020.555591
    24. 24
      Rudman, M. D.; Choi, J. S.; Lee, H. E.; Tan, S. K.; Ayad, N. G.; Lee, J. K. Bromodomain and extraterminal domain-containing protein inhibition attenuates acute inflammation after spinal cord injury. Exp. Neurol. 2018, 309, 181192,  DOI: 10.1016/j.expneurol.2018.08.005
    25. 25
      Ferri, E.; Petosa, C.; McKenna, C. E. Bromodomains: Structure, function and pharmacology of inhibition. Biochem. Pharmacol. 2016, 106, 118,  DOI: 10.1016/j.bcp.2015.12.005
    26. 26
      Takahashi, K.; Yi, H.; Liu, C.-H.; Liu, S.; Kashiwagi, Y.; Patin, D. J.; Hao, S. Spinal bromodomain-containing protein 4 contributes to neuropathic pain induced by HIV glycoprotein 120 with morphine in rats. Neuroreport 2018, 29, 441446,  DOI: 10.1097/wnr.0000000000000992
    27. 27
      Palomes-Borrajo, G.; Badia, J.; Navarro, X.; Penas, C. Nerve Excitability and Neuropathic Pain is Reduced by BET Protein Inhibition After Spared Nerve Injury. J. Pain 2021, 22, 16171630,  DOI: 10.1016/j.jpain.2021.05.005
    28. 28
      Vasavda, C.; Xu, R.; Liew, J.; Kothari, R.; Dhindsa, R. S.; Semenza, E. R.; Paul, B. D.; Green, D. P.; Sabbagh, M. F.; Shin, J. Y.; Yang, W.; Snowman, A. M.; Albacarys, L. K.; Moghekar, A.; Pardo-Villamizar, C. A.; Luciano, M.; Huang, J.; Bettegowda, C.; Kwatra, S. G.; Dong, X.; Lim, M.; Snyder, S. H. Identification of the NRF2 transcriptional network as a therapeutic target for trigeminal neuropathic pain. Sci. Adv. 2022, 8, eabo5633  DOI: 10.1126/sciadv.abo5633
    29. 29
      Borgonetti, V.; Galeotti, N. Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacol. Res. 2021, 165, 105431,  DOI: 10.1016/j.phrs.2021.105431
    30. 30
      Borgonetti, V.; Meacci, E.; Pierucci, F.; Romanelli, M. N.; Galeotti, N. Dual HDAC/BRD4 Inhibitors Relieves Neuropathic Pain by Attenuating Inflammatory Response in Microglia After Spared Nerve Injury. Neurotherapeutics 2022, 19, 16341648,  DOI: 10.1007/s13311-022-01243-6
    31. 31
      Liu, Z.; Chen, H.; Wang, P.; Li, Y.; Wold, E. A.; Leonard, P. G.; Joseph, S.; Brasier, A. R.; Tian, B.; Zhou, J. Discovery of Orally Bioavailable Chromone Derivatives as Potent and Selective BRD4 Inhibitors: Scaffold Hopping, Optimization, and Pharmacological Evaluation. J. Med. Chem. 2020, 63, 52425256,  DOI: 10.1021/acs.jmedchem.0c00035
    32. 32
      Hu, J.; Tian, C. Q.; Damaneh, M. S.; Li, Y.; Cao, D.; Lv, K.; Yu, T.; Meng, T.; Chen, D.; Wang, X.; Chen, L.; Li, J.; Song, S. S.; Huan, X. J.; Qin, L.; Shen, J.; Wang, Y. Q.; Miao, Z. H.; Xiong, B. Structure-Based Discovery and Development of a Series of Potent and Selective Bromodomain and Extra-Terminal Protein Inhibitors. J. Med. Chem. 2019, 62, 86428663,  DOI: 10.1021/acs.jmedchem.9b01094
    33. 33
      Zhang, M.; Zhang, Y.; Song, M.; Xue, X.; Wang, J.; Wang, C.; Zhang, C.; Li, C.; Xiang, Q.; Zou, L.; Wu, X.; Wu, C.; Dong, B.; Xue, W.; Zhou, Y.; Chen, H.; Wu, D.; Ding, K.; Xu, Y. Structure-Based Discovery and Optimization of Benzo[ d]isoxazole Derivatives as Potent and Selective BET Inhibitors for Potential Treatment of Castration-Resistant Prostate Cancer (CRPC). J. Med. Chem. 2018, 61, 30373058,  DOI: 10.1021/acs.jmedchem.8b00103
    34. 34
      Huang, Y.; Liu, N.; Pan, Z.; Li, Z.; Sheng, C. BET-HDAC Dual Inhibitors for Combinational Treatment of Breast Cancer and Concurrent Candidiasis. J. Med. Chem. 2023, 66, 12391253,  DOI: 10.1021/acs.jmedchem.2c01191
    35. 35
      Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J. P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Muller, S.; Pawson, T.; Gingras, A. C.; Arrowsmith, C. H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149, 214231,  DOI: 10.1016/j.cell.2012.02.013
    36. 36
      Zhao, Y.; Bai, L.; Liu, L.; McEachern, D.; Stuckey, J. A.; Meagher, J. L.; Yang, C. Y.; Ran, X.; Zhou, B.; Hu, Y.; Li, X.; Wen, B.; Zhao, T.; Li, S.; Sun, D.; Wang, S. Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethy lisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor. J. Med. Chem. 2017, 60, 38873901,  DOI: 10.1021/acs.jmedchem.7b00193
    37. 37
      He, S.; Dong, G.; Li, Y.; Wu, S.; Wang, W.; Sheng, C. Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angew. Chem., Int. Ed. 2020, 59, 3028,  DOI: 10.1002/anie.201915896
    38. 38
      Liu, Z.; Li, Y.; Chen, H.; Lai, H.-T.; Wang, P.; Wu, S.-Y.; Wold, E. A.; Leonard, P. G.; Joseph, S.; Hu, H.; Chiang, C.-M.; Brasier, A. R.; Tian, B.; Zhou, J. Discovery, X-ray Crystallography, and Anti-inflammatory Activity of Bromodomain-containing Protein 4 (BRD4) BD1 Inhibitors Targeting a Distinct New Binding Site. J. Med. Chem. 2022, 65, 23882408,  DOI: 10.1021/acs.jmedchem.1c01851
    39. 39
      Zeng, L.; Zhou, M.-M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002, 513, 124128,  DOI: 10.1016/s0014-5793(01)03309-9
    40. 40
      Liu, Z.; Wang, P.; Chen, H.; Wold, E. A.; Tian, B.; Brasier, A. R.; Zhou, J. Drug Discovery Targeting Bromodomain-Containing Protein 4. J. Med. Chem. 2017, 60, 45334558,  DOI: 10.1021/acs.jmedchem.6b01761
    41. 41
      Tang, P.; Zhang, J.; Liu, J.; Chiang, C. M.; Ouyang, L. Targeting Bromodomain and Extraterminal Proteins for Drug Discovery: From Current Progress to Technological Development. J. Med. Chem. 2021, 64, 24192435,  DOI: 10.1021/acs.jmedchem.0c01487
    42. 42
      Cui, H.; Carlson, A. S.; Schleiff, M. A.; Divakaran, A.; Johnson, J. A.; Buchholz, C. R.; Zahid, H.; Vail, N. R.; Shi, K.; Aihara, H.; Harki, D. A.; Miller, G. P.; Topczewski, J. J.; Pomerantz, W. C. K. 4-Methyl-1,2,3-Triazoles as N-Acetyl-Lysine Mimics Afford Potent BET Bromodomain Inhibitors with Improved Selectivity. J. Med. Chem. 2021, 64, 1049710511,  DOI: 10.1021/acs.jmedchem.1c00933
    43. 43
      Chen, J.; Tang, P.; Wang, Y.; Wang, J.; Yang, C.; Li, Y.; Yang, G.; Wu, F.; Zhang, J.; Ouyang, L. Targeting Bromodomain-Selective Inhibitors of BET Proteins in Drug Discovery and Development. J. Med. Chem. 2022, 65, 51845211,  DOI: 10.1021/acs.jmedchem.1c01835
    44. 44
      Liang, D.; Yu, Y.; Ma, Z. Novel strategies targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery. Eur. J. Med. Chem. 2020, 200, 112426,  DOI: 10.1016/j.ejmech.2020.112426
    45. 45
      Hajmirza, A.; Emadali, A.; Gauthier, A.; Casasnovas, O.; Gressin, R.; Callanan, M. B. BET Family Protein BRD4: An Emerging Actor in NFκB Signaling in Inflammation and Cancer. Biomedicines 2018, 6, 16,  DOI: 10.3390/biomedicines6010016
    46. 46
      Chiang, C. M. Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 Biol. Rep. 2009, 1, 98,  DOI: 10.3410/b1-98
    47. 47
      Duan, Y.; Guan, Y.; Qin, W.; Zhai, X.; Yu, B.; Liu, H. Targeting Brd4 for cancer therapy: inhibitors and degraders. Medchemcomm 2018, 9, 17791802,  DOI: 10.1039/c8md00198g
    48. 48
      Xue, X.; Zhang, Y.; Wang, C.; Zhang, M.; Xiang, Q.; Wang, J.; Wang, A.; Li, C.; Zhang, C.; Zou, L.; Wang, R.; Wu, S.; Lu, Y.; Chen, H.; Ding, K.; Li, G.; Xu, Y. Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer. Eur. J. Med. Chem. 2018, 152, 542559,  DOI: 10.1016/j.ejmech.2018.04.034
    49. 49
      Miyoshi, S.; Ooike, S.; Iwata, K.; Hikawa, H.; Sugahara, K. Antitumor agent. WO 2009084693 A1, 2009.
    50. 50
      Cochran, A. G.; Conery, A. R.; Sims, R. J. Bromodomains: a new target class for drug development. Nat. Rev. Drug Discovery 2019, 18, 609628,  DOI: 10.1038/s41573-019-0030-7
    51. 51
      Coudé, M.-M.; Braun, T.; Berrou, J.; Dupont, M.; Bertrand, S.; Masse, A.; Raffoux, E.; Itzykson, R.; Delord, M.; Riveiro, M. E.; Herait, P.; Baruchel, A.; Dombret, H.; Gardin, C. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget 2015, 6, 1769817712,  DOI: 10.18632/oncotarget.4131
    52. 52
      Vázquez, R.; Riveiro, M. E.; Astorgues-Xerri, L.; Odore, E.; Rezai, K.; Erba, E.; Panini, N.; Rinaldi, A.; Kwee, I.; Beltrame, L.; Bekradda, M.; Cvitkovic, E.; Bertoni, F.; Frapolli, R.; D’Incalci, M. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget 2016, 8, 75987613,  DOI: 10.18632/oncotarget.13814
    53. 53
      Albrecht, B. K.; Gehling, V. S.; Hewitt, M. C.; Vaswani, R. G.; Cote, A.; Leblanc, Y.; Nasveschuk, C. G.; Bellon, S.; Bergeron, L.; Campbell, R.; Cantone, N.; Cooper, M. R.; Cummings, R. T.; Jayaram, H.; Joshi, S.; Mertz, J. A.; Neiss, A.; Normant, E.; O’Meara, M.; Pardo, E.; Poy, F.; Sandy, P.; Supko, J.; Sims, R. J., 3rd; Harmange, J. C.; Taylor, A. M.; Audia, J. E. Identification of a Benzoisoxazoloazepine Inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) Family as a Candidate for Human Clinical Trials. J. Med. Chem. 2016, 59, 13301339,  DOI: 10.1021/acs.jmedchem.5b01882
    54. 54
      Siu, K. T.; Eda, H.; Santo, L.; Ramachandran, J.; Koulnis, M.; Mertz, J.; Sims, R. J.; Cooper, M.; Raje, N. S. Effect of the BET Inhibitor, Cpi-0610, Alone and in Combination with Lenalidomide in Multiple Myeloma. Blood 2015, 126, 4255,  DOI: 10.1182/blood.v126.23.4255.4255
    55. 55
      Gavai, A. V.; Norris, D.; Delucca, G.; Tortolani, D.; Tokarski, J. S.; Dodd, D.; O’Malley, D.; Zhao, Y.; Quesnelle, C.; Gill, P.; Vaccaro, W.; Huynh, T.; Ahuja, V.; Han, W.-C.; Mussari, C.; Harikrishnan, L.; Kamau, M.; Poss, M.; Sheriff, S.; Yan, C.; Marsilio, F.; Menard, K.; Wen, M.-L.; Rampulla, R.; Wu, D.-R.; Li, J.; Zhang, H.; Li, P.; Sun, D.; Yip, H.; Traeger, S. C.; Zhang, Y.; Mathur, A.; Zhang, H.; Huang, C.; Yang, Z.; Ranasinghe, A.; Everlof, G.; Raghavan, N.; Tye, C. K.; Wee, S.; Hunt, J. T.; Vite, G.; Westhouse, R.; Lee, F. Y. Discovery and Preclinical Pharmacology of an Oral Bromodomain and Extra-Terminal (BET) Inhibitor Using Scaffold-Hopping and Structure-Guided Drug Design. J. Med. Chem. 2021, 64, 1424714265,  DOI: 10.1021/acs.jmedchem.1c00625
    56. 56
      Yin, M.; Guo, Y.; Hu, R.; Cai, W. L.; Li, Y.; Pei, S.; Sun, H.; Peng, C.; Li, J.; Ye, R.; Yang, Q.; Wang, N.; Tao, Y.; Chen, X.; Yan, Q. Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nat. Commun. 2020, 11, 1833,  DOI: 10.1038/s41467-020-15290-0
    57. 57
      McDaniel, K. F.; Wang, L.; Soltwedel, T.; Fidanze, S. D.; Hasvold, L. A.; Liu, D.; Mantei, R. A.; Pratt, J. K.; Sheppard, G. S.; Bui, M. H.; Faivre, E. J.; Huang, X.; Li, L.; Lin, X.; Wang, R.; Warder, S. E.; Wilcox, D.; Albert, D. H.; Magoc, T. J.; Rajaraman, G.; Park, C. H.; Hutchins, C. W.; Shen, J. J.; Edalji, R. P.; Sun, C. C.; Martin, R.; Gao, W.; Wong, S.; Fang, G.; Elmore, S. W.; Shen, Y.; Kati, W. M. Discovery of N-(4-(2,4-Difluorophenoxy)-3-(6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)phenyl)ethanesulfonamide (ABBV-075/Mivebresib), a Potent and Orally Available Bromodomain and Extraterminal Domain (BET) Family Bromodomain Inhibitor. J. Med. Chem. 2017, 60, 83698384,  DOI: 10.1021/acs.jmedchem.7b00746
    58. 58
      Sheppard, G. S.; Wang, L.; Fidanze, S. D.; Hasvold, L. A.; Liu, D.; Pratt, J. K.; Park, C. H.; Longenecker, K.; Qiu, W.; Torrent, M.; Kovar, P. J.; Bui, M.; Faivre, E.; Huang, X.; Lin, X.; Wilcox, D.; Zhang, L.; Shen, Y.; Albert, D. H.; Magoc, T. J.; Rajaraman, G.; Kati, W. M.; McDaniel, K. F. Discovery of N-Ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)-5-(1-hydroxy-1-methyl-ethyl)phenyl]- 6-methyl-7-oxo-1H-pyrrolo[2,3-c]pyridine-2-carboxamide (ABBV-744), a BET Bromodomain Inhibitor with Selectivity for the Second Bromodomain. J. Med. Chem. 2020, 63, 55855623,  DOI: 10.1021/acs.jmedchem.0c00628
    59. 59
      Faivre, E. J.; McDaniel, K. F.; Albert, D. H.; Mantena, S. R.; Plotnik, J. P.; Wilcox, D.; Zhang, L.; Bui, M. H.; Sheppard, G. S.; Wang, L.; Sehgal, V.; Lin, X.; Huang, X.; Lu, X.; Uziel, T.; Hessler, P.; Lam, L. T.; Bellin, R. J.; Mehta, G.; Fidanze, S.; Pratt, J. K.; Liu, D.; Hasvold, L. A.; Sun, C.; Panchal, S. C.; Nicolette, J. J.; Fossey, S. L.; Park, C. H.; Longenecker, K.; Bigelow, L.; Torrent, M.; Rosenberg, S. H.; Kati, W. M.; Shen, Y. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature 2020, 578, 306310,  DOI: 10.1038/s41586-020-1930-8
    60. 60
      Picaud, S.; Wells, C.; Felletar, I.; Brotherton, D.; Martin, S.; Savitsky, P.; Diez-Dacal, B.; Philpott, M.; Bountra, C.; Lingard, H.; Fedorov, O.; Muller, S.; Brennan, P. E.; Knapp, S.; Filippakopoulos, P. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 1975419759,  DOI: 10.1073/pnas.1310658110
    61. 61
      Ayotte, Y.; Marando, V. M.; Vaillancourt, L.; Bouchard, P.; Heffron, G.; Coote, P. W.; Larda, S. T.; LaPlante, S. R. Exposing Small-Molecule Nanoentities by a Nuclear Magnetic Resonance Relaxation Assay. J. Med. Chem. 2019, 62, 78857896,  DOI: 10.1021/acs.jmedchem.9b00653
    62. 62
      Urick, A. K.; Calle, L. P.; Espinosa, J. F.; Hu, H.; Pomerantz, W. C. Protein-Observed Fluorine NMR Is a Complementary Ligand Discovery Method to (1)H CPMG Ligand-Observed NMR. ACS Chem. Biol. 2016, 11, 31543164,  DOI: 10.1021/acschembio.6b00730
    63. 63
      Pennington, L. D.; Aquila, B. M.; Choi, Y.; Valiulin, R. A.; Muegge, I. Positional Analogue Scanning: An Effective Strategy for Multiparameter Optimization in Drug Design. J. Med. Chem. 2020, 63, 89568976,  DOI: 10.1021/acs.jmedchem.9b02092
    64. 64
      Li, Y.; Zhao, J.; Gutgesell, L. M.; Shen, Z.; Ratia, K.; Dye, K.; Dubrovskyi, O.; Zhao, H.; Huang, F.; Tonetti, D. A.; Thatcher, G. R. J.; Xiong, R. Novel Pyrrolopyridone Bromodomain and Extra-Terminal Motif (BET) Inhibitors Effective in Endocrine-Resistant ER+ Breast Cancer with Acquired Resistance to Fulvestrant and Palbociclib. J. Med. Chem. 2020, 63, 71867210,  DOI: 10.1021/acs.jmedchem.0c00456
    65. 65
      Wang, L.; Pratt, J. K.; Soltwedel, T.; Sheppard, G. S.; Fidanze, S. D.; Liu, D.; Hasvold, L. A.; Mantei, R. A.; Holms, J. H.; McClellan, W. J.; Wendt, M. D.; Wada, C.; Frey, R.; Hansen, T. M.; Hubbard, R.; Park, C. H.; Li, L.; Magoc, T. J.; Albert, D. H.; Lin, X.; Warder, S. E.; Kovar, P.; Huang, X.; Wilcox, D.; Wang, R.; Rajaraman, G.; Petros, A. M.; Hutchins, C. W.; Panchal, S. C.; Sun, C.; Elmore, S. W.; Shen, Y.; Kati, W. M.; McDaniel, K. F. Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors. J. Med. Chem. 2017, 60, 38283850,  DOI: 10.1021/acs.jmedchem.7b00017
    66. 66
      Poulin, P.; Theil, F. P. Prediction of Pharmacokinetics Prior to In Vivo Studies. 1. Mechanism-Based Prediction of Volume of Distribution. J. Pharm. Sci. 2002, 91, 129156,  DOI: 10.1002/jps.10005
    67. 67
      Decosterd, I.; Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87, 149158,  DOI: 10.1016/s0304-3959(00)00276-1
    68. 68
      Chen, X.; Meng, F.; Zhang, J.; Zhang, Z.; Ye, X.; Zhang, W.; Tong, Y.; Ji, X.; Xu, R.; Xu, X. L.; You, Q. D.; Jiang, Z. Y. Discovery of 2-((2-methylbenzyl)thio)-6-oxo-4-(3,4,5-trimethoxyphenyl)-1,6-dihydropyrimidine-5 -carbonitrile as a novel and effective bromodomain and extra-terminal (BET) inhibitor for the treatment of sepsis. Eur. J. Med. Chem. 2022, 238, 114423,  DOI: 10.1016/j.ejmech.2022.114423
    69. 69
      Zhang, R.; Mayhood, T.; Lipari, P.; Wang, Y.; Durkin, J.; Syto, R.; Gesell, J.; McNemar, C.; Windsor, W. Fluorescence polarization assay and inhibitor design for MDM2/p53 interaction. Anal. Biochem. 2004, 331, 138146,  DOI: 10.1016/s0003-2697(04)00223-4
    70. 70
      Ran, X.; Zhao, Y.; Liu, L.; Bai, L.; Yang, C. Y.; Zhou, B.; Meagher, J. L.; Chinnaswamy, K.; Stuckey, J. A.; Wang, S. Structure-Based Design of gamma-Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors. J. Med. Chem. 2015, 58, 49274939,  DOI: 10.1021/acs.jmedchem.5b00613
    71. 71
      Jiang, F.; Guo, A. P.; Xu, J. C.; You, Q. D.; Xu, X. L. Discovery of a Potent Grp94 Selective Inhibitor with Anti-Inflammatory Efficacy in a Mouse Model of Ulcerative Colitis. J. Med. Chem. 2018, 61, 95139533,  DOI: 10.1021/acs.jmedchem.8b00800
    72. 72
      Zhu, P. J.; Yu, Z. Z.; Lv, Y. F.; Zhao, J. L.; Tong, Y. Y.; You, Q. D.; Jiang, Z. Y. Discovery of 3,5-Dimethyl-4-Sulfonyl-1H-Pyrrole-Based Myeloid Cell Leukemia 1 Inhibitors with High Affinity, Selectivity, and Oral Bioavailability. J. Med. Chem. 2021, 64, 1133011353,  DOI: 10.1021/acs.jmedchem.1c00682
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00372.

    • Activity results of compounds, bromodomain selectivity of the compound, crystallography information for the complex structures, CYP450 isozyme and hERG ion channel inhibition assay, toxicity evaluation of DDO-8926 in mice, in vivo PK parameters of DDO-8926 in rats, mouse plasma binding rate, and compound structure characterization (PDF)

    • Molecular formula strings (CSV)

    • Predicated binding modes of 9 and 15 (ZIP)

    Accession Codes

    Atomic coordinates have been deposited in the Protein Data Bank (PDB code: 8IBQ and 8IDH). Authors will release the atomic coordinates upon article publication.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
您正在使用VPN