这是用户在 2025-3-27 1:31 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Supporting information
支持信息

Synergistic cross-linking strategy with oxime-carbamate and hydrogen bonding arrays for excellent damage self-healing and reprocess ability of thermoset polyurethanes
与肟-氨基甲酸酯和氢键阵列的协同交联策略,可实现热固性聚氨酯出色的损伤、自修复和再加工能力

Pengwu Xu a*, Ning Ding a, Hong Wang a, Jieyu Guan a, Yirui Shen b, Deyu Niu a, Weijun Yang a, Piming Ma a*
徐鹏武 a*, 丁宁 a, 王宏 a 关洁玉 a逸瑞 b德玉 a伟军 a碧明 a*

a The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
a 中国无 214122 锡湖路 1800 号江南大学化学与材料工程学院, 合成与生物胶体教育部重点实验室

b School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
b 宁波工业大学材料与化学工程学院,中国 315211

Corresponding email: pengwuxu@jiangnan.edu.cn; p.ma@jiangnan.edu.cn
对应邮箱:pengwuxu@jiangnan.edu.cn; p.ma@jiangnan.edu.cn

General characterization
一般特征

The chemical structure of time-gradient PCL-DOU during the synthesis was characterized using a Fourier Transform Infrared Spectrometer (Nicolet 6700, Thermo Fisher Scientific, USA). The measurements were conducted in the attenuated total reflectance (ATR) mode, with a scanning range of 400-4000 cm⁻¹. Each sample for each time interval was scanned 64 times at a resolution of 2 cm⁻¹.
使用傅里叶变换红外光谱仪 (Nicolet 6700,Thermo Fisher Scientific,美国) 表征合成过程中时间梯度 PCL-DOU 的化学结构。测量在衰减全反射 (ATR) 模式下进行,扫描范围为 400-4000 cm⁻¹。每个时间间隔的每个样品以 2 cm⁻¹ 的分辨率扫描 64 次。

The thermal stability of PCL-DOU0.3, PCL-DOU0.5, and PCL-DOU0.9 was analyzed using a thermogravimetric analyzer (TGA2 SF/1100, METTLER TOLEDO, Switzerland). Samples were heated from 40 °C to 600 °C at a rate of 20 °C/min under a nitrogen atmosphere.
使用热重分析仪(TGA2 SF/1100,瑞士梅特勒托利多)分析 PCL-DOU0.3、PCL-DOU0.5 和 PCL-DOU0.9 的热稳定性 。在氮气气氛下,以 20 °C/min 的速率将样品从 40 °C 加热至 600 °C。

Dynamic mechanical analysis of the samples was conducted using a dynamic mechanical analyzer (TA, DMA850) in a film tensile mode. The samples were heated from -80 °C to 60 °C at a rate of 3 °C/min, with a frequency of 1 Hz and tested under a preload of 0.1%. The storage modulus (E') and the peak temperature of the loss factor (tan δ) were recorded, with the peak corresponding to the glass transition temperature (Tg). For the stress relaxation test, a pre-tension of 0.01 N and a constant strain of 1% were applied. Once the furnace reached the set temperature, the sample was relaxed for 10 minutes, and the relaxation modulus was recorded.
在薄膜拉伸模式下使用动态机械分析仪 (TA, DMA850) 对样品进行动态力学分析。将样品以 3 °C/min 的速率从 -80 °C 加热到 60 °C,频率为 1 Hz,并在 0.1% 的预载荷下进行测试。记录储能模量 (E') 和损失因子的峰值温度 (tan δ),峰值对应于玻璃化转变温度 (Tg)。对于应力松弛测试,施加了 0.01 N 的预张力和 1% 的恒定应变 。一旦炉子达到设定温度,将样品松弛 10 分钟,并记录松弛模量。

Temperature sweep tests were conducted using a rotational rheometer (MCR302e) with an 8 mm diameter plate, at a strain of 0.5% and a frequency of 1 Hz, over a temperature range of 30 °C to 130 °C.
使用带有 8 mm 直径板的旋转流变仪 (MCR302e) 在 30 °C 至 130 °C 的温度范围内以 0.5% 的应变和 1 Hz 的频率进行温度扫描测试。

The mechanical properties and cyclic stretching performance of the samples were tested using a universal testing machine (Instron 5967X). The tensile tests were conducted at room temperature, with samples prepared in a dumbbell shape measuring 35 mm in length, 2 mm in width, and 0.2-0.25 mm in thickness. All tensile tests were performed at a strain rate of 20 mm/min. For reprocessing performance testing, samples of PCL-DOU0.5 were preheated in a 120 °C flat vulcanizing machine for 5 minutes, followed by hot pressing for 5 minutes before tensile testing. For self-healing performance testing, the PCL-DOU0.5 strips were cut in half and then adhered together. After being placed at 80 °C for 4, 8, 12, and 16 hours, tensile tests were conducted.
使用万能试验机 (Instron 5967X) 测试样品的机械性能和循环拉伸性能。拉伸试验在室温下进行,制备长 35 毫米、宽 2 毫米、厚 0.2-0.25 毫米的哑铃形样品。所有拉伸试验均以 20 mm/min 的应变速率进行。为了进行再处理性能测试,PCL-DOU0.5 在 120 °C 平面硫化机中预热 5 分钟,然后在拉伸试验前热压 5 分钟。对于自愈性能测试,PCL-DOU0.5 条切成两半,然后粘在一起。 在 80 °C 下放置 4、8、12 和 16 小时后,进行拉伸试验。

Scratch self-healing tests on the sample surface were conducted using an ultra-depth-of-field 3D microscope (KEYENCE, VHX-100C). A surgical blade was used to create scratches of 0.2 μm on the sample surface. The PCL-DOU0.5 samples were then placed at 80 °C for 4, 8, 12, and 16 hours to observe the self-healing of the scratches.
使用超景深 3D 显微镜(KEYENCE、VHX-100C)对样品表面进行划痕自修复试验。使用手术刀片在样品表面产生 0.2 μm 的划痕 。PCL-DOU0. 然后将 5样品在 80 °C 下放置 4、8、12 和 16 小时,以观察划痕的自愈情况。

The resistance changes of the samples under different actions (tension, bending, and compression) were tested using a digital multimeter (Keithley, DMM7510).
使用数字万用表 (Keithley, DMM7510) 测试样品在不同动作 (拉伸、弯曲和压缩) 下的电阻变化。

Table S1 Formula for PCL-DOUx sample .
表 S1 PCL-DOUx 样品的公式 .

Sample
样本

PCL (mmol)
PCL (毫摩尔)

HDI (mmol)
HDI (毫摩尔)

DMG (mmol)
伤害 (mmol)

Glycerol (mmol)
甘油 (mmol)

PCL-DOU0.3

8

10.25

1.5

0.5

PCL-DOU0.5

8

12.5

3

1

PCL-DOU0.9

8

17

6

2

Figure S1 (a) Storage modulus of PCL-DOU0.3, PCL-DOU0.5, PCL-DOU0.9 versus temperature recorded by DMA.
图 S1 (a) DMA 记录的 PCL-DOU0.3PCL-DOU0.5PCL-DOU0.9 的储能模量与温度的关系。

Table S2 Summary of the assignment of the deconvoluted subpeaks in the FTIR C=O absorption bands for the PCL-DOU0.3, PCL-DOU0.5 and PCL-DOU0.9.
表 S2 PCL-DOU0.3PCL-DOU0.5PCL-DOU0.9 的 FTIR C=O 吸收带中去卷积子峰的分配总结

Assignment
分配

Subpeak
子峰

Wavenumber (cm-1)
波数 (cm-1

Area (%)
面积 (%)

PCL-DOU0.3

PCL-DOU0.5

PCL-DOU0.9

PCL-DOU0.3

PCL-DOU0.5

PCL-DOU0.9

υ(C=O)
υ(C=O)

ester urethane amide
酯类氨基甲酸酯酰胺

Free
自由

Ⅰ (1723)
I. (1723 年)

Ⅰ (1724)
I. (1724 年)

Ⅰ (1725)
I. (1725 年)

81.9

73.2

67.1

H-bonded
H 型粘合

(Ordered)
(订购)

Ⅱ (1699)
II. (1699 年)

Ⅱ (1701)
二. (1701)

Ⅱ (1701)
二. (1701)

11.5

15.9

18.6

υ(C=O)
υ(C=O)

oxime-carbamate amide
肟-氨基甲酸酯酰胺

Free
自由

Ⅲ (1687)
三. (1687)

Ⅲ (1688)
III. (1688 年)

Ⅲ (1687)
三. (1687)

4.7

6.4

7.2

H-bonded
H 型粘合

(Disordered)
(无序)

Ⅳ (1631)
四. (1631)

Ⅳ (1631)
四. (1631)

Ⅳ (1632)
四、 (1632)

0.7

1.6

2.2

H-bonded
H 型粘合

(Ordered)
(订购)

Ⅴ (1622)
V. (1622 年)

Ⅴ (1623)
V. (1623 年)

Ⅴ (1625)
V. (1625 年)

1.2

2.9

4.9

Total degree of H-bonded
H 键合总度

/

13.4

20.4

25.7

Figure S2 Temperature-dependent FTIR spectra of the PCL-DOU0.5 from 30 oC to 150 oC in the wavenumber range of (a) 1800-1640 cm-1 and (b) 1640-1600 cm-1.
图 S2:PCL-DOU0.5 (a) 1800-1640 cm-1 和 (b) 1640-1600 cm-1 波数范围内的温度相关 FTIR 光谱,从 30 °C 到 150 °C

Figure S3 Temperature-dependent curves of storage modulus of PCL-DOU0.5.
图 S3 PCL-DOU 储能模量的温度相关曲线 0.5.

Figure S4 FTIR spectra of (a) original PCL-DOU0.5, (b) Stretched PCL-DOU0.5 and (c) Recycled PCL-DOU0.5 in the C=O stretching vibration region.
图 S4 FTIR 光谱,(a) 原始 PCL-DOU0.5,(b) 拉伸 PCL-DOU0.5 和 (c) C=O 拉伸振动区域中的回收 PCL-DOU0.5

Table S2 Summary of the assignment of the deconvoluted subpeaks in the FTIR C=O absorption bands for the original PCL-DOU0.5, stretched PCL-DOU0.5 and recycled PCL-DOU0.5.
表 S2 原始 PCL-DOU0.5、拉伸 PCL-DOU0.5 和回收 PCL-DOU0.5 的 FTIR C=O 吸收带中去卷积子峰的分配总结

Assignment
分配

Subpeak
子峰

Wavenumber (cm-1)
波数 (cm-1

Area (%)
面积 (%)

Origin
起源

Stretch
伸展

Recycled
再生

Origin
起源

Stretch
伸展

Recycled
再生

υ(C=O)
υ(C=O)

ester urethane amide
酯类氨基甲酸酯酰胺

Free
自由

Ⅰ (1724)
I. (1724 年)

Ⅰ (1723)
I. (1723 年)

Ⅰ (1723)
I. (1723 年)

73.2

72.4

71.7

H-bonded
H 型粘合

(Ordered)
(订购)

Ⅱ (1701)
二. (1701)

Ⅱ (1701)
二. (1701)

Ⅱ (1700)
二. (1700)

15.9

16.4

17.1

υ(C=O)
υ(C=O)

oxime-carbamate amide
肟-氨基甲酸酯酰胺

Free
自由

Ⅲ (1687)
三. (1687)

Ⅲ (1688)
III. (1688 年)

Ⅲ (1688)
III. (1688 年)

6.4

6.1

5.6

H-bonded
H 型粘合

(Disordered)
(无序)

(1631)
四. (1631)

(1631)
四. (1631)

(1632)
四、 (1632)

1.6

1.9

2.0

H-bonded
H 型粘合

(Ordered)
(订购)

Ⅴ (1622)
V. (1622 年)

Ⅴ (1623)
V. (1623 年)

Ⅴ (1623)
V. (1623 年)

2.9

3.2

3.6

Total degree of H-bonded
H 键合总度

/

20.4

21.5

22.7

Figure S5 Healing efficiencies of PCL-DOU0.5 under different temperatures
图 S5 不同温度下 PCL-DOU0.5 的愈合效率

Figure S6 Ashby plot of “toughness” and “tensile strength of PCL-DOU0.5 and other oxime-carbamate-based self-healing materials reported in literatures.
S6 文献中报道的 PCL-DOU 0.5 和其他基于氨基甲酸酯的自修复材料的 “韧性”和“拉伸强度”的 Ashby 图

Table S3 Swelling ratio of PCL-DOU in DMF and THF.
表 S3 DMF 和 THF 中 PCL-DOU 的溶胀比。

Sample
样本

Solvent
溶剂

Swelling ratio (%)
膨胀率 (%)

PCL-DOU0.3

THF

190 ± 33

PCL-DOU0.5

THF

248 ± 21

PCL-DOU0.9

THF

271 ± 17

PCL-DOU0.3

DMF

308 ± 25

PCL-DOU0.5

DMF

341 ± 16

PCL-DOU0.9

DMF

374 ± 18

Figure S7 Resistance changes before and after self-healing.
图 S7 自愈前后的阻力变化。

Figure S8 Changes in (R-R0)/R0 after 1200 cycles of cyclic bending.
图 S8 循环弯曲 1200 次循环后 (R-R0)/R0 的变化。

Figure S9 The 3D surface shapes of PCL-DOU0.5 with (a) scratches and (b) after 16 hours of self-healing.
图 S9 PCL-DOU0.5 的 3D 表面形状 ,有 (a) 划痕和 (b) 自我修复 16 小时后。

Figure S10 Thermo-oxidative aging tests for PCL-DOU0.5 at 80 °C.
图 S10 PCL-DOU0.5 在 80 °C 下的热氧化老化试验。

Figure S11 The acid and alkali resistance tests for PCL-DOU0.5.
图 S11 PCL-DOU0.5 的耐酸碱性测试。

References:
引用:

[1] D. Fu, W. Pu, Z. Wang, X. Lu, S. Sun, C. Yu, H. Xia, A Facile Dynamic Crosslinked HealablePoly(oxime-urethane) Elastomer with High Elastic Recovery and Recyclability, J. Mater. Chem. A 6 (2018) 18154–18164. https://doi.org/10.1039/C8TA06059B.
[1] D. Fu, W. Pu, Z. Wang, X. Lu, S. Sun, C. Yu, H. Xia, 一种具有高弹性回收和可回收性的简便动态交联可愈合聚氨基氨基甲酸酯弹性体, J. Mater. Chem.A 6 (2018) 18154–18164。https://doi.org/10.1039/C8TA06059B。

[2]L. Zhang, Z. Liu, X. Wu, Q. Guan, S. Chen, L. Sun, Y. Guo, S. Wang, J. Song, E.M. Jeffries, C. He, F.-L. Qing, X. Bao, Z. You, A Highly Efficient Self-Healing Elastomer with Unprecedented Mechanical Properties, Adv. Mater. 31 (2019) 1901402. https://doi.org/10.1002/adma.201901402.
[2] 张立军, 刘志强, 吴晓军, 关清, 陈生生, 孙立军, 郭玉, 王生生, 宋俊杰, E.M. Jeffries, 何志强, F.-L.Qing, X. 包, Z.You,一种具有前所未有的机械性能的高效自修复弹性体,Adv. Mater.31 (2019) 1901402.https://doi.org/10.1002/adma.201901402。

[3]J. Xu, L. Lu, G. Lu, G. Qin, C. Yu, F. Zhang, Self-healing Poly(oxime–carbamate) Films with Tunable Mechanical Properties Derived from Rosin, Prog. Org. Coat. 186 (2024) 108062. https://doi.org/10.1016/j.porgcoat.2023.108062.
[3] J. Xu, L. Lu, G. Lu, G. Qin, C. Yu, F. Zhang, 松香衍生的具有可调机械性能的自修复聚氨基甲酸酯薄膜, Prog. Org. Coat. 186 (2024) 108062. https://doi.org/10.1016/j.porgcoat.2023.108062.

[4]J. Xu, G. Lu, L. Lu, W. Li, C. Yu, F. Zhang, Multidynamic Poly(oxime–carbamate) Elastomers with Rosin Moieties, ACS Appl. Polym. Mater. 6 (2024) 2147–2158. https://doi.org/10.1021/acsapm.3c02469.
[4] J. Xu, G. Lu, L. Lu, W. Li, C. Yu, F. Zhang, 含松香部分的多动态聚氨基甲酸酯弹性体, ACS Appl. Polym.母公司。6 (2024) 2147–2158.https://doi.org/10.1021/acsapm.3c02469。

[5]A. Zhang, J. Long, L. Jia, Q. Gao, H. Fan, J. Xiang, Self-healing and Reprocess of Crosslinked Polyurethane Based on Dynamic Oxime-Carbamate Bond, J. Appl. Polym. Sci. 140 (2023) e53478. https://doi.org/10.1002/app.53478.
[5] A. Zhang, J. Long, L. Jia, Q. Gao, H. Fan, J. Xiang, 基于动态肟-氨基甲酸酯键的交联聚氨酯的自修复和再加工, J. Appl. Polym. Sci. 140 (2023) e53478. https://doi.org/10.1002/app.53478.

[6]Y. Cai, C. Li, Y. Yang, H. Li, Y. Wang, Q. Zhang, Self-Healable and Reprocessable Cross-Linked Poly(urea-urethane) Elastomers with High Mechanical Performance Based on Dynamic Oxime–Carbamate Bonds, Ind. Eng. Chem. Res. 60 (2021) 13585–13593. https://doi.org/10.1021/acs.iecr.1c02245.
[6] Y. Cai, C. Li, Y. Yang, H. Li, Y. Wang, Q. Zhang, 基于动态肟-氨基甲酸酯键的具有高机械性能的自修复和可再加工联聚乙烯(脲-氨基甲酸酯)弹性体,Ind. Eng. Chem. Res. 60 (2021) 13585–13593. https://doi.org/10.1021/acs.iecr.1c02245.

[7]T. Ye, J. Tan, T. Wu, F. Zhang, S. Chen, C. Wang, Self-healable and Mechanically Robust Supramolecular-Covalent Poly(oxime-urethane) Elastomers with Information Encryption via Hydrogen Bonds and Coordinate Interactions, Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2367-8.
[7] T. Ye, J. Tan, T. Wu, F. Zhang, S. Chen, C. Wang, 通过氢键和配位相互作用进行信息加密的自修复和机械稳健的超分子共价聚(肟-氨基甲酸酯)弹性体,中国化学科学(2024 年)。https://doi.org/10.1007/s11426-024-2367-8。

[8]F. Li, X. Wang, J. Zuo, C. Chen, J. Chen, J. Zhu, W.B. Ying, Oxime-Urethane-Based Self-Healing Polyurethane for Achieving Complex Structures via 3D Printing, ACS Appl. Polym. Mater. 6 (2024) 4070–4077. https://doi.org/10.1021/acsapm.4c00140.
[8] F. Li, X. Wang, J. Zuo, C. Chen, J. Chen, J. Zhu, W.B. Ying, 肟氨基甲酸乙酯基自修复聚氨酯,用于通过 3D 打印实现复杂结构,ACS Appl. Polym.母公司。6 (2024) 4070–4077.https://doi.org/10.1021/acsapm.4c00140。

[9]R. Shen, C. Lei, M. Long, W. Gao, G. Yu, J. Tang, Trajectory Controlling and Collision Warning Device Based on Self-Healing and Conductive Castor Oil-Based Waterborne Polyurethane in Automated Guided Vehicles, Adv. Funct. Mater. 33 (2023) 2212455. https://doi.org/10.1002/adfm.202212455.
[9] R. Shen, C. Lei, M. Long, W. Gao, G. Yu, J. Tang, 基于自愈和导电蓖麻油基水性聚氨酯的自动导引车轨迹控制和碰撞警告装置, Adv. 功能 。母公司。33 (2023) 2212455.https://doi.org/10.1002/adfm.202212455。