这是用户在 2024-5-25 14:42 为 https://www.science.org/doi/full/10.1126/science.aav3506?casa_token=8hJkAagVKWAAAAAA%3Agy-n3Xp8UpLG6... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Full access
Review 回顾
ELECTROCHEMISTRY 电化学

What would it take for renewably powered electrosynthesis to displace petrochemical processes?
可再生能源电合成需要什么才能取代石化过程?

Phil De Luna https://orcid.org/0000-0002-7729-8816, Christopher Hahn, Drew Higgins, Shaffiq A. Jaffer https://orcid.org/0000-0001-9311-4469, Thomas F. Jaramillo https://orcid.org/0000-0001-9900-0622 jaramillo@stanford.edu, and Edward H. Sargent https://orcid.org/0000-0003-0396-6495 jaramillo@stanford.eduAuthors Info & Affiliations
PHIL DE LUNA HTTPS://ORCID.ORG/0000-0002-7729-8816、CHRISTOPHER HAHN、DREW HIGGINS、SHAFFIQ A. JAFFER HTTPS://ORCID.ORG/0000-0001-9311-4469、THOMAS F. JARAMILLO HTTPS://ORCID.ORG/0000-0001-9900-0622 和 EDWARD H. SARGENT HTTPS://ORCID.ORG/0000-0003-0396-6495 作者信息和单位
Science 科学
26 Apr 2019 26 4月 2019
Vol 364, Issue 6438 第 364 卷,第 6438 期

Structured Abstract 结构化摘要

BACKGROUND 背景

As the world continues to transition toward carbon emissions–free energy technologies, there remains a need to also reduce the carbon emissions of the chemical production industry. Today many of the world’s chemicals are produced from fossil fuel–derived feedstocks. Electrochemical conversion of carbon dioxide (CO2) into chemical feedstocks offers a way to turn waste emissions into valuable products, closing the carbon loop. When coupled to renewable sources of electricity, these products can be made with a net negative carbon emissions footprint, helping to sequester CO2 into usable goods. Research and development into electrocatalytic materials for CO2 reduction has intensified in recent years, with advances in selectivity, efficiency, and reaction rate progressing toward practical implementation. A variety of chemical products can be made from CO2, such as alcohols, oxygenates, synthesis gas (syngas), and olefins—staples in the global chemical industry. Because these products are produced at substantial scale, a switch to renewably powered production could result in a substantial carbon emissions reduction impact. The advancement of electrochemical technology to convert electrons generated from renewable power into stable chemical form also represents one avenue to long-term (e.g., seasonal) storage of energy.
随着世界继续向无碳排放能源技术过渡,仍然需要减少化学生产行业的碳排放。今天,世界上许多化学品都是由化石燃料衍生的原料生产的。将二氧化碳(CO 2 )电化学转化为化学原料提供了一种将废物排放转化为有价值的产品的方法,从而关闭了碳循环。当与可再生能源相结合时,这些产品可以产生净负碳排放足迹,有助于将一氧化碳封存 2 到可用商品中。近年来,随着选择性、效率和反应速率的进步,用于CO 2 还原的电催化材料的研究和开发不断加强。一氧化碳可以制成各种化学产品 2 ,例如醇类、含氧化合物、合成气(合成气)和烯烃,这些都是全球化学工业的主要产品。由于这些产品的生产规模很大,因此转向可再生能源生产可能会产生巨大的碳减排影响。电化学技术的进步将可再生能源产生的电子转化为稳定的化学形式,也代表了长期(例如季节性)能量储存的一条途径。

ADVANCES 进展

The science of electrocatalytic CO2 reduction continues to progress, with priority given to the need to pinpoint more accurately the targets for practical application, the economics of chemical products, and barriers to market entry. It will be important to scale CO2 electrolyzers and increase the stability of these catalysts to thousands of hours of continuous operation. Product separation and efficient recycling of CO2 and electrolyte also need to be managed. The petrochemical industry operates at a massive scale with a complicated global supply chain and heavy capital costs. Commodity chemical markets are difficult to penetrate and are priced on feedstock, which is currently inexpensive as a result of the shale gas boom. CO2 capture costs from the flue or direct air and product separation from unreacted CO2 are also important to consider. Assuming that the advancement of electrocatalytic technologies continues apace, what will it take to disrupt the chemical production sector, and what will society gain by doing so?
电催化CO 2 减排科学不断进步,优先考虑需要更准确地确定实际应用的目标、化学产品的经济性和市场准入壁垒。扩大一氧化碳 2 电解槽的规模并将这些催化剂的稳定性提高到连续运行数千小时非常重要。还需要对产品分离 2 以及一氧化碳和电解液的高效回收进行管理。石化行业规模庞大,全球供应链复杂,资本成本高昂。大宗商品化工市场难以渗透,而且原料定价,由于页岩气的繁荣,原料目前价格低廉。从烟道或直接空气 2 中捕获一氧化碳的成本以及从未反应的一氧化碳 2 中分离产品的成本也很重要。假设电催化技术继续快速发展,那么如何才能颠覆化学生产部门,社会从中获得什么好处?
This review presents a technoeconomic and carbon emissions assessment of CO2 products such as ethylene, ethanol, and carbon monoxide, offering target figures of merit for practical application. The price of electricity is by far the largest cost driver. Electrochemical production costs begin to match those of traditional fossil fuel–derived processes when electricity prices fall below 4 cents per kWh and energy conversion efficiencies reach at least 60%. When powered by renewable electricity, these products can be made with a net negative carbon emissions footprint. A comparative analysis of electrocatalytic, biocatalytic, and fossil fuel–derived chemical production shows that electrocatalytic production has the potential to yield the greatest reduction in carbon emissions, provided that a steady supply of clean electricity is available. Additionally, opportunities exist to combine electrochemical conversion of CO2 with a range of other thermo- and biocatalytic processes to slowly electrify the existing petrochemical supply chain and further upgrade CO2 into more useful chemicals. Technical challenges such as operating lifetime, energy efficiency, and product separation are discussed. Supply chain management of products and entrenched industrial petrochemical competition are also considered.
本综述对乙烯、乙醇和一氧化碳等一氧化碳 2 产品进行了技术经济和碳排放评估,为实际应用提供了目标品质因数。到目前为止,电价是最大的成本驱动因素。当电价降至每千瓦时 4 美分以下且能源转换效率达到至少 60% 时,电化学生产成本开始与传统化石燃料衍生工艺的成本相匹配。当由可再生电力供电时,这些产品可以产生净负碳排放足迹。对电催化、生物催化和化石燃料衍生化学品生产的比较分析表明,只要有稳定的清洁电力供应,电催化生产就有可能最大限度地减少碳排放。此外,还有机会将一氧化碳的电化学转化 2 与一系列其他热催化和生物催化过程相结合,以缓慢地使现有的石化供应链电气化,并进一步将一氧化碳 2 升级为更有用的化学品。讨论了使用寿命、能源效率和产品分离等技术挑战。产品的供应链管理和根深蒂固的工业石化竞争也被考虑在内。

OUTLOOK 展望

There exists increasingly widespread recognition of the need to transition to carbon emissions–free means of chemical production. CO2 pricing mechanisms are being developed and are seeing increased governmental support. The nascent carbon utilization economy is gaining traction, with startup companies, global prizes, and industrial research efforts all pursuing new carbon conversion technologies. Recent advances in electrochemical CO2 reduction through the use of gas diffusion electrodes are pushing current densities and selectivities into a realm of industrial use. Despite this progress, there remain technical challenges that must be overcome for commercial application. Additionally, market barriers and cost economics will ultimately decide whether this technology experiences widespread implementation.
人们越来越普遍地认识到,需要过渡到零碳排放的化学生产方式。一氧化碳 2 定价机制正在制定中,政府正在加大支持力度。新生的碳利用经济正在获得牵引力,初创公司、全球奖项和工业研究工作都在追求新的碳转化技术。通过使用气体扩散电极来 2 减少电化学CO的最新进展正在将电流密度和选择性推向工业应用领域。尽管取得了这些进展,但商业应用仍必须克服技术挑战。此外,市场壁垒和成本经济将最终决定这项技术是否得到广泛实施。
Electrochemical CO2 conversion.
电化学CO 2 转化。
Reduction of CO2 using renewably sourced electricity could transform waste CO2 emissions into commodity chemical feedstocks or fuels.
2 使用可再生电力减少一氧化碳可以将废弃的一氧化碳 2 排放转化为商品化学原料或燃料。
Open in viewer

Abstract 抽象

Electrocatalytic transformation of carbon dioxide (CO2) and water into chemical feedstocks offers the potential to reduce carbon emissions by shifting the chemical industry away from fossil fuel dependence. We provide a technoeconomic and carbon emission analysis of possible products, offering targets that would need to be met for economically compelling industrial implementation to be achieved. We also provide a comparison of the projected costs and CO2 emissions across electrocatalytic, biocatalytic, and fossil fuel–derived production of chemical feedstocks. We find that for electrosynthesis to become competitive with fossil fuel–derived feedstocks, electrical-to-chemical conversion efficiencies need to reach at least 60%, and renewable electricity prices need to fall below 4 cents per kilowatt-hour. We discuss the possibility of combining electro- and biocatalytic processes, using sequential upgrading of CO2 as a representative case. We describe the technical challenges and economic barriers to marketable electrosynthesized chemicals.
将二氧化碳(CO 2 )和水电催化转化为化学原料,通过使化学工业摆脱对化石燃料的依赖,有可能减少碳排放。我们对可能的产品进行技术经济和碳排放分析,提供实现经济上令人信服的工业实施所需的目标。我们还比较了电催化、生物催化和化石燃料衍生化学原料生产的预计成本和 CO 2 排放量。我们发现,要使电合成与化石燃料衍生的原料竞争,电化学转换效率需要达到至少60%,可再生电力价格需要降至每千瓦时4美分以下。我们讨论了结合电催化和生物催化过程的可能性,以CO的顺序升级 2 为代表案例。我们描述了适销对路的电合成化学品的技术挑战和经济障碍。
Science, this issue p. eaav3506
科学,本期 p. eaav3506
The dependence of the chemical industry on fossil fuel feedstocks presents an important emissions challenge. For example, in Europe, 26 chemical compounds account for 75% of total energy use within the chemical sector (including energy used as feedstock) and contribute more than 90% of European chemical sector greenhouse gas emissions [150 million tonnes (Mt) or 0.6% of the world’s total emissions]. If the sector continues on its current growth trajectory, these chemical feedstocks will result in emissions of 200 Mt of CO2 equivalents (Mt CO2e) by 2050 (1). The demand for emissions-heavy petrochemicals such as ethane and naphtha continues to grow, given the downstream use of these feedstocks to manufacture consumer goods such as personal care items, food preservatives, fertilizers, and furnishings that will be needed in larger quantities to supply a growing worldwide middle class (2). A less CO2 emissions–intensive alternative to produce chemical feedstocks must be found in order to mitigate future CO2 emissions.
化学工业对化石燃料原料的依赖是重要的排放挑战。例如,在欧洲,26种化合物占化学行业能源使用总量的75%(包括用作原料的能源),占欧洲化学行业温室气体排放量的90%以上[1.5亿吨(Mt)或世界总排放量的0.6%)]。如果该行业继续保持目前的增长轨迹,到 2050 年,这些化学原料将导致 200 公吨二氧化碳 2 当量 (Mt CO 2 e) 的排放 (1)。对乙烷和石脑油等高排放石化产品的需求持续增长,因为这些原料的下游用于制造个人护理用品、食品防腐剂、化肥和家具等消费品,这些消费品将需要大量供应不断增长的全球中产阶级(2)。为了减少未来的一氧化碳 2 排放,必须找到一种二氧化碳 2 排放强度较低的替代方法来生产化学原料。
Renewable electrosynthesis could potentially target high-value chemicals (e.g., ethylene, ethanol) as a market-entry strategy because these important chemical products rely today on energy-intensive thermochemical routes such as high-temperature and high-pressure processes. High-value renewables–derived commodity chemicals could provide a step in the direction of implementing electrosynthesis technologies at scale, thereby improving manufacturing methods and efficiency—in essence, to advance along the learning curve of the technology maturation process. This strategy avoids short-term direct competition with fuels derived from shale gas (i.e., targeting methane) (3). However, we note that the costs of many commodity chemicals are tied to natural gas, as natural gas is a major feedstock.
可再生电合成可能以高价值化学品(如乙烯、乙醇)为市场准入策略,因为这些重要的化学产品目前依赖于能源密集型热化学路线,如高温和高压工艺。高价值的可再生能源衍生商品化学品可以为大规模实施电合成技术的方向迈出一步,从而改善制造方法和效率,实质上是沿着技术成熟过程的学习曲线前进。这种策略避免了与页岩气燃料的短期直接竞争(即以甲烷为目标)(3)。然而,我们注意到,由于天然气是主要原料,许多大宗化学品的成本与天然气有关。
In the long term, it will be essential to target commodity chemical processes that can be implemented at the gigatonne scale in order to achieve meaningful carbon emissions reductions (4). For example, today formic acid represents a small global market, and a complete transition to its CO2 emissions–neutral production would result in only meager global carbon emissions reductions; however, this could change in the future if advances in formic acid fuel cells or the use of formic acid as a hydrogen carrier continue. Industrially more mature electrocatalytic technologies such as chloralkali cells, hydrogen electrolyzers, and fuel cells provide examples and directions for the road map to advance from the laboratory to commercial scales for electrochemical synthesis.
从长远来看,为了实现有意义的碳减排,必须以十亿吨级的规模实施商品化学工艺为目标(4)。例如,今天甲酸代表着一个很小的全球市场,完全过渡到其二氧化碳 2 排放中和生产只会导致微薄的全球碳减排量;然而,如果甲酸燃料电池的进步或使用甲酸作为氢载体继续下去,这种情况在未来可能会改变。工业上更成熟的电催化技术,如氯碱电池、氢电解槽和燃料电池,为电化学合成从实验室走向商业规模提供了示例和方向。
Renewable energy–powered electrochemical CO2 conversion to chemicals could be implemented to take advantage of point sources of relatively pure CO2 emissions, such as those released from cement manufacturing, breweries, and distilleries or from various fuel processing facilities. Electrosynthesis of commodity chemicals can be done at the point of use, requiring less handling and distribution infrastructure than is necessary for fuels production. However, some key challenges include matching the manufacturing scales of downstream chemicals and the emissions of point sources, flexible on-demand production, and cost-effective scale-up. This optimization problem will rely heavily on the type and scale of CO2 sources. Additionally, complicated supply chain management needs to be accounted for; transport and storage costs between CO2 emissions point sources and end-product users need to be considered.
可以实施可再生能源驱动的电化学一氧化碳 2 转化为化学品,以利用相对纯净的一氧化碳 2 排放点源,例如水泥制造、啤酒厂和酿酒厂或各种燃料加工设施释放的点源。商品化学品的电合成可以在使用点完成,与燃料生产所需的处理和分配基础设施相比,需要更少的处理和分配基础设施。然而,一些关键挑战包括匹配下游化学品的制造规模和点源的排放、灵活的按需生产以及具有成本效益的放大。这个优化问题将在很大程度上取决于一氧化碳 2 源的类型和规模。此外,还需要考虑复杂的供应链管理;需要考虑一氧化碳 2 排放点源和最终产品用户之间的运输和储存成本。
Electrosynthesis must first be scaled and validated under practical conditions for thousands of hours of chemical production. Then, carbon-based fuels can be targeted, providing a strategy for long-term (i.e., seasonal) energy storage (5). The time-varying and unpredictable nature of renewable low–carbon emission energy sources such as wind and solar limits their deployment in the replacement of fossil fuel–fired power plants. Batteries and other energy storage (such as compressed gas or flywheels) may provide short-term storage solutions on the scale of hours or even days, but there is still a need for month-to-month seasonal storage. Existing electricity grid infrastructure is not well designed to absorb excess renewable power generation, resulting in a mismatch of supply and demand: During periods of peak generation, excess supply commonly leads to negative electricity prices in some markets today (6). This variability (nondispatchability) challenge limits the widespread, terawatt-scale adoption of low-carbon energy sources. Electrosynthesized fuels (if they can become competitive in price versus low-cost natural gas) could provide a route to turn renewable electricity into stable chemical forms for storage and transport, enabling increased penetration and dispatchability of renewable sources.
电合成必须首先在实际条件下进行扩展和验证,以进行数千小时的化学生产。然后,可以针对碳基燃料,为长期(即季节性)储能提供策略(5)。风能和太阳能等可再生低碳排放能源的时变性和不可预测性限制了它们在替代化石燃料发电厂方面的部署。电池和其他储能(如压缩气体或飞轮)可能会提供数小时甚至数天规模的短期储能解决方案,但仍需要按月进行季节性储能。现有的电网基础设施设计不佳,无法吸收过剩的可再生能源发电,导致供需不匹配:在发电高峰期,供应过剩通常会导致当今某些市场的负电价(6)。这种可变性(不可调度性)挑战限制了低碳能源的广泛、太瓦级采用。电合成燃料(如果它们能够在价格上与低成本天然气相比具有竞争力)可以提供一条将可再生电力转化为稳定的化学形式进行储存和运输的途径,从而提高可再生能源的渗透率和可调度性。
Here, we consider what it would take to displace fossil fuel sources as the chemical supply for small-molecule chemical feedstocks. Independent of energy source for transformation, petroleum is ultimately not a sustainable resource for our chemical needs: The extraction and processing of fossil fuels consumes energy (1200 Mt of oil equivalent in 2017) and emits CO2 (1500 Mt of CO2 per year in 2017) (7). We present prospective pathways toward industrial implementation as well as a technoeconomic assessment and simple life-cycle analysis of the most promising products. We discuss the opportunities for electrocatalysis in the sustainable production of some important chemical compounds. First, we discuss the renewable production of alcohols. The sustainable production of olefins is then discussed, with a focus placed on renewable ethylene and plastics recycling. We then discuss the potential of coupled synthesis gas (syngas) and biocatalytic approaches as a pathway to higher-order valuable commodity chemicals. We ask, quantitatively, what it would take to disrupt the chemical production sector, and thus offer target figures of merit. We conclude with challenges that must be overcome for electrocatalytic technology to be successful.
在这里,我们考虑了取代化石燃料来源作为小分子化学原料的化学供应需要什么。与转化能源无关,石油最终不是满足我们化学需求的可持续资源:化石燃料的提取和加工消耗能源(2017 年 2 为 1200 公吨油当量)并排放 CO 2 (2017 年每年 1500 公吨 CO)(7)。我们提出了工业实施的前瞻性途径,以及最有前途的产品的技术经济评估和简单的生命周期分析。我们讨论了电催化在一些重要化合物的可持续生产中的机会。首先,我们讨论酒精的可再生生产。然后讨论了烯烃的可持续生产,重点是可再生乙烯和塑料回收。然后,我们讨论了耦合合成气(合成气)和生物催化方法作为通往更高阶有价值的商品化学品的途径的潜力。我们从定量上询问如何才能扰乱化学生产部门,从而提供目标品质因数。最后,我们总结了电催化技术成功必须克服的挑战。

Electrocatalysis: A versatile network of chemical transformation
电催化:多功能化学转化网络

Electrochemical activation and conversion of CO2 and water into hydrocarbons and oxygenates could potentially offer a sustainable route to produce many of the world’s most needed commodity chemicals (Fig. 1A). Coupling renewable sources of energy (solar, wind, hydroelectric) with electrochemical reduction of CO2 to chemicals, if done efficiently, could address the nondispatchable nature of renewables by providing storage in chemical bonds. Electrocatalysis also provides a route to transforming carbon resources into chemicals without the need to burn carbon fuels, assuming the CO2 is taken from air. At present, direct air CO2 capture is far from industrially mature, but recent work has shown a pathway toward a cost of $94 to $232 per tonne of CO2 from the atmosphere (8), with startup companies such as Carbon Engineering and Climeworks having secured funding to scale CO2 capture processes to industrially relevant levels. However, electrocatalysis is currently limited to C1 to C3 chemical production for two major reasons: (i) Higher carbon species require more proton-coupled electron transfers, leading to a highly complex reaction pathway and poor product selectivities (9), and (ii) there is a diminishing energy return per number of electrons transferred as the carbon number increases (10).
电化学活化 2 和将一氧化碳和水转化为碳氢化合物和含氧化合物可能为生产许多世界上最需要的商品化学品提供一条可持续的途径(图1A)。将可再生能源(太阳能、风能、水力发电)与一氧化碳 2 电化学还原为化学品相结合,如果有效地完成,可以通过提供化学键的储存来解决可再生能源的不可调度性。电催化还提供了一种将碳资源转化为化学品的途径,而无需燃烧碳燃料,假设一氧化碳 2 是从空气中提取的。目前,直接空气中一氧化碳 2 捕获远未成熟,但最近的研究表明, 2 从大气中每吨一氧化碳的成本为94美元至232美元(8),Carbon Engineering和Climeworks等初创公司已获得资金,将一氧化碳 2 捕获过程扩展到工业相关水平。然而,电催化目前仅限于 C1 到 C3 的化学生产,主要有两个原因:(i) 更高的碳种类需要更多的质子耦合电子转移,导致高度复杂的反应途径和较差的产物选择性 (9),以及 (ii) 随着碳数的增加,每转移一个电子数的能量回报就会递减 (10)。
Fig. 1 Pathways and selectivities for renewable chemical synthesis.
图1 可再生化学合成的途径和选择性。
(A) Possible renewable energy–powered routes to commodity chemicals driven by electrocatalysis from H2O (gray) and CO2 (purple, red) as feedstocks. (B) Highest reported Faradaic efficiencies for carbon monoxide (gray squares), formic acid (purple triangles), ethylene (blue diamonds), and ethanol (red circles) and corresponding current densities (green) over the past three decades (table S3).
(A) 由H 2 O(灰色)和CO 2 (紫色,红色)作为原料的电催化驱动的商品化学品的可能可再生能源动力途径。(B) 在过去三十年中,一氧化碳(灰色方块)、甲酸(紫色三角形)、乙烯(蓝色钻石)和乙醇(红色圆圈)以及相应的电流密度(绿色)报告的法拉第效率最高(表S3)。
Open in viewer
There exist commercial electrochemical technologies that offer a blueprint for CO2 electroconversion. Of these options, water electrolyzers that produce hydrogen and oxygen are the most analogous and industrially mature, with companies such as Siemens, Proton OnSite, Teledyne, Nel Hydrogen, and Hydrogenics selling commercial-scale electrolyzers. The global water electrolysis market is expected to grow from $8.5 billion (USD) today to $11 billion by 2023, driven mostly by the chemical industry’s desire for emissions-free sources of hydrogen (11). Although electrochemical hydrogen production today accounts for 4% of total hydrogen production (with the remainder from steam reforming of natural gas and coal gasification), this represents 8 GW of electrolysis capacity (12, 13). The total market is $115 billion and is expected to reach $155 billion by 2022, with up to 8% of the growth coming from electrolysis (12). Natural gas as a feedstock is currently cheap because of the shale gas revolution in North America. However, in the long term, electrolysis may be a more sustainable process. The energy landscape is evolving quickly, with renewables gaining market share. If technological challenges are overcome, electrochemical processes based on renewable electricity may become more cost-effective. In addition to water electrolysis, the research community has also been focusing on photoelectrochemical water splitting as a means of decentralized energy conversion and storage (14, 15). The topic of hydrogen evolution has been covered in many excellent reviews (5, 1619) and will not be further explored here.
现有的商业电化学技术为一氧化碳 2 电转化提供了蓝图。在这些选项中,产生氢气和氧气的水电解槽是最相似的,也是工业上最成熟的,西门子、Proton OnSite、Teledyne、Nel Hydrogen 和 Hydrogenics 等公司都在销售商业规模的电解槽。全球水电解市场预计将从目前的 85 亿美元增长到 2023 年的 110 亿美元,这主要是由于化工行业对无排放氢气来源的渴望 (11)。尽管今天电化学制氢占总制氢量的4%(其余来自天然气的蒸汽重整和煤气化),但这代表了8 GW的电解能力(12,13)。总市场规模为 1150 亿美元,预计到 2022 年将达到 1550 亿美元,其中高达 8% 的增长来自电解 (12)。由于北美的页岩气革命,天然气作为原料目前很便宜。然而,从长远来看,电解可能是一个更可持续的过程。能源格局正在迅速发展,可再生能源的市场份额越来越大。如果克服了技术挑战,基于可再生电力的电化学工艺可能会变得更具成本效益。除了水电解之外,研究界还一直关注光电化学水分解作为分散能量转换和储存的手段(14,15)。氢析出的主题已经在许多优秀的评论中涉及(5,16-19),这里不再进一步探讨。
Electrochemical carbon dioxide reduction (CO2R) has seen a marked increase in research activity over the past few years. It offers a prospectively sustainable pathway for producing fuel and chemical feedstocks through the electrochemical conversion of an undesirable greenhouse gas. The Faradaic efficiencies (Fig. 1B) and energy conversion efficiencies (Table 1) toward many CO2R products have increased steadily over the past 30 years. Current densities have also increased to >100 mA/cm2 (Fig. 1B) as a result of the adoption of gas diffusion electrodes that overcome the CO2 solubility limit in aqueous electrolytes. Production of simpler C1 products such as CO and formic acid has become possible with high initial selectivity even on simple metal foils. However, more sophisticated catalyst, electrolyte, and cell engineering is required to make substantial improvements in selectivity for C2 products because of the difficulty of C-C coupling. Additionally, efficient product separation and recycling of unreacted CO2 is another practical concern that could be mitigated by improvements in catalyst selectivity. The topic of materials design for CO2R electrocatalysis has also been covered extensively by multiple reviews (2027). Here, we instead focus on the barriers that this technology would have to surmount to disrupt the chemical industry.
在过去几年中,电化学二氧化碳还原(CO 2 R)的研究活动显着增加。它为通过电化学转化不良温室气体来生产燃料和化学原料提供了一种具有前景的可持续途径。在过去30年中,许多CO 2 R产品的法拉第效率(图1B)和能量转换效率(表1)稳步提高。电流密度也增加到>100 mA/cm 2 (图1B),这是由于采用了气体扩散电极,克服了水电解质中CO 2 的溶解度极限。即使在简单的金属箔上,也可以很容易地生产更简单的 C1 产品,例如 CO 和甲酸,并且具有很高的初始选择性。然而,由于 C-C 偶联的困难,需要更复杂的催化剂、电解质和电池工程来大幅提高 C2 产物的选择性。此外,未反应的一氧化碳的高效产物分离和回收 2 是另一个实际问题,可以通过提高催化剂选择性来缓解。CO 2 R 电催化的材料设计主题也被多篇综述广泛涵盖 (20–27)。在这里,我们关注的是这项技术必须克服的障碍,以颠覆化学工业。
Table 1 Current state of CO2 electrolyzers in comparison with hydrogen electrolyzers and their figures of merit.
表1 CO 2 电解槽与氢电解槽的现状及其品质因数的比较。
Open in viewer

Pathways toward industrial implementation
工业化实施途径

Decades of research have proven effective in developing efficient catalysts for the electrochemical generation of hydrogen and oxygen from water to the point of commercialization. Because these electrochemical transformations require, in principle, similar components to CO2R, lessons learned from the engineering scale-up and device design of hydrogen electrolyzers can be of great utility.
数十年的研究证明,在开发高效催化剂方面是有效的,该催化剂用于从水中电化学生成氢气和氧气,直至商业化。由于这些电化学转化原则上需要与 CO 2 R 相似的组件,因此从氢电解槽的工程放大和设备设计中吸取的经验教训可能非常有用。
Several factors uniquely position the electrochemical conversion of CO2 for accelerated technological development. First, the products of CO2R already exist within many petrochemical supply chains, and therefore the chemical industry infrastructure is more readily prepared to adapt to CO2R. Second, the need to reduce emissions along with the gradual adoption of carbon capture technologies is resulting in large energy consumers and carbon emitters facing the challenge of what to do with the CO2 once it is captured (10). CO2R provides a way to recover value from what would otherwise be a tremendous sunk cost. The Carbon XPRIZE is a $20 million competition to capture and convert the most CO2 and is jointly funded by COSIA, a consortium of large oil producers (28).
有几个因素使CO的电化学转化 2 具有独特的优势,可以加速技术发展。首先,一氧化碳 2 产品已经存在于许多石化供应链中,因此化工行业的基础设施更容易适应一氧化碳 2 。其次,随着碳捕获技术的逐步采用,减少排放的需要导致大型能源消费者和碳排放者面临着 2 一氧化碳被捕获后如何处理的挑战(10)。CO 2 R 提供了一种从原本巨大的沉没成本中回收价值的方法。Carbon XPRIZE是一项耗资2000万美元的竞赛,旨在捕获和转化最多的一氧化碳 2 ,由大型石油生产商财团COSIA共同资助(28)。
Governments worldwide have identified climate change initiatives as having high priority. For example, China, the world’s largest energy consumer and carbon emitter, recently announced $360 billion in renewable energy investments by 2020 in an effort to reduce carbon emissions (29). Canada is implementing a carbon pricing policy federally with a current tax of $10/tonne CO2 and a steady rise to $50/tonne CO2 nationwide by 2022. Mission Innovation, a 22-country global initiative to accelerate clean energy innovation, has named CO2 Capture and Utilization, Clean Energy Materials, and Converting Sunlight as topics of innovation challenges.
世界各国政府已将气候变化倡议确定为高度优先事项。例如,中国是世界上最大的能源消费国和碳排放国,最近宣布到2020年将投资3600亿美元的可再生能源,以减少碳排放(29)。加拿大正在联邦实施碳定价政策,目前的碳税为10美元/吨一氧化碳 2 ,到2022年 2 全国范围内将稳步上升到50美元/吨一氧化碳。Mission Innovation 是一项由 22 个国家/地区组成的全球倡议,旨在加速清洁能源创新,将 CO 2 捕获和利用、清洁能源材料和转换阳光列为创新挑战的主题。
Despite a favorable ecosystem for renewable chemical feedstocks, industrial scale-up still entails challenges and risks. For example, electrolytes must be optimized with careful consideration of cost, environmental impact, and availability to reach the scales necessary for meaningful emissions reductions. Public policy concerning CO2 utilization technologies needs to be carefully crafted and social acceptance of the field needs to be managed. Carbon taxes, nationwide caps on CO2 emissions, and certifications of CO2-derived products are examples of public policy tools. From a societal acceptance point of view, people need to be educated about how carbon capture and sequestration is different from carbon capture and utilization. Most important, catalysts and system efficiencies for this technology need to be vastly improved to be economically viable with minimal or no government subsidies (because it is difficult to rationalize sustainable business models based on subsidies and policies that can be easily changed).
尽管可再生化学原料拥有有利的生态系统,但工业规模化仍面临挑战和风险。例如,电解质必须经过优化,仔细考虑成本、环境影响和可用性,以达到有意义的减排所需的规模。需要仔细制定有关一氧化碳 2 利用技术的公共政策,并需要管理该领域的社会接受度。碳税、全国范围内的一氧化碳 2 排放上限以及一氧化碳 2 衍生产品的认证都是公共政策工具的例子。从社会接受的角度来看,人们需要接受教育,了解碳捕获和封存与碳捕获和利用有何不同。最重要的是,这项技术的催化剂和系统效率需要大幅提高,才能在经济上可行,而政府补贴很少或没有政府补贴(因为很难根据补贴和政策来合理化可持续的商业模式,而这些补贴和政策很容易改变)。
Many technoeconomic analyses of solar fuels have analyzed the needed Faradaic efficiencies and energy efficiencies required to match fossil fuel–derived sources (10, 3034). Among them, the largest influence on the levelized cost of production (the net present value of the cost of electricity over the lifetime of the asset) has consistently been the price of electricity. Building on previous studies, we have calculated the cost of electrosynthesized hydrogen, carbon monoxide, ethanol, and ethylene as a function of the energy conversion efficiency and electricity cost (Fig. 2) to provide a comparison to current market prices. We also provide a sensitivity analysis on production cost as a function of carbon emissions–free electricity source, showing nuclear and geothermal as currently the most cost-competitive (fig. S2; see supplementary text for calculation details). We note that commodity chemical prices are highly variable with respect to geographic region and feedstock (see below). Using optimistic assumptions based on industrially mature polymer electrolyte membrane (PEM) water electrolyzer specifications, we show that when electricity costs fall below 4 cents/kWh and energy efficiency is at least 60%, all products become competitive with current market prices for these products derived from fossil fuel sources. These calculations assume amortization over a plant lifetime of 30 years, a common period for industrial power plants (35). Replacing initial capital-intensive infrastructure would carry additional costs. To put this into perspective, the best systems today have demonstrated full cell energy efficiencies of approximately 40 to 50% for CO, approaching cost-competitive targets. Considering that CO2R to CO technologies are in the early stages of development, it is expected that with further catalyst and electrochemical cell designs, improved performance can be obtained. From an electricity cost perspective, renewable prices continue to plummet. Between 2010 and 2017, average global utility-scale solar plants fell 73% to 10 cents/kWh and onshore wind fell by 23% to 6 cents/kWh, with some projects consistently delivering electricity for 4 cents/kWh (36). Recent onshore wind power auctions in Brazil, Canada, Germany, India, Mexico, and Morocco have shown levelized electricity costs as low as 3 cents/kWh, within the range of profitability of electrosynthesized chemicals (36). Costs have fallen as a result of increased economies of scale, greater competition, and advances in the manufacturing of crystalline silicon. This cost decrease in renewable technologies provides an optimistic and aggressive goal for electrocatalytic technologies.
许多对太阳能燃料的技术经济分析已经分析了匹配化石燃料衍生来源所需的法拉第效率和能源效率(10,30-34)。其中,对平准化生产成本(资产生命周期内电力成本的净现值)影响最大的一直是电价。在以往研究的基础上,我们计算了电合成氢气、一氧化碳、乙醇和乙烯的成本与能源转换效率和电力成本的关系(图2),以提供与当前市场价格的比较。我们还对生产成本作为无碳排放电力来源的函数进行了敏感性分析,显示核能和地热是目前最具成本竞争力的(图S2;计算细节见补充文本)。我们注意到,大宗化学品价格因地理区域和原料而异(见下文)。使用基于工业成熟的聚合物电解质膜 (PEM) 水电解槽规格的乐观假设,我们表明,当电力成本低于 4 美分/千瓦时且能源效率至少为 60% 时,所有产品都与这些来自化石燃料的产品的当前市场价格具有竞争力。这些计算假设工厂寿命为30年,这是工业电厂的常见时期(35)。更换初始资本密集型基础设施将带来额外的成本。从这个角度来看,当今最好的系统已经证明,一氧化碳的全电池能量效率约为 40% 至 50%,接近具有成本竞争力的目标。 考虑到CO 2 R-CO技术处于早期发展阶段,预计通过进一步的催化剂和电化学电池设计,可以获得更高的性能。从电力成本的角度来看,可再生能源价格继续暴跌。2010年至2017年间,全球公用事业规模的太阳能发电厂平均发电量下降了73%,至10美分/千瓦时,陆上风电下降了23%,至6美分/千瓦时,一些项目一直以4美分/千瓦时的速度提供电力(36)。最近在巴西、加拿大、德国、印度、墨西哥和摩洛哥进行的陆上风电拍卖显示,平准化电力成本低至3美分/千瓦时,在电合成化学品的盈利范围内(36)。由于规模经济的增加、竞争的加剧以及晶体硅制造的进步,成本已经下降。可再生技术成本的降低为电催化技术提供了一个乐观而积极的目标。
Fig. 2 Production costs of electrosynthesized chemicals.
图2 电合成化学品的生产成本。
The graphs show technoeconomic analyses of hydrogen, carbon monoxide, ethanol, and ethylene costs as a function of electrolyzer energy conversion efficiency and electricity costs. We assume a pure CO2 price of $30/tonne, Faradaic efficiency of 90%, current density of 500 mA/cm2, electrolyzer cost of $300/kW, and plant lifetime of 30 years. The area above the white dashed line in lighter color indicates profitable production costs based on average global prices. We note that regional differences in market prices exist because of the nature of fossil fuel feedstocks.
这些图表显示了氢气、一氧化碳、乙醇和乙烯成本的技术经济分析,作为电解槽能量转换效率和电力成本的函数。我们假设纯一氧化碳 2 价格为 30 美元/吨,法拉第效率为 90%,电流密度为 500 mA/cm 2 ,电解槽成本为 300 美元/千瓦,工厂寿命为 30 年。浅色白色虚线上方的区域表示基于全球平均价格的有利可图的生产成本。我们注意到,由于化石燃料原料的性质,市场价格存在区域差异。
Open in viewer
To quantify the potential impact of electrochemical synthesis of common carbon-based commodity chemicals on carbon emissions, we performed a life-cycle assessment for formic acid, carbon monoxide, ethylene, and ethanol. Of these products, ethylene has the largest global market size at $230 billion and the highest current production emissions of 862 Mt CO2e per year (Fig. 3A); these numbers suggest that renewably synthesized ethylene is an attractive target for meaningful global warming impact reduction (37). The electricity grid carbon intensity (the amount of carbon dioxide emitted per kWh of electricity generated) and the energy conversion efficiency were found to be the most sensitive factors affecting overall CO2 emissions (Fig. 3, B to E). We note that capital expenditure factors such as construction and electrode materials were not considered. Assuming a plant capacity of 500 MW, an average grid intensity for the European Union (0.295 kg CO2e/kWh in 2016) (38), and an energy conversion efficiency of 70%, carbon monoxide and formic acid result in carbon emissions that are lower than fossil fuel–derived sources. In order for products to reduce carbon emissions compared to current production, the grid carbon intensity needs to be 0.11 kg CO2e/kWh or lower. It should be noted that an energy conversion efficiency of 70% has not yet been demonstrated for all products considered herein.
为了量化常见碳基商品化学品的电化学合成对碳排放的潜在影响,我们对甲酸、一氧化碳、乙烯和乙醇进行了生命周期评估。在这些产品中,乙烯的全球市场规模最大,为2300亿美元,目前产量最高,为每年862公吨二氧化碳 2 当量(图3A);这些数字表明,可再生合成乙烯是有意义的减少全球变暖影响的一个有吸引力的目标(37)。电网碳强度(每千瓦时发电量排放的二氧化碳量)和能源转换效率是影响总CO 2 排放量的最敏感因素(图3,B至E)。我们注意到,没有考虑建筑和电极材料等资本支出因素。假设电厂容量为500兆瓦,欧盟的平均电网强度(2016年为0.295千克二氧化碳 2 当量/千瓦时)(38),能源转换效率为70%,一氧化碳和甲酸导致的碳排放量低于化石燃料衍生来源。与当前生产相比,为了使产品减少碳排放,电网碳强度需要为 0.11 kg CO 2 e/kWh 或更低。应该注意的是,对于本文所考虑的所有产品,尚未证明70%的能量转换效率。
Fig. 3 The emissions impact of electrosynthesized chemicals.
图3 电合成化学品的排放影响。
(A) Market size and fossil-based carbon cradle-to-grave emissions of ethylene (60), ethanol (104), carbon monoxide (105), and formic acid (106). (B to E) Carbon emissions assessment of (B) formic acid, (C) carbon monoxide, (D) ethylene, and (E) ethanol. We assume a plant capacity of 500 MW, global warming impact (GWI) of formic acid (2.00), carbon monoxide (0.57), ethylene (1.1), and ethanol (–0.5) in units of kg CO2/kg product. Emissions reductions are calculated as a product of global production and GWI.
(A) 乙烯 (60)、乙醇 (104)、一氧化碳 (105) 和甲酸 (106) 的市场规模和化石碳从摇篮到坟墓的排放量。(B 到 E)(B)甲酸、(C)一氧化碳、(D)乙烯、(E)乙醇的碳排放评估。我们假设工厂容量为 500 MW,甲酸 (2.00)、一氧化碳 (0.57)、乙烯 (1.1) 和乙醇 (-0.5) 的全球变暖影响 (GWI) 以 kg CO 2 /kg 产品为单位。减排量是作为全球产量和GWI的乘积计算的。
Open in viewer
To benchmark these results, we provide a comparison of electrocatalytic, biocatalytic, and traditional fossil fuel–derived processes for ethylene, carbon monoxide, ethanol, and formic acid production (Table 2). Bio-ethylene production using bio-ethanol precursors is economically competitive in Brazil because of the ample availability of cheap sugarcane feedstock (39). Petrochemical ethylene is produced mainly from steam cracking of fossil fuels (40). The majority of carbon monoxide is produced as a component of syngas through coal gasification or steam methane reforming (41). Ethanol is primarily produced through fermentation of sugars or corn (42). Formic acid is primarily produced through chemical processes using tertiary amines (43). We find that when using optimistic targets (electricity cost = 4 cents/kWh, Faradaic efficiency = 90%, energy conversion efficiency = 70%), electrocatalysis is cost-competitive with fossil fuel–derived sources and more economical than biocatalytic processes. We nonetheless note that whereas fossil fuel–derived chemical production processes are well established, advances in biocatalytic processes have the potential to steadily drive down production costs and carbon emissions. For example, the U.S. Department of Energy has set the goal of biofuel production cost at $1 per gasoline gallon equivalent (currently $2.68/gge) with greenhouse gas reductions of 50% by 2020 (44).
为了对这些结果进行基准测试,我们比较了乙烯、一氧化碳、乙醇和甲酸生产的电催化、生物催化和传统化石燃料衍生工艺(表2)。在巴西,使用生物乙醇前体的生物乙烯生产在经济上具有竞争力,因为有充足的廉价甘蔗原料(39)。石化乙烯主要由化石燃料的蒸汽裂解生产(40)。大部分一氧化碳是通过煤气化或蒸汽甲烷重整作为合成气的组成部分产生的(41)。乙醇主要通过糖或玉米的发酵产生(42)。甲酸主要通过使用叔胺的化学过程生产 (43)。我们发现,当使用乐观的目标(电力成本 = 4 美分/千瓦时,法拉第效率 = 90%,能源转换效率 = 70%)时,电催化与化石燃料衍生来源相比具有成本竞争力,并且比生物催化过程更经济。尽管如此,我们注意到,虽然化石燃料衍生的化学生产工艺已经成熟,但生物催化工艺的进步有可能稳步降低生产成本和碳排放。例如,美国能源部将生物燃料生产成本设定为每加仑汽油当量1美元(目前为2.68美元/gge),到2020年温室气体减少50%(44)。
Table 2 Comparison of production cost and carbon emissions across various catalytic processes.
表2 不同催化工艺的生产成本和碳排放量比较

*Electrocatalysis assumes Faradaic efficiencies of 90%, electricity costs of 4 cents/kWh, energy conversion efficiency of 70%, capacity factor of 0.9, and grid intensities of 0.295 kg CO2e/kWh.
*电催化假设法拉第效率为90%,电力成本为4美分/千瓦时,能源转换效率为70%,容量系数为0.9,电网强度为0.295千克二氧化碳 2 当量/千瓦时。

Open in viewer
With these targets in mind, we now outline electrocatalysis as a means for the sustainable production of alcohols, olefins, and syngas.
考虑到这些目标,我们现在将电催化作为可持续生产醇类、烯烃和合成气的一种手段。

Direct electrochemical conversion of CO2 to alcohols
CO 2 直接电化学转化为醇类

Among the various oxygenates that can be produced directly from electrochemical CO2R or through sequential reaction pathways, alcohols are attractive for their utility as chemical precursors, drop-in fuels, and solvents. The global market for alcohols is in excess of $75 billion (45), which suggests that sustainable pathways toward methanol and higher (C2+) alcohols could provide alternative environmentally friendly routes to these high-demand products. Methanol is primarily synthesized through circuitous oxidation and reduction processes, by first reforming natural gas sources to syngas and converting this reaction mixture (46). A few recent studies have reported high selectivity for direct CO2R to methanol (4749), and further evaluation may yield valuable design principles for electrocatalytic systems that can accomplish a direct synthesis. Alternatively, a number of recent studies have reported high selectivity for direct CO2R and carbon monoxide reduction (COR) to ethanol, and lower but non-negligible selectivity to n-propanol (5055).
在可直接由电化学 CO 2 R 或通过顺序反应途径产生的各种含氧化合物中,醇因其作为化学前体、即插即用燃料和溶剂的效用而具有吸引力。全球醇类市场超过750亿美元(45),这表明通往甲醇和更高(C2+)醇类的可持续途径可以为这些高需求产品提供替代的环保途径。甲醇主要通过迂回氧化和还原过程合成,首先将天然气源重整为合成气并转化这种反应混合物 (46)。最近的一些研究报道了直接将 CO 2 R 转化为甲醇的高选择性 (47–49),进一步的评估可能会为能够完成直接合成的电催化系统提供有价值的设计原则。另外,最近的一些研究报道了直接将 CO 2 R 和一氧化碳还原 (COR) 到乙醇的选择性很高,而对正丙醇的选择性较低但不可忽略 (50–55)。
Traditionally, higher alcohols are predominantly made through the fermentation of sugars (42, 56) or conversion of petrochemicals (57). The food versus fuel dilemma is still a long-standing social issue for the fermentation of foods or feeds. Biocatalysis is highly selective at making C2+ products and alcohols, but the economics of this process are dependent on the cost of sugar for fermentation. Production rates from biocatalysis are typically slower, water-intensive, and highly sensitive to the overall health of the microorganisms. Important advances have been made toward improving these processes in recent years, and progress is expected to continue.
传统上,高级醇主要通过糖的发酵(42,56)或石化产品(57)的转化制成。对于食品或饲料的发酵来说,食物与燃料的困境仍然是一个长期存在的社会问题。生物催化在制造 C2+ 产品和醇类方面具有高度选择性,但该过程的经济性取决于发酵糖的成本。生物催化的生产速度通常较慢,耗水量大,并且对微生物的整体健康状况高度敏感。近年来,在改进这些流程方面取得了重要进展,预计还会继续取得进展。
Direct synthesis of higher alcohols from syngas is a desirable alternative for both environmental and economic reasons. However, there are currently no thermochemical catalysts with the appropriate performance for industrial implementation of higher alcohol synthesis from syngas, motivating continued research in this area (57).
出于环境和经济原因,从合成气中直接合成高级醇是一种理想的替代方案。然而,目前还没有具有适当性能的热化学催化剂,可以工业化地从合成气中合成高醇,这激发了该领域的持续研究(57)。
Electrocatalysis has the advantage of productivity with a modular and scalable approach to producing small C1 to C3 molecules and H2. Although some of these electrocatalytic technologies are still in the development stage, the already promising selectivity indicates that there may be intrinsic advantages to electrochemical processes for the synthesis of methanol and higher alcohols, although product separation remains a challenge. While there is clearly potential for electrochemical CO2R and/or COR technologies to have a large impact on global alcohol industries, we note that many alcohols such as methanol and ethanol (Table 2) can be produced at costs of <$1/kg through current industrial processes (58). Therefore, market penetration will be initially (and possibly continually) very difficult, except in specialized applications that may need the flexibility of modular reactors.
电催化具有生产率的优势,采用模块化和可扩展的方法来生产小的 C1 至 C3 分子和 H 2 。尽管其中一些电催化技术仍处于开发阶段,但已经很有希望的选择性表明,尽管产物分离仍然是一个挑战,但电化学过程在合成甲醇和高级醇方面可能具有内在优势。虽然电化学CO 2 R和/或COR技术显然有可能对全球酒精行业产生重大影响,但我们注意到,通过当前的工业流程,许多醇类,如甲醇和乙醇(表2)可以以<1美元/千克的成本生产(58)。因此,市场渗透最初(并可能持续)非常困难,除非在可能需要模块化反应堆灵活性的专业应用中。

Ethylene derivatives and sustainable plastic production
乙烯衍生物和可持续塑料生产

Ethylene is produced at an annual rate of 150 Mt/year globally, the most of any organic chemical compound. It is a versatile building block used in the petrochemical industry. The majority of ethylene is used as a chemical intermediate for the preparation of some of the world’s most heavily used plastics, including polyethylene (116 Mt/year), polyvinyl chloride (38 Mt/year), and polystyrene (25 Mt/year) (40); the compound is also used for the production of antifreeze and detergents, and in the agricultural sector as a fruit ripener. Ethylene has traditionally been produced by energy-intensive steam cracking of naphtha obtained from crude oil; however, in recent years the shale gas boom has led to an abundance of inexpensive feedstocks that have spurred capital investment in the United States to build many new ethane crackers or retrofit existing steam cracking facilities to accommodate light gas feeds (59).
乙烯的全球年产量为150吨/年,是所有有机化合物中产量最高的。它是石化工业中使用的多功能构建块。大多数乙烯被用作化学中间体,用于制备世界上一些使用最频繁的塑料,包括聚乙烯(116 Mt/年)、聚氯乙烯(38 Mt/年)和聚苯乙烯(25 Mt/年)(40);该化合物还用于生产防冻剂和洗涤剂,并在农业领域用作水果成熟剂。传统上,乙烯是通过从原油中获得的石脑油的能源密集型蒸汽裂解来生产的;然而,近年来,页岩气的繁荣导致了大量廉价的原料,刺激了美国的资本投资,以建造许多新的乙烷裂解装置或改造现有的蒸汽裂解设施以适应轻质天然气进料(59)。
Ethylene is a prime example of a petrochemical commodity priced on feedstock cost and consistency of supply. In North America, where ethylene is primarily produced from cracking of inexpensive and abundant ethane from shale gas reserves, prices can be as low as $250/tonne. However, in regions such as Europe and Asia where naphtha is the main feedstock, ethylene cost can be as high as $1200/tonne (60). In these regions, where the price of the feedstock is volatile, electrocatalytic conversion may have a greater chance of gaining a foothold on the market.
乙烯是石化商品的一个典型例子,它以原料成本和供应的一致性为定价。在北美,乙烯主要通过从页岩气储量中裂解廉价而丰富的乙烷来生产,价格可能低至250美元/吨。然而,在以石脑油为主要原料的欧洲和亚洲等地区,乙烯成本可能高达1200美元/吨(60)。在这些原料价格波动较大的地区,电催化转化可能有更大的机会在市场上站稳脚跟。
Although alternative routes for ethylene production are under development, including catalytic dehydrogenation of light alkanes, Fischer-Tropsch (FT) synthesis, or oxidative coupling of methane, these processes each rely on fossil fuel feedstocks and remain uneconomical or require further development. The development of catalysts and reactor designs that can simultaneously achieve high energy efficiencies, selectivity, high conversion rates, and long-term operational durability is the key outstanding challenge in this field. Over the past several years, many advances have contributed to a deeper fundamental understanding of electrochemical CO2 reduction, such as the impact that the electrolyte [pH (61, 62), ions (63, 64), additives (65)], surface structure (6669), and alloying (70) can have on copper catalyst activity and selectivity toward C-C coupled products such as ethylene. Only more recently has this knowledge been translated to practical flow-cell CO2 reduction devices that have attained current densities on the order of >100 mA/cm2 toward ethylene (61, 71).
尽管乙烯生产的替代途径正在开发中,包括轻烷烃的催化脱氢、费托 (FT) 合成或甲烷的氧化偶联,但这些工艺都依赖于化石燃料原料,仍然不经济或需要进一步开发。开发能够同时实现高能效、选择性、高转化率和长期运行耐久性的催化剂和反应器设计是该领域的主要突出挑战。在过去的几年中,许多进展有助于更深入地了解电化学CO 2 还原,例如电解质[pH值(61,62),离子(63,64),添加剂(65)],表面结构(66-69)和合金化(70)对铜催化剂活性和对C-C偶联产物(如乙烯)的选择性的影响。直到最近,这些知识才被转化为实际的流通池CO 2 还原装置,这些装置的电流密度约为>100 mA / cm 2 ,相对于乙烯(61,71)。
One possible use of electrochemical CO2 conversion is the sustainable production of ethylene and polyethylene. In this case, post-consumer plastic could be recycled by incineration where energy (heat) capture (72) could ideally be coupled with electrochemical reduction of the combustion products (CO2) to close the carbon cycle. This could mitigate plastic waste accumulation in landfills or in the environment, which is estimated at more than 4900 Mt and counting (40), and ultimately could provide a pathway for converting polyethylene back into sustainable ethylene at the end of its useful lifetime. Electrocatalysis could enable the production of ethylene from CO2 emissions and/or from post-consumer plastic, rather than from fossil feedstocks, resulting in different economics than in the established petrochemical industry.
电化学一氧化碳 2 转化的一种可能用途是乙烯和聚乙烯的可持续生产。在这种情况下,消费后塑料可以通过焚烧回收,其中能量(热)捕获(72)可以理想地与燃烧产物(CO 2 )的电化学还原相结合,以关闭碳循环。这可以减少垃圾填埋场或环境中的塑料废物堆积,估计超过4900公吨,并且还在增加(40),并最终可以提供一条途径,将聚乙烯在其使用寿命结束时转化为可持续乙烯。电催化可以使乙烯的生产能够从二氧化碳 2 排放和/或消费后塑料中生产乙烯,而不是从化石原料中生产乙烯,从而产生与现有石化行业不同的经济效益。

Sequential pathways to higher chemicals via syngas electrosynthesis and biocatalysis
通过合成气电合成和生物催化获得高级化学品的连续途径

There exist many sequential reaction pathways for converting CO2 to chemicals and fuels, such as single- (C1) or multi-carbon (C2+) oxygenates and hydrocarbons. Leveraging these reaction sequences, one approach is to first convert CO2 into stable intermediate species that can be further upgraded to the desired product(s) using biocatalysts such as enzymes and bacteria.
将一氧化碳 2 转化为化学品和燃料存在许多顺序反应途径,例如单碳(C1)或多碳(C2+)含氧化合物和碳氢化合物。利用这些反应序列,一种方法是首先将一氧化碳 2 转化为稳定的中间物质,这些中间物质可以使用酶和细菌等生物催化剂进一步升级为所需产物。
Among suitable reaction intermediates, CO stands out as it is a common gaseous precursor for numerous thermochemical, biological, and electrochemical processes. Mixtures of CO with H2 (syngas) can serve as feedstocks for FT (73) synthesis or fermentation (74, 75) processes that are implemented today. For example, FT production of diesel is an industrially mature process with plants producing 11.5 tonnes/day, an energy conversion efficiency of 51%, and greenhouse gas emissions of 3.8 tonnes CO2/tonne product, resulting in diesel costs of $240 to $525/tonne (76). Biocatalytic syngas fermentation with enzymes and bacteria can produce more valuable chemicals such as acetic acid, butyric acid, ethanol, butanol, and biodegradable polymers such as polyhydroxyalkanoates (PHAs). For a 1 tonne/year production facility with a biocatalytic syngas conversion of 90% and emissions of 0.26 to 0.45 tonnes CO2/tonne product, the cost of PHA production is $1650/tonne (77, 78). The contrast between these two syngas utilization routes highlights the advantages and challenges of biocatalytic versus FT routes. FT synthesis operates at much higher rates of production and is less expensive for fuel production but has greater carbon emissions, whereas biocatalytic routes operate at lower volume, produce fewer emissions, and target more expensive specialty chemicals. Integrating electrocatalytic and biocatalytic process in the short term represents a promising approach due to the matching of production rates and higher value of the end product.
在合适的反应中间体中,一氧化碳脱颖而出,因为它是许多热化学、生物和电化学过程的常见气态前体。CO 与 H 2 (合成气)的混合物可用作今天实施的 FT (73) 合成或发酵 (74, 75) 过程的原料。例如,FT柴油生产是一个工业成熟的过程,工厂每天生产11.5吨,能源转换效率为51%,温室气体排放量为3.8吨CO 2 /吨产品,导致柴油成本为240美元至525美元/吨(76)。用酶和细菌进行生物催化合成气发酵可以产生更有价值的化学物质,如乙酸、丁酸、乙醇、丁醇和可生物降解的聚合物,如聚羟基链烷酸酯(PHA)。对于生物催化合成气转化率为90%,排放量为0.26至0.45吨CO 2 /吨产品的1吨/年生产设施,PHA生产成本为1650美元/吨(77,78)。这两种合成气利用路线之间的对比突出了生物催化与FT路线的优势和挑战。FT合成的生产率要高得多,燃料生产成本更低,但碳排放量更大,而生物催化路线的产量更低,排放更少,并且针对更昂贵的特种化学品。在短期内将电催化和生物催化工艺相结合是一种很有前途的方法,因为它的生产率和最终产品的更高价值相匹配。
The syngas precursors used in conventional industrial processes are almost exclusively produced by steam methane reforming that, depending on the method, can co-generate different molar ratios of CO and H2 (79). Although these processes are relatively cost-effective and extensive process optimization has been applied to minimize greenhouse gas emissions, the exclusive reliance on fossil fuel sources motivates the development of more sustainable syngas production pathways.
传统工业过程中使用的合成气前驱体几乎完全由蒸汽甲烷重整生产,根据方法的不同,可以共产生不同的 CO 和 H 摩尔比 2 (79)。尽管这些工艺相对具有成本效益,并且已经应用了广泛的工艺优化以最大限度地减少温室气体排放,但对化石燃料来源的完全依赖促使了更可持续的合成气生产途径的发展。
One such sustainable pathway to CO is electrochemical CO2R, where ideally a high-yield near-ambient process could generate a stream of CO from CO2, H2O, and electricity. Because CO is gaseous under ambient conditions, a selective CO2R process would enable direct CO evolution and downstream use from an aqueous electrolyzer device. In the case of syngas, H2 production is complementary and not parasitic to CO2R, allowing for co-generation because HER and CO2R have comparable half-cell potentials under nearly identical electrochemical conditions. Although syngas production from CO2 electrolysis with controlled CO:H2 ratios is possible (80), technoeconomic analysis favors the highest possible selectivity to CO, which is the more valuable product (33). Co-generation of CO and H2 could nonetheless be advantageous for situations where it is essential to have on-site and on-demand syngas production from a single reactor (81).
其中一种可持续的一氧化碳途径是电化学一氧化 2 碳,理想情况下,高产率的近环境工艺可以从一氧化碳 2 、氢 2 氧化物和电力中产生一氧化碳流。由于 CO 在环境条件下是气态的,因此选择性 CO 2 R 工艺将实现 CO 的直接释放和水性电解槽装置的下游使用。在合成气的情况下,H 2 的产生是互补的,而不是寄生在CO 2 R上,允许热电联产,因为HER和CO 2 R在几乎相同的电化学条件下具有相当的半电池电位。尽管在CO:H 2 比受控的情况下,CO 2 电解可以生产合成气(80),但技术经济分析倾向于对CO具有尽可能高的选择性,而CO是更有价值的产品(33)。尽管如此,CO和H 2 的热电联产对于必须从单个反应器进行现场和按需合成气生产的情况可能是有利的(81)。
To date, electrochemical CO2R has been demonstrated with high selectivity and/or reaction rates to CO and syngas in CO2 electrolyzers (8084). A recent breakthrough in this area was achieved by a collaboration of Siemens, Covestro, and Evonik. The team demonstrated a system whereby solar-powered electrochemical reduction of CO2 into syngas was followed by fermentation with bacteria to selectively produce butanol or hexanol, depending on the type of anaerobic digester used (81). Stable CO2 reduction was carried out at industrially relevant current densities (300 mA cm−2) with near 100% Faradaic efficiency for syngas (CO + H2). Following this applied advance, Siemens and Evonik recently announced a plan to build a test plant with the goal of 20,000 tonnes of annual production capacity for butanol and hexanol (85).
迄今为止,电化学 CO 2 R 已被证明对 CO 2 电解槽中的 CO 和合成气具有高选择性和/或反应速率 (80–84)。西门子、科思创和赢创的合作在这一领域取得了最近的突破。该团队展示了一种系统,该系统将太阳能电化学还原 2 为合成气,然后用细菌发酵以选择性地产生丁醇或己醇,具体取决于所使用的厌氧消化器的类型(81)。在工业相关的电流密度(300 mA cm −2 )下,合成气(CO + H)的法拉第效率接近100%,实现了稳定的CO 2 还原 2 。随着这一应用的进步,西门子和赢创最近宣布了一项计划,计划建立一个测试工厂,目标是年产20,000吨丁醇和己醇(85)。
This example presents an exciting future avenue for commodity chemical production: the coupling of biocatalytic processes with electrocatalytic processes (Fig. 4). There has been some initial promising work in this area, interfacing biological systems with inorganic systems for solar fuels and fertilizer production (86, 87). The current state of the art couples water-splitting electrocatalysts with engineered bacteria to convert CO2 into polymers and alcohols (88, 89) or nitrogen into ammonia (90). These efforts have focused mainly on the electrochemical production of H2 or acetate as input for bacteria (87, 91).
这个例子为商品化学品生产提供了一个令人兴奋的未来途径:生物催化过程与电催化过程的耦合(图4)。在这一领域已经有一些初步的有希望的工作,将生物系统与用于太阳能燃料和肥料生产的无机系统连接起来(86,87)。目前最先进的技术是将水分解电催化剂与工程细菌相结合,将CO 2 转化为聚合物和醇(88,89)或将氮转化为氨(90)。这些努力主要集中在H 2 或乙酸盐的电化学生产上,作为细菌的输入(87,91)。
Fig. 4 Bio+electrocatalytic pathways toward long-chain commodity chemicals.
图4 生物+电催化途径通向长链商品化学品。
Today, CO2 may be converted to syngas at very high selectivity using silver- or gold-based catalysts (top left). Alternatively, CO2 can be converted into a wide range of hydrocarbon and oxygenate products using copper-, tin-, or palladium-based catalysts (bottom left). These products can then be used as inputs for genetically engineered enzymes and bacteria to convert to more complex commodity chemicals.
今天,可以使用银基或金基催化剂(左上)以非常高的选择性将一氧化碳 2 转化为合成气。或者,使用铜、锡或钯基催化剂(左下)将一氧化碳 2 转化为各种碳氢化合物和含氧产品。然后,这些产品可以用作转基因酶和细菌的输入,以转化为更复杂的商品化学品。
Open in viewer
Although we have chosen to highlight CO as a promising intermediate, we also note that there are other possible sequential reaction pathways from the myriad of oxygenated intermediates that can be produced from CO2R. Other commonly observed oxygenates from electrochemical CO2R, such as formate, can be used as the sole carbon source for microorganisms or enzymes to selectively upgrade into the desired oxygenates and hydrocarbons (92, 93).
尽管我们选择强调 CO 是一种很有前途的中间体,但我们也注意到,从 CO 2 R 可以产生的无数含氧中间体中还有其他可能的顺序反应途径。来自电化学CO 2 R的其它常见观察到的含氧化合物,如甲酸盐,可以用作微生物或酶的唯一碳源,以选择性地升级为所需的含氧化合物和碳氢化合物(92,93)。
The field of electrocatalysis, especially with copper-based catalysts, has recently been focusing on engineering catalysts to make one specific high-value product as selectively as possible. This approach lowers the product separation costs and makes the overall process more economical. One opportunity for the biocatalytic community will be to engineer microorganisms that can tolerate the electrolyte and a diverse CO2R liquid product mix (Fig. 4). If engineered microorganisms can be used to process a less selective input mix from CO2R (ethanol, acetate, formate, methanol) and then upgrade the combined feedstocks into higher-value commodity chemicals, then electrocatalytic selectivity and energy-intensive separation processes would no longer be a limiting constraint. High-production electrocatalysis combined with highly selective biocatalysis may offer a practical pathway to combine integrated renewable energy production with chemicals manufacturing.
电催化领域,特别是铜基催化剂,最近一直专注于工程催化剂,以尽可能选择性地制造一种特定的高价值产品。这种方法降低了产品分离成本,使整个过程更加经济。生物催化界的一个机会是设计能够耐受电解质和多样化 CO 2 R 液体产品混合物的微生物(图 4)。如果工程微生物可用于处理来自CO 2 R(乙醇、乙酸盐、甲酸盐、甲醇)的选择性较低的输入混合物,然后将组合的原料升级为更高价值的商品化学品,那么电催化选择性和能源密集型分离过程将不再是一个限制性限制。高产电催化与高选择性生物催化相结合,可以为将可再生能源生产与化学品制造相结合提供一条实用的途径。

Technical challenges and market barriers
技术挑战和市场壁垒

Even with recent progress, there exist technological challenges and market entry barriers that need to be overcome for electrosynthesis of commodity chemicals to become industrially competitive. From a technical standpoint, scientific research has focused largely on aqueous CO2R systems that are limited as a result of the solubility of CO2 in water. To address this issue, there has been a push toward flow-cell and gas diffusion–type architectures that operate at more industrially relevant current densities (>100 mA/cm2) (58, 94). Continued research on high-current density electrolyzer architectures is needed to increase the energy conversion efficiency. Product separation is another technical cost that needs to be addressed (95). For example, in petrochemical ethylene production, the cryogenic separation of ethylene and ethane is capital-intensive (~50% of capital) and consumes a large amount of energy (96). Electrochemical CO2R does not produce ethane, thereby avoiding expensive cryogenic separation. Instead, membrane-based porous materials for ethylene separation have recently achieved high selectivity, indicating progress toward lower-cost, more efficient separation processes (97) that could potentially be used for product separation from CO2R. Furthermore, the technology developed for carbon capture materials (98) could also be used for separation of unreacted CO2 from ethylene (an easier separation than olefin/paraffin separations) in the output stream. Recent work on optimizing single-pass conversion at high selectivity (99) also shows promise in reducing separation costs downstream. It should be noted that there is very limited durability data of CO2 electrolyzers, as this field is still nascent. Another technical challenge will be to show operating stability over thousands of hours for this technology to be economical.
即使最近取得了进展,也存在技术挑战和市场进入壁垒,需要克服这些挑战和市场进入壁垒,才能使商品化学品的电合成具有工业竞争力。从技术角度来看,科学研究主要集中在水性CO 2 R系统上,由于CO 2 在水中的溶解度而受到限制。为了解决这个问题,人们一直在推动流通池和气体扩散型架构,这些架构在更工业相关的电流密度(>100 mA / cm 2 )下运行(58,94)。需要继续研究高电流密度电解槽架构,以提高能量转换效率。产品分离是另一个需要解决的技术成本(95)。例如,在石化乙烯生产中,乙烯和乙烷的低温分离是资本密集型的(~50%的资本)并且消耗大量能源(96)。电化学CO 2 R不产生乙烷,从而避免了昂贵的低温分离。相反,用于乙烯分离的膜基多孔材料最近实现了高选择性,表明在更低成本、更高效的分离工艺(97)方面取得了进展,该工艺可能用于从CO 2 R中分离产物。此外,为碳捕获材料开发的技术(98)也可用于在输出流中 2 从乙烯中分离未反应的一氧化碳(比烯烃/石蜡分离更容易分离)。最近在高选择性(99)下优化单程转化的工作也显示出降低下游分离成本的希望。应该注意的是,一氧化碳 2 电解槽的耐久性数据非常有限,因为该领域仍处于起步阶段。 另一个技术挑战是展示数千小时的运行稳定性,以使该技术具有经济性。
An additional technical challenge is the need for chemical plants to run continually for both capital efficiency and process safety, highlighting the need for nonintermittent electricity. If an electrochemical plant operates continuously, then its capital utilization is 100% (loading factor), and the system does not require design for time-varying biases. However, renewable baseloads typically command higher electricity market prices, because they are in effect dispatchable. On the other hand, if an electrochemical plant is to use low-cost intermittent renewable electricity (e.g., solar with a typical capacity factor of 0.22), the contribution of capital cost is increased (fig. S2) and the system must tolerate drastic swings (including to unbiased conditions) in driving voltage. As seen in fig. S2, because capital cost is expected to play a notable but not dominant role in total renewable chemicals cost, reducing the capacity factor from 1 to 0.22 leads to a 20% increase in chemicals cost. Hydroelectric and geothermal power plants are examples of renewable baseloads that may mitigate this risk. Additionally, greater advances in lowering the capital expenditure costs could potentially sustain lower capacity factors. Finally, lower costs of grid-scale energy storage, driven by the decrease in cost of Li-ion technology, are bringing hour-by-hour storage within reason, and future lower-cost grid-scale batteries could further enable electrochemical processes as well.
另一个技术挑战是化工厂需要持续运行,以确保资本效率和工艺安全,这凸显了对非间歇性电力的需求。如果电化学工厂连续运行,则其资本利用率为100%(加载因子),并且系统不需要针对时变偏差进行设计。然而,可再生能源基荷通常要求更高的电力市场价格,因为它们实际上是可调度的。另一方面,如果电化学工厂要使用低成本的间歇性可再生电力(例如,典型容量系数为 0.22 的太阳能),则资本成本的贡献会增加(图 S2),并且系统必须能够承受驱动电压的剧烈波动(包括无偏置条件)。如图所示。S2,由于资本成本预计将在可再生化学品总成本中发挥显著但不是主导作用,因此将容量系数从 1 降低到 0.22 会导致化学品成本增加 20%。水力发电厂和地热发电厂是可再生基荷的例子,可以减轻这种风险。此外,在降低资本支出成本方面取得更大进展可能会维持较低的产能系数。最后,在锂离子技术成本降低的推动下,电网规模储能成本的降低使每小时的储能成为合理的范围,未来低成本的电网规模电池也可以进一步实现电化学过程。
The manufacturing scale and installed capacity for commodity chemicals such as ethylene also present barriers for a new technology to penetrate these saturated, complex, and capital-intensive markets. The case can be made for electrochemical technologies to supplement existing fossil fuel processes by retrofitting existing plants, thereby decreasing the financial burden of shutting down expensive existing assets. Retrofitting power plants carries a nontrivial capital cost but has been already been successfully demonstrated with post-combustion carbon capture technologies (100). Electrochemical technologies may also provide lower cost to add chemical production capacity going forward, supplementing the existing industry as the market continues to grow. Furthermore, electrochemical production costs are dependent mainly on the price of electricity, providing a more stable feedstock price than naphtha feedstocks that are more sensitive to price fluctuations. Ultimately, a focus on C-C bond formation and subsequent C2+ products provides a technological basis to target higher-value chemicals. The source and costs of renewable electricity are another factor to consider when discussing scale (see Fig. 2 and fig. S1). Electrocatalytic technology may find a source of cheap electricity from areas with excess hydroelectric capacity, such as northeastern Canada. Transportation costs between large CO2 emitters and C2 and C3 production facilities are also another challenge, although we note that petrochemical plants for C2 and C3 production are in themselves point sources of CO2 emissions. For example, the NOVA Chemicals Joffre petrochemical plant in Alberta is the 15th largest industrial CO2 point source in Canada, emitting >3 Mt of CO2 in 2016 (101). In Canada, the petrochemical industry is located in three main clusters near Calgary, Sarnia (Ontario), and Montreal. CO2 point sources in the Alberta oil sands are colocated with the petrochemical plants, whereas CO2 point sources from Canadian manufacturing, cement, and steel mills in Ontario are also located near Sarnia. However, not all C2 and C3 production sites are located near CO2 point sources. The cost of CO2 transportation is estimated to be $10/tonne CO2 for 200 km, rising to $44/tonne for 12,000 km (102).
乙烯等大宗化学品的制造规模和装机容量也为新技术渗透这些饱和、复杂和资本密集型市场提供了障碍。电化学技术可以通过改造现有工厂来补充现有的化石燃料工艺,从而减轻关闭昂贵现有资产的财务负担。改造发电厂的资本成本不小,但已经成功地通过燃烧后碳捕获技术进行了证明(100)。随着市场的持续增长,电化学技术还可以提供更低的成本来增加化学生产能力,补充现有行业。此外,电化学生产成本主要取决于电价,与对价格波动更敏感的石脑油原料相比,电化学生产成本提供了更稳定的原料价格。最终,专注于 C-C 键的形成和后续的 C2+ 产品为靶向更高价值的化学品提供了技术基础。在讨论规模时,可再生电力的来源和成本是另一个需要考虑的因素(见图2和图S1)。电催化技术可能会从水力发电能力过剩的地区(例如加拿大东北部)找到廉价电力来源。大型一氧化碳 2 排放者与 C2 和 C3 生产设施之间的运输成本也是另一个挑战,尽管我们注意到用于生产 C2 和 C3 的石化厂本身就是一氧化碳 2 排放的点源。 例如,阿尔伯塔省的 NOVA Chemicals Joffre 石化厂是加拿大第 15 大工业一氧化碳 2 点源, 2 2016 年排放 >3 公吨一氧化碳 (101)。在加拿大,石化行业位于卡尔加里、萨尼亚(安大略省)和蒙特利尔附近的三个主要集群。阿尔伯塔省油砂中的一氧化碳 2 2 点源与石化厂位于同一地点,而来自安大略省加拿大制造业、水泥厂和钢铁厂的一氧化碳点源也位于萨尼亚附近。然而,并非所有 C2 和 C3 生产基地都位于 CO 2 点源附近。一氧化碳 2 运输成本估计 2 为200公里10美元/吨一氧化碳,12,000公里上升至44美元/吨(102)。
Another consideration is future societal acceptability. As the consequences of climate change grow more severe, governments and the public will demand more of the private sector to cut emissions and decarbonize. The economic argument presented here is based on pure cost of production and does not include carbon pricing schemes or the demands of shareholders on large carbon emitters. For example, in 2018 there were 53 carbon pricing initiatives worldwide that covered 11 Gt CO2e, representing 19.8% of global greenhouse gas emissions (103). The total value of carbon pricing initiatives was valued at $82 billion in 2018, and these initiatives are only continuing to grow, enhancing the economic case for electroconversion of CO2.
另一个考虑因素是未来的社会接受度。随着气候变化的后果越来越严重,政府和公众将要求更多的私营部门减少排放和脱碳。这里提出的经济论点是基于纯粹的生产成本,不包括碳定价计划或股东对大型碳排放者的要求。例如,2018 年,全球有 53 项碳定价倡议,涵盖 11 Gt CO 2 e,占全球温室气体排放量的 19.8%(103)。2018 年,碳定价计划的总价值为 820 亿美元,而且这些计划只会继续增长,从而增强了 CO 电转换的经济案例 2
Finally, there is an open question of how feedstock needs may change in the future, and how future electrolyzer technologies will fit in, beyond competing head-to-head against the current paradigm as discussed above. As technologies are advanced in all sectors simultaneously, the needs of future society will evolve as well. For instance, R&D efforts in using carbon as a building material could lead to a future where carbon replaces a large proportion of steel and cement, two industries with remarkably large CO2 footprints. Electrolyzer technologies that readily convert CO2 into carbon using low-carbon electricity would naturally dovetail with such a future building industry, allowing for sustainably produced building materials provided on-site at the point of construction.
最后,还有一个悬而未决的问题,即未来原料需求将如何变化,以及未来的电解槽技术将如何适应,而不是与上面讨论的当前范式进行正面竞争。随着各行各业的技术同步进步,未来社会的需求也将不断发展。例如,使用碳作为建筑材料的研发工作可能会导致碳取代钢铁和水泥的很大一部分,这两个行业的二氧化碳 2 足迹非常大。使用低碳电力将一氧化碳 2 转化为碳的电解槽技术自然会与未来的建筑业相吻合,从而允许在施工现场提供可持续生产的建筑材料。

Outlook 展望

The transformation of the chemical production industry to emissions-free processes will rely on a variety of technologies working in combination. Electrocatalysis can be implemented throughout the chemical supply chain and could include electrosynthesis of basic building blocks, higher-value fine chemicals in combination with biocatalytic processes, and supplementation of traditional thermocatalysis pathways. The economics of electrocatalytic processes will be highly dependent on the availability and price of renewable electricity, the regional cost of feedstock and of traditional petrochemical manufacture, the maturity of carbon capture technologies, and the social, political, and economic incentives to transition to low-carbon processes.
化工生产行业向零排放工艺的转型将依赖于各种技术的结合。电催化可以在整个化学品供应链中实施,可能包括基本构件的电合成、与生物催化工艺相结合的高价值精细化学品以及补充传统热催化途径。电催化工艺的经济性将在很大程度上取决于可再生电力的可用性和价格、原料和传统石化制造的区域成本、碳捕获技术的成熟度以及向低碳工艺过渡的社会、政治和经济激励措施。
As electrochemical technologies mature and our knowledge of transforming small, abundant molecules deepens, the possibilities of producing renewable chemicals will multiply. Hydrogen electrolyzers represent the first generation of these clean fuel technologies; CO2 electrolyzers are poised to be the second generation for production of fuels and chemicals, and the nascent field of N2 reduction to ammonia may represent the future of renewable fertilizer production.
随着电化学技术的成熟和我们对转化小而丰富的分子的了解的加深,生产可再生化学品的可能性将成倍增加。氢电解槽代表了这些清洁燃料技术的第一代;一氧化碳 2 电解槽有望成为生产燃料和化学品的第二代产品,而氮 2 还原为氨的新兴领域可能代表了可再生肥料生产的未来。
There still remain many scientific and engineering challenges for this technology to truly penetrate the petrochemical market, but the advances in recent years suggest that these challenges can be overcome. As society evolves with new paradigms of operation, continued market opportunities will likely emerge. Regardless of the technical challenges, considerable economic barriers also exist within the complex, established, and highly connected petrochemical industry. Despite these challenges, the adoption and growth of renewable energy technologies such as solar and wind provide a promising pathway to follow.
这项技术要真正渗透到石化市场,仍然存在许多科学和工程挑战,但近年来的进步表明,这些挑战是可以克服的。随着社会以新的运营模式发展,可能会出现持续的市场机会。尽管存在技术挑战,但在复杂、成熟且高度关联的石化行业中也存在相当大的经济障碍。尽管存在这些挑战,但太阳能和风能等可再生能源技术的采用和发展提供了一条有希望的途径。

Acknowledgments 确认

P.D.L. thanks C.-T. Dinh for discussions and feedback on the economic model. The authors also thank B. Winter and A. Bardow for discussions and input on improving the carbon emissions model. Funding: This material is based on work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under award DE-SC0004993. This work was also supported by the Natural Sciences and Engineering Council of Canada. Author contributions: P.D.L., C.H., and D.H. wrote the manuscript and generated the figures; S.A.J., T.F.J., and E.H.S. supervised the work and provided edits to the manuscript. Competing interests: S.A.J. is the vice president of corporate science and technology projects at Total American Services, an affiliate of Total S.A., a French integrated energy company. P.D.L. and E.H.S. are currently finalists in the Carbon XPRIZE, funded by NRG and COSIA (Canada Oil Sands Innovation Alliance).
P.D.L. 感谢 C.-T.Dinh 对经济模型进行讨论和反馈。作者还感谢 B. Winter 和 A. Bardow 对改进碳排放模型的讨论和投入。资金:本材料基于人工光合作用联合中心(美国能源部能源创新中心)开展的工作,由美国能源部科学办公室根据 DE-SC0004993 奖励提供支持。这项工作也得到了加拿大自然科学与工程委员会的支持。作者贡献:P.D.L.、C.H. 和 D.H. 撰写了手稿并生成了图表;S.A.J.、T.F.J. 和 E.H.S. 监督了这项工作,并对手稿进行了编辑。利益争夺:S.A.J.是法国综合能源公司Total S.A.的附属公司Total American Services的企业科学和技术项目副总裁。P.D.L. 和 E.H.S. 目前是 Carbon XPRIZE 的决赛入围者,该奖项由 NRG 和 COSIA(加拿大油砂创新联盟)资助。

Supplementary Material 补充材料

Summary 总结

Supplementary Text 补充文本
Figs. S1 and S2
Tables S1 to S3
References (121144)
Data S1 and S2

Resources

File (aav3506_data-s1-s2-corrected.xlsx)
File (aav3506_data-s1-s2.xlsx)
File (aav3506_de_luna_sm-corrected.pdf)
File (aav3506_deluna_sm.pdf)
Correction (3 May 2019): In Table 1, the units in the “Current density” column have been corrected to mA/cm2, and the values for Pt in the last two rows of this column have been adjusted accordingly.

References and Notes

1
A. Boulamanti, J. A. Moya, Energy Efficiency and GHG Emissions: Prospective Scenarios for the Chemical and Petrochemical Industry (European Commission, 2017).
2
International Energy Agency, Oil 2018: Analysis and Forecasts to 2023 (2018); www.iea.org/Textbase/npsum/oil2018MRSsum.pdf.
3
Q. Wang, X. Chen, A. N. Jha, H. Rogers, Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 30, 1–28 (2014).
4
A. Majumdar, J. Deutch, Research Opportunities for CO2 Utilization and Negative Emissions at the Gigatonne Scale. Joule 2, 805–809 (2018).
5
J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Nørskov, Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).
6
Y. Parag, B. K. Sovacool, Electricity market design for the prosumer era. Nat. Energy 1, 16032 (2016).
7
International Energy Agency, The Future of Petrochemicals: Towards More Sustainable Plastics and Fertilisers (2018); https://webstore.iea.org/the-future-of-petrochemicals.
8
D. W. Keith, G. Holmes, D. St. Angelo, K. Heidel, A Process for Capturing CO2 from the Atmosphere. Joule 2, 1573–1594 (2018).
9
M. J. Orella, Y. Román-Leshkov, F. R. Brushett, Emerging opportunities for electrochemical processing to enable sustainable chemical manufacturing. Curr. Opin. Chem. Eng. 20, 159–167 (2018).
10
O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley, E. H. Sargent, What Should We Make with CO2 and How Can We Make It? Joule 2, 825–832 (2018).
11
Market Research Future, Water Electrolysis Market Research Report - Global Forecast to 2023 (2017); www.marketresearchfuture.com/reports/water-electrolysis-market-4133.
12
International Renewable Energy Agency, Hydrogen from Renewable Power: Technology Outlook for the Energy Transition (2018); www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power.
13
D. A. Garcia, F. Barbanera, F. Cumo, U. Di Matteo, B. Nastasi, Expert opinion analysis on renewable hydrogen storage systems potential in Europe. Energies 9, 963 (2016).
14
B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller, T. F. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983 (2013).
15
C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).
16
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).
17
M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 28–46 (2016).
18
F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A Review. Int. J. Hydrogen Energy 40, 256–274 (2015).
19
M. Zeng, Y. Li, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14942–14962 (2015).
20
Q. Lu, J. Rosen, F. Jiao, Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem 7, 38–47 (2015).
21
G. O. Larrazábal, A. J. Martín, J. Pérez-Ramírez, Building Blocks for High Performance in Electrocatalytic CO2 Reduction: Materials, Optimization Strategies, and Device Engineering. J. Phys. Chem. Lett. 8, 3933–3944 (2017).
22
R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. M. Koper, Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).
23
J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).
24
C. Costentin, M. Robert, J.-M. Savéant, Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).
25
J. Wu, Y. Huang, W. Ye, Y. Li, CO2 Reduction: From the Electrochemical to Photochemical Approach. Adv. Sci. 4, 1700194 (2017).
26
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem 3, 560–587 (2017).
27
L. Zhang, Z.-J. Zhao, J. Gong, Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).
28
COSIA, “$20M NRG COSIA Carbon XPRIZE finalists announced; teams ready to test transformative CO2 technologies at Alberta’s Carbon Conversion Centre” [press release] (2018); www.cosia.ca/resources/news-releases/20m-nrg-cosia-carbon-xprize-finalists-announced-teams-ready-test.
29
D. Zhang, J. Wang, Y. Lin, Y. Si, C. Huang, J. Yang, B. Huang, W. Li, Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev. 76, 865–871 (2017).
30
M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).
31
S. Verma, B. Kim, H.-R. M. Jhong, S. Ma, P. J. A. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).
32
J. M. Spurgeon, B. Kumar, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).
33
M. Jouny, W. W. Luc, F. Jiao, A General Techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).
34
C. Palmer, F. Saadi, E. W. McFarland, Technoeconomics of Commodity Chemical Production using Sunlight. ACS Sustain. Chem. Eng. 6, 7003–7009 (2018).
35
S. K. Sanyal, Cost of geothermal power and factors that affect it. In Proceedings, Twenty-Ninth Workshop on Geothermal Reservoir Engineering (Stanford, CA, 2004); https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2004/Sanyal.pdf.
37
European Environment Agency, “CO2 emission intensity: Data visualization”; www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5.
38
U.S. Environmental Protection Agency, eGRID Summary Tables 2016 (2016); www.epa.gov/sites/production/files/2018-02/documents/egrid2016_summarytables.pdf.
41
Energy Technology Systems Analysis Programme, Syngas Production from Coal (2010); http://large.stanford.edu/courses/2013/ph241/kallman1/docs/estap.pdf.
42
M. Balat, H. Balat, Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86, 2273–2282 (2009).
43
A. Sternberg, C. M. Jens, A. Bardow, Life cycle assessment of CO2-based C1-chemicals. Green Chem. 19, 2244–2259 (2017).
44
U.S. Department of Energy, Strategic Plan for a Thriving and Sustainable Bioeconomy (2016); www.energy.gov/sites/prod/files/2017/09/f36/beto_strategic_plan_december_2016.pdf.
45
Statista, Value of the Alcoholic Beverage Market Worldwide in 2015 and 2022 (in billion U.S. dollars) (2015); www.statista.com/statistics/696641/market-value-alcoholic-beverages-worldwide/.
46
J. P. Lange, Methanol synthesis: A short review of technology improvements. Catal. Today 64, 3–8 (2001).
47
X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang, B. Han, Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angew. Chem. Int. Ed. 55, 6771–6775 (2016).
48
W. Zhang,Q. Qin, L. Dai, R. Qin, X. Zhao, X. Chen, D. Ou, J. Chen, T. T. Chuong, B. Wu, N. Zheng, Electrochemical Reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem. Int. Ed. 57, 9475–9479 (2018).
49
E. E. Barton, D. M. Rampulla, A. B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008).
50
C. W. Li, J. Ciston, M. W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).
51
Y. Song, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, Z. Wu, H. M. Meyer III, M. Chi, C. Ma, B. G. Sumpter, A. J. Rondinone, High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode. ChemistrySelect 1, 6055–6061 (2016).
52
D. Raciti, L. Cao, K. J. T. Livi, P. F. Rottmann, X. Tang, C. Li, Z. Hicks, K. H. Bowen, K. J. Hemker, T. Mueller, C. Wang, Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. ACS Catal. 7, 4467–4472 (2017).
53
Y. Liu, Y. Zhang, K. Cheng, X. Quan, X. Fan, Y. Su, S. Chen, H. Zhao, Y. Zhang, H. Yu, M. R. Hoffmann, Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-doped Nanodiamond. Angew. Chem. Int. Ed. 56, 15607–15611 (2017).
54
T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).
55
T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C. T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P.-N. Chen, X.-L. Zheng, H. Liang, W.-N. Ge, B.-J. Ye, D. Sinton, S.-H. Yu, E. H. Sargent, Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).
56
M. Melikoglu, V. Singh, S. Y. Leu, C. Webb, C. S. K. Lin, in Handbook of Biofuels Production: Processes and Technologies (Elsevier, ed. 2, 2016), pp. 237–258.
57
H. T. Luk, C. Mondelli, D. C. Ferré, J. A. Stewart, J. Pérez-Ramírez, Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 46, 1358–1426 (2017).
58
D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 51, 910–918 (2018).
59
I. Amghizar, L. A. Vandewalle, K. M. Van Geem, G. B. Marin, New Trends in Olefin Production. Engineering 3, 171–178 (2017).
61
C.-T. T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).
62
L. Wang, S. A. Nitopi, E. Bertheussen, M. Orazov, C. G. Morales-Guio, X. Liu, D. C. Higgins, K. Chan, J. K. Nørskov, C. Hahn, T. F. Jaramillo, Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure and pH on Selectivity toward Multi-Carbon and Oxygenated Products. ACS Catal. 8, 7445–7454 (2018).
63
Y. Hori, in Modern Aspects of Electrochemistry, vol. 42, C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco, Eds. (Springer, 2008), pp. 89–189.
64
J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).
65
Z. Han, R. Kortlever, H.-Y. Chen, J. C. Peters, T. Agapie, CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Cent. Sci. 3, 853–859 (2017).
66
C. Hahn, T. Hatsukade, Y.-G. Kim, A. Vailionis, J. H. Baricuatro, D. C. Higgins, S. A. Nitopi, M. P. Soriaga, T. F. Jaramillo, Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. U.S.A. 114, 5918–5923 (2017).
67
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).
68
A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T. McKeown, M. Kumar, I. E. L. Stephens, M. W. Kanan, I. Chorkendorff, Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).
69
Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective Formation of C2 Compounds from Electrochemical Reduction of CO2 at a Series of Copper Single Crystal Electrodes. J. Phys. Chem. B 106, 15–17 (2002).
70
E. L. Clark, C. Hahn, T. F. Jaramillo, A. T. Bell, Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).
71
T. T. H. Hoang, S. Ma, J. I. Gold, P. J. A. Kenis, A. A. Gewirth, Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catal. 7, 3313–3321 (2017).
72
A. Brems, R. Dewil, J. Baeyens, R. Zhang, Gasification of plastic waste as waste-to-energy or waste-to-syngas recovery route. Nat. Sci. 05, 695–704 (2013).
73
M. E. Dry, The Fischer-Tropsch process: 1950-2000. Catal. Today 71, 227–241 (2002).
74
S. Wainaina, I. S. Horváth, M. J. Taherzadeh, Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. Bioresour. Technol. 248A, 113–121 (2018).
75
P. C. Munasinghe, S. K. Khanal, Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresour. Technol. 101, 5013–5022 (2010).
76
O. P. R. van Vliet, A. P. C. Faaij, W. C. Turkenburg, Fischer-Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Convers. Manage. 50, 855–876 (2009).
77
D. Choi, D. C. Chipman, S. C. Bents, R. C. Brown, A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 160, 1032–1046 (2010).
78
M. Akiyama, T. Tsuge, Y. Doi, Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stabil. 80, 183–194 (2003).
79
J. R. Rostrup-Nielsen, J. Sehested, J. K. Noerskov, Hydrogen and Synthesis Gas by Steam- and CO2 Reforming. ChemInform 34, 10.1002/chin.200317288 (2003). 10.1002/chin.200317288
80
M. B. Ross, C. T. Dinh, Y. Li, D. Kim, P. De Luna, E. H. Sargent, P. Yang, Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2. J. Am. Chem. Soc. 139, 9359–9363 (2017).
81
T. Haas, R. Krause, R. Weber, M. Demler, G. Schmid, Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).
82
R. He, A. Zhang, Y. Ding, T. Kong, Q. Xiao, H. Li, Y. Liu, J. Zeng, Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO2 Electroreduction. Adv. Mater. 30, 1705872 (2018).
83
P. Kang, Z. Chen, A. Nayak, S. Zhang, T. J. Meyer, Single catalyst electrocatalytic reduction of CO2 in water to H2 + CO syngas mixtures with water oxidation to O2. Energy Environ. Sci. 7, 4007–4012 (2014).
84
H.-R. M. Jhong, S. Ma, P. J. A. Kenis, Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).
85
Siemens and Evonik, “Evonik and Siemens to generate high-value specialty chemicals from carbon dioxide and eco-electricity” [joint press release] (2018); www.siemens.com/press/pool/de/pressemitteilungen/2018/corporate/PR2018010135COEN.pdf.
86
K. K. Sakimoto, N. Kornienko, P. Yang, Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Acc. Chem. Res. 50, 476–481 (2017).
87
S. N. Nangle, K. K. Sakimoto, P. A. Silver, D. G. Nocera, Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr. Opin. Chem. Biol. 41, 107–113 (2017).
88
C. Liu, B. C. Colón, M. Ziesack, P. A. Silver, D. G. Nocera, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).
89
X. Chen, Y. Cao, F. Li, Y. Tian, H. Song, Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha. ACS Catal. 8, 4429–4437 (2018).
90
C. Liu, K. K. Sakimoto, B. C. Colón, P. A. Silver, D. G. Nocera, Ambient nitrogen reduction cycle using a hybrid inorganic-biological system. Proc. Natl. Acad. Sci. U.S.A. 114, 6450–6455 (2017).
91
K. K. Sakimoto, N. Kornienko, S. Cestellos-Blanco, J. Lim, C. Liu, P. Yang, Physical Biology of the Materials-Microorganism Interface. J. Am. Chem. Soc. 140, 1978–1985 (2018).
92
O. Yishai, S. N. Lindner, J. Gonzalez de la Cruz, H. Tenenboim, A. Bar-Even, The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).
93
Y. X. Huang, Z. Hu, An integrated electrochemical and biochemical system for sequential reduction of CO2 to methane. Fuel 220, 8–13 (2018).
94
B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar, C. Janáky, Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 62, 133–154 (2017).
95
J. B. Greenblatt, D. J. Miller, J. W. Ager, F. A. Houle, I. D. Sharp, The Technical and Energetic Challenges of Separating (Photo)Electrochemical Carbon Dioxide Reduction Products. Joule 2, 381–420 (2018).
96
R. B. Eldridge, Olefin/Paraffin Separation Technology: A Review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).
97
L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362, 443–446 (2018).
98
J. G. Vitillo, B. Smit, L. Gagliardi, Introduction: Carbon Capture and Separation. Chem. Rev. 117, 9521–9523 (2017).
99
D. S. Ripatti, T. R. Veltman, M. W. Kanan, Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C2 Products with High Single-Pass Conversion. Joule 3, 240–256 (2019).
100
K. Stéphenne, Start-up of World’s First Commercial Post-combustion Coal Fired CCS Project: Contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. Energy Procedia 63, 6106–6110 (2014).
101
Environment and Climate Change Canada, Facility Greenhouse Gas Reporting: Overview of Reported Emissions 2016 (2017); www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions/facility-reporting/overview-2016.html.
102
International Energy Agency Greenhouse Gas R&D Programme, Ship Transport of CO2 (2004); https://ieaghg.org/docs/General_Docs/Reports/PH4-30 Ship Transport.pdf.
103
Organisation for Economic Cooperation and Development, Effective Carbon Rates 2018: Pricing Carbon Emissions Through Taxes and Emissions Trading (2018).
104
Transparency Market Research, “Global Ethanol Market: Advancement in Production Technologies to boost Market, notes TMR” [press release] (2018); www.transparencymarketresearch.com/pressrelease/ethanol-market.htm.
105
Orbis Research, Global (North America, Europe and Asia-Pacific, South America, Middle East and Africa) Carbon Monoxide Market 2017 Forecast to 2022 (2018); www.orbisresearch.com/reports/index/global-north-america-europe-and-asia-pacific-south-america-middle-east-and-africa-carbon-monoxide-market-2017-forecast-to-2022.
106
Mordor Intelligence, Formic Acid Market - Segmented by Grade Type, Application, and Geography - Growth, Trends & Forecasts (2019-2024) (2018); www.mordorintelligence.com/industry-reports/formic-acid-market.
107
S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer. ACS Energy Lett. 3, 193–198 (2018).
108
S. Ma, R. Luo, J. I. Gold, A. Z. Yu, B. Kim, P. J. A. Kenis, Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J. Mater. Chem. A 4, 8573–8578 (2016).
109
E. J. Dufek, T. E. Lister, S. G. Stone, M. E. McIlwain, Operation of a Pressurized System for Continuous Reduction of CO2. J. Electrochem. Soc. 159, F514–F517 (2012).
110
D. T. Whipple, E. C. Finke, P. J. A. Kenis, Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH. Electrochem. Solid State Lett. 13, B109 (2010).
111
X. Lu, D. Y. C. Leung, H. Wang, J. Xuan, A high performance dual electrolyte microfluidic reactor for the utilization of CO2. Appl. Energy 194, 549–559 (2017).
112
H. Li, C. Oloman, Development of a continuous reactor for the electro-reduction of carbon dioxideto formate – Part 1: Process variables. J. Appl. Electrochem. 36, 1105–1115 (2006).
113
M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).
114
A. Boulamanti, J. A. Moya, Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins. Renew. Sustain. Energy Rev. 68, 1205–1212 (2017).
115
M. Ruth, A. D. Amato, B. Davidsdottir, Carbon emissions from U.S. ethylene production under climate change policies. Environ. Sci. Technol. 36, 119–124 (2002).
117
International Energy Agency, Production Costs of Alternative Transportation Fuels: Influence of Crude Oil Price and Technology Maturity (2013); https://webstore.iea.org/production-costs-of-alternative-transportation-fuels.
118
W. E. Tyner, F. Taheripour, Q. Zhuang, D. Birur, U. Baldos, Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis (2010); www.arb.ca.gov/fuels/lcfs/workgroups/ewg/LUC_presentation_Tyner.pdf.
119
M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison, E. Tzimas, Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. Int. J. Hydrogen Energy 41, 16444–16462 (2016).
120
Y. Ahn, J. Byun, D. Kim, B.-S. Kim, C.-S. Lee, J. Han, System-level analysis and life cycle assessment of CO2 and fossil-based formic acid strategies. Green Chem. 21, 3442–3455 (2019).
121
C. He, F. You, Shale Gas Processing Integrated with Ethylene Production: Novel Process Designs, Exergy Analysis, and Techno-Economic Analysis. Ind. Eng. Chem. Res. 53, 11442–11459 (2014).
122
Strategic Analysis Inc., Techno-economic Analysis of PEM Electrolysis for Hydrogen Production (2014); www.energy.gov/sites/prod/files/2014/08/f18/fcto_2014_electrolytic_h2_wkshp_colella1.pdf.
123
U.S. Energy Information Administration, Electric Power Monthly; www.eia.gov/electricity/monthly/.
124
U.S. Energy Information Administration, Annual Energy Outlook 2018 with Projections to 2050 (2018); www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf.
125
126
Synapse Energy Economics Inc., 2015 Carbon Dioxide Price Forecast (2015); www.synapse-energy.com/sites/default/files/2015%20Carbon%20Dioxide%20Price%20Report.pdf.
127
U.S. Department of Energy, DOE Technical Targets for Hydrogen Production from Electrolysis (2015); www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis.
128
A. Ramirez, S. E. Tanzer, When are negative emissions negative emissions? Energy Environ. Sci. 12, 1210–1218 (2019).
129
R. Bhandari, C. A. Trudewind, P. Zapp, Life cycle assessment of hydrogen production via electrolysis - A review. J. Clean. Prod. 85, 151–163 (2014).
130
U.S. Department of Agriculture, USDA Factsheet: Lifecycle Greenhouse Gas Emissions of Corn-Based Ethanol (2017); www.usda.gov/oce/climate_change/mitigation_technologies/Ethanol_Report_Factsheet_Final.pdf.
131
U.S. Environmental Protection Agency, Emission Factors for Greenhouse Gas Inventories (2018); www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf.
132
J. David, H. Herzog, The Cost of Carbon Capture (MIT, 2000); https://sequestration.mit.edu/pdf/David_and_Herzog.pdf.
133
S. Ikeda, T. Takagi, K. Ito, Selective formation of formic acid, oxalic acid, and carbon monoxide by electrochemical reduction of carbon dioxide. Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987).
134
H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda, K. Ito, Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution. Bull. Chem. Soc. Jpn. 63, 2459–2462 (1990).
135
C. Delacourt, P. L. Ridgway, J. B. Kerr, J. Newman, Design of an Electrochemical Cell Making Syngas (CO+H2) from CO2 and H2O Reduction at Room Temperature. J. Electrochem. Soc. 155, B42 (2008).
136
Y. Chen, C. W. Li, M. W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).
137
B. Endrödi, E. Kecsenovity, A. Samu, F. Darvas, R. V. Jones, V. Török, A. Danyi, A. C. Janáky, Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency. ACS Energy Lett. 4, 1770–1777 (2019).
138
A. Klinkova, P. De Luna, C.-T. Dinh, O. Voznyy, E. M. Larin, E. Kumacheva, E. H. Sargent, Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catal. 6, 8115–8120 (2016).
139
C. Xia, P. Zhu, Y. Pan, W. Liang, E. Stavitsk, H. N. Alshareef, H. Wang, Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).
140
D. W. DeWulf, T. Jin, A. J. Bard, Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions. J. Electrochem. Soc. 136, 1686–1691 (1989).
141
K. Hara, A. Kudo, T. Sakata, M. Watanabe, High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J. Electrochem. Soc. 142, L57–L59 (1995).
142
K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012).
143
D. Ren, B. S. H. Ang, B. S. Yeo, Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived CuxZn Catalysts. ACS Catal. 6, 8239–8247 (2016).
144
Y. C. Li, Z. Wang, T. Yuan, D. H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G. de Arquer, Y. Wang, C. T. Dinh, O. Voznyy, D. Sinton, E. H. Sargent, Binding Site Diversity Promotes CO2 Electroreduction to Ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Recommended articles from TrendMD

  1. Renewable bonds
    Robert F. Service, Science, 2019
  2. Net-zero emissions energy systems
    Steven J. Davis et al., Science, 2018
  3. Making chemicals with electricity
    Kevin M. Van Geem et al., Science, 2019
  4. Chemical storage of renewable energy
    Joel W. Ager et al., Science, 2018
  5. Industrial biomanufacturing: The future of chemical production
    James M. Clomburg et al., Science, 2017

Information & Authors

Information

Published In

Science
Volume 364 | Issue 6438
26 April 2019

Submission history

Published in print: 26 April 2019

Permissions

Request permissions for this article.

Acknowledgments

P.D.L. thanks C.-T. Dinh for discussions and feedback on the economic model. The authors also thank B. Winter and A. Bardow for discussions and input on improving the carbon emissions model. Funding: This material is based on work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under award DE-SC0004993. This work was also supported by the Natural Sciences and Engineering Council of Canada. Author contributions: P.D.L., C.H., and D.H. wrote the manuscript and generated the figures; S.A.J., T.F.J., and E.H.S. supervised the work and provided edits to the manuscript. Competing interests: S.A.J. is the vice president of corporate science and technology projects at Total American Services, an affiliate of Total S.A., a French integrated energy company. P.D.L. and E.H.S. are currently finalists in the Carbon XPRIZE, funded by NRG and COSIA (Canada Oil Sands Innovation Alliance).

Authors

Affiliations

Funding Information

Notes

*
These authors contributed equally to this work.
Corresponding author. Email: jaramillo@stanford.edu (T.F.J.); ted.sargent@utoronto.ca (E.H.S.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Surface pH Effects on Catalytic Behavior of Pyridinic Nitrogen on Nitrogen-doped Carbon Nanotube in CO2 Electrochemical Reduction, Electrochemistry, 91, 2, (027003-027003), (2023).https://doi.org/10.5796/electrochemistry.22-00134
    Crossref
  2. Neural Network Accelerated Investigation of the Dynamic Structure–Performance Relations of Electrochemical CO 2 Reduction over SnO x Surfaces , Research, 6, (2023).https://doi.org/10.34133/research.0067
    Crossref
  3. Progress in Electroreduction of CO2 to Form Various Fuels Based on Zn Catalysts, Processes, 11, 4, (1039), (2023).https://doi.org/10.3390/pr11041039
    Crossref
  4. Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells, Polymers, 15, 6, (1555), (2023).https://doi.org/10.3390/polym15061555
    Crossref
  5. Heterogenous Preparations of Solution-Processable Cobalt Phthalocyanines for Carbon Dioxide Reduction Electrocatalysis, Inorganics, 11, 1, (43), (2023).https://doi.org/10.3390/inorganics11010043
    Crossref
  6. A Scientometric Review of CO2 Electroreduction Research from 2005 to 2022, Energies, 16, 2, (616), (2023).https://doi.org/10.3390/en16020616
    Crossref
  7. Progress and prospects of international carbon peaking and carbon neutral research –based on bibliometric analysis (1991–2022), Frontiers in Energy Research, 11, (2023).https://doi.org/10.3389/fenrg.2023.1121639
    Crossref
  8. CO<sub>2</sub>-assisted formation of grain boundaries for efficient CO–CO coupling on a derived Cu catalyst, National Science Open, 2, 2, (20220044), (2023).https://doi.org/10.1360/nso/20220044
    Crossref
  9. Enhanced performance of molecular electrocatalysts for CO2 reduction in a flow cell following K+ addition, Science Advances, 9, 45, (2023)./doi/10.1126/sciadv.adh9986
    Abstract
  10. CO electroreduction on single-atom copper, Science Advances, 9, 30, (2023)./doi/10.1126/sciadv.ade3557
    Abstract
  11. See more
Loading...

View Options

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Electrochemical CO2 conversion.
Reduction of CO2 using renewably sourced electricity could transform waste CO2 emissions into commodity chemical feedstocks or fuels.
Fig. 1 Pathways and selectivities for renewable chemical synthesis.
(A) Possible renewable energy–powered routes to commodity chemicals driven by electrocatalysis from H2O (gray) and CO2 (purple, red) as feedstocks. (B) Highest reported Faradaic efficiencies for carbon monoxide (gray squares), formic acid (purple triangles), ethylene (blue diamonds), and ethanol (red circles) and corresponding current densities (green) over the past three decades (table S3).
Fig. 2 Production costs of electrosynthesized chemicals.
The graphs show technoeconomic analyses of hydrogen, carbon monoxide, ethanol, and ethylene costs as a function of electrolyzer energy conversion efficiency and electricity costs. We assume a pure CO2 price of $30/tonne, Faradaic efficiency of 90%, current density of 500 mA/cm2, electrolyzer cost of $300/kW, and plant lifetime of 30 years. The area above the white dashed line in lighter color indicates profitable production costs based on average global prices. We note that regional differences in market prices exist because of the nature of fossil fuel feedstocks.
Fig. 3 The emissions impact of electrosynthesized chemicals.
(A) Market size and fossil-based carbon cradle-to-grave emissions of ethylene (60), ethanol (104), carbon monoxide (105), and formic acid (106). (B to E) Carbon emissions assessment of (B) formic acid, (C) carbon monoxide, (D) ethylene, and (E) ethanol. We assume a plant capacity of 500 MW, global warming impact (GWI) of formic acid (2.00), carbon monoxide (0.57), ethylene (1.1), and ethanol (–0.5) in units of kg CO2/kg product. Emissions reductions are calculated as a product of global production and GWI.
Fig. 4 Bio+electrocatalytic pathways toward long-chain commodity chemicals.
Today, CO2 may be converted to syngas at very high selectivity using silver- or gold-based catalysts (top left). Alternatively, CO2 can be converted into a wide range of hydrocarbon and oxygenate products using copper-, tin-, or palladium-based catalysts (bottom left). These products can then be used as inputs for genetically engineered enzymes and bacteria to convert to more complex commodity chemicals.

Multimedia

Tables

Table 1 Current state of CO2 electrolyzers in comparison with hydrogen electrolyzers and their figures of merit.
Table 2 Comparison of production cost and carbon emissions across various catalytic processes.

Share

Share

Share article link

Share on social media

References

References

1
A. Boulamanti, J. A. Moya, Energy Efficiency and GHG Emissions: Prospective Scenarios for the Chemical and Petrochemical Industry (European Commission, 2017).
2
International Energy Agency, Oil 2018: Analysis and Forecasts to 2023 (2018); www.iea.org/Textbase/npsum/oil2018MRSsum.pdf.
3
Q. Wang, X. Chen, A. N. Jha, H. Rogers, Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 30, 1–28 (2014).
4
A. Majumdar, J. Deutch, Research Opportunities for CO2 Utilization and Negative Emissions at the Gigatonne Scale. Joule 2, 805–809 (2018).
5
J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Nørskov, Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).
6
Y. Parag, B. K. Sovacool, Electricity market design for the prosumer era. Nat. Energy 1, 16032 (2016).
7
International Energy Agency, The Future of Petrochemicals: Towards More Sustainable Plastics and Fertilisers (2018); https://webstore.iea.org/the-future-of-petrochemicals.
8
D. W. Keith, G. Holmes, D. St. Angelo, K. Heidel, A Process for Capturing CO2 from the Atmosphere. Joule 2, 1573–1594 (2018).
9
M. J. Orella, Y. Román-Leshkov, F. R. Brushett, Emerging opportunities for electrochemical processing to enable sustainable chemical manufacturing. Curr. Opin. Chem. Eng. 20, 159–167 (2018).
10
O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley, E. H. Sargent, What Should We Make with CO2 and How Can We Make It? Joule 2, 825–832 (2018).
11
Market Research Future, Water Electrolysis Market Research Report - Global Forecast to 2023 (2017); www.marketresearchfuture.com/reports/water-electrolysis-market-4133.
12
International Renewable Energy Agency, Hydrogen from Renewable Power: Technology Outlook for the Energy Transition (2018); www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power.
13
D. A. Garcia, F. Barbanera, F. Cumo, U. Di Matteo, B. Nastasi, Expert opinion analysis on renewable hydrogen storage systems potential in Europe. Energies 9, 963 (2016).
14
B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller, T. F. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983 (2013).
15
C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).
16
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).
17
M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 28–46 (2016).
18
F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A Review. Int. J. Hydrogen Energy 40, 256–274 (2015).
19
M. Zeng, Y. Li, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14942–14962 (2015).
20
Q. Lu, J. Rosen, F. Jiao, Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem 7, 38–47 (2015).
21
G. O. Larrazábal, A. J. Martín, J. Pérez-Ramírez, Building Blocks for High Performance in Electrocatalytic CO2 Reduction: Materials, Optimization Strategies, and Device Engineering. J. Phys. Chem. Lett. 8, 3933–3944 (2017).
22
R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. M. Koper, Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).
23
J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).
24
C. Costentin, M. Robert, J.-M. Savéant, Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).
25
J. Wu, Y. Huang, W. Ye, Y. Li, CO2 Reduction: From the Electrochemical to Photochemical Approach. Adv. Sci. 4, 1700194 (2017).
26
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem 3, 560–587 (2017).
27
L. Zhang, Z.-J. Zhao, J. Gong, Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).
28
COSIA, “$20M NRG COSIA Carbon XPRIZE finalists announced; teams ready to test transformative CO2 technologies at Alberta’s Carbon Conversion Centre” [press release] (2018); www.cosia.ca/resources/news-releases/20m-nrg-cosia-carbon-xprize-finalists-announced-teams-ready-test.
29
D. Zhang, J. Wang, Y. Lin, Y. Si, C. Huang, J. Yang, B. Huang, W. Li, Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev. 76, 865–871 (2017).
30
M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).
31
S. Verma, B. Kim, H.-R. M. Jhong, S. Ma, P. J. A. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).
32
J. M. Spurgeon, B. Kumar, A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).
33
M. Jouny, W. W. Luc, F. Jiao, A General Techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).
34
C. Palmer, F. Saadi, E. W. McFarland, Technoeconomics of Commodity Chemical Production using Sunlight. ACS Sustain. Chem. Eng. 6, 7003–7009 (2018).
35
S. K. Sanyal, Cost of geothermal power and factors that affect it. In Proceedings, Twenty-Ninth Workshop on Geothermal Reservoir Engineering (Stanford, CA, 2004); https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2004/Sanyal.pdf.
37
European Environment Agency, “CO2 emission intensity: Data visualization”; www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5.
38
U.S. Environmental Protection Agency, eGRID Summary Tables 2016 (2016); www.epa.gov/sites/production/files/2018-02/documents/egrid2016_summarytables.pdf.
41
Energy Technology Systems Analysis Programme, Syngas Production from Coal (2010); http://large.stanford.edu/courses/2013/ph241/kallman1/docs/estap.pdf.
42
M. Balat, H. Balat, Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86, 2273–2282 (2009).
43
A. Sternberg, C. M. Jens, A. Bardow, Life cycle assessment of CO2-based C1-chemicals. Green Chem. 19, 2244–2259 (2017).
44
U.S. Department of Energy, Strategic Plan for a Thriving and Sustainable Bioeconomy (2016); www.energy.gov/sites/prod/files/2017/09/f36/beto_strategic_plan_december_2016.pdf.
45
Statista, Value of the Alcoholic Beverage Market Worldwide in 2015 and 2022 (in billion U.S. dollars) (2015); www.statista.com/statistics/696641/market-value-alcoholic-beverages-worldwide/.
46
J. P. Lange, Methanol synthesis: A short review of technology improvements. Catal. Today 64, 3–8 (2001).
47
X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang, B. Han, Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angew. Chem. Int. Ed. 55, 6771–6775 (2016).
48
W. Zhang,Q. Qin, L. Dai, R. Qin, X. Zhao, X. Chen, D. Ou, J. Chen, T. T. Chuong, B. Wu, N. Zheng, Electrochemical Reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem. Int. Ed. 57, 9475–9479 (2018).
49
E. E. Barton, D. M. Rampulla, A. B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008).
50
C. W. Li, J. Ciston, M. W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).
51
Y. Song, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, Z. Wu, H. M. Meyer III, M. Chi, C. Ma, B. G. Sumpter, A. J. Rondinone, High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode. ChemistrySelect 1, 6055–6061 (2016).
52
D. Raciti, L. Cao, K. J. T. Livi, P. F. Rottmann, X. Tang, C. Li, Z. Hicks, K. H. Bowen, K. J. Hemker, T. Mueller, C. Wang, Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. ACS Catal. 7, 4467–4472 (2017).
53
Y. Liu, Y. Zhang, K. Cheng, X. Quan, X. Fan, Y. Su, S. Chen, H. Zhao, Y. Zhang, H. Yu, M. R. Hoffmann, Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-doped Nanodiamond. Angew. Chem. Int. Ed. 56, 15607–15611 (2017).
54
T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).
55
T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C. T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P.-N. Chen, X.-L. Zheng, H. Liang, W.-N. Ge, B.-J. Ye, D. Sinton, S.-H. Yu, E. H. Sargent, Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).
56
M. Melikoglu, V. Singh, S. Y. Leu, C. Webb, C. S. K. Lin, in Handbook of Biofuels Production: Processes and Technologies (Elsevier, ed. 2, 2016), pp. 237–258.
57
H. T. Luk, C. Mondelli, D. C. Ferré, J. A. Stewart, J. Pérez-Ramírez, Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 46, 1358–1426 (2017).
58
D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 51, 910–918 (2018).
59
I. Amghizar, L. A. Vandewalle, K. M. Van Geem, G. B. Marin, New Trends in Olefin Production. Engineering 3, 171–178 (2017).
61
C.-T. T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).
62
L. Wang, S. A. Nitopi, E. Bertheussen, M. Orazov, C. G. Morales-Guio, X. Liu, D. C. Higgins, K. Chan, J. K. Nørskov, C. Hahn, T. F. Jaramillo, Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure and pH on Selectivity toward Multi-Carbon and Oxygenated Products. ACS Catal. 8, 7445–7454 (2018).
63
Y. Hori, in Modern Aspects of Electrochemistry, vol. 42, C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco, Eds. (Springer, 2008), pp. 89–189.
64
J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).
65
Z. Han, R. Kortlever, H.-Y. Chen, J. C. Peters, T. Agapie, CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Cent. Sci. 3, 853–859 (2017).
66
C. Hahn, T. Hatsukade, Y.-G. Kim, A. Vailionis, J. H. Baricuatro, D. C. Higgins, S. A. Nitopi, M. P. Soriaga, T. F. Jaramillo, Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. U.S.A. 114, 5918–5923 (2017).
67
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).
68
A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T. McKeown, M. Kumar, I. E. L. Stephens, M. W. Kanan, I. Chorkendorff, Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).
69
Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective Formation of C2 Compounds from Electrochemical Reduction of CO2 at a Series of Copper Single Crystal Electrodes. J. Phys. Chem. B 106, 15–17 (2002).
70
E. L. Clark, C. Hahn, T. F. Jaramillo, A. T. Bell, Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).
71
T. T. H. Hoang, S. Ma, J. I. Gold, P. J. A. Kenis, A. A. Gewirth, Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catal. 7, 3313–3321 (2017).
72
A. Brems, R. Dewil, J. Baeyens, R. Zhang, Gasification of plastic waste as waste-to-energy or waste-to-syngas recovery route. Nat. Sci. 05, 695–704 (2013).
73
M. E. Dry, The Fischer-Tropsch process: 1950-2000. Catal. Today 71, 227–241 (2002).
74
S. Wainaina, I. S. Horváth, M. J. Taherzadeh, Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. Bioresour. Technol. 248A, 113–121 (2018).
75
P. C. Munasinghe, S. K. Khanal, Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresour. Technol. 101, 5013–5022 (2010).
76
O. P. R. van Vliet, A. P. C. Faaij, W. C. Turkenburg, Fischer-Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Convers. Manage. 50, 855–876 (2009).
77
D. Choi, D. C. Chipman, S. C. Bents, R. C. Brown, A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 160, 1032–1046 (2010).
78
M. Akiyama, T. Tsuge, Y. Doi, Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stabil. 80, 183–194 (2003).
79
J. R. Rostrup-Nielsen, J. Sehested, J. K. Noerskov, Hydrogen and Synthesis Gas by Steam- and CO2 Reforming. ChemInform 34, 10.1002/chin.200317288 (2003). 10.1002/chin.200317288
80
M. B. Ross, C. T. Dinh, Y. Li, D. Kim, P. De Luna, E. H. Sargent, P. Yang, Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2. J. Am. Chem. Soc. 139, 9359–9363 (2017).
81
T. Haas, R. Krause, R. Weber, M. Demler, G. Schmid, Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).
82
R. He, A. Zhang, Y. Ding, T. Kong, Q. Xiao, H. Li, Y. Liu, J. Zeng, Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO2 Electroreduction. Adv. Mater. 30, 1705872 (2018).
83
P. Kang, Z. Chen, A. Nayak, S. Zhang, T. J. Meyer, Single catalyst electrocatalytic reduction of CO2 in water to H2 + CO syngas mixtures with water oxidation to O2. Energy Environ. Sci. 7, 4007–4012 (2014).
84
H.-R. M. Jhong, S. Ma, P. J. A. Kenis, Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).
85
Siemens and Evonik, “Evonik and Siemens to generate high-value specialty chemicals from carbon dioxide and eco-electricity” [joint press release] (2018); www.siemens.com/press/pool/de/pressemitteilungen/2018/corporate/PR2018010135COEN.pdf.
86
K. K. Sakimoto, N. Kornienko, P. Yang, Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Acc. Chem. Res. 50, 476–481 (2017).
87
S. N. Nangle, K. K. Sakimoto, P. A. Silver, D. G. Nocera, Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr. Opin. Chem. Biol. 41, 107–113 (2017).
88
C. Liu, B. C. Colón, M. Ziesack, P. A. Silver, D. G. Nocera, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).
89
X. Chen, Y. Cao, F. Li, Y. Tian, H. Song, Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha. ACS Catal. 8, 4429–4437 (2018).
90
C. Liu, K. K. Sakimoto, B. C. Colón, P. A. Silver, D. G. Nocera, Ambient nitrogen reduction cycle using a hybrid inorganic-biological system. Proc. Natl. Acad. Sci. U.S.A. 114, 6450–6455 (2017).
91
K. K. Sakimoto, N. Kornienko, S. Cestellos-Blanco, J. Lim, C. Liu, P. Yang, Physical Biology of the Materials-Microorganism Interface. J. Am. Chem. Soc. 140, 1978–1985 (2018).
92
O. Yishai, S. N. Lindner, J. Gonzalez de la Cruz, H. Tenenboim, A. Bar-Even, The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).
93
Y. X. Huang, Z. Hu, An integrated electrochemical and biochemical system for sequential reduction of CO2 to methane. Fuel 220, 8–13 (2018).
94
B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar, C. Janáky, Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 62, 133–154 (2017).
95
J. B. Greenblatt, D. J. Miller, J. W. Ager, F. A. Houle, I. D. Sharp, The Technical and Energetic Challenges of Separating (Photo)Electrochemical Carbon Dioxide Reduction Products. Joule 2, 381–420 (2018).
96
R. B. Eldridge, Olefin/Paraffin Separation Technology: A Review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).
97
L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362, 443–446 (2018).
98
J. G. Vitillo, B. Smit, L. Gagliardi, Introduction: Carbon Capture and Separation. Chem. Rev. 117, 9521–9523 (2017).
99
D. S. Ripatti, T. R. Veltman, M. W. Kanan, Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C2 Products with High Single-Pass Conversion. Joule 3, 240–256 (2019).
100
K. Stéphenne, Start-up of World’s First Commercial Post-combustion Coal Fired CCS Project: Contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. Energy Procedia 63, 6106–6110 (2014).
101
Environment and Climate Change Canada, Facility Greenhouse Gas Reporting: Overview of Reported Emissions 2016 (2017); www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions/facility-reporting/overview-2016.html.
102
International Energy Agency Greenhouse Gas R&D Programme, Ship Transport of CO2 (2004); https://ieaghg.org/docs/General_Docs/Reports/PH4-30 Ship Transport.pdf.
103
Organisation for Economic Cooperation and Development, Effective Carbon Rates 2018: Pricing Carbon Emissions Through Taxes and Emissions Trading (2018).
104
Transparency Market Research, “Global Ethanol Market: Advancement in Production Technologies to boost Market, notes TMR” [press release] (2018); www.transparencymarketresearch.com/pressrelease/ethanol-market.htm.
105
Orbis Research, Global (North America, Europe and Asia-Pacific, South America, Middle East and Africa) Carbon Monoxide Market 2017 Forecast to 2022 (2018); www.orbisresearch.com/reports/index/global-north-america-europe-and-asia-pacific-south-america-middle-east-and-africa-carbon-monoxide-market-2017-forecast-to-2022.
106
Mordor Intelligence, Formic Acid Market - Segmented by Grade Type, Application, and Geography - Growth, Trends & Forecasts (2019-2024) (2018); www.mordorintelligence.com/industry-reports/formic-acid-market.
107
S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer. ACS Energy Lett. 3, 193–198 (2018).
108
S. Ma, R. Luo, J. I. Gold, A. Z. Yu, B. Kim, P. J. A. Kenis, Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J. Mater. Chem. A 4, 8573–8578 (2016).
109
E. J. Dufek, T. E. Lister, S. G. Stone, M. E. McIlwain, Operation of a Pressurized System for Continuous Reduction of CO2. J. Electrochem. Soc. 159, F514–F517 (2012).
110
D. T. Whipple, E. C. Finke, P. J. A. Kenis, Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH. Electrochem. Solid State Lett. 13, B109 (2010).
111
X. Lu, D. Y. C. Leung, H. Wang, J. Xuan, A high performance dual electrolyte microfluidic reactor for the utilization of CO2. Appl. Energy 194, 549–559 (2017).
112
H. Li, C. Oloman, Development of a continuous reactor for the electro-reduction of carbon dioxideto formate – Part 1: Process variables. J. Appl. Electrochem. 36, 1105–1115 (2006).
113
M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).
114
A. Boulamanti, J. A. Moya, Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins. Renew. Sustain. Energy Rev. 68, 1205–1212 (2017).
115
M. Ruth, A. D. Amato, B. Davidsdottir, Carbon emissions from U.S. ethylene production under climate change policies. Environ. Sci. Technol. 36, 119–124 (2002).
117
International Energy Agency, Production Costs of Alternative Transportation Fuels: Influence of Crude Oil Price and Technology Maturity (2013); https://webstore.iea.org/production-costs-of-alternative-transportation-fuels.
118
W. E. Tyner, F. Taheripour, Q. Zhuang, D. Birur, U. Baldos, Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis (2010); www.arb.ca.gov/fuels/lcfs/workgroups/ewg/LUC_presentation_Tyner.pdf.
119
M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison, E. Tzimas, Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. Int. J. Hydrogen Energy 41, 16444–16462 (2016).
120
Y. Ahn, J. Byun, D. Kim, B.-S. Kim, C.-S. Lee, J. Han, System-level analysis and life cycle assessment of CO2 and fossil-based formic acid strategies. Green Chem. 21, 3442–3455 (2019).
121
C. He, F. You, Shale Gas Processing Integrated with Ethylene Production: Novel Process Designs, Exergy Analysis, and Techno-Economic Analysis. Ind. Eng. Chem. Res. 53, 11442–11459 (2014).
122
Strategic Analysis Inc., Techno-economic Analysis of PEM Electrolysis for Hydrogen Production (2014); www.energy.gov/sites/prod/files/2014/08/f18/fcto_2014_electrolytic_h2_wkshp_colella1.pdf.
123
U.S. Energy Information Administration, Electric Power Monthly; www.eia.gov/electricity/monthly/.
124
U.S. Energy Information Administration, Annual Energy Outlook 2018 with Projections to 2050 (2018); www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf.
125
IEA Hydrogen, Global Trends and Outlook for Hydrogen (2017); http://ieahydrogen.org/pdfs/Global-Outlook-and-Trends-for-Hydrogen_Dec2017_WEB.aspx.
126
Synapse Energy Economics Inc., 2015 Carbon Dioxide Price Forecast (2015); www.synapse-energy.com/sites/default/files/2015%20Carbon%20Dioxide%20Price%20Report.pdf.
127
U.S. Department of Energy, DOE Technical Targets for Hydrogen Production from Electrolysis (2015); www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis.
128
A. Ramirez, S. E. Tanzer, When are negative emissions negative emissions? Energy Environ. Sci. 12, 1210–1218 (2019).
129
R. Bhandari, C. A. Trudewind, P. Zapp, Life cycle assessment of hydrogen production via electrolysis - A review. J. Clean. Prod. 85, 151–163 (2014).
130
U.S. Department of Agriculture, USDA Factsheet: Lifecycle Greenhouse Gas Emissions of Corn-Based Ethanol (2017); www.usda.gov/oce/climate_change/mitigation_technologies/Ethanol_Report_Factsheet_Final.pdf.
131
U.S. Environmental Protection Agency, Emission Factors for Greenhouse Gas Inventories (2018); www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf.
132
J. David, H. Herzog, The Cost of Carbon Capture (MIT, 2000); https://sequestration.mit.edu/pdf/David_and_Herzog.pdf.
133
S. Ikeda, T. Takagi, K. Ito, Selective formation of formic acid, oxalic acid, and carbon monoxide by electrochemical reduction of carbon dioxide. Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987).
134
H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda, K. Ito, Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution. Bull. Chem. Soc. Jpn. 63, 2459–2462 (1990).
135
C. Delacourt, P. L. Ridgway, J. B. Kerr, J. Newman, Design of an Electrochemical Cell Making Syngas (CO+H2) from CO2 and H2O Reduction at Room Temperature. J. Electrochem. Soc. 155, B42 (2008).
136
Y. Chen, C. W. Li, M. W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).
137
B. Endrödi, E. Kecsenovity, A. Samu, F. Darvas, R. V. Jones, V. Török, A. Danyi, A. C. Janáky, Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency. ACS Energy Lett. 4, 1770–1777 (2019).
138
A. Klinkova, P. De Luna, C.-T. Dinh, O. Voznyy, E. M. Larin, E. Kumacheva, E. H. Sargent, Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catal. 6, 8115–8120 (2016).
139
C. Xia, P. Zhu, Y. Pan, W. Liang, E. Stavitsk, H. N. Alshareef, H. Wang, Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).
140
D. W. DeWulf, T. Jin, A. J. Bard, Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions. J. Electrochem. Soc. 136, 1686–1691 (1989).
141
K. Hara, A. Kudo, T. Sakata, M. Watanabe, High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J. Electrochem. Soc. 142, L57–L59 (1995).
142
K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012).
143
D. Ren, B. S. H. Ang, B. S. Yeo, Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived CuxZn Catalysts. ACS Catal. 6, 8239–8247 (2016).
144
Y. C. Li, Z. Wang, T. Yuan, D. H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G. de Arquer, Y. Wang, C. T. Dinh, O. Voznyy, D. Sinton, E. H. Sargent, Binding Site Diversity Promotes CO2 Electroreduction to Ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).