这是用户在 2024-10-1 21:52 为 https://en.wikipedia.org/wiki/Mathematics 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Jump to content

Mathematics 数学

Page semi-protected
From Wikipedia, the free encyclopedia
维基百科,自由的百科全书

Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics).
数学是一个发现和组织为经验科学和数学本身的需要而发展和证明的方法、理论定理的研究领域。数学有很多领域,包括数论(对数字的研究)、代数(对公式和相关结构的研究)、几何(对形状和包含它们的空间的研究)、分析(对连续变化的研究) ,和集合论(目前用作所有数学的基础)。

Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature or—in modern mathematics—purely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to prove properties of objects, a proof consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of the theory under consideration.[1]
数学涉及对抽象对象的描述和操作,这些抽象对象由自然的抽象组成,或者在现代数学中由规定具有某些属性(称为公理)的纯粹抽象实体组成。数学使用纯粹的理性证明对象的属性,这种证明包括对已经确定的结果一系列演绎规则的应用。这些结果包括先前证明的定理、公理,以及(在从自然中抽象的情况下)一些基本属性,这些属性被认为是所考虑的理论的真正起点。1

Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as statistics and game theory, are developed in close correlation with their applications and are often grouped under applied mathematics. Other areas are developed independently from any application (and are therefore called pure mathematics) but often later find practical applications.[2][3]
数学在自然科学工程医学金融计算机科学社会科学中都是必不可少的。尽管数学广泛用于对现象进行建模,但数学的基本真理独立于任何科学实验。数学的某些领域,例如统计学博弈论,其发展与其应用密切相关,并且通常被归为应用数学。其他领域的发展独立于任何应用(因此被称为纯数学),但通常后来才找到实际应用。 23

Historically, the concept of a proof and its associated mathematical rigour first appeared in Greek mathematics, most notably in Euclid's Elements.[4] Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions), until the 16th and 17th centuries, when algebra[a] and infinitesimal calculus were introduced as new fields. Since then, the interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both.[5] At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method,[6] which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics.
从历史上看,证明的概念及其相关的数学严谨性首先出现在希腊数学中,尤其是在欧几里得的《几何原本》中。4从一开始,数学就主要分为几何和算术自然数分数的运算),直到16 世纪和 17 世纪,代数和微积分作为新领域被引入。从那时起,数学创新和科学发现之间的相互作用导致两者的发展同步增长。5 19 世纪末,数学的基础危机导致了公理化方法的系统化6,这预示着数学领域及其应用领域的数量急剧增加。当代数学学科分类列出了六十多个一级数学领域。

Etymology 词源

The word mathematics comes from Ancient Greek máthēma (μάθημα), meaning "that which is learnt",[7] "what one gets to know", hence also "study" and "science". The word came to have the narrower and more technical meaning of "mathematical study" even in Classical times.[b] Its adjective is mathēmatikós (μαθηματικός), meaning "related to learning" or "studious", which likewise further came to mean "mathematical".[11] In particular, mathēmatikḗ tékhnē (μαθηματικὴ τέχνη; Latin: ars mathematica) meant "the mathematical art".[7]
数学一词源自古希腊语máthēma ( μάθημα ),意思是“所学的东西”,7“人们所了解的东西”,因此也有“研究”和“科学”的意思。即使在古典时代,这个词也具有“数学研究”的更狭义和更专业的含义。b 它的形容词mathēmatikós ( μαθηματικός ),意思是“与学习有关”或“勤奋的”,同样进一步意味着“数学的” .11 特别是, mathēmatikḗ tékhnē ( μαθηματικὴ τέχνη拉丁语ars mathematica ) 意思是“数学艺术”。7

Similarly, one of the two main schools of thought in Pythagoreanism was known as the mathēmatikoi (μαθηματικοί)—which at the time meant "learners" rather than "mathematicians" in the modern sense. The Pythagoreans were likely the first to constrain the use of the word to just the study of arithmetic and geometry. By the time of Aristotle (384–322 BC) this meaning was fully established.[12]
同样,毕达哥拉斯主义的两个主要思想流派之一被称为mathēmatikoi (μαθηματικοί)——当时的意思是“学习者”,而不是现代意义上的“数学家”。毕达哥拉斯学派可能是第一个将这个词的使用限制为仅用于算术和几何研究的人。到亚里士多德时代(公元前 384-322 年),这一含义已完全确立。 12

In Latin and English, until around 1700, the term mathematics more commonly meant "astrology" (or sometimes "astronomy") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, Saint Augustine's warning that Christians should beware of mathematici, meaning "astrologers", is sometimes mistranslated as a condemnation of mathematicians.[13]
在拉丁语和英语中,直到 1700 年左右,数学一词更常指“占星学”(有时也指“天文学”),而不是“数学”;大约从1500年到1800年,这个含义逐渐变为现在的含义。这种变化导致了一些误译:例如,圣奥古斯丁警告基督徒应该提防mathematici ,意思是“占星家”,有时被误译为对数学家的谴责.13

The apparent plural form in English goes back to the Latin neuter plural mathematica (Cicero), based on the Greek plural ta mathēmatiká (τὰ μαθηματικά) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after the pattern of physics and metaphysics, inherited from Greek.[14] In English, the noun mathematics takes a singular verb. It is often shortened to maths[15] or, in North America, math.[16]
英语中明显的复数形式可以追溯到拉丁语中性复数mathematica西塞罗),它基于希腊语复数ta mathēmatikáτὰμαθηματικά ),大致意思是“所有数学的东西”,尽管英语似乎只借用了形容词mathematic( al)并按照继承自希腊语的物理学形而上学的模式重新形成了名词math。14在英语中,名词math采用单数动词。它通常缩写为maths 15,或者在北美缩写为math 0.16

Areas of mathematics 数学领域

Before the Renaissance, mathematics was divided into two main areas: arithmetic, regarding the manipulation of numbers, and geometry, regarding the study of shapes.[17] Some types of pseudoscience, such as numerology and astrology, were not then clearly distinguished from mathematics.[18]
文艺复兴之前,数学分为两个主要领域:算术(关于数字的处理)和几何(关于形状的研究)。 17 某些类型的伪科学,例如命理学占星学,当时并没有与数学明确区分开来。 18

During the Renaissance, two more areas appeared. Mathematical notation led to algebra which, roughly speaking, consists of the study and the manipulation of formulas. Calculus, consisting of the two subfields differential calculus and integral calculus, is the study of continuous functions, which model the typically nonlinear relationships between varying quantities, as represented by variables. This division into four main areas—arithmetic, geometry, algebra, calculus[19]—endured until the end of the 19th century. Areas such as celestial mechanics and solid mechanics were then studied by mathematicians, but now are considered as belonging to physics.[20] The subject of combinatorics has been studied for much of recorded history, yet did not become a separate branch of mathematics until the seventeenth century.[21]
文艺复兴时期,又出现了两个领域。数学符号导致了代数,粗略地说,代数包括公式的研究和操作。微积分微分微积分积分两个子领域组成,是对连续函数的研究,它对由变量表示的变化量之间的典型非线性关系进行建模。这种划分为四个主要领域——算术、几何、代数、微积分19——一直持续到 19 世纪末。天体力学固体力学等领域当时由数学家研究,但现在被认为属于物理学。20组合数学学科在历史上的大部分时间里都得到了研究,但直到 17 世纪才成为数学的一个独立分支。 .21

At the end of the 19th century, the foundational crisis in mathematics and the resulting systematization of the axiomatic method led to an explosion of new areas of mathematics.[22][6] The 2020 Mathematics Subject Classification contains no less than sixty-three first-level areas.[23] Some of these areas correspond to the older division, as is true regarding number theory (the modern name for higher arithmetic) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as mathematical logic and foundations.[24]
19世纪末,数学的基础危机和由此产生的公理化方法的系统化导致了数学新领域的爆发。226 2020年数学学科分类包含不少于63个一级领域。23其中一些领域对应于旧的部门,就像数论高等算术的现代名称)和几何一样。其他几个第一级区域的名称中包含“几何”,或者通常被认为是几何的一部分。代数和微积分不作为第一级区域出现,而是分别分为多个第一级区域。其他第一级领域出现在 20 世纪或以前不被视为数学,例如数理逻辑基础.24

Number theory 数论

This is the Ulam spiral, which illustrates the distribution of prime numbers. The dark diagonal lines in the spiral hint at the hypothesized approximate independence between being prime and being a value of a quadratic polynomial, a conjecture now known as Hardy and Littlewood's Conjecture F.
这就是乌拉姆螺旋,它说明了素数的分布。螺旋中的黑色对角线暗示了素数和二次多项式的值之间假设的近似独立性,这一猜想现在被称为哈代和利特尔伍德猜想 F

Number theory began with the manipulation of numbers, that is, natural numbers and later expanded to integers and rational numbers Number theory was once called arithmetic, but nowadays this term is mostly used for numerical calculations.[25] Number theory dates back to ancient Babylon and probably China. Two prominent early number theorists were Euclid of ancient Greece and Diophantus of Alexandria.[26] The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler. The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss.[27]
数论始于对数字(即自然数)的操纵 后来扩展到整数 有理数 数论曾经被称为算术,但现在这个术语主要用于数值计算。25 数论的历史可以追溯到古巴比伦,可能还有中国。两位著名的早期数论学家是古希腊的欧几里得和亚历山大的丢番。26 现代数论研究的抽象形式主要归功于皮埃尔·德·费马莱昂哈德·欧拉。在Adrien-Marie LegendreCarl Friedrich Gauss的贡献下,该领域取得了圆满成果 .27

Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example is Fermat's Last Theorem. This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles, who used tools including scheme theory from algebraic geometry, category theory, and homological algebra.[28] Another example is Goldbach's conjecture, which asserts that every even integer greater than 2 is the sum of two prime numbers. Stated in 1742 by Christian Goldbach, it remains unproven despite considerable effort.[29]
许多容易表述的数字问题的解决方案需要复杂的方法,通常来自数学领域。一个突出的例子是费马大定理。这个猜想由 Pierre de Fermat 于 1637 年提出,但直到 1994 年才被Andrew Wiles证明,他使用了代数几何的图式论范畴论同调代数等工具。28 另一个例子是哥德巴赫猜想,它断言每个大于2的偶数是两个素数之和。克里斯蒂安·哥德巴赫 (Christian Goldbach)于 1742 年提出,尽管付出了巨大努力,但仍未得到证实。29

Number theory includes several subareas, including analytic number theory, algebraic number theory, geometry of numbers (method oriented), diophantine equations, and transcendence theory (problem oriented).[24]
数论包括几个子领域,包括解析数论代数数论数几何(面向方法)、丢番图方程超越论(面向问题)24

Geometry 几何学

On the surface of a sphere, Euclidean geometry only applies as a local approximation. For larger scales the sum of the angles of a triangle is not equal to 180°.
在球体表面上,欧几里得几何仅适用于局部近似。对于较大比例,三角形的内角和不等于 180°。

Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines, angles and circles, which were developed mainly for the needs of surveying and architecture, but has since blossomed out into many other subfields.[30]
几何是数学最古老的分支之一。它始于有关形状(例如直线角度圆形)的经验配方,这些形状主要是为了测量建筑的需要而开发的,但后来已经扩展到许多其他子领域。 30

A fundamental innovation was the ancient Greeks' introduction of the concept of proofs, which require that every assertion must be proved. For example, it is not sufficient to verify by measurement that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results (theorems) and a few basic statements. The basic statements are not subject to proof because they are self-evident (postulates), or are part of the definition of the subject of study (axioms). This principle, foundational for all mathematics, was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements.[31][32]
一个根本性的创新是古希腊人引入了证明的概念,它要求每个断言都必须得到证明。例如,仅通过测量来验证两个长度是否相等是不够的;它们的相等性必须通过先前接受的结果(定理)和一些基本陈述的推理来证明。基本陈述不需要证明,因为它们是不言而喻的(假设),或者是研究主题定义的一部分(公理)。这一原理是所有数学的基础,首先针对几何学进行了阐述,并由欧几里得于公元前 300 年左右在他的《几何原本》一书中系统化。3132

The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane (plane geometry) and the three-dimensional Euclidean space.[c][30]
由此产生的欧几里德几何是对由欧几里德平面平面几何)和三维欧几里德空间中的线、平面和圆构成的形状及其排列的研究。c30

Euclidean geometry was developed without change of methods or scope until the 17th century, when René Descartes introduced what is now called Cartesian coordinates. This constituted a major change of paradigm: Instead of defining real numbers as lengths of line segments (see number line), it allowed the representation of points using their coordinates, which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and analytic geometry, which uses coordinates systemically.[33]
欧几里得几何的发展没有改变方法或范围,直到 17 世纪,笛卡尔引入了现在所谓的笛卡尔坐标。这构成了范式的重大变化:它不再将实数定义为线段的长度(参见数轴),而是允许使用点的坐标(即数字)来表示点。因此,代数(以及后来的微积分)可以用来解决几何问题。几何学被分为两个新的子领域:合成几何学(使用纯几何方法)和解析几何学(系统地使用坐标)33。

Analytic geometry allows the study of curves unrelated to circles and lines. Such curves can be defined as the graph of functions, the study of which led to differential geometry. They can also be defined as implicit equations, often polynomial equations (which spawned algebraic geometry). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions.[30]
解析几何允许研究与圆和直线无关的曲线。这种曲线可以定义为函数图,对函数图的研究导致了微分几何。它们也可以被定义为隐式方程,通常是多项式方程(它催生了代数几何)。解析几何还使得考虑高于三个维度的欧几里得空间成为可能。 30

In the 19th century, mathematicians discovered non-Euclidean geometries, which do not follow the parallel postulate. By questioning that postulate's truth, this discovery has been viewed as joining Russell's paradox in revealing the foundational crisis of mathematics. This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not a mathematical problem.[34][6] In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that do not change under specific transformations of the space.[35]
十九世纪,数学家发现了不遵循平行公设的非欧几里得几何。通过质疑该假设的真实性,这一发现被视为与罗素悖论一起揭示了数学的基本危机。这方面的危机是通过公理化方法的系统化解决的,并承认所选公理的真实性不是数学问题。346反过来,公理化方法允许研究通过改变公理或通过改变公理获得的各种几何形状。考虑在空间的特定变换下不会改变的属性 .35

Today's subareas of geometry include:[24]
今天的几何子领域包括:24

Algebra 代数

refer to caption
The quadratic formula, which concisely expresses the solutions of all quadratic equations
二次公式,简明地表达了所有二次方程的解
A shuffled 3x3 rubik's cube
The Rubik's Cube group is a concrete application of group theory.[36]
魔方群群论的具体应用.36

Algebra is the art of manipulating equations and formulas. Diophantus (3rd century) and al-Khwarizmi (9th century) were the two main precursors of algebra.[37][38] Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution.[39] Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side.[40] The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of his main treatise.[41][42]
代数是操纵方程和公式的艺术。丢番图(公元 3 世纪)和花剌子米(公元 9 世纪)是代数的两个主要先驱。3738 丢番图通过推导新的关系来解决一些涉及未知自然数的方程,直到获得解。39 花剌子米引入了变换方程的系统方法,例如将一项从方程的一侧移到另一侧。40 代数一词源自阿拉伯语单词al-jabr,意思是“破碎部分的重聚”,他在标题中用它来命名这些方法之一他的主要论文.4142

Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers.[43] Variables allow mathematicians to describe the operations that have to be done on the numbers represented using mathematical formulas.[44]
只有弗朗索瓦·维埃特(François Viète,1540-1603)才使代数成为一个独立的领域,他引入了使用变量来表示未知或未指定的数字。 43变量允许数学家描述必须对使用数学表示的数字进行的运算。公式.44

Until the 19th century, algebra consisted mainly of the study of linear equations (presently linear algebra), and polynomial equations in a single unknown, which were called algebraic equations (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as matrices, modular integers, and geometric transformations), on which generalizations of arithmetic operations are often valid.[45] The concept of algebraic structure addresses this, consisting of a set whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra, as established by the influence and works of Emmy Noether.[46]
直到19世纪,代数主要包括线性方程(现在的线性代数)和单个未知数的多项式方程的研究,这些方程被称为代数方程(这个术语仍在使用,尽管可能含糊不清)。在 19 世纪,数学家开始使用变量来表示数字以外的事物(例如矩阵模整数几何变换),算术运算的推广通常是有效的。45代数结构的概念解决了这个问题,包括元素未指定的集合、作用于集合元素的操作以及这些操作必须遵循的规则。因此,代数的范围扩大到包括代数结构的研究。这个代数对象被称为现代代数抽象代数,这是由艾美·诺特的影响和著作建立的。46

Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include:[24]
在数学的许多领域中,某些类型的代数结构具有有用且通常是基本的属性。他们的研究成为代数的独立部分,包括:24

The study of types of algebraic structures as mathematical objects is the purpose of universal algebra and category theory.[47] The latter applies to every mathematical structure (not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as topological spaces; this particular area of application is called algebraic topology.[48]
将代数结构的类型作为数学对象进行研究是普适代数范畴论的目的。47后者适用于所有数学结构(不仅是代数结构)。它最初与同调代数一起被引入,以允许对非代数对象(例如拓扑空间)进行代数研究;这个特定的应用领域称为代数拓扑.48

Calculus and analysis 演算与分析

A Cauchy sequence consists of elements such that all subsequent terms of a term become arbitrarily close to each other as the sequence progresses (from left to right).
柯西序列由一些元素组成,随着序列的进展(从左到右),一项的所有后续项都变得任意接近。

Calculus, formerly called infinitesimal calculus, was introduced independently and simultaneously by 17th-century mathematicians Newton and Leibniz.[49] It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results.[50] Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts.[51]
微积分,以前称为无穷小微积分,由 17 世纪数学家牛顿莱布尼茨独立且同时引入。49 从根本上讲,它是对相互依赖的变量关系的研究。欧拉在 18 世纪扩展了微积分,引入了函数的概念和许多其他成果。50 目前,“微积分”主要指该理论的基本部分,“分析”通常用于高级部分。 51

Analysis is further subdivided into real analysis, where variables represent real numbers, and complex analysis, where variables represent complex numbers. Analysis includes many subareas shared by other areas of mathematics which include:[24]
分析进一步分为实数分析(其中变量代表实数)复数分析(其中变量代表复数) 。分析包括许多其他数学领域共享的子领域,其中包括:24

Discrete mathematics 离散数学

A diagram representing a two-state Markov chain. The states are represented by 'A' and 'E'. The numbers are the probability of flipping the state.
表示二态马尔可夫链的图。状态由“A”和“E”表示。这些数字是翻转状态的概率。

Discrete mathematics, broadly speaking, is the study of individual, countable mathematical objects. An example is the set of all integers.[52] Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply.[d] Algorithms—especially their implementation and computational complexity—play a major role in discrete mathematics.[53]
从广义上讲,离散数学是对单个、可数数学对象的研究。一个例子是所有整数的集合。52因为这里的研究对象是离散的,所以微积分和数学分析的方法并不直接适用。d算法——尤其是它们的实现计算复杂性——在离散数学中发挥着重要作用。53

The four color theorem and optimal sphere packing were two major problems of discrete mathematics solved in the second half of the 20th century.[54] The P versus NP problem, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems.[55]
四色定理最优球体堆积是 20 世纪下半叶解决的离散数学的两个主要问题。 54 至今仍然开放的P 与 NP 问题对于离散数学也很重要,因为它的解决方案将可能会影响大量计算困难的问题。55

Discrete mathematics includes:[24]
离散数学包括:24

Mathematical logic and set theory
数理逻辑和集合论

A blue and pink circle and their intersection labeled
The Venn diagram is a commonly used method to illustrate the relations between sets.
维恩图是描述集合之间关系的常用方法。

The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century.[56][57] Before this period, sets were not considered to be mathematical objects, and logic, although used for mathematical proofs, belonged to philosophy and was not specifically studied by mathematicians.[58]
数理逻辑和集合论这两门学科自19世纪末以来就属于数学。5657在此时期之前,集合不被认为是数学对象,而逻辑虽然用于数学证明,但属于哲学而不是哲学。由数学家专门研究58

Before Cantor's study of infinite sets, mathematicians were reluctant to consider actually infinite collections, and considered infinity to be the result of endless enumeration. Cantor's work offended many mathematicians not only by considering actually infinite sets[59] but by showing that this implies different sizes of infinity, per Cantor's diagonal argument. This led to the controversy over Cantor's set theory.[60] In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring mathematical rigour.[61]
康托研究无限集合之前,数学家们不愿意考虑实际上的无限集合,并认为无穷是无休止枚举的结果。康托尔的工作冒犯了许多数学家,不仅因为考虑了实际上无限的集合59,而且根据康托尔的对角线论证,这表明这意味着无穷大的不同大小。这引发了对康托集合论的争议.60 在同一时期,数学的各个领域都得出结论,以前对基本数学对象的直观定义不足以确保数学的严谨性.61

This became the foundational crisis of mathematics.[62] It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a formalized set theory. Roughly speaking, each mathematical object is defined by the set of all similar objects and the properties that these objects must have.[22] For example, in Peano arithmetic, the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning.[63] This mathematical abstraction from reality is embodied in the modern philosophy of formalism, as founded by David Hilbert around 1910.[64]
这成为数学的根本危机。62最终通过在形式化集合论中系统化公理化方法,在主流数学中解决了这个问题。粗略地说,每个数学对象都是由所有相似对象的集合以及这些对象必须具有的属性来定义的。22例如,在皮亚诺算术中,自然数是通过“零是一个数字”、“每个数字都有一个唯一的后继”,“除了零之外的每个数字都有一个唯一的前任”,以及一些推理规则。63这种对现实的数学抽象体现在现代形式主义哲学中,由大卫·希尔伯特在1910年左右创立。64

The "nature" of the objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinion—sometimes called "intuition"—to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example, Gödel's incompleteness theorems assert, roughly speaking that, in every consistent formal system that contains the natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system.[65] This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by Brouwer, who promoted intuitionistic logic, which explicitly lacks the law of excluded middle.[66][67]
以这种方式定义的对象的“本质”是数学家留给哲学家的一个哲学问题,即使许多数学家对此本质有看法,并使用他们的观点(有时称为“直觉”)来指导他们的研究和证明。该方法允许将“逻辑”(即允许的演绎规则集)、定理、证明等视为数学对象,并证明关于它们的定理。例如,哥德尔的不完备性定理断言,粗略地说,在每个包含自然数的一致形式系统中,都有一些定理是正确的(在更强的系统中是可证明的),但在系统内部是不可证明的。 65 这种方法数学基础在20世纪上半叶受到以布劳威尔为首的数学家的挑战,他们提倡直觉逻辑,而直觉逻辑明显缺乏排中律.6667

These problems and debates led to a wide expansion of mathematical logic, with subareas such as model theory (modeling some logical theories inside other theories), proof theory, type theory, computability theory and computational complexity theory.[24] Although these aspects of mathematical logic were introduced before the rise of computers, their use in compiler design, formal verification, program analysis, proof assistants and other aspects of computer science, contributed in turn to the expansion of these logical theories.[68]
这些问题和争论导致了数理逻辑的广泛扩展,包括模型论(在其他理论中对某些逻辑理论进行建模)、证明论类型论可计算性理论计算复杂性理论等子领域。24尽管数理逻辑的这些方面在计算机兴起之前就被引入,它们在编译器设计、形式验证程序分析证明助手计算机科学的其他方面的使用反过来又促进了这些逻辑理论的扩展。 68

Statistics and other decision sciences
统计学和其他决策科学

Whatever the form of a random population distribution (μ), the sampling mean (x̄) tends to a Gaussian distribution and its variance (σ) is given by the central limit theorem of probability theory.[69]
无论随机总体分布(μ) 的形式如何,抽样均值(x̄) 都趋向于高斯分布,其方差(σ) 由概率论的中心极限定理给出。 69

The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially probability theory. Statisticians generate data with random sampling or randomized experiments.[70]
统计学领域是一种数学应用,用于使用基于数学方法(尤其是概率论)的程序来收集和处理数据样本。统计学家通过随机抽样或随机实验生成数据 0.70

Statistical theory studies decision problems such as minimizing the risk (expected loss) of a statistical action, such as using a procedure in, for example, parameter estimation, hypothesis testing, and selecting the best. In these traditional areas of mathematical statistics, a statistical-decision problem is formulated by minimizing an objective function, like expected loss or cost, under specific constraints. For example, designing a survey often involves minimizing the cost of estimating a population mean with a given level of confidence.[71] Because of its use of optimization, the mathematical theory of statistics overlaps with other decision sciences, such as operations research, control theory, and mathematical economics.[72]
统计理论研究决策问题,例如最小化统计操作的风险预期损失),例如使用参数估计假设检验选择最佳程序等过程。在数理统计的这些传统领域中,统计决策问题是通过在特定约束下最小化目标函数(例如预期损失或成本)来制定的。例如,设计一项调查通常涉及在给定的置信水平下最小化估计总体平均值的成本。71由于使用了优化,统计数学理论与其他决策科学重叠,例如运筹学控制论和数理经济学.72

Computational mathematics
计算数学

Computational mathematics is the study of mathematical problems that are typically too large for human, numerical capacity.[73][74] Numerical analysis studies methods for problems in analysis using functional analysis and approximation theory; numerical analysis broadly includes the study of approximation and discretization with special focus on rounding errors.[75] Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic-matrix-and-graph theory. Other areas of computational mathematics include computer algebra and symbolic computation.
计算数学是对对于人类数值能力来说通常太大的数学问题的研究。7374数值分析研究使用泛函分析近似理论分析问题的方法;数值分析广泛地包括近似离散化的研究,特别关注舍入误差。75 数值分析,更广泛地说,科学计算还研究数学科学的非分析主题,特别是算法矩阵图论。计算数学的其他领域包括计算机代数符号计算

History 历史

Ancient 古老的

The Babylonian mathematical tablet Plimpton 322, dated to 1800 BC
巴比伦数学板Plimpton 322 ,可追溯到公元前 1800 年

In addition to recognizing how to count physical objects, prehistoric peoples may have also known how to count abstract quantities, like time—days, seasons, or years.[76][77] Evidence for more complex mathematics does not appear until around 3000 BC, when the Babylonians and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy.[78] The oldest mathematical texts from Mesopotamia and Egypt are from 2000 to 1800 BC.[79] Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It is in Babylonian mathematics that elementary arithmetic (addition, subtraction, multiplication, and division) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a sexagesimal numeral system which is still in use today for measuring angles and time.[80]
除了认识如何计算物理对象之外,史前人民可能还知道如何计算抽象数量,例如时间(日、季节或年)。7677 直到公元前3000 年左右,更复杂的数学的证据才出现,当时巴比伦人和埃及人开始使用算术、代数和几何进行税收和其他金融计算、建筑和建造以及天文学。 78美索不达米亚埃及最古老的数学文本是公元前 2000 年至 1800 年。 79 许多早期文本提到了毕达哥拉斯三元组,因此由此推论,毕达哥拉斯定理似乎是继基本算术和几何之后最古老、最广泛的数学概念。正是在巴比伦数学中,基本算术加法减法乘法除法)首次出现在考古记录中。巴比伦人还拥有位值系统并使用六十进制数字系统,该系统至今仍在用于测量角度和时间。 80

In the 6th century BC, Greek mathematics began to emerge as a distinct discipline and some Ancient Greeks such as the Pythagoreans appeared to have considered it a subject in its own right.[81] Around 300 BC, Euclid organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof.[82] His book, Elements, is widely considered the most successful and influential textbook of all time.[83] The greatest mathematician of antiquity is often held to be Archimedes (c. 287 – c. 212 BC) of Syracuse.[84] He developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, in a manner not too dissimilar from modern calculus.[85] Other notable achievements of Greek mathematics are conic sections (Apollonius of Perga, 3rd century BC),[86] trigonometry (Hipparchus of Nicaea, 2nd century BC),[87] and the beginnings of algebra (Diophantus, 3rd century AD).[88]
在公元前 6 世纪,希腊数学开始作为一门独特的学科出现,一些古希腊人,如毕达哥拉斯学派,似乎认为它本身就是一门学科。81 公元前 300 年左右,欧几里得通过公设和第一章的方式组织了数学知识。原理,演变成当今数学中使用的公理方法,包括定义、公理、定理和证明。82 他的书《几何原本》被广泛认为是有史以来最成功和最有影响力的教科书。83古代通常被认为是锡拉丘兹阿基米德约公元前287 – 约公元前 212 年)。84 他开发了计算旋转固体的表面积和体积的公式,并使用穷举法计算圆弧下的面积抛物线无限级数的求和,其方式与现代微积分没有太大不同。 85 希腊数学的其他显着成就是圆锥曲线佩尔加的阿波罗尼乌斯,公元前 3 世纪),86三角学尼西亚的喜帕恰斯,公元前 2 世纪) ,87 和代数的开端(丢番图,公元 3 世纪).88

The numerals used in the Bakhshali manuscript, dated between the 2nd century BC and the 2nd century AD
巴赫沙利手稿中使用的数字可追溯到公元前 2 世纪至公元 2 世纪

The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics.[89] Other notable developments of Indian mathematics include the modern definition and approximation of sine and cosine, and an early form of infinite series.[90][91]
当今世界各地使用的印度-阿拉伯数字系统及其运算使用规则,在印度的公元第一个千年中不断演变,并通过伊斯兰数学传播到西方世界。89 其他值得注意的发展印度数学包括正弦余弦的现代定义和近似,以及无穷级数的早期形式.9091

Medieval and later 中世纪及以后

A page from al-Khwarizmi's Al-Jabr
花剌子《Al-Jabr》中的一页

During the Golden Age of Islam, especially during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of algebra. Other achievements of the Islamic period include advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system.[92] Many notable mathematicians from this period were Persian, such as Al-Khwarizmi, Omar Khayyam and Sharaf al-Dīn al-Ṭūsī.[93] The Greek and Arabic mathematical texts were in turn translated to Latin during the Middle Ages and made available in Europe.[94]
伊斯兰教的黄金时代,特别是在 9 世纪和 10 世纪,数学在希腊数学的基础上出现了许多重要的创新。伊斯兰数学最显着的成就是代数的发展。伊斯兰时期的其他成就包括球面三角学的进步以及在阿拉伯数字系统中添加小数点。 92 这一时期的许多著名数学家都是波斯人,例如花剌子米奥马尔·海亚姆沙拉夫·阿尔丁·塔西.93 希腊语和阿拉伯语数学文本在中世纪又被翻译成拉丁语并在欧洲提供。 94

During the early modern period, mathematics began to develop at an accelerating pace in Western Europe, with innovations that revolutionized mathematics, such as the introduction of variables and symbolic notation by François Viète (1540–1603), the introduction of logarithms by John Napier in 1614, which greatly simplified numerical calculations, especially for astronomy and marine navigation, the introduction of coordinates by René Descartes (1596–1650) for reducing geometry to algebra, and the development of calculus by Isaac Newton (1643–1727) and Gottfried Leibniz (1646–1716). Leonhard Euler (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and the proof of numerous theorems.[95]
近代早期,数学在西欧开始加速发展,其创新彻底改变了数学,例如弗朗索瓦·维特(François Viète,1540-1603)引入变量和符号表示法约翰·纳皮尔(John Napier)在 1603 年引入对。 1614 年,它大大简化了数值计算,特别是天文学航海方面的计算勒内·笛卡尔 (René Descartes ,1596-1650) 引入坐标以将几何简化为代数;艾萨克·牛顿 ( Isaac Newton,1643-1727) 和戈特弗里德·莱布尼茨( Gottfried Leibniz ) 发展了微积分 (1643-1727)。 1646–1716)。 Leonhard Euler (1707-1783)是 18 世纪最著名的数学家,他将这些创新统一到具有标准化术语的单一语料库中,并通过众多定理的发现和证明来完成它们。 95

Carl Friedrich Gauss 卡尔·弗里德里希·高斯

Perhaps the foremost mathematician of the 19th century was the German mathematician Carl Gauss, who made numerous contributions to fields such as algebra, analysis, differential geometry, matrix theory, number theory, and statistics.[96] In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems, which show in part that any consistent axiomatic system—if powerful enough to describe arithmetic—will contain true propositions that cannot be proved.[65]
也许 19 世纪最重要的数学家是德国数学家卡尔·高斯 (Carl Gauss) ,他在代数、分析、微分几何矩阵论、数论和统计学等领域做出了众多贡献。96 在 20 世纪初,库尔特·哥德尔 (Kurt Gödel)彻底改变了数学通过发表他的不完备定理,该定理部分表明任何一致的公理系统——如果强大到足以描述算术——将包含无法证明的真实命题。 65

Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January 2006 issue of the Bulletin of the American Mathematical Society, "The number of papers and books included in the Mathematical Reviews (MR) database since 1940 (the first year of operation of MR) is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs."[97]
此后,数学得到了极大的扩展,数学和科学之间也进行了富有成效的互动,对双方都有利。直到今天,数学发现仍在继续。据 Mikhail B. Sevryuk 在 2006 年 1 月出版的《美国数学会通报》中指出,“自 1940 年(MR 运行的第一年)以来,数学评论(MR)数据库中收录的论文和书籍数量目前为每年超过 190 万条,超过 75000 个条目被添加到数据库中,这片海洋中的绝大多数作品都包含新的数学定理及其证明。”97

Symbolic notation and terminology
符号表示法和术语

An explanation of the sigma (Σ) summation notation
西格玛 (Σ)求和符号的解释

Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of symbols used for representing operations, unspecified numbers, relations and any other mathematical objects, and then assembling them into expressions and formulas.[98] More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally Latin or Greek letters, and often include subscripts. Operation and relations are generally represented by specific symbols or glyphs,[99] such as + (plus), × (multiplication), (integral), = (equal), and < (less than).[100] All these symbols are generally grouped according to specific rules to form expressions and formulas.[101] Normally, expressions and formulas do not appear alone, but are included in sentences of the current language, where expressions play the role of noun phrases and formulas play the role of clauses.
数学符号广泛应用于科学和工程领域,用于以简洁、明确和准确的方式表示复杂的概念属性。这种表示法由用于表示运算、未指定数字、关系和任何其他数学对象的符号组成,然后将它们组装成表达式和公式。98更准确地说,数字和其他数学对象由称为变量的符号表示,这些符号通常是拉丁语希腊字母,通常包含下标。运算和关系通常用特定的符号字形来表示,99例如+)、 ×)、 (积分)、 = (等于) 和< (小于)。100 所有这些符号通常按照特定的规则组合起来,形成表达式和公式。 101 通常,表达式和公式不会单独出现,而是包含在句子中当前语言中,表达式充当名词短语的角色,公式充当从句的角色。

Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous definitions that provide a standard foundation for communication. An axiom or postulate is a mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a conjecture. Through a series of rigorous arguments employing deductive reasoning, a statement that is proven to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a lemma. A proven instance that forms part of a more general finding is termed a corollary.[102]
数学发展了丰富的术语,涵盖广泛的领域,研究各种抽象、理想化对象的属性以及它们如何相互作用。它基于严格的定义,为通信提供了标准基础。公理或假设是无需证明即可被视为正确的数学陈述。如果一个数学陈述尚未被证明(或反驳),则它被称为猜想。通过一系列采用演绎推理的严格论证,被证明为真的陈述成为定理。主要用于证明另一个定理的专门定理称为引理。构成更普遍发现一部分的已证实实例被称为推论.102

Numerous technical terms used in mathematics are neologisms, such as polynomial and homeomorphism.[103] Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, "or" means "one, the other or both", while, in common language, it is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called "exclusive or"). Finally, many mathematical terms are common words that are used with a completely different meaning.[104] This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every free module is flat" and "a field is always a ring".
数学中使用的许多技术术语都是新词,例如多项式同胚。103 其他技术术语是通用语言的单词,其准确含义可能与其常用含义略有不同。例如,在数学中,“ or ”的意思是“一个、另一个或两者”,而在普通语言中,它要么是含糊不清的,要么是“一个或另一个,但不是两者”的意思(在数学中,后者被称为“排他性”)。或者”)。最后,许多数学术语是常用词,但使用时具有完全不同的含义。104这可能会导致句子是正确且真实的数学断言,但对于不具备所需背景的人来说似乎是无意义的。例如,“每个自由模块都是平坦的”和“字段总是一个”。

Relationship with sciences
与科学的关系

Mathematics is used in most sciences for modeling phenomena, which then allows predictions to be made from experimental laws.[105] The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model.[106] Inaccurate predictions, rather than being caused by invalid mathematical concepts, imply the need to change the mathematical model used.[107] For example, the perihelion precession of Mercury could only be explained after the emergence of Einstein's general relativity, which replaced Newton's law of gravitation as a better mathematical model.[108]
大多数科学都使用数学来对现象进行建模,从而可以根据实验定律进行预测。105 数学真理与任何实验的独立性意味着此类预测的准确性仅取决于模型的充分性。106 不准确的预测,这并不是由无效的数学概念引起的,而是意味着需要改变所使用的数学模型。 107 例如,水星的近日点进动只能在爱因斯坦广义相对论出现后才能解释,广义相对论取代了牛顿的万有引力定律。更好的数学模型.108

There is still a philosophical debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is falsifiable, which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a counterexample. Similarly as in science, theories and results (theorems) are often obtained from experimentation.[109] In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied "durch planmässiges Tattonieren" (through systematic experimentation).[110] However, some authors emphasize that mathematics differs from the modern notion of science by not relying on empirical evidence.[111][112][113][114]
关于数学是否是一门科学,仍然存在着哲学争论。然而,在实践中,数学家通常与科学家归为一类,数学与物理科学有很多共同点。和它们一样,它是可证伪的,这在数学中意味着,如果结果或理论是错误的,可以通过提供反例来证明。与科学类似,理论和结果(定理)通常是从实验中获得的。109 在数学中,实验可能包括对选定示例的计算或对图形或数学对象的其他表示形式的研究(通常是没有物理支持的思维表示形式) 。例如,当被问及他的定理是如何得出的时,高斯曾经回答“durch planmässiges Tattonieren”(通过系统实验)。110然而,一些作者强调,数学与现代科学概念的不同之处在于不依赖经验证据。111112113114

Pure and applied mathematics
纯粹数学和应用数学

Isaac Newton
Gottfried Wilhelm von Leibniz
Isaac Newton (left) and Gottfried Wilhelm Leibniz developed infinitesimal calculus.
艾萨克·牛顿(左)和戈特弗里德·威廉·莱布尼茨发展了无穷小微积分。

Until the 19th century, the development of mathematics in the West was mainly motivated by the needs of technology and science, and there was no clear distinction between pure and applied mathematics.[115] For example, the natural numbers and arithmetic were introduced for the need of counting, and geometry was motivated by surveying, architecture and astronomy. Later, Isaac Newton introduced infinitesimal calculus for explaining the movement of the planets with his law of gravitation. Moreover, most mathematicians were also scientists, and many scientists were also mathematicians.[116] However, a notable exception occurred with the tradition of pure mathematics in Ancient Greece.[117] The problem of integer factorization, for example, which goes back to Euclid in 300 BC, had no practical application before its use in the RSA cryptosystem, now widely used for the security of computer networks.[118]
直到19世纪,西方数学的发展主要是出于技术和科学的需要,纯数学和应用数学之间没有明显的区别。115例如,自然数和算术的引入就是为了满足数学和数学的需要。计数、几何学则受到测量、建筑和天文学的推动。后来,艾萨克·牛顿引入了无穷小微积分,用他的万有引力定律解释了行星的运动。此外,大多数数学家也是科学家,许多科学家也是数学家。 116 然而,古希腊的纯数学传统出现了一个显着的例外。 117 例如,整数分解问题,可以追溯到公元前 300 年的欧几里得,在用于RSA 密码系统之前没有实际应用,现在广泛用于计算机网络的安全。118

In the 19th century, mathematicians such as Karl Weierstrass and Richard Dedekind increasingly focused their research on internal problems, that is, pure mathematics.[115][119] This led to split mathematics into pure mathematics and applied mathematics, the latter being often considered as having a lower value among mathematical purists. However, the lines between the two are frequently blurred.[120]
19世纪,卡尔·维尔斯特拉斯(Karl Weierstrass)理查德·戴德金(Richard Dedekind)等数学家越来越将研究重点放在内部问题,即纯数学上。115119这导致数学分裂为纯数学应用数学,后者通常被认为具有较低的价值在数学纯粹主义者中。然而,两者之间的界限常常是模糊的。120

The aftermath of World War II led to a surge in the development of applied mathematics in the US and elsewhere.[121][122] Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the "pure theory".[123][124]
第二次世界大战的后果导致了美国和其他地方应用数学的发展激增。121122 从纯数学的角度来看,许多为应用而开发的理论被发现很有趣,并且显示了许多纯数学的结果在数学之外有应用;反过来,对这些应用的研究可能会给“纯理论”带来新的见解。123124

An example of the first case is the theory of distributions, introduced by Laurent Schwartz for validating computations done in quantum mechanics, which became immediately an important tool of (pure) mathematical analysis.[125] An example of the second case is the decidability of the first-order theory of the real numbers, a problem of pure mathematics that was proved true by Alfred Tarski, with an algorithm that is impossible to implement because of a computational complexity that is much too high.[126] For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, George Collins introduced the cylindrical algebraic decomposition that became a fundamental tool in real algebraic geometry.[127]
第一种情况的一个例子是分布理论,由Laurent Schwartz引入,用于验证量子力学中的计算,它立即成为(纯)数学分析的重要工具。 125第二种情况的一个例子是第一种情况的可判定性实数的阶论,这是一个纯数学问题,已被Alfred Tarski证明是正确的,其算法由于计算复杂性太高而无法实现。126 为了获得可以实现的算法,可以求解多项式方程组和不等式,乔治·柯林斯 (George Collins)引入了圆柱代数分解,该分解成为实代数几何中的基本工具 .127

In the present day, the distinction between pure and applied mathematics is more a question of personal research aim of mathematicians than a division of mathematics into broad areas.[128][129] The Mathematics Subject Classification has a section for "general applied mathematics" but does not mention "pure mathematics".[24] However, these terms are still used in names of some university departments, such as at the Faculty of Mathematics at the University of Cambridge.
如今,纯粹数学和应用数学之间的区别更多地是数学家个人研究目的的问题,而不是将数学划分为广泛的领域。128129 数学学科分类中有一个“普通应用数学”部分,但没有提及“纯数学”。24 然而,这些术语仍然用在一些大学院系的名称中,例如剑桥大学数学系

Unreasonable effectiveness
效率不合理

The unreasonable effectiveness of mathematics is a phenomenon that was named and first made explicit by physicist Eugene Wigner.[3] It is the fact that many mathematical theories (even the "purest") have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced.[130] Examples of unexpected applications of mathematical theories can be found in many areas of mathematics.
数学的不合理有效性是物理学家尤金·维格纳 (Eugene Wigner ) 命名并首先明确指出的一种现象。3 事实上,许多数学理论(甚至是“最纯粹的”)在其最初目标之外都有应用。这些应用可能完全超出了它们最初的数学领域,并且可能涉及数学理论引入时完全未知的物理现象。130数学理论意想不到的应用例子可以在数学的许多领域找到。

A notable example is the prime factorization of natural numbers that was discovered more than 2,000 years before its common use for secure internet communications through the RSA cryptosystem.[131] A second historical example is the theory of ellipses. They were studied by the ancient Greek mathematicians as conic sections (that is, intersections of cones with planes). It is almost 2,000 years later that Johannes Kepler discovered that the trajectories of the planets are ellipses.[132]
一个著名的例子是自然数的质因数分解,它的发现早于RSA 密码系统普遍用于安全互联网通信的 2,000 多年。131 第二个历史例子是椭圆理论。古希腊数学家将它们研究为圆锥曲线(即圆锥体与平面的交点)。大约 2000 年后,约翰内斯·开普勒发现行星的轨道是椭圆形。 132

In the 19th century, the internal development of geometry (pure mathematics) led to definition and study of non-Euclidean geometries, spaces of dimension higher than three and manifolds. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, Albert Einstein developed the theory of relativity that uses fundamentally these concepts. In particular, spacetime of special relativity is a non-Euclidean space of dimension four, and spacetime of general relativity is a (curved) manifold of dimension four.[133][134]
19世纪,几何学(纯数学)的内部发展导致了对非欧几里得几何、三维以上空间和形的定义和研究。此时,这些概念似乎与物理现实完全脱节,但在 20 世纪初,阿尔伯特·爱因斯坦 (Albert Einstein)发展了从根本上使用这些概念的相对论。特别是,狭义相对论时空是四维的非欧几里得空间,而广义相对论的时空是四维的(弯曲)流形。133134

A striking aspect of the interaction between mathematics and physics is when mathematics drives research in physics. This is illustrated by the discoveries of the positron and the baryon In both cases, the equations of the theories had unexplained solutions, which led to conjecture of the existence of an unknown particle, and the search for these particles. In both cases, these particles were discovered a few years later by specific experiments.[135][136][137]
数学与物理学之间相互作用的一个引人注目的方面是数学驱动物理学研究。正电子重子的发现说明了这一点 在这两种情况下,理论方程都有无法解释的解,这导致人们猜测未知粒子的存在,并寻找这些粒子。在这两种情况下,这些粒子都是几年后通过特定实验发现的。135136137

Specific sciences 具体科学

Physics 物理

Diagram of a pendulum 钟摆示意图

Mathematics and physics have influenced each other over their modern history. Modern physics uses mathematics abundantly,[138] and is also considered to be the motivation of major mathematical developments.[139]
数学和物理学在现代史上相互影响。现代物理学大量使用数学,138,也被认为是数学重大发展的动力。 139

Computing 计算

Computing is closely related to mathematics in several ways.[140] Theoretical computer science is considered to be mathematical in nature.[141] Communication technologies apply branches of mathematics that may be very old (e.g., arithmetic), especially with respect to transmission security, in cryptography and coding theory. Discrete mathematics is useful in many areas of computer science, such as complexity theory, information theory, and graph theory.[142] In 1998, the Kepler conjecture on sphere packing seemed to also be partially proven by computer.[143]
计算在几个方面与数学密切相关。 140 理论计算机科学本质上被认为是数学。 141 通信技术应用可能非常古老的数学分支(例如算术),特别是在传输安全、密码学编码理论离散数学在计算机科学的许多领域都很有用,例如复杂性理论信息论图论。142 1998 年,关于球堆积开普勒猜想似乎也得到了计算机的部分证明。143

Biology and chemistry 生物学和化学

The skin of this giant pufferfish exhibits a Turing pattern, which can be modeled by reaction–diffusion systems.
这条巨型河豚的皮肤呈现出图灵图案,可以通过反应扩散系统进行建模。

Biology uses probability extensively in fields such as ecology or neurobiology.[144] Most discussion of probability centers on the concept of evolutionary fitness.[144] Ecology heavily uses modeling to simulate population dynamics,[144][145] study ecosystems such as the predator-prey model, measure pollution diffusion,[146] or to assess climate change.[147] The dynamics of a population can be modeled by coupled differential equations, such as the Lotka–Volterra equations.[148]
生物学在生态学或神经生物学等领域广泛使用概率。144 大多数概率讨论都集中在进化适应性的概念上。144 生态学大量使用建模来模拟种群动态,144145 研究生态系统,例如捕食者-猎物模型、测量污染扩散、 146 或评估气候变化。147 人口动态可以通过耦合微分方程建模,例如Lotka–Volterra 方程.148

Statistical hypothesis testing, is run on data from clinical trials to determine whether a new treatment works.[149] Since the start of the 20th century, chemistry has used computing to model molecules in three dimensions.[150]
统计假设检验是根据临床试验的数据进行,以确定新疗法是否有效。149 自 20 世纪初以来,化学已使用计算来模拟三维分子。 150

Earth sciences 地球科学

Structural geology and climatology use probabilistic models to predict the risk of natural catastrophes.[151] Similarly, meteorology, oceanography, and planetology also use mathematics due to their heavy use of models.[152][153][154]
构造地质学和气候学使用概率模型来预测自然灾害的风险。151 同样,气象学海洋学行星学也由于大量使用模型而使用数学。152153154

Social sciences 社会科学

Areas of mathematics used in the social sciences include probability/statistics and differential equations. These are used in linguistics, economics, sociology,[155] and psychology.[156]
社会科学中使用的数学领域包括概率/统计学和微分方程。这些用于语言学、经济学社会学155 和心理学.156

Supply and demand curves, like this one, are a staple of mathematical economics.
像这样的供给曲线和需求曲线是数理经济学的主要内容。

Often the fundamental postulate of mathematical economics is that of the rational individual actor – Homo economicus (lit.'economic man').[157] In this model, the individual seeks to maximize their self-interest,[157] and always makes optimal choices using perfect information.[158] This atomistic view of economics allows it to relatively easily mathematize its thinking, because individual calculations are transposed into mathematical calculations. Such mathematical modeling allows one to probe economic mechanisms. Some reject or criticise the concept of Homo economicus. Economists note that real people have limited information, make poor choices and care about fairness, altruism, not just personal gain.[159]
通常,数理经济学的基本假设是理性个人行为者的假设——经济人字面意思是经济人)。157 在这个模型中,个人寻求自身利益最大化,157 并且总是利用完美信息做出最优选择。158这种经济学的原子论观点使其能够相对容易地将其思维数学化,因为个体计算被转换为数学计算。这种数学模型可以让人们探索经济机制。有些人拒绝或批评经济人的概念。经济学家指出,真实的人信息有限,会做出错误的选择,并且关心公平、利他主义,而不仅仅是个人利益。 159

Without mathematical modeling, it is hard to go beyond statistical observations or untestable speculation. Mathematical modeling allows economists to create structured frameworks to test hypotheses and analyze complex interactions. Models provide clarity and precision, enabling the translation of theoretical concepts into quantifiable predictions that can be tested against real-world data.[160]
如果没有数学模型,就很难超越统计观察或无法检验的推测。数学建模使经济学家能够创建结构化框架来检验假设并分析复杂的相互作用。模型提供清晰度和精确度,使理论概念能够转化为可量化的预测,并可以根据现实世界的数据进行测试。 160

At the start of the 20th century, there was a development to express historical movements in formulas. In 1922, Nikolai Kondratiev discerned the ~50-year-long Kondratiev cycle, which explains phases of economic growth or crisis.[161] Towards the end of the 19th century, mathematicians extended their analysis into geopolitics.[162] Peter Turchin developed cliodynamics since the 1990s.[163]
20世纪初,出现了用公式表达历史运动的发展。 1922 年,尼古拉·康德拉季耶夫 (Nikolai Kondratiev)发现了约 50 年之久的康德拉季耶夫周期,它解释了经济增长或危机的各个阶段。161 到 19 世纪末,数学家将他们的分析扩展到地缘政治。162 自 20 世纪 90 年代以来,彼得·图尔钦 (Peter Turchin)发展了气候动力学。 163

Mathematization of the social sciences is not without risk. In the controversial book Fashionable Nonsense (1997), Sokal and Bricmont denounced the unfounded or abusive use of scientific terminology, particularly from mathematics or physics, in the social sciences.[164] The study of complex systems (evolution of unemployment, business capital, demographic evolution of a population, etc.) uses mathematical knowledge. However, the choice of counting criteria, particularly for unemployment, or of models, can be subject to controversy.[165][166]
社会科学的数学化并非没有风险。在颇具争议的《时尚废话》(Fashionable Nonsense ,1997 年)一书中,索卡尔布里克蒙特谴责了社会科学中毫无根据或滥用科学术语,特别是数学或物理学术语。 164 复杂系统的研究(失业演变、商业资本、人口演变)人口等)使用数学知识。然而,计算标准(尤其是失业计算标准)或模型的选择可能会引起争议。165166

Philosophy 哲学

Reality 现实

The connection between mathematics and material reality has led to philosophical debates since at least the time of Pythagoras. The ancient philosopher Plato argued that abstractions that reflect material reality have themselves a reality that exists outside space and time. As a result, the philosophical view that mathematical objects somehow exist on their own in abstraction is often referred to as Platonism. Independently of their possible philosophical opinions, modern mathematicians may be generally considered as Platonists, since they think of and talk of their objects of study as real objects.[167]
至少从毕达哥拉斯时代起,数学与物质现实之间的联系就引发了哲学争论。古代哲学家柏拉图认为,反映物质现实的抽象本身就具有存在于时空之外的现实。因此,认为数学对象以某种方式抽象地独立存在的哲学观点通常被称为柏拉图主义。独立于他们可能的哲学观点,现代数学家通常可以被认为是柏拉图主义者,因为他们认为和谈论他们的研究对象是真实的对象。 167

Armand Borel summarized this view of mathematics reality as follows, and provided quotations of G. H. Hardy, Charles Hermite, Henri Poincaré and Albert Einstein that support his views.[135]
Armand Borel将这种数学现实观点总结如下,并引用了GH HardyCharles HermiteHenri Poincaré和 Albert Einstein 来支持他的观点。 135

Something becomes objective (as opposed to "subjective") as soon as we are convinced that it exists in the minds of others in the same form as it does in ours and that we can think about it and discuss it together.[168] Because the language of mathematics is so precise, it is ideally suited to defining concepts for which such a consensus exists. In my opinion, that is sufficient to provide us with a feeling of an objective existence, of a reality of mathematics ...
一旦我们确信某事物以与我们相同的形式存在于他人的头脑中并且我们可以一起思考并讨论它,那么它就变得客观(而不是“主观”)。168因为语言数学的概念是如此精确,它非常适合定义存在这种共识的概念。在我看来,这足以让我们感受到数学的客观存在和现实......

Nevertheless, Platonism and the concurrent views on abstraction do not explain the unreasonable effectiveness of mathematics.[169]
然而,柏拉图主义和同时存在的抽象观点并不能解释数学的不合理有效性。 169

Proposed definitions 提议的定义

There is no general consensus about a definition of mathematics or its epistemological status—that is, its place among other human activities.[170][171] A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable.[170] There is not even consensus on whether mathematics is an art or a science.[171] Some just say, "mathematics is what mathematicians do".[170] This makes sense, as there is a strong consensus among them about what is mathematics and what is not. Most proposed definitions try to define mathematics by its object of study.[172]
关于数学的定义或其认识论地位(即它在其他人类活动中的地位)尚未达成普遍共识。170171 许多专业数学家对数学的定义不感兴趣,或者认为它无法定义。170 甚至没有关于数学是一门艺术还是一门科学的共识。171 有些人只是说,“数学就是数学家所做的事情”。170 这是有道理的,因为他们对于什么是数学、什么不是数学有强烈的共识。大多数提出的定义都试图通过数学的研究对象来定义数学。 172

Aristotle defined mathematics as "the science of quantity" and this definition prevailed until the 18th century. However, Aristotle also noted a focus on quantity alone may not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart.[173] In the 19th century, when mathematicians began to address topics—such as infinite sets—which have no clear-cut relation to physical reality, a variety of new definitions were given.[174] With the large number of new areas of mathematics that appeared since the beginning of the 20th century and continue to appear, defining mathematics by this object of study becomes an impossible task. For example, in lieu of a definition, Saunders Mac Lane in Mathematics, form and function summarizes the basics of several areas of mathematics, emphasizing their inter-connectedness, and observes:[175]
亚里士多德将数学定义为“数量的科学”,这个定义一直流行到18世纪。然而,亚里士多德也指出,仅关注数量可能无法将数学与物理学等科学区分开来。在他看来,抽象和研究数量作为一种与真实实例“在思想上可分离”的属性,使数学与众不同。 173 在 19 世纪,当数学家开始讨论与物理没有明确关系的主题(例如无限集)时, 174随着20世纪初以来出现并不断出现的大量数学新领域,通过这一研究对象来定义数学成为一项不可能完成的任务。例如,桑德斯·麦克莱恩(Saunders Mac Lane)《数学、形式和函数》中总结了几个数学领域的基础知识,强调了它们的相互联系,并观察到:175

the development of Mathematics provides a tightly connected network of formal rules, concepts, and systems. Nodes of this network are closely bound to procedures useful in human activities and to questions arising in science. The transition from activities to the formal Mathematical systems is guided by a variety of general insights and ideas.
数学的发展提供了一个由形式规则、概念和系统紧密连接的网络。该网络的节点与人类活动中有用的程序以及科学中出现的问题密切相关。从活动到正式数学系统的过渡是由各种一般见解和想法指导的。

Another approach for defining mathematics is to use its methods. So, an area of study can be qualified as mathematics as soon as one can prove theorems—assertions whose validity relies on a proof, that is, a purely-logical deduction.[176] Others take the perspective that mathematics is an investigation of axiomatic set theory, as this study is now a foundational discipline for much of modern mathematics.[177]
定义数学的另一种方法是使用其方法。因此,只要能够证明定理(其有效性依赖于证明,即纯逻辑演绎的断言),某个研究领域就可以被认定为数学。 176 其他人则认为数学是对公理集合论的研究,因为这项研究现在是许多现代数学的基础学科。177

Rigor 严格

Mathematical reasoning requires rigor. This means that the definitions must be absolutely unambiguous and the proofs must be reducible to a succession of applications of inference rules,[e] without any use of empirical evidence and intuition.[f][178] Rigorous reasoning is not specific to mathematics, but, in mathematics, the standard of rigor is much higher than elsewhere. Despite mathematics' concision, rigorous proofs can require hundreds of pages to express, such as the 255-page Feit–Thompson theorem.[g] The emergence of computer-assisted proofs has allowed proof lengths to further expand.[h][179] The result of this trend is a philosophy of the quasi-empiricist proof that can not be considered infallible, but has a probability attached to it.[6]
数学推理需要严谨。这意味着定义必须绝对明确,并且证明必须可简化为推理规则的一系列应用,而无需使用任何经验证据和直觉。f178 严格推理并不是数学所特有的,而是数学中的标准严格程度比其他地方高很多。尽管数学很简洁,但严格的证明可能需要数百页来表达,例如255页的Feit-Thompson定理。g计算机辅助证明的出现使得证明长度进一步扩展。h179这种趋势的结果是准经验主义证明的哲学不能被认为是绝对正确的,但具有一定的概率。6

The concept of rigor in mathematics dates back to ancient Greece, where their society encouraged logical, deductive reasoning. However, this rigorous approach would tend to discourage exploration of new approaches, such as irrational numbers and concepts of infinity. The method of demonstrating rigorous proof was enhanced in the sixteenth century through the use of symbolic notation.
数学中严谨的概念可以追溯到古希腊,那里的社会鼓励逻辑演绎推理。然而,这种严格的方法往往会阻碍对新方法的探索,例如无理数和无穷大的概念。在十六世纪,通过符号符号的使用,证明严格证明的方法得到了加强。

In the 18th century, social transition led to mathematicians earning their keep through teaching, which led to more careful thinking about the underlying concepts of mathematics. This produced more rigorous approaches, while transitioning from geometric methods to algebraic and then arithmetic proofs.[6]
18 世纪,社会转型导致数学家通过教学谋生,这导致人们对数学的基本概念进行更仔细的思考。这产生了更严格的方法,同时从几何方法过渡到代数方法,然后是算术证明。6

At the end of the 19th century, it appeared that the definitions of the basic concepts of mathematics were not accurate enough for avoiding paradoxes (non-Euclidean geometries and Weierstrass function) and contradictions (Russell's paradox). This was solved by the inclusion of axioms with the apodictic inference rules of mathematical theories; the re-introduction of axiomatic method pioneered by the ancient Greeks.[6] It results that "rigor" is no more a relevant concept in mathematics, as a proof is either correct or erroneous, and a "rigorous proof" is simply a pleonasm. Where a special concept of rigor comes into play is in the socialized aspects of a proof, wherein it may be demonstrably refuted by other mathematicians. After a proof has been accepted for many years or even decades, it can then be considered as reliable.[180]
19世纪末,数学基本概念的定义似乎不够准确,无法避免悖论(非欧几里得几何和维尔斯特拉斯函数)和矛盾(罗素悖论)。这是通过将公理与数学理论的必然推理规则相结合来解决的。重新引入古希腊人开创的公理化方法。6 结果是,“严格性”不再是数学中的相关概念,因为证明要么正确,要么错误,而“严格证明”只是一种重复。严格性的特殊概念在证明的社会化方面发挥作用,其中它可能会被其他数学家明显反驳。当一个证据被接受多年甚至几十年后,它就可以被认为是可靠的。 180

Nevertheless, the concept of "rigor" may remain useful for teaching to beginners what is a mathematical proof.[181]
尽管如此,“严谨”的概念对于向初学者教授什么是数学证明仍然有用。 181

Training and practice 培训与实践

Education 教育

Mathematics has a remarkable ability to cross cultural boundaries and time periods. As a human activity, the practice of mathematics has a social side, which includes education, careers, recognition, popularization, and so on. In education, mathematics is a core part of the curriculum and forms an important element of the STEM academic disciplines. Prominent careers for professional mathematicians include math teacher or professor, statistician, actuary, financial analyst, economist, accountant, commodity trader, or computer consultant.[182]
数学具有跨越文化界限和时间段的非凡能力。作为一种人类活动,数学实践具有社会性的一面,其中包括教育职业认可普及等。在教育领域,数学是课程的核心部分,也是STEM学科的重要组成部分。职业数学家的突出职业包括数学教师或教授、统计学家精算师金融分析师经济学家会计师商品交易员计算机顾问.182

Archaeological evidence shows that instruction in mathematics occurred as early as the second millennium BCE in ancient Babylonia.[183] Comparable evidence has been unearthed for scribal mathematics training in the ancient Near East and then for the Greco-Roman world starting around 300 BCE.[184] The oldest known mathematics textbook is the Rhind papyrus, dated from c. 1650 BCE in Egypt.[185] Due to a scarcity of books, mathematical teachings in ancient India were communicated using memorized oral tradition since the Vedic period (c. 1500 – c. 500 BCE).[186] In Imperial China during the Tang dynasty (618–907 CE), a mathematics curriculum was adopted for the civil service exam to join the state bureaucracy.[187]
考古证据表明,数学教学早在公元前 2000 年就出现在古巴比伦。 183 古代近东地区的抄写数学训练以及希腊罗马世界从公元前 300 年左右开始,都出土了类似的证据。 184 最古老的数学训练著名的数学教科书是莱茵德纸莎草纸,其历史可以追溯到公元 1977 年。公元前 1650 年在埃及。185 由于书籍稀缺,自吠陀时期约公元前1500 年至约前500 年)以来,古印度的数学教学都是通过记忆的口头传统来传播的。186 在唐朝(618- 907 CE),进入国家官僚机构的公务员考试采用了数学课程。 187

Following the Dark Ages, mathematics education in Europe was provided by religious schools as part of the Quadrivium. Formal instruction in pedagogy began with Jesuit schools in the 16th and 17th century. Most mathematical curricula remained at a basic and practical level until the nineteenth century, when it began to flourish in France and Germany. The oldest journal addressing instruction in mathematics was L'Enseignement Mathématique, which began publication in 1899.[188] The Western advancements in science and technology led to the establishment of centralized education systems in many nation-states, with mathematics as a core component—initially for its military applications.[189] While the content of courses varies, in the present day nearly all countries teach mathematics to students for significant amounts of time.[190]
黑暗时代之后,欧洲的数学教育由宗教学校作为Quadrivium的一部分提供。正式的教育学教学始于 16 世纪和 17 世纪的耶稣会学校。大多数数学课程一直停留在基础和实用的水平,直到十九世纪它开始在法国和德国蓬勃发展。最古老的数学教学期刊是《L'Enseignement Mathématique》 ,于 1899 年开始出版。188 西方科学技术的进步导致许多民族国家建立了中央集权的教育体系,以数学为核心组成部分——最初是为了军事目的189 虽然课程内容各不相同,但当今几乎所有国家都花大量时间向学生教授数学。 190

During school, mathematical capabilities and positive expectations have a strong association with career interest in the field. Extrinsic factors such as feedback motivation by teachers, parents, and peer groups can influence the level of interest in mathematics.[191] Some students studying math may develop an apprehension or fear about their performance in the subject. This is known as math anxiety or math phobia, and is considered the most prominent of the disorders impacting academic performance. Math anxiety can develop due to various factors such as parental and teacher attitudes, social stereotypes, and personal traits. Help to counteract the anxiety can come from changes in instructional approaches, by interactions with parents and teachers, and by tailored treatments for the individual.[192]
在学校期间,数学能力和积极的期望与该领域的职业兴趣密切相关。教师、家长和同伴群体的反馈动机等外在因素可能会影响对数学的兴趣水平。191 一些学习数学的学生可能会对自己在该学科中的表现产生忧虑或恐惧。这被称为数学焦虑症或数学恐惧症,被认为是影响学业成绩的最突出的疾病。数学焦虑可能是由于多种因素造成的,例如父母和老师的态度、社会刻板印象和个人特质。改变教学方法、与家长和老师的互动以及针对个人的定制治疗可以帮助抵消焦虑。 192

Psychology (aesthetic, creativity and intuition)
心理学(审美、创造力和直觉)

The validity of a mathematical theorem relies only on the rigor of its proof, which could theoretically be done automatically by a computer program. This does not mean that there is no place for creativity in a mathematical work. On the contrary, many important mathematical results (theorems) are solutions of problems that other mathematicians failed to solve, and the invention of a way for solving them may be a fundamental way of the solving process.[193][194] An extreme example is Apery's theorem: Roger Apery provided only the ideas for a proof, and the formal proof was given only several months later by three other mathematicians.[195]
数学定理的有效性仅依赖于其证明的严格性,理论上可以由计算机程序自动完成。这并不意味着数学工作中没有创造力的空间。相反,许多重要的数学结果(定理)是其他数学家未能解决的问题的解决方案,而解决它们的方法的发明可能是解决过程的基本途径。193194一个极端的例子是阿佩里定理罗杰阿佩里仅提供了证明的想法,几个月后其他三位数学家才给出了正式证明。 195

Creativity and rigor are not the only psychological aspects of the activity of mathematicians. Some mathematicians can see their activity as a game, more specifically as solving puzzles.[196] This aspect of mathematical activity is emphasized in recreational mathematics.

Mathematicians can find an aesthetic value to mathematics. Like beauty, it is hard to define, it is commonly related to elegance, which involves qualities like simplicity, symmetry, completeness, and generality. G. H. Hardy in A Mathematician's Apology expressed the belief that the aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics. He also identified other criteria such as significance, unexpectedness, and inevitability, which contribute to mathematical aesthetics.[197] Paul Erdős expressed this sentiment more ironically by speaking of "The Book", a supposed divine collection of the most beautiful proofs. The 1998 book Proofs from THE BOOK, inspired by Erdős, is a collection of particularly succinct and revelatory mathematical arguments. Some examples of particularly elegant results included are Euclid's proof that there are infinitely many prime numbers and the fast Fourier transform for harmonic analysis.[198]
数学家可以找到数学的美学价值。就像一样,它很难定义,它通常与优雅相关,优雅涉及简单对称、完整和普遍等品质。 GH Hardy 在《一位数学家的道歉》中表达了这样的信念:美学考虑本身就足以证明纯数学研究的合理性。他还确定了其他标准,如重要性、意外性和必然性,这些都有助于数学美学。197保罗·埃尔多斯通过谈论“书”来表达这种情感,这本书被认为是最美丽的证明的神圣集合。 1998 年出版的《Proofs from THE BOOK》一书受到 Erdős 的启发,是一本特别简洁且具有启发性的数学论证的集合。一些特别优雅的结果的例子包括欧几里得证明有无限多个素数以及调和分析快速傅里叶变换.198

Some feel that to consider mathematics a science is to downplay its artistry and history in the seven traditional liberal arts.[199] One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematical results are created (as in art) or discovered (as in science).[135] The popularity of recreational mathematics is another sign of the pleasure many find in solving mathematical questions.
有些人认为,将数学视为科学就是淡化其在七种传统文科中的艺术性和历史。199 这种观点差异的一种表现方式是在关于数学结果是创造的(如在艺术中)还是发现的哲学辩论中。 (如科学)。135 休闲数学的流行是许多人在解决数学问题中找到乐趣的另一个标志。

Cultural impact

Artistic expression

Notes that sound well together to a Western ear are sounds whose fundamental frequencies of vibration are in simple ratios. For example, an octave doubles the frequency and a perfect fifth multiplies it by .[200][201]

Fractal with a scaling symmetry and a central symmetry

Humans, as well as some other animals, find symmetric patterns to be more beautiful.[202] Mathematically, the symmetries of an object form a group known as the symmetry group.[203] For example, the group underlying mirror symmetry is the cyclic group of two elements, . A Rorschach test is a figure invariant by this symmetry,[204] as are butterfly and animal bodies more generally (at least on the surface).[205] Waves on the sea surface possess translation symmetry: moving one's viewpoint by the distance between wave crests does not change one's view of the sea.[206] Fractals possess self-similarity.[207][208]

Popularization

Popular mathematics is the act of presenting mathematics without technical terms.[209] Presenting mathematics may be hard since the general public suffers from mathematical anxiety and mathematical objects are highly abstract.[210] However, popular mathematics writing can overcome this by using applications or cultural links.[211] Despite this, mathematics is rarely the topic of popularization in printed or televised media.

Awards and prize problems

The front side of the Fields Medal with an illustration of the Greek polymath Archimedes

The most prestigious award in mathematics is the Fields Medal,[212][213] established in 1936 and awarded every four years (except around World War II) to up to four individuals.[214][215] It is considered the mathematical equivalent of the Nobel Prize.[215]

Other prestigious mathematics awards include:[216]

A famous list of 23 open problems, called "Hilbert's problems", was compiled in 1900 by German mathematician David Hilbert.[224] This list has achieved great celebrity among mathematicians,[225] and at least thirteen of the problems (depending how some are interpreted) have been solved.[224]

A new list of seven important problems, titled the "Millennium Prize Problems", was published in 2000. Only one of them, the Riemann hypothesis, duplicates one of Hilbert's problems. A solution to any of these problems carries a 1 million dollar reward.[226] To date, only one of these problems, the Poincaré conjecture, has been solved by the Russian mathematician Grigori Perelman.[227]
2000 年出版了一份新的七个重要问题清单,题为“千年奖问题”。其中只有一个,即黎曼猜想,重复了希尔伯特的一个问题。解决这些问题中的任何一个都会获得 100 万美元的奖励。226 迄今为止,这些问题中只有一个,即庞加莱猜想,已被俄罗斯数学家格里戈里·佩雷尔曼 (Grigori Perelman)解决。227

See also 也可以看看

References 参考

Notes 笔记

  1. ^ Here, algebra is taken in its modern sense, which is, roughly speaking, the art of manipulating formulas.
    ^这里的代数是现代意义上的,粗略地说,就是操纵公式的艺术。
  2. ^ This meaning can be found in Plato's Republic, Book 6 Section 510c.[8] However, Plato did not use a math- word; Aristotle did, commenting on it.[9][better source needed][10][better source needed]
    ^这个含义可以在柏拉图的《理想国》第 6 册第 510c 节中找到。 [ 8 ]然而,柏拉图并没有使用数学词;他没有使用数学词。亚里士多德这样做了,并对此进行了评论。 [ 9 ] [需要更好的来源] [ 10 ] [需要更好的来源]
  3. ^ This includes conic sections, which are intersections of circular cylinders and planes.
    ^这包括圆锥截面,即圆柱体和平面的相交部分。
  4. ^ However, some advanced methods of analysis are sometimes used; for example, methods of complex analysis applied to generating series.
    ^然而,有时会使用一些先进的分析方法;例如,复杂分析方法应用于生成序列
  5. ^ This does not mean to make explicit all inference rules that are used. On the contrary, this is generally impossible, without computers and proof assistants. Even with this modern technology, it may take years of human work for writing down a completely detailed proof.
    ^这并不意味着明确使用的所有推理规则。相反,如果没有计算机证明助手,这通常是不可能的。即使有了这种现代技术,人类也可能需要数年的时间才能写出完整详细的证明。
  6. ^ This does not mean that empirical evidence and intuition are not needed for choosing the theorems to be proved and to prove them.
    ^这并不意味着选择要证明的定理和证明它们不需要经验证据和直觉。
  7. ^ This the length of the original paper that does not contain the proofs of some previously published auxiliary results. The book devoted to the complete proof has more than 1,000 pages.
    ^这是原始论文的长度,不包含一些先前发布的辅助结果的证明。这本书专门介绍了完整的证明,有 1000 多页。
  8. ^ For considering as reliable a large computation occurring in a proof, one generally requires two computations using independent software
    ^为了将证明中发生的大量计算视为可靠,通常需要使用独立软件进行两次计算

Citations 引文

  1. ^ Hipólito, Inês Viegas (August 9–15, 2015). "Abstract Cognition and the Nature of Mathematical Proof". In Kanzian, Christian; Mitterer, Josef; Neges, Katharina (eds.). Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums [Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium] (PDF) (in German and English). Vol. 23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp. 132–134. ISSN 1022-3398. OCLC 236026294. Archived (PDF) from the original on November 7, 2022. Retrieved January 17, 2024. (at ResearchGate Open access icon Archived November 5, 2022, at the Wayback Machine)
    ^ Hipólito,Inês Viegas(2015 年 8 月 9 日至 15 日)。 “抽象认知和数学证明的本质”。在 Kanzian 中,基督教;
  2. ^ Peterson 1988, p. 12.
    ^彼得森 1988 年,第 17 页。 12.
  3. ^ Jump up to: a b Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. S2CID 6112252. Archived from the original on February 28, 2011.
    尤金·维格纳(1960)。 “数学在自然科学中的不合理有效性”纯粹数学与应用数学交流13 (1):1-14。书目代码1960CPAM...13....1WDOI10.1002/cpa.3160130102S2CID 6112252 。原始存档于2011年2月28日。
  4. ^ Wise, David. "Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion". The University of Georgia. Archived from the original on June 1, 2019. Retrieved January 18, 2024.
    ^明智的,大卫。 “欧多克索斯对欧几里得几何原理的影响,仔细研究穷竭法”。佐治亚大学。原始存档于 2019 年 6 月 1 日检索。 January 18, 2024 年。
  5. ^ Alexander, Amir (September 2011). "The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics?". Isis. 102 (3): 475–480. doi:10.1086/661620. ISSN 0021-1753. MR 2884913. PMID 22073771. S2CID 21629993.
    ^ 阿米尔·亚历山大(2011 年 9 月)。 “壁橱里的骷髅:科学史学家应该关心数学史吗?”。伊希斯。 102(3):475-480。 doi:10.1086/661620。 ISSN 0021-1753。 MR 2884913。PMID 22073771。S2CID 21629993。
  6. ^ Jump up to: a b c d e
    丙丁
    f
    Kleiner, Israel (December 1991). "Rigor and Proof in Mathematics: A Historical Perspective". Mathematics Magazine. 64 (5). Taylor & Francis, Ltd.: 291–314. doi:10.1080/0025570X.1991.11977625. eISSN 1930-0980. ISSN 0025-570X. JSTOR 2690647. LCCN 47003192. MR 1141557. OCLC 1756877. S2CID 7787171.
    以色列克莱纳(1991 年 12 月)。 “数学的严谨性和证明:历史的视角”。数学杂志64 (5)。泰勒和弗朗西斯有限公司:291-314。 DOI10.1080/0025570X.1991.11977625eISSN 1930-0980ISSN 0025-570XJSTOR 2690647LCCN 47003192先生1141557OCLC 1756877S2CID 7787171
  7. ^ Jump up to: a b Harper, Douglas (March 28, 2019). "Mathematic (n.)". Online Etymology Dictionary. Archived from the original on March 7, 2013. Retrieved January 25, 2024.
    道格拉斯·哈珀(2019 年 3 月 28 日)。 “数学(n.)”在线词源词典。原始存档于2013年3月7日。已检索 January 25, 2024年
  8. ^ Plato. Republic, Book 6, Section 510c. Archived from the original on February 24, 2021. Retrieved February 2, 2024.
    ^柏拉图. 《共和国》,第 6 册,第 510c 节。原始存档于2021年2月24日检索。 February 2, 2024 年。
  9. ^ Liddell, Henry George; Scott, Robert (1940). "μαθηματική". A Greek–English Lexicon. Clarendon Press. Retrieved February 2, 2024.
    ^ 利德尔,亨利·乔治;罗伯特·斯科特 (1940)。 “μαθηματική”。希腊-英语词典。克拉伦登出版社。已检索 February 2, 2024 年。
  10. ^ Harper, Douglas (April 20, 2022). "Mathematics (n.)". Online Etymology Dictionary. Retrieved February 2, 2024.
    ^道格拉斯·哈珀(2022 年 4 月 20 日)。 “数学(n.)”。在线词源词典。已检索 February 2, 2024 年。
  11. ^ Harper, Douglas (December 22, 2018). "Mathematical (adj.)". Online Etymology Dictionary. Archived from the original on November 26, 2022. Retrieved January 25, 2024.
    ^道格拉斯·哈珀(2018 年 12 月 22 日)。 “数学(形容词)”。在线词源词典。原始存档于2022年11月26日检索。 January 25, 2024 年。
  12. ^ Perisho, Margaret W. (Spring 1965). "The Etymology of Mathematical Terms". Pi Mu Epsilon Journal. 4 (2): 62–66. ISSN 0031-952X. JSTOR 24338341. LCCN 58015848. OCLC 1762376.
    ^Perisho,Margaret W.(1965 年春季)。 “数学术语的词源”。皮穆厄普西隆杂志。 4(2):62-66。 ISSN 0031-952X。 JSTOR 24338341。LCCN 58015848。OCLC 1762376。
  13. ^ Boas, Ralph P. (1995). "What Augustine Didn't Say About Mathematicians". In Alexanderson, Gerald L.; Mugler, Dale H. (eds.). Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories. Mathematical Association of America. p. 257. ISBN 978-0-88385-323-8. LCCN 94078313. OCLC 633018890.
    ^ 博阿斯,拉尔夫·P. (1995)。 “关于数学家,奥古斯丁没有说过什么”。在亚历山大森,杰拉尔德·L.; Mugler,Dale H.(编辑)。狮子狩猎和其他数学追求:数学、诗歌和故事集。美国数学协会。 p。 257.ISBN 978-0-88385-323-8。 LCCN 94078313。OCLC 633018890。
  14. ^ The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics", "mathematic", "mathematics".
    ^牛津英语词源词典牛津英语词典“数学”,“数学”,“数学”。
  15. ^ "Maths (Noun)". Oxford English Dictionary. Oxford University Press. Retrieved January 25, 2024.
    ^“数学(名词)”。牛津英语词典。牛津大学出版社。已检索 January 25, 2024 年。
  16. ^ "Math (Noun³)". Oxford English Dictionary. Oxford University Press. Archived from the original on April 4, 2020. Retrieved January 25, 2024.
    ^“数学(名词3)”。牛津英语词典。牛津大学出版社。原始存档于2020年4月4日检索。 January 25, 2024 年。
  17. ^ Bell, E. T. (1945) [1940]. "General Prospectus". The Development of Mathematics (2nd ed.). Dover Publications. p. 3. ISBN 978-0-486-27239-9. LCCN 45010599. OCLC 523284. ... mathematics has come down to the present by the two main streams of number and form. The first carried along arithmetic and algebra, the second, geometry.
    ^贝尔,ET (1945) [1940]。 《总招股说明书》。数学的发展(第二版)。多佛出版社。 p。 3. ISBN 978-0-486-27239-9LCCN 45010599OCLC 523284……数学发展到现在,有数和形式两大主流。第一个涉及算术和代数,第二个涉及几何。
  18. ^ Tiwari, Sarju (1992). "A Mirror of Civilization". Mathematics in History, Culture, Philosophy, and Science (1st ed.). New Delhi, India: Mittal Publications. p. 27. ISBN 978-81-7099-404-6. LCCN 92909575. OCLC 28115124. It is unfortunate that two curses of mathematics--Numerology and Astrology were also born with it and have been more acceptable to the masses than mathematics itself.
    ^萨尔朱·蒂瓦里 (1992)。 “文明之镜”。历史、文化、哲学和科学中的数学(第一版)。印度新德里:米塔尔出版社。 p。 27. ISBN 978-81-7099-404-6LCCN 92909575OCLC 28115124不幸的是,数学的两大魔咒——数字命理学和占星术也随之诞生,并且比数学本身更容易为大众所接受。
  19. ^ Restivo, Sal (1992). "Mathematics from the Ground Up". In Bunge, Mario (ed.). Mathematics in Society and History. Episteme. Vol. 20. Kluwer Academic Publishers. p. 14. ISBN 0-7923-1765-3. LCCN 25709270. OCLC 92013695.
    ^ 萨尔·雷斯蒂沃 (1992)。 “从头开始的数学”。在马里奥邦吉(编辑)。社会和历史中的数学。知识。卷。 20.克鲁维尔学术出版社。 p。 14.ISBN 0-7923-1765-3。 LCCN 25709270。OCLC 92013695。
  20. ^ Musielak, Dora (2022). Leonhard Euler and the Foundations of Celestial Mechanics. History of Physics. Springer International Publishing. doi:10.1007/978-3-031-12322-1. eISSN 2730-7557. ISBN 978-3-031-12321-4. ISSN 2730-7549. OCLC 1332780664. S2CID 253240718.
    ^ 多拉·穆西拉克 (2022)。莱昂哈德·欧拉和天体力学基础。物理学史。施普林格国际出版社。 DOI:10.1007/978-3-031-12322-1。 eISSN 2730-7557。 ISBN 978-3-031-12321-4。 ISSN 2730-7549。 OCLC 1332780664。S2CID 253240718。
  21. ^ Biggs, N. L. (May 1979). "The roots of combinatorics". Historia Mathematica. 6 (2): 109–136. doi:10.1016/0315-0860(79)90074-0. eISSN 1090-249X. ISSN 0315-0860. LCCN 75642280. OCLC 2240703.
    ^比格斯,荷兰(1979 年 5 月)。 “组合学的根源”。数学史。 6(2):109-136。 DOI:10.1016/0315-0860(79)90074-0。 eISSN 1090-249X。 ISSN 0315-0860。 LCCN 75642280。OCLC 2240703。
  22. ^ Jump up to: a b Warner, Evan. "Splash Talk: The Foundational Crisis of Mathematics" (PDF). Columbia University. Archived from the original (PDF) on March 22, 2023. Retrieved February 3, 2024.
    华纳、埃文. “Splash Talk:数学的基础危机” (PDF)哥伦比亚大学原始内容(PDF)存档于 2023 年 3 月 22 日。已检索 February 3, 2024年
  23. ^ Dunne, Edward; Hulek, Klaus (March 2020). "Mathematics Subject Classification 2020" (PDF). Notices of the American Mathematical Society. 67 (3): 410–411. doi:10.1090/noti2052. eISSN 1088-9477. ISSN 0002-9920. LCCN sf77000404. OCLC 1480366. Archived (PDF) from the original on August 3, 2021. Retrieved February 3, 2024. The new MSC contains 63 two-digit classifications, 529 three-digit classifications, and 6,006 five-digit classifications.
    ^爱德华·邓恩;克劳斯·胡勒克(2020 年 3 月)。 《2020年数学学科分类》 (PDF)美国数学会的通知67 (3):410-411。 doi10.1090/noti2052eISSN 1088-9477ISSN 0002-9920LCCN sf77000404OCLC 1480366 。原始存档于 2021 年 8 月 3 日(PDF) 。已检索 February 3, 2024年新的 MSC 包含 63 个两位数分类、529 个三位数分类和 6,006 个五位数分类。
  24. ^ Jump up to: a b c d e f g h
    b c e h
    "MSC2020-Mathematics Subject Classification System" (PDF). zbMath. Associate Editors of Mathematical Reviews and zbMATH. Archived (PDF) from the original on January 2, 2024. Retrieved February 3, 2024.
    《MSC2020-数学学科分类系统》 (PDF)zb数学。 《数学评论》和《zbMATH》副主编。原始存档于 2024 年 1 月 2 日(PDF) 。已检索 February 3, 2024年
  25. ^ LeVeque, William J. (1977). "Introduction". Fundamentals of Number Theory. Addison-Wesley Publishing Company. pp. 1–30. ISBN 0-201-04287-8. LCCN 76055645. OCLC 3519779. S2CID 118560854.
    ^ 威廉·J·勒维克 (1977)。 “介绍”。数论基础。艾迪生韦斯利出版公司。第 1–30 页。 ISBN 0-201-04287-8。 LCCN 76055645。OCLC 3519779。S2CID 118560854。
  26. ^ Goldman, Jay R. (1998). "The Founding Fathers". The Queen of Mathematics: A Historically Motivated Guide to Number Theory. Wellesley, MA: A K Peters. pp. 2–3. doi:10.1201/9781439864623. ISBN 1-56881-006-7. LCCN 94020017. OCLC 30437959. S2CID 118934517.
    ^戈德曼,杰伊·R.(1998)。 “开国元勋”。数学女王:历史驱动的数论指南。马萨诸塞州韦尔斯利:AK Peters。第 2-3 页。号码:10.1201/9781439864623。 ISBN 1-56881-006-7。 LCCN 94020017。OCLC 30437959。S2CID 118934517。
  27. ^ Weil, André (1983). Number Theory: An Approach Through History From Hammurapi to Legendre. Birkhäuser Boston. pp. 2–3. doi:10.1007/978-0-8176-4571-7. ISBN 0-8176-3141-0. LCCN 83011857. OCLC 9576587. S2CID 117789303.
  28. ^ Kleiner, Israel (March 2000). "From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem". Elemente der Mathematik. 55 (1): 19–37. doi:10.1007/PL00000079. eISSN 1420-8962. ISSN 0013-6018. LCCN 66083524. OCLC 1567783. S2CID 53319514.
  29. ^ Wang, Yuan (2002). The Goldbach Conjecture. Series in Pure Mathematics. Vol. 4 (2nd ed.). World Scientific. pp. 1–18. doi:10.1142/5096. ISBN 981-238-159-7. LCCN 2003268597. OCLC 51533750. S2CID 14555830.
  30. ^ Jump up to: a b c Straume, Eldar (September 4, 2014). "A Survey of the Development of Geometry up to 1870". arXiv:1409.1140 [math.HO].
  31. ^ Hilbert, David (1902). The Foundations of Geometry. Open Court Publishing Company. p. 1. doi:10.1126/science.16.399.307. LCCN 02019303. OCLC 996838. S2CID 238499430. Retrieved February 6, 2024. Free access icon
  32. ^ Hartshorne, Robin (2000). "Euclid's Geometry". Geometry: Euclid and Beyond. Springer New York. pp. 9–13. ISBN 0-387-98650-2. LCCN 99044789. OCLC 42290188. Retrieved February 7, 2024.
  33. ^ Boyer, Carl B. (2004) [1956]. "Fermat and Descartes". History of Analytic Geometry. Dover Publications. pp. 74–102. ISBN 0-486-43832-5. LCCN 2004056235. OCLC 56317813.
  34. ^ Stump, David J. (1997). "Reconstructing the Unity of Mathematics circa 1900" (PDF). Perspectives on Science. 5 (3): 383–417. doi:10.1162/posc_a_00532. eISSN 1530-9274. ISSN 1063-6145. LCCN 94657506. OCLC 26085129. S2CID 117709681. Retrieved February 8, 2024.
  35. ^ O'Connor, J. J.; Robertson, E. F. (February 1996). "Non-Euclidean geometry". MacTuror. Scotland, UK: University of St. Andrews. Archived from the original on November 6, 2022. Retrieved February 8, 2024.
  36. ^ Joyner, David (2008). "The (legal) Rubik's Cube group". Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys (2nd ed.). Johns Hopkins University Press. pp. 219–232. ISBN 978-0-8018-9012-3. LCCN 2008011322. OCLC 213765703.
  37. ^ Christianidis, Jean; Oaks, Jeffrey (May 2013). "Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria". Historia Mathematica. 40 (2): 127–163. doi:10.1016/j.hm.2012.09.001. eISSN 1090-249X. ISSN 0315-0860. LCCN 75642280. OCLC 2240703. S2CID 121346342.
  38. ^ Kleiner 2007, "History of Classical Algebra" pp. 3–5.
  39. ^ Shane, David (2022). "Figurate Numbers: A Historical Survey of an Ancient Mathematics" (PDF). Methodist University. p. 20. Retrieved June 13, 2024. In his work, Diophantus focused on deducing the arithmetic properties of figurate numbers, such as deducing the number of sides, the different ways a number can be expressed as a figurate number, and the formulation of the arithmetic progressions.
  40. ^ Overbay, Shawn; Schorer, Jimmy; Conger, Heather. "Al-Khwarizmi". University of Kentucky. Retrieved June 13, 2024.
  41. ^ Lim, Lisa (December 21, 2018). "Where the x we use in algebra came from, and the X in Xmas". South China Morning Post. Archived from the original on December 22, 2018. Retrieved February 8, 2024.
  42. ^ Berntjes, Sonja. "Algebra". Encyclopaedia of Islam Online (3rd ed.). ISSN 1573-3912. LCCN 2007238847. OCLC 56713464. Retrieved June 13, 2024.
  43. ^ Oaks, Jeffery A. (2018). "François Viète's revolution in algebra" (PDF). Archive for History of Exact Sciences. 72 (3): 245–302. doi:10.1007/s00407-018-0208-0. eISSN 1432-0657. ISSN 0003-9519. LCCN 63024699. OCLC 1482042. S2CID 125704699. Archived (PDF) from the original on November 8, 2022. Retrieved February 8, 2024.
  44. ^ "Variable in Maths". GeeksforGeeks. April 24, 2024. Retrieved June 13, 2024.
  45. ^ Kleiner 2007, "History of Linear Algebra" pp. 79–101.
  46. ^ Corry, Leo (2004). "Emmy Noether: Ideals and Structures". Modern Algebra and the Rise of Mathematical Structures (2nd revised ed.). Germany: Birkhäuser Basel. pp. 247–252. ISBN 3-7643-7002-5. LCCN 2004556211. OCLC 51234417. Retrieved February 8, 2024.
  47. ^ Riche, Jacques (2007). "From Universal Algebra to Universal Logic". In Beziau, J. Y.; Costa-Leite, Alexandre (eds.). Perspectives on Universal Logic. Milano, Italy: Polimetrica International Scientific Publisher. pp. 3–39. ISBN 978-88-7699-077-9. OCLC 647049731. Retrieved February 8, 2024.
  48. ^ Krömer, Ralph (2007). Tool and Object: A History and Philosophy of Category Theory. Science Networks – Historical Studies. Vol. 32. Germany: Springer Science & Business Media. pp. xxi–xxv, 1–91. ISBN 978-3-7643-7523-2. LCCN 2007920230. OCLC 85242858. Retrieved February 8, 2024.
  49. ^ Guicciardini, Niccolo (2017). "The Newton–Leibniz Calculus Controversy, 1708–1730" (PDF). In Schliesser, Eric; Smeenk, Chris (eds.). The Oxford Handbook of Newton. Oxford Handbooks. Oxford University Press. doi:10.1093/oxfordhb/9780199930418.013.9. ISBN 978-0-19-993041-8. OCLC 975829354. Archived (PDF) from the original on November 9, 2022. Retrieved February 9, 2024.
    ^ 尼科洛·吉恰尔迪尼 (2017)。 “牛顿-莱布尼茨微积分争议,1708-1730”(PDF)。在施利瑟,埃里克;克里斯·史敏克(编)。牛津牛顿手册。牛津手册。牛津大学出版社。 DOI:10.1093/oxfordhb/9780199930418.013.9。 ISBN 978-0-19-993041-8。 OCLC 975829354。原始存档于 (PDF)2022 年 11 月 9 日。检索 February 9, 2024 年。
  50. ^ O'Connor, J. J.; Robertson, E. F. (September 1998). "Leonhard Euler". MacTutor. Scotland, UK: University of St Andrews. Archived from the original on November 9, 2022. Retrieved February 9, 2024.
    ^奥康纳,JJ;罗伯逊,EF(1998 年 9 月)。 “莱昂哈德·欧拉”。麦克家教。英国苏格兰:圣安德鲁斯大学。原始存档于2022年11月9日检索。 February 9, 2024 年。
  51. ^ "Calculus (Differential and Integral Calculus with Examples)". Byju's. Retrieved June 13, 2024.
  52. ^ Franklin, James (July 2017). "Discrete and Continuous: A Fundamental Dichotomy in Mathematics". Journal of Humanistic Mathematics. 7 (2): 355–378. doi:10.5642/jhummath.201702.18. ISSN 2159-8118. LCCN 2011202231. OCLC 700943261. S2CID 6945363. Retrieved February 9, 2024.
  53. ^ Maurer, Stephen B. (1997). "What is Discrete Mathematics? The Many Answers". In Rosenstein, Joseph G.; Franzblau, Deborah S.; Roberts, Fred S. (eds.). Discrete Mathematics in the Schools. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science. Vol. 36. American Mathematical Society. pp. 121–124. doi:10.1090/dimacs/036/13. ISBN 0-8218-0448-0. ISSN 1052-1798. LCCN 97023277. OCLC 37141146. S2CID 67358543. Retrieved February 9, 2024.
  54. ^ Hales, Thomas C. (2014). "Turing's Legacy: Developments from Turing's Ideas in Logic". In Downey, Rod (ed.). Turing's Legacy. Lecture Notes in Logic. Vol. 42. Cambridge University Press. pp. 260–261. doi:10.1017/CBO9781107338579.001. ISBN 978-1-107-04348-0. LCCN 2014000240. OCLC 867717052. S2CID 19315498. Retrieved February 9, 2024.
  55. ^ Sipser, Michael (July 1992). The History and Status of the P versus NP Question. STOC '92: Proceedings of the twenty-fourth annual ACM symposium on Theory of Computing. pp. 603–618. doi:10.1145/129712.129771. S2CID 11678884.
    ^ 迈克尔·西普瑟(1992 年 7 月)。 P 与 NP 问题的历史和现状。 STOC '92:第二十四届 ACM 计算理论年度研讨会论文集。第 603–618 页。 DOI:10.1145/129712.129771。 S2CID 11678884。
  56. ^ Ewald, William (November 17, 2018). "The Emergence of First-Order Logic". Stanford Encyclopedia of Philosophy. ISSN 1095-5054. LCCN sn97004494. OCLC 37550526. Retrieved June 14, 2024.
    ^威廉·埃瓦尔德(2018 年 11 月 17 日)。 “一阶逻辑的出现”。斯坦福哲学百科全书。 ISSN 1095-5054。 LCCN SN97004494。 OCLC 37550526。已检索 June 14, 2024 年。
  57. ^ Ferreirós, José (June 18, 2020) [First published April 10, 2007]. "The Early Development of Set Theory". Stanford Encyclopedia of Philosophy. ISSN 1095-5054. LCCN sn97004494. OCLC 37550526. Retrieved June 14, 2024.
    ^Ferreirós, José(2020 年 6 月 18 日)[首次发布于 2007 年 4 月 10 日]。 “集合论的早期发展”。斯坦福哲学百科全书。 ISSN 1095-5054。 LCCN SN97004494。 OCLC 37550526。已检索 June 14, 2024 年。
  58. ^ Ferreirós, José (December 2001). "The Road to Modern Logic—An Interpretation" (PDF). The Bulletin of Symbolic Logic. 7 (4): 441–484. doi:10.2307/2687794. eISSN 1943-5894. hdl:11441/38373. ISSN 1079-8986. JSTOR 2687794. LCCN 95652899. OCLC 31616719. S2CID 43258676. Retrieved June 14, 2024.
    ^何塞·费雷罗斯(2001 年 12 月)。 “现代逻辑之路——一种解释”(PDF)。符号逻辑公报。 7(4):441-484。 doi:10.2307/2687794。 eISSN 1943-5894。高密度脂蛋白:11441/38373。 ISSN 1079-8986。 JSTOR 2687794。LCCN 95652899。OCLC 31616719。S2CID 43258676。已检索 June 14, 2024 年。
  59. ^ Wolchover, Natalie, ed. (November 26, 2013). "Dispute over Infinity Divides Mathematicians". Quanta Magazine. Retrieved June 14, 2024.
    ^ 沃尔乔弗,娜塔莉,编辑。 (2013 年 11 月 26 日)。 “关于无穷大的争论使数学家分裂”。广达杂志。已检索 June 14, 2024 年。
  60. ^ Zhuang, Chaohui. "Wittgenstein's analysis on Cantor's diagonal argument" (DOC). PhilArchive. Retrieved June 14, 2024.
    ^庄朝晖. “维特根斯坦对康托的对角论证的分析”(DOC)。菲尔档案馆。已检索 June 14, 2024 年。
  61. ^ Tanswell, Fenner Stanley (2024). Mathematical Rigour and Informal Proof. Cambridge Elements in the Philosophy of Mathematics. Cambridge University Press. doi:10.1017/9781009325110. eISSN 2399-2883. ISBN 978-1-00-949438-0. ISSN 2514-3808. OCLC 1418750041.
    ^坦斯韦尔,芬纳·斯坦利(2024)。数学严谨性和非正式证明。数学哲学中的剑桥基础。剑桥大学出版社。号码:10.1017/9781009325110。 eISSN 2399-2883。 ISBN 978-1-00-949438-0。 ISSN 2514-3808。 OCLC 1418750041。
  62. ^ Avigad, Jeremy; Reck, Erich H. (December 11, 2001). ""Clarifying the nature of the infinite": the development of metamathematics and proof theory" (PDF). Carnegie Mellon University. Retrieved June 14, 2024.
    ^ 阿维加德,杰里米; Reck, Erich H.(2001 年 12 月 11 日)。 ““澄清无限的本质”:元数学和证明论的发展”(PDF)。卡内基梅隆大学。已检索 June 14, 2024 年。
  63. ^ Hamilton, Alan G. (1982). Numbers, Sets and Axioms: The Apparatus of Mathematics. Cambridge University Press. pp. 3–4. ISBN 978-0-521-28761-6. Retrieved November 12, 2022.
    ^ 艾伦·G·汉密尔顿 (1982)。数、集合和公理:数学工具。剑桥大学出版社。第 3-4 页。 ISBN 978-0-521-28761-6。已检索 November 12, 2022 年。
  64. ^ Snapper, Ernst (September 1979). "The Three Crises in Mathematics: Logicism, Intuitionism, and Formalism". Mathematics Magazine. 52 (4): 207–216. doi:10.2307/2689412. ISSN 0025-570X. JSTOR 2689412.
    ^ 斯内珀,恩斯特(1979 年 9 月)。 “数学的三大危机:逻辑主义、直觉主义和形式主义”。数学杂志。 52(4):207-216。 doi:10.2307/2689412。 ISSN 0025-570X。 JSTOR 2689412。
  65. ^ Jump up to: a b Raatikainen, Panu (October 2005). "On the Philosophical Relevance of Gödel's Incompleteness Theorems". Revue Internationale de Philosophie. 59 (4): 513–534. doi:10.3917/rip.234.0513. JSTOR 23955909. S2CID 52083793. Archived from the original on November 12, 2022. Retrieved November 12, 2022.
    帕努·拉蒂凯宁(2005 年 10 月)。 “论哥德尔不完备定理的哲学意义”国际哲学评论59 (4):513-534。 DOI10.3917/rip.234.0513JSTOR 23955909S2CID 52083793 。原始存档于2022年11月12日。已检索 November 12, 2022 年
  66. ^ Moschovakis, Joan (September 4, 2018). "Intuitionistic Logic". Stanford Encyclopedia of Philosophy. Archived from the original on December 16, 2022. Retrieved November 12, 2022.
    ^ Joan Moschovakis(2018 年 9 月 4 日)。 “直觉逻辑”。斯坦福哲学百科全书。原始存档于2022年12月16日.检索 November 12, 2022 年。
  67. ^ McCarty, Charles (2006). "At the Heart of Analysis: Intuitionism and Philosophy". Philosophia Scientiæ, Cahier spécial 6: 81–94. doi:10.4000/philosophiascientiae.411.
    ^查尔斯·麦卡蒂(2006)。 “分析的核心:直觉主义和哲学”。 《科学哲学》,《手册》特别 6:81-94。 doi:10.4000/philosophiascientiae.411。
  68. ^ Halpern, Joseph; Harper, Robert; Immerman, Neil; Kolaitis, Phokion; Vardi, Moshe; Vianu, Victor (2001). "On the Unusual Effectiveness of Logic in Computer Science" (PDF). Archived (PDF) from the original on March 3, 2021. Retrieved January 15, 2021.
    ^ 约瑟夫·哈尔彭;哈珀,罗伯特;尼尔·伊默曼;科莱蒂斯、福基翁;瓦尔迪,摩西;维克托·维亚努 (2001)。 “论计算机科学中逻辑的异常有效性”(PDF)。原始存档于 2021 年 3 月 3 日 (PDF)。 检索 January 15, 2021 年。
  69. ^ Rouaud, Mathieu (April 2017) [First published July 2013]. Probability, Statistics and Estimation (PDF). p. 10. Archived (PDF) from the original on October 9, 2022. Retrieved February 13, 2024.
    ^Rouaud, Mathieu(2017 年 4 月)[首次发布于 2013 年 7 月]。概率、统计和估计(PDF)。 p。 10. 原始存档于 2022 年 10 月 9 日(PDF)。检索 February 13, 2024 年。
  70. ^ Rao, C. Radhakrishna (1997) [1989]. Statistics and Truth: Putting Chance to Work (2nd ed.). World Scientific. pp. 3–17, 63–70. ISBN 981-02-3111-3. LCCN 97010349. MR 1474730. OCLC 36597731.
    ^ Rao, C. Radhakrishna (1997) [1989]。统计与真相:让机会发挥作用(第二版)。世界科学。第 3–17 页、63–70 页。 ISBN 981-02-3111-3。 LCCN 97010349。MR 1474730。OCLC 36597731。
  71. ^ Rao, C. Radhakrishna (1981). "Foreword". In Arthanari, T.S.; Dodge, Yadolah (eds.). Mathematical programming in statistics. Wiley Series in Probability and Mathematical Statistics. New York: Wiley. pp. vii–viii. ISBN 978-0-471-08073-2. LCCN 80021637. MR 0607328. OCLC 6707805.
    ^ Rao, C. Radhakrishna (1981)。 “前言”。在阿尔塔纳里 (Arthanari),TS;道奇,亚多拉(编辑)。统计中的数学规划。 Wiley 概率与数理统计系列。纽约:威利。第七至八页。 ISBN 978-0-471-08073-2。 LCCN 80021637。MR 0607328。OCLC 6707805。
  72. ^ Whittle 1994, pp. 10–11, 14–18.
    ^ Whittle 1994 ,第 10-11、14-18 页。
  73. ^ Marchuk, Gurii Ivanovich (April 2020). "G I Marchuk's plenary: ICM 1970". MacTutor. School of Mathematics and Statistics, University of St Andrews, Scotland. Archived from the original on November 13, 2022. Retrieved November 13, 2022.
    ^Marchuk,Gurii Ivanovich(2020 年 4 月)。 “GI Marchuk 全体会议:ICM 1970”。麦克家教。苏格兰圣安德鲁斯大学数学与统计学院。原始存档于2022年11月13日检索。 November 13, 2022 年。
  74. ^ Johnson, Gary M.; Cavallini, John S. (September 1991). Phua, Kang Hoh; Loe, Kia Fock (eds.). Grand Challenges, High Performance Computing, and Computational Science. Singapore Supercomputing Conference'90: Supercomputing For Strategic Advantage. World Scientific. p. 28. LCCN 91018998. Retrieved November 13, 2022.
    ^约翰逊,加里·M.;约翰·S·卡瓦利尼(1991 年 9 月)。潘康浩;洛伊,基亚·福克(编)。巨大的挑战、高性能计算和计算科学。新加坡超级计算会议'90:超级计算的战略优势。世界科学。 p。 28.LCCN 91018998。检索 November 13, 2022 年。
  75. ^ Trefethen, Lloyd N. (2008). "Numerical Analysis". In Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.). The Princeton Companion to Mathematics (PDF). Princeton University Press. pp. 604–615. ISBN 978-0-691-11880-2. LCCN 2008020450. MR 2467561. OCLC 227205932. Archived (PDF) from the original on March 7, 2023. Retrieved February 15, 2024.
    ^ Trefethen,劳埃德 N.(2008)。 “数值分析”。在高尔斯,蒂莫西;巴罗-格林,六月;领导者,伊姆雷(编辑)。普林斯顿数学伴侣(PDF)。普林斯顿大学出版社。第 604–615 页。 ISBN 978-0-691-11880-2。 LCCN 2008020450. MR 2467561. OCLC 227205932. 原始存档 (PDF), 2023年3月7日. 检索 February 15, 2024 年。
  76. ^ See, for example, Wilder, Raymond L. Evolution of Mathematical Concepts; an Elementary Study. passim.
    ^例如参见Wilder, Raymond L.《数学概念的演化》;一项基础研究。帕西姆。
  77. ^ Zaslavsky, Claudia (1999). Africa Counts: Number and Pattern in African Culture. Chicago Review Press. ISBN 978-1-61374-115-3. OCLC 843204342.
    ^ 克劳迪娅·扎斯拉夫斯基(1999)。非洲很重要:非洲文化的数量和模式。芝加哥评论出版社。 ISBN 978-1-61374-115-3。 OCLC 843204342。
  78. ^ Kline 1990, Chapter 1.
    ^克莱恩 1990 年,第 1 章。
  79. ^ Mesopotamia pg 10. Retrieved June 1, 2024
    ^美索不达米亚第 10 页。2024 年 6 月 1 日检索
  80. ^ Boyer 1991, "Mesopotamia" pp. 24–27.
    ^ Boyer 1991 ,“美索不达米亚”,第 24-27 页。
  81. ^ Heath, Thomas Little (1981) [1921]. A History of Greek Mathematics: From Thales to Euclid. New York: Dover Publications. p. 1. ISBN 978-0-486-24073-2.
    ^ 托马斯·利特尔·希思 (1981) [1921]。希腊数学史:从泰勒斯到欧几里得。纽约:多佛出版社。 p。 1.ISBN 978-0-486-24073-2。
  82. ^ Mueller, I. (1969). "Euclid's Elements and the Axiomatic Method". The British Journal for the Philosophy of Science. 20 (4): 289–309. doi:10.1093/bjps/20.4.289. ISSN 0007-0882. JSTOR 686258.
    ^穆勒,I.(1969)。 “欧几里得几何原理和公理化方法”。英国科学哲学杂志。 20(4):289-309。 doi:10.1093/bjps/20.4.289。 ISSN 0007-0882。 JSTOR 686258。
  83. ^ Boyer 1991, "Euclid of Alexandria" p. 119.
    ^ Boyer 1991 ,“亚历山大的欧几里得”,第 14 页。 119.
  84. ^ Boyer 1991, "Archimedes of Syracuse" p. 120.
    ^ Boyer 1991 ,“锡拉丘兹的阿基米德”第 14 页。 120.
  85. ^ Boyer 1991, "Archimedes of Syracuse" p. 130.
    ^ Boyer 1991 ,“锡拉丘兹的阿基米德”第 14 页。 130.
  86. ^ Boyer 1991, "Apollonius of Perga" p. 145.
    ^ Boyer 1991 ,“佩尔加的阿波罗尼乌斯”,第 11 页。 145.
  87. ^ Boyer 1991, "Greek Trigonometry and Mensuration" p. 162.
    ^ Boyer 1991 ,“希腊三角函数和测量”,第 14 页。 162.
  88. ^ Boyer 1991, "Revival and Decline of Greek Mathematics" p. 180.
    ^ Boyer 1991 ,“希腊数学的复兴与衰落”,第 14 页。 180.
  89. ^ Ore, Øystein (1988). Number Theory and Its History. Courier Corporation. pp. 19–24. ISBN 978-0-486-65620-5. Retrieved November 14, 2022.
    ^ 奥伊斯坦 (1988)。数论及其历史。快递公司。第 19-24 页。 ISBN 978-0-486-65620-5。已检索 November 14, 2022 年。
  90. ^ Singh, A. N. (January 1936). "On the Use of Series in Hindu Mathematics". Osiris. 1: 606–628. doi:10.1086/368443. JSTOR 301627. S2CID 144760421.
    ^辛格,AN(1936 年 1 月)。 “论级数在印度数学中的使用”。奥西里斯。 1:606-628。 doi:10.1086/368443。 JSTOR 301627。S2CID 144760421。
  91. ^ Kolachana, A.; Mahesh, K.; Ramasubramanian, K. (2019). "Use of series in India". Studies in Indian Mathematics and Astronomy. Sources and Studies in the History of Mathematics and Physical Sciences. Singapore: Springer. pp. 438–461. doi:10.1007/978-981-13-7326-8_20. ISBN 978-981-13-7325-1. S2CID 190176726.
    ^科拉查纳,A.;马赫什,K.;拉马苏布拉马尼安,K.(2019)。 “系列在印度的使用”。印度数学和天文学研究。数学和物理科学史的资料来源和研究。新加坡:施普林格。第 438–461 页。 doi:10.1007/978-981-13-7326-8_20。 ISBN 978-981-13-7325-1。 S2CID 190176726。
  92. ^ Saliba, George (1994). A history of Arabic astronomy: planetary theories during the golden age of Islam. New York University Press. ISBN 978-0-8147-7962-0. OCLC 28723059.
    ^ 乔治·萨利巴 (1994)。阿拉伯天文学史:伊斯兰教黄金时代的行星理论。纽约大学出版社。 ISBN 978-0-8147-7962-0。 OCLC 28723059。
  93. ^ Faruqi, Yasmeen M. (2006). "Contributions of Islamic scholars to the scientific enterprise". International Education Journal. 7 (4). Shannon Research Press: 391–399. Archived from the original on November 14, 2022. Retrieved November 14, 2022.
    ^Faruqi, Yasmeen M. (2006)。 “伊斯兰学者对科学事业的贡献”。国际教育杂志。 7(4)。香农研究出版社:391-399。原始存档于2022年11月14日检索。 November 14, 2022 年。
  94. ^ Lorch, Richard (June 2001). "Greek-Arabic-Latin: The Transmission of Mathematical Texts in the Middle Ages" (PDF). Science in Context. 14 (1–2). Cambridge University Press: 313–331. doi:10.1017/S0269889701000114. S2CID 146539132. Archived (PDF) from the original on December 17, 2022. Retrieved December 5, 2022.
    ^理查德·洛奇(2001 年 6 月)。 “希腊语-阿拉伯语-拉丁语:中世纪数学文本的传播”(PDF)。上下文中的科学。 14(1-2)。剑桥大学出版社:313-331。 doi:10.1017/S0269889701000114。 S2CID 146539132. 原始存档于2022年12月17日 (PDF). 检索 December 5, 2022 年。
  95. ^ Kent, Benjamin (2022). History of Science (PDF). Vol. 2. Bibliotex Digital Library. ISBN 978-1-984668-67-7.
    ^本杰明肯特(2022)。科学史(PDF)。卷。 2. Bibliotex 数字图书馆。 ISBN 978-1-984668-67-7。
  96. ^ Archibald, Raymond Clare (January 1949). "History of Mathematics After the Sixteenth Century". The American Mathematical Monthly. Part 2: Outline of the History of Mathematics. 56 (1): 35–56. doi:10.2307/2304570. JSTOR 2304570.
  97. ^ Sevryuk 2006, pp. 101–109.
  98. ^ Wolfram, Stephan (October 2000). Mathematical Notation: Past and Future. MathML and Math on the Web: MathML International Conference 2000, Urbana Champaign, USA. Archived from the original on November 16, 2022. Retrieved February 3, 2024.
  99. ^ Douglas, Heather; Headley, Marcia Gail; Hadden, Stephanie; LeFevre, Jo-Anne (December 3, 2020). "Knowledge of Mathematical Symbols Goes Beyond Numbers". Journal of Numerical Cognition. 6 (3): 322–354. doi:10.5964/jnc.v6i3.293. eISSN 2363-8761. S2CID 228085700.
  100. ^ Letourneau, Mary; Wright Sharp, Jennifer (October 2017). "AMS Style Guide" (PDF). American Mathematical Society. p. 75. Archived (PDF) from the original on December 8, 2022. Retrieved February 3, 2024.
  101. ^ Jansen, Anthony R.; Marriott, Kim; Yelland, Greg W. (2000). "Constituent Structure in Mathematical Expressions" (PDF). Proceedings of the Annual Meeting of the Cognitive Science Society. 22. University of California Merced. eISSN 1069-7977. OCLC 68713073. Archived (PDF) from the original on November 16, 2022. Retrieved February 3, 2024.
  102. ^ Rossi, Richard J. (2006). Theorems, Corollaries, Lemmas, and Methods of Proof. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. John Wiley & Sons. pp. 1–14, 47–48. ISBN 978-0-470-04295-3. LCCN 2006041609. OCLC 64085024.
    ^理查德·J·罗西(2006)。定理、推论、引理和证明方法。纯粹数学与应用数学:Wiley 系列文本、专着和小册子。约翰·威利父子。第 1–14 页、47–48 页。 ISBN 978-0-470-04295-3。 LCCN 2006041609。OCLC 64085024。
  103. ^ "Earliest Uses of Some Words of Mathematics". MacTutor. Scotland, UK: University of St. Andrews. Archived from the original on September 29, 2022. Retrieved February 3, 2024.
    ^ “一些数学词汇的最早使用”。麦克家教。英国苏格兰:圣安德鲁斯大学。原始存档于 2022 年 9 月 29 日。检索 February 3, 2024 年。
  104. ^ Silver, Daniel S. (November–December 2017). "The New Language of Mathematics". The American Scientist. 105 (6). Sigma Xi: 364–371. doi:10.1511/2017.105.6.364. ISSN 0003-0996. LCCN 43020253. OCLC 1480717. S2CID 125455764.
    ^Silver,Daniel S.(2017 年 11 月至 12 月)。 “数学的新语言”。美国科学家。 105(6)。西格玛·西:364-371。 doi:10.1511/2017.105.6.364。 ISSN 0003-0996。 LCCN 43020253。OCLC 1480717。S2CID 125455764。
  105. ^ Bellomo, Nicola; Preziosi, Luigi (December 22, 1994). Modelling Mathematical Methods and Scientific Computation. Mathematical Modeling. Vol. 1. CRC Press. p. 1. ISBN 978-0-8493-8331-1. Retrieved November 16, 2022.
    ^贝洛莫,尼古拉;路易吉·普雷齐奥西(1994 年 12 月 22 日)。数学方法建模和科学计算。数学建模。卷。 1.CRC出版社。 p。 1.ISBN 978-0-8493-8331-1。已检索 November 16, 2022 年。
  106. ^ Hennig, Christian (2010). "Mathematical Models and Reality: A Constructivist Perspective". Foundations of Science. 15: 29–48. doi:10.1007/s10699-009-9167-x. S2CID 6229200. Retrieved November 17, 2022.
    ^克里斯蒂安·亨尼格(2010)。 “数学模型与现实:建构主义视角”。科学基础。 15:29-48。 doi:10.1007/s10699-009-9167-x。 S2CID 6229200。已检索 November 17, 2022 年。
  107. ^ Frigg, Roman; Hartmann, Stephan (February 4, 2020). "Models in Science". Stanford Encyclopedia of Philosophy. Archived from the original on November 17, 2022. Retrieved November 17, 2022.
    ^ 弗丽嘉,罗马;斯蒂芬·哈特曼(2020 年 2 月 4 日)。 “科学模型”。斯坦福哲学百科全书。原始存档于2022年11月17日检索。 November 17, 2022 年。
  108. ^ Stewart, Ian (2018). "Mathematics, Maps, and Models". In Wuppuluri, Shyam; Doria, Francisco Antonio (eds.). The Map and the Territory: Exploring the Foundations of Science, Thought and Reality. The Frontiers Collection. Springer. pp. 345–356. doi:10.1007/978-3-319-72478-2_18. ISBN 978-3-319-72478-2. Retrieved November 17, 2022.
    ^ 伊恩·斯图尔特 (2018)。 “数学、地图和模型”。在乌普鲁里 (Wuppuluri)、夏姆 (Shyam);多利亚,弗朗西斯科·安东尼奥(编)。地图与领土:探索科学、思想和现实的基础。边疆收藏。施普林格。第 345–356 页。 doi:10.1007/978-3-319-72478-2_18。 ISBN 978-3-319-72478-2。已检索 November 17, 2022 年。
  109. ^ "The science checklist applied: Mathematics". Understanding Science. University of California, Berkeley. Archived from the original on October 27, 2019. Retrieved October 27, 2019.
    ^“应用的科学清单:数学”。理解科学。加州大学伯克利分校。原始存档于 2019 年 10 月 27 日。检索 October 27, 2019.
  110. ^ Mackay, A. L. (1991). Dictionary of Scientific Quotations. London: Taylor & Francis. p. 100. ISBN 978-0-7503-0106-0. Retrieved March 19, 2023.
    ^麦凯,阿拉巴马州(1991)。科学引文词典。伦敦:泰勒和弗朗西斯。 p。 100.ISBN 978-0-7503-0106-0。已检索 March 19, 2023 年。
  111. ^ Bishop, Alan (1991). "Environmental activities and mathematical culture". Mathematical Enculturation: A Cultural Perspective on Mathematics Education. Norwell, Massachusetts: Kluwer Academic Publishers. pp. 20–59. ISBN 978-0-7923-1270-3. Retrieved April 5, 2020.
    ^艾伦·毕肖普(1991)。 “环境活动与数学文化”。数学文化化:数学教育的文化视角。马萨诸塞州诺威尔:Kluwer 学术出版社。第 20-59 页。 ISBN 978-0-7923-1270-3。已检索 April 5, 2020.
  112. ^ Shasha, Dennis Elliot; Lazere, Cathy A. (1998). Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer. p. 228. ISBN 978-0-387-98269-4.
    ^ 莎莎,丹尼斯·埃利奥特;拉泽尔,凯茜 A. (1998)。疯狂:15 位伟大计算机科学家的生活和发现。施普林格。 p。 228.ISBN 978-0-387-98269-4。
  113. ^ Nickles, Thomas (2013). "The Problem of Demarcation". Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago: The University of Chicago Press. p. 104. ISBN 978-0-226-05182-6.
    ^托马斯·尼克尔斯(2013)。 《划界问题》。伪科学哲学:重新考虑分界问题。芝加哥:芝加哥大学出版社。 p。 104.ISBN 978-0-226-05182-6。
  114. ^ Pigliucci, Massimo (2014). "Are There 'Other' Ways of Knowing?". Philosophy Now. Archived from the original on May 13, 2020. Retrieved April 6, 2020.
    ^ Pigliucci,马西莫(2014)。 “还有‘其他’的了解方式吗?”。现在的哲学。原始存档于 2020 年 5 月 13 日。检索 April 6, 2020.
  115. ^ Jump up to: a b Ferreirós, J. (2007). "Ό Θεὸς Άριθμητίζει: The Rise of Pure Mathematics as Arithmetic with Gauss". In Goldstein, Catherine; Schappacher, Norbert; Schwermer, Joachim (eds.). The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae. Springer Science & Business Media. pp. 235–268. ISBN 978-3-540-34720-0.
    费雷罗斯,J.(2007)。 “Ό θεὸς Άριθμmτίzeι:纯数学作为高斯算术的兴起” 。在戈德斯坦,凯瑟琳;诺伯特·沙帕赫;约阿希姆·施韦默(编)。 CF高斯的算术研究之后算术的塑造。施普林格科学与商业媒体。第 235–268 页。 ISBN 978-3-540-34720-0
  116. ^ Kuhn, Thomas S. (1976). "Mathematical vs. Experimental Traditions in the Development of Physical Science". The Journal of Interdisciplinary History. 7 (1). The MIT Press: 1–31. doi:10.2307/202372. JSTOR 202372.
    ^ 托马斯·S·库恩 (1976)。 “物理科学发展中的数学与实验传统”。跨学科历史杂志。 7(1)。麻省理工学院出版社:1-31。 doi:10.2307/202372。 JSTOR 202372。
  117. ^ Asper, Markus (2009). "The two cultures of mathematics in ancient Greece". In Robson, Eleanor; Stedall, Jacqueline (eds.). The Oxford Handbook of the History of Mathematics. Oxford Handbooks in Mathematics. OUP Oxford. pp. 107–132. ISBN 978-0-19-921312-2. Retrieved November 18, 2022.
    ^马库斯·阿斯珀(2009)。 “古希腊的两种数学文化”。在罗布森,埃莉诺;杰奎琳·斯特德尔(编)。牛津数学史手册。牛津数学手册。 OUP 牛津大学。第 107–132 页。 ISBN 978-0-19-921312-2。已检索 November 18, 2022 年。
  118. ^ Gozwami, Pinkimani; Singh, Madan Mohan (2019). "Integer Factorization Problem". In Ahmad, Khaleel; Doja, M. N.; Udzir, Nur Izura; Singh, Manu Pratap (eds.). Emerging Security Algorithms and Techniques. CRC Press. pp. 59–60. ISBN 978-0-8153-6145-9. LCCN 2019010556. OCLC 1082226900.
    ^戈兹瓦米,平基马尼;辛格,马丹·莫汉 (2019)。 “整数因式分解问题”。艾哈迈德,卡里尔;明尼苏达州多哈;乌兹尔,努尔·伊祖拉;辛格,马努·普拉塔普(主编)。新兴的安全算法和技术。 CRC出版社。第 59–60 页。 ISBN 978-0-8153-6145-9。 LCCN 2019010556。OCLC 1082226900。
  119. ^ Maddy, P. (2008). "How applied mathematics became pure" (PDF). The Review of Symbolic Logic. 1 (1): 16–41. doi:10.1017/S1755020308080027. S2CID 18122406. Archived (PDF) from the original on August 12, 2017. Retrieved November 19, 2022.
    ^ 麦迪,P. (2008)。 “应用数学如何变得纯粹”(PDF)。符号逻辑回顾。 1(1):16-41。 doi:10.1017/S1755020308080027。 S2CID 18122406. 原始存档于 (PDF), 2017-08-12. 检索 November 19, 2022 年。
  120. ^ Silver, Daniel S. (2017). "In Defense of Pure Mathematics". In Pitici, Mircea (ed.). The Best Writing on Mathematics, 2016. Princeton University Press. pp. 17–26. ISBN 978-0-691-17529-4. Retrieved November 19, 2022.
    ^丹尼尔·S·西尔弗(2017)。 “捍卫纯数学”。在皮蒂奇,米尔恰(编辑)。最佳数学著作,2016 年。普林斯顿大学出版社。第 17-26 页。 ISBN 978-0-691-17529-4。已检索 November 19, 2022 年。
  121. ^ Parshall, Karen Hunger (2022). "The American Mathematical Society and Applied Mathematics from the 1920s to the 1950s: A Revisionist Account". Bulletin of the American Mathematical Society. 59 (3): 405–427. doi:10.1090/bull/1754. S2CID 249561106. Archived from the original on November 20, 2022. Retrieved November 20, 2022.
    ^ 帕歇尔,凯伦·饥饿 (2022)。 “从 1920 年代到 1950 年代的美国数学会和应用数学:修正主义的叙述”。美国数学会公报。 59(3):405-427。 doi:10.1090/bull/1754。 S2CID 249561106. 原始存档于2022年11月20日. 检索 November 20, 2022 年。
  122. ^ Stolz, Michael (2002). "The History Of Applied Mathematics And The History Of Society". Synthese. 133: 43–57. doi:10.1023/A:1020823608217. S2CID 34271623. Retrieved November 20, 2022.
    ^迈克尔·斯托尔兹(2002)。 “应用数学史和社会史”。合成。 133:43-57。 doi:10.1023/A:1020823608217。 S2CID 34271623。已检索 November 20, 2022 年。
  123. ^ Lin, C. C . (March 1976). "On the role of applied mathematics". Advances in Mathematics. 19 (3): 267–288. doi:10.1016/0001-8708(76)90024-4.
    ^林,C.C. (1976 年 3 月)。 “论应用数学的作用”。数学进展。 19(3):267-288。 DOI:10.1016/0001-8708(76)90024-4。
  124. ^ Peressini, Anthony (September 1999). Applying Pure Mathematics (PDF). Philosophy of Science. Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association. Part I: Contributed Papers. Vol. 66. pp. S1–S13. JSTOR 188757. Archived (PDF) from the original on January 2, 2024. Retrieved November 30, 2022.
    ^安东尼·佩雷西尼(1999 年 9 月)。应用纯数学(PDF)。科学哲学。 1998 年科学哲学协会双年度会议记录。第一部分:贡献论文。卷。 66.第 S1-S13 页。 JSTOR 188757. 原始存档于 2024 年 1 月 2 日 (PDF). 检索 November 30, 2022 年。
  125. ^ Lützen, J. (2011). "Examples and reflections on the interplay between mathematics and physics in the 19th and 20th century". In Schlote, K. H.; Schneider, M. (eds.). Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century. Frankfurt am Main: Verlag Harri Deutsch. Archived from the original on March 23, 2023. Retrieved November 19, 2022.
    ^Lützen, J. (2011)。 “19世纪和20世纪数学和物理相互作用的例子和反思”。位于肯塔基州施洛特;施奈德,M.(编辑)。数学与物理学:对 19 世纪和 20 世纪上半叶相互作用的贡献。美因河畔法兰克福:哈里·德意志出版社。原始存档于2023年3月23日检索。 November 19, 2022 年。
  126. ^ Marker, Dave (July 1996). "Model theory and exponentiation". Notices of the American Mathematical Society. 43 (7): 753–759. Archived from the original on March 13, 2014. Retrieved November 19, 2022.
    ^戴夫·马克(1996 年 7 月)。 “模型理论和指数”。美国数学会的通知。 43(7):753-759。原始存档于 2014 年 3 月 13 日 [检索] November 19, 2022 年。
  127. ^ Chen, Changbo; Maza, Marc Moreno (August 2014). Cylindrical Algebraic Decomposition in the RegularChains Library. International Congress on Mathematical Software 2014. Lecture Notes in Computer Science. Vol. 8592. Berlin: Springer. doi:10.1007/978-3-662-44199-2_65. Retrieved November 19, 2022.
    ^陈长波;马克·莫雷诺·马扎(2014 年 8 月)。 RegularChains 库中的圆柱代数分解。 2014 年国际数学软件大会。计算机科学讲义。卷。 8592.柏林:施普林格。 doi:10.1007/978-3-662-44199-2_65。已检索 November 19, 2022 年。
  128. ^ Pérez-Escobar, José Antonio; Sarikaya, Deniz (2021). "Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy". European Journal for Philosophy of Science. 12 (1): 1–22. doi:10.1007/s13194-021-00435-9. S2CID 245465895.
    ^佩雷斯·埃斯科瓦尔,何塞·安东尼奥;德尼兹·萨里卡亚 (2021)。 “纯化应用数学和应用纯数学:晚期维特根斯坦的观点如何揭示二分法”。欧洲科学哲学杂志。 12(1):1-22。 DOI:10.1007/s13194-021-00435-9。 S2CID 245465895。
  129. ^ Takase, M. (2014). "Pure Mathematics and Applied Mathematics are Inseparably Intertwined: Observation of the Early Analysis of the Infinity". A Mathematical Approach to Research Problems of Science and Technology. Mathematics for Industry. Vol. 5. Tokyo: Springer. pp. 393–399. doi:10.1007/978-4-431-55060-0_29. ISBN 978-4-431-55059-4. Retrieved November 20, 2022.
    ^高濑,M.(2014)。 “纯数学和应用数学是不可分割地交织在一起的:对无穷大的早期分析的观察”。研究科学技术问题的数学方法。工业数学。卷。 5.东京:施普林格。第 393–399 页。 doi:10.1007/978-4-431-55060-0_29。 ISBN 978-4-431-55059-4。已检索 November 20, 2022 年。
  130. ^ Sarukkai, Sundar (February 10, 2005). "Revisiting the 'unreasonable effectiveness' of mathematics". Current Science. 88 (3): 415–423. JSTOR 24110208.
    ^Sarukkai,Sundar(2005 年 2 月 10 日)。 “重新审视数学的‘不合理有效性’”。当前科学。 88(3):415-423。 JSTOR 24110208。
  131. ^ Wagstaff, Samuel S. Jr. (2021). "History of Integer Factoring" (PDF). In Bos, Joppe W.; Stam, Martijn (eds.). Computational Cryptography, Algorithmic Aspects of Cryptography, A Tribute to AKL. London Mathematical Society Lecture Notes Series 469. Cambridge University Press. pp. 41–77. Archived (PDF) from the original on November 20, 2022. Retrieved November 20, 2022.
    ^瓦格斯塔夫,小塞缪尔·S. (2021)。 “整数因式分解的历史”(PDF)。在博斯,Joppe W.;斯塔姆,马丁(编)。计算密码学、密码学的算法方面、向 AKL 致敬。伦敦数学会讲义系列 469。剑桥大学出版社。第 41-77 页。原始存档于 2022 年 11 月 20 日 (PDF)。 检索 November 20, 2022 年。
  132. ^ "Curves: Ellipse". MacTutor. School of Mathematics and Statistics, University of St Andrews, Scotland. Archived from the original on October 14, 2022. Retrieved November 20, 2022.
    ^“曲线:椭圆”。麦克家教。苏格兰圣安德鲁斯大学数学与统计学院。原始存档于2022年10月14日检索。 November 20, 2022 年。
  133. ^ Mukunth, Vasudevan (September 10, 2015). "Beyond the Surface of Einstein's Relativity Lay a Chimerical Geometry". The Wire. Archived from the original on November 20, 2022. Retrieved November 20, 2022.
    ^Mukunth,Vasudevan(2015 年 9 月 10 日)。 “在爱因斯坦相对论的表面之外,存在着一个空想的几何学”。电线。原始存档于2022年11月20日检索。 November 20, 2022 年。
  134. ^ Wilson, Edwin B.; Lewis, Gilbert N. (November 1912). "The Space-Time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics". Proceedings of the American Academy of Arts and Sciences. 48 (11): 389–507. doi:10.2307/20022840. JSTOR 20022840.
    ^威尔逊,埃德温·B.;刘易斯,吉尔伯特 N.(1912 年 11 月)。 “相对论的时空流形。力学和电磁学的非欧几里得几何”。美国艺术与科学院院刊。 48(11):389-507。 doi:10.2307/20022840。 JSTOR 20022840。
  135. ^ Jump up to: a b c Borel, Armand (1983). "Mathematics: Art and Science". The Mathematical Intelligencer. 5 (4). Springer: 9–17. doi:10.4171/news/103/8. ISSN 1027-488X.
    阿尔芒·博雷尔(1983)。 “数学:艺术与科学”数学情报员5 (4)。施普林格:9-17。 doi10.4171/news/103/8ISSN 1027-488X
  136. ^ Hanson, Norwood Russell (November 1961). "Discovering the Positron (I)". The British Journal for the Philosophy of Science. 12 (47). The University of Chicago Press: 194–214. doi:10.1093/bjps/xiii.49.54. JSTOR 685207.
    ^ 诺伍德·拉塞尔·汉森(1961 年 11 月)。 “发现正电子(I)”。英国科学哲学杂志。 12(47)。芝加哥大学出版社:194-214。 doi:10.1093/bjps/xiii.49.54。 JSTOR 685207。
  137. ^ Ginammi, Michele (February 2016). "Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the Ω particle". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 53: 20–27. Bibcode:2016SHPMP..53...20G. doi:10.1016/j.shpsb.2015.12.001.
  138. ^ Wagh, Sanjay Moreshwar; Deshpande, Dilip Abasaheb (September 27, 2012). Essentials of Physics. PHI Learning Pvt. Ltd. p. 3. ISBN 978-81-203-4642-0. Retrieved January 3, 2023.
  139. ^ Atiyah, Michael (1990). On the Work of Edward Witten (PDF). Proceedings of the International Congress of Mathematicians. p. 31. Archived from the original (PDF) on September 28, 2013. Retrieved December 29, 2022.
  140. ^ "Course 18C Mathematics with Computer Science". math.mit.edu. Retrieved June 1, 2024.
  141. ^ "Theoretical Computer Science". math.mit.edu. Retrieved June 1, 2024.
  142. ^ "Real-Life Applications of Discrete Mathematics". GeeksforGeeks. April 8, 2024. Retrieved May 19, 2024.
  143. ^ Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Tat Dat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; Mclaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Vu, Ky; Zumkeller, Roland (2017). "A Formal Proof of the Kepler Conjecture". Forum of Mathematics, Pi. 5: e2. doi:10.1017/fmp.2017.1. hdl:2066/176365. ISSN 2050-5086. S2CID 216912822. Archived from the original on December 4, 2020. Retrieved February 25, 2023.
  144. ^ Jump up to: a b c Millstein, Roberta (September 8, 2016). "Probability in Biology: The Case of Fitness" (PDF). In Hájek, Alan; Hitchcock, Christopher (eds.). The Oxford Handbook of Probability and Philosophy. pp. 601–622. doi:10.1093/oxfordhb/9780199607617.013.27. Archived (PDF) from the original on March 7, 2023. Retrieved December 29, 2022.
  145. ^ See for example Anne Laurent, Roland Gamet, Jérôme Pantel, Tendances nouvelles en modélisation pour l'environnement, actes du congrès «Programme environnement, vie et sociétés» 15–17 janvier 1996, CNRS
  146. ^ Bouleau 1999, pp. 282–283.
  147. ^ Bouleau 1999, p. 285.
  148. ^ "1.4: The Lotka-Volterra Predator-Prey Model". Mathematics LibreTexts. January 5, 2022. Archived from the original on December 29, 2022. Retrieved December 29, 2022.
  149. ^ Salsburg, David (August 17, 1992). "Commentary" (PDF). The Use of Statistical Methods in the Analysis of Clinical Studies. 46: 17.
  150. ^ National Research Council (2003). "8". Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. NAP.edu. pp. 71–73. doi:10.17226/10633. ISBN 978-0-309-16839-7. PMID 25032300.
  151. ^ "Catastrophe Models (Property)". content.naic.org. Retrieved May 19, 2024.
  152. ^ "MAM2001 Essay". ww2.amstat.org. Retrieved May 19, 2024.
  153. ^ Hill, Mullica (September 7, 2022). "HOW MATH IS USED IN WEATHER FORECASTING". www.mathnasium.com. Retrieved May 19, 2024.
  154. ^ "Using Mathematical Models to Investigate Planetary Habitability" (PDF). NASA. Retrieved May 19, 2024.
  155. ^ Edling, Christofer R. (2002). "Mathematics in Sociology". Annual Review of Sociology. 28 (1): 197–220. doi:10.1146/annurev.soc.28.110601.140942. ISSN 0360-0572.
  156. ^ Batchelder, William H. (January 1, 2015). "Mathematical Psychology: History". In Wright, James D. (ed.). International Encyclopedia of the Social & Behavioral Sciences (Second Edition). Oxford: Elsevier. pp. 808–815. ISBN 978-0-08-097087-5. Retrieved September 30, 2023.
  157. ^ Jump up to: a b Zak, Paul J. (2010). Moral Markets: The Critical Role of Values in the Economy. Princeton University Press. p. 158. ISBN 978-1-4008-3736-6. Retrieved January 3, 2023.
  158. ^ Levin, Jonathan; Milgrom, Paul (September 2004). Introduction to Choice Theory (PDF).
  159. ^ Kremer, Michael; Rao, Gautam; Schilbach, Frank (2019). "Chapter 5 Behavioral development economics". Handbook of Behavioral Economics: Applications and Foundations (PDF). Vol. 2.
  160. ^ "Mathematics". www.mdpi.com.
  161. ^ "Kondratiev, Nikolai Dmitrievich | Encyclopedia.com". www.encyclopedia.com. Archived from the original on July 1, 2016. Retrieved December 29, 2022.
  162. ^ "Mathématique de l'histoire-géometrie et cinématique. Lois de Brück. Chronologie géodésique de la Bible., by Charles LAGRANGE et al. | The Online Books Page". onlinebooks.library.upenn.edu.
  163. ^ "Cliodynamics: a science for predicting the future". ZDNET. Archived from the original on December 29, 2022. Retrieved December 29, 2022.
  164. ^ Sokal, Alan; Jean Bricmont (1998). Fashionable Nonsense. New York: Picador. ISBN 978-0-312-19545-8. OCLC 39605994.
    ^ 艾伦·索卡尔;让·布里克蒙 (1998)。时髦的废话。纽约:皮卡多。 ISBN 978-0-312-19545-8。 OCLC 39605994。
  165. ^ "Biden's Misleading Unemployment Statistic – FactCheck.org".
    ^ “拜登误导性的失业统计数据 - FactCheck.org”。
  166. ^ "Modern Macroeconomic Models as Tools for Economic Policy | Federal Reserve Bank of Minneapolis". www.minneapolisfed.org.
    ^ “现代宏观经济模型作为经济政策工具|明尼阿波利斯联邦储备银行”。 www.minneapolisfed.org。
  167. ^ Balaguer, Mark (2016). "Platonism in Metaphysics". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Spring 2016 ed.). Metaphysics Research Lab, Stanford University. Archived from the original on January 30, 2022. Retrieved April 2, 2022.
  168. ^ See White, L. (1947). "The locus of mathematical reality: An anthropological footnote". Philosophy of Science. 14 (4): 289–303. doi:10.1086/286957. S2CID 119887253. 189303; also in Newman, J. R. (1956). The World of Mathematics. Vol. 4. New York: Simon and Schuster. pp. 2348–2364.
  169. ^ Dorato, Mauro (2005). "Why are laws mathematical?" (PDF). The Software of the Universe, An Introduction to the History and Philosophy of Laws of Nature. Ashgate. pp. 31–66. ISBN 978-0-7546-3994-7. Archived (PDF) from the original on August 17, 2023. Retrieved December 5, 2022.
  170. ^ Jump up to: a b c Mura, Roberta (December 1993). "Images of Mathematics Held by University Teachers of Mathematical Sciences". Educational Studies in Mathematics. 25 (4): 375–85. doi:10.1007/BF01273907. JSTOR 3482762. S2CID 122351146.
  171. ^ Jump up to: a b Tobies, Renate; Neunzert, Helmut (2012). Iris Runge: A Life at the Crossroads of Mathematics, Science, and Industry. Springer. p. 9. ISBN 978-3-0348-0229-1. Retrieved June 20, 2015. [I]t is first necessary to ask what is meant by mathematics in general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has been reached about whether mathematics is a natural science, a branch of the humanities, or an art form.
    托比斯,雷纳特;赫尔穆特·诺因泽特 (2012)。艾里斯·朗格:数学、科学和工业十字路口的生活。施普林格。 p。 9. ISBN 978-3-0348-0229-1 。已检索 June 20, 2015年首先有必要问数学的一般含义是什么。著名学者们对这个问题争论得脸色发青,但对于数学究竟是一门自然科学、人文学科的一个分支还是一门艺术形式,尚未达成共识。
  172. ^ Ziegler, Günter M.; Loos, Andreas (November 2, 2017). Kaiser, G. (ed.). "What is Mathematics?" and why we should ask, where one should experience and learn that, and how to teach it. Proceedings of the 13th International Congress on Mathematical Education. ICME-13 Monographs. Springer. pp. 63–77. doi:10.1007/978-3-319-62597-3_5. ISBN 978-3-319-62596-6.
    ^ 齐格勒,Günter M.;安德烈亚斯·路斯(2017 年 11 月 2 日)。凯撒,G.(编辑)。 “什么是数学?”以及为什么我们应该问,应该在哪里体验和学习这一点,以及如何教授它。第十三届国际数学教育大会论文集。 ICME-13 专着。施普林格。第 63–77 页。 doi:10.1007/978-3-319-62597-3_5。 ISBN 978-3-319-62596-6。
  173. ^ Franklin, James (2009). Philosophy of Mathematics. Elsevier. pp. 104–106. ISBN 978-0-08-093058-9. Retrieved June 20, 2015.
    ^ 富兰克林,詹姆斯(2009)。数学哲学。爱思唯尔。第 104–106 页。 ISBN 978-0-08-093058-9。已检索 June 20, 2015年。
  174. ^ Cajori, Florian (1893). A History of Mathematics. American Mathematical Society (1991 reprint). pp. 285–286. ISBN 978-0-8218-2102-2. Retrieved June 20, 2015.
    ^ 弗洛里安·卡乔里 (1893)。数学史。美国数学会(1991 年重印)。第 285–286 页。 ISBN 978-0-8218-2102-2。已检索 June 20, 2015年。
  175. ^ Saunders Maclane (1986). Mathematics, form and function. Springer., page 409
    ^桑德斯·麦克莱恩 (1986)。数学,形式和函数。施普林格。 ,第 409 页
  176. ^ Brown, Ronald; Porter, Timothy (January 2000). "The Methodology of Mathematics". The Mathematical Gazette. 79 (485): 321–334. doi:10.2307/3618304. JSTOR 3618304. S2CID 178923299. Archived from the original on March 23, 2023. Retrieved November 25, 2022.
    ^ 罗纳德·布朗;蒂莫西·波特(2000 年 1 月)。 《数学方法论》。数学公报。 79(485):321-334。 doi:10.2307/3618304。 JSTOR 3618304. S2CID 178923299. 原始存档于2023年3月23日. 检索 November 25, 2022 年。
  177. ^ Strauss, Danie (2011). "Defining mathematics". Acta Academica. 43 (4): 1–28. Retrieved November 25, 2022.
    ^施特劳斯,丹妮(2011)。 “定义数学”。学术学报。 43(4):1-28。已检索 November 25, 2022 年。
  178. ^ Hamami, Yacin (June 2022). "Mathematical Rigor and Proof" (PDF). The Review of Symbolic Logic. 15 (2): 409–449. doi:10.1017/S1755020319000443. S2CID 209980693. Archived (PDF) from the original on December 5, 2022. Retrieved November 21, 2022.
    ^Hamami,Yacin(2022 年 6 月)。 “数学严谨性和证明”(PDF)。符号逻辑回顾。 15(2):409-449。 doi:10.1017/S1755020319000443。 S2CID 209980693. 原始存档于2022年12月5日 (PDF). 检索 November 21, 2022 年。
  179. ^ Peterson 1988, p. 4: "A few complain that the computer program can't be verified properly." (in reference to the Haken–Apple proof of the Four Color Theorem)
    ^彼得森 1988 年,第 17 页。 4:“一些人抱怨计算机程序无法正确验证。” (参考四色定理的 Haken-Apple 证明)
  180. ^ Perminov, V. Ya. (1988). "On the Reliability of Mathematical Proofs". Philosophy of Mathematics. 42 (167 (4)). Revue Internationale de Philosophie: 500–508.
    ^Perminov,V.Ya。 (1988)。 “论数学证明的可靠性”。数学哲学。 42(167(4))。国际哲学评论:500-508。
  181. ^ Davis, Jon D.; McDuffie, Amy Roth; Drake, Corey; Seiwell, Amanda L. (2019). "Teachers' perceptions of the official curriculum: Problem solving and rigor". International Journal of Educational Research. 93: 91–100. doi:10.1016/j.ijer.2018.10.002. S2CID 149753721.
    ^戴维斯,乔恩·D​​.;麦克达菲,艾米·罗斯;德雷克,科里;阿曼达·L·塞维尔(2019)。 “教师对官方课程的看法:解决问题和严谨性”。国际教育研究杂志。 93:91–100。 doi:10.1016/j.ijer.2018.10.002。 S2CID 149753721。
  182. ^ Endsley, Kezia (2021). Mathematicians and Statisticians: A Practical Career Guide. Practical Career Guides. Rowman & Littlefield. pp. 1–3. ISBN 978-1-5381-4517-3. Retrieved November 29, 2022.
    ^恩兹利,凯齐亚(2021)。数学家和统计学家:实用职业指南。实用职业指南。罗曼和利特菲尔德。第 1-3 页。 ISBN 978-1-5381-4517-3。已检索 November 29, 2022 年。
  183. ^ Robson, Eleanor (2009). "Mathematics education in an Old Babylonian scribal school". In Robson, Eleanor; Stedall, Jacqueline (eds.). The Oxford Handbook of the History of Mathematics. OUP Oxford. ISBN 978-0-19-921312-2. Retrieved November 24, 2022.
    ^ 罗布森,埃莉诺(2009)。 “古巴比伦抄写学校的数学教育”。在罗布森,埃莉诺;杰奎琳·斯特德尔(编)。牛津数学史手册。 OUP 牛津大学。 ISBN 978-0-19-921312-2。已检索 November 24, 2022 年。
  184. ^ Bernard, Alain; Proust, Christine; Ross, Micah (2014). "Mathematics Education in Antiquity". In Karp, A.; Schubring, G. (eds.). Handbook on the History of Mathematics Education. New York: Springer. pp. 27–53. doi:10.1007/978-1-4614-9155-2_3. ISBN 978-1-4614-9154-5.
    ^伯纳德,阿兰;普鲁斯特,克里斯汀;罗斯,米卡(2014)。 《古代数学教育》。在卡普,A.;舒布林,G.(编辑)。数学教育史手册。纽约:施普林格。第 27-53 页。 doi:10.1007/978-1-4614-9155-2_3。 ISBN 978-1-4614-9154-5。
  185. ^ Dudley, Underwood (April 2002). "The World's First Mathematics Textbook". Math Horizons. 9 (4). Taylor & Francis, Ltd.: 8–11. doi:10.1080/10724117.2002.11975154. JSTOR 25678363. S2CID 126067145.
    ^安德伍德达德利(2002 年 4 月)。 《世界上第一本数学教科书》。数学视野。 9(4)。泰勒与弗朗西斯有限公司:8-11。 DOI:10.1080/10724117.2002.11975154。 JSTOR 25678363。S2CID 126067145。
  186. ^ Subramarian, F. Indian pedagogy and problem solving in ancient Thamizhakam (PDF). History and Pedagogy of Mathematics conference, July 16–20, 2012. Archived (PDF) from the original on November 28, 2022. Retrieved November 29, 2022.
    ^Subramarian, F. 古代塔米扎卡姆的印度教育学和问题解决(PDF)。数学历史与教育学会议,2012年7月16日至20日。原始存档于2022年11月28日(PDF)。 November 29, 2022 年。
  187. ^ Siu, Man Keung (2004). "Official Curriculum in Mathematics in Ancient China: How did Candidates Study for the Examination?". How Chinese Learn Mathematics (PDF). Series on Mathematics Education. Vol. 1. pp. 157–185. doi:10.1142/9789812562241_0006. ISBN 978-981-256-014-8. Retrieved November 26, 2022.
    ^萧文强 (2004)。 《中国古代数学官方课程:考生如何备考?》。中国人如何学数学(PDF)。数学教育系列。卷。 1. 第 157–185 页。号码:10.1142/9789812562241_0006。 ISBN 978-981-256-014-8。已检索 November 26, 2022 年。
  188. ^ Jones, Phillip S. (1967). "The History of Mathematical Education". The American Mathematical Monthly. 74 (1). Taylor & Francis, Ltd.: 38–55. doi:10.2307/2314867. JSTOR 2314867.
    ^琼斯,菲利普·S.(1967)。 《数学教育史》。美国数学月刊。 74(1)。泰勒与弗朗西斯有限公司:38-55。 doi:10.2307/2314867。 JSTOR 2314867。
  189. ^ Schubring, Gert; Furinghetti, Fulvia; Siu, Man Keung (August 2012). "Introduction: the history of mathematics teaching. Indicators for modernization processes in societies". ZDM Mathematics Education. 44 (4): 457–459. doi:10.1007/s11858-012-0445-7. S2CID 145507519.
    ^格特·舒布林;福林盖蒂,富尔维娅;萧文强(2012 年 8 月)。 “简介:数学教学的历史。社会现代化进程的指标”。 ZDM 数学教育。 44(4):457-459。 doi:10.1007/s11858-012-0445-7。 S2CID 145507519。
  190. ^ von Davier, Matthias; Foy, Pierre; Martin, Michael O.; Mullis, Ina V.S. (2020). "Examining eTIMSS Country Differences Between eTIMSS Data and Bridge Data: A Look at Country-Level Mode of Administration Effects". TIMSS 2019 International Results in Mathematics and Science (PDF). TIMSS & PIRLS International Study Center, Lynch School of Education and Human Development and International Association for the Evaluation of Educational Achievement. p. 13.1. ISBN 978-1-889938-54-7. Archived (PDF) from the original on November 29, 2022. Retrieved November 29, 2022.
    ^冯·戴维,马蒂亚斯;福伊,皮埃尔;马丁,迈克尔·O.;穆利斯、伊娜 VS (2020)。 “检查 eTIMSS 国家/地区 eTIMSS 数据与桥梁数据之间的差异:了解国家级管理效果模式”。 TIMSS 2019 年数学和科学国际成绩(PDF)。 TIMSS & PIRLS 国际研究中心、林奇教育与人类发展学院以及国际教育成就评估协会。 p。 13.1. ISBN 978-1-889938-54-7。原始存档于 2022 年 11 月 29 日 (PDF)。 检索 November 29, 2022 年。
  191. ^ Rowan-Kenyon, Heather T.; Swan, Amy K.; Creager, Marie F. (March 2012). "Social Cognitive Factors, Support, and Engagement: Early Adolescents' Math Interests as Precursors to Choice of Career" (PDF). The Career Development Quarterly. 60 (1): 2–15. doi:10.1002/j.2161-0045.2012.00001.x. Archived (PDF) from the original on November 22, 2023. Retrieved November 29, 2022.
    ^罗恩·凯尼恩,希瑟·T.;天鹅,艾米·K。 Creager,Marie F.(2012 年 3 月)。 “社会认知因素、支持和参与:早期青少年的数学兴趣是职业选择的先导”(PDF)。职业发展季刊。 60(1):2-15。 doi:10.1002/j.2161-0045.2012.00001.x。原始存档于 2023 年 11 月 22 日 (PDF)。 检索 November 29, 2022 年。
  192. ^ Luttenberger, Silke; Wimmer, Sigrid; Paechter, Manuela (2018). "Spotlight on math anxiety". Psychology Research and Behavior Management. 11: 311–322. doi:10.2147/PRBM.S141421. PMC 6087017. PMID 30123014.
    ^西尔克·拉滕贝格;威默,西格丽德;曼努埃拉·帕希特 (2018)。 “聚焦数学焦虑”。心理学研究和行为管理。 11:311-322。 doi:10.2147/PRBM.S141421。 PMC 6087017。PMID 30123014。
  193. ^ Yaftian, Narges (June 2, 2015). "The Outlook of the Mathematicians' Creative Processes". Procedia – Social and Behavioral Sciences. 191: 2519–2525. doi:10.1016/j.sbspro.2015.04.617.
    ^Yaftian,Narges(2015 年 6 月 2 日)。 “数学家创造性过程的展望”。 Procedia – 社会和行为科学。 191:2519–2525。 doi:10.1016/j.sbspro.2015.04.617。
  194. ^ Nadjafikhah, Mehdi; Yaftian, Narges (October 10, 2013). "The Frontage of Creativity and Mathematical Creativity". Procedia – Social and Behavioral Sciences. 90: 344–350. doi:10.1016/j.sbspro.2013.07.101.
    ^Nadjafikhah,迈赫迪; Yaftian,Narges(2013 年 10 月 10 日)。 “创造力和数学创造力的前沿”。 Procedia – 社会和行为科学。 90:344–350。 doi:10.1016/j.sbspro.2013.07.101。
  195. ^ van der Poorten, A. (1979). "A proof that Euler missed... Apéry's Proof of the irrationality of ζ(3)" (PDF). The Mathematical Intelligencer. 1 (4): 195–203. doi:10.1007/BF03028234. S2CID 121589323. Archived (PDF) from the original on September 6, 2015. Retrieved November 22, 2022.
    ^范德普尔滕,A.(1979)。 “欧拉错过的证明......阿佩里对 ζ(3) 非理性的证明”(PDF)。数学情报员。 1(4):195-203。 doi:10.1007/BF03028234。 S2CID 121589323. 原始存档于 (PDF), 2015-09-06. November 22, 2022 年。
  196. ^ Petkovi, Miodrag (September 2, 2009). Famous Puzzles of Great Mathematicians. American Mathematical Society. pp. xiii–xiv. ISBN 978-0-8218-4814-2. Retrieved November 25, 2022.
    ^Petkovi,Miodrag(2009 年 9 月 2 日)。伟大数学家的著名谜题。美国数学会。第十三至十四页。 ISBN 978-0-8218-4814-2。已检索 November 25, 2022 年。
  197. ^ Hardy, G. H. (1940). A Mathematician's Apology. Cambridge University Press. ISBN 978-0-521-42706-7. Retrieved November 22, 2022. See also A Mathematician's Apology.
    ^哈代,GH (1940)。一位数学家的道歉。剑桥大学出版社。 ISBN 978-0-521-42706-7 。已检索 November 22, 2022 年另请参阅数学家的道歉
  198. ^ Alon, Noga; Goldston, Dan; Sárközy, András; Szabados, József; Tenenbaum, Gérald; Garcia, Stephan Ramon; Shoemaker, Amy L. (March 2015). Alladi, Krishnaswami; Krantz, Steven G. (eds.). "Reflections on Paul Erdős on His Birth Centenary, Part II". Notices of the American Mathematical Society. 62 (3): 226–247. doi:10.1090/noti1223.
    ^阿隆,诺加;戈德斯顿,丹;萨科齐、安德拉斯;约瑟夫·萨巴多斯;杰拉尔德·特南鲍姆;加西亚,斯蒂芬·拉蒙;艾米·L·舒梅克(2015 年 3 月)。阿拉迪,克里希纳斯瓦米;史蒂文·G·克兰茨(编)。 “对保罗·埃尔多斯诞辰一百周年的反思,第二部分”。美国数学会的通知。 62(3):226-247。 doi:10.1090/noti1223。
  199. ^ See, for example Bertrand Russell's statement "Mathematics, rightly viewed, possesses not only truth, but supreme beauty ..." in his History of Western Philosophy. 1919. p. 60.
    ^例如参见伯特兰·罗素在他的《西方哲学史》中的陈述“数学,正确地看待,不仅拥有真理,而且拥有至高无上的美……”。 1919。p。 60.
  200. ^ Cazden, Norman (October 1959). "Musical intervals and simple number ratios". Journal of Research in Music Education. 7 (2): 197–220. doi:10.1177/002242945900700205. JSTOR 3344215. S2CID 220636812.
    ^诺曼·卡兹登(1959 年 10 月)。 “音程和简单的数字比率”。音乐教育研究杂志。 7(2):197-220。 DOI:10.1177/002242945900700205。 JSTOR 3344215。S2CID 220636812。
  201. ^ Budden, F. J. (October 1967). "Modern mathematics and music". The Mathematical Gazette. 51 (377). Cambridge University Press ({CUP}): 204–215. doi:10.2307/3613237. JSTOR 3613237. S2CID 126119711.
    ^巴登,FJ(1967 年 10 月)。 “现代数学和音乐”。数学公报。 51(377)。剑桥大学出版社({CUP}):204-215。 doi:10.2307/3613237。 JSTOR 3613237。S2CID 126119711。
  202. ^ Enquist, Magnus; Arak, Anthony (November 1994). "Symmetry, beauty and evolution". Nature. 372 (6502): 169–172. Bibcode:1994Natur.372..169E. doi:10.1038/372169a0. ISSN 1476-4687. PMID 7969448. S2CID 4310147. Archived from the original on December 28, 2022. Retrieved December 29, 2022.
  203. ^ Hestenes, David (1999). "Symmetry Groups" (PDF).
  204. ^ Bender, Sara (September 2020). "The Rorschach Test". In Carducci, Bernardo J.; Nave, Christopher S.; Mio, Jeffrey S.; Riggio, Ronald E. (eds.). The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment. Wiley. pp. 367–376. doi:10.1002/9781119547167.ch131. ISBN 978-1-119-05751-2.
  205. ^ Weyl, Hermann (2015). Symmetry. Princeton Science Library. Vol. 47. Princeton University Press. p. 4. ISBN 978-1-4008-7434-7.
  206. ^ "Lecture 8: Translation Symmetry | Physics III: Vibrations and Waves | Physics". MIT OpenCourseWare.
  207. ^ Bradley, Larry (2010). "Fractals – Chaos & Fractals". www.stsci.edu. Archived from the original on March 7, 2023. Retrieved December 29, 2022.
  208. ^ "Self-similarity". math.bu.edu. Archived from the original on March 2, 2023. Retrieved December 29, 2022.
  209. ^ Kissane, Barry (July 2009). Popular mathematics. 22nd Biennial Conference of The Australian Association of Mathematics Teachers. Fremantle, Western Australia: Australian Association of Mathematics Teachers. pp. 125–126. Archived from the original on March 7, 2023. Retrieved December 29, 2022.
  210. ^ Steen, L. A. (2012). Mathematics Today Twelve Informal Essays. Springer Science & Business Media. p. 2. ISBN 978-1-4613-9435-8. Retrieved January 3, 2023.
  211. ^ Pitici, Mircea (2017). The Best Writing on Mathematics 2016. Princeton University Press. ISBN 978-1-4008-8560-2. Retrieved January 3, 2023.
    ^米尔恰·皮蒂奇(2017)。 2016 年最佳数学著作。普林斯顿大学出版社。 ISBN 978-1-4008-8560-2。已检索 January 3, 2023 年。
  212. ^ Monastyrsky 2001, p. 1: "The Fields Medal is now indisputably the best known and most influential award in mathematics."
    ^ Monastyrsky 2001 ,p。 1:“菲尔兹奖现在无疑是数学界最著名、最具影响力的奖项。”
  213. ^ Riehm 2002, pp. 778–782.
    ^ Riehm 2002 ,第 778–782 页。
  214. ^ "Fields Medal | International Mathematical Union (IMU)". www.mathunion.org. Archived from the original on December 26, 2018. Retrieved February 21, 2022.
    ^“菲尔兹奖|国际数学联盟(IMU)”。 www.mathunion.org。原始存档于2018年12月26日.检索 February 21, 2022 年。
  215. ^ Jump up to: a b "Fields Medal". Maths History. Archived from the original on March 22, 2019. Retrieved February 21, 2022.
    “菲尔兹奖”数学史。原始存档于2019年3月22日。已检索 February 21, 2022 年
  216. ^ "Honours/Prizes Index". MacTutor History of Mathematics Archive. Archived from the original on December 17, 2021. Retrieved February 20, 2023.
    ^“荣誉/奖项索引”。 MacTutor 数学史档案。原始存档于2021年12月17日检索。 February 20, 2023 年。
  217. ^ "About the Abel Prize". The Abel Prize. Archived from the original on April 14, 2022. Retrieved January 23, 2022.
    ^ “关于阿贝尔奖”。阿贝尔奖。原始存档于 2022 年 4 月 14 日检索。 January 23, 2022 年。
  218. ^ "Abel Prize | mathematics award". Encyclopedia Britannica. Archived from the original on January 26, 2020. Retrieved January 23, 2022.
    ^ “阿贝尔奖 | 数学奖”。大英百科全书。原始存档于 2020 年 1 月 26 日。检索 January 23, 2022 年。
  219. ^ "Chern Medal Award" (PDF). www.mathunion.org. June 1, 2009. Archived (PDF) from the original on June 17, 2009. Retrieved February 21, 2022.
    ^ “陈省身奖章” (PDF)。 www.mathunion.org。 2009年6月1日. 原始存档于2009年6月17日 (PDF). 检索 February 21, 2022 年。
  220. ^ "Chern Medal Award". International Mathematical Union (IMU). Archived from the original on August 25, 2010. Retrieved January 23, 2022.
    ^ “陈省身奖章”。国际数学联盟(IMU)。原始存档于 2010 年 8 月 25 日 [检索] January 23, 2022 年。
  221. ^ "The Leroy P Steele Prize of the AMS". School of Mathematics and Statistics, University of St Andrews, Scotland. Archived from the original on November 17, 2022. Retrieved November 17, 2022.
    ^ “AMS 勒罗伊·P·斯蒂尔奖”。苏格兰圣安德鲁斯大学数学与统计学院。原始存档于2022年11月17日检索。 November 17, 2022 年。
  222. ^ Chern, S. S.; Hirzebruch, F. (September 2000). Wolf Prize in Mathematics. doi:10.1142/4149. ISBN 978-981-02-3945-9. Archived from the original on February 21, 2022. Retrieved February 21, 2022.
    ^陈省身,党卫军; Hirzebruch, F.(2000 年 9 月)。沃尔夫数学奖。 doi:10.1142/4149。 ISBN 978-981-02-3945-9。原始存档于2022年2月21日检索。 February 21, 2022 年。
  223. ^ "The Wolf Prize". Wolf Foundation. Archived from the original on January 12, 2020. Retrieved January 23, 2022.
    ^ “狼奖”。沃尔夫基金会。原始存档于 2020 年 1 月 12 日。检索 January 23, 2022 年。
  224. ^ Jump up to: a b "Hilbert's Problems: 23 and Math". Simons Foundation. May 6, 2020. Archived from the original on January 23, 2022. Retrieved January 23, 2022.
    “希尔伯特问题:23 和数学”西蒙斯基金会。 2020年5月6日. 原始存档于2022年1月23日.已检索 January 23, 2022 年
  225. ^ Feferman, Solomon (1998). "Deciding the undecidable: Wrestling with Hilbert's problems" (PDF). In the Light of Logic. Logic and Computation in Philosophy series. Oxford University Press. pp. 3–27. ISBN 978-0-19-508030-8. Retrieved November 29, 2022.
    ^ 所罗门·费弗曼 (1998)。 “决定不可决定的事情:与希尔伯特问题的斗争”(PDF)。在逻辑之光下。哲学中的逻辑与计算系列。牛津大学出版社。第 3-27 页。 ISBN 978-0-19-508030-8。已检索 November 29, 2022 年。
  226. ^ "The Millennium Prize Problems". Clay Mathematics Institute. Archived from the original on July 3, 2015. Retrieved January 23, 2022.
    ^ “千年奖问题”。克莱数学研究所。原始存档于 2015 年 7 月 3 日 [检索] January 23, 2022 年。
  227. ^ "Millennium Problems". Clay Mathematics Institute. Archived from the original on December 20, 2018. Retrieved January 23, 2022.
    ^ “千年问题”。克莱数学研究所。原始存档于2018年12月20日.检索 January 23, 2022 年。

Sources 来源

Further reading 进一步阅读