这是用户在 2024-5-26 12:44 为 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743129/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
跳转到主要内容
U.S. flag

An official website of the United States government

Access keys 访问键 NCBI Homepage NCBI 主页 MyNCBI Homepage 我的 NCBI 主页 Main Content 主要内容 Main Navigation 主导航
11.56【预测↑】|11.29【实时↓】|11.3【2022最新】11.3
Q1医学-1区,肿瘤学-2区
2019; 38: 406.
J Exp Clin Cancer Res. 2019; 38: 406.
Published online 2019 Sep 13. doi: 10.1186/s13046-019-1397-3
2019 年 9 月 13 日在线发表。doi:10.1186/s13046-019-1397-3
PMCID: PMC6743129 PMCID:PMC6743129
PMID: 31519186 PMID:31519186

Iron and leukemia: new insights for future treatments
铁和白血病:未来治疗的新见解

Fang Wang,1 Huanhuan Lv,1,2,3 Bin Zhao,1 Liangfu Zhou,1 Shenghang Wang,1 Jie Luo,1 Junyu Liu,1 and Peng Shangcorresponding author2,3
方旺, 1 吕欢欢, 1, 2, 3 赵斌, 1 周良福, 1 王胜航, 1 罗杰, 1 刘俊宇, 1 和尚鹏 corresponding author 2, 3

Associated Data 相关数据

Data Availability Statement
数据可用性声明

Abstract 摘要

Iron, an indispensable element for life, is involved in all kinds of important physiological activities. Iron promotes cell growth and proliferation, but it also causes oxidative stress damage. The body has a strict regulation mechanism of iron metabolism due to its potential toxicity. As a cancer of the bone marrow and blood cells, leukemia threatens human health seriously. Current studies suggest that dysregulation of iron metabolism and subsequent accumulation of excess iron are closely associated with the occurrence and progress of leukemia. Specifically, excess iron promotes the development of leukemia due to the pro-oxidative nature of iron and its damaging effects on DNA. On the other hand, leukemia cells acquire large amounts of iron to maintain rapid growth and proliferation. Therefore, targeting iron metabolism may provide new insights for approaches to the treatment of leukemia. This review summarizes physiologic iron metabolism, alternations of iron metabolism in leukemia and therapeutic opportunities of targeting the altered iron metabolism in leukemia, with a focus on acute leukemia.
铁是生命中不可或缺的元素,参与各种重要的生理活动。铁促进细胞生长和增殖,但也会引起氧化应激损伤。由于铁的潜在毒性,人体对铁代谢有严格的调节机制。作为骨髓和血液细胞的一种癌症,白血病严重威胁人类健康。目前的研究表明,铁代谢失调和随后的过量铁积累与白血病的发生和进展密切相关。具体而言,过量铁促进白血病的发展,因为铁的氧化性质及其对 DNA 的破坏作用。另一方面,白血病细胞获取大量铁以维持快速生长和增殖。因此,针对铁代谢可能为白血病治疗提供新的视角。本综述总结了生理铁代谢、白血病中铁代谢的变化以及针对白血病中改变的铁代谢的治疗机会,重点关注急性白血病。

Keywords: Leukemia, Iron, Reactive oxygen species, Ferroptosis, Iron-based nanoparticles
关键词:白血病,铁,活性氧化物,铁死亡,基于铁的纳米颗粒

Background 背景

Iron is an indispensable nutrient. The maintenance of normal cell metabolism depends on iron. Iron enables the function of vital iron-containing enzymes that are involved in ATP production, DNA synthesis, oxygen transport and many other physiological activities. The ability of iron to gain and lose electrons enables it to participate in free radical generating reactions []. Among them is the Fenton reaction, in which ferrous iron (Fe2+) donates an electron to hydrogen peroxide to yield hydroxyl radical, a kind of highly invasive reactive oxygen species (ROS) []. ROS have effects on multiple cellular signaling pathways that are crucial for cell survival, proliferation and differentiation []. However, the aberrant accumulation of iron and subsequent excess ROS cause oxidative stress, which incurs damage to DNA, proteins, lipids or other biomolecules and even results in cell death []. Extensive researches have revealed links between dysregulation of iron metabolism and a number of diseases, including atherosclerosis, neurodegenerative diseases and cancer []. The oxidative effects of iron contribute to the oncogenesis and iron is essential for the development of cancer [].
铁是一种不可或缺的营养素。维持正常细胞代谢依赖于铁。铁使得涉及 ATP 产生、DNA 合成、氧气运输以及许多其他生理活动的重要含铁酶的功能得以实现。铁具有获得和失去电子的能力,使其能够参与产生自由基的反应[1]。其中之一是芬顿反应,其中亚铁(Fe 2+ )将电子捐赠给过氧化氢,产生羟基自由基,一种高度侵袭性的活性氧物种(ROS)[2]。ROS 对多种细胞信号通路产生影响,这些通路对于细胞存活、增殖和分化至关重要[3]。然而,铁的异常积累和随之产生的过量 ROS 会引起氧化应激,导致对 DNA、蛋白质、脂质或其他生物分子的损害,甚至导致细胞死亡[3]。广泛的研究揭示了铁代谢失调与多种疾病之间的联系,包括动脉粥样硬化、神经退行性疾病和癌症[4-6]。 铁的氧化作用有助于肿瘤发生,铁对癌症的发展至关重要。

Leukemia is a group of heterogeneous hematopoietic stem cell (HSC) malignancies. It is characterized by aberrant accumulation of undifferentiated blasts capable of unrestrained proliferation in the bone marrow, which interferes with the production of normal blood cells. Leukemia is classified into four main subgroups, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphoblastic leukemia (CLL). Leukemia, especially acute leukemia (AL), is one of the most common lethal cancers []. There is a general consensus that the occurrence of leukemia is a multistep process involving multiple genetic alterations, including transferrin receptor 1 gene, hemochromatosis (HFE) gene and some other genes involved in iron metabolism [, ]. Leukemia cells show increased iron uptake and decreased iron efflux, leading to elevated cellular iron levels. The systematic iron pool in patients with leukemia is also increased, which is aggravated by multiple red-blood-cell transfusions. Multiple experimental and epidemiological studies have demonstrated the relationship between dysregulation of iron metabolism with the occurrence and progress of leukemia [].
白血病是一组异质性造血干细胞(HSC)恶性肿瘤。其特征是在骨髓中异常积累的未分化爆发细胞,能够不受限制地增殖,干扰正常血细胞的产生。白血病分为四个主要亚组,包括急性髓细胞白血病(AML)、急性淋巴细胞白血病(ALL)、慢性髓细胞白血病(CML)和慢性淋巴细胞白血病(CLL)。白血病,尤其是急性白血病(AL),是最常见的致命癌症之一。普遍认为,白血病的发生是一个涉及多个基因改变的多步骤过程,包括转铁蛋白受体 1 基因、血色病(HFE)基因和一些其他参与铁代谢的基因。白血病细胞显示出增加的铁摄取和减少的铁外流,导致细胞内铁水平升高。白血病患者体内的系统铁库也增加,这在多次红细胞输血的情况下会加剧。 多项实验和流行病学研究已经证明了铁代谢失调与白血病的发生和进展之间的关系【9-11】。

Currently, the main approaches for clinical treatment of leukemia are chemotherapy and bone marrow transplantation. As leukemia cells are prevalent in the whole body and surrounded by normal blood cells, traditional chemotherapy drugs can also cause damage to healthy cells while killing leukemia cells. Although great progress has been made in recent years, the outcomes of patients with AL remain unsatisfactory and new therapeutic strategies are imperative to improve the outcomes of patients [, ]. The application of differentiating agents combined with chemotherapy has dramatically improved the therapeutic effect of patients with acute promyelocytic leukemia (APL). Accumulating evidence shows that targeting iron homeostasis can induce differentiation and apoptosis in leukemia cells []. Leukemia cells are dramatically more susceptible to iron depletion than normal cells due to their high requirement for iron to maintain their rapid proliferation. It has been evaluated that treatment targeting iron metabolism induces differentiation of leukemia cells without harm to normal cells []. Therefore, targeting iron metabolic pathways may be an optimal treatment which can selectively eradicate leukemia cells via multiple mechanisms. Here, we review physiologic iron metabolism, alternations of iron metabolism in leukemia, and therapeutic opportunities of targeting the altered iron metabolism in leukemia, with a focus on AL.
目前,白血病的临床治疗主要方法是化疗和骨髓移植。由于白血病细胞在全身广泛分布并被正常血细胞包围,传统的化疗药物在杀死白血病细胞的同时也会对健康细胞造成损害。尽管近年来取得了巨大进展,但 AL 患者的预后仍然不尽人意,迫切需要新的治疗策略来改善患者的预后。不同化剂与化疗的联合应用显著改善了急性早幼粒细胞白血病(APL)患者的治疗效果。越来越多的证据表明,针对铁稳态可以诱导白血病细胞的分化和凋亡。由于白血病细胞对铁的需求量大以维持其快速增殖,白血病细胞明显比正常细胞更容易受到铁耗竭的影响。已经评估到,针对铁代谢的治疗可以诱导白血病细胞的分化而不伤害正常细胞。 因此,针对铁代谢途径可能是一种优化治疗方法,可以通过多种机制选择性地根除白血病细胞。在这里,我们回顾了生理铁代谢、白血病中铁代谢的变化以及针对白血病中改变的铁代谢的治疗机会,重点关注 AL。

Physiologic iron metabolism
生理铁代谢

Iron homeostasis is a complex and highly regulated process, which involves acquisition, utilization, storage and efflux of iron. Non-heme iron in the diet are mostly presented in the form of ferric iron (Fe3+) []. The absorption of non-heme iron in the diet involves reduction of Fe3+ to Fe2+ in the intestinal lumen by ferric reductases, such as duodenal cytochrome b reductase (Dcytb), and subsequent transport of Fe2+ into enterocytes by divalent metal transporter 1 (DMT1) []. Dietary heme iron can be directly taken up by enterocytes by a yet unknown mechanism []. The iron absorbed through enterocytes is either exported across the basolateral membrane into the circulation by ferroportin 1 (FPN1), the only known mammalian iron exporter, or stored in ferritin []. On the basolateral membrane, Fe2+ is oxidized by ferroxidase hephaestin (HEPH) in order to be associated with transferrin (Tf) in the plasma []. Iron is circulated throughout the body in a redox-inert state and is primarily utilized for erythropoiesis []. Senescent red blood cells are cleared by macrophages and the iron is released into the systemic iron pool []. The balance of whole-body iron is maintained by strictly regulating the absorption of dietary iron in the duodenum, which is mainly achieved by the ferroportin–hepcidin regulatory axis []. When whole-body iron levels are high, hepcidin is induced in hepatocytes and secreted into the circulation. Hepcidin binds to FPN1 on enterocytes and macrophages to block the delivery of iron into the circulation [].
铁稳态是一个复杂且高度受调控的过程,涉及铁的获取、利用、储存和外流。饮食中的非血红素铁主要以三价铁(Fe 3+ )的形式存在[17]。饮食中的非血红素铁的吸收涉及由铁还原酶(如十二指肠细胞色素 b 还原酶(Dcytb))在肠腔中将 Fe 3+ 还原为 Fe 2+ ,随后由双价金属转运蛋白 1(DMT1)将 Fe 2+ 转运至肠细胞[18]。膳食血红素铁可以通过尚不明确的机制直接被肠细胞吸收[17]。通过肠细胞吸收的铁要么通过铁蛋白 1(FPN1,唯一已知的哺乳动物铁输出蛋白)跨越基底侧膜进入循环,要么储存在铁蛋白中[19]。在基底侧膜上,Fe 2+ 被铁氧化酶赫菲斯汀(HEPH)氧化,以便与血浆中的转铁蛋白(Tf)结合[20]。铁以氧化还原不活泼的状态在全身循环,并主要用于造血[21]。老化的红细胞被巨噬细胞清除,铁释放到系统铁库中[21]。 整体铁的平衡是通过严格调节十二指肠对膳食铁的吸收来维持的,主要是通过铁转运蛋白-肝铁蛋白调节轴来实现的[22]。当整体铁水平较高时,肝细胞中诱导产生肝铁蛋白并分泌到循环中。肝铁蛋白结合到肠细胞和巨噬细胞上的 FPN1,阻止铁进入循环[23]。

Tf-bound iron in the plasma can be taken up by cells mainly through transferrin receptor 1 (TfR1, 24]. Diferric Tf binds to TfR1 on the plasma membrane and the Tf/TfR1 complex is subsequently taken into the cell by receptor-mediated endocytosis []. In the endosome, iron is released from the complex [], reduced by six-transmembrane epithelial antigen of the prostate (STEAP) proteins to Fe2+ and transported into the cytoplasm by DMT1 []. Meanwhile, the apo-transferrin (apo-Tf)/TfR1 complex is recycled to the cell surface where apo-Tf is released to the plasma. Certain types of cells can absorb iron in other forms such as non-transferrin bound iron (NTBI), ferritin, heme and hemoglobin []. Imported iron enters the cytosolic labile iron pool (LIP), a pool of chelatable and redox-active iron []. Iron in the pool is delivered to different parts of the cell for a variety of metabolic needs or stored in ferritin []. Excess cellular iron can be exported out of the cell by FPN1 and subsequently oxidized by the ceruloplasmin (Cp) and binded to serum Tf []. The cellular iron homeostasis is achieved mainly by the iron responsive elements (IREs)/ iron regulatory proteins (IRPs) system []. IRPs regulate the expression of genes involved in iron metabolism by binding to IREs. When cellular iron concentrations are low, the IRPs bind to the IREs, resulting in increased synthesis of TfR1 and decreased synthesis of ferritin and FPN1. This effect allows the cells to absorb iron to the utmost.
血浆中的 Tf 结合铁主要通过转铁蛋白受体 1(TfR1)被细胞摄取[24]。二铁转铁蛋白结合到血浆膜上的 TfR1,形成 Tf/TfR1 复合物,随后通过受体介导的内吞作用被细胞摄入[24]。在内体中,铁从复合物中释放[25],由前列腺六跨膜上皮抗原(STEAP)蛋白还原为 Fe 2+ ,并通过 DMT1 转运到细胞质[26]。同时,无载体转铁蛋白(apo-Tf)/TfR1 复合物被回收到细胞表面,apo-Tf 释放到血浆中。某些类型的细胞可以吸收其他形式的铁,如非转铁蛋白结合铁(NTBI)、铁蛋白、血红素和血红蛋白[20]。进口铁进入细胞质可动态铁库(LIP),这是一个可螯合和具有氧化还原活性的铁库[27]。铁库中的铁被输送到细胞的不同部位,以满足各种代谢需求,或存储在铁蛋白中[28]。细胞内过量的铁可以通过 FPN1 排出细胞,并随后被铜蓝蛋白(Cp)氧化并结合到血清 Tf[29]。 细胞铁稳态主要通过铁响应元件(IREs)/铁调节蛋白(IRPs)系统实现[30]。IRPs 通过结合 IREs 调节参与铁代谢的基因的表达。当细胞铁浓度较低时,IRPs 结合到 IREs,导致 TfR1 的合成增加,而铁蛋白和 FPN1 的合成减少。这种效应使细胞能够最大限度地吸收铁。

Alternations of iron metabolism in leukemia
白血病铁代谢的变化

Iron metabolism in leukemia is altered, including not only changes in cellular iron uptake, storage and efflux, but also dysregulation of the ferroportin–hepcidin regulatory axis (Fig. 1). Furthermore, multiple red-blood-cell transfusions throughout chemotherapy treatment aggravate systematic iron overload in patients with leukemia. While iron and its catalytic production of ROS are critical to maintain hematopoietic homeostasis, accumulation of iron and subsequent increased oxidative stress are detrimental to normal hematopoiesis. ROS have been implicated as the signal messengers in normal hematopoiesis and participate in controlling the biological activity of HSCs []. However, redox dysregulation caused by ROS promotes malignant transformation of HSCs by increasing DNA double strand breaks and repair errors [, ]. Besides, iron is essential for the progression of leukemia because maintaining the rapid growth rate of leukemia cells requires the iron-dependent enzyme ribonucleotide reductase for DNA synthesis [, , ]. Furthermore, iron overload allows leukemia cells immune evasion by triggering apoptosis of adjacent NK cells, CD4+ T cells and CD8+ T cells, but increasing percentage of regulatory T cells [, ].
在白血病中,铁代谢发生改变,不仅包括细胞铁摄取、储存和外流的变化,还包括铁转运蛋白-肝铁蛋白调控轴的失调(图 1)。此外,化疗期间多次输注红细胞加重了患有白血病患者的全身铁超载。虽然铁及其催化产生的 ROS 对于维持造血系统稳态至关重要,但铁的积累和随之增加的氧化应激对正常造血是有害的。ROS 已被认为是正常造血中的信号传递者,并参与控制 HSCs 的生物活性。然而,ROS 引起的氧化还原失调通过增加 DNA 双链断裂和修复错误促进了 HSCs 的恶性转化。此外,铁对于白血病的进展至关重要,因为维持白血病细胞的快速生长需要依赖铁的酶核糖核苷酸还原酶进行 DNA 合成。 此外,铁过载通过诱导相邻 NK 细胞、CD4 T 细胞和 CD8 T 细胞凋亡,使白血病细胞免疫逃避,但增加了调节性 T 细胞的百分比【36, 37】。

An external file that holds a picture, illustration, etc.
Object name is 13046_2019_1397_Fig1_HTML.jpg

Alternations of iron metabolism in leukemia at systemic and cellular levels. a The systematic iron pool and serum ferritin levels are increased which is aggravated by multiple red-blood-cell transfusions. Hepcidin is induced to block the delivery of iron into the circulation from enterocytes, macrophages and some other cells. b Leukemia cells show increased iron uptake and decreased iron efflux, leading to elevated cellular iron levels. Proteins related to iron uptake such as TfR1, TfR2 and STEAP1 are overexpressed and absorption of NTBI is increased. However, the expression of iron export protein FPN1 is decreased. HFE or c-MYC gene variants are also associated with elevated intracellular iron levels in leukemia cells
在系统和细胞水平上,白血病铁代谢的变化。a 系统铁库和血清铁蛋白水平增加,多次红细胞输血加重了这种情况。肝铁素调节蛋白被诱导以阻止铁从肠细胞、巨噬细胞和其他一些细胞进入循环。b 白血病细胞显示铁摄取增加和铁外流减少,导致细胞内铁水平升高。与铁摄取相关的蛋白如转铁蛋白受体 1、转铁蛋白受体 2 和 STEAP1 被过度表达,非转铁蛋白铁的吸收增加。然而,铁输出蛋白 FPN1 的表达减少。HFE 或 c-MYC 基因变异也与白血病细胞内铁水平升高相关。

Alternations of iron metabolism in leukemia at systemic levels
在系统水平上,白血病铁代谢的变化

It has been reported that patients with AML at diagnosis had higher levels of serum ferritin, the routine marker for excess iron []. Ferritin promotes the growth of leukemia cells while inhibiting the colony formation of normal progenitor cells, which is identified as leukemia-associated inhibitory activity []. Clinical analysis suggests that hyperferritinemia at diagnosis is significantly associated with chemotherapy drug resistance, a higher incidence of relapse as well as poorer overall survival [, ]. Furthermore, an elevated pretransplantation serum ferritin level is an adverse prognostic factor for overall survival and nonrelapse mortality for patients with hematologic malignancies undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) [, ].
据报道,AML 患者在诊断时血清铁蛋白水平较高,这是过量铁的常规标志物[38]。铁蛋白促进白血病细胞的生长,同时抑制正常祖细胞的克隆形成,这被认为是与白血病相关的抑制活性[39]。临床分析表明,诊断时的高铁蛋白血症与化疗药物抗药性、更高的复发率以及较差的总生存率显著相关[38,40]。此外,移植前血清铁蛋白水平升高是对进行同基因异体造血干细胞移植(allo-HSCT)的血液恶性肿瘤患者的总生存率和非复发死亡率的不利预后因素[41,42]。

Due to the increased systematic iron pool, the ferroportin–hepcidin regulatory axis is also dysregulated. The serum hepcidin levels of AL patients are significantly elevated at the initial of diagnosis and decreased after remission, but still higher than that of the healthy controls [, ]. High level of serum hepcidin leads to iron accumulation in leukemia cells which may contribute to leukemogenesis by activating Wnt and nuclear factor kappa-B (NF-κB) signaling pathways [].
由于系统铁库的增加,铁转运蛋白-肝铁素调节轴也失调。AL 患者的血清肝铁素水平在诊断初期明显升高,在缓解后下降,但仍高于健康对照组[43,44]。高水平的血清肝铁素导致白血病细胞中铁的积累,可能通过激活 Wnt 和核因子κB(NF-κB)信号通路促进白血病发生[45-48]。

Meanwhile, the transportation of iron into the circulation from enterocytes and macrophages is blocked, thereby leading to erythropoiesis suppression and iron accumulation in tissues. In addition, patients with AL usually receive multiple red-blood-cell transfusions for hematologic support, which aggravates systematic iron overload. Transfusional iron accumulates in macrophages initially as the senescent red blood cells are eliminated. Then iron accumulates in the liver and later spreads to extrahepatic tissue such as endocrine tissues and the heart []. It has been demonstrated that iron overload can cause damage to bone marrow stem cells resulting in iron-correlated hematopoietic suppression, which is mediated by ROS-related signaling pathway [, ]. In turn, anemia caused by hematopoiesis inhibition makes further dependence on red-blood-cell transfusions, thus creating a vicious cycle.
同时,从肠细胞和巨噬细胞向循环系统输送铁被阻断,从而导致造血抑制和组织中铁的积累。此外,AL 患者通常接受多次红细胞输血以获得造血支持,这加重了系统性铁过载。输血铁最初在巨噬细胞中积累,随着老化的红细胞被清除。然后铁在肝脏中积累,后来扩散到内分泌组织和心脏等肝外组织[49]。已经证明铁过载会对骨髓干细胞造成损害,导致铁相关的造血抑制,这是通过 ROS 相关的信号通路介导的[50, 51]。反过来,由造血抑制引起的贫血使人更加依赖红细胞输血,从而形成恶性循环。

Alternations of iron metabolism in leukemia at cellular levels
在白血病细胞水平上的铁代谢变化

TfR1, also known as CD71, is essential for iron uptake. Leukemia cells have increased expression of TfR1 compared to their normal counterparts and TfR1 is involved in the clonal development of leukemia [, ]. The expression of TfR1 is more prevalent in AML than that in ALL []. Moreover, poorly differentiated primary AML blasts tend to express higher levels of TfR1 than partially differentiated AML blasts []. TfR1 expression is higher in patients with T-cell ALL than patients with B-cell ALL [, ]. Clinical analysis also shows that overexpression of TfR1 in ALL is an adverse prognostic factor []. Transferrin receptor 2 (TfR2), another receptor for Tf, is also overexpressed in AML compared with normal counterparts []. Although both TfR1 and TfR2 are highly expressed in AML, only TfR2 levels were significantly associated with serum iron []. However, elevated mRNA levels of TfR2-α but not TfR1 or TfR2-β contribute to a better prognosis for AML patients []. It may be that TfR2-α increases the sensitivity of leukemia cells to chemotherapy drugs through an iron-independent pathway. The interaction of Tf with TfR can be modulated by HFE protein, thereby limiting the amount of internalized iron. Recent research suggests that HFE gene variants confer increased risk of leukemia that is attributed to the toxic effects of higher levels of iron [, , ]. In addition, the STEAP proteins function as ferric reductases that stimulate cellular uptake of iron through TfR1 []. Analysis of publicly available gene expression data shows that the STEAP1 is significantly overexpressed in AML which is associated with poor overall survival [].
TfR1,也被称为 CD71,对铁的摄取至关重要。白血病细胞相较于其正常对照具有增加的 TfR1 表达,并且 TfR1 参与了白血病的克隆发展[9, 52]。TfR1 的表达在 AML 中比在 ALL 中更为普遍[53]。此外,未分化的原发性 AML 爆发倾向于比部分分化的 AML 爆发表达更高水平的 TfR1[52]。TfR1 的表达在 T 细胞 ALL 患者中高于 B 细胞 ALL 患者[11, 54]。临床分析还显示,在 ALL 中 TfR1 的过度表达是一种不良预后因素[11]。转铁蛋白受体 2(TfR2),另一种 Tf 的受体,与正常对照相比在 AML 中也有过度表达[55]。尽管 TfR1 和 TfR2 在 AML 中均高度表达,但只有 TfR2 水平与血清铁显著相关[56]。然而,TfR2-α的 mRNA 水平升高,而 TfR1 或 TfR2-β没有,有助于 AML 患者的更好预后[56]。也许是 TfR2-α通过一种与铁无关的途径增加了白血病细胞对化疗药物的敏感性。 Tf 与 TfR 的相互作用可以通过 HFE 蛋白调节,从而限制内吞铁的量。最近的研究表明,HFE 基因变体增加了患白血病的风险,这归因于更高水平铁的毒性影响。此外,STEAP 蛋白作为铁还原酶,通过 TfR1 刺激细胞对铁的摄取。对公开可获得的基因表达数据的分析显示,STEAP1 在 AML 中显著过度表达,与整体生存率较差相关。

Transferrin-independent iron is also associated with iron overload in leukemia []. Lipocalin 2 (LCN2), also known as neutrophil gelatinase-associated lipocalin, is a less well studied protein that participates in iron uptake []. It is reported that overexpression of LCN2 was found in patients with AML, ALL, CML and CLL []. LCN2 is indispensable for BCR-ABL-induced leukomogenesis in the mouse model and involved in damaging normal hematopoietic cells []. Paradoxically, the analysis of whole-genome expression profiles from patients with leukemia (including AML, ALL and CLL) shows that LCN2 is downregulated at both mRNA and protein levels compared with healthy controls [, ]. The expression levels of LCN2 in the bone marrow of AML patients are lower than that of normal controls []. Importantly, the levels of LCN2 increased when AML patients achieved complete remission (CR), and decreased in patients with refractory disease []. Those data suggest that LCN2 expression is associated with better prognosis in AML. Therefore, further research is needed to clarify the specific function of LCN2 in different types of leukemia.
转铁蛋白独立铁也与白血病铁过载相关[61]。脂联素 2(LCN2),又称中性粒细胞明胶酶相关脂联素,是一个研究较少的参与铁摄取的蛋白质[62]。据报道,在 AML、ALL、CML 和 CLL 患者中发现 LCN2 的过表达[63-67]。LCN2 对 BCR-ABL 诱导的小鼠白血病发生至关重要,并参与损害正常造血细胞[67]。矛盾的是,对包括 AML、ALL 和 CLL 在内的白血病患者的全基因组表达谱分析显示,与健康对照组相比,LCN2 在 mRNA 和蛋白水平上均下调[64,68]。AML 患者骨髓中 LCN2 的表达水平低于正常对照组[69]。重要的是,当 AML 患者达到完全缓解(CR)时,LCN2 水平增加,而在难治性疾病患者中下降[69]。这些数据表明 LCN2 表达与 AML 的良好预后相关。因此,需要进一步研究澄清 LCN2 在不同类型白血病中的具体功能。

In addition to the abnormality of iron absorption, dysregulation of the iron-storage protein- ferritin also contributes to the pathogenesis and progression of leukemia. Ferritin is composed of two subunit types, termed ferritin heavy chain (FTH) and ferritin light chain (FTL) subunits. The c-MYC protein encoded by the proto-oncogene c-MYC is a transcription factor that activates the expression of iron regulatory protein-2 (IRP2) and represses ferritin expression []. IRP2 can bind to IREs, which results in increased synthesis of TfR1. The consequent increase in iron uptake and reduction in iron storage could raise the intracellular LIP level for metabolic and proliferative purposes102. It has been suggested that c-MYC gene plays an important role in the pathogenesis of lymphocytic leukemia []. T lymphocytic leukemia can be induced by the aberrant expression of c-MYC gene in the zebrafish model []. The suppression of c-MYC gene prevents leukemia initiation in mice, and reducing expression levels of c-MYC gene inhibits cell growth in refractory and relapsed T-cell acute lymphoblastic leukemia (T-ALL) []. FTH is also involved in the NF-κB signaling pathway-mediated cell proliferation, due to that FTH prevents ROS accumulation by iron sequestration, thereby inhibiting the pro-apoptotic c-Jun N-terminal kinase (JNK) signaling pathway []. It is reported that FTH and FTL are overexpressed in both AML cells and leukemia stem cells compared with normal HSCs regardless of genetic subgroups []. Thus, either downregulation or upregulation of ferritin contributes to the pathogenesis and progression of leukemia.
除了铁吸收异常外,铁储存蛋白-铁蛋白的失调也促成了白血病的发病和进展。铁蛋白由两种亚基类型组成,称为铁蛋白重链(FTH)和铁蛋白轻链(FTL)亚基。由原癌基因 c-MYC 编码的 c-MYC 蛋白是一种转录因子,可激活铁调节蛋白-2(IRP2)的表达并抑制铁蛋白的表达。IRP2 可以结合 IREs,导致 TfR1 的合成增加。随之而来的铁摄取增加和铁储存减少可能提高细胞内 LIP 水平以进行代谢和增殖目的。有人提出 c-MYC 基因在淋巴细胞白血病的发病中起重要作用。在斑马鱼模型中,通过异常表达 c-MYC 基因可以诱导 T 淋巴细胞白血病。抑制 c-MYC 基因可以防止小鼠白血病的发生,并降低 c-MYC 基因表达水平可以抑制难治性和复发性 T 细胞急性淋巴细胞白血病(T-ALL)的细胞生长。 FTH 还参与了 NF-κB 信号通路介导的细胞增殖,因为 FTH 通过铁离子封存防止 ROS 积累,从而抑制促凋亡的 c-Jun N-末端激酶(JNK)信号通路[74]。据报道,与正常 HSCs 相比,无论遗传亚组如何,AML 细胞和白血病干细胞中 FTH 和 FTL 都过度表达[40]。因此,铁蛋白的下调或上调都会促成白血病的发病和进展。

Studies have shown that cancer cells increase metabolically available iron not only by increasing iron uptake and regulating iron storage, but also by reducing iron efflux []. Accumulating evidence suggests that iron efflux mediated by FPN1 and controlled by hepcidin is involved in the development and progression of leukemia [, , ]. The expression level of FPN1 was decreased in the majority of AML cell lines, primary AML samples and leukemia progenitor and stem cells []. Low levels of FPN1 in AML are associated with good prognosis, which may occur due to the increased sensitivity to chemotherapy []. Of note, leukemia cells may synthesize hepcidin initiating a local autocrine signaling to degrade membrane FPN1, which needs to be confirmed by further research [].
研究表明,癌细胞不仅通过增加铁的摄取和调节铁的储存来增加代谢可利用铁,还通过减少铁的外流来实现[7]。越来越多的证据表明,由 FPN1 介导的铁外流以及由肝铁蛋白控制的铁外流参与了白血病的发展和进展[43, 75, 76]。FPN1 的表达水平在大多数 AML 细胞系、原发性 AML 样本以及白血病祖细胞和干细胞中降低[76]。AML 中 FPN1 的低水平与良好预后相关,这可能是由于对化疗的增加敏感性[75]。值得注意的是,白血病细胞可能合成肝铁蛋白,启动局部自分泌信号传导以降解膜 FPN1,这需要进一步的研究来证实[77]。

Therapeutic opportunities of targeting iron metabolism in leukemia
在白血病中针对铁代谢的治疗机会

As previously discussed, iron metabolism is dysregulated in patients with AL, which contributes to the development and progression of leukemia. These findings lead to the exploration of therapeutic approaches of targeting iron metabolism, including iron chelators, targeting iron metabolism related proteins and perturbing redox balance based on the high intracellular iron levels (Fig. 2).
正如之前讨论的那样,铁代谢在 AL 患者中失调,这导致了白血病的发展和进展。这些发现促使探索针对铁代谢的治疗方法,包括铁螯合剂、针对铁代谢相关蛋白和扰乱基于高细胞内铁水平的氧化还原平衡(图 2)。

An external file that holds a picture, illustration, etc.
Object name is 13046_2019_1397_Fig2_HTML.jpg

Therapeutic opportunities of targeting iron metabolism in leukemia cells. Iron deprivation by iron chelators or targeting iron metabolism related proteins induces differentiation, apoptosis and cell cycle arrest in leukemia cells. The generation of ROS is involved in the process of inducing cell differentiation. Iron chelators also play anti-leukemia roles through iron-independently regulating multiple signaling pathways or restoring GVL. ADCC is also involved in the anti-leukemia effect of targeting iron metabolism related proteins. Iron metabolism related proteins-targeted delivery systems or iron-based nanoparticles can selectively deliver therapeutic agents into leukemia cells to play enhanced anti-leukemia activity. Furthermore, iron-based nanoparticles elevate iron-catalyzed ROS levels, leading to increased cytotoxicity. Ferroptosis inducers perturb redox balance based on the high intracellular iron levels to induce ferroptosis in leukemia cells
靶向白血病细胞铁代谢的治疗机会。铁螯合剂通过铁离子螯合或靶向铁代谢相关蛋白诱导白血病细胞分化、凋亡和细胞周期停滞。ROS 的产生参与了诱导细胞分化的过程。铁螯合剂还通过独立于铁的调节多条信号通路或恢复 GVL 发挥抗白血病作用。ADCC 也参与了靶向铁代谢相关蛋白的抗白血病效应。铁代谢相关蛋白靶向递送系统或基于铁的纳米颗粒可以选择性地将治疗剂送入白血病细胞,发挥增强的抗白血病活性。此外,基于铁的纳米颗粒提高了铁催化的 ROS 水平,导致细胞毒性增加。诱导铁死亡的剂扰乱基于高胞内铁水平的氧化还原平衡,诱导白血病细胞发生铁死亡。

Iron chelators 铁螯合剂

Iron chelators are natural or synthetic small molecules that can decrease levels of intracellular iron by binding iron with a high affinity and promoting iron excretion. Several iron chelators, such as deferoxamine (DFO) and deferasirox (DFX), are clinically used to treat iron overload including secondary iron overload caused by repeated blood transfusions in patients with leukemia [, ]. Application of iron chelators has been proposed as an alternative anti-leukemia therapy in recent years []. Iron chelators exert anti-leukemia activity through several mechanisms, including lowering the LIP of leukemia cells by chelating intracellular iron, increasing ROS levels and activating MAPK and some other signaling pathways [, , ] (Table 1). The application of iron chelators in patients with leukemia and transfusional iron overload has dual effects of anti-leukemia and reducing the complications associated with iron overload.
铁螯合剂是天然或合成的小分子,可以通过高亲和力结合铁并促进铁的排泄来降低细胞内铁的水平。几种铁螯合剂,如去铁胺(DFO)和去铁酸(DFX),在临床上被用于治疗铁过载,包括由白血病患者反复输血引起的继发性铁过载[78, 79]。近年来,铁螯合剂的应用被提议作为一种替代的抗白血病疗法[80]。铁螯合剂通过几种机制发挥抗白血病活性,包括通过螯合细胞内铁降低白血病细胞的 LIP,增加 ROS 水平并激活 MAPK 和其他一些信号通路[14, 81, 82](表 1)。在白血病患者和输血性铁过载患者中应用铁螯合剂具有抗白血病和减少与铁过载相关并发症的双重效应。

Table 1 表 1

Summary on the role of iron chelators in leukemia
白血病中铁螯合剂的作用总结

NamePropertiesType of leukemia 白血病的类型Mode of action 作用方式Ref.
DFOFDA-approved iron chelator
FDA 批准的铁螯合剂
AML, ALL AML,ALLInhibits proliferation, induces apoptosis, differentiation and G1/S cell cycle arrest; inhibits ribonucleotide reductase, decreases the cyclin-dependent kinase inhibitor p21CIP1/WAF1 protein, induces ROS generation, activates IFN-γ/STAT1 and MAPK pathway.
抑制增殖,诱导凋亡,分化和 G1/S 细胞周期阻滞;抑制核糖核苷酸还原酶,降低细胞周期蛋白激酶抑制剂 p21 蛋白,诱导 ROS 生成,激活 IFN-γ/STAT1 和 MAPK 途径。
[, , ]
[14, 80, 83–85]
DFXFDA-approved iron chelator
FDA 批准的铁螯合剂
AML, ALL AML,ALLInhibits proliferation and induces differentiation; induces ROS generation, inhibits NF-κB and mTOR signaling pathway, restores GVL.
抑制增殖并诱导分化;诱导 ROS 生成,抑制 NF-κB 和 mTOR 信号通路,恢复 GVL。
[, , , , ]
[14, 16, 79, 86, 87]
3-AP3-aminopyridine-2-carboxaldehyde thiosemicarbazone
3-氨基吡啶-2-甲醛硫脲
AML, ALL AML,ALLInhibits ribonucleotide reductase.
抑制核糖核苷酸还原酶。
[]
SIHATridentate iron chelator 三齿铁螯合剂AMLInduces apoptosis, cell cycle arrest and dissipation of the mitochondrial membrane potential.
诱导细胞凋亡,细胞周期停滞和线粒体膜电位耗散。
[]
Dp44mTDi-pyridylketone thiosemicarbazone
二吡啶酮硫脲脒
AML, ALL AML,ALLInduces apoptosis and G1/S cell cycle arrest; activates MAPK pathway.
诱导细胞凋亡和 G1/S 细胞周期阻滞;激活 MAPK 信号通路。
[]
EPThrombopoietin receptor agonist
血小板生成素受体激动剂
AMLInduces differentiation and G1 cell cycle arrest.
诱导分化并使 G1 细胞周期停滞。
[] [15]
CPXFungicideAML, ALL, CMLInhibits ribonucleotide reductase.[, ]

Iron chelators effectively induce cell growth arrest and apoptosis in leukemia cells in a dose- and time-dependent manner [, , ]. Leukemia cells are more sensitive to iron chelators than their normal counterparts, most probably because their rapid proliferation depends on iron. Moreover, supplementation with iron attenuates the anti-leukemia effect of iron chelators, indicating that iron deprivation is one of the anti-leukemia mechanisms of iron chelators [, ]. It has been known for a long time that the rate-limiting step in DNA synthesis is catalyzed by ribonucleotide reductase whose catalytic activity is dependent on the continual presence of iron []. Iron deprivation blocks the synthesis of deoxyribonucleotides to inhibit proliferation in leukemia cells []. In consistent with the inhibition of DNA synthesis, iron deprivation appears to induce G1/S cell cycle arrest in leukemia cells []. Additionally, iron chelation decreases the cyclin-dependent kinase inhibitor p21CIP1/WAF1 protein through post-transcriptional regulation to achieve G1/S cell cycle arrest and induce apoptosis []. The mitogen-activated protein kinase (MAPK) pathway and the caspase pathway are also involved in the cell cycle arrest and apoptosis induced by iron depletion [, ].
铁螯合剂以剂量和时间依赖的方式有效地诱导白血病细胞生长停滞和凋亡[14, 16, 93]。白血病细胞对铁螯合剂比它们的正常对应物更敏感,这很可能是因为它们的快速增殖依赖于铁。此外,铁的补充削弱了铁螯合剂的抗白血病作用,表明铁剥夺是铁螯合剂的抗白血病机制之一[16, 83]。长期以来人们已经知道 DNA 合成的速率限制步骤是由核糖核苷酸还原酶催化的,其催化活性依赖于持续存在的铁[94]。铁剥夺阻断了脱氧核苷酸的合成,从而抑制了白血病细胞的增殖[84]。与 DNA 合成的抑制一致,铁剥夺似乎诱导白血病细胞 G1/S 细胞周期停滞[95]。此外,铁螯合剂通过转录后调控降低了细胞周期蛋白依赖激酶抑制剂 p21 蛋白,实现 G1/S 细胞周期停滞并诱导凋亡[96]。 有丝分裂原活化蛋白激酶(MAPK)途径和半胱氨酸蛋白酶途径也参与了铁耗竭诱导的细胞周期停滞和凋亡[16, 82]。

Given the importance of iron in generation of free radicals and the critical role of ROS in HSCs metabolism, the role of ROS in anti-leukemia effects of iron deprivation has been studied []. Although iron deprivation by iron chelators may decrease ROS by reducing substrates for Fenton reaction, some iron chelators were shown to induce generation of ROS in a dose and time-dependent manner [, ]. Importantly, iron deprivation induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/ macrophages by increasing ROS levels [, , ]. Iron deprivation–induced differentiation depends on activation of the downstream signaling pathways of oxidant stress response, including the MAPK/JNK signaling pathway [, ].
考虑到铁在自由基生成中的重要性以及 ROS 在 HSC 代谢中的关键作用,已经研究了铁剥夺对铁剥夺抗白血病作用中 ROS 的作用。尽管铁螯合剂通过减少 Fenton 反应底物可能会减少 ROS,但一些铁螯合剂被证明会以剂量和时间依赖的方式诱导 ROS 的生成。重要的是,铁剥夺通过增加 ROS 水平诱导白血病爆发和正常骨髓前体细胞向单核细胞/巨噬细胞的分化。铁剥夺诱导的分化取决于氧化应激响应的下游信号通路的激活,包括 MAPK/JNK 信号通路。

Iron chelators may play anti-leukemia roles through iron-independently regulating multiple signaling pathways related to cell survival. DFO induces apoptosis in T-ALL cells by reinstating the activation of interferon-γ (IFN-γ) /signal transducer and activator of transcription 1 (STAT1) pathway which is attenuated in T-ALL cells shielding them from the anti-proliferative effect of IFN-γ []. DFX also exerts its anti-leukemia activity by inhibiting extracellular signal-regulated kinase (ERK) phosphorylation, repressing the mammalian target of rapamycin (mTOR) and NF-κB signaling pathway [, , ].
铁螯合剂可能通过独立于铁元素的方式调节与细胞存活相关的多条信号通路,发挥抗白血病作用。DFO 通过恢复干扰素-γ(IFN-γ)/信号转导子和转录激活因子 1(STAT1)通路的激活,在 T-ALL 细胞中诱导凋亡,这一通路在 T-ALL 细胞中被削弱,使其免受 IFN-γ的抗增殖作用[99]。DFX 还通过抑制细胞外信号调节激酶(ERK)磷酸化、抑制哺乳动物雷帕霉素靶蛋白(mTOR)和 NF-κB 信号通路来发挥其抗白血病活性[81,100,101]。

Iron chelators not only have anti-leukemia effects singly, but also exhibit synergistic anti-leukemia effects when combined with traditional chemotherapy drugs. DFO increases the sensitivity of human myeloid leukemia cells to doxorubicin (DOX) and arabinoside cytosine (Ara-C) [, ]. DFO combined with arsenic trioxide (ATO) has synergistic effects on anti-proliferation and inducing apoptosis in APL []. DFO can be synergized with L-asparaginase or dexamethasone to decrease survival of leukemia cells or associated with DNA-damage inducing agents to increase apoptosis in T-ALL []. DFX shows synergistic effect with the DNA methyl transferase inhibitor decitabine (DAC) on apoptosis and cell cycle arrest in leukemia cell lines []. However, it has been suggested that DFX creates a synergistic effect combined with Ara-C, while antagonizes the anti-leukemia effect of DOX in the treatment of AML []. Therefore, further studies are needed to confirm the effects of iron chelators combined with different traditional chemotherapy drugs to provide information on how to select drug combination for the treatment of leukemia in future clinical trials.
铁螯合剂不仅单独具有抗白血病作用,而且与传统化疗药物结合时还表现出协同的抗白血病效果。DFO 增加人骨髓性白血病细胞对阿霉素(DOX)和阿糖胞苷(Ara-C)的敏感性[102, 103]。DFO 与三氧化二砷(ATO)结合对 APL 的抗增殖和诱导凋亡具有协同效应[104]。DFO 可以与 L-天冬氨酸酶或地塞米松协同作用,降低白血病细胞的存活率,或与诱导 DNA 损伤的药物结合,增加 T-ALL 中的凋亡[9]。DFX 与 DNA 甲基转移酶抑制剂地西他滨(DAC)在白血病细胞系中的凋亡和细胞周期阻滞中显示出协同效应[88]。然而,有人提出 DFX 与阿糖胞苷结合产生协同效应,而与 DOX 结合则拮抗 AML 治疗中的抗白血病效果[89]。因此,需要进一步研究以确认铁螯合剂与不同传统化疗药物结合的效果,为未来临床试验中选择白血病治疗药物组合提供信息。

In addition to traditional iron chelating agents, some new iron chelators have been developed to improve the bioavailability and have also been identified to play anti-leukemia roles. For example, Triapine (3-AP) decreases the DNA synthetic capacity of circulating leukemia cells when administered in patients with refractory leukemia []. Salicylaldehyde isonicotinoyl hydrazine analogues (SIHA) is reported to dose-dependently induce apoptosis, cell cycle arrest and dissipation of the mitochondrial membrane potential in AML cells []. Additionally, the synthetic chelator di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) shows a significantly high affinity with Fe2+ and allows bound iron to participate in redox reactions and free radical formation []. Dp44mT has been demonstrated to inhibit the proliferation of leukemia cells with a G1/S phase arrest, accompanied by caspase-mediated induction of apoptosis []. Importantly, several agents used in clinical practice for other indications have also been discovered to function as iron chelators. Eltrombopag (EP), a small-molecule nonpeptide thrombopoietin receptor agonist, is reported to block the cell cycle in G1 phase and induce differentiation of leukemia cells through reducing free intracellular iron []. The antimicrobial ciclopirox olamine (CPX) has been identified to functionally chelate intracellular iron, which is important for its anti-leukemia cytotoxicity []. Further study demonstrates that iron chelation of CPX mediates inhibition of Wnt/β-catenin signaling and thus reduces expression of the Wnt target gene AXIN2 in leukemia cells of patients with AML [].
除了传统的铁螯合剂外,还开发了一些新的铁螯合剂,以提高生物利用度,并且已被确认具有抗白血病作用。例如,三吡啶(3-AP)在难治性白血病患者中使用时,降低了循环白血病细胞的 DNA 合成能力。据报道,水杨醛异烟肼肼类似物(SIHA)能够剂量依赖性地诱导 AML 细胞凋亡、细胞周期阻滞和线粒体膜电位耗散。此外,合成螯合剂二-2-吡啶酮-4,4-二甲基-3-硫代半胱氨酸酮(Dp44mT)与 Fe 2+ 有显著高的亲和力,使结合的铁参与氧化还原反应和自由基形成。Dp44mT 已被证明能够通过 G1/S 期阻滞抑制白血病细胞的增殖,伴随着半胱氨酸介导的凋亡诱导。重要的是,一些用于其他适应症的临床实践药物也被发现具有铁螯合剂的功能。 厄洛替尼(EP)是一种小分子非肽类血小板生成素受体激动剂,据报道能够阻断细胞周期处于 G1 期,并通过减少细胞内游离铁而诱导白血病细胞分化[15]。抗微生物环丙沙星醇胺(CPX)已被确认能够功能性螯合细胞内铁,这对其抗白血病细胞毒性很重要[107]。进一步研究表明,CPX 的铁螯合作用介导了 Wnt/β-连环蛋白信号通路的抑制,从而减少 AML 患者白血病细胞中 Wnt 靶基因 AXIN2 的表达[87]。

Iron chelators have also shown promising anti-leukemia effects in human trials. A 73-year old male patient with relapsed, refractory acute monocytic leukemia achieved hematological and cytogenetic CR after application of DFX with no additional chemotherapy for 12 months []. Moreover, a 69-year-old male patient with relapsed AML had decreased peripheral blast counts accompanied by increased monocytic differentiation and partially reversed pancytopenia after DFO and vitamin D therapy []. In addition to AML, a six weeks old infant with ALL, who failed to attain remission with induction chemotherapy (IC), had peripheral blast counts significantly reduced accompanied by myelomonocytic differentiation after treatment with DFO and Ara-C []. In addition to these sporadic success stories, some clinical trials have also demonstrated the anti-leukemia effect of iron chelators (Table (Table2,2, refer to the website: https://clinicaltrials.gov/). A retrospective case control study has shown that DFO administration after allo-HSCT in patients with hematological malignancies reduced relapse incidence and improved disease-free survival []. A pilot clinical trial showed that DFO administration prior to allo-HSCT in patients with AL or MDS resulted in good outcomes, with no death or relapse, at a median follow-up of 20 months []. Similarly, a retrospective observational study of 339 patients demonstrates that the oral chelator DFX significantly reduces relapse mortality and restores graft-vs-leukemia effects (GVL) after allo-HSCT in AML, which is evidenced by high proportion of NK cells and suppressed regulatory T cells in peripheral blood []. Importantly, studies have shown that DFX, at concentrations equal to those clinically used or even at higher ones, has no harm to the viability of normal HSCs [, ]. DFX is even reported to have a beneficial effect on the hematopoietic recovery in patients after allo-HSCT []. A multicenter prospective cohort study (PCS) on the impact of DFX on relapse after allo-HSCT in patients with AML is recruiting (NCT03659084). Moreover, a randomized controlled trial (RCT) and a single group assignment (SGA) clinical trial have also been registered to clarify the effect of DFX on response rate of AL patients who are not fit for standard chemotherapy regimens (NCT02413021, NCT02341495). Those clinical trials will more strongly demonstrate the effect of DFX on the treatment of leukemia and post-transplant hematopoiesis.
铁螯合剂在人类试验中也显示出有希望的抗白血病效果。一名 73 岁的男性患者患有复发性、难治性的急性单核细胞白血病,在应用 DFX 治疗 12 个月后,在无需额外化疗的情况下达到了血液学和细胞遗传学的完全缓解[108]。此外,一名 69 岁的男性患者患有复发性 AML,在接受 DFO 和维生素 D 治疗后,外周爆发细胞计数减少,单核细胞分化增加,全血细胞减少症部分逆转[14]。除 AML 外,一名六周大的婴儿患有 ALL,在诱导化疗(IC)未能达到缓解的情况下,在接受 DFO 和 Ara-C 治疗后,外周爆发细胞计数显著减少,髓单核细胞分化增加[93]。除了这些零星的成功案例,一些临床试验也证明了铁螯合剂的抗白血病效果(表 2,请参阅网站:https://clinicaltrials.gov/)。一项回顾性病例对照研究显示,在造血干细胞移植后给予 DFO 治疗的患有血液恶性肿瘤的患者,可以降低复发率并改善无病生存率[109]。 一项初步临床试验显示,在 AL 或 MDS 患者中,DFO 在进行异基因造血干细胞移植(allo-HSCT)前的应用取得了良好的效果,在 20 个月的中位随访期内没有死亡或复发[110]。同样,一项回顾性观察性研究涉及 339 名患者表明,口服螯合剂 DFX 显著降低了 AML 患者在 allo-HSCT 后的复发死亡率,并恢复了移植物抗白血病效应(GVL),这一点在外周血中 NK 细胞比例高和调节性 T 细胞受抑制的证据中得到体现[111]。重要的是,研究表明,DFX 在临床使用的浓度甚至更高浓度下对正常造血干细胞的存活没有危害[85,112]。甚至有报道称 DFX 对 allo-HSCT 后患者的造血恢复有益[113]。一项关于 DFX 对 AML 患者进行 allo-HSCT 后复发影响的多中心前瞻性队列研究(PCS)正在招募中(NCT03659084)。 此外,还注册了一项随机对照试验(RCT)和一项单组分配(SGA)临床试验,以澄清对于不适合标准化疗方案的 AL 患者 DFX 对治疗反应率的影响(NCT02413021,NCT02341495)。这些临床试验将更有力地证明 DFX 对白血病治疗和移植后造血的影响。

Table 2 表 2

Basic characteristics of clinical trials on iron chelators in the treatment of leukemia
白血病治疗中铁螯合剂临床试验的基本特征

NameTrial ID 试验编号StatusDesignNConditionTreatmentOutcome (/Measures) 结果(/措施)
DFONCT00658411TerminatedSGA5AL, MDS AL,MDSDFO (50 mg/kg/d) for ≥2 weeks prior to HSCT.
DFO(50 毫克/千克/天)在进行 HSCT 之前至少 2 周。
At a median follow-up of 20 months, no patient relapsed or died. Estimated 2-year OS and PFS are both 100%. No patient developed grade III/IV acute GVHD or VOD.
在中位随访 20 个月后,没有患者复发或死亡。预计 2 年生存率和无进展生存率均为 100%。没有患者出现 III/IV 级急性移植物抗宿主病或静脉闭塞性疾病。
DFXNCT03659084RecruitingPCS150AML, MDS AML,MDSDFX (10 mg/kg/d) at 6 months after allograft, for 3–6 months.
移植后 6 个月,DFX(10 毫克/千克/天)持续 3-6 个月。
RFS (at 2 years), cumulative incidence of GVHD (at 3 months, 1 and 2 years) and toxicity of DFX (an average of 4 years).
RFS(2 年时)、GVHD 的累积发生率(3 个月、1 年和 2 年时)以及 DFX 的毒性(平均 4 年)。
NCT02413021UnknownRCT40ALAra-C (20 mg/m2 bid, for 10 days, repeated every 30 days) with or without DFX (20 mg/kg/d)
Ara-C(20 毫克/平方米,每日两次,连续 10 天,每 30 天重复一次),可搭配或不搭配 DFX(20 毫克/千克/天)
CR or PR (at first month).
CR 或 PR(第一个月)。
NCT02341495UnknownSGA29AML (age ≥ 65 years) AML(年龄≥65 岁)DFX (20 mg/kg/d) with VD3 (4000 IU/d) and Azacitidine (75 mg/m2/d) on d1–7, repeated every 28 days for 8 cycles.
DFX(20 毫克/千克/天)与 VD3(4000 国际单位/天)和阿扎胞苷(75 毫克/平方米/天)在第 1-7 天,每 28 天重复 8 个周期。
CR, OS, PFS and DOR (up to 5 years).
CR,OS,PFS 和 DOR(长达 5 年)。
3-APNCT00064090CompletedPh-I32AL, MDS3-AP (105 mg/m2/d) followed by Ara-C (100–800 mg/m2/d) on days 1–5, repeated every 21 days for up to 6 courses in the absence of PD or toxicity.Of 31 evaluable patients, 4 (13%) achieved a CR. The median DOR for responders was 36 weeks. The median OS for all patients and responders was 30.9 weeks and 12.6 weeks, respectively. DLTs included mucositis, neutropenic colitis, neuropathy and hyperbilirubinemia.
NCT00077181CompletedPh-I25AML, CML-APAra-C (100 mg/m2/d, d1–5) and 3-AP (50/75/100 mg/m2/d, d2–5), repeated every 28 days for up to 4 courses in the absence of PD or toxicity.The OR rate was 3/25, with a CR rate of 2/25. An elderly patient with primary refractory AML had HI. DLTs included methemoglobinemia, cerebellar toxicity, sensorimotor peripheral neuropathy and mucositis.
NCT00077558CompletedPh-I33AL, MPD

Group A: 3-AP (105 mg/m2/d, d1–5) followed by fludarabine (15–30 mg/m2/d, d1–5);

Group B: 3-AP (200 mg/m2, d1) followed by fludarabine (15–30 mg/m2/d, d1–5); repeated every 21 days until PD or toxicity.

CR and PR occurred in group A (5/24, 21%), with CR occurring at the 2 highest fludarabine doses (2/12, 17%). No CR or PR occurred in group B. Response durations were short and ranged from 1.5 to 7 months. DLTs included fever, methemoglobinemia and metabolic acidosis.
NCT00381550CompletedSGA37sAML, CML-BP, MPD3-AP (105 mg/m2/d) followed by fludarabine (30 mg/m2/d) on d1–5, repeated every 21 days until PD or toxicity.The OR rate was 49% (18/37), with a CR rate of 24% (9/37). In sAML, the OR rate and CR rate were 48 and 33%, respectively. Median OS of the entire cohort was 6.9 months, with a median OS of overall responders of 10.6 months.
CPXNCT00990587CompletedPh-I23AL, CML, CLL, MDS, Hodgkin’s DiseaseCPX (5–80 mg/m2/d d1–5, once daily), repeated every 21 days, or CPX (80 mg/m2/d d1–5, four times daily); repeated every 21 days for multiple cycles in the absence of PD or toxicity.No patients achieved a CR or PR, but HI was observed in 2 patients. Disease stabilization occurred in 5 additional AML patients and 1 MDS patient. DLTs were gastrointestinal toxicities and knee pain.
EPNCT00903422CompletedRCT98MDS, sAML/MDSEP (50-300 mg/d) or placebo until PD or toxicity.No patients had a CR, but two (3%) patients in the EP group had PR. Median OS and PFS were longer in the EP group than in the placebo group (27.0 weeks vs 15.7 weeks, 8.1 weeks vs 6.6 weeks, respectively). HI was recorded in 23 (36%) EP patients and eight (24%) placebo patients. PD was recorded in 40 (63%) patients in the EP group and 22 (65%) patients in the placebo group. The incidence of drug-related adverse events of grade 3 or higher were similarly in the two groups.
NCT01890746CompletedRCT149AML (except M3 or M7)IC: daunorubicin (90 mg/m2/d, 60 mg/m2/d for age > 60 years, d1–3) and Ara-C (100 mg/m2/d, d1–7); with EP (200 mg/d, 100 mg/d for east Asians) or placebo until PLT ≥200 × 109/L, or remission, or after 42 days from the start of IC.The EP group and the placebo group achieved a similar OR rate (70% vs 73%), and so did the CR rate and PR rate. Median DOR was longer in the placebo group than in the EP group (not reached vs 22 months). Median OS was shorter in the EP group than in the placebo group (15.4 months vs 25.7 months), and more patients died in the EP group. The incidence of LVEF events and the frequency of AE were similar in both groups during IC. However, there was a trend for more serious AE, including fatal AE, in the EP group.
NCT03603795RecruitingRCT110AML (age > 60 years, except M3 or M7)IC (daunorubicin 60 mg/m2/d d1–3; Ara-C 100 mg/m2/d d1–7 and Lomustine 200 mg/m2 d1), with EP (200 mg/d, 100 mg/d for east Asians) or placebo from d11 to response evaluation or PLT > 100 × 109/L (maximum to d45).OR rate and percentage of patients with PLT > 100 × 109/L (at d45), OS and RFS (at 1 year), OS (at 2, 3 and 5 years).
NCT02446145UnknownRC238AML (age ≥ 65 years, except M3)Decitabine (20 mg/m2/d d1–5, repeated every 28 days) with EP or placebo (200 mg/d from d1, 100 mg/d for east Asians, and dose modification up to 300 mg/d, 50–150 mg for east Asians).OR, OS, RFS and treatment change-free survival (up to 4 years).

Refer to the website: https://clinicaltrials.gov/
请参考网站:https://clinicaltrials.gov/

There are also some clinical trials to study the safety and the anti-leukemia effect of new iron chelators. A dose-escalating phase I study (Ph-I) showed that 4 out of 31 patients (the majority with refractory AL) achieved a CR with a longer median survival after treatment with 3-AP and Ara-C []. Dose-limiting toxicities (DLTs) in the study were mucositis, neutropenic colitis, neuropathy and hyperbilirubinemia []. In another Ph-I study, similar DLTs were also observed and the toxicities of combination of 3-AP and Ara-C were similar to that of Ara-C singly at the same dose and schedule []. 3-AP followed by the adenosine analog fludarabine in adult patients with refractory AL showed controllable drug-related toxicities, including fever, methemoglobinemia and metabolic acidosis []. In a single group assignment (SGA) phase II trial in patients with secondary AML (sAML), chronic myeloid leukemia in blast phase (CML-BP) or MPD, 3-AP followed by fludarabine achieved an overall response (OR) rate of 49% (18/37), with a CR rate of 24% (9/37), which further demonstrates the promise of 3-AP to be clinically applied in the treatment of leukemia []. A phase I study of CPX showed that once-daily dosing was well tolerated in patients with relapsed or refractory AML and 2 patients had hematologic improvement (HI) while no patients achieved complete remission or partial remission (PR) []. The thrombopoietin receptor agonist EP has been approved for the treatment of patients with chronic immune thrombocytopenia and refractory severe aplastic anemia. The role of EP in patients with leukemia has been investigated in several clinical trials. A multicenter RCT reported that EP had an acceptable safety profile in patients with advanced MDS or sAML/MDS (secondary acute myeloid leukemia after myelodysplastic syndrome) and 2 (3%) patients achieved PR []. However, data from another multicenter RCT do not support combining EP with IC in patients with AML []. The addition of EP didn’t improve the disease response, but there was a shorter OS and a trend for more serious adverse events (AE) in the EP group []. Further clinical studies, conducted in larger patient populations with more rigorous design are ongoing to assess the safety and the use of EP in elderly patients with AML, except M3 or acute megakaryocytic leukemia (M7) (NCT03603795; NCT02446145).
还有一些临床试验研究新铁螯合剂的安全性和抗白血病效果。一项逐渐增加剂量的 I 期研究显示,在 31 名患者中有 4 名(大多数为难治性 AL 患者)在接受 3-AP 和 Ara-C 治疗后实现了 CR,并且存活中位数更长[114]。研究中的剂量限制性毒性(DLTs)包括粘膜炎、中性粒细胞减少性结肠炎、神经病和高胆红素血症[114]。在另一项 I 期研究中,也观察到类似的 DLTs,并且 3-AP 和 Ara-C 联合治疗的毒性与相同剂量和方案下的单独 Ara-C 的毒性相似[115]。3-AP 接着腺苷类似物氟达拉滨治疗难治性 AL 成人患者显示出可控制的药物相关毒性,包括发热、高甲红蛋白血症和代谢性酸中毒[116]。在一项单组分配(SGA)II 期试验中,对具有继发 AML(sAML)、慢性髓性白血病爆发期(CML-BP)或 MPD 的患者,3-AP 接着氟达拉滨实现了 49%的总体反应率(18/37),CR 率为 24%(9/37),进一步证明了 3-AP 在白血病治疗中具有临床应用前景[117]。 CPX 的 I 期研究显示,每日一次的剂量在复发或难治性 AML 患者中耐受良好,有 2 名患者出现血液学改善(HI),但没有患者达到完全缓解或部分缓解(PR)[107]。血小板生成素受体激动剂 EP 已获批用于治疗慢性免疫性血小板减少症和难治性重型再生障碍性贫血患者。EP 在白血病患者中的作用已在多项临床试验中进行了研究。一项多中心 RCT 报告称,在晚期 MDS 或 sAML/MDS(骨髓增生异常综合征后继发的继发性急性髓样白血病)患者中,EP 具有可接受的安全性,有 2 名(3%)患者达到 PR[118]。然而,另一项多中心 RCT 的数据不支持将 EP 与 IC 联合用于 AML 患者[119]。EP 的添加并未改善疾病反应,但 EP 组的 OS 较短,且存在更多严重不良事件(AE)的趋势[119]。 进一步的临床研究正在进行中,针对更大规模的患者群体,采用更严格的设计,以评估在老年 AML 患者中使用 EP 的安全性和有效性,除了 M3 或急性巨核细胞白血病(M7)(NCT03603795;NCT02446145)。

Current preclinical and clinical studies have confirmed the anti-leukemia effect of both traditional iron chelating agents and some new iron chelators. Notwithstanding the wide use of traditional iron chelating agents in the treatment of iron overload caused by repeated blood transfusions, the optimal doses for anti-leukemia treatment and their safety remain to be further studied. Systematic studies, which evaluate not only the toxicity but also the anti-leukemia effect of those new iron chelators in different subtypes of leukemia are also needed. More research will focus on the combination effect of iron chelators with different chemotherapeutic agents and the best scheme of their combination to bring to fruition their application in the clinical management of leukemia.
目前的临床前和临床研究已经证实了传统铁螯合剂和一些新型铁螯合剂的抗白血病效果。尽管传统铁螯合剂在治疗由反复输血引起的铁过载方面被广泛使用,但用于抗白血病治疗的最佳剂量及其安全性仍需进一步研究。有必要进行系统研究,评估这些新型铁螯合剂在不同亚型白血病中的毒性和抗白血病效果。更多的研究将集中在铁螯合剂与不同化疗药物的联合效应,以及它们的最佳联合方案,以实现它们在白血病临床管理中的应用。

Targeting iron metabolism related proteins
针对与铁代谢相关的蛋白质

In addition to iron chelators, depletion of intracellular iron can be achieved by targeting iron metabolism-related proteins. As a receptor that is critical for cellular iron uptake, TfR is an attractive target for depleting intracellular iron of leukemia cells. Both inhibitory and non-inhibitory anti-TfR monoclonal antibodies result in decreased Tf binding sites and subsequently inhibit Tf uptake, leading to growth inhibition in leukemia cells by iron deprivation []. A24, a monoclonal antibody directed against TfR1, competitively inhibits Tf binding to TfR1 and induces TfR1 endocytosis in lysosomal compartments where the receptor is degraded []. A24 inhibits proliferation and induces differentiation of leukemia cells by depleting the intracellular iron [, , ]. Combinations of two or more anti-TfR monoclonal antibodies can interact synergistically to play anti-leukemia effects, which correlates with their ability to block Tf-mediated iron uptake []. When combined with DFO, the monoclonal antibodies against TfR produce greater damage to iron uptake and a rapid depletion of iron pools [, ]. In addition to the deprivation of intracellular iron, JST-TfR09, an IgG monoclonal antibody to human TfR1, also plays an anti-leukemia effect through antibody-dependent cell-mediated cytotoxicity (ADCC) []. Though anti-TfR monoclonal antibodies show promising effects in the treatment of leukemia in those preclinical studies, there are some limitations for their clinical application. TfR is not specifically expressed in leukemia cells, it is also displayed by a wide variety of normal tissues. Depression of stem cell activity in bone marrow and altered distribution of red blood cell progenitors were observed in leukemia-bearing mice after receiving repeated injections of anti-TfR antibody []. A phase I trial of IgA monoclonal anti-TfR antibody 42/6 showed that 42/6 was generally well tolerated, although only transient, mixed antitumor responses were observed in patients with hematological malignancies []. Nevertheless, 42/6 also induced apparent down-regulation of TfR display by bone marrow cells, which could impair production of red blood cells []. These observations raised major concerns for the use of anti-TfR antibodies that maturing erythroid cells would be severely affected by anti-TfR antibodies, leading to anemia.
除了铁螯合剂外,通过靶向铁代谢相关蛋白可以实现细胞内铁的耗竭。作为细胞铁摄取的关键受体,转铁蛋白受体(TfR)是耗竭白血病细胞内铁的一个理想靶点。抑制和非抑制性的抗 TfR 单克隆抗体均导致 Tf 结合位点减少,随后抑制 Tf 摄取,通过铁剥夺导致白血病细胞生长受阻。针对 TfR1 的单克隆抗体 A24 竞争性地抑制 Tf 与 TfR1 的结合,并诱导 TfR1 在溶酶体区内吞作用,受体在此处被降解。A24 通过耗竭细胞内铁来抑制增殖并诱导白血病细胞分化。两种或更多抗 TfR 单克隆抗体的组合可以协同作用,发挥抗白血病效果,这与它们阻断 Tf 介导的铁摄取能力相关。与 DFO 结合使用时,针对 TfR 的单克隆抗体会对铁摄取造成更大破坏,并迅速耗竭铁库。 除了细胞内铁的缺乏外,JST-TfR09,一种针对人类 TfR1 的 IgG 单克隆抗体,还通过抗体依赖的细胞介导的细胞毒作用(ADCC)发挥抗白血病作用。尽管抗 TfR 单克隆抗体在白血病治疗中显示出有希望的效果,但它们在临床应用中存在一些限制。TfR 不仅在白血病细胞中表达,还在各种正常组织中显示。在接受抗 TfR 抗体重复注射后,观察到白血病小鼠骨髓干细胞活性下降和红细胞祖细胞分布改变。IgA 单克隆抗 TfR 抗体 42/6 的 I 期试验显示,42/6 总体上耐受性良好,尽管在患有血液恶性肿瘤的患者中观察到了暂时的混合抗肿瘤反应。然而,42/6 还明显导致骨髓细胞 TfR 表达下调,可能影响红细胞的产生。 这些观察引起了对抗 TfR 抗体使用的重大关注,即成熟的红细胞会受到抗 TfR 抗体的严重影响,导致贫血。

Taking the upregulation of the TfR on the leukemia cell surface into account, various TfR-targeted delivery systems consisting targeting ligands, carriers, and therapeutic agents have been developed. Not only to mention that TfR expression is significantly upregulated on leukemia cells, the binding of ligands to TfR also elicits very effective receptor-mediated endocytosis []. The ligands targeting TfR mainly include Tf, monoclonal antibodies, single-chain antibody fragment (scFv) and targeting peptides. Initially, these ligands are directly linked to some therapeutic agents. Conjugating artemisinin to a TfR targeting peptide shows anti-leukemia activity with a significantly improved leukemia cell selectivity []. With the development of technology, some carriers have been developed to link ligands and therapeutic agents for improving the efficacy and safety in therapeutic agent delivery, among which liposomes, dendritic molecules and nanoparticles have been widely used [, ]. A human serum albumin based nanomedicine, which is loaded with sorafenib and conjugated ligands for TfR specific delivery, can play enhanced anti-leukemia activity in drug resistant CML patient samples []. The sensitivity of leukemia cells to imatinib can also be enhanced by encapsulated with TfR targeted liposomes []. It has been reported that anti-TfR-coupled liposomes are more effective for intracellular drug delivery to T-ALL cells than anti-Tac conjugates, a monoclonal antibody directing against the interleukin-2 receptor []. Tf conjugated lipopolyplexes carrying G3139, an antisense oligonucleotide for B-cell lymphoma-2 (Bcl-2), induce remarkable pharmacological effect of Bcl-2 inhibition in AML cells and are more effective than free G3139 or non-targeted lipid nanoparticles []. Furthermore, iron chelator DFO can up-regulate TfR expression in leukemia cells, resulting in a further increase in anti-leukemia effect of TfR-targeted lipid nanoparticles carrying G3139 []. Because traditional chemotherapy drugs are difficult to pass the blood-brain barrier, leukemia cells sheltered in the central nervous system become the source of extramedullary recurrence of leukemia. Accumulating evidences have suggested that TfR-targeted delivery systems are promising strategies in enhancing the blood-brain barrier penetration []. More clinical trials of TfR-targeted delivery systems are expected to further improve their therapeutic potential.
考虑到白血病细胞表面 TfR 的上调,已经开发了各种 TfR 靶向递送系统,包括靶向配体、载体和治疗剂。不仅要提到 TfR 在白血病细胞上显著上调,配体与 TfR 的结合还引发非常有效的受体介导的内吞作用。靶向 TfR 的配体主要包括转铁蛋白(Tf)、单克隆抗体、单链抗体片段(scFv)和靶向肽。最初,这些配体直接与一些治疗剂相连。将青蒿素与 TfR 靶向肽结合显示出抗白血病活性,且白血病细胞选择性显著提高。随着技术的发展,一些载体已被开发用于连接配体和治疗剂,以提高治疗剂递送的疗效和安全性,其中脂质体、树突状分子和纳米粒子被广泛使用。 一种基于人血清白蛋白的纳米药物,其中装载了索拉非尼和结合配体以进行 TfR 特异性递送,可以在耐药 CML 患者样本中发挥增强的抗白血病活性[130]。白血病细胞对伊马替尼的敏感性也可以通过包埋 TfR 靶向脂质体来增强[131]。据报道,抗 TfR 偶联脂质体对 T-ALL 细胞的细胞内药物递送更有效,比抗白细胞介素-2 受体的单克隆抗体抗 Tac 结合物更有效[129]。携带 B 细胞淋巴瘤-2(Bcl-2)的反义寡核苷酸 G3139 的 Tf 结合脂质聚合物复合物在 AML 细胞中诱导出 Bcl-2 抑制的显著药理效应,比游离的 G3139 或非靶向脂质纳米粒子更有效[132]。此外,铁螯合剂 DFO 可以上调白血病细胞中的 TfR 表达,导致携带 G3139 的 TfR 靶向脂质纳米粒子的抗白血病效应进一步增加[133]。 由于传统化疗药物难以通过血脑屏障,藏匿在中枢神经系统中的白血病细胞成为白血病骨外复发的来源。越来越多的证据表明,以转铁蛋白受体为靶向的传递系统是增强血脑屏障穿透的有前途的策略。预计更多的转铁蛋白受体靶向传递系统的临床试验将进一步提高其治疗潜力。

In addition to TfR, other iron metabolism related proteins are also promising therapeutic targets. It has been suggested that STEAP can be targeted by specific CD4+T cells in non-small-cell lung carcinoma []. This provides a basis for STEAP to be used as an immunotherapy target for leukemia. Targeting ferritin results in dramatic anti-leukemia effect, suggesting that the pharmacological modulation of the storage protein of iron could be a new therapeutic target in leukemia []. Another consideration is that secreted ferritin can be absorbed by the TfR. Ferritin has also been commonly used for drug targeting because of its nanocage structure, which make it possible to deliver anti-leukemia drugs in the future []. Such naturally occurring structure is superior to synthetic ones due to its low toxicity and negligible immune responses. It’s reported that c-MYC contributes to drug resistance in AML and inhibition of c-MYC induces differentiation, apoptosis, and cell cycle arrest in leukemia cells [, ].
除了 TfR 之外,其他与铁代谢相关的蛋白质也是有前途的治疗靶点。有人提出 STEAP 可以被非小细胞肺癌中特定的 CD4 + T 细胞所靶向[135]。这为将 STEAP 用作白血病免疫治疗靶点提供了依据。靶向铁蛋白会产生显著的抗白血病效果,表明通过药理学调节铁的储存蛋白可能成为白血病的新治疗靶点[136]。另一个考虑是分泌的铁蛋白可以被 TfR 吸收。铁蛋白也因其纳米笼结构而常用于药物靶向,这使得未来可以将抗白血病药物传递给白血病患者[137]。这种天然存在的结构由于其低毒性和可忽略的免疫反应而优于合成结构。据报道,c-MYC 在 AML 中促进药物耐药性,抑制 c-MYC 可诱导白血病细胞的分化、凋亡和细胞周期阻滞[138, 139]。

It appears logic to apply approaches targeting iron-associated proteins as therapeutic measures due to their expression differences between normal cells and leukemia cells. However, monoclonal antibodies targeting iron-associated proteins may also damage normal cells, especially those with high iron demand, because iron-associated proteins are not specific in leukemia cells. To conquer the limitations associated with conventional chemotherapy, TfR or ferritin targeted drug delivery systems have been introduced. Furthermore, the combination of those drug delivery systems and molecular targeted drugs brings hope to increase drug efficacy and alleviate the toxicity caused by non-specificity of iron metabolism-related proteins. As prospective clinical data is still missing, approaches to targeting iron-associated proteins are still far from being usable for leukemia treatment.
逻辑上,针对与铁相关的蛋白质作为治疗措施是合理的,因为正常细胞和白血病细胞之间存在表达差异。然而,靶向与铁相关的蛋白质的单克隆抗体也可能损害正常细胞,特别是那些对铁需求高的细胞,因为与白血病细胞不同,铁相关的蛋白质并不具有特异性。为了克服传统化疗的局限性,已经引入了 TfR 或铁蛋白靶向药物传递系统。此外,这些药物传递系统与分子靶向药物的结合为增加药物疗效和减轻铁代谢相关蛋白质非特异性引起的毒性带来了希望。由于前瞻性临床数据仍然缺乏,针对与铁相关的蛋白质的方法仍然远未能用于白血病治疗。

Perturbing redox balance based on the high intracellular iron levels
基于高胞内铁水平扰乱氧化还原平衡

Ferroptosis and Ferritinophagy
铁死亡和铁蛋白自噬

Ferroptosis is a form of oxidative cell death, which is characterized by the production of ROS from accumulated iron and lipid peroxidation to trigger death [, ]. As iron is crucially involved in the formation of ROS, iron-catalyzed ROS production is primarily responsible for ferroptosis [, ]. Iron chelator DFO and heat shock protein β-1 prevent ferroptosis through reducing intracellular iron, but increasing intracellular iron promotes ferroptosis [, , ]. Ferritinophagy is an autophagic phenomenon that selectively degrades ferritin to release intracellular free iron and thus promotes ferroptosis []. Due to the importance of ROS in ferroptosis, antioxidants are critical regulators of ferroptosis. Glutathione peroxidase 4 (GPX4), which is the only antioxidant enzyme known to directly reduce lipid peroxides produced by ROS, plays a pivotal role in ferroptosis [, ]. It has been identified that regulation of GPX4 is a common mechanism shared by multiple ferroptosis inducers []. One class of ferroptosis inducers such as RSL3 inhibits GPX4 directly []. As glutathione (GSH) is a cofactor essential for GPX4 function, inhibition of GPX4 function by depleting GSH can also induce ferroptosis []. Because GSH production is limited by the availability of cystine/cysteine, another class of ferroptosis inducers (such as erastin, sorafenib) reduces GSH production through inhibiting cystine uptake by system Xc, a cell surface cysteine-glutamate antiporter [, , ]. The well-known tumor suppressor p53 acts as a positive regulator of ferroptosis by inhibiting the expression of SLC7A11, a key component of system Xc[]. The mechanism of ferroptosis triggered by the multikinase inhibitor sorafenib includes not only inhibition of system Xc, but also iron-dependent induction of oxidative stress [, ].
铁死亡是一种氧化性细胞死亡形式,其特点是通过从积累的铁和脂质过氧化物产生 ROS 来触发死亡[1, 140]。由于铁在 ROS 形成中起着至关重要的作用,铁催化的 ROS 产生主要是导致铁死亡的原因[1, 141]。铁螯合剂 DFO 和热休克蛋白β-1 通过减少细胞内铁来预防铁死亡,但增加细胞内铁会促进铁死亡[140, 142, 143]。铁蛋白自噬是一种选择性降解铁蛋白以释放细胞内游离铁并促进铁死亡的现象[144]。由于 ROS 在铁死亡中的重要性,抗氧化剂是铁死亡的关键调节因子。谷胱甘肽过氧化物酶 4(GPX4)是唯一已知能直接减少 ROS 产生的脂质过氧化物的抗氧化酶,它在铁死亡中发挥关键作用[145, 146]。已经确定,调节 GPX4 是多种铁死亡诱导剂共享的常见机制[145]。一类铁死亡诱导剂,如 RSL3,直接抑制 GPX4[145]。 由于谷胱甘肽(GSH)是 GPX4 功能所必需的辅因子,通过耗尽 GSH 抑制 GPX4 功能也可以诱导铁死亡[146]。由于 GSH 的产生受半胱氨酸/半胱氨酸的可用性限制,另一类铁死亡诱导剂(如厄拉斯汀、索拉非尼)通过抑制系统 X c 的半胱氨酸摄取,降低 GSH 的产生[140, 145, 147]。著名的肿瘤抑制基因 p53 通过抑制系统 X c 的关键组分 SLC7A11 的表达,作为铁死亡的正调节因子[148]。多激酶抑制剂索拉非尼引发的铁死亡机制不仅包括抑制系统 X c ,还包括铁依赖性氧化应激的诱导[147, 149]。

Recently, triggering ferroptosis based on the high intracellular iron levels has become a promising therapy to preferentially target leukemia cells (Fig. 3). The tumor suppressing function of ferroptosis has been identified in a wide range of malignancies, including fibrosarcoma, prostate carcinoma, osteosarcoma and so on [, , ]. Recent studies have indicated that RSL3 or Erastin can trigger death in leukemia cells and even enhance the sensitivity of leukemia cells to chemotherapeutic agents []. In turn, lipoxygenase inhibitors (such as Ferrostatin-1 and Baicalein) can protect ALL cells from ferroptosis []. The ferroptosis inducer sorafenib has been clinically approved for the treatment of FLT3-ITD mutated AML, whose mechanism may include induction of ferroptosis in AML cells [, ]. Artemisinin and its derivatives are widely used to treat multidrug-resistant malaria due that they owe the endoperoxide bridge and can induce ROS production in the presence of iron []. It has been recently suggested that dihydroartemisinin can induce ferroptosis in leukemia cells through ferritinophagy which increases the cellular LIP and thus promotes accumulation of ROS [, ]. The naturally occurring compound ardisiacrispin B and epunctanone have also been identified to induce ferroptosis in ALL cells [, ]. Therapies by inducing ferroptosis and ferritinophagy possess great potential in leukemia treatment. In the future, more and more research will focus on disturbing the redox balance to increase sensitivity of leukemia cells to chemotherapeutic agents.
最近,基于高胞内铁水平诱导细胞凋亡已成为一种有前途的治疗方法,可以优先靶向白血病细胞(图 3)。细胞凋亡的肿瘤抑制功能已在广泛的恶性肿瘤中得到确认,包括纤维肉瘤、前列腺癌、骨肉瘤等[140, 145, 150]。最近的研究表明,RSL3 或 Erastin 可以诱导白血病细胞死亡,甚至增强白血病细胞对化疗药物的敏感性[151–153]。反过来,脂氧合酶抑制剂(如 Ferrostatin-1 和 Baicalein)可以保护急性淋巴细胞白血病细胞免受细胞凋亡的影响[153]。细胞凋亡诱导剂索拉非尼已获临床批准用于治疗 FLT3-ITD 突变的 AML,其机制可能包括在 AML 细胞中诱导细胞凋亡[154, 155]。青蒿素及其衍生物被广泛用于治疗多药耐药性疟疾,因为它们具有内过氧化物桥,可以在铁存在的情况下诱导 ROS 产生[156]。 最近有人提出,二氢青蒿素可以通过铁蛋白自噬在白血病细胞中诱导铁死亡,从而增加细胞内游离铁离子,促进 ROS 的积累[157, 158]。天然存在的化合物 ardisiacrispin B 和 epunctanone 也被发现可以诱导所有细胞中的铁死亡[159, 160]。通过诱导铁死亡和铁蛋白自噬的治疗在白血病治疗中具有巨大潜力。未来,越来越多的研究将集中在扰乱氧化还原平衡,增加白血病细胞对化疗药物的敏感性。

An external file that holds a picture, illustration, etc.
Object name is 13046_2019_1397_Fig3_HTML.jpg

Schematic model of ferroptosis in leukemia cells. Ferroptosis occurs as a result of iron-mediated oxidative stress and lipid peroxidation-mediated cytotoxicity. It could be due to elevated intracellular iron concentration or inhibition of GPX4 activity. Dihydroartemisinin induce ferroptosis by ferritinophagy and subsequent accumulation of ROS. RSL3 inhibits GPX4 directly, while erastin, sorafenib and p53 decrease GSH production by inhibiting cysteine transport. Lipoxygenase inhibitors (such as Ferrostatin-1 and Baicalein) suppress ferroptosis through inhibiting lipid peroxidation
白血病细胞中铁死亡的示意模型。铁死亡是由铁介导的氧化应激和脂质过氧化介导的细胞毒性所致。这可能是由于细胞内铁浓度升高或 GPX4 活性受抑制。二氢青蒿素通过铁蛋白吞噬和 ROS 的进一步积累诱导铁死亡。RSL3 直接抑制 GPX4,而厄拉斯汀、索拉非尼和 p53 通过抑制半胱氨酸转运降低 GSH 的产生。脂氧合酶抑制剂(如铁死灵-1 和黄芩素)通过抑制脂质过氧化来抑制铁死亡。

Iron-based nanoparticles 基于铁的纳米颗粒

More and more attention has been paid to the research of iron-based nanoparticle antitumor therapy []. The iron oxide nanoparticles are reported to induce apoptosis and cell cycle arrest at sub-G1 phase in T-ALL cells []. Furthermore, iron-based nanoparticles can release iron in the form of Fe2+ or Fe3+ which participates in the Fenton reaction and induce ferroptosis []. Ferumoxytol (feraheme), an intravenous preparation of iron oxide nanoparticles, is available for the treatment of iron deficiency in clinic []. It is recently reported that ferumoxytol shows an anti-leukemia effect due to increased iron-catalyzed ROS and low expression of the iron exporter FPN1 results in enhanced susceptibility of AML cells to ferumoxytol []. Besides, traditional chemotherapy drugs can be delivered by the iron-based nanoparticles for enhancing their anticancer efficacy. It is reported that the anti-leukemia effect of cytarabine is enhanced by being coated on Fe3O4@SiO2 nanoparticles [].
越来越多的关注被投入到基于铁的纳米颗粒抗肿瘤疗法的研究中[161]。据报道,氧化铁纳米颗粒能够诱导 T-ALL 细胞凋亡并在亚 G1 期阻滞细胞周期[162]。此外,基于铁的纳米颗粒可以释放铁以 Fe 2+ 或 Fe 3+ 的形式参与芬顿反应并诱导铁死亡[163]。氧化铁纳米颗粒的静脉制剂 ferumoxytol(feraheme)可用于临床治疗缺铁[164]。最近有报道称,ferumoxytol 由于增加的铁催化 ROS 和铁输出蛋白 FPN1 的低表达而显示出抗白血病效果,导致 AML 细胞对 ferumoxytol 的敏感性增强[76]。此外,传统化疗药物可以通过基于铁的纳米颗粒进行传递,以增强其抗癌效果。有报道称,将阿糖胞苷包覆在 Fe 3 O 4 @SiO2 纳米颗粒上可以增强其抗白血病效果[165]。

The iron-based nanoparticles can be functionalized with active and passive targeting ability to reduce the adverse effects of iron-catalyzed ROS to normal cells. Satake N et al. composed nanocomplexes with super paramagnetic iron oxide nanoparticles, antiCD22 antibody and MAX dimerization protein 3 small interfering RNA molecules which showed cytotoxic effects to precursor B-cell ALL selectively and enhanced the anti-leukemia effect of chemotherapy drug vincristine or DOX []. The iron-based nanoparticles can also be manipulated by the magnetic field to accumulate preferentially at tumor sites as a result of the enhanced permeability and retention phenomenon []. It has also been suggested that the magnetic field has potential to increase the blood-brain barrier permeability of iron-based nanoparticles for therapy of various brain diseases []. Furthermore, the magnetic field itself can play anti-leukemia effects by increasing ROS production []. Therefore, the application of iron-based nanoparticles directed by magnetic field may provide an approach to the prevention and treatment of central nervous system infiltration of leukemia.
铁基纳米颗粒可以通过主动和被动靶向功能化,以减少铁催化的 ROS 对正常细胞的不良影响。Satake N 等人构建了超顺磁氧化铁纳米颗粒、抗 CD22 抗体和 MAX 二聚蛋白 3 小干扰 RNA 分子组成的纳米复合物,对前体 B 细胞急性淋巴细胞白血病具有选择性细胞毒作用,并增强了化疗药物长春新碱或 DOX 的抗白血病效果。铁基纳米颗粒也可以通过磁场操控,优先在肿瘤部位积聚,这是增强渗透性和滞留现象的结果。有人提出磁场有潜力增加铁基纳米颗粒穿透血脑屏障的能力,用于治疗各种脑部疾病。此外,磁场本身可以通过增加 ROS 产生发挥抗白血病作用。因此,通过磁场引导的铁基纳米颗粒的应用可能为预防和治疗白血病中枢神经系统浸润提供一种途径。

Even though iron-based nanoparticle systems with multiple function bring us a step closer to delivering personalized medicine into leukemia cells, there are still multiple obstacles to the clinical application of these new iron-based nanoparticle systems. Currently, the toxicity of iron-based nanoparticle systems is of great concerns. No observable toxicity is seen at low levels of iron-based nanoparticles, while the particles may trigger cellular stress, weaken inflammatory reactions, increase the expression of genes involved in cell signaling and thus impact signaling pathways in the case of high dose exposure []. It is critical to design functionalized iron-based nanoparticles which are able to meet the demands of a particular application and have good security in the human body. To inform the design of safe iron-based nanoparticles, a better understanding of the relationship between their toxicity with different surface properties, size, hydrophobicity, and release of iron ions is needed. It is expected that in the near future, iron-based nanoparticle systems, conjugated with new targeted drugs, could replace our current treatments and leukemia could become a nonfatal disease with good prognosis.
尽管具有多功能的基于铁的纳米颗粒系统使我们更接近将个性化药物输送至白血病细胞,但这些新型基于铁的纳米颗粒系统在临床应用上仍存在多个障碍。目前,基于铁的纳米颗粒系统的毒性引起了极大关注。在低水平的铁基纳米颗粒中看不到明显的毒性,而在高剂量暴露的情况下,这些颗粒可能会引发细胞压力、减弱炎症反应、增加参与细胞信号通路的基因表达,从而影响信号通路[169]。设计功能化的基于铁的纳米颗粒至关重要,这些颗粒能够满足特定应用的需求,并在人体内具有良好的安全性。为了设计安全的基于铁的纳米颗粒,需要更好地了解它们的毒性与不同表面性质、大小、疏水性和铁离子释放之间的关系。 预计在不久的将来,基于铁的纳米颗粒系统,结合新的靶向药物,可能取代我们目前的治疗方法,白血病可能会成为一种预后良好的非致命疾病。

Conclusions and prospects
结论和展望

Accumulating evidence implicates changes in iron metabolism as crucial features of leukemia. The alteration of iron metabolism in leukemia cells is generally associated with high iron requirements and high oxidative stress, suggesting that leukemia cells may be more vulnerable to changes in iron and ROS levels compared with normal cells. In addition to iron chelators and therapies targeting iron metabolism-related proteins, perturbing redox balance based on the high intracellular iron levels also has promising therapeutic implications for the treatment of leukemia. The application of ferroptosis and ferritinophagy in the treatment of leukemia is just beginning as a new way of death involving iron. With the development of nanotechnology, efforts to harness insights for therapeutic advantages of iron-based nanoparticles have begun. The magnetic fields not only concentrate nanoparticles, but also promote the production of ROS in cells to play anti-leukemia effects.
累积的证据表明铁代谢的变化是白血病的关键特征。白血病细胞中铁代谢的改变通常与高铁需求和高氧化应激有关,这表明与正常细胞相比,白血病细胞可能更容易受到铁和 ROS 水平变化的影响。除了铁螯合剂和针对铁代谢相关蛋白的治疗外,基于高胞内铁水平扰乱氧化还原平衡也对治疗白血病具有潜在的治疗意义。在白血病治疗中应用铁死亡和铁蛋白自噬刚刚开始作为涉及铁的新死亡方式。随着纳米技术的发展,利用铁基纳米颗粒的治疗优势已经开始。磁场不仅可以集中纳米颗粒,还可以促进细胞内 ROS 的产生,发挥抗白血病作用。

Though researches in the past few years have expanded our insights into the regulation of iron in leukemia and treatment strategies that target iron metabolism, more studies are warranted to fully clarify the specific mechanism that link iron, oxidative stress, and leukemia development. Efforts are still needed to optimize therapies for leukemia targeting towards iron metabolism. A recent study finds that iron depletion may influence the expression of Major Histocompatibility Complex class I molecules to increase the target susceptibility of cancer cells to NK cell recognition []. This provides a basis to kill leukemia cells through modulating immune system by iron depletion. Ascorbate is an essential nutrient commonly regarded as an antioxidant. However, high-dose ascorbate is demonstrated to induce hydrogen-peroxide-dependent cytotoxicity toward a variety of cancer cells without adversely affecting normal cells []. Hydrogen-peroxide generated by high-dose ascorbate reacts with excess intracellular iron to produce cytotoxic ROS in cancer cells. Ascorbate also suppress leukemogenesis by promoting Tet function in HSCs []. Therefore, ascorbate is a prospective anti-leukemia agent due to both its ability of perturbing redox balance based on the high intracellular iron levels in leukemia cells and activation of Tet enzymes. More and more attention will be attached to iron-based nanoparticles due to their multiple advantages. In the future, there will be strategic opportunities to enhance therapeutic efficacy by associating the iron-based nanoparticles with other components, such as ferroptosis inducers, some genes modulating the expression of iron metabolism related proteins, targeting small molecules and so on. It is appealing to combine efforts from different disciplines to pursue rational design of effective leukemia therapy strategies based on iron metabolism.
尽管过去几年的研究扩展了我们对白血病铁调控和针对铁代谢的治疗策略的认识,但仍需要更多研究来充分阐明铁、氧化应激和白血病发展之间的具体联系机制。仍需努力优化针对铁代谢的白血病治疗。最近的一项研究发现,铁耗竭可能影响主要组织相容性复合体 I 类分子的表达,增加癌细胞对 NK 细胞识别的靶标易感性。这为通过铁耗竭调节免疫系统来杀灭白血病细胞提供了基础。抗坏血酸是一种被普遍视为抗氧化剂的必需营养素。然而,高剂量抗坏血酸被证明能够诱导对多种癌细胞的过氧化氢依赖性细胞毒作用,而不会对正常细胞产生不良影响。高剂量抗坏血酸产生的过氧化氢与细胞内过量铁结合,产生对癌细胞的细胞毒性 ROS。抗坏血酸还通过促进 HSCs 中 Tet 功能来抑制白血病发生。 因此,抗坏血酸是一种有前途的抗白血病药物,因为它既能扰乱白血病细胞中高胞内铁水平所基于的氧化还原平衡,又能激活 Tet 酶。由于铁基纳米颗粒具有多重优势,因此越来越多的关注将被吸引到这方面。未来,将有战略机会通过将铁基纳米颗粒与其他成分(如诱导铁死亡、调节铁代谢相关蛋白表达的一些基因、靶向小分子等)结合,以增强治疗效果。结合不同学科的努力,追求基于铁代谢的白血病治疗策略的合理设计是具有吸引力的。

Acknowledgements 致谢

Not applicable. 不适用。

Abbreviations 缩写

3-APTriapine
ADCCAntibody-dependent cell-mediated cytotoxicity
抗体依赖的细胞介导的细胞毒作用
AEAdverse events 不良事件
ALAcute leukemia 急性白血病
ALLAcute lymphoblastic leukemia
急性淋巴细胞白血病
allo-HSCTAllogeneic hematopoietic stem cell transplantation
异基因造血干细胞移植
AMLAcute myeloid leukemia 急性髓系白血病
apo-TfApo-transferrin
Ara-CArabinoside cytosine 阿拉伯核糖胞嘧啶
ATOArsenic trioxide 三氧化二砷
Bcl-2B-cell lymphoma-2 B 细胞淋巴瘤-2
CLLChronic lymphoblastic leukemia
慢性淋巴细胞白血病
CMLChronic myeloid leukemia 慢性髓系白血病
CML-APChronic myeloid leukemia in the accelerated phase
慢性髓系白血病加速期
CML-BPChronic myeloid leukemia in blast phase
慢性髓系白血病爆发期
CpCeruloplasmin
CPXCiclopirox olamine 环丙沙星醇胺
CRComplete remission 完全缓解
DACDecitabine
DcytbDuodenal cytochrome b reductase
十二指肠细胞色素 b 还原酶
DFODeferoxamine
DFXDeferasirox
DLTDose-limiting toxicity 剂量限制性毒性
DMT1Divalent metal transporter 1
双价金属转运蛋白 1
DORDuration of remission 缓解期限
DOXDoxorubicin
Dp44mTDi-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone
二吡啶酮-4,4-二甲基-3-硫脲肼
EPEltrombopag
ERKExtracellular signal-regulated kinase
细胞外信号调节激酶
FDAFood and Drug Administration
食品药品管理局
Fe2+ Fe 2+ -> Fe 2+ferrous iron 铁离子
Fe3+ Fe 3+ -> Fe 3+ferric iron 铁(III) 氧化铁
FPN1Ferroportin 1 铁蛋白 1
FTHFerritin heavy chain 重链铁蛋白
FTLFerritin light chain 铁蛋白轻链
GPX4Glutathione peroxidase 4 谷胱甘肽过氧化物酶 4
GSHGlutathione
GVLGraft-vs-leukemia
HEPHHephaestin
HFEHemochromatosis
HIHematologic improvement 血液学改善
HO-1Heme oxygenase 1 血红素氧合酶 1
HSCHematopoietic stem cell 造血干细胞
ICInduction chemotherapy 诱导化疗
IDIdentifier
IFN-γInterferon-γ 干扰素-γ
IREsIron responsive elements 铁响应元素
IRP2Iron regulatory protein-2
铁调节蛋白-2
IRPsIron regulatory proteins 铁调节蛋白
JNKC-Jun N-terminal kinase C-Jun N-末端激酶
LCN2Lipocalin 2 脂联素 2
LIPLabile iron pool 不稳定铁库
LOXLipoxygenase
LVEFLeft ventricular ejection fraction
左心室射血分数
M3Acute promyelocytic leukemia
急性早幼粒细胞白血病
M7Acute megakaryocytic leukemia
急性巨核细胞白血病
MAPKMitogen-activated protein kinase
有丝分裂原活化蛋白激酶
MDSMyelodysplastic syndrome 骨髓增生异常综合征
MPDMyeloproliferative disorders
骨髓增生性疾病
MTDMaximally tolerated dose 最大耐受剂量
mTORMammalian target of rapamycin
雷帕霉素靶点
NNumber
NF-κBNuclear factor kappa-B 核因子 kappa-B
NTBINon-transferrin bound iron
非转铁蛋白结合铁
OROverall response 整体回应
OSOverall survival 总生存率
PBCPeripheral blood cell 外周血细胞
PCSProspective cohort study 前瞻性队列研究
PDProgression disease 进展性疾病
PFSProgression-free survival
无进展生存
Ph-IDose-escalating phase I study
逐渐增加剂量的 I 期研究
PLTPlatelet
PRPartial remission 部分缓解
RCTRandomized controlled trials
随机对照试验
RFSRelapse free survival 复发无生存
ROSReactive oxygen species 活性氧物种
sAMLSecondary AML 二级 AML
sAML/MDSSecondary acute myeloid leukemia after myelodysplastic syndrome
骨髓增生异常综合征后的继发性急性髓系白血病
SGASingle group assignment 单组作业
SIHASalicylaldehyde isonicotinoyl hydrazine analogues
水杨醛异烟酰肼类似物
STAT1Signal transducer and activator of transcription 1
信号转导子和转录激活因子 1
STEAPSix-transmembrane epithelial antigen of the prostate
前列腺六跨膜上皮抗原
T-ALLT-cell acute lymphoblastic leukemia
T 细胞急性淋巴细胞白血病
TfTransferrin
TfR1Transferrin receptor 1 转铁蛋白受体 1
TfR2Transferrin receptor 2 转铁蛋白受体 2
VD3Vitamin D3 维生素 D3
VODVenoocclusive liver disease
静脉闭塞性肝病

Authors’ contributions 作者的贡献

FW and PS drafted the manuscript and tables. HHL, BZ, LFZ and SHW collected the references and participated in the discussion. JL and JYL prepared the figures. All authors read and approved the final manuscript.
FW 和 PS 起草了手稿和表格。HHL、BZ、LFZ 和 SHW 收集了参考文献并参与了讨论。JL 和 JYL 准备了图表。所有作者都阅读并批准了最终手稿。

Funding 资金

This work is supported by grants from the National Natural Science Foundation of China (51777171, 81803032), the Fundamental Research Funds for the Central Universities (3102017OQD111), the Northwestern Polytechnical University Foundation for Fundamental Research (3102018JGC012), and Science and Technology Planning Project of Shenzhen of China (JCYJ20170412140904406).
这项工作得到了中国国家自然科学基金(51777171,81803032),中央高校基本科研业务费专项资金(3102017OQD111),西北工业大学基础研究基金(3102018JGC012)以及中国深圳市科技计划项目(JCYJ20170412140904406)的资助。

Availability of data and materials
数据和材料的可用性

Not applicable. 不适用。

Ethics approval and consent to participate
伦理审批和参与同意

This is not applicable for this review.
这不适用于此审查。

Consent for publication 出版同意

This is not applicable for this review.
这不适用于此审查。

Competing interests 竞争利益

The authors declare that they have no competing interests.
作者声明他们没有竞争利益。

Footnotes 脚注

Publisher’s Note 出版商的说明

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature 在已发表的地图和机构关联方面保持中立。

Contributor Information 贡献者信息

Fang Wang, nc.ude.upwn.liam@1gnafgnaw.
方王,电子邮件:nc.ude.upwn.liam@1gnafgnaw.

Huanhuan Lv, nc.ude.upwn@7102hhvl.
吕欢欢,邮箱:nc.ude.upwn@7102hhvl。

Bin Zhao, nc.ude.upwn.liam@nib000oahz.
彬赵,邮箱:nc.ude.upwn.liam@nib000oahz.

Liangfu Zhou, nc.ude.upwn.liam@91900991flz.
周亮夫,邮箱:nc.ude.upwn.liam@91900991flz。

Shenghang Wang, nc.ude.upwn.liam@gnahgnehsgnaw.
生航王,电子邮件:nc.ude.upwn.liam@gnahgnehsgnaw.

Jie Luo, nc.ude.upwn.liam@61eijouL.
杰罗,邮箱:nc.ude.upwn.liam@61eijouL。

Junyu Liu, nc.ude.upwn.liam@uynujuil.
刘俊宇,邮箱:nc.ude.upwn.liam@uynujuil.

Peng Shang, nc.ude.upwn@gnepgnahs.
彭尚,电子邮件:nc.ude.upwn@gnepgnahs.

References 参考资料

1. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9–17. doi: 10.1038/nchembio.1416. [PubMed] [CrossRef] []
Dixon SJ,Stockwell BR。铁和活性氧化物在细胞死亡中的作用。Nat Chem Biol。2014;10:9–17。doi: 10.1038/nchembio.1416。[PubMed] [CrossRef] [Google Scholar]
2. Fischbacher A, von Sonntag C, Schmidt TC. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe (II) ratios. Chemosphere. 2017;182:738–744. doi: 10.1016/j.chemosphere.2017.05.039. [PubMed] [CrossRef] []
Fischbacher A, von Sonntag C, Schmidt TC. 不同 pH、配体浓度和过氧化氢/Fe (II)比例下芬顿法中的羟基自由基产率. Chemosphere. 2017;182:738–744. doi: 10.1016/j.chemosphere.2017.05.039. [ PubMed] [ CrossRef] [ Google Scholar]
3. Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu Rev Pathol. 2014;9:119–145. doi: 10.1146/annurev-pathol-012513-104651. [PubMed] [CrossRef] []
Lambeth JD,Neish AS。Nox 酶和对活性氧的新思考:双刃剑再审视。Annu Rev Pathol。2014;9:119–145。doi:10.1146/annurev-pathol-012513-104651。【PubMed】【CrossRef】【Google Scholar】
4. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–1060. doi: 10.1016/S1474-4422(14)70117-6. [PMC free article] [PubMed] [CrossRef] []
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. 铁在大脑衰老和神经退行性疾病中的作用。柳叶刀神经学。2014;13:1045–1060. doi: 10.1016/S1474-4422(14)70117-6.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google Scholar]
5. Zhou Liangfu, Zhao Bin, Zhang Lixiu, Wang Shenghang, Dong Dandan, Lv Huanhuan, Shang Peng. Alterations in Cellular Iron Metabolism Provide More Therapeutic Opportunities for Cancer. International Journal of Molecular Sciences. 2018;19(5):1545. doi: 10.3390/ijms19051545. [PMC free article] [PubMed] [CrossRef] []
周良福,赵斌,张丽秀,王胜航,董丹丹,吕欢欢,尚鹏。细胞铁代谢的改变为癌症提供更多治疗机会。国际分子科学杂志。2018;19(5):1545. doi: 10.3390/ijms19051545。[PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
6. Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R, et al. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J. 2019;00:1–16. [PubMed]
Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R 等。动脉粥样硬化受铁过载加重,受膳食和药物限铁改善。欧洲心脏杂志。2019;00:1–16。【PubMed】
7. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13:342–355. doi: 10.1038/nrc3495. [PMC free article] [PubMed] [CrossRef] []
7. Torti SV, Torti FM. 铁和癌症:还有更多矿石待开采。Nat Rev Cancer. 2013;13:342–355. doi: 10.1038/nrc3495.[ PMC free article] [ PubMed] [ CrossRef] [ Google Scholar]
8. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. doi: 10.3322/caac.21551. [PubMed] [CrossRef] []
8. Siegel RL, Miller KD, Jemal A. 癌症统计,2019 年。CA 癌症杂志。2019;69:7–34。doi: 10.3322/caac.21551。【PubMed】【CrossRef】【Google Scholar】
9. Benadiba J, Rosilio C, Nebout M, Heimeroth V, Neffati Z, Popa A, et al. Iron chelation: an adjuvant therapy to target metabolism, growth and survival of murine PTEN-deficient T lymphoma and human T lymphoblastic leukemia/lymphoma. Leuk Lymphoma. 2017;58:1433–1445. doi: 10.1080/10428194.2016.1239257. [PubMed] [CrossRef] []
9. Benadiba J, Rosilio C, Nebout M, Heimeroth V, Neffati Z, Popa A, 等. 铁螯合:一种辅助治疗方法,用于靶向代谢、生长和存活的小鼠 PTEN 缺陷 T 淋巴瘤和人 T 淋巴母细胞白血病/淋巴瘤. Leuk Lymphoma. 2017;58:1433–1445. doi: 10.1080/10428194.2016.1239257. [ PubMed] [ CrossRef] [ Google Scholar]
10. Kennedy AE, Kamdar KY, Lupo PJ, Okcu MF, Scheurer ME, Baum MK, et al. Examination of HFE associations with childhood leukemia risk and extension to other iron regulatory genes. Leuk Res. 2014;38:1055–1060. doi: 10.1016/j.leukres.2014.06.016. [PubMed] [CrossRef] []
肯尼迪 AE,坎达尔 KY,卢波 PJ,奥克 MF,舍勒 ME,鲍姆 MK 等。HFE 与儿童白血病风险的关联及对其他铁调节基因的扩展的研究。白血病研究。2014;38:1055–1060. doi: 10.1016/j.leukres.2014.06.016。【PubMed】【CrossRef】【Google Scholar】
11. Hagag AA, Badraia IM, Abdelmageed MM, Hablas NM, Hazzaa SME, Nosair NA. Prognostic value of transferrin Receptor-1 (CD71) expression in acute lymphoblastic leukemia. Endocr Metab Immune Disord Drug Targets. 2018;18:610–617. doi: 10.2174/1871530318666180605094706. [PubMed] [CrossRef] []
11. Hagag AA, Badraia IM, Abdelmageed MM, Hablas NM, Hazzaa SME, Nosair NA. 转铁蛋白受体-1(CD71)在急性淋巴细胞白血病中的表达与预后价值。内分泌代谢免疫紊乱药物靶点。2018;18:610–617. doi: 10.2174/1871530318666180605094706。【PubMed】【CrossRef】【Google Scholar】
12. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392:593–606. doi: 10.1016/S0140-6736(18)31041-9. [PMC free article] [PubMed] [CrossRef] []
12. Short NJ, Rytting ME, Cortes JE. 急性髓系白血病. 《柳叶刀》. 2018;392:593–606. doi: 10.1016/S0140-6736(18)31041-9.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google 学者]
13. Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clin Proc. 2016;91:1645–1666. doi: 10.1016/j.mayocp.2016.09.010. [PubMed] [CrossRef] []
13. Paul S, Kantarjian H, Jabbour EJ. 成人急性淋巴细胞白血病。Mayo Clin Proc. 2016;91:1645–1666. doi: 10.1016/j.mayocp.2016.09.010. [ PubMed] [ CrossRef] [ Google Scholar]
14. Callens C, Coulon S, Naudin J, Radford-Weiss I, Boissel N, Raffoux E, et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J Exp Med. 2010;207:731–750. doi: 10.1084/jem.20091488. [PMC free article] [PubMed] [CrossRef] []
14. Callens C, Coulon S, Naudin J, Radford-Weiss I, Boissel N, Raffoux E, 等。靶向铁稳态诱导细胞分化,并与急性髓系白血病分化剂协同作用。J Exp Med. 2010;207:731–750. doi: 10.1084/jem.20091488.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google Scholar]
15. Roth M, Will B, Simkin G, Narayanagari S, Barreyro L, Bartholdy B, et al. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood. 2012;120:386–394. doi: 10.1182/blood-2011-12-399667. [PMC free article] [PubMed] [CrossRef] []
Roth M, Will B, Simkin G, Narayanagari S, Barreyro L, Bartholdy B 等。Eltrombopag 通过减少细胞内铁含量和诱导分化抑制白血病细胞的增殖。《血液》。2012;120:386–394。doi: 10.1182/blood-2011-12-399667。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
16. Jeon SR, Lee JW, Jang PS, Chung NG, Cho B, Jeong DC. Anti-leukemic properties of deferasirox via apoptosis in murine leukemia cell lines. Blood Res. 2015;50:33–39. doi: 10.5045/br.2015.50.1.33. [PMC free article] [PubMed] [CrossRef] []
Jeon SR, Lee JW, Jang PS, Chung NG, Cho B, Jeong DC. Deferasirox 通过凋亡在小鼠白血病细胞系中具有抗白血病作用。Blood Res. 2015;50:33–39. doi: 10.5045/br.2015.50.1.33.【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
17. Miret S, Simpson RJ, McKie AT. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr. 2003;23:283–301. doi: 10.1146/annurev.nutr.23.011702.073139. [PubMed] [CrossRef] []
17. Miret S, Simpson RJ, McKie AT. 膳食铁吸收的生理学和分子生物学。年度营养评论。2003;23:283–301. doi: 10.1146/annurev.nutr.23.011702.073139。【PubMed】【CrossRef】【Google Scholar】
18. Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol. 2012;26:115–119. doi: 10.1016/j.jtemb.2012.03.015. [PubMed] [CrossRef] []
Fuqua BK,Vulpe CD,Anderson GJ。肠铁吸收。J Trace Elem Med Biol。2012;26:115–119。doi: 10.1016/j.jtemb.2012.03.015。[PubMed] [CrossRef] [Google Scholar]
19. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1:191–200. doi: 10.1016/j.cmet.2005.01.003. [PubMed] [CrossRef] []
Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, 等. 铁出口蛋白/Slc40a1 对铁稳态至关重要. Cell Metab. 2005;1:191–200. doi: 10.1016/j.cmet.2005.01.003. [ PubMed] [ CrossRef] [ Google Scholar]
20. Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106:1559S–1566S. doi: 10.3945/ajcn.117.155804. [PMC free article] [PubMed] [CrossRef] []
20. Anderson GJ, Frazer DM. 铁稳态的当前理解。Am J Clin Nutr. 2017;106:1559S–1566S. doi: 10.3945/ajcn.117.155804.[ PMC free article] [ PubMed] [ CrossRef] [ Google Scholar]
21. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168:344–361. doi: 10.1016/j.cell.2016.12.034. [PMC free article] [PubMed] [CrossRef] []
21. Muckenthaler MU, Rivella S, Hentze MW, Galy B. 铁代谢的红地毯。Cell. 2017;168:344–361. doi: 10.1016/j.cell.2016.12.034.[ PMC free article] [ PubMed] [ CrossRef] [ Google Scholar]
22. Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol. 2014;307:G397–G409. doi: 10.1152/ajpgi.00348.2013. [PMC free article] [PubMed] [CrossRef] []
22. Gulec S, Anderson GJ, Collins JF. 肠铁吸收的机制和调控方面。美国生理学杂志肠道肝脏生理学。2014;307:G397–G409。doi: 10.1152/ajpgi.00348.2013。[PMC 免费文章][PubMed][CrossRef][Google 学者]
23. Rishi Gautam, Wallace Daniel F., Subramaniam V. Nathan. Hepcidin: regulation of the master iron regulator. Bioscience Reports. 2015;35(3):1–12. doi: 10.1042/BSR20150014. [PMC free article] [PubMed] [CrossRef] []
23. Rishi Gautam, Wallace Daniel F., Subramaniam V. Nathan. Hepcidin: regulation of the master iron regulator. Bioscience Reports. 2015;35(3):1–12. doi: 10.1042/BSR20150014.[ PMC free article] [ PubMed] [ CrossRef] [ Google Scholar] 23. Rishi Gautam, Wallace Daniel F., Subramaniam V. Nathan. Hepcidin: regulation of the master iron regulator. Bioscience Reports. 2015;35(3):1–12. doi: 10.1042/BSR20150014.[ PMC free article] [ PubMed] [ CrossRef] [ Google Scholar]
24. Frazer DM, Anderson GJ. The regulation of iron transport. Biofactors. 2014;40:206–214. doi: 10.1002/biof.1148. [PubMed] [CrossRef] []
24. Frazer DM, Anderson GJ. 铁运输的调节。生物因子。2014;40:206–214。doi: 10.1002/biof.1148。[PubMed] [CrossRef] [Google Scholar]
25. El Hage Chahine JM, Hemadi M, Ha-Duong NT. Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta. 2012;1820:334–347. doi: 10.1016/j.bbagen.2011.07.008. [PubMed] [CrossRef] []
25. El Hage Chahine JM,Hemadi M,Ha-Duong NT。转铁蛋白对金属离子的摄取和释放以及与受体 1 的相互作用。生物化学与生物物理学报。2012;1820:334–347。doi: 10.1016/j.bbagen.2011.07.008。【PubMed】【CrossRef】【Google Scholar】
26. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37:1264–1269. doi: 10.1038/ng1658. [PMC free article] [PubMed] [CrossRef] []
26. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, 等. 鉄还原酶の同定:赤血球における輸送蛋白依存性鉄の効率的取り込みに必要. Nat Genet. 2005;37:1264–1269. doi: 10.1038/ng1658.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google Scholar]
27. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes (1) Free Radic Biol Med. 2002;33:1037–1046. doi: 10.1016/S0891-5849(02)01006-7. [PubMed] [CrossRef] []
27. Kakhlon O, Cabantchik ZI. 可变铁库:特性、测量和参与细胞过程(1)Free Radic Biol Med. 2002;33:1037–1046. doi: 10.1016/S0891-5849(02)01006-7.【PubMed】【CrossRef】【Google Scholar】
28. Philpott CC, Ryu MS, Frey A, Patel S. Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem. 2017;292:12764–12771. doi: 10.1074/jbc.R117.791962. [PMC free article] [PubMed] [CrossRef] []
28. Philpott CC, Ryu MS, Frey A, Patel S. 细胞质铁载体:在哺乳动物细胞的细胞质中传递铁辅因子的蛋白质。J Biol Chem. 2017;292:12764–12771. doi: 10.1074/jbc.R117.791962.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google Scholar]
29. Harris ZL, Durley AP, Man TK, Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A. 1999;96:10812–10817. doi: 10.1073/pnas.96.19.10812. [PMC free article] [PubMed] [CrossRef] []
29. Harris ZL, Durley AP, Man TK, Gitlin JD. 通过靶向基因破坏揭示了铜蓝蛋白在细胞铁外流中的重要作用。Proc Natl Acad Sci U S A. 1999;96:10812–10817. doi: 10.1073/pnas.96.19.10812.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google Scholar]
30. Wilkinson N, Pantopoulos K. The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol. 2014;5:176. doi: 10.3389/fphar.2014.00176. [PMC free article] [PubMed] [CrossRef] []
30. Wilkinson N, Pantopoulos K. The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol. 2014;5:176. doi: 10.3389/fphar.2014.00176.[ PMC free article] [ PubMed] [ CrossRef] [ Google Scholar] 30. Wilkinson N, Pantopoulos K. IRP/IRE 系统在体内的研究:来自小鼠模型的见解。Front Pharmacol. 2014;5:176. doi: 10.3389/fphar.2014.00176.[PMC 免费文章][PubMed][CrossRef][Google Scholar]
31. Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal. 2014;21:1605–1619. doi: 10.1089/ars.2014.5941. [PMC free article] [PubMed] [CrossRef] []
31. Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, 等。反应性氧化物质调节造血干细胞的自我更新、迁移和发育,以及它们的骨髓微环境。抗氧化还原信号。2014;21:1605–1619。doi: 10.1089/ars.2014.5941。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
32. Hole PS, Zabkiewicz J, Munje C, Newton Z, Pearn L, White P, et al. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood. 2013;122:3322–3330. doi: 10.1182/blood-2013-04-491944. [PubMed] [CrossRef] []
32. Hole PS,Zabkiewicz J,Munje C,Newton Z,Pearn L,White P 等。AML 中 NOX 源 ROS 的过度产生促进增殖并与缺陷的氧化应激信号相关联。Blood。2013;122:3322–3330. doi: 10.1182/blood-2013-04-491944。【PubMed】【CrossRef】【Google Scholar】
33. Rassool FV, Gaymes TJ, Omidvar N, Brady N, Beurlet S, Pla M, et al. Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia? Cancer Res. 2007;67:8762–8771. doi: 10.1158/0008-5472.CAN-06-4807. [PubMed] [CrossRef] []
33. Rassool FV, Gaymes TJ, Omidvar N, Brady N, Beurlet S, Pla M, 等. 活性氧自由基、DNA 损伤和错误修复:骨髓白血病进展中基因组不稳定的模型?癌症研究. 2007;67:8762–8771. doi: 10.1158/0008-5472.CAN-06-4807.【PubMed】【CrossRef】【Google Scholar】
34. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk--a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomark Prev. 2014;23:12–31. doi: 10.1158/1055-9965.EPI-13-0733. [PubMed] [CrossRef] []
34. Fonseca-Nunes A, Jakszyn P, Agudo A. 铁与癌症风险-流行病学证据的系统性回顾和荟萃分析。癌症流行病学生物标记预防。2014;23:12–31. doi: 10.1158/1055-9965.EPI-13-0733。【PubMed】【CrossRef】【Google Scholar】
35. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci. 2016;1368:149–161. doi: 10.1111/nyas.13008. [PMC free article] [PubMed] [CrossRef] []
35. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. 铁和癌症:最新见解。纽约科学院年报。2016;1368:149–161. doi: 10.1111/nyas.13008。[PMC 免费文章][PubMed][CrossRef][Google 学者]
36. Aurelius J, Thoren FB, Akhiani AA, Brune M, Palmqvist L, Hansson M, et al. Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis. Blood. 2012;119:5832–5837. doi: 10.1182/blood-2011-11-391722. [PMC free article] [PubMed] [CrossRef] []
36. Aurelius J, Thoren FB, Akhiani AA, Brune M, Palmqvist L, Hansson M, 等. 单核细胞 AML 细胞失活抗白血病淋巴细胞:NADPH 氧化酶/gp91(phox)表达和 PARP-1/PAR 凋亡途径的作用. 血液. 2012;119:5832–5837. doi: 10.1182/blood-2011-11-391722.【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
37. Chen J, Lu WY, Zhao MF, Cao XL, Jiang YY, Jin X, et al. Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes. Ann Hematol. 2017;96:1085–1095. doi: 10.1007/s00277-017-2985-y. [PubMed] [CrossRef] []
陈 J,卢文玉,赵明芳,曹晓莉,姜艳艳,金欣等。反应性氧化物质介导的 T 淋巴细胞异常在铁过载小鼠模型和铁过载骨髓增生异常综合征患者中。Ann Hematol。2017;96:1085–1095。doi: 10.1007/s00277-017-2985-y。【PubMed】【CrossRef】【Google Scholar】
38. Lebon D, Vergez F, Bertoli S, Harrivel V, De Botton S, Micol JB, et al. Hyperferritinemia at diagnosis predicts relapse and overall survival in younger AML patients with intermediate-risk cytogenetics. Leuk Res. 2015;39:818–821. doi: 10.1016/j.leukres.2015.05.001. [PubMed] [CrossRef] []
38. Lebon D, Vergez F, Bertoli S, Harrivel V, De Botton S, Micol JB, 等. 诊断时的高铁蛋白血症预测中风险细胞遗传学年轻 AML 患者的复发和总生存率. Leuk Res. 2015;39:818–821. doi: 10.1016/j.leukres.2015.05.001. [ PubMed] [ CrossRef] [ Google Scholar]
39. Broxmeyer HE, Williams DE, Geissler K, Hangoc G, Cooper S, Bicknell DC, et al. Suppressive effects in vivo of purified recombinant human H-subunit (acidic) ferritin on murine myelopoiesis. Blood. 1989;73:74–79. [PubMed] []
39. Broxmeyer HE, Williams DE, Geissler K, Hangoc G, Cooper S, Bicknell DC, 等。体内纯化重组人 H 亚基(酸性)铁蛋白对小鼠骨髓造血的抑制作用。血液。1989;73:74–79。【PubMed】【Google Scholar】
40. Bertoli S, Paubelle E, Berard E, Saland E, Thomas X, Tavitian S, et al. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol. 2019;102:131–142. doi: 10.1111/ejh.13183. [PubMed] [CrossRef] []
Bertoli S, Paubelle E, Berard E, Saland E, Thomas X, Tavitian S 等。铁蛋白重/轻链(FTH1/FTL)表达,血清铁蛋白水平及其在急性髓系白血病中的功能和预后角色。欧洲血液学杂志。2019;102:131–142。doi: 10.1111/ejh.13183。【PubMed】【CrossRef】【Google Scholar】
41. Armand P, Kim HT, Virtanen JM, Parkkola RK, Itala-Remes MA, Majhail NS, et al. Iron overload in allogeneic hematopoietic cell transplantation outcome: a meta-analysis. Biol Blood Marrow Transplant. 2014;20:1248–1251. doi: 10.1016/j.bbmt.2014.04.024. [PMC free article] [PubMed] [CrossRef] []
41. Armand P, Kim HT, Virtanen JM, Parkkola RK, Itala-Remes MA, Majhail NS 等。异基因造血干细胞移植中的铁过载:一项荟萃分析。生物血液移植。2014;20:1248–1251。doi: 10.1016/j.bbmt.2014.04.024。【PMC 免费文章】【PubMed】【CrossRef】【Google 学者】
42. Armand P, Kim HT, Cutler CS, Ho VT, Koreth J, Alyea EP, et al. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation. Blood. 2007;109:4586–4588. doi: 10.1182/blood-2006-10-054924. [PMC free article] [PubMed] [CrossRef] []
42. Armand P, Kim HT, Cutler CS, Ho VT, Koreth J, Alyea EP 等。预移植血清铁蛋白升高对接受髓毒性干细胞移植患者预后的影响。Blood。2007;109:4586–4588。doi: 10.1182/blood-2006-10-054924。[PMC 免费文章][PubMed][CrossRef][Google Scholar]
43. Eisfeld AK, Westerman M, Krahl R, Leiblein S, Liebert UG, Hehme M, et al. Highly elevated serum Hepcidin in patients with acute myeloid leukemia prior to and after allogeneic hematopoietic cell transplantation: does this protect from excessive parenchymal iron loading? Adv Hematol. 2011;2011:491058. [PMC free article] [PubMed] []
43. Eisfeld AK, Westerman M, Krahl R, Leiblein S, Liebert UG, Hehme M, 等。急性髓系白血病患者在同种异基因造血干细胞移植前后血清 Hepcidin 水平显著升高:这是否能保护免受过度实质性铁负荷?Adv Hematol. 2011;2011:491058。【PMC 免费文章】【PubMed】【Google Scholar】
44. Cheng PP, Sun ZZ, Jiang F, Tang YT, Jiao XY. Hepcidin expression in patients with acute leukaemia. Eur J Clin Investig. 2012;42:517–525. doi: 10.1111/j.1365-2362.2011.02608.x. [PubMed] [CrossRef] []
44. 程 PP,孙 ZZ,姜 F,唐 YT,焦 XY。急性白血病患者的肝铁蛋白表达。欧洲临床研究。2012;42:517–525. doi: 10.1111/j.1365-2362.2011.02608.x。【PubMed】【CrossRef】【Google Scholar】
45. Brookes MJ, Boult J, Roberts K, Cooper BT, Hotchin NA, Matthews G, et al. A role for iron in Wnt signalling. Oncogene. 2008;27:966–975. doi: 10.1038/sj.onc.1210711. [PubMed] [CrossRef] []
45. Brookes MJ, Boult J, Roberts K, Cooper BT, Hotchin NA, Matthews G, 等. 铁在 Wnt 信号传导中的作用. 癌基因. 2008;27:966–975. doi: 10.1038/sj.onc.1210711. [ PubMed] [ CrossRef] [ Google Scholar]
46. Xiong S, She H, Takeuchi H, Han B, Engelhardt JF, Barton CH, et al. Signaling role of intracellular iron in NF-kappaB activation. J Biol Chem. 2003;278:17646–17654. doi: 10.1074/jbc.M210905200. [PubMed] [CrossRef] []
46. 熊 S,佘 H,竹内 H,韩 B,恩格尔哈特 JF,巴顿 CH 等。细胞内铁在 NF-kappaB 激活中的信号作用。J Biol Chem。2003;278:17646–17654。doi: 10.1074/jbc.M210905200。【PubMed】【CrossRef】【Google Scholar】
47. Staal Frank, Famili Farbod, Garcia Perez Laura, Pike-Overzet Karin. Aberrant Wnt Signaling in Leukemia. Cancers. 2016;8(9):78. doi: 10.3390/cancers8090078. [PMC free article] [PubMed] [CrossRef] []
47. Staal Frank, Famili Farbod, Garcia Perez Laura, Pike-Overzet Karin. 白血病中异常的 Wnt 信号传导。癌症。2016;8(9):78。doi: 10.3390/cancers8090078。[PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
48. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, et al. Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity. J Clin Invest. 2014;124:528–542. doi: 10.1172/JCI68101. [PMC free article] [PubMed] [CrossRef] []
48. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, 等。NF-kappaB 和 TNF-alpha 之间的正反馈促进了白血病干细胞的能力。J Clin Invest. 2014;124:528–542. doi: 10.1172/JCI68101。[PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
49. Porter JB, de Witte T, Cappellini MD, Gattermann N. New insights into transfusion-related iron toxicity: implications for the oncologist. Crit Rev Oncol Hematol. 2016;99:261–271. doi: 10.1016/j.critrevonc.2015.11.017. [PubMed] [CrossRef] []
Porter JB, de Witte T, Cappellini MD, Gattermann N. 输血相关铁毒性的新见解:对肿瘤学家的启示。Crit Rev Oncol Hematol. 2016;99:261–271. doi: 10.1016/j.critrevonc.2015.11.017. [ PubMed] [ CrossRef] [ Google Scholar]
50. Lu W, Zhao M, Rajbhandary S, Xie F, Chai X, Mu J, et al. Free iron catalyzes oxidative damage to hematopoietic cells/mesenchymal stem cells in vitro and suppresses hematopoiesis in iron overload patients. Eur J Haematol. 2013;91:249–261. doi: 10.1111/ejh.12159. [PubMed] [CrossRef] []
卢 W,赵 M,Rajbhandary S,谢 F,柴 X,穆 J 等。 游离铁在体外催化造血细胞/间充质干细胞的氧化损伤,并抑制铁过载患者的造血。 欧洲血液学杂志。 2013; 91:249-261。 doi:10.1111/ejh.12159。【PubMed】【CrossRef】【Google Scholar】
51. Chai X, Li D, Cao X, Zhang Y, Mu J, Lu W, et al. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci Rep. 2015;5:10181. doi: 10.1038/srep10181. [PMC free article] [PubMed] [CrossRef] []
51. Chai X, Li D, Cao X, Zhang Y, Mu J, Lu W, 等。ROS 介导的铁超载损伤小鼠骨髓造血系统,破坏造血干/祖细胞。Sci Rep. 2015;5:10181. doi: 10.1038/srep10181.【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
52. Liu Q, Wang M, Hu Y, Xing H, Chen X, Zhang Y, et al. Significance of CD71 expression by flow cytometry in diagnosis of acute leukemia. Leuk Lymphoma. 2014;55:892–898. doi: 10.3109/10428194.2013.819100. [PubMed] [CrossRef] []
刘 Q,王 M,胡 Y,邢 H,陈 X,张 Y 等。流式细胞术中 CD71 表达在急性白血病诊断中的意义。白血病淋巴瘤。2014;55:892-898。doi:10.3109/10428194.2013.819100。【PubMed】【CrossRef】【Google Scholar】
53. Pande A, Dorwal P, Jain D, Tyagi N, Mehra S, Sachdev R, et al. Expression of CD71 by flow cytometry in acute leukemias: more often seen in acute myeloid leukemia. Indian J Pathol Microbiol. 2016;59:310–313. doi: 10.4103/0377-4929.188145. [PubMed] [CrossRef] []
53. Pande A, Dorwal P, Jain D, Tyagi N, Mehra S, Sachdev R, 等。急性白血病中 CD71 的流式细胞术表达:在急性髓系白血病中更常见。印度病理微生物学杂志。2016;59:310–313。doi: 10.4103/0377-4929.188145。【PubMed】【CrossRef】【Google Scholar】
54. Ploszynska A, Ruckemann-Dziurdzinska K, Jozwik A, Mikosik A, Lisowska K, Balcerska A, et al. Cytometric evaluation of transferrin receptor 1 (CD71) in childhood acute lymphoblastic leukemia. Folia Histochem Cytobiol. 2012;50:304–311. doi: 10.5603/FHC.2012.0040. [PubMed] [CrossRef] []
54. Ploszynska A, Ruckemann-Dziurdzinska K, Jozwik A, Mikosik A, Lisowska K, Balcerska A, 等。细胞学评估儿童急性淋巴细胞白血病中的转铁蛋白受体 1(CD71)。组织化学与细胞生物学杂志。2012;50:304–311。doi: 10.5603/FHC.2012.0040。【PubMed】【CrossRef】【Google Scholar】
55. Kawabata H, Nakamaki T, Ikonomi P, Smith RD, Germain RS, Koeffler HP. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood. 2001;98:2714–2719. doi: 10.1182/blood.V98.9.2714. [PubMed] [CrossRef] []
川端 H,中牧 T,Ikonomi P,Smith RD,Germain RS,Koeffler HP。转铁蛋白受体 2 在正常和肿瘤造血细胞中的表达。血液。2001;98:2714–2719. doi: 10.1182/blood.V98.9.2714。【PubMed】【CrossRef】【Google Scholar】
56. Nakamaki T, Kawabata H, Saito B, Matsunawa M, Suzuki J, Adachi D, et al. Elevated levels of transferrin receptor 2 mRNA, not transferrin receptor 1 mRNA, are associated with increased survival in acute myeloid leukaemia. Br J Haematol. 2004;125:42–49. doi: 10.1111/j.1365-2141.2004.04866.x. [PubMed] [CrossRef] []
56. Nakamaki T,Kawabata H,Saito B,Matsunawa M,Suzuki J,Adachi D 等。转铁蛋白受体 2 mRNA 水平升高,而非转铁蛋白受体 1 mRNA,与急性髓系白血病患者生存期延长相关。Br J Haematol. 2004;125:42–49. doi: 10.1111/j.1365-2141.2004.04866.x. [ PubMed] [ CrossRef] [ Google Scholar]
57. Viola A, Pagano L, Laudati D, D'Elia R, D'Amico MR, Ammirabile M, et al. HFE gene mutations in patients with acute leukemia. Leuk Lymphoma. 2006;47:2331–2334. doi: 10.1080/10428190600821898. [PubMed] [CrossRef] []
57. Viola A, Pagano L, Laudati D, D'Elia R, D'Amico MR, Ammirabile M, 等. 急性白血病患者中的 HFE 基因突变. Leuk Lymphoma. 2006;47:2331–2334. doi: 10.1080/10428190600821898. [ PubMed] [ CrossRef] [ Google Scholar]
58. Dorak MT, Burnett AK, Worwood M. Hemochromatosis gene in leukemia and lymphoma. Leuk Lymphoma. 2002;43:467–477. doi: 10.1080/10428190290011930. [PubMed] [CrossRef] []
58. Dorak MT, Burnett AK, Worwood M. 白血病和淋巴瘤中的血色病基因. Leuk Lymphoma. 2002;43:467–477. doi: 10.1080/10428190290011930. [ PubMed] [ CrossRef] [ Google Scholar]
59. Ohgami RS, Campagna DR, McDonald A, Fleming MD. The Steap proteins are metalloreductases. Blood. 2006;108:1388–1394. doi: 10.1182/blood-2006-02-003681. [PMC free article] [PubMed] [CrossRef] []
59. Ohgami RS, Campagna DR, McDonald A, Fleming MD. Steap 蛋白是金属还原酶。Blood. 2006;108:1388–1394. doi: 10.1182/blood-2006-02-003681.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google Scholar]
60. Moreaux J, Kassambara A, Hose D, Klein B. STEAP1 is overexpressed in cancers: a promising therapeutic target. Biochem Biophys Res Commun. 2012;429:148–155. doi: 10.1016/j.bbrc.2012.10.123. [PubMed] [CrossRef] []
60. Moreaux J, Kassambara A, Hose D, Klein B. STEAP1 is overexpressed in cancers: a promising therapeutic target. Biochem Biophys Res Commun. 2012;429:148–155. doi: 10.1016/j.bbrc.2012.10.123. [ PubMed] [ CrossRef] [ Google Scholar] 60. Moreaux J, Kassambara A, Hose D, Klein B. STEAP1 在癌症中过度表达:一个有前途的治疗靶点。生物化学与生物物理研究通讯。2012;429:148–155。doi: 10.1016/j.bbrc.2012.10.123。【PubMed】【CrossRef】【Google Scholar】
61. Jung M, Mertens C, Bauer R, Rehwald C, Brune B. Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res. 2017;120:146–156. doi: 10.1016/j.phrs.2017.03.018. [PubMed] [CrossRef] []
61. Jung M, Mertens C, Bauer R, Rehwald C, Brune B. Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res. 2017;120:146–156. doi: 10.1016/j.phrs.2017.03.018. [ PubMed] [ CrossRef] [ Google Scholar] 61. 郑 M,梅滕斯 C,鲍尔 R,雷瓦尔德 C,布鲁内 B。脂联素-2 和肿瘤微环境中的铁运输。药理学研究。2017;120:146–156。doi: 10.1016/j.phrs.2017.03.018。【PubMed】【CrossRef】【Google Scholar】
62. Bauvois Brigitte, Susin Santos. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? Cancers. 2018;10(9):336. doi: 10.3390/cancers10090336. [PMC free article] [PubMed] [CrossRef] []
62. Bauvois Brigitte, Susin Santos. 重新审视癌症中的中性粒细胞明胶酶相关脂联蛋白(NGAL):圣者还是罪人?癌症。2018;10(9):336. doi: 10.3390/cancers10090336.[PMC 免费文章][PubMed][CrossRef][Google 学者]
63. Bouchet S, Bauvois B. Neutrophil gelatinase-associated Lipocalin (NGAL), pro-matrix Metalloproteinase-9 (pro-MMP-9) and their complex pro-MMP-9/NGAL in Leukaemias. Cancers (Basel) 2014;6:796–812. doi: 10.3390/cancers6020796. [PMC free article] [PubMed] [CrossRef] []
63. Bouchet S, Bauvois B. 中性粒细胞明胶酶相关脂联蛋白(NGAL)、前基质金属蛋白酶-9(pro-MMP-9)及其复合物前 MMP-9/NGAL 在白血病中的作用。癌症(巴塞尔)2014;6:796–812. doi: 10.3390/cancers6020796.【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
64. Candido S, Maestro R, Polesel J, Catania A, Maira F, Signorelli SS, et al. Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer. Oncotarget. 2014;5:1576–1594. doi: 10.18632/oncotarget.1738. [PMC free article] [PubMed] [CrossRef] []
64. Candido S, Maestro R, Polesel J, Catania A, Maira F, Signorelli SS 等。中性粒细胞明胶酶相关脂蛋白(NGAL)在人类癌症中的作用。Oncotarget。2014;5:1576–1594。doi: 10.18632/oncotarget.1738。[PMC 免费文章][PubMed][CrossRef][Google 学者]
65. Kamiguti AS, Lee ES, Till KJ, Harris RJ, Glenn MA, Lin K, et al. The role of matrix metalloproteinase 9 in the pathogenesis of chronic lymphocytic leukaemia. Br J Haematol. 2004;125:128–140. doi: 10.1111/j.1365-2141.2004.04877.x. [PubMed] [CrossRef] []
Kamiguti AS,Lee ES,Till KJ,Harris RJ,Glenn MA,Lin K 等。基质金属蛋白酶 9 在慢性淋巴细胞白血病发病机制中的作用。Br J Haematol。2004;125:128–140。doi: 10.1111/j.1365-2141.2004.04877.x。【PubMed】【CrossRef】【Google Scholar】
66. Villalva C, Sorel N, Bonnet ML, Guilhot J, Mayeur-Rousse C, Guilhot F, et al. Neutrophil gelatinase-associated lipocalin expression in chronic myeloid leukemia. Leuk Lymphoma. 2008;49:984–988. doi: 10.1080/10428190801942360. [PubMed] [CrossRef] []
66. Villalva C, Sorel N, Bonnet ML, Guilhot J, Mayeur-Rousse C, Guilhot F, 等. 中性粒细胞明胶酶相关脂联蛋白在慢性髓性白血病中的表达. Leuk Lymphoma. 2008;49:984–988. doi: 10.1080/10428190801942360. [ PubMed] [ CrossRef] [ Google Scholar]
67. Leng X, Lin H, Ding T, Wang Y, Wu Y, Klumpp S, et al. Lipocalin 2 is required for BCR-ABL-induced tumorigenesis. Oncogene. 2008;27:6110–6119. doi: 10.1038/onc.2008.209. [PMC free article] [PubMed] [CrossRef] []
67. 冷 X,林 H,丁 T,王 Y,吴 Y,Klumpp S 等。脂联素 2 在 BCR-ABL 诱导的肿瘤发生中起作用。癌基因。2008;27:6110–6119. doi: 10.1038/onc.2008.209。【PMC 免费文章】【PubMed】【CrossRef】【Google 学者】
68. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. J Clin Oncol. 2010;28:2529–2537. doi: 10.1200/JCO.2009.23.4732. [PMC free article] [PubMed] [CrossRef] []
68. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, 等。基于微阵列基因表达谱诊断和亚型化白血病的临床应用:国际白血病微阵列创新研究组的报告。J Clin Oncol。2010;28:2529–2537。doi: 10.1200/JCO.2009.23.4732。[PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
69. Yang WC, Lin PM, Yang MY, Liu YC, Chang CS, Chou WC, et al. Higher lipocalin 2 expression may represent an independent favorable prognostic factor in cytogenetically normal acute myeloid leukemia. Leuk Lymphoma. 2013;54:1614–1625. doi: 10.3109/10428194.2012.749402. [PubMed] [CrossRef] []
杨文灿,林柏铭,杨明毅,刘育诚,张春生,周文成等。较高的脂联素 2 表达可能代表细胞遗传学正常的急性髓系白血病中的独立有利的预后因子。白血病淋巴瘤。2013; 54:1614-1625。doi: 10.3109/10428194.2012.749402。【PubMed】【CrossRef】【Google Scholar】
70. Wu KJ, Polack A, Dalla-Favera R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science. 1999;283:676–679. doi: 10.1126/science.283.5402.676. [PubMed] [CrossRef] []
70. 吴 KJ,波拉克 A,达拉-法韦拉 R。c-MYC 协调调控铁控制基因 H-铁蛋白和 IRP2。科学。1999;283:676-679。doi:10.1126/science.283.5402.676。【PubMed】【CrossRef】【Google 学者】
71. Smith DP, Bath ML, Metcalf D, Harris AW, Cory S. MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood. 2006;108:653–661. doi: 10.1182/blood-2006-01-0172. [PMC free article] [PubMed] [CrossRef] []
Smith DP,Bath ML,Metcalf D,Harris AW,Cory S。MYC 水平决定转基因小鼠的造血肿瘤类型和潜伏期。Blood。2006;108:653–661。doi: 10.1182/blood-2006-01-0172。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
72. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science. 2003;299:887–890. doi: 10.1126/science.1080280. [PubMed] [CrossRef] []
Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP 等。转基因斑马鱼中 Myc 诱导的 T 细胞白血病。科学。2003;299:887–890。doi: 10.1126/science.1080280。【PubMed】【CrossRef】【Google Scholar】
73. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH, et al. C-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood. 2014;123:1040–1050. doi: 10.1182/blood-2013-08-522698. [PMC free article] [PubMed] [CrossRef] []
73. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH, 等。C-Myc 抑制阻止小鼠白血病的发生,并影响复发和诱导失败的儿童 T-ALL 细胞的生长。Blood. 2014;123:1040–1050. doi: 10.1182/blood-2013-08-522698。[PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
74. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell. 2004;119:529–542. doi: 10.1016/j.cell.2004.10.017. [PubMed] [CrossRef] []
74. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, 等。 NF-kappaB 通过促进铁蛋白重链上调抑制了 TNFα诱导的细胞凋亡,抑制了活性氧的产生。细胞。2004;119:529–542。doi: 10.1016/j.cell.2004.10.017。【PubMed】【CrossRef】【Google Scholar】
75. Gasparetto M, Pei S, Minhajuddin M, Stevens B, Smith CA, Seligman P. Low ferroportin expression in AML is correlated with good risk cytogenetics, improved outcomes and increased sensitivity to chemotherapy. Leuk Res. 2019;80:1–10. doi: 10.1016/j.leukres.2019.02.011. [PubMed] [CrossRef] []
75. Gasparetto M, Pei S, Minhajuddin M, Stevens B, Smith CA, Seligman P. AML 中低 ferroportin 表达与良好的风险细胞遗传学、改善的结果和对化疗的增加敏感性相关。白血病研究。2019;80:1–10. doi: 10.1016/j.leukres.2019.02.011。[ PubMed] [ CrossRef] [ Google Scholar]
76. Trujillo-Alonso Vicenta, Pratt Edwin C., Zong Hongliang, Lara-Martinez Andres, Kaittanis Charalambos, Rabie Mohamed O., Longo Valerie, Becker Michael W., Roboz Gail J., Grimm Jan, Guzman Monica L. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nature Nanotechnology. 2019;14(6):616–622. doi: 10.1038/s41565-019-0406-1. [PMC free article] [PubMed] [CrossRef] []
76. 特鲁希略-阿隆索维森塔,普拉特埃德温 C.,宗洪亮,拉拉-马丁内斯安德烈斯,凯坦尼斯查拉朗博斯,拉比莫哈默德 O.,隆戈瓦莱丽,贝克迈克尔 W.,罗博兹盖尔 J.,格里姆扬,古兹曼莫妮卡 L. FDA 批准的费罗莫西醇对具有低铁蛋白转运蛋白水平的白血病细胞显示抗白血病效果。《自然纳米技术》。2019 年;14(6):616–622。doi: 10.1038/s41565-019-0406-1。【PMC 免费文章】【PubMed】【CrossRef】【Google 学者】
77. Tesfay L, Clausen KA, Kim JW, Hegde P, Wang X, Miller LD, et al. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 2015;75:2254–2263. doi: 10.1158/0008-5472.CAN-14-2465. [PMC free article] [PubMed] [CrossRef] []
77. Tesfay L, Clausen KA, Kim JW, Hegde P, Wang X, Miller LD, 等。前列腺中的肝铁蛋白调控及其在前列腺癌中的破坏。癌症研究。2015;75:2254–2263。doi: 10.1158/0008-5472.CAN-14-2465。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
78. Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood. 2006;107:3436–3441. doi: 10.1182/blood-2006-02-002394. [PMC free article] [PubMed] [CrossRef] []
78. Neufeld EJ. 口服螯合剂地法司罗和地非铁酮用于地中海贫血重度输血性铁过载:新数据,新问题。Blood. 2006;107:3436–3441. doi: 10.1182/blood-2006-02-002394. [PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
79. Elalfy MS, Adly AM, Wali Y, Tony S, Samir A, Elhenawy YI. Efficacy and safety of a novel combination of two oral chelators deferasirox/deferiprone over deferoxamine/deferiprone in severely iron overloaded young beta thalassemia major patients. Eur J Haematol. 2015;95:411–420. doi: 10.1111/ejh.12507. [PubMed] [CrossRef] []
79. Elalfy MS,Adly AM,Wali Y,Tony S,Samir A,Elhenawy YI。一种新型口服螯合剂 deferasirox/deferiprone 与 deferoxamine/deferiprone 相比,在严重铁过载的年轻β地中海贫血重症患者中的疗效和安全性。Eur J Haematol。2015;95:411–420。doi: 10.1111/ejh.12507。【PubMed】【CrossRef】【Google Scholar】
80. Bendova P, Mackova E, Haskova P, Vavrova A, Jirkovsky E, Sterba M, et al. Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury. Chem Res Toxicol. 2010;23:1105–1114. doi: 10.1021/tx100125t. [PubMed] [CrossRef] []
Bendova P, Mackova E, Haskova P, Vavrova A, Jirkovsky E, Sterba M 等人。比较临床使用和实验性铁螯合剂对抗氧化应激诱导的细胞损伤的保护作用。Chem Res Toxicol. 2010;23:1105–1114. doi: 10.1021/tx100125t.【PubMed】【CrossRef】【Google Scholar】
81. Messa E, Carturan S, Maffe C, Pautasso M, Bracco E, Roetto A, et al. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematologica. 2010;95:1308–1316. doi: 10.3324/haematol.2009.016824. [PMC free article] [PubMed] [CrossRef] []
Messa E, Carturan S, Maffe C, Pautasso M, Bracco E, Roetto A 等。Deferasirox 是一种在骨髓增生异常细胞和白血病细胞系中独立于通过螯合和清除活性氧自由基的细胞铁剥夺作用的强大 NF-kappaB 抑制剂。Haematologica。2010;95:1308–1316. doi: 10.3324/haematol.2009.016824。[PMC 免费文章][PubMed][CrossRef][Google 学者]
82. Yu Y, Richardson DR. Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1. J Biol Chem. 2011;286:15413–15427. doi: 10.1074/jbc.M111.225946. [PMC free article] [PubMed] [CrossRef] []
82. 余 Y,理查森 DR。细胞铁耗竭刺激 JNK 和 p38 MAPK 信号传导途径,ASK1-硫氧还蛋白的解离,以及 ASK1 的激活。J Biol Chem。2011;286:15413-15427。doi:10.1074/jbc.M111.225946。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】。
83. Furukawa T, Naitoh Y, Kohno H, Tokunaga R, Taketani S. Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis. Life Sci. 1992;50:2059–2065. doi: 10.1016/0024-3205(92)90572-7. [PubMed] [CrossRef] []
古川隆,内藤阳,河野浩,德永良,竹谷茂。铁剥夺减少核糖核苷酸还原酶活性和 DNA 合成。生命科学。1992;50:2059–2065. doi: 10.1016/0024-3205(92)90572-7。【PubMed】【CrossRef】【Google Scholar】
84. Cooper CE, Lynagh GR, Hoyes KP, Hider RC, Cammack R, Porter JB. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J Biol Chem. 1996;271:20291–20299. doi: 10.1074/jbc.271.34.20291. [PubMed] [CrossRef] []
84. Cooper CE, Lynagh GR, Hoyes KP, Hider RC, Cammack R, Porter JB. 细胞内铁螯合与人类核糖核苷酸还原酶抑制和再生的关系。J Biol Chem. 1996;271:20291–20299. doi: 10.1074/jbc.271.34.20291. [ PubMed] [ CrossRef] [ Google Scholar]
85. Tataranni T, Agriesti F, Mazzoccoli C, Ruggieri V, Scrima R, Laurenzana I, et al. The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells. Br J Haematol. 2015;170:236–246. doi: 10.1111/bjh.13381. [PubMed] [CrossRef] []
Tataranni T, Agriesti F, Mazzoccoli C, Ruggieri V, Scrima R, Laurenzana I 等。铁螯合剂地非拉西罗影响造血干/祖细胞的氧化还原信号。Br J Haematol。2015;170:236–246。doi: 10.1111/bjh.13381。【PubMed】【CrossRef】【Google Scholar】
86. Owusu-Ansah E, Banerjee U. Reactive oxygen species prime drosophila haematopoietic progenitors for differentiation. Nature. 2009;461:537–541. doi: 10.1038/nature08313. [PMC free article] [PubMed] [CrossRef] []
86. Owusu-Ansah E, Banerjee U. 氧化还原物质为果蝇造血祖细胞分化做好准备。自然。2009;461:537–541. doi: 10.1038/nature08313.[PMC 免费文章][PubMed][CrossRef][Google 学者]
87. Song S, Christova T, Perusini S, Alizadeh S, Bao RY, Miller BW, et al. Wnt inhibitor screen reveals iron dependence of beta-catenin signaling in cancers. Cancer Res. 2011;71:7628–7639. doi: 10.1158/0008-5472.CAN-11-2745. [PubMed] [CrossRef] []
Song S, Christova T, Perusini S, Alizadeh S, Bao RY, Miller BW 等。 Wnt 抑制剂筛选揭示了癌症中β-连环蛋白信号通路对铁的依赖性。癌症研究。2011; 71:7628-7639。doi: 10.1158/0008-5472.CAN-11-2745。【PubMed】【CrossRef】【Google Scholar】
88. Li N, Chen Q, Gu J, Li S, Zhao G, Wang W, et al. Synergistic inhibitory effects of deferasirox in combination with decitabine on leukemia cell lines SKM-1, THP-1, and K-562. Oncotarget. 2017;8:36517–36530. [PMC free article] [PubMed] []
Li N, Chen Q, Gu J, Li S, Zhao G, Wang W 等。Deferasirox 与地西他滨联合对 SKM-1、THP-1 和 K-562 白血病细胞系的协同抑制作用。Oncotarget。2017;8:36517–36530。【PMC 免费文章】【PubMed】【Google 学者】
89. Chang YC, Lo WJ, Huang YT, Lin CL, Feng CC, Lin HT, et al. Deferasirox has strong anti-leukemia activity but may antagonize theanti-leukemia effect of doxorubicin. Leuk Lymphoma. 2017;58:1–12. doi: 10.1080/10428194.2017.1280604. [PubMed] [CrossRef] []
89. 张玉春,罗文杰,黄育庭,林昌龙,冯春昌,林惠婷等。除铁剂在抗白血病活性方面表现强劲,但可能会拮抗阿霉素的抗白血病效果。白血病淋巴瘤。2017;58:1–12。doi: 10.1080/10428194.2017.1280604。[PubMed] [CrossRef] [Google Scholar]
90. Mackova E, Hruskova K, Bendova P, Vavrova A, Jansova H, Haskova P, et al. Methyl and ethyl ketone analogs of salicylaldehyde isonicotinoyl hydrazone: novel iron chelators with selective antiproliferative action. Chem Biol Interact. 2012;197:69–79. doi: 10.1016/j.cbi.2012.03.010. [PubMed] [CrossRef] []
90. Mackova E, Hruskova K, Bendova P, Vavrova A, Jansova H, Haskova P, 等. 水杨醛异烟酰肼的甲基和乙基酮类似物:具有选择性抗增殖作用的新型铁螯合剂. Chem Biol Interact. 2012;197:69–79. doi: 10.1016/j.cbi.2012.03.010. [ PubMed] [ CrossRef] [ Google Scholar]
91. Yuan J, Lovejoy DB, Richardson DR. Novel di-2-pyridyl-derived iron chelators with marked and selective antitumor activity: in vitro and in vivo assessment. Blood. 2004;104:1450–1458. doi: 10.1182/blood-2004-03-0868. [PubMed] [CrossRef] []
Yuan J, Lovejoy DB, Richardson DR. 具有显著和选择性抗肿瘤活性的新型二-2-吡啶基衍生铁螯合剂:体外和体内评估。Blood. 2004;104:1450–1458. doi: 10.1182/blood-2004-03-0868. [ PubMed] [ CrossRef] [ Google Scholar]
92. Brooks D, Taylor C, Dos Santos B, Linden H, Houghton A, Hecht TT, et al. Phase Ia trial of murine immunoglobulin a antitransferrin receptor antibody 42/6. Clin Cancer Res. 1995;1:1259–1265. [PubMed] []
布鲁克斯 D,泰勒 C,多斯桑托斯 B,林登 H,霍顿 A,赫希 TT 等。42/6 小鼠免疫球蛋白 A 抗转铁蛋白受体抗体的 Ia 期试验。临床癌症研究。1995;1:1259–1265。【PubMed】【Google Scholar】
93. Estrov Z, Tawa A, Wang XH, Dube ID, Sulh H, Cohen A, et al. In vitro and in vivo effects of deferoxamine in neonatal acute leukemia. Blood. 1987;69:757–761. [PubMed] []
93. Estrov Z, Tawa A, Wang XH, Dube ID, Sulh H, Cohen A, 等。除氧醋酸对新生儿急性白血病的体外和体内影响。血液。1987;69:757–761。【PubMed】【Google Scholar】
94. Thelander L, Graslund A, Thelander M. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem Biophys Res Commun. 1983;110:859–865. doi: 10.1016/0006-291X(83)91040-9. [PubMed] [CrossRef] []
94. Thelander L, Graslund A, Thelander M. 哺乳动物核糖核苷酸还原需要持续存在的氧气和铁:可能的调节机制。生物化学生物物理研究通讯。1983;110:859–865. doi: 10.1016/0006-291X(83)91040-9.【PubMed】【CrossRef】【Google Scholar】
95. Gharagozloo M, Khoshdel Z, Amirghofran Z. The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: a comparison with desferrioxamine. Eur J Pharmacol. 2008;589:1–7. doi: 10.1016/j.ejphar.2008.03.059. [PubMed] [CrossRef] []
95. Gharagozloo M, Khoshdel Z, Amirghofran Z. 铁(III)螯合剂硅宾对 Jurkat 细胞增殖和细胞周期的影响:与去铁胺比较。欧洲药理学杂志。2008;589:1–7. doi: 10.1016/j.ejphar.2008.03.059。【PubMed】【CrossRef】【Google Scholar】
96. Fu D, Richardson DR. Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood. 2007;110:752–761. doi: 10.1182/blood-2007-03-076737. [PubMed] [CrossRef] []
Fu D, Richardson DR. 铁螯合和细胞周期调控:铁耗竭通过后转录调控通用细胞周期依赖性激酶抑制剂 p21CIP1/WAF1 的两种机制。Blood. 2007;110:752–761. doi: 10.1182/blood-2007-03-076737. [ PubMed] [ CrossRef] [ Google Scholar]
97. Abdel-Wahab O, Levine RL. Metabolism and the leukemic stem cell. J Exp Med. 2010;207:677–680. doi: 10.1084/jem.20100523. [PMC free article] [PubMed] [CrossRef] []
97. Abdel-Wahab O, Levine RL. 代谢和白血病干细胞。J Exp Med. 2010;207:677–680. doi: 10.1084/jem.20100523.[ PMC 免费文章] [ PubMed] [ CrossRef] [ Google Scholar]
98. Chaston TB, Watts RN, Yuan J, Richardson DR. Potent antitumor activity of novel iron chelators derived from di-2-pyridylketone isonicotinoyl hydrazone involves Fenton-derived free radical generation. Clin Cancer Res. 2004;10:7365–7374. doi: 10.1158/1078-0432.CCR-04-0865. [PubMed] [CrossRef] []
查斯顿 TB,沃茨 RN,袁 J,理查森 DR。源自二-2-吡啶酮异烟酰肼的新型铁螯合剂具有强大的抗肿瘤活性,涉及芬顿衍生的自由基生成。临床癌症研究。2004;10:7365–7374. doi: 10.1158/1078-0432.CCR-04-0865。【PubMed】【CrossRef】【Google Scholar】
99. Regis G, Bosticardo M, Conti L, De Angelis S, Boselli D, Tomaino B, et al. Iron regulates T-lymphocyte sensitivity to the IFN-gamma/STAT1 signaling pathway in vitro and in vivo. Blood. 2005;105:3214–3221. doi: 10.1182/blood-2004-07-2686. [PubMed] [CrossRef] []
99. Regis G, Bosticardo M, Conti L, De Angelis S, Boselli D, Tomaino B, 等. 铁在体内外调节 T 淋巴细胞对 IFN-γ/STAT1 信号通路的敏感性. 血液. 2005;105:3214–3221. doi: 10.1182/blood-2004-07-2686. [ PubMed] [ CrossRef] [ Google Scholar]
100. Ohyashiki JH, Kobayashi C, Hamamura R, Okabe S, Tauchi T, Ohyashiki K. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci. 2009;100:970–977. doi: 10.1111/j.1349-7006.2009.01131.x. [PubMed] [CrossRef] []
100. Ohyashiki JH,Kobayashi C,Hamamura R,Okabe S,Tauchi T,Ohyashiki K。口服铁螯合剂地法司罗抑制髓系白血病细胞通过增强 REDD1 表达抑制 mTOR 信号传导。癌症科学。2009;100:970–977。doi: 10.1111/j.1349-7006.2009.01131.x。【PubMed】【CrossRef】【Google Scholar】
101. Shapira S, Raanani P, Samara A, Nagler A, Lubin I, Arber N, et al. Deferasirox selectively induces cell death in the clinically relevant population of leukemic CD34(+)CD38(−) cells through iron chelation, induction of ROS, and inhibition of HIF1alpha expression. Exp Hematol. 2019;70:55–69. doi: 10.1016/j.exphem.2018.10.010. [PubMed] [CrossRef] []
Shapira S, Raanani P, Samara A, Nagler A, Lubin I, Arber N 等。Deferasirox 通过螯合铁、诱导 ROS 和抑制 HIF1alpha 表达,选择性地诱导临床相关的白血病 CD34(+)CD38(−)细胞死亡。Exp Hematol。2019;70:55–69。doi: 10.1016/j.exphem.2018.10.010。【PubMed】【CrossRef】【Google Scholar】
102. Yalcintepe L, Halis E. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin. Bosn J Basic Med Sci. 2016;16:14–20. [PMC free article] [PubMed] []
102. Yalcintepe L, Halis E. 铁螯合调节铁代谢,调节细胞内钙浓度并增加对阿霉素的敏感性。波斯尼亚基础医学科学杂志。2016;16:14–20。[PMC 免费文章][PubMed][Google 学者]
103. Leardi A, Caraglia M, Selleri C, Pepe S, Pizzi C, Notaro R, et al. Desferioxamine increases iron depletion and apoptosis induced by ara-C of human myeloid leukaemic cells. Br J Haematol. 1998;102:746–752. doi: 10.1046/j.1365-2141.1998.00834.x. [PubMed] [CrossRef] []
103. Leardi A, Caraglia M, Selleri C, Pepe S, Pizzi C, Notaro R, 等。去铁胺增加阿糖胞苷诱导的人类髓系白血病细胞的铁耗竭和凋亡。Br J Haematol. 1998;102:746–752. doi: 10.1046/j.1365-2141.1998.00834.x. [ PubMed] [ CrossRef] [ Google Scholar]
104. Yu R, Wang D, Ren X, Zeng L, Liu Y. The growth-inhibitory and apoptosis-inducing effect of deferoxamine combined with arsenic trioxide on HL-60 xenografts in nude mice. Leuk Res. 2014;38:1085–1090. doi: 10.1016/j.leukres.2014.05.005. [PubMed] [CrossRef] []
104. 于瑞,王丹,任雪,曾磊,刘洋。去铁胺与三氧化二砷联合对裸鼠 HL-60 异种移植瘤生长抑制和诱导凋亡作用。白血病研究。2014;38:1085–1090. doi: 10.1016/j.leukres.2014.05.005.【PubMed】【CrossRef】【Google Scholar】
105. Giles FJ, Fracasso PM, Kantarjian HM, Cortes JE, Brown RA, Verstovsek S, et al. Phase I and pharmacodynamic study of Triapine, a novel ribonucleotide reductase inhibitor, in patients with advanced leukemia. Leuk Res. 2003;27:1077–1083. doi: 10.1016/S0145-2126(03)00118-8. [PubMed] [CrossRef] []
105. Giles FJ, Fracasso PM, Kantarjian HM, Cortes JE, Brown RA, Verstovsek S, 等。Triapine 的 I 期和药效动力学研究,一种新型核糖核苷酸还原酶抑制剂,用于晚期白血病患者。白血病研究。2003;27:1077–1083。doi: 10.1016/S0145-2126(03)00118-8。【PubMed】【CrossRef】【Google Scholar】
106. Noulsri E, Richardson DR, Lerdwana S, Fucharoen S, Yamagishi T, Kalinowski DS, et al. Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells. Am J Hematol. 2009;84:170–176. doi: 10.1002/ajh.21350. [PubMed] [CrossRef] []
106. Noulsri E, Richardson DR, Lerdwana S, Fucharoen S, Yamagishi T, Kalinowski DS, 等. 铁螯合剂 Dp44mT 对白血病细胞的抗肿瘤活性和作用机制. Am J Hematol. 2009;84:170–176. doi: 10.1002/ajh.21350. [ PubMed] [ CrossRef] [ Google Scholar]
107. Minden MD, Hogge DE, Weir SJ, Kasper J, Webster DA, Patton L, et al. Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies. Am J Hematol. 2014;89:363–368. doi: 10.1002/ajh.23640. [PubMed] [CrossRef] []
107. Minden MD, Hogge DE, Weir SJ, Kasper J, Webster DA, Patton L, 等。口服环丙沙锡醇胺在晚期血液恶性肿瘤患者中显示生物活性的 I 期研究。Am J Hematol. 2014;89:363–368. doi: 10.1002/ajh.23640. [ PubMed] [ CrossRef] [ Google Scholar]
108. Fukushima T, Kawabata H, Nakamura T, Iwao H, Nakajima A, Miki M, et al. Iron chelation therapy with deferasirox induced complete remission in a patient with chemotherapy-resistant acute monocytic leukemia. Anticancer Res. 2011;31:1741–1744. [PubMed] []
109. Kaloyannidis P, Yannaki E, Sakellari I, Bitzioni E, Athanasiadou A, Mallouri D, et al. The impact of desferrioxamine postallogeneic hematopoietic cell transplantation in relapse incidence and disease-free survival: a retrospective analysis. Transplantation. 2010;89:472–479. doi: 10.1097/TP.0b013e3181c42944. [PubMed] [CrossRef] []
109. Kaloyannidis P, Yannaki E, Sakellari I, Bitzioni E, Athanasiadou A, Mallouri D, 等。去铁胺对同基因造血干细胞移植后复发率和无病生存率的影响:一项回顾性分析。移植。2010;89:472–479。doi: 10.1097/TP.0b013e3181c42944。【PubMed】【CrossRef】【Google Scholar】
110. Armand P, Sainvil MM, Kim HT, Rhodes J, Cutler C, Ho VT, et al. Pre-transplantation iron chelation in patients with MDS or acute leukemia and iron overload undergoing myeloablative Allo-SCT. Bone Marrow Transplant. 2013;48:146–147. doi: 10.1038/bmt.2012.94. [PMC free article] [PubMed] [CrossRef] []
110. Armand P, Sainvil MM, Kim HT, Rhodes J, Cutler C, Ho VT, 等。在接受全身骨髓移植的 MDS 或急性白血病和铁过载患者中进行移植前铁螯合治疗。骨髓移植。2013;48:146–147。doi: 10.1038/bmt.2012.94。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
111. Cho BS, Jeon YW, Hahn AR, Lee TH, Park SS, Yoon JH, et al. Improved survival outcomes and restoration of graft-vs-leukemia effect by deferasirox after allogeneic stem cell transplantation in acute myeloid leukemia. Cancer Med. 2019;8:501–514. doi: 10.1002/cam4.1928. [PMC free article] [PubMed] [CrossRef] []
Cho BS,Jeon YW,Hahn AR,Lee TH,Park SS,Yoon JH 等。去铁剂 deferasirox 在急性髓系白血病异基因干细胞移植后改善存活结果和恢复移植物抗白血病效应。癌症医学。2019;8:501–514。doi: 10.1002/cam4.1928。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
112. Pullarkat V, Sehgal A, Li L, Meng Z, Lin A, Forman S, et al. Deferasirox exposure induces reactive oxygen species and reduces growth and viability of myelodysplastic hematopoietic progenitors. Leuk Res. 2012;36:966–973. doi: 10.1016/j.leukres.2012.03.018. [PubMed] [CrossRef] []
112. Pullarkat V, Sehgal A, Li L, Meng Z, Lin A, Forman S, 等. 去铁剂暴露诱导活性氧并减少骨髓增生异常细胞的生长和存活. Leuk Res. 2012;36:966–973. doi: 10.1016/j.leukres.2012.03.018. [ PubMed] [ CrossRef] [ Google Scholar]
113. Visani G, Guiducci B, Giardini C, Loscocco F, Ricciardi T, Isidori A. Deferasirox improves hematopoiesis after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014;49:585–587. doi: 10.1038/bmt.2013.213. [PubMed] [CrossRef] []
114. Yee KW, Cortes J, Ferrajoli A, Garcia-Manero G, Verstovsek S, Wierda W, et al. Triapine and cytarabine is an active combination in patients with acute leukemia or myelodysplastic syndrome. Leuk Res. 2006;30:813–822. doi: 10.1016/j.leukres.2005.12.013. [PubMed] [CrossRef] []
114. Yee KW,Cortes J,Ferrajoli A,Garcia-Manero G,Verstovsek S,Wierda W 等。Triapine 和阿糖胞苷是急性白血病或骨髓增生异常综合征患者的有效组合。白血病研究。2006;30:813–822。doi: 10.1016/j.leukres.2005.12.013。【PubMed】【CrossRef】【Google Scholar】
115. Odenike OM, Larson RA, Gajria D, Dolan ME, Delaney SM, Karrison TG, et al. Phase I study of the ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde-thiosemicarbazone (3-AP) in combination with high dose cytarabine in patients with advanced myeloid leukemia. Investig New Drugs. 2008;26:233–239. doi: 10.1007/s10637-008-9115-6. [PMC free article] [PubMed] [CrossRef] []
Odenike OM,Larson RA,Gajria D,Dolan ME,Delaney SM,Karrison TG 等。核糖核苷酸还原酶抑制剂 3-氨基吡啶-2-甲醛硫脲半胱氨酸酮(3-AP)与高剂量阿糖胞苷联合治疗晚期髓样白血病患者的 I 期研究。Investig New Drugs。2008;26:233–239。doi: 10.1007/s10637-008-9115-6。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
116. Karp JE, Giles FJ, Gojo I, Morris L, Greer J, Johnson B, et al. A phase I study of the novel ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) in combination with the nucleoside analog fludarabine for patients with refractory acute leukemias and aggressive myeloproliferative disorders. Leuk Res. 2008;32:71–77. doi: 10.1016/j.leukres.2007.05.003. [PMC free article] [PubMed] [CrossRef] []
卡普 JE,吉尔斯 FJ,Gojo I,莫里斯 L,格里尔 J,约翰逊 B 等。一项关于新型核糖核苷酸还原酶抑制剂 3-氨基吡啶-2-甲醛硫脲半胱氨酸酮(3-AP,Triapine)与核苷类似物氟达拉滨联合治疗难治性急性白血病和侵袭性骨髓增生性疾病患者的 I 期研究。白血病研究。2008;32:71-77。doi:10.1016/j.leukres.2007.05.003。【PMC 免费文章】【PubMed】【CrossRef】【Google Scholar】
117. Zeidner JF, Karp JE, Blackford AL, Smith BD, Gojo I, Gore SD, et al. A phase II trial of sequential ribonucleotide reductase inhibition in aggressive myeloproliferative neoplasms. Haematologica. 2014;99:672–678. doi: 10.3324/haematol.2013.097246. [PMC free article] [PubMed] [CrossRef] []
117. Zeidner JF, Karp JE, Blackford AL, Smith BD, Gojo I, Gore SD, 等. 顺序核糖核苷酸还原酶抑制在侵袭性骨髓增生性肿瘤中的Ⅱ期试验. 血液学. 2014;99:672–678. doi: 10.3324/haematol.2013.097246. [PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
118. Platzbecker U, Wong RS, Verma A, Abboud C, Araujo S, Chiou TJ, et al. Safety and tolerability of eltrombopag versus placebo for treatment of thrombocytopenia in patients with advanced myelodysplastic syndromes or acute myeloid leukaemia: a multicentre, randomised, placebo-controlled, double-blind, phase 1/2 trial. Lancet Haematol. 2015;2:e417–e426. doi: 10.1016/S2352-3026(15)00149-0. [PubMed] [CrossRef] []
118. Platzbecker U, Wong RS, Verma A, Abboud C, Araujo S, Chiou TJ, 等。Eltrombopag 治疗晚期骨髓增生异常综合征或急性髓系白血病患者血小板减少的安全性和耐受性与安慰剂相比:一项多中心、随机、安慰剂对照、双盲、1/2 期试验。《柳叶刀-血液学》。2015;2:e417–e426。doi: 10.1016/S2352-3026(15)00149-0。【PubMed】【CrossRef】【Google Scholar】
119. Frey N, Jang JH, Szer J, Illes A, Kim HJ, Ram R, et al. Eltrombopag treatment during induction chemotherapy for acute myeloid leukaemia: a randomised, double-blind, phase 2 study. Lancet Haematol. 2019;6:e122–e131. doi: 10.1016/S2352-3026(18)30231-X. [PubMed] [CrossRef] []
119. Frey N, Jang JH, Szer J, Illes A, Kim HJ, Ram R, 等。Eltrombopag 治疗急性髓系白血病诱导化疗期间:一项随机、双盲、2 期研究。《柳叶刀-血液学》。2019 年;6:e122–e131。doi:10.1016/S2352-3026(18)30231-X。【PubMed】【CrossRef】【Google Scholar】
120. Taetle R, Castagnola J, Mendelsohn J. Mechanisms of growth inhibition by anti-transferrin receptor monoclonal antibodies. Cancer Res. 1986;46:1759–1763. [PubMed] []
Taetle R, Castagnola J, Mendelsohn J. 抗转铁蛋白受体单克隆抗体抑制生长的机制。癌症研究。1986;46:1759–1763。【PubMed】【Google Scholar】
121. Callens C, Moura IC, Lepelletier Y, Coulon S, Renand A, Dussiot M, et al. Recent advances in adult T-cell leukemia therapy: focus on a new anti-transferrin receptor monoclonal antibody. Leukemia. 2008;22:42–48. doi: 10.1038/sj.leu.2404958. [PubMed] [CrossRef] []
121. Callens C, Moura IC, Lepelletier Y, Coulon S, Renand A, Dussiot M, 等. 成人 T 细胞白血病治疗的最新进展:重点关注一种新的抗转铁蛋白受体单克隆抗体。白血病。2008;22:42–48. doi: 10.1038/sj.leu.2404958. [ PubMed] [ CrossRef] [ Google Scholar]
122. Moura IC, Lepelletier Y, Arnulf B, England P, Baude C, Beaumont C, et al. A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients. Blood. 2004;103:1838–1845. doi: 10.1182/blood-2003-07-2440. [PubMed] [CrossRef] []
122. Moura IC, Lepelletier Y, Arnulf B, England P, Baude C, Beaumont C, 等. 针对转铁蛋白受体的中和单克隆抗体(mAb A24)诱导 ATL 患者肿瘤 T 淋巴细胞凋亡。Blood. 2004;103:1838–1845. doi: 10.1182/blood-2003-07-2440. [ PubMed] [ CrossRef] [ Google Scholar]
123. White S, Taetle R, Seligman PA, Rutherford M, Trowbridge IS. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects. Cancer Res. 1990;50:6295–6301. [PubMed] []
123. White S, Taetle R, Seligman PA, Rutherford M, Trowbridge IS. 抗转铁蛋白受体单克隆抗体的组合在体外和体内抑制人类肿瘤细胞生长:协同抗增殖效应的证据。癌症研究。1990;50:6295–6301。【PubMed】【Google Scholar】
124. Kemp JD, Thorson JA, Stewart BC, Naumann PW. Inhibition of hematopoietic tumor growth by combined treatment with deferoxamine and an IgG monoclonal antibody against the transferrin receptor: evidence for a threshold model of iron deprivation toxicity. Cancer Res. 1992;52:4144–4148. [PubMed] []
Kemp JD, Thorson JA, Stewart BC, Naumann PW. 通过联合使用除铁胺和针对转铁蛋白受体的 IgG 单克隆抗体抑制造血肿瘤生长:铁剥夺毒性的阈值模型证据。癌症研究。1992;52:4144–4148。【PubMed】【Google Scholar】
125. Shimosaki S, Nakahata S, Ichikawa T, Kitanaka A, Kameda T, Hidaka T, et al. Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma. Biochem Biophys Res Commun. 2017;485:144–151. doi: 10.1016/j.bbrc.2017.02.039. [PubMed] [CrossRef] []
125. 下崎 S,中畑 S,市川 T,北中 A,亀田 T,日高 T 等。针对成人 T 细胞白血病/淋巴瘤的靶向转铁蛋白受体 1 的完全人源 IgG 单克隆抗体的开发。生物化学生物物理研究通讯。2017;485:144–151. doi: 10.1016/j.bbrc.2017.02.039。【PubMed】【CrossRef】【Google Scholar】
126. Sauvage CA, Mendelsohn JC, Lesley JF, Trowbridge IS. Effects of monoclonal antibodies that block transferrin receptor function on the in vivo growth of a syngeneic murine leukemia. Cancer Res. 1987;47:747–753. [PubMed] []
Sauvage CA, Mendelsohn JC, Lesley JF, Trowbridge IS. 阻断转铁蛋白受体功能的单克隆抗体对同基因小鼠白血病体内生长的影响。癌症研究。1987;47:747–753。【PubMed】【Google Scholar】
127. Zhang D, Lee HF, Pettit SC, Zaro JL, Huang N, Shen WC. Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativa L.) BMC Biotechnol. 2012;12:92. doi: 10.1186/1472-6750-12-92. [PMC free article] [PubMed] [CrossRef] []
张 D,李 HF,佩蒂特 SC,扎罗 JL,黄 N,沈 WC。从水稻(Oryza sativa L.)中的重组人血清转铁蛋白的转铁蛋白受体介导的内吞作用和细胞铁输送的特性。BMC 生物技术。2012;12:92. doi: 10.1186/1472-6750-12-92。[PMC 免费文章] [PubMed] [CrossRef] [Google Scholar]
128. Oh S, Kim BJ, Singh NP, Lai H, Sasaki T. Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide. Cancer Lett. 2009;274:33–39. doi: 10.1016/j.canlet.2008.08.031. [PubMed] [CrossRef] []
128. Oh S, Kim BJ, Singh NP, Lai H, Sasaki T. 青蒿素与转铁蛋白受体靶向肽的共价结合物的合成和抗癌活性。癌症信函。2009;274:33–39. doi: 10.1016/j.canlet.2008.08.031.【PubMed】【CrossRef】【Google Scholar】
129. Hege KM, Daleke DL, Waldmann TA, Matthay KK. Comparison of anti-tac and anti-transferrin receptor-conjugated liposomes for specific drug delivery to adult T-cell leukemia. Blood. 1989;74:2043–2052. [PubMed] []
129. Hege KM, Daleke DL, Waldmann TA, Matthay KK. 比较抗 tac 和抗转铁蛋白受体结合脂质体对成人 T 细胞白血病特异药物传递的研究。Blood. 1989;74:2043–2052。[PubMed] [Google Scholar]
130. Retnakumari AP, Hanumanthu PL, Malarvizhi GL, Prabhu R, Sidharthan N, Thampi MV, et al. Rationally designed aberrant kinase-targeted endogenous protein nanomedicine against oncogene mutated/amplified refractory chronic myeloid leukemia. Mol Pharm. 2012;9:3062–3078. doi: 10.1021/mp300172e. [PubMed] [CrossRef] []
130. Retnakumari AP, Hanumanthu PL, Malarvizhi GL, Prabhu R, Sidharthan N, Thampi MV, 等。针对癌基因突变/扩增难治性慢性髓样白血病的合理设计的异常激酶靶向内源蛋白纳米药物。 Mol Pharm. 2012;9:3062–3078. doi: 10.1021/mp300172e. [ PubMed] [ CrossRef] [ Google Scholar]
131. Mendonca LS, Moreira JN, de Lima MC, Simoes S. Co-encapsulation of anti-BCR-ABL siRNA and imatinib mesylate in transferrin receptor-targeted sterically stabilized liposomes for chronic myeloid leukemia treatment. Biotechnol Bioeng. 2010;107:884–893. doi: 10.1002/bit.22858. [PubMed] [CrossRef] []
131. Mendonca LS, Moreira JN, de Lima MC, Simoes S. 将抗 BCR-ABL siRNA 和伊马替尼共包装在靶向转铁蛋白受体的立体稳定脂质体中,用于慢性髓细胞白血病治疗。生物技术与生物工程。2010;107:884–893。doi: 10.1002/bit.22858。【PubMed】【CrossRef】【Google Scholar】
132. Yuan Y, Zhang L, Cao H, Yang Y, Zheng Y, Yang XJ. A Polyethylenimine-containing and transferrin-conjugated lipid nanoparticle system for antisense oligonucleotide delivery to AML. Biomed Res Int. 2016;2016:1287128. [PMC free article] [PubMed] []
133. Yang X, Koh CG, Liu S, Pan X, Santhanam R, Yu B, et al. Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm. 2009;6:221–230. doi: 10.1021/mp800149s. [PMC free article] [PubMed] [CrossRef] []
134. Zeiadeh Isra’, Najjar Anas, Karaman Rafik. Strategies for Enhancing the Permeation of CNS-Active Drugs through the Blood-Brain Barrier: A Review. Molecules. 2018;23(6):1289. doi: 10.3390/molecules23061289. [PMC free article] [PubMed] [CrossRef] []
135. Hayashi S, Kumai T, Matsuda Y, Aoki N, Sato K, Kimura S, et al. Six-transmembrane epithelial antigen of the prostate and enhancer of zeste homolog 2 as immunotherapeutic targets for lung cancer. J Transl Med. 2011;9:191. doi: 10.1186/1479-5876-9-191. [PMC free article] [PubMed] [CrossRef] []
136. Wu J, Liu H, Zhang G, Gu L, Zhang Y, Gao J, et al. Antileukemia effect of Ciclopirox Olamine is mediated by downregulation of intracellular ferritin and inhibition beta-catenin-c-Myc signaling pathway in glucocorticoid resistant T-ALL cell lines. PLoS One. 2016;11:e0161509. doi: 10.1371/journal.pone.0161509. [PMC free article] [PubMed] [CrossRef] []
137. Jutz G, van Rijn P, Santos Miranda B, Boker A. Ferritin: a versatile building block for bionanotechnology. Chem Rev. 2015;115:1653–1701. doi: 10.1021/cr400011b. [PubMed] [CrossRef] []
138. Huang MJ, Cheng YC, Liu CR, Lin S, Liu HE. A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol. 2006;34:1480–1489. doi: 10.1016/j.exphem.2006.06.019. [PubMed] [CrossRef] []
139. Xia B, Tian C, Guo S, Zhang L, Zhao D, Qu F, et al. C-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk Res. 2015;39:92–99. doi: 10.1016/j.leukres.2014.11.004. [PubMed] [CrossRef] []
140. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–1072. doi: 10.1016/j.cell.2012.03.042. [PMC free article] [PubMed] [CrossRef] []
141. Zhao B, Li X, Wang Y, Shang P. Iron-dependent cell death as executioner of cancer stem cells. J Exp Clin Cancer Res. 2018;37:79. doi: 10.1186/s13046-018-0733-3. [PMC free article] [PubMed] [CrossRef] []
142. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate Ferroptosis. Mol Cell. 2015;59:298–308. doi: 10.1016/j.molcel.2015.06.011. [PMC free article] [PubMed] [CrossRef] []
143. Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015;34:5617–5625. doi: 10.1038/onc.2015.32. [PMC free article] [PubMed] [CrossRef] []
144. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, 3rd, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–1428. doi: 10.1080/15548627.2016.1187366. [PMC free article] [PubMed] [CrossRef] []
145. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–331. doi: 10.1016/j.cell.2013.12.010. [PMC free article] [PubMed] [CrossRef] []
146. Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 1830;2013:3289–3303. [PubMed] []
147. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:e02523. doi: 10.7554/eLife.02523. [PMC free article] [PubMed] [CrossRef] []
148. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. doi: 10.1038/nature14344. [PMC free article] [PubMed] [CrossRef] []
149. Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Maziere JC, Chauffert B, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013;133:1732–1742. doi: 10.1002/ijc.28159. [PubMed] [CrossRef] []
150. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34. doi: 10.1186/s13045-019-0720-y. [PMC free article] [PubMed] [CrossRef] []
151. Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2015;2:e1054549. doi: 10.1080/23723556.2015.1054549. [PMC free article] [PubMed] [CrossRef] []
152. Dachert J, Schoeneberger H, Rohde K, Fulda S. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death. Oncotarget. 2016;7:63779–63792. doi: 10.18632/oncotarget.11687. [PMC free article] [PubMed] [CrossRef] []
153. Probst L, Dachert J, Schenk B, Fulda S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem Pharmacol. 2017;140:41–52. doi: 10.1016/j.bcp.2017.06.112. [PubMed] [CrossRef] []
154. Battipaglia G, Ruggeri A, Massoud R, El Cheikh J, Jestin M, Antar A, et al. Efficacy and feasibility of sorafenib as a maintenance agent after allogeneic hematopoietic stem cell transplantation for Fms-like tyrosine kinase 3-mutated acute myeloid leukemia. Cancer. 2017;123:2867–2874. doi: 10.1002/cncr.30680. [PubMed] [CrossRef] []
155. Metzelder SK, Schroeder T, Lubbert M, Ditschkowski M, Gotze K, Scholl S, et al. Long-term survival of sorafenib-treated FLT3-ITD-positive acute myeloid leukaemia patients relapsing after allogeneic stem cell transplantation. Eur J Cancer. 2017;86:233–239. doi: 10.1016/j.ejca.2017.09.016. [PubMed] [CrossRef] []
156. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, et al. Artemisinins target the SERCA of plasmodium falciparum. Nature. 2003;424:957–961. doi: 10.1038/nature01813. [PubMed] [CrossRef] []
157. Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 2019;131:356–369. doi: 10.1016/j.freeradbiomed.2018.12.011. [PubMed] [CrossRef] []
158. Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015;22:1045–1054. doi: 10.1016/j.phymed.2015.08.002. [PubMed] [CrossRef] []
159. Mbaveng AT, Fotso GW, Ngnintedo D, Kuete V, Ngadjui BT, Keumedjio F, et al. Cytotoxicity of epunctanone and four other phytochemicals isolated from the medicinal plants Garcinia epunctata and Ptycholobium contortum towards multi-factorial drug resistant cancer cells. Phytomedicine. 2018;48:112–119. doi: 10.1016/j.phymed.2017.12.016. [PubMed] [CrossRef] []
160. Mbaveng AT, Ndontsa BL, Kuete V, Nguekeu YMM, Celik I, Mbouangouere R, et al. A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death. Phytomedicine. 2018;43:78–85. doi: 10.1016/j.phymed.2018.03.035. [PubMed] [CrossRef] []
161. Wang S, Luo J, Zhang Z, Dong D, Shen Y, Fang Y, et al. Iron and magnetic: new research direction of the ferroptosis-based cancer therapy. Am J Cancer Res. 2018;8:1933–1946. [PMC free article] [PubMed] []
162. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine. 2014;9:2479–2488. doi: 10.2147/IJN.S59661. [PMC free article] [PubMed] [CrossRef] []
163. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on Ferroptosis. Adv Mater. 2018;30:e1704007. doi: 10.1002/adma.201704007. [PMC free article] [PubMed] [CrossRef] []
164. Shepshelovich D, Rozen-Zvi B, Avni T, Gafter U, Gafter-Gvili A. Intravenous versus Oral iron supplementation for the treatment of anemia in CKD: an updated systematic review and meta-analysis. Am J Kidney Dis. 2016;68:677–690. doi: 10.1053/j.ajkd.2016.04.018. [PubMed] [CrossRef] []
165. Shahabadi N, Falsafi M, Mansouri K. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids Surf B Biointerfaces. 2016;141:213–222. doi: 10.1016/j.colsurfb.2016.01.054. [PubMed] [CrossRef] []
166. Satake N, Duong C, Chen C, Barisone GA, Diaz E, Tuscano J, et al. Targeted therapy with MXD3 siRNA, anti-CD22 antibody and nanoparticles for precursor B-cell acute lymphoblastic leukaemia. Br J Haematol. 2014;167:487–499. doi: 10.1111/bjh.13066. [PMC free article] [PubMed] [CrossRef] []
167. Sun Z, Worden M, Wroczynskyj Y, Yathindranath V, van Lierop J, Hegmann T, et al. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier. Int J Nanomedicine. 2014;9:3013–3026. doi: 10.2147/IJN.S62260. [PMC free article] [PubMed] [CrossRef] []
168. Zablotskii V, Syrovets T, Schmidt ZW, Dejneka A, Simmet T. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies. Biomaterials. 2014;35:3164–3171. doi: 10.1016/j.biomaterials.2013.12.098. [PubMed] [CrossRef] []
169. Patil RM, Thorat ND, Shete PB, Bedge PA, Gavde S, Joshi MG, et al. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep. 2018;13:63–72. [PMC free article] [PubMed] []
170. Sottile R, Federico G, Garofalo C, Tallerico R, Faniello MC, Quaresima B, et al. Iron and ferritin modulate MHC class I expression and NK cell recognition. Front Immunol. 2019;10:224. doi: 10.3389/fimmu.2019.00224. [PMC free article] [PubMed] [CrossRef] []
171. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A. 2008;105:11105–11109. doi: 10.1073/pnas.0804226105. [PMC free article] [PubMed] [CrossRef] []
172. Agathocleous M, Meacham CE, Burgess RJ, Piskounova E, Zhao Z, Crane GM, et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature. 2017;549:476–481. doi: 10.1038/nature23876. [PMC free article] [PubMed] [CrossRef] []

Articles from Journal of Experimental & Clinical Cancer Research : CR are provided here courtesy of BMC