这是用户在 2025-1-27 21:36 为 https://pubs.acs.org/doi/10.1021/acs.jpca.8b10007 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Exploration of Reaction Pathways and Chemical Transformation Networks
My Activity
  • Open Access
  • Editors Choice

特色文章


探索反应途径和化学转化网络

点击复制文章链接
Article link copied!
EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++

打开 PDF

The Journal of Physical Chemistry A

Cite this: J. Phys. Chem. A 2019, 123, 2, 385–399
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.jpca.8b10007
Published November 13, 2018

Copyright © 2018 American Chemical Society. This publication is licensed under these Terms of Use.

摘要


点击复制章节链接
Section link copied!


为了研究化学反应网络,识别所有相关中间体和基本反应是强制性的。存在许多高效的算法方法,可以自动进行探索。这些方法在应用范围、探索的完整性以及所需启发式和人工干预的程度上有所不同。在此,我们根据这些标准描述和比较了不同的方法。讨论了利用化学启发式、人机交互和物理严谨性的未来方向。


版权所有 © 2018 美国化学学会

1. 简介


点击复制章节链接
Section link copied!


对一个化学系统的详细分析,需要了解所有相关的中间体和连接它们的潜在能量表面(PES)上的基本反应。对所有反应途径的深入了解,使得人们可以在给定一组初始条件(例如,反应物及其浓度、温度和压力)的情况下研究系统的演变,并提出原始反应物的衍生物以避免不希望的副反应。使用量子化学方法手动探索复杂的反应机制既慢又容易出错。此外,由于 PESs 的高维性,彻底的探索通常是不切实际的。然而,为了合理化不希望的副产物或分解反应的形成,需要揭示意外的反应途径。

复杂的反应机理在化学中普遍存在。例如,它们是过渡金属催化的基础,(1)聚合反应,(2)细胞代谢,(3)酶催化(例如,参考文献(4)(5)),表面化学(例如,参考文献(6−12)),以及环境过程(13),并且是系统化学的目标。(14)了解特定化学过程的全部化合物和基本反应对于在原子层面上理解它是必不可少的。尽管许多化学反应导致一个主要产物的选择性生成,(15)通常,多种反应途径相互竞争。各种副产物可能由反应物种(如自由基、不饱和价态物种、带电反应物、强酸和强碱等)或通过光、高温或增加压力填充的高能(电子或振动)状态产生。

一些关于反应途径探索的优秀评论已经存在(参见参考文献<16>和<17>)。然而,我们在这里的概述有不同的重点,并且也扩展了先前评论中涵盖的文献。我们将用于探索 PESs 的众多策略分为三类(一些协议结合了多个类别的策略),如图 1 所示。

  • 第 1 类:从 PES 上的一个点(如左图中的绿色区域所示1)开始,通过依赖局部曲率信息发现新的 TS 和中间体。此过程会重复(可能在多个方向上)直到探索完所有(相关的)PES 驻定点。


  • 第 2 类:从最低能量结构开始,通过应用启发式方法(如图中直线所示,由化学规则指导)探索 PES(例如,新的中间体或近似的过渡态)。这包括,例如,制定基于图的转换规则或应用人工力推动反应基团相互靠近。一旦找到新的中间体,就可以搜索连接它到起始结构的最低能量路径(MEP)。


  • 第 3 类:人类(化学)知识和直觉的优势可以与超快速计算机模拟相结合,在交互式环境中有效地探索 PES 的中间体和过渡态(1,右)。这一类别在之前的综述中很少被考虑,这就是为什么我们在这里对其进行了深入讨论。

图 1


图 1. PES 探索的一般策略。左:利用 PES 上的局部曲率信息来识别 TSs 和产物。中:通过应用启发式方法识别新的中间体。右:交互式探索中间体和 TSs。在后两种基于启发式和交互式探索的情况下,需要事后细化路径以获得 MEPs。一个高效的探索方案可以结合不同类别的策略。


对于化学过程的准确描述,不仅要考虑键断裂和键形成转化,还必须探索每个中间体的构象空间。这对于准确描述化合物的热力学性质(例如,吉布斯自由能)以及存在多个连接相同构象异构体的 MEPs 的反应尤其重要。通常,上述所有探索策略都可以用来定位构象异构体。然而,需要注意的是,与键断裂或键形成转化不同,在大多数实际应用中,构象之间的过渡态(TSs)并不感兴趣,因为反应的时间尺度可以假设长于构象达到平衡所需的时间。关于构象生成最近综述,请参阅参考文献(18)

在接下来的三个部分中,我们回顾了分配给三个类别的算法。这些方法在自动化程度(对于大型反应网络而言尤其关键)、所需启发式策略的数量以及探索的完整性程度上有所不同。涉及少量或无启发式策略的方法往往以更系统的方式探索势能面。然而,它们通常受限于计算需求。相比之下,启发式方法可以有效地研究更大的化学系统,尽管必须小心谨慎,以免通过关于系统反应性的强烈假设而牺牲探索的彻底性。


2. 第 1 类:利用曲率信息


点击复制章节链接
Section link copied!


手动构建近似过渡态候选者的过程缓慢、繁琐且非常不系统。因此,最近的研究主要集中在提供更流畅和系统的过渡态定位方法。Ohno 和 Maeda 在一种称为非谐向下畸变(ADDF)的策略中,利用了势能面上的曲率信息。当最小结构以垂直于势能等高线的方向发生畸变时,可以找到反应路径(MEPs)。因此,通过 ADDF 探索的路径非常接近从内禀反应坐标计算得到的路径。对新生成的中间体重复应用 ADDF 可以得到所有相关的 MEPs。ADDF 已成功应用于甲醛、丙炔和甲酸等小分子的反应。最近,Satoh 等人(24)通过仅使用 ADDF 追踪低过渡态能垒,系统地探索了d-葡萄糖的构象转变。

为了解决 ADDF 的局限性,梅田、森口及其同事开发了人工力诱导反应(AFIR)方法。AFIR 通过施加人工力将反应物推在一起来克服分子间活化能。在此偏置力下进行优化时,最大能量点接近真实过渡态。AFIR 已成功应用于克莱森重排、钴催化的加氢甲酰化反应、醇醛缩合反应以及比金利反应。算法的一个后果是,在找到所有相关途径之前,需要采样两种反应物的许多随机初始取向。此外,通常需要人工输入来选择反应分子对,以避免组合爆炸并处理产生的大量数据。

另一种从反应系统的一些构型出发探索潜在能量表面的系统方法是反应分子动力学(MD)模拟,在这种模拟中,通过牛顿运动方程求解原子核或原子的运动,以探索和采样在由预定义的热力学系综施加的约束下可访问的构型空间的一部分。力要么被计算为经典力场势能模型的负梯度,要么是使用近似量子化学方法(通常来自半经验或密度泛函理论)评估的电子能(在从头算MD)的负梯度,对于需要力的构型,该力用于轨迹传播。为了增加反应发生的可能性,模拟的温度和压力通常需要增加,这反过来又导致在常见实验室条件下不太可能发生的转变频繁发生。

反应性从头分子动力学在研究复杂化学反应方面的能力,以原初的乌雷-米勒实验为例得到了证明。由于配置空间可能非常大,包括反应中所有化学物种的多个副本,进行第一性原理计算的计算成本会迅速增长。通过应用反应性经典力场可以克服这个问题(参见最近综述,见参考文献(31−33))。不幸的是,除了精度降低外,力场参数通常不会适用于任何类型的系统,这限制了它们的适用性。因此,混合量子力学-分子力学方法经常被应用于探索具有许多自由度的复杂系统的反应途径,如酶促反应(参见参考文献(37−42)和 Senn 和 Thiel 的综述(43−45))。

自然地,采用经典和从头算力场的 MD 模拟可以应用于采样构象自由度。对于具有许多自由度的系统(例如蛋白质),需要使用局部提升(46)或元动力学(47)等增强采样技术(参见参考文献(48)(49))。最近的研究进展已在参考文献(50−52)中综述。这些方法是最复杂和耗时最多的构象采样方法之一。(53)基于蒙特卡洛(MC)模拟退火的方法通常比 MD 方法更快。(54−56)通过采样低频本征模态,它们比 MD 模拟需要更少的计算工作量。MD 和 MC 方法在高通量设置中计算成本过高。

2013 年,刘及其同事提出了随机表面行走(SSW)方法来探索 PESs。该方法基于偏置势驱动的动力学和 Metropolis MC 采样。通过随机生成的位移模式和随后构建的偏置势,将平衡点扰动到新的配置。例如,SSW 方法被应用于预测复杂富勒烯的结构(58)、相变(59),以及研究环氧丙烷的水解和β-d-吡喃葡萄糖的分解。(60)

马丁内斯-努涅斯及其同事开发了一种称为 TS 搜索的化学动力学模拟方法(TSSCDS),(61−65)该方法通过使用半经验量子化学方法进行高能动力学模拟,以诱导反应以高速率发生。通过增加振动模式来增加 TS 被克服的速率。对于大型系统,由于它们的振动模式数量庞大,需要手动干预来引导模拟进入感兴趣的方面。通过模拟生成的轨迹随后进行后处理,并识别出成键和断键事件。从轨迹中提取 TS 猜测,并使用半经验或密度泛函方法进行细化。TSSCDS 方法成功应用于涉及丙烯腈、甲醛和甲酸的反应,以及钴催化的研究。

通常,通过利用 Hessian 信息(即势能相对于核坐标的二阶导数)来对近似 TS 候选体进行细化。为了获得表示反应坐标的常规模式,需要 TS 猜测结构的 Hessian。Eigenvector following(EVF)(66−72)是这种方法的突出例子,如果 TS 猜测结构接近真实 TS,则将是可靠的。对于大分子,即使 Hessian 被近似,完整的 Hessian 计算也将变得计算上要求很高或甚至不可行。因此,已经开发出几种算法来规避完整 Hessian 的计算。Broyden(73)引入了一种准牛顿-拉夫森方法,该方法仅从梯度中构建一个近似的 Hessian,然后通过优化过程中获得的中间点的梯度进行更新。其他方法包括 Munro 和 Wales(74)提出的方案,这些方案避免了 Hessian 的完整对角化,Lanczos 子空间迭代方法(75)和 Davidson 子空间迭代算法(76−79)

惠勒及其同事开发了一个名为 AARON(用于新催化剂的自动反应优化器)的计算工具包,通过将新催化剂的关键原子映射到基于模型催化剂之前计算的反应过渡态结构中相应原子的位置来构建初始 TS 结构。然后,AARON 执行一个由约束和非约束优化组成的计算协议,以产生优化的 TS 结构。AARON 成功应用于双齿路易斯碱催化的烯丙基化和丙炔基化反应。


3. 第二类:通过化学启发式进行结构跳跃


点击复制章节链接
Section link copied!


探索仅基于单个势能面(PES)曲率信息的探索策略通常不适用于具有许多自由度的复杂化学系统以及需要多个 PES 来描述的活性系统,因为这些系统涉及多个步骤,有进入的反应物和产生的副产物。从最小结构开始,应用启发式方法快速识别潜在产物可能更有效,然后搜索连接它们的过渡态(MEP)。如果已知一个基本反应的两个端点,可以应用插值方法(例如,参见参考文献(80))和字符串方法(78,81−91)来定位连接它们的 MEP。

化学概念知识可用于快速识别与起始结构通过基本反应相连的潜在中间体,特别是在已知与所研究反应系统相关的反应机理类型的情况下。例如,从反应数据库或化学启发式方法中,可以制定并应用转换规则到反应分子的图表示中。这些规则源于键级和价的概念,因此最适合有机化学。1994 年,Broadbelt 及其同事通过引入一种称为 Netgen 的方法,开创了这种方法。分子中原子的三维排列被转化为一种图结构,其中原子和键分别由节点和边表示。这产生了可以通过表示化学变换的矩阵操作来操作的邻接矩阵。通过得到的邻接矩阵,生成新的原子三维排列。 通过反复应用这些转换规则,新的分子被添加到参与全球机制的中间体列表中。在 Broadbelt 的原始工作中,未识别出基本步骤,因此需要使用 Evans–Polanyi 原理来估计活化能垒。 (95)

在类似的精神下,格林及其同事开发了一个名为反应机理生成器(RMG)的软件包。在克服布罗德贝尔特方法所展示的挑战方面采取了众多步骤。特别是,通过量子化学计算估计动力学参数,以排除只有通过具有高活化能垒的过渡态才能达到的产物。RMG 被用于自动映射甲烷热解和正丁醇热解的机理,以及正己烷蒸汽裂解的机理。此外,格林和韦斯特小组成功地将 RMG 应用于各种复杂系统。与 Netgen 类似,RMG 最终受限于键级和价的概念的应用。

格林及其同事开发了一种方法,该方法将图变换和路径细化算法相结合,以找到反应途径。最近,他们通过应用伯尼算法(108-110)以及冻结字符串法、单端和双端增长字符串法以及 AFIR 方法,研究了最简单的γ-酮过氧化氢,3-羟基丙醛的反应网络。

最近,金及其同事利用化学启发式方法快速搜索反应途径。通过应用分子图和反应网络分析,他们探索了一个所谓的最小反应网络,该网络由可以在固定数量的键断裂和形成反应中从起始结构到达的中间体组成。该最小网络经过量子化学计算,以确定动力学上最有利的反应途径。他们将这种方法应用于恢复 Claisen 酯缩合和钴催化的加氢甲酰化反应的接受机制。

ZStruct 方法由 Zimmerman 开发,利用连通图来识别在形成或断开连接时可达的潜在中间体。中间体随后通过双端 MEP 搜索和增长字符串方法进行搜索。ZStruct 的一个局限性是要求两个反应物需要对齐,以便反应复合物接近 MEP。因此,这种方法最适合于分子内反应。此外,如果两个中间体通过两个基本反应连接,ZStruct 将难以找到过渡态。尽管存在缺点,ZStruct 揭示了一个意外的副反应,该反应阻碍了基于 Ni 的 C-H 官能化催化剂。此外,还用 ZStruct 研究了其他几个(催化)反应。最近,Dewyer 和 Zimmerman 解决了 ZStruct 的局限性,并开发了 ZStruct2。在 ZStruct2 中,反应物预先对齐以采样所谓的驱动坐标,这些坐标描述了预期的基本反应。 ZStruct2 已成功应用于研究过渡金属催化剂。 (128−131)

在 Habershon 的方法中,(132,133)连通图描述中间体。通过在可以更新以适应连通图变化的哈密顿量上进行的动力学模拟来检查反应途径。轨迹被处理,并精炼出独特的途径。与 Green 及其同事开发的方法相比,Habershon 的方法以运行动力学模拟为代价,更广泛地探索了势能面。

西方及其同事展示了一种使用群加性方法预测过渡态结构的创新方法。 (111) 通过分子群值估计过渡态中反应原子的距离,以便通过距离几何(DG)——一种将在下文讨论的随机方法——构建一个近似的过渡态。然后,使用标准电子结构方法优化估计的过渡态结构。

Aspuru-Guzik 及其同事开发了一种基于形式键级的方法来模拟原生物反应。而不是具体编码基本反应,转换规则基于有机化学中流行的概念,通常表示为箭头推进,并估计了活化能垒(在参考文献(112−114)中通过采用 Hammond 假设)。

虽然计算效率高,基于图的描述符依赖于价的概念,这可能在许多有机分子中表现良好,但对于包含具有复杂电子结构的物种(如过渡金属簇)的系统可能失败。此外,为了确保使用这种方法进行彻底的探索,需要保证变换规则集的完整性。然而,对于任意未知化学系统,这不能得到保证。因此,人们将局限于已知的化学变换,这可能会阻碍新化学过程的发现。因此,我们追求一种更通用的基于第一性原理启发式方法,该方法适用于任何分子系统,包括含有过渡金属的系统。我们方法的一般适用性是由于所有启发式规则都是来自对分子组成无知的电子波函数。

为了探索 PES,我们从与基本反应步骤相关的高能结构开始。为此,根据从概念电子结构理论推导出的规则生成反应复合物的分子结构。(138−140)随后,通过量子化学方法对其进行优化,以产生新兴反应网络的稳定中间体。(141)然后,通过某种结构相似性度量,自动检测该网络中可能通过基本反应相互关联的中间体对,并对连接的 TS 进行自动搜索。与其它方法相比,我们的方法不依赖于化学键和价的概念。相反,反应位点是通过依赖于从电子波函数计算出的反应性度量来检测的。该协议已在名为Chemoton(以 Gánti 提出的关于活系统功能的理论命名)的软件中实现。(142) 我们通过 Yandulov-Schrock 复合物(143,144)的合成氮固定示例展示了我们方法的能力,其中我们能够识别出导致副反应和分解反应的数千个质子化结构,这些反应解释了催化剂的低周转数。我们还研究了原生物反应,以阐明早期糖形成的不同途径,通过构建一个前所未有的规模反应网络。

我们的方法具有额外的显著特征,这些特征被整合进来,使得量子化学探索成为与实验动力学研究相媲美的水平。为了应对结构组合爆炸的问题,我们将探索与显式动力学建模相结合(148),以避免在反应条件下动力学上无法到达的构型空间区域浪费计算资源(在我们的原始实现(141)中,我们已为此目的应用了简单的能量截止)。对于特定的探索问题(例如,那些纯粹是有机化学性质的),我们可以利用快速半经验模型,为此我们实现了一个独立的程序,该程序为所有主要模型提供能量和梯度。(149)然而,我们还开发了一种通用的半经验方法,它可以处理过渡金属复合物,因为它通过在线参数化来忽略双原子差分重叠近似,从而利用计算优势,对更精确的计算参考进行计算,这些计算对于类似结构的序列是可靠的。 在努力最大限度地利用快速(因此,准确性较低)方法的过程中,最重要的是能够将误差分配给近似电子结构和物理化学模型,以便从第一性原理水平到动力学模型的速率常数和浓度通量的无缝不确定性量化。我们证明了快速半经验方法和密度泛函方法可以通过与在自动确定结构时获得的从头算参考数据进行比较来校准。为此,我们利用了机器学习方法的置信区间(以高斯过程回归为例)。值得注意的是,我们没有对机器学习模型进行参数化(这可能需要太多数据才能足够可靠),而是仅利用了这些模型中误差估计可用的特性。

最后,我们再次需要解决构象柔性问题,这为从一个化合物到达另一个化合物开辟了许多途径。存在几种探索构象的有效方法,这些方法与第二种探索策略相关。DG 方法随机生成一组原子坐标,这些坐标与一组原子间距离约束进行优化。生成的构象通常使用分子力学力场或量子化学方法进行优化,以提供候选构象。DG 方法的实现可以在《DG-AMMOS》和《RDKit》中找到。(156) (157)

为了减少需要探索的构象空间,通常会引入所谓的刚体转子近似,其中保持键长和键角固定,以便仅采样扭转自由度。遗传算法是一类用于在《Balloon_GA》中实现的大范围扭转角空间随机采样的突出方法,但蒙特卡洛算法也已被用于扭转角的随机采样。然而,随机方法的一个一般问题是可能会错过相关的(即可访问的)构象。因此,所需的采样量是未知的。依赖于刚体转子近似的系统构象生成方法试图枚举分子所有可能的扭转自由度。然而,基于起始构象以蛮力方式对所有可能的扭转角进行系统枚举将导致候选构象的组合爆炸。基于规则的构象生成器限制了它们探索的构象空间。 这些规则通常来源于对数据库中固态结构扭转角度的分析,例如蛋白质数据库(161)或剑桥结构数据库(162,163)

我们注意到,尽管对于后续动力学模型的重要性不言而喻,但过渡态结构的构象生成似乎是一个难以解决的问题。尽管可以使用讨论过的方法生成(或采样)某些过渡态结构的构象,但这可能导致优化后出现不同的过渡态结构。因此,如何将这些结构正确地纳入一个从一种化合物到另一种化合物的基元步骤的绝对速率理论计算中并不明显。对于过渡态周围反应系统的构象自由度,这尤其困难。


4. 第三类:交互式转向


点击复制章节链接
Section link copied!


人类化学直觉和计算机模拟可以形成一个封闭的反馈循环,以有效地探索 PES 上的特定感兴趣区域。这种方法不需要制定启发式转换规则,而是基于人类洞察力和局部斜率信息。交互式科学计算在很早的时候就解决了不同的人类感官问题。在 20 世纪 70 年代初,就提出了将计算机模拟与触觉相结合的第一步。这些概念研究探讨了与计算机进行触觉通信如何增强人机共生。威尔逊和他的同事们预测,交互性和能够感受模拟的可能性在化学领域将有助于更好地理解分子结构和分子相互作用。自那时以来,将交互式沉浸到虚拟分子世界中一直被视为研究和教学的一个引人入胜的方法。 (167,168) 然而,病毒传播尚未发生 (169),因为用于虚拟和混合现实的人机交互的硬件设备的新设计仍在持续开发中。预计在未来,随着商品设备变得容易且便宜,它们在越来越受欢迎的电脑游戏中所需的,情况可能会发生变化。

交互可以通过运行时修改模拟参数或通过操作模拟系统中的原子或分子来实现。沉浸感往往可以促进和实现交互,因此,许多努力都投入到设计尽可能沉浸式的框架中,这通常需要专用硬件。沉浸感意味着视觉反馈,并且可能通过触觉(触觉)反馈来补充。一方面,视觉反馈通常通过在(计算机)屏幕上以三维形式表示模拟的分子系统来实现。更高级的设置是通过虚拟现实或增强现实实现的,涉及如洞穴自动虚拟环境(CAVE)(170)或头戴式显示器(HMDs)(171,172)等剧院环境。交互式模拟通常使用商用计算机鼠标、三维鼠标、跟踪和记录运动的传感器或手柄控制器来控制。另一方面,触觉反馈是通过结合三维位置输入和力反馈的设备实现的。 在化学相关应用中,这些设备允许选择原子或分子,在空间中移动它们,并提供由操作产生的力反馈。一些设备不仅考虑了位置自由度的三维,还考虑了被操作物体的旋转的三维。在分子环境中实现逼真的触觉反馈已被深入研究,通常取决于目标应用领域。(173−180)在虚拟环境中实现平滑的视觉沉浸通常需要 60 赫兹的更新率,(181)而触觉更敏感,需要大约 1 千赫兹的 10 到 20 倍刷新率。 (182,183)除了视觉和触觉反馈外,一些应用还针对听觉感官,(170,184−187)并且显然语音控制作为输入辅助也可以通过减少输入和结构修改时的延迟来增强交互性和沉浸感。


4.1. 经典模拟中的交互式方法


由于交互性需要快速进行物理属性计算(例如能量和力),分子力学方法,即具有硬编码力场的牛顿力学,是分子模拟的第一个目标,因为物理量易于评估。一个突出的例子是分子对接。受体和配体之间结合位点的可能性众多,以及实现自动算法确定它们的挑战,促使交互式方法利用人类定位合理候选者的能力。项目 GROPE(188,189)针对基于静电和范德华相互作用的相互作用蛋白进行研究,并允许操作者使用六维触觉设备操纵分子,以探索受体和配体之间的相互作用。1997 年,在 CAVE 环境中,交互式分子对接与遗传算法在 Stalk 系统中相结合。它不仅提供了在虚拟现实中可视化遗传算法搜索的可能性,还可以暂停搜索并将配体移动到另一个构象以继续搜索。 然而,需要大量用户研究来证明交互式操作相对于传统计算协议的明显优势,(189,191,192)后来的一些研究表明,触觉反馈在分子对接中的有用性,以及算法和技术改进。 (176,185,193−203)然而,我们注意到,特别是在对接研究中,触觉指针设备并不完全令人信服,因为(i)范德华相互作用较弱,几乎无法让人感觉到主客体之间的吸引力,直到撞到排斥壁的r–12项,以及(ii)如此大量的弱接触几乎无法用低维输入/输出设备正确处理。

在 20 世纪 90 年代,为了在分子动力学模拟中引入人工力,开发了引导分子动力学(SMD)(204)。这使得能够进行原子力显微镜实验的计算研究,并且很快被应用于研究罕见事件。(205−208) 另一个驱动力是 Jarzynski 定理(209),它将系统在非平衡状态下所做的功与平衡状态起点和终点之间的自由能差异联系起来(尽管这需要缓慢作用的力和对互补自由度的广泛采样)。此外,SMD 中的人工力是在模拟之前预先定义的,并且在模拟过程中不能改变。在运行时改变它的愿望是交互式分子动力学背后的一个动机。(210−212) 最初的方法包括间歇性地更改模拟参数或通过图形用户界面添加用户指定的力。 (172,213,214) 随着计算能力的提升,交互式模拟变得越来越沉浸式,很快在 CAVE 环境中(184)或使用专用硬件如 HMDs(171,172)或触觉设备(215,216)中得到了应用。近年来,人们一直在努力为虚拟现实中的交互式分子动力学设计新的框架(192,217−219),并使交互式分子动力学在通用硬件上具有更广泛的应用性(186,220)。此外,交互式分子动力学最近还与在图形处理单元上执行的量子化学方法相结合(221)。然而,这种交互式从头开始MD 却受到迭代轨道优化周期收敛问题的困扰,最终破坏了沉浸感(以下将进一步讨论此类问题)。

另一个计算化学中交互式方法的重要应用是化学结构的生成和处理,这通常被视为后续传统计算的准备步骤,因为快速方法具有交互性,其近似性质。1994 年,布鲁克斯及其同事引入了 Sculpt,这是一个用于处理小蛋白质的建模系统,它通过连续能量最小化来实现。Sculpt 限制了键长和键角,但连续最小化了由于扭转角、氢键、范德华力和静电相互作用而产生的势能。Sculpt 允许操作员使用计算机鼠标操纵蛋白质,并且对于一个 20 个残基的蛋白质,可以达到 11 Hz 的更新率。为了简化大分子结构的设置,分子编辑器允许使用经典力场或非常近似的非迭代半经验方法进行快速(实时)结构优化,如 Avogadro (223) 和 SAMSON (224,225) 所实现。 在 SAMSON 环境中,Redon 及其同事应用自适应动力学来实现对更大蛋白质和碳氢化合物的交互式建模(226)。他们还依靠连续能量最小化,并允许对分子结构(原子添加和删除)进行操作,而不仅仅是其操纵(227)。他们认识到非反应力场的局限性,并研究了半经验量子化学方法(225,228)的应用,并将通用力场扩展以支持分子拓扑的变化(229)

不同方法出现,以允许在虚拟环境中可视化分子结构或分子动力学模拟,有时还具备编辑和操纵分子的功能。 Harvey 和 Gingold 于 2000 年使用触觉设备探索了原子轨道的电子密度。 Comai 和 Mazza 开发了一种类似工具,用于感知量子化学计算产生的静电场。 Satoh 等人设计了一个框架,用于研究由经典力场描述的稀有气体范德华相互作用,并具有触觉反馈。 触觉设备后来被用于蛋白质溶剂可及表面的交互式探索。 不同的研究证明了沉浸式和交互式方法在教育中的潜在益处,并为多人同时沉浸设计了多个虚拟现实框架,允许协作环境。


4.2. 量子力学计算的交互性


传统上,量子化学研究因成本过高而无法实现交互性。这是由于量子力学方程的数学结构,其中涉及大量积分的昂贵计算和迭代求解过程(与从经典力场导出的能量和力的解析公式的直接快速评估形成对比)。因此,长期以来,量子力学方法一直被认为不适合交互式方法(然而,请参见下一节)。

为了确定电子能和其他性质,量子化学计算需要,如同所有计算建模方法,三个步骤,如图2所示:设置、计算和结果分析。对于设置,通常创建一个包含计算设置和分子系统规范的基于文本的输入文件。计算步骤通常在中央处理器(CPUs)或其核心上执行。量子化学计算通常需要几分钟到几周的计算时间。然后,为了分析结果,从生成的输出文件中解析感兴趣的值。对于计算量子化学的从业者来说,众所周知,计算时间是耗时最长的步骤。鉴于实际计算所需的努力,设置和分析时间显得微不足道。

图 2


图 2. 典型量子化学计算的示意图。(a)传统上,最耗时的步骤是在 CPU 上的计算步骤。(b)随着 CPU 性能的提高,对于固定系统大小和某些给定的电子结构模型,量子化学计算的时间会减少。(c)对于准瞬时计算,最耗时的步骤现在不再是计算本身,而是瓶颈变成了设置和分析结果。


摩尔定律通常被观察到的说法是,芯片上的晶体管数量大约每两年翻一番。对于量子化学来说,这种发展非常有益(并且由于 CPU 核心数量的增加以及所有量子化学软件现在固有的并行性,这种发展还没有结束)。一方面,它使得可以以更高的精度研究更大的分子系统。另一方面,如果研究系统的大小或算法的精度没有增加,那么随着更高效的硬件的可用性,计算时间将逐年减少,如图 2b 所示。随着 CPU 功率的持续增加,计算时间可以大大减少,直到计算几乎瞬间完成。在这种情况下,传统方法(设置、计算、分析)由设置和分析主导,而不是计算本身,如图 2c 所示。此外,对于几乎瞬间的计算,设置和分析在时间上不再分离。

在传统方法中,设置和分析步骤并未从日益增长的计算能力中受益。虽然对于耗时计算,设置和分析所需的时间和人力与计算本身相比微不足道,但对于几乎瞬间的计算来说并非如此。要充分利用几乎瞬间的计算,必须完全摒弃传统意义上的基于文本的设置和分析,并考虑完全交互式的方法来研究反应性。请注意,即使是大多数高级分子编辑器也无法缓解这个问题,因为它们在设置输入和检查结果方面提供帮助,但总的来说,并没有达到这种程度:(i)几乎是瞬间的,并且(ii)能够应对不断操纵的分子结构产生的新结果的无尽数据流入。相比之下,真正的量子力学计算交互性开辟了新的研究领域,这些领域结合了计算机和人类技能的优势,使我们能够在分子反应性(与硬编码的经典力场形成对比)方面做出无偏见的发现,正如我们现在将要讨论的。

在考虑化学反应活性研究时,我们注意到这自然需要基于基本粒子的物理建模,从而基于量子力学。只有电子和原子核的已知电磁相互作用算子才能使我们量化在化学反应空间探索研究中遇到的分子系统任意配置中原子和片段的涌现相互作用能量。研究化学反应活性的首次交互式方法出现在过去十年中。它们考虑了基于量子力学第一原理的 PES 的交互式探索,以确定反应机理,因此需要应用量子化学方法。在 2009 年,我们提出了触觉量子化学(HQC)作为探索使用触觉设备(其中力起描述斜率的作用,并在一定程度上也描述曲率)的势能面的框架。《a id=0》(250)触觉力反馈最初依赖于从预先计算的ab initio电子能数据点在构型空间中开始的插值方案。 HQC 的底层算法后来得到了改进和扩展,以实现更自动化和灵活的工作流程。此后,我们的原始 HQC 实现被修改,不再依赖于插值,而是基于实时单点计算。这种新方法需要一个实时量子化学(RTQC)框架,该框架在密度泛函理论模型中的小分子系统或半经验模型中包含约 100 个原子的系统中已被证明是可行的。在 SAMSON 分子编辑器中实现了这一方法,并展示了 RTQC 的应用性和实用性。RTQC 框架的主要组件如图 3 所示。

图 3


图 3. 实时量子化学框架的主要组件。中心元素是正在研究的分子结构(中央),显示在操作员面前(右上角)。操作员可以使用鼠标或触觉设备移动原子,并体验其操作的效果(左上角)。单点计算在后台持续运行(底部),提供反应性探索背后的核力以及其他相关量子化学性质。


量子化学计算交互性的主要问题是单点能量计算需要自洽场(SCF)迭代。这个迭代过程在标准量子化学计算中已经存在一些困难,但在交互式方法中尤其麻烦。首先,无法预先预测单点计算需要多少时间,尤其是对于操作者引入的快速和剧烈的结构修改。由于执行时间与 SCF 迭代次数相关,这强烈激励着减少这个数量,这可以通过改善 SCF 周期的初始电子密度来实现。其次,可能会出现 SCF 过程根本不收敛或需要大量迭代的情况。不收敛的计算会导致交互式模拟中传递的属性流中断,从而破坏对虚拟分子世界的沉浸感。第三,SCF 方程可能有不同的解,导致不同的电子密度和量子化学性质。 在交互式环境中,收敛到错误的 SCF 解可能会导致对所研究分子系统的描述存在偏差。

在过去的几年里,我们开发了针对所有这些问题的方法,最终使我们能够在交互式量子力学环境中应用基于 SCF 的电子结构方法来探索反应机理。重要的是要理解,我们将在本节剩余部分讨论的所有这些发展,都解决了两个挑战:(i)效率,导致计算更快;(ii)稳定性,确保可靠的结果。而这两个挑战在交互式环境中都需要令人信服的解决方案,因为在 100 毫秒到 1 秒的速率下提供大量结果(简单地说,根本不允许检查可能存在错误的结果,因此必须不惜一切代价避免或纠正它们),我们强调,它们对于上述第 1 类和第 2 类中讨论的自动化黑盒算法也很重要,在这些算法中,由于产生的数据量巨大,手动检查可靠性变得不可能(因此计算不能失败)。

为解决第一个问题,我们通过密度传播算法加速了(相似)结构的自洽场计算。(255)这种策略与应用于从头算分子动力学中的其他外推方法相关。(256,257)它为单点计算提供了改进的初始密度矩阵,从而减少了收敛所需的迭代次数。

考虑到第二个挑战,在计算缓慢或根本不收敛的情况下,视觉和触觉反馈也必须是强制性的。为了保证可靠的实时反馈,我们引入了一种中介策略。中介创建近似势能表面的代理势,并实现高频反馈。此外,中介限制了反应性探索到配置空间中可用轨道可靠的区域,直到新数据最终可用。

至于第三个困难,不正确的收敛计算往往在非交互反应性研究中被忽视或未被检测到。为确保交互式探索依赖于正确的收敛量子化学计算,我们提出了一种可以快速评估的方案(在 RTQC 框架中所需),并且通过随机混合扰动轨道,以便检测并纠正不正确的自洽场收敛。(259) 该方案持续在后台测试,是否可以通过随机扰动的初始电子密度获得更低能量的解。

除了使反应性研究更加直观外,交互式量子化学还推动了量子化学研究方法的新途径。最重要的是,探索不必局限于具有固定电荷和自旋状态的特定、预定义的势能面。由于量子化学计算速度快,可以在后台自动计算其他状态和性质,以便在探索的结构中通知操作员,否则可能会错过关于反应性的重要事实。为此,我们引入了分子倾向的概念,通过该概念可以同时探索分子系统的多个状态。《(260)》这为化学家提供了发现反应系统发生(意外)转化(如还原、氧化、自旋交叉、光激发或质子化)倾向的可能性。

为了交互式地探索反应性,必须跟踪在交互式探索中看到的结构和反应。为此,必须处理原始探索数据,以确定稳定的分子结构以及将它们连接起来的反应网络。这可以通过将探索过程中记录的结构序列转换为 B 样条曲线来实现,从中我们提取稳定结构和基本反应的候选者。然后对这些候选者进行优化并存储在反应网络中。请注意,这个结构网络可以与第 1 类和第 2 类的算法相同的数据库,因此以综合的方式促进所有类别的协同作用。为了以自动化的方式完成反应途径和过渡状态的稳定优化,我们开发了一种新的两端方法,称为 ReaDuct,该方法通过参数化曲线描述反应途径。为了确定最低能量途径和过渡状态,它优化曲线的参数,而不是反应路径上的离散结构。


5. 结论与展望


点击复制章节链接
Section link copied!


在这项工作中,我们回顾了为有效和高效探索复杂化学反应而开发的不同方法。虽然利用 PES 上局部曲率信息的方法非常系统,但它们可能受到计算成本的限制,并且很难将这种探索引导到 PES 中真正相关的区域(对于给定的反应物和反应条件)。相比之下,利用某种启发式方法的方法可能通过采用基于图变换规则或量子力学概念来加速探索,从而发现潜在的中间体。因此,跨越 PES 的探索变得可行。当启发式方法基于从电子波函数中直接提取的信息时,这些启发式方法可以制定得适用于包含整个元素周期表中分子的系统。

交互式方法使用户能够通过配置空间引导感兴趣的系统,从而有效地探索用户认为与所考虑的化学系统相关的特定区域。然而,由于这种探索不是系统的,关键的反应途径可能仍未被发现。为了实现交互性和沉浸到分子世界,需要超快速的单点计算。虽然原则上可以使用密度泛函理论(DFT)的方法进行此类计算,(221,252)但迄今为止,实时量子化学框架仍然依赖于半经验方法,(253)这些方法在 1 类和 2 类的算法中也具有优势,并在实际应用中占有一席之地(然而,请记住我们在第 2 类部分对可靠性和误差估计的评论)。

我们强调,在 1-3 类中,没有任何方法能保证在探索过程中找到某些反应网络的所有重要基本步骤。然而,它们都比繁琐且有限的手动检查要好得多,提供了比后者更多的细节。在彻底性和计算可处理性之间取得平衡仍然是一个挑战。在图 4 中,不同类别的优势总结在了一个维恩图中。通过结合所有三个类别的优势,可以制定出一个真正可靠且普遍适用的探索方案。在我们的实验室中,目前正在开发一个名为 SCINE 的软件包(262),其中这三个方法完全互操作。

图 4


图 4. 三种探索策略的联合优势产生了一种普遍适用的探索协议。

作者信息


点击复制章节链接
Section link copied!

  • 相应作者
  • 作者

    • Gregor N. Simm - 瑞士苏黎世联邦理工学院物理化学实验室,Vladimir-Prelog-Weg 2,8093 苏黎世,瑞士

    • 瓦歇尔·A·C - 瑞士苏黎世联邦理工学院物理化学实验室,弗拉基米尔-普雷洛格街 2 号,8093 苏黎世,瑞士
  • 注释

    作者声明不存在任何利益冲突。

传记


点击复制章节链接
Section link copied!


格奥尔格·N·西姆出生于德国埃尔兰根,并在那里长大。他在苏黎世联邦理工学院(ETH Zurich)完成了学士和硕士学位,主修跨学科科学。2014 年,他在哈佛大学阿兰·阿斯普鲁-古齐克教授的指导下完成了硕士学位论文,研究机器学习技术以加速新有机光伏材料的发现。从 2015 年到 2018 年,他在德国化学工业基金会资助下,在马克斯·赖尔教授的指导下担任博士研究生。他开发了具有误差估计能力的复杂化学反应网络探索方法。自 2018 年秋季以来,他一直在剑桥大学机器学习小组担任博士后研究员,由瑞士国家科学基金会提供的早期博士后流动奖学金支持。


艾兰·C·瓦彻于 1990 年出生于瑞士。在苏黎世联邦理工学院获得化学学士和硕士学位后,他成为马克斯·赖尔教授团队的一名博士研究生,在那里他的研究集中在量子化学的交互式方法上。他的博士论文获得了 2018 年 IBM 研究奖。在苏黎世联邦理工学院期间,他对科学计算和新技术产生了浓厚的兴趣。他目前的研究致力于化学中人工智能的应用。


马克斯·雷耶尔于 1971 年出生于东西菲利亚。他在 1998 年从比勒费尔德大学获得理论化学博士学位,与于尔根·欣泽合作,并在埃尔兰根、波恩和耶拿大学担任讲师和教授。自 2006 年以来,他一直担任苏黎世联邦理工学院的理论化学教授。他的研究集中在相对论量子化学、理论光谱学、电子相关方法、密度泛函理论、反应机理、不确定性量化、交互式量子力学、配位化学和量子计算。

致谢


点击复制章节链接
Section link copied!


这项工作得到了瑞士国家基金会的财务支持。

参考文献


点击复制章节链接
Section link copied!


本文引用 262 篇其他出版物。


  1. 1Masters, C. 均相过渡金属催化:一门温柔的艺术,第 1 版;Springer,2011 年。

  2. 强化2,R. Vinu;L. J. Broadbelt. 解开复杂系统的反应途径并指定反应动力学。化学与生物分子工程年度评论 2012,3,29–54,DOI: 10.1146/annurev-chembioeng-062011-081108
  3. 3
    Ross, J. Determination of Complex Reaction Mechanisms. Analysis of Chemical, Biological and Genetic Networks. J. Phys. Chem. A 2008, 112, 21342143,  DOI: 10.1021/jp711313e
  4. 4
    Jorgensen, W. L. The Many Roles of Computation in Drug Discovery. Science 2004, 303, 18131818,  DOI: 10.1126/science.1096361
  5. 5
    Valdez, C. E.; Morgenstern, A.; Eberhart, M. E.; Alexandrova, A. N. Predictive Methods for Computational Metalloenzyme Redesign – a Test Case with Carboxypeptidase A. Phys. Chem. Chem. Phys. 2016, 18, 3174431756,  DOI: 10.1039/C6CP02247B
  6. 6
    Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia Synthesis from First-Principles Calculations. Science 2005, 307, 555558
  7. 7
    Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Jacobsen, K. W.; Bligaard, T.; Nørskov, J. K. Assessing the Reliability of Calculated Catalytic Ammonia Synthesis Rates. Science 2014, 345, 197200,  DOI: 10.1126/science.1253486
  8. 8
    Matera, S.; Maestri, M.; Cuoci, A.; Reuter, K. Predictive-Quality Surface Reaction Chemistry in Real Reactor Models: Integrating First-Principles Kinetic Monte Carlo Simulations into Computational Fluid Dynamics. ACS Catal. 2014, 4, 40814092,  DOI: 10.1021/cs501154e
  9. 9
    Reuter, K. Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis. Catal. Lett. 2016, 146, 541563,  DOI: 10.1007/s10562-015-1684-3
  10. 10
    Baxter, E. T.; Ha, M.-A.; Cass, A. C.; Alexandrova, A. N.; Anderson, S. L. Ethylene Dehydrogenation on Pt4,7,8 Clusters on Al2O3: Strong Cluster Size Dependence Linked to Preferred Catalyst Morphologies. ACS Catal. 2017, 7, 33223335,  DOI: 10.1021/acscatal.7b00409
  11. 11
    Ha, M.-A.; Baxter, E. T.; Cass, A. C.; Anderson, S. L.; Alexandrova, A. N. Boron Switch for Selectivity of Catalytic Dehydrogenation on Size-Selected Pt Clusters on Al2O3. J. Am. Chem. Soc. 2017, 139, 1156811575,  DOI: 10.1021/jacs.7b05894
  12. 12
    Ulissi, Z. W.; Medford, A. J.; Bligaard, T.; Nørskov, J. K. To Address Surface Reaction Network Complexity Using Scaling Relations Machine Learning and DFT Calculations. Nat. Commun. 2017, 8, 14621,  DOI: 10.1038/ncomms14621
  13. 13
    Vereecken, L.; Glowacki, D. R.; Pilling, M. J. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem. Rev. 2015, 115, 40634114,  DOI: 10.1021/cr500488p
  14. 14
    Ludlow, R. F.; Otto, S. Systems Chemistry. Chem. Soc. Rev. 2008, 37, 101108,  DOI: 10.1039/B611921M
  15. 15
    Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford University Press: Oxford, 2001.
  16. 16
    Dewyer, A. L.; Argüelles, A. J.; Zimmerman, P. M. Methods for Exploring Reaction Space in Molecular Systems. WIREs Comput. Mol. Sci. 2018, 8, e1354  DOI: 10.1002/wcms.1354
  17. 17
    Sameera, W. M. C.; Maeda, S.; Morokuma, K. Computational Catalysis Using the Artificial Force Induced Reaction Method. Acc. Chem. Res. 2016, 49, 763773,  DOI: 10.1021/acs.accounts.6b00023
  18. 18
    Hawkins, P. C. D. Conformation Generation: The State of the Art. J. Chem. Inf. Model. 2017, 57, 17471756,  DOI: 10.1021/acs.jcim.7b00221
  19. 19
    Ohno, K.; Maeda, S. A Scaled Hypersphere Search Method for the Topography of Reaction Pathways on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277282,  DOI: 10.1016/j.cplett.2003.12.030
  20. 20
    Maeda, S.; Ohno, K. Ab Initio Studies on Synthetic Routes of Glycine from Simple Molecules via Ammonolysis of Acetolactone: Applications of the Scaled Hypersphere Search Method. Chem. Lett. 2004, 33, 13721373,  DOI: 10.1246/cl.2004.1372
  21. 21
    Maeda, S.; Ohno, K. Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method: Applications to Ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 57425753,  DOI: 10.1021/jp0513162
  22. 22
    Ohno, K.; Maeda, S. Global Reaction Route Mapping on Potential Energy Surfaces of Formaldehyde, Formic Acid, and Their Metal-Substituted Analogues. J. Phys. Chem. A 2006, 110, 89338941,  DOI: 10.1021/jp061149l
  23. 23
    Maeda, S.; Ohno, K.; Morokuma, K. Systematic Exploration of the Mechanism of Chemical Reactions: The Global Reaction Route Mapping (GRRM) Strategy Using the ADDF and AFIR Methods. Phys. Chem. Chem. Phys. 2013, 15, 36833701,  DOI: 10.1039/c3cp44063j
  24. 24
    Satoh, H.; Oda, T.; Nakakoji, K.; Uno, T.; Tanaka, H.; Iwata, S.; Ohno, K. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers. J. Chem. Theory Comput. 2016, 12, 52935308,  DOI: 10.1021/acs.jctc.6b00439
  25. 25
    Maeda, S.; Morokuma, K. A Systematic Method for Locating Transition Structures of A+B→X Type Reactions. J. Chem. Phys. 2010, 132, 241102,  DOI: 10.1063/1.3457903
  26. 26
    Maeda, S.; Morokuma, K. Finding Reaction Pathways of Type A+B→X: Toward Systematic Prediction of Reaction Mechanisms. J. Chem. Theory Comput. 2011, 7, 23352345,  DOI: 10.1021/ct200290m
  27. 27
    Maeda, S.; Taketsugu, T.; Morokuma, K. Exploring Transition State Structures for Intramolecular Pathways by the Artificial Force Induced Reaction Method. J. Comput. Chem. 2014, 35, 166173,  DOI: 10.1002/jcc.23481
  28. 28
    Maeda, S.; Harabuchi, Y.; Takagi, M.; Taketsugu, T.; Morokuma, K. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. Chem. Rec. 2016, 16, 22322248,  DOI: 10.1002/tcr.201600043
  29. 29
    Yoshimura, T.; Maeda, S.; Taketsugu, T.; Sawamura, M.; Morokuma, K.; Mori, S. Exploring the Full Catalytic Cycle of Rhodium(I)–BINAP-Catalysed Isomerisation of Allylic Amines: A Graph Theory Approach for Path Optimisation. Chem. Sci. 2017, 8, 44754488,  DOI: 10.1039/C7SC00401J
  30. 30
    Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. The Biginelli Reaction Is a Urea-Catalyzed Organocatalytic Multicomponent Reaction. J. Org. Chem. 2015, 80, 69596967,  DOI: 10.1021/acs.joc.5b00407
  31. 31
    Saitta, A. M.; Saija, F. Miller Experiments in Atomistic Computer Simulations. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1376813773,  DOI: 10.1073/pnas.1402894111
  32. 32
    Wang, L.-P.; Titov, A.; McGibbon, R.; Liu, F.; Pande, V. S.; Martínez, T. J. Discovering Chemistry with an Ab Initio Nanoreactor. Nat. Chem. 2014, 6, 10441048,  DOI: 10.1038/nchem.2099
  33. 33
    Wang, L.-P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J. Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. J. Chem. Theory Comput. 2016, 12, 638649,  DOI: 10.1021/acs.jctc.5b00830
  34. 34
    Meuwly, M. Reactive Molecular Dynamics: From Small Molecules to Proteins. WIREs Comput. Mol. Sci. 2018, 0, e1386  DOI: 10.1002/wcms.1386
  35. 35
    van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 93969409,  DOI: 10.1021/jp004368u
  36. 36
    Döntgen, M.; Przybylski-Freund, M.-D.; Kröger, L. C.; Kopp, W. A.; Ismail, A. E.; Leonhard, K. Automated Discovery of Reaction Pathways, Rate Constants, and Transition States Using Reactive Molecular Dynamics Simulations. J. Chem. Theory Comput. 2015, 11, 25172524,  DOI: 10.1021/acs.jctc.5b00201
  37. 37
    Fischer, S.; Karplus, M. Conjugate Peak Refinement: An Algorithm for Finding Reaction Paths and Accurate Transition States in Systems with Many Degrees of Freedom. Chem. Phys. Lett. 1992, 194, 252261,  DOI: 10.1016/0009-2614(92)85543-J
  38. 38
    Florián, J.; Goodman, M. F.; Warshel, A. Computer Simulation of the Chemical Catalysis of DNA Polymerases: Discriminating between Alternative Nucleotide Insertion Mechanisms for T7 DNA Polymerase. J. Am. Chem. Soc. 2003, 125, 81638177,  DOI: 10.1021/ja028997o
  39. 39
    Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations. Science 2004, 303, 186195,  DOI: 10.1126/science.1088172
  40. 40
    Imhof, P.; Fischer, S.; Smith, J. C. Catalytic Mechanism of DNA Backbone Cleavage by the Restriction Enzyme EcoRV: A Quantum Mechanical/Molecular Mechanical Analysis. Biochemistry 2009, 48, 90619075,  DOI: 10.1021/bi900585m
  41. 41
    Reidelbach, M.; Betz, F.; Mäusle, R. M.; Imhof, P. Proton Transfer Pathways in an Aspartate-Water Cluster Sampled by a Network of Discrete States. Chem. Phys. Lett. 2016, 659, 169175,  DOI: 10.1016/j.cplett.2016.07.021
  42. 42
    Imhof, P. A. Networks Approach to Modeling Enzymatic Reactions. Methods Enzymol. 2016, 578, 249271,  DOI: 10.1016/bs.mie.2016.05.025
  43. 43
    Senn, H. M.; Thiel, W. QM/MM Methods for Biological Systems. Top. Curr. Chem. 2007, 268, 173290,  DOI: 10.1007/128_2006_084
  44. 44
    Senn, H. M.; Thiel, W. QM/MM Studies of Enzymes. Curr. Opin. Chem. Biol. 2007, 11, 182187,  DOI: 10.1016/j.cbpa.2007.01.684
  45. 45
    Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem., Int. Ed. 2009, 48, 11981229,  DOI: 10.1002/anie.200802019
  46. 46
    Huber, T.; Torda, A. E.; van Gunsteren, W. F. Local Elevation: A Method for Improving the Searching Properties of Molecular Dynamics Simulation. J. Comput.-Aided Mol. Des. 1994, 8, 695708,  DOI: 10.1007/BF00124016
  47. 47
    Laio, A.; Parrinello, M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1256212566,  DOI: 10.1073/pnas.202427399
  48. 48
    Christen, M.; van Gunsteren, W. F. On Searching in, Sampling of, and Dynamically Moving through Conformational Space of Biomolecular Systems: A Review. J. Comput. Chem. 2008, 29, 157166,  DOI: 10.1002/jcc.20725
  49. 49
    Bernardi, R. C.; Melo, M. C. R.; Schulten, K. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 872877,  DOI: 10.1016/j.bbagen.2014.10.019
  50. 50
    Shim, J.; MacKerell, A. D., Jr. Computational Ligand-Based Rational Design: Role of Conformational Sampling and Force Fields in Model Development. MedChemComm 2011, 2, 356370,  DOI: 10.1039/c1md00044f
  51. 51
    Ballard, A. J.; Martiniani, S.; Stevenson, J. D.; Somani, S.; Wales, D. J. Exploiting the Potential Energy Landscape to Sample Free Energy. WIREs Comput. Mol. Sci. 2015, 5, 273289,  DOI: 10.1002/wcms.1217
  52. 52
    De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 2016, 59, 40354061,  DOI: 10.1021/acs.jmedchem.5b01684
  53. 53
    Tsujishita, H.; Hirono, S. Camdas: An Automated Conformational Analysis System Using Molecular Dynamics. J. Comput.-Aided Mol. Des. 1997, 11, 305315,  DOI: 10.1023/A:1007964913898
  54. 54
    Wilson, S. R.; Cui, W.; Moskowitz, J. W.; Schmidt, K. E. Applications of Simulated Annealing to the Conformational Analysis of Flexible Molecules. J. Comput. Chem. 1991, 12, 342349,  DOI: 10.1002/jcc.540120307
  55. 55
    Sperandio, O.; Souaille, M.; Delfaud, F.; Miteva, M. A.; Villoutreix, B. O. MED-3DMC: A New Tool to Generate 3D Conformation Ensembles of Small Molecules with a Monte Carlo Sampling of the Conformational Space. Eur. J. Med. Chem. 2009, 44, 14051409,  DOI: 10.1016/j.ejmech.2008.09.052
  56. 56
    Grebner, C.; Becker, J.; Stepanenko, S.; Engels, B. Efficiency of Tabu-Search-Based Conformational Search Algorithms. J. Comput. Chem. 2011, 32, 22452253,  DOI: 10.1002/jcc.21807
  57. 57
    Shang, C.; Liu, Z.-P. Stochastic Surface Walking Method for Structure Prediction and Pathway Searching. J. Chem. Theory Comput. 2013, 9, 18381845,  DOI: 10.1021/ct301010b
  58. 58
    Zhang, X.-J.; Shang, C.; Liu, Z.-P. From Atoms to Fullerene: Stochastic Surface Walking Solution for Automated Structure Prediction of Complex Material. J. Chem. Theory Comput. 2013, 9, 32523260,  DOI: 10.1021/ct400238j
  59. 59
    Shang, C.; Zhang, X.-J.; Liu, Z.-P. Stochastic Surface Walking Method for Crystal Structure and Phase Transition Pathway Prediction. Phys. Chem. Chem. Phys. 2014, 16, 1784517856,  DOI: 10.1039/C4CP01485E
  60. 60
    Zhang, X.-J.; Liu, Z.-P. Reaction Sampling and Reactivity Prediction Using the Stochastic Surface Walking Method. Phys. Chem. Chem. Phys. 2015, 17, 27572769,  DOI: 10.1039/C4CP04456H
  61. 61
    Vázquez, S. A.; Martínez-Núñez, E. HCN Elimination from Vinyl Cyanide: Product Energy Partitioning, the Role of Hydrogen–Deuterium Exchange Reactions and a New Pathway. Phys. Chem. Chem. Phys. 2015, 17, 69486955,  DOI: 10.1039/C4CP05626D
  62. 62
    Martínez-Núñez, E. An Automated Method to Find Transition States Using Chemical Dynamics Simulations. J. Comput. Chem. 2015, 36, 222234,  DOI: 10.1002/jcc.23790
  63. 63
    Martínez-Núñez, E. An Automated Transition State Search Using Classical Trajectories Initialized at Multiple Minima. Phys. Chem. Chem. Phys. 2015, 17, 1491214921,  DOI: 10.1039/C5CP02175H
  64. 64
    Varela, J. A.; Vázquez, S. A.; Martínez-Núñez, E. An Automated Method to Find Reaction Mechanisms and Solve the Kinetics in Organometallic Catalysis. Chem. Sci. 2017, 8, 38433851,  DOI: 10.1039/C7SC00549K
  65. 65
    Rodriguez, A.; Rodriguez-Fernandez, R.; Vazquez, S. A.; Barnes, G. L.; Stewart, J. J. P.; Martinez-Nunez, E. tsscds2018: A Code for Automated Discovery of Chemical Reaction Mechanisms and Solving the Kinetics. J. Comput. Chem. 2018, 39, 19221930,  DOI: 10.1002/jcc.25370
  66. 66
    Cerjan, C. J.; Miller, W. H. On Finding Transition States. J. Chem. Phys. 1981, 75, 28002806,  DOI: 10.1063/1.442352
  67. 67
    Simons, J.; Joergensen, P.; Taylor, H.; Ozment, J. Walking on Potential Energy Surfaces. J. Phys. Chem. 1983, 87, 27452753,  DOI: 10.1021/j100238a013
  68. 68
    Davis, H. L.; Wales, D. J.; Berry, R. S. Exploring Potential Energy Surfaces with Transition State Calculations. J. Chem. Phys. 1990, 92, 43084319,  DOI: 10.1063/1.457790
  69. 69
    Wales, D. J. Basins of Attraction for Stationary Points on a Potential-Energy Surface. J. Chem. Soc., Faraday Trans. 1992, 88, 653657,  DOI: 10.1039/ft9928800653
  70. 70
    Wales, D. J. Locating Stationary Points for Clusters in Cartesian Coordinates. J. Chem. Soc., Faraday Trans. 1993, 89, 13051313,  DOI: 10.1039/ft9938901305
  71. 71
    Jensen, F. Locating Transition Structures by Mode Following: A Comparison of Six Methods on the Ar8Lennard-Jones Potential. J. Chem. Phys. 1995, 102, 67066718,  DOI: 10.1063/1.469144
  72. 72
    Doye, J. P. K.; Wales, D. J. Surveying a Potential Energy Surface by Eigenvector-Following. Z. Phys. D: At., Mol. Clusters 1997, 40, 194197,  DOI: 10.1007/s004600050192
  73. 73
    Broyden, C. G. Quasi-Newton Methods and Their Application to Function Minimisation. Math. Comp. 1967, 21, 368381,  DOI: 10.1090/S0025-5718-1967-0224273-2
  74. 74
    Munro, L. J.; Wales, D. J. Defect Migration in Crystalline Silicon. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 39693980,  DOI: 10.1103/PhysRevB.59.3969
  75. 75
    Malek, R.; Mousseau, N. Dynamics of Lennard-Jones Clusters: A Characterization of the Activation-Relaxation Technique. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2000, 62, 77237728,  DOI: 10.1103/PhysRevE.62.7723
  76. 76
    Deglmann, P.; Furche, F. Efficient Characterization of Stationary Points on Potential Energy Surfaces. J. Chem. Phys. 2002, 117, 95359538,  DOI: 10.1063/1.1523393
  77. 77
    Reiher, M.; Neugebauer, J. A Mode-Selective Quantum Chemical Method for Tracking Molecular Vibrations Applied to Functionalized Carbon Nanotubes. J. Chem. Phys. 2003, 118, 16341641,  DOI: 10.1063/1.1523908
  78. 78
    Sharada, S. M.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Automated Transition State Searches without Evaluating the Hessian. J. Chem. Theory Comput. 2012, 8, 51665174,  DOI: 10.1021/ct300659d
  79. 79
    Bergeler, M.; Herrmann, C.; Reiher, M. Mode-Tracking Based Stationary-Point Optimization. J. Comput. Chem. 2015, 36, 14291438,  DOI: 10.1002/jcc.23958
  80. 80
    Halgren, T. A.; Lipscomb, W. N. The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States. Chem. Phys. Lett. 1977, 49, 225232,  DOI: 10.1016/0009-2614(77)80574-5
  81. 81
    Ayala, P. Y.; Schlegel, H. B. A Combined Method for Determining Reaction Paths, Minima, and Transition State Geometries. J. Chem. Phys. 1997, 107, 375384,  DOI: 10.1063/1.474398
  82. 82
    Henkelman, G.; Jónsson, H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys. 1999, 111, 70107022,  DOI: 10.1063/1.480097
  83. 83
    Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 99019904,  DOI: 10.1063/1.1329672
  84. 84
    Henkelman, G.; Jónsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 99789985,  DOI: 10.1063/1.1323224
  85. 85
    Maragakis, P.; Andreev, S. A.; Brumer, Y.; Reichman, D. R.; Kaxiras, E. Adaptive Nudged Elastic Band Approach for Transition State Calculation. J. Chem. Phys. 2002, 117, 46514658,  DOI: 10.1063/1.1495401
  86. 86
    E, W.; Ren, W.; Vanden-Eijnden, E. String Method for the Study of Rare Events. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, 052301,  DOI: 10.1103/PhysRevB.66.052301
  87. 87
    E, W.; Ren, W.; Vanden-Eijnden, E. Finite Temperature String Method for the Study of Rare Events. J. Phys. Chem. B 2005, 109, 66886693,  DOI: 10.1021/jp0455430
  88. 88
    Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Efficient Exploration of Reaction Paths via a Freezing String Method. J. Chem. Phys. 2011, 135, 224108,  DOI: 10.1063/1.3664901
  89. 89
    Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications. J. Chem. Theory Comput. 2011, 7, 40194025,  DOI: 10.1021/ct200654u
  90. 90
    Zimmerman, P. Reliable Transition State Searches Integrated with the Growing String Method. J. Chem. Theory Comput. 2013, 9, 30433050,  DOI: 10.1021/ct400319w
  91. 91
    Vaucher, A. C.; Reiher, M. Minimum Energy Paths and Transition States by Curve Optimization. J. Chem. Theory Comput. 2018, 14, 30913099,  DOI: 10.1021/acs.jctc.8b00169
  92. 92
    Broadbelt, L. J.; Stark, S. M.; Klein, M. T. Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates. Ind. Eng. Chem. Res. 1994, 33, 790799,  DOI: 10.1021/ie00028a003
  93. 93
    Broadbelt, L. J.; Stark, S. M.; Klein, M. T. Computer Generated Reaction Modelling: Decomposition and Encoding Algorithms for Determining Species Uniqueness. Comput. Chem. Eng. 1996, 20, 113129,  DOI: 10.1016/0098-1354(94)00009-D
  94. 94
    Broadbelt, L. J.; Pfaendtner, J. Lexicography of Kinetic Modeling of Complex Reaction Networks. AIChE J. 2005, 51, 21122121,  DOI: 10.1002/aic.10599
  95. 95
    Evans, M. G.; Polanyi, M. Inertia and Driving Force of Chemical Reactions. Trans. Faraday Soc. 1938, 34, 1124,  DOI: 10.1039/tf9383400011
  96. 96
    Matheu, D. M.; Dean, A. M.; Grenda, J. M.; Green, W. H. Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis. J. Phys. Chem. A 2003, 107, 85528565,  DOI: 10.1021/jp0345957
  97. 97
    Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H. Reaction Mechanism Generator: Automatic Construction of Chemical Kinetic Mechanisms. Comput. Phys. Commun. 2016, 203, 212225,  DOI: 10.1016/j.cpc.2016.02.013
  98. 98
    Harper, M. R.; Van Geem, K. M.; Pyl, S. P.; Marin, G. B.; Green, W. H. Comprehensive Reaction Mechanism for N-Butanol Pyrolysis and Combustion. Combust. Flame 2011, 158, 1641,  DOI: 10.1016/j.combustflame.2010.06.002
  99. 99
    van Geem, K. M.; Reyniers, M.-F.; Marin, G. B.; Song, J.; Green, W. H.; Matheu, D. M. Automatic Reaction Network Generation Using RMG for Steam Cracking of N-hexane. AIChE J. 2006, 52, 718730,  DOI: 10.1002/aic.10655
  100. 100
    Petway, S. V.; Ismail, H.; Green, W. H.; Estupiñán, E. G.; Jusinski, L. E.; Taatjes, C. A. Measurements and Automated Mechanism Generation Modeling of OH Production in Photolytically Initiated Oxidation of the Neopentyl Radical. J. Phys. Chem. A 2007, 111, 38913900,  DOI: 10.1021/jp0668549
  101. 101
    Hansen, N.; Merchant, S. S.; Harper, M. R.; Green, W. H. The Predictive Capability of an Automatically Generated Combustion Chemistry Mechanism: Chemical Structures of Premixed Iso-Butanol Flames. Combust. Flame 2013, 160, 23432351,  DOI: 10.1016/j.combustflame.2013.05.013
  102. 102
    Slakman, B. L.; Simka, H.; Reddy, H.; West, R. H. Extending Reaction Mechanism Generator to Silicon Hydride Chemistry. Ind. Eng. Chem. Res. 2016, 55, 1250712515,  DOI: 10.1021/acs.iecr.6b02402
  103. 103
    Seyedzadeh Khanshan, F.; West, R. H. Developing Detailed Kinetic Models of Syngas Production from Bio-Oil Gasification Using Reaction Mechanism Generator (RMG). Fuel 2016, 163, 2533,  DOI: 10.1016/j.fuel.2015.09.031
  104. 104
    Han, K.; Green, W. H.; West, R. H. On-the-Fly Pruning for Rate-Based Reaction Mechanism Generation. Comput. Chem. Eng. 2017, 100, 18,  DOI: 10.1016/j.compchemeng.2017.01.003
  105. 105
    Dana, A. G.; Buesser, B.; Merchant, S. S.; Green, W. H. Automated Reaction Mechanism Generation Including Nitrogen as a Heteroatom. Int. J. Chem. Kinet. 2018, 50, 243258,  DOI: 10.1002/kin.21154
  106. 106
    Grambow, C. A.; Jamal, A.; Li, Y.-P.; Green, W. H.; Zádor, J.; Suleimanov, Y. V. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods. J. Am. Chem. Soc. 2018, 140, 10351048,  DOI: 10.1021/jacs.7b11009
  107. 107
    Suleimanov, Y. V.; Green, W. H. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods. J. Chem. Theory Comput. 2015, 11, 4248,  DOI: 10.1021/acs.jctc.5b00407
  108. 108
    Schlegel, H. B. Optimization of Equilibrium Geometries and Transition Structures. J. Comput. Chem. 1982, 3, 214218,  DOI: 10.1002/jcc.540030212
  109. 109
    Schlegel, H. B. Estimating the Hessian for Gradient-Type Geometry Optimizations. Theoret. Chim. Acta 1984, 66, 333340,  DOI: 10.1007/BF00554788
  110. 110
    Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States. J. Comput. Chem. 1996, 17, 4956,  DOI: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  111. 111
    Bhoorasingh, P. L.; West, R. H. Transition State Geometry Prediction Using Molecular Group Contributions. Phys. Chem. Chem. Phys. 2015, 17, 3217332182,  DOI: 10.1039/C5CP04706D
  112. 112
    Rappoport, D.; Galvin, C. J.; Zubarev, D. Y.; Aspuru-Guzik, A. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry. J. Chem. Theory Comput. 2014, 10, 897907,  DOI: 10.1021/ct401004r
  113. 113
    Zubarev, D. Y.; Rappoport, D.; Aspuru-Guzik, A. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle. Sci. Rep. 2015, 5, 8009,  DOI: 10.1038/srep08009
  114. 114
    Rappoport, D.; Aspuru-Guzik, A. Predicting Feasible Organic Reaction Pathways Using Heuristically Aided Quantum Chemistry. ChemRxiv Preprint 2018,  DOI: 10.26434/chemrxiv.6649565.v1
  115. 115
    Butlerow, A. Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 1861, 120, 295298,  DOI: 10.1002/jlac.18611200308
  116. 116
    Levy, D. E. Arrow-Pushing in Organic Chemistry: An Easy Approach to Understanding Reaction Mechanisms, 2nd ed.; Wiley, 2017.
  117. 117
    Kim, Y.; Woo Kim, J.; Kim, Z.; Youn Kim, W. Efficient Prediction of Reaction Paths through Molecular Graph and Reaction Network Analysis. Chem. Sci. 2018, 9, 825835,  DOI: 10.1039/C7SC03628K
  118. 118
    Zimmerman, P. M. Automated Discovery of Chemically Reasonable Elementary Reaction Steps. J. Comput. Chem. 2013, 34, 13851392,  DOI: 10.1002/jcc.23271
  119. 119
    Zimmerman, P. M. Navigating Molecular Space for Reaction Mechanisms: An Efficient, Automated Procedure. Mol. Simul. 2015, 41, 4354,  DOI: 10.1080/08927022.2014.894999
  120. 120
    Zimmerman, P. M. Growing String Method with Interpolation and Optimization in Internal Coordinates: Method and Examples. J. Chem. Phys. 2013, 138, 184102,  DOI: 10.1063/1.4804162
  121. 121
    Zimmerman, P. M. Single-Ended Transition State Finding with the Growing String Method. J. Comput. Chem. 2015, 36, 601611,  DOI: 10.1002/jcc.23833
  122. 122
    Jafari, M.; Zimmerman, P. M. Reliable and Efficient Reaction Path and Transition State Finding for Surface Reactions with the Growing String Method. J. Comput. Chem. 2017, 38, 645658,  DOI: 10.1002/jcc.24720
  123. 123
    Nett, A. J.; Zhao, W.; Zimmerman, P. M.; Montgomery, J. Highly Active Nickel Catalysts for C–H Functionalization Identified through Analysis of Off-Cycle Intermediates. J. Am. Chem. Soc. 2015, 137, 76367639,  DOI: 10.1021/jacs.5b04548
  124. 124
    Li, M. W.; Pendleton, I. M.; Nett, A. J.; Zimmerman, P. M. Mechanism for Forming B,C,N,O Rings from NH3BH3and vCO2ia Reaction Discovery Computations. J. Phys. Chem. A 2016, 120, 11351144,  DOI: 10.1021/acs.jpca.5b11156
  125. 125
    Pendleton, I. M.; Pérez-Temprano, M. H.; Sanford, M. S.; Zimmerman, P. M. Experimental and Computational Assessment of Reactivity and Mechanism in C(sp3)–N Bond-Forming Reductive Elimination from Palladium(IV). J. Am. Chem. Soc. 2016, 138, 60496060,  DOI: 10.1021/jacs.6b02714
  126. 126
    Zhao, Y.; Nett, A. J.; McNeil, A. J.; Zimmerman, P. M. Computational Mechanism for Initiation and Growth of Poly(3-Hexylthiophene) Using Palladium N-Heterocyclic Carbene Precatalysts. Macromolecules 2016, 49, 76327641,  DOI: 10.1021/acs.macromol.6b01648
  127. 127
    Dewyer, A. L.; Zimmerman, P. M. Finding Reaction Mechanisms, Intuitive or Otherwise. Org. Biomol. Chem. 2017, 15, 501504,  DOI: 10.1039/C6OB02183B
  128. 128
    Ludwig, J. R.; Zimmerman, P. M.; Gianino, J. B.; Schindler, C. S. Iron(III)-Catalysed Carbonyl–Olefin Metathesis. Nature 2016, 533, 374379,  DOI: 10.1038/nature17432
  129. 129
    Smith, M. L.; Leone, A. K.; Zimmerman, P. M.; McNeil, A. J. Impact of Preferential π-Binding in Catalyst-Transfer Polycondensation of Thiazole Derivatives. ACS Macro Lett. 2016, 5, 14111415,  DOI: 10.1021/acsmacrolett.6b00886
  130. 130
    Ludwig, J. R.; Phan, S.; McAtee, C. C.; Zimmerman, P. M.; Devery, J. J.; Schindler, C. S. Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. J. Am. Chem. Soc. 2017, 139, 1083210842,  DOI: 10.1021/jacs.7b05641
  131. 131
    Dewyer, A. L.; Zimmerman, P. M. Simulated Mechanism for Palladium-Catalyzed, Directed γ-Arylation of Piperidine. ACS Catal. 2017, 7, 54665477,  DOI: 10.1021/acscatal.7b01390
  132. 132
    Habershon, S. Sampling Reactive Pathways with Random Walks in Chemical Space: Applications to Molecular Dissociation and Catalysis. J. Chem. Phys. 2015, 143, 094106,  DOI: 10.1063/1.4929992
  133. 133
    Habershon, S. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling. J. Chem. Theory Comput. 2016, 12, 17861798,  DOI: 10.1021/acs.jctc.6b00005
  134. 134
    Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design. Acc. Chem. Res. 2016, 49, 10611069,  DOI: 10.1021/acs.accounts.6b00096
  135. 135
    Doney, A. C.; Rooks, B. J.; Lu, T.; Wheeler, S. E. Design of Organocatalysts for Asymmetric Propargylations through Computational Screening. ACS Catal. 2016, 6, 79487955,  DOI: 10.1021/acscatal.6b02366
  136. 136
    Guan, Y.; Wheeler, S. E. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation. Angew. Chem. 2017, 129, 92299233,  DOI: 10.1002/ange.201704663
  137. 137
    Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. AARON: An Automated Reaction Optimizer for New Catalysts. J. Chem. Theory Comput. 2018, 14, 5249,  DOI: 10.1021/acs.jctc.8b00578
  138. 138
    Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 17931874,  DOI: 10.1021/cr990029p
  139. 139
    Geerlings, P.; Proft, F. D. Conceptual DFT: The Chemical Relevance of Higher Response Functions. Phys. Chem. Chem. Phys. 2008, 10, 30283042,  DOI: 10.1039/b717671f
  140. 140
    Proft, F. D.; Ayers, P. W.; Geerlings, P. The Chemical Bond; Wiley-Blackwell, 2014; pp 233270.
  141. 141
    Bergeler, M.; Simm, G. N.; Proppe, J.; Reiher, M. Heuristics-Guided Exploration of Reaction Mechanisms. J. Chem. Theory Comput. 2015, 11, 57125722,  DOI: 10.1021/acs.jctc.5b00866
  142. 142
    Gánti, T. Organization of Chemical Reactions into Dividing and Metabolizing Units: The Chemotons. BioSystems 1975, 7, 1521,  DOI: 10.1016/0303-2647(75)90038-6
  143. 143
    Yandulov, D. V.; Schrock, R. R. Reduction of Dinitrogen to Ammonia at a Well-Protected Reaction Site in a Molybdenum Triamidoamine Complex. J. Am. Chem. Soc. 2002, 124, 62526253,  DOI: 10.1021/ja020186x
  144. 144
    Yandulov, D. V.; Schrock, R. R.; Rheingold, A. L.; Ceccarelli, C.; Davis, W. M. Synthesis and Reactions of Molybdenum Triamidoamine Complexes Containing Hexaisopropylterphenyl Substituents. Inorg. Chem. 2003, 42, 796813,  DOI: 10.1021/ic020505l
  145. 145
    Eschenmoser, A.; Loewenthal, E. Chemistry of Potentially Prebiological Natural Products. Chem. Soc. Rev. 1992, 21, 116,  DOI: 10.1039/cs9922100001
  146. 146
    Delidovich, I. V.; Simonov, A. N.; Taran, O. P.; Parmon, V. N. Catalytic Formation of Monosaccharides: From the Formose Reaction towards Selective Synthesis. ChemSusChem 2014, 7, 18331846,  DOI: 10.1002/cssc.201400040
  147. 147
    Simm, G. N.; Reiher, M. Context-Driven Exploration of Complex Chemical Reaction Networks. J. Chem. Theory Comput. 2017, 13, 61086119,  DOI: 10.1021/acs.jctc.7b00945
  148. 148
    Proppe, J.; Reiher, M. Mechanism Deduction from Noisy Chemical Reaction Networks. J. Chem. Theory Comput. 2018, submitted, [arXiv: 1803.09346].
  149. 149
    Husch, T.; Vaucher, A. C.; Reiher, M. Semiempirical Molecular Orbital Models based on the Neglect of Diatomic Differential Overlap Approximation. Int. J. Quantum Chem. 2018, e25799  DOI: 10.1002/qua.25799
  150. 150
    Husch, T.; Reiher, M. Comprehensive analysis of the neglect of diatomic differential overlap approximation. J. Chem. Theory Comput. 2018, 14, 51695179,  DOI: 10.1021/acs.jctc.8b00601
  151. 151
    Simm, G. N.; Proppe, J.; Reiher, M. Error Assessment of Computational Models in Chemistry. Chimia 2017, 71, 202208,  DOI: 10.2533/chimia.2017.202
  152. 152
    Proppe, J.; Reiher, M. Reliable Estimation of Prediction Uncertainty for Physicochemical Property Models. J. Chem. Theory Comput. 2017, 13, 32973317,  DOI: 10.1021/acs.jctc.7b00235
  153. 153
    Weymuth, T.; Proppe, J.; Reiher, M. Statistical Analysis of Semiclassical Dispersion Corrections. J. Chem. Theory Comput. 2018, 14, 24802494,  DOI: 10.1021/acs.jctc.8b00078
  154. 154
    Proppe, J.; Husch, T.; Simm, G. N.; Reiher, M. Uncertainty quantification for quantum chemical models of complex reaction networks. Faraday Discuss. 2016, 195, 497520,  DOI: 10.1039/C6FD00144K
  155. 155
    Simm, G.; Reiher, M. Error-Controlled Exploration of Chemical Reaction Networks with Gaussian Processes. J. Chem. Theory Comput. 2018, 14, 52385248,  DOI: 10.1021/acs.jctc.8b00504
  156. 156
    Lagorce, D.; Pencheva, T.; Villoutreix, B. O.; Miteva, M. A. DG-AMMOS: A New Tool to Generate 3D Conformation of Small Molecules Using Distance Geometry and Automated Molecular Mechanics Optimization for in Silico Screening. BMC Chem. Biol. 2009, 9, 6,  DOI: 10.1186/1472-6769-9-6
  157. 157
    Riniker, S.; Landrum, G. A. Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation. J. Chem. Inf. Model. 2015, 55, 25622574,  DOI: 10.1021/acs.jcim.5b00654
  158. 158
    Vainio, M. J.; Johnson, M. S. Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm. J. Chem. Inf. Model. 2007, 47, 24622474,  DOI: 10.1021/ci6005646
  159. 159
    Leite, T. B.; Gomes, D.; Miteva, M. A.; Chomilier, J.; Villoutreix, B. O.; Tufféry, P. Frog: A FRee Online druG 3D Conformation Generator. Nucleic Acids Res. 2007, 35, W568W572,  DOI: 10.1093/nar/gkm289
  160. 160
    Miteva, M. A.; Guyon, F.; Tufféry, P. Frog2: Efficient 3D Conformation Ensemble Generator for Small Compounds. Nucleic Acids Res. 2010, 38, W622W627,  DOI: 10.1093/nar/gkq325
  161. 161
    Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572584,  DOI: 10.1021/ci100031x
  162. 162
    Schärfer, C.; Schulz-Gasch, T.; Hert, J.; Heinzerling, L.; Schulz, B.; Inhester, T.; Stahl, M.; Rarey, M. CONFECT: Conformations from an Expert Collection of Torsion Patterns. ChemMedChem 2013, 8, 16901700,  DOI: 10.1002/cmdc.201300242
  163. 163
    Guba, W.; Meyder, A.; Rarey, M.; Hert, J. Torsion Library Reloaded: A New Version of Expert-Derived SMARTS Rules for Assessing Conformations of Small Molecules. J. Chem. Inf. Model. 2016, 56, 15,  DOI: 10.1021/acs.jcim.5b00522
  164. 164
    Batter, J.; Brooks, F. GROPE-I: A Computer Display to the Sense of Feel. Proceedings of the International Federation of Information Processing 1971, 759763
  165. 165
    Noll, A. M. Man-Machine Tactile Communication. J. Soc. Inform. Dis. 1972, 6–11, 30
  166. 166
    Atkinson, W. D.; Bond, K. E.; Tribble, G. L.; Wilson, K. R. Computing with Feeling. Comp. and Graph. 1977, 2, 97103,  DOI: 10.1016/0097-8493(77)90009-7
  167. 167
    Lancaster, S. J. Immersed in virtual molecules. Nature Rev. Chem. 2018, 2, 253254,  DOI: 10.1038/s41570-018-0043-5
  168. 168
    Aspuru-Guzik, A.; Lindh, R.; Reiher, M. The Matter (R)evolution. ACS Cent. Sci. 2018, 4, 144152,  DOI: 10.1021/acscentsci.7b00550
  169. 169
    Matthews, D. Science goes virtual. Nature 2018, 557, 127128,  DOI: 10.1038/d41586-018-04997-2
  170. 170
    Cruz-Neira, C.; Sandin, D. J.; DeFanti, T. A. Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, NY, USA, 1993; pp 135142.
  171. 171
    Ai, Z.; Fröhlich, T. Molecular Dynamics Simulation in Virtual Environments. Comput. Graphics Forum 1998, 17, 267273,  DOI: 10.1111/1467-8659.00273
  172. 172
    Prins, J. F.; Hermans, J.; Mann, G.; Nyland, L. S.; Simons, M. A Virtual Environment for Steered Molecular Dynamics. Future Gener. Comp. Sy. 1999, 15, 485495,  DOI: 10.1016/S0167-739X(99)00005-9
  173. 173
    Ǩrenek, A. Haptic Rendering of Complex Force Fields. Proceedings of the Workshop on Virtual Environments 2003; ACM: New York, NY, USA, 2003; pp 231239.
  174. 174
    Lee, Y.-G.; Lyons, K. W. Smoothing Haptic Interaction Using Molecular Force Calculations. Comput.-Aided Design 2004, 36, 7590,  DOI: 10.1016/S0010-4485(03)00080-0
  175. 175
    Morin, S.; Redon, S. A Force-Feedback Algorithm for Adaptive Articulated-Body Dynamics Simulation. IEEE International Conference on Robotics and Automation; IEEE, 2007; pp 32453250.
  176. 176
    Daunay, B.; Régnier, S. Stable Six Degrees of Freedom Haptic Feedback for Flexible Ligand-Protein Docking. Comput.-Aided Design 2009, 41, 886895,  DOI: 10.1016/j.cad.2009.06.010
  177. 177
    Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Haptic Feedback for Molecular Simulation. 2009 IEEE/RSJ. International Conference on Intelligent Robots and Systems; IEEE, 2009; pp 237242.
  178. 178
    Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Comparing Position and Force Control for Interactive Molecular Simulators with Haptic Feedback. J. Mol. Graphics Modell. 2010, 29, 280289,  DOI: 10.1016/j.jmgm.2010.06.003
  179. 179
    Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Haptic Molecular Simulation Based on Force Control. 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; IEEE, 2010; pp 329334.
  180. 180
    Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Variable Gain Haptic Coupling for Molecular Simulation. 2011 IEEE World Haptics Conference; IEEE, 2011; pp 469474.
  181. 181
    Durlach, N.; Mavor, A.; Development, C.; Board, C.; Council, N. Virtual Reality: Scientific and Technological Challenges; National Academies Press, 1994.
  182. 182
    Mark, W. R.; Randolph, S. C.; Finch, M.; Van Verth, J. M.; Taylor, R. M., II. Adding Force Feedback to Graphics Systems: Issues and Solutions. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, 1996; pp 447452.
  183. 183
    Ruspini, D. C.; Kolarov, K.; Khatib, O. The Haptic Display of Complex Graphical Environments. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, 1997; pp 345352.
  184. 184
    Cruz-Neira, C.; Langley, R.; Bash, P. VIBE: A Virtual Biomolecular Environment for Interactive Molecular Modeling. Comput. Chem. 1996, 20, 469477,  DOI: 10.1016/0097-8485(96)00009-5
  185. 185
    Férey, N.; Nelson, J.; Martin, C.; Picinali, L.; Bouyer, G.; Tek, A.; Bourdot, P.; Burkhardt, J.; Katz, B.; Ammi, M.; Etchebest, C.; Autin, L. Multisensory VR Interaction for Protein-Docking in the CoRSAIRe Project. Virtual Reality 2009, 13, 273293,  DOI: 10.1007/s10055-009-0136-z
  186. 186
    Glowacki, D. R.; O’Connor, M.; Calabro, G.; Price, J.; Tew, P.; Mitchell, T.; Hyde, J.; Tew, D. P.; Coughtrie, D. J.; McIntosh-Smith, S. A GPU-Accelerated Immersive Audio-Visual Framework for Interaction with Molecular Dynamics Using Consumer Depth Sensors. Faraday Discuss. 2014, 169, 6387,  DOI: 10.1039/C4FD00008K
  187. 187
    Arbon, R. E.; Jones, A. J.; Bratholm, L. A.; Mitchell, T.; Glowacki, D. R. Sonifying Stochastic Walks on Biomolecular Energy Landscapes. 2018, arXiv 1803.05805.
  188. 188
    Ouh-young, M.; Pique, M.; Hughes, J.; Srinivasan, N.; Brooks, F. P. Using a Manipulator for Force Display in Molecular Docking. IEEE International Conference on Robotics and Automation; IEEE, 1988; pp 18241829.
  189. 189
    Brooks, F. P., Jr.; Ouh-Young, M.; Batter, J. J.; Jerome Kilpatrick, P. Project GROPE — Haptic Displays for Scientific Visualization. SIGGRAPH Comput. Graph. 1990, 24, 177185,  DOI: 10.1145/97880.97899
  190. 190
    Levine, D.; Facello, M.; Hallstrom, P.; Reeder, G.; Walenz, B.; Stevens, F. Stalk: An Interactive System for Virtual Molecular Docking. IEEE Comput. Sci. Eng. 1997, 4, 5565,  DOI: 10.1109/99.609834
  191. 191
    Brooks, F. P., Jr. Impressions by a dinosaur. Faraday Discuss. 2014, 169, 521527,  DOI: 10.1039/C4FD00130C
  192. 192
    O’Connor, M.; Deeks, H. M.; Dawn, E.; Metatla, O.; Roudaut, A.; Sutton, M.; Thomas, L. M.; Glowacki, B. R.; Sage, R.; Tew, P.; Wonnacott, M.; Bates, P.; Mulholland, A. J.; Glowacki, D. R. Sampling Molecular Conformations and Dynamics in a Multiuser Virtual Reality Framework. Sci. Adv. 2018, 4, eaat2731  DOI: 10.1126/sciadv.aat2731
  193. 193
    Bayazit, O.; Song, G.; Amato, N. Ligand Binding with OBPRM and User Input. IEEE International Conference on Robotics and Automation; IEEE, 2001; pp 954959.
  194. 194
    Nagata, H.; Mizushima, H.; Tanaka, H. Concept and Prototype of Protein-Ligand Docking Simulator with Force Feedback Technology. Bioinformatics 2002, 18, 140146,  DOI: 10.1093/bioinformatics/18.1.140
  195. 195
    Lai-Yuen, S. K.; Lee, Y.-S. Computer-Aided Molecular Design (CAMD) with Force-Torque Feedback. Ninth International Conference on Computer Aided Design and Computer Graphics; ACM: New York, 2005; pp 199204.
  196. 196
    Birmanns, S.; Wriggers, W. Interactive Fitting Augmented by Force-Feedback and Virtual Reality. J. Struct. Biol. 2003, 144, 123131,  DOI: 10.1016/j.jsb.2003.09.018
  197. 197
    Wollacott, A. M.; Merz, K. M., Jr. Haptic Applications for Molecular Structure Manipulation. J. Mol. Graphics Modell. 2007, 25, 801805,  DOI: 10.1016/j.jmgm.2006.07.005
  198. 198
    Subasi, E.; Basdogan, C. A New Haptic Interaction and Visualization Approach for Rigid Molecular Docking in Virtual Environments. Presence 2008, 17, 7390,  DOI: 10.1162/pres.17.1.73
  199. 199
    Heyd, J.; Birmanns, S. Immersive Structural Biology: A New Approach to Hybrid Modeling of Macromolecular Assemblies. Virtual Reality 2009, 13, 245255,  DOI: 10.1007/s10055-009-0129-y
  200. 200
    Anthopoulos, A.; Pasqualetto, G.; Grimstead, I.; Brancale, A. Haptic-Driven, Interactive Drug Design: Implementing a GPU-Based Approach to Evaluate the Induced Fit Effect. Faraday Discuss. 2014, 169, 323342,  DOI: 10.1039/C3FD00139C
  201. 201
    Iakovou, G.; Hayward, S.; Laycock, S. D. A Real-Time Proximity Querying Algorithm for Haptic-Based Molecular Docking. Faraday Discuss. 2014, 169, 359377,  DOI: 10.1039/C3FD00123G
  202. 202
    Iakovou, G.; Hayward, S.; Laycock, S. D. Adaptive GPU-Accelerated Force Calculation for Interactive Rigid Molecular Docking Using Haptics. J. Mol. Graphics Modell. 2015, 61, 112,  DOI: 10.1016/j.jmgm.2015.06.003
  203. 203
    Iakovou, G.; Hayward, S.; Laycock, S. D. Virtual Environment for Studying the Docking Interactions of Rigid Biomolecules with Haptics. J. Chem. Inf. Model. 2017, 57, 11421152,  DOI: 10.1021/acs.jcim.7b00051
  204. 204
    Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; Wriggers, W.; Schulten, K. In Computational Molecular Dynamics: Challenges, Methods, Ideas; Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A., Reich, S., Skeel, R., Eds.; Lecture Notes in Computational Science and Engineering; Springer: Berlin, Heidelberg, 1999; Vol. 4, pp 3965.
  205. 205
    Grubmüller, H.; Heymann, B.; Tavan, P. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force. Science 1996, 271, 997999,  DOI: 10.1126/science.271.5251.997
  206. 206
    Izrailev, S.; Stepaniants, S.; Balsera, M.; Oono, Y.; Schulten, K. Molecular Dynamics Study of Unbinding of the Avidin-Biotin Complex. Biophys. J. 1997, 72, 15681581,  DOI: 10.1016/S0006-3495(97)78804-0
  207. 207
    Balsera, M.; Stepaniants, S.; Izrailev, S.; Oono, Y.; Schulten, K. Reconstructing Potential Energy Functions from Simulated Force-Induced Unbinding Processes. Biophys. J. 1997, 73, 12811287,  DOI: 10.1016/S0006-3495(97)78161-X
  208. 208
    Isralewitz, B.; Izrailev, S.; Schulten, K. Binding Pathway of Retinal to Bacterio-Opsin: A Prediction by Molecular Dynamics Simulations. Biophys. J. 1997, 73, 29722979,  DOI: 10.1016/S0006-3495(97)78326-7
  209. 209
    Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690,  DOI: 10.1103/PhysRevLett.78.2690
  210. 210
    Nelson, M.; Humphrey, W.; Kufrin, R.; Gursoy, A.; Dalke, A.; Kale, L.; Skeel, R.; Schulten, K. MDScope — a Visual Computing Environment for Structural Biology. Comput. Phys. Commun. 1995, 91, 111133,  DOI: 10.1016/0010-4655(95)00045-H
  211. 211
    Rapaport, D. Interactive Molecular Dynamics. Phys. A 1997, 240, 246254,  DOI: 10.1016/S0378-4371(97)00148-9
  212. 212
    Rapaport, D. C. An Introduction to Interactive Molecular-Dynamics Simulations. Comput. Phys. 1997, 11, 337347,  DOI: 10.1063/1.168612
  213. 213
    Leech, J.; Prins, J. F.; Hermans, J. SMD: Visual Steering of Molecular Dynamics for Protein Design. IEEE Comput. Sci. Eng. 1996, 3, 3845,  DOI: 10.1109/99.556511
  214. 214
    Vormoor, O. Quick and Easy Interactive Molecular Dynamics Using Java3D. Comput. Sci. Eng. 2001, 3, 98104,  DOI: 10.1109/5992.947113
  215. 215
    Stone, J. E.; Gullingsrud, J.; Schulten, K. A System for Interactive Molecular Dynamics Simulation. Proceedings of the 2001 Symposium on Interactive 3D Graphics; ACM: New York, NY, USA, 2001; pp 191194.
  216. 216
    Grayson, P.; Tajkhorshid, E.; Schulten, K. Mechanisms of Selectivity in Channels and Enzymes Studied with Interactive Molecular Dynamics. Biophys. J. 2003, 85, 3648,  DOI: 10.1016/S0006-3495(03)74452-X
  217. 217
    Férey, N.; Delalande, O.; Grasseau, G.; Baaden, M. A VR Framework for Interacting with Molecular Simulations. Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology; ACM: New York, NY, USA, 2008; pp 9194.
  218. 218
    Dreher, M.; Piuzzi, M.; Turki, A.; Chavent, M.; Baaden, M.; Férey, N.; Limet, S.; Raffin, B.; Robert, S. Interactive Molecular Dynamics: Scaling up to Large Systems. Procedia Comput. Sci. 2013, 18, 2029,  DOI: 10.1016/j.procs.2013.05.165
  219. 219
    Dreher, M.; Prevoteau-Jonquet, J.; Trellet, M.; Piuzzi, M.; Baaden, M.; Raffin, B.; Ferey, N.; Robert, S.; Limet, S. ExaViz: A Flexible Framework to Analyse, Steer and Interact with Molecular Dynamics Simulations. Faraday Discuss. 2014, 169, 119142,  DOI: 10.1039/C3FD00142C
  220. 220
    Stone, J. E.; Kohlmeyer, A.; Vandivort, K. L.; Schulten, K. In Advances in Visual Computing; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, 2010; Vol. 6454, pp 382393.
  221. 221
    Luehr, N.; Jin, A. G. B.; Martínez, T. J. Ab Initio Interactive Molecular Dynamics on Graphical Processing Units (GPUs). J. Chem. Theory Comput. 2015, 11, 45364544,  DOI: 10.1021/acs.jctc.5b00419
  222. 222
    Surles, M. C.; Richardson, J. S.; Richardson, D. C.; Brooks, F. P. Sculpting Proteins Interactively: Continual Energy Minimization Embedded in a Graphical Modeling System. Protein Sci. 1994, 3, 198210,  DOI: 10.1002/pro.5560030205
  223. 223
    Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012, 4, 17,  DOI: 10.1186/1758-2946-4-17
  224. 224
    NANO-D. INRIA, SAMSON Software, Version ∼0.5.0; http://www.samson-connect.net/, 2016 (Accessed: 09 February 2018).
  225. 225
    Bosson, M.; Richard, C.; Plet, A.; Grudinin, S.; Redon, S. Interactive Quantum Chemistry: A Divide-and-Conquer ASED-MO Method. J. Comput. Chem. 2012, 33, 779790,  DOI: 10.1002/jcc.22905
  226. 226
    Rossi, R.; Isorce, M.; Morin, S.; Flocard, J.; Arumugam, K.; Crouzy, S.; Vivaudou, M.; Redon, S. Adaptive Torsion-Angle Quasi-Statics: A General Simulation Method with Applications to Protein Structure Analysis and Design. Bioinformatics 2007, 23, i408i417,  DOI: 10.1093/bioinformatics/btm191
  227. 227
    Bosson, M.; Grudinin, S.; Bouju, X.; Redon, S. Interactive Physically-Based Structural Modeling of Hydrocarbon Systems. J. Comput. Phys. 2012, 231, 25812598,  DOI: 10.1016/j.jcp.2011.12.006
  228. 228
    Bosson, M.; Grudinin, S.; Redon, S. Block-Adaptive Quantum Mechanics: An Adaptive Divide-and-Conquer Approach to Interactive Quantum Chemistry. J. Comput. Chem. 2013, 34, 492504,  DOI: 10.1002/jcc.23157
  229. 229
    Jaillet, L.; Artemova, S.; Redon, S. IM-UFF: Extending the Universal Force Field for Interactive Molecular Modeling. J. Mol. Graphics Modell. 2017, 77, 350362,  DOI: 10.1016/j.jmgm.2017.08.023
  230. 230
    Disz, T.; Papka, M.; Stevens, R.; Pellegrino, M.; Taylor, V. Virtual Reality Visualization of Parallel Molecular Dynamics Simulation. Proceedings of High-Performance Computing 1995, 483487
  231. 231
    Akkiraju, N.; Edelsbrunner, H.; Fu, P.; Qian, J. Viewing Geometric Protein Structures from inside a CAVE. IEEE Comput. Graph. Appl. 1996, 16, 5861,  DOI: 10.1109/38.511855
  232. 232
    Salvadori, A.; Del Frate, G.; Pagliai, M.; Mancini, G.; Barone, V. Immersive Virtual Reality in Computational Chemistry: Applications to the Analysis of QM and MM Data. Int. J. Quantum Chem. 2016, 116, 17311746,  DOI: 10.1002/qua.25207
  233. 233
    García-Hernández, R. J.; Kranzlmüller, D. Virtual Reality Toolset for Material Science: NOMAD VR Tools. Augmented Reality, Virtual Reality, and Computer Graphics . 2017; pp 309319.
  234. 234
    Haase, H.; Strassner, J.; Dai, F. VR Techniques for the Investigation of Molecule Data. Computers & Graphics 1996, 20, 207217,  DOI: 10.1016/0097-8493(95)00127-1
  235. 235
    Sauer, C.; Hastings, W.; Okamura, A. M. Virtual Environment for Exploring Atomic Bonding. Proceedings of EuroHaptics 2004; International Design Foundation, 2004; pp 232239.
  236. 236
    Norrby, M.; Grebner, C.; Eriksson, J.; Boström, J. Molecular Rift: Virtual Reality for Drug Designers. J. Chem. Inf. Model. 2015, 55, 24752484,  DOI: 10.1021/acs.jcim.5b00544
  237. 237
    Harvey, E.; Gingold, C. Haptic Representation of the Atom. 2000 IEEE Conference on Information Visualization. An International Conference on Computer Visualization and Graphics; IEEE, 2000; pp 232235.
  238. 238
    Comai, S.; Mazza, D. A Haptic-Enhanced System for Molecular Sensing. Human-Computer Interaction – INTERACT 2009; Springer, 2009; pp 493496.
  239. 239
    Satoh, H.; Nukada, T.; Akahane, K.; Sato, M. Construction of Basic Haptic Systems for Feeling the Intermolecular Force in Molecular Models. J. Comput. Aided Chem. 2006, 7, 3847,  DOI: 10.2751/jcac.7.38
  240. 240
    Stocks, M. B.; Hayward, S.; Laycock, S. D. Interacting with the Biomolecular Solvent Accessible Surface via a Haptic Feedback Device. BMC Struct. Biol. 2009, 9, 69,  DOI: 10.1186/1472-6807-9-69
  241. 241
    Sankaranarayanan, G.; Weghorst, S.; Sanner, M.; Gillet, A.; Olson, A. Role of Haptics in Teaching Structural Molecular Biology. 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems; IEEE, 2003; pp 363366.
  242. 242
    Persson, P. B.; Cooper, M. D.; Tibell, L. A. E.; Ainsworth, S.; Ynnerman, A.; Jonsson, B. H. Designing and Evaluating a Haptic System for Biomolecular Education. 2007 IEEE Virtual Reality Conference; IEEE, 2007; pp 171178.
  243. 243
    Sourina, O.; Torres, J.; Wang, J. In Transactions on Edutainment II; Pan, Z., Cheok, A. D., Müller, W., Rhalibi, A. E., Eds.; Springer: Berlin, Heidelberg, 2009; Chapter Visual Haptic-Based Biomolecular Docking and Its Applications in E-Learning, pp 105118.
  244. 244
    Bivall, P.; Ainsworth, S.; Tibell, L. A. E. Do Haptic Representations Help Complex Molecular Learning?. Sci. Educ. 2011, 95, 700719,  DOI: 10.1002/sce.20439
  245. 245
    Chastine, J. W.; Zhu, Y.; Brooks, J. C.; Owen, G. S.; Harrison, R. W.; Weber, I. T. A Collaborative Multi-View Virtual Environment for Molecular Visualization and Modeling. Coordinated and Multiple Views in Exploratory Visualization; IEEE, 2005; pp 7784.
  246. 246
    Nadan, T.; Haffegee, A.; Watson, K. Collaborative and Parallelized Immersive Molecular Docking. International Conference on Computational Science 2009, 5545, 737745,  DOI: 10.1007/978-3-642-01973-9_82
  247. 247
    Hou, X.; Sourina, O.; Klimenko, S. Visual Haptic-Based Collaborative Molecular Docking. IFMBE Proceedings 2014, 43, 360363,  DOI: 10.1007/978-3-319-02913-9_92
  248. 248
    Davies, E.; Tew, P.; Glowacki, D.; Smith, J.; Mitchell, T. Evolutionary and Biologically Inspired Music, Sound, Art and Design. Proceedings of the 5th International Conference, EvoMUSART 2016, Porto, Portugal, March 30 – April 1, 2016; Johnson, C., Ciesielski, V., Correia, J. a., Machado, P., Eds.; Springer International Publishing, 2016; pp 1730.
  249. 249
    Mitchell, T.; Hyde, J.; Tew, P.; Glowacki, D. R. Danceroom Spectroscopy: At the Frontiers of Physics, Performance, Interactive Art and Technology. Leonardo 2016, 49, 138147,  DOI: 10.1162/LEON_a_00924
  250. 250
    Marti, K. H.; Reiher, M. Haptic Quantum Chemistry. J. Comput. Chem. 2009, 30, 20102020,  DOI: 10.1002/jcc.21201
  251. 251
    Haag, M. P.; Marti, K. H.; Reiher, M. Generation of Potential Energy Surfaces in High Dimensions and Their Haptic Exploration. ChemPhysChem 2011, 12, 32043213,  DOI: 10.1002/cphc.201100539
  252. 252
    Haag, M. P.; Reiher, M. Real-Time Quantum Chemistry. Int. J. Quantum Chem. 2013, 113, 820,  DOI: 10.1002/qua.24336
  253. 253
    Haag, M. P.; Reiher, M. Studying Chemical Reactivity in a Virtual Environment. Faraday Discuss. 2014, 169, 89118,  DOI: 10.1039/C4FD00021H
  254. 254
    Haag, M. P.; Vaucher, A. C.; Bosson, M.; Redon, S.; Reiher, M. Interactive Chemical Reactivity Exploration. ChemPhysChem 2014, 15, 33013319,  DOI: 10.1002/cphc.201402342
  255. 255
    Mühlbach, A. H.; Vaucher, A. C.; Reiher, M. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies. J. Chem. Theory Comput. 2016, 12, 12281235,  DOI: 10.1021/acs.jctc.5b01156
  256. 256
    Atsumi, T.; Nakai, H. Molecular Orbital Propagation to Accelerate Self-Consistent-Field Convergence in an Ab Initio Molecular Dynamics Simulation. J. Chem. Phys. 2008, 128, 094101,  DOI: 10.1063/1.2839857
  257. 257
    Atsumi, T.; Nakai, H. Acceleration of Self-Consistent-Field Convergence in Ab Initio Molecular Dynamics and Monte Carlo Simulations and Geometry Optimization. Chem. Phys. Lett. 2010, 490, 102108,  DOI: 10.1016/j.cplett.2010.03.012
  258. 258
    Vaucher, A. C.; Haag, M. P.; Reiher, M. Real-Time Feedback from Iterative Electronic Structure Calculations. J. Comput. Chem. 2016, 37, 805812,  DOI: 10.1002/jcc.24268
  259. 259
    Vaucher, A. C.; Reiher, M. Steering Orbital Optimization out of Local Minima and Saddle Points Toward Lower Energy. J. Chem. Theory Comput. 2017, 13, 12191228,  DOI: 10.1021/acs.jctc.7b00011
  260. 260
    Vaucher, A. C.; Reiher, M. Molecular Propensity as a Driver for Explorative Reactivity Studies. J. Chem. Inf. Model. 2016, 56, 14701478,  DOI: 10.1021/acs.jcim.6b00264
  261. 261
    Heuer, M. A.; Vaucher, A. C.; Haag, M. P.; Reiher, M. Integrated Reaction Path Processing from Sampled Structure Sequences. J. Chem. Theory Comput. 2018, 14, 20522062,  DOI: 10.1021/acs.jctc.8b00019
  262. 262
    Reiher, M.; SCINE – Software for Chemical Interaction Networks. http://scine.ethz.ch (Accessed: 12. September 2018).

Cited By

Click to copy section linkSection link copied!

This article is cited by 162 publications.

  1. Ammar Mahmood, Frank Dehn, Peter Thissen. Carbonation under Varying Humidity Conditions: A 3D Micro-Scale Kinetic Monte Carlo Approach. Langmuir 2025, Article ASAP.EI检索SCI升级版 化学2区SCI基础版 化学3区IF 3.7SWJTU A++
  2. Jan A. Meissner, Jan Meisner. Acceleration of Diffusion in Ab Initio Nanoreactor Molecular Dynamics and Application to Hydrogen Sulfide Oxidation. Journal of Chemical Theory and Computation 2025, 21 (1) , 218-229. https://doi.org/10.1021/acs.jctc.4c00826SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  3. Charlotte H. Müller, Miguel Steiner, Jan P. Unsleber, Thomas Weymuth, Moritz Bensberg, Katja-Sophia Csizi, Maximilian Mörchen, Paul L. Türtscher, Markus Reiher. Heron: Visualizing and Controlling Chemical Reaction Explorations and Networks. The Journal of Physical Chemistry A 2024, 128 (41) , 9028-9044. https://doi.org/10.1021/acs.jpca.4c03936EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  4. Miko M. Stulajter, Dmitrij Rappoport. Reaction Networks Resemble Low-Dimensional Regular Lattices. Journal of Chemical Theory and Computation 2024, 20 (18) , 8035-8048. https://doi.org/10.1021/acs.jctc.4c00810SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  5. Karthik Srinivasan, Anjana Puliyanda, Vinay Prasad. Identification of Reaction Network Hypotheses for Complex Feedstocks from Spectroscopic Measurements with Minimal Human Intervention. The Journal of Physical Chemistry A 2024, 128 (23) , 4714-4729. https://doi.org/10.1021/acs.jpca.4c01592EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  6. Moritz Bensberg, Markus Reiher. Uncertainty-Aware First-Principles Exploration of Chemical Reaction Networks. The Journal of Physical Chemistry A 2024, 128 (22) , 4532-4547. https://doi.org/10.1021/acs.jpca.3c08386EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  7. Yuheng Ding, Bo Qiang, Qixuan Chen, Yiqiao Liu, Liangren Zhang, Zhenming Liu. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective. Journal of Chemical Information and Modeling 2024, 64 (8) , 2955-2970. https://doi.org/10.1021/acs.jcim.4c00004EI检索SCI升级版 化学2区SCI基础版 化学2区IF 5.6
  8. Yu Harabuchi, Tomohiko Yokoyama, Wataru Matsuoka, Taihei Oki, Satoru Iwata, Satoshi Maeda. Differentiating the Yield of Chemical Reactions Using Parameters in First-Order Kinetic Equations to Identify Elementary Steps That Control the Reactivity from Complicated Reaction Path Networks. The Journal of Physical Chemistry A 2024, 128 (14) , 2883-2890. https://doi.org/10.1021/acs.jpca.4c00204EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  9. Yutai Zhang, Chao Xu, Zhenggang Lan. Automated Exploration of Reaction Networks and Mechanisms Based on Metadynamics Nanoreactor Simulations. Journal of Chemical Theory and Computation 2023, 19 (23) , 8718-8731. https://doi.org/10.1021/acs.jctc.3c00752SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  10. Taisuke Hasegawa, Satoshi Hagiwara, Minoru Otani, Satoshi Maeda. A Combined Reaction Path Search and Hybrid Solvation Method for the Systematic Exploration of Elementary Reactions at the Solid–Liquid Interface. The Journal of Physical Chemistry Letters 2023, 14 (39) , 8796-8804. https://doi.org/10.1021/acs.jpclett.3c02233EI检索SCI升级版 化学2区SCI基础版 化学2区IF 4.8SWJTU A++
  11. Jan P. Unsleber. Accelerating Reaction Network Explorations with Automated Reaction Template Extraction and Application. Journal of Chemical Information and Modeling 2023, 63 (11) , 3392-3403. https://doi.org/10.1021/acs.jcim.3c00102EI检索SCI升级版 化学2区SCI基础版 化学2区IF 5.6
  12. Wataru Matsuoka, Yu Harabuchi, Satoshi Maeda. Virtual Ligand Strategy in Transition Metal Catalysis Toward Highly Efficient Elucidation of Reaction Mechanisms and Computational Catalyst Design. ACS Catalysis 2023, 13 (8) , 5697-5711. https://doi.org/10.1021/acscatal.3c00576EI检索SCI升级版 化学1区SCI基础版 化学1区IF 11.3
  13. Atsuyuki Nakao, Yu Harabuchi, Satoshi Maeda, Koji Tsuda. Exploring the Quantum Chemical Energy Landscape with GNN-Guided Artificial Force. Journal of Chemical Theory and Computation 2023, 19 (3) , 713-717. https://doi.org/10.1021/acs.jctc.2c01061SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  14. Judit Zádor, Carles Martí, Ruben Van de Vijver, Sommer L. Johansen, Yoona Yang, Hope A. Michelsen, Habib N. Najm. Automated Reaction Kinetics of Gas-Phase Organic Species over Multiwell Potential Energy Surfaces. The Journal of Physical Chemistry A 2023, 127 (3) , 565-588. https://doi.org/10.1021/acs.jpca.2c06558EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  15. Bastian Bjerkem Skjelstad, Yuh Hijikata, Satoshi Maeda. Early-Stage Formation of the SIFSIX-3-Zn Metal–Organic Framework: An Automated Computational Study. Inorganic Chemistry 2023, 62 (3) , 1210-1217. https://doi.org/10.1021/acs.inorgchem.2c03681EI检索SCI升级版 化学2区SCI基础版 化学2区IF 4.3SWJTU A++
  16. Paul L. Türtscher, Markus Reiher. Pathfinder─Navigating and Analyzing Chemical Reaction Networks with an Efficient Graph-Based Approach. Journal of Chemical Information and Modeling 2023, 63 (1) , 147-160. https://doi.org/10.1021/acs.jcim.2c01136EI检索SCI升级版 化学2区SCI基础版 化学2区IF 5.6
  17. Tsuyoshi Mita, Hideaki Takano, Hiroki Hayashi, Wataru Kanna, Yu Harabuchi, K. N. Houk, Satoshi Maeda. Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets. Journal of the American Chemical Society 2022, 144 (50) , 22985-23000. https://doi.org/10.1021/jacs.2c09830EI检索SCI升级版 化学1区SCI基础版 化学1区IF 14.4SWJTU A++
  18. Stefan Gugler, Markus Reiher. Quantum Chemical Roots of Machine-Learning Molecular Similarity Descriptors. Journal of Chemical Theory and Computation 2022, 18 (11) , 6670-6689. https://doi.org/10.1021/acs.jctc.2c00718SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  19. Alexandra Stan, Beatriz von der Esch, Christian Ochsenfeld. Fully Automated Generation of Prebiotically Relevant Reaction Networks from Optimized Nanoreactor Simulations. Journal of Chemical Theory and Computation 2022, 18 (11) , 6700-6712. https://doi.org/10.1021/acs.jctc.2c00754SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  20. Umberto Raucci, David M. Sanchez, Todd J. Martínez, Michele Parrinello. Enhanced Sampling Aided Design of Molecular Photoswitches. Journal of the American Chemical Society 2022, 144 (42) , 19265-19271. https://doi.org/10.1021/jacs.2c04419EI检索SCI升级版 化学1区SCI基础版 化学1区IF 14.4SWJTU A++
  21. Idil Ismail, Raphael Chantreau Majerus, Scott Habershon. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. The Journal of Physical Chemistry A 2022, 126 (40) , 7051-7069. https://doi.org/10.1021/acs.jpca.2c06408EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  22. Philipp Pracht, Christoph Bannwarth. Fast Screening of Minimum Energy Crossing Points with Semiempirical Tight-Binding Methods. Journal of Chemical Theory and Computation 2022, 18 (10) , 6370-6385. https://doi.org/10.1021/acs.jctc.2c00578SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  23. Bastian Bjerkem Skjelstad, Trygve Helgaker, Satoshi Maeda, David Balcells. Oxyl Character and Methane Hydroxylation Mechanism in Heterometallic M(O)Co3O4 Cubanes (M = Cr, Mn, Fe, Mo, Tc, Ru, and Rh). ACS Catalysis 2022, 12 (19) , 12326-12335. https://doi.org/10.1021/acscatal.2c03748EI检索SCI升级版 化学1区SCI基础版 化学1区IF 11.3
  24. Jan P. Unsleber, Stephanie A. Grimmel, Markus Reiher. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. Journal of Chemical Theory and Computation 2022, 18 (9) , 5393-5409. https://doi.org/10.1021/acs.jctc.2c00193SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  25. Qinxuan Wang, Jiun-Le Shih, Ka Yi Tsui, Croix J. Laconsay, Dean J. Tantillo, Jeremy A. May. Experimental and Computational Mechanistic Study of Carbonazidate-Initiated Cascade Reactions. The Journal of Organic Chemistry 2022, 87 (14) , 8983-9000. https://doi.org/10.1021/acs.joc.2c00696EI检索SCI升级版 化学2区SCI基础版 化学2区IF 3.3
  26. Diego Garay-Ruiz, Moises Álvarez-Moreno, Carles Bo, Emilio Martínez-Núñez. New Tools for Taming Complex Reaction Networks: The Unimolecular Decomposition of Indole Revisited. ACS Physical Chemistry Au 2022, 2 (3) , 225-236. https://doi.org/10.1021/acsphyschemau.1c00051IF 3.7
  27. Lin Ji, Yue Li, Jie Wang, An Ning, Naixin Zhang, Shengyao Liang, Jiyun He, Tianyu Zhang, Zexing Qu, Jiali Gao. Community Reaction Network Reduction for Constructing a Coarse-Grained Representation of Combustion Reaction Mechanisms. Journal of Chemical Information and Modeling 2022, 62 (10) , 2352-2364. https://doi.org/10.1021/acs.jcim.2c00240EI检索SCI升级版 化学2区SCI基础版 化学2区IF 5.6
  28. Yosuke Sumiya, Yu Harabuchi, Yuuya Nagata, Satoshi Maeda. Quantum Chemical Calculations to Trace Back Reaction Paths for the Prediction of Reactants. JACS Au 2022, 2 (5) , 1181-1188. https://doi.org/10.1021/jacsau.2c00157IF 8.5
  29. Xin Chen, Meiyi Liu, Jiali Gao. CARNOT: a Fragment-Based Direct Molecular Dynamics and Virtual–Reality Simulation Package for Reactive Systems. Journal of Chemical Theory and Computation 2022, 18 (3) , 1297-1313. https://doi.org/10.1021/acs.jctc.1c01032SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  30. Lukas Krep, Indu Sekhar Roy, Wassja Kopp, Felix Schmalz, Can Huang, Kai Leonhard. Efficient Reaction Space Exploration with ChemTraYzer-TAD. Journal of Chemical Information and Modeling 2022, 62 (4) , 890-902. https://doi.org/10.1021/acs.jcim.1c01197EI检索SCI升级版 化学2区SCI基础版 化学2区IF 5.6
  31. Alberto Baiardi, Stephanie A. Grimmel, Miguel Steiner, Paul L. Türtscher, Jan P. Unsleber, Thomas Weymuth, Markus Reiher. Expansive Quantum Mechanical Exploration of Chemical Reaction Paths. Accounts of Chemical Research 2022, 55 (1) , 35-43. https://doi.org/10.1021/acs.accounts.1c00472SCI升级版 化学1区SCI基础版 化学1区IF 16.4
  32. Craig Waitt, Audrey R. Miles, William F. Schneider. Adsorbate Free Energies from DFT-Derived Translational Energy Landscapes. The Journal of Physical Chemistry C 2021, 125 (37) , 20331-20342. https://doi.org/10.1021/acs.jpcc.1c05917EI检索SCI升级版 化学3区SCI基础版 化学2区IF 3.3SWJTU A++
  33. Victoria P. Barber, William H. Green, Jesse H. Kroll. Screening for New Pathways in Atmospheric Oxidation Chemistry with Automated Mechanism Generation. The Journal of Physical Chemistry A 2021, 125 (31) , 6772-6788. https://doi.org/10.1021/acs.jpca.1c04297EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  34. Robin J. Shannon, Emilio Martínez-Núñez, Dmitrii V. Shalashilin, David R. Glowacki. ChemDyME: Kinetically Steered, Automated Mechanism Generation through Combined Molecular Dynamics and Master Equation Calculations. Journal of Chemical Theory and Computation 2021, 17 (8) , 4901-4912. https://doi.org/10.1021/acs.jctc.1c00335SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  35. Christoph Brunken, Markus Reiher. Automated Construction of Quantum–Classical Hybrid Models. Journal of Chemical Theory and Computation 2021, 17 (6) , 3797-3813. https://doi.org/10.1021/acs.jctc.1c00178SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  36. Christopher Robertson, Ross Hyland, Andrew J. D. Lacey, Sebastian Havens, Scott Habershon. Identifying Barrierless Mechanisms for Benzene Formation in the Interstellar Medium Using Permutationally Invariant Reaction Discovery. Journal of Chemical Theory and Computation 2021, 17 (4) , 2307-2322. https://doi.org/10.1021/acs.jctc.1c00046SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  37. Thijs Stuyver, Sason Shaik. Promotion Energy Analysis Predicts Reaction Modes: Nucleophilic and Electrophilic Aromatic Substitution Reactions. Journal of the American Chemical Society 2021, 143 (11) , 4367-4378. https://doi.org/10.1021/jacs.1c00307EI检索SCI升级版 化学1区SCI基础版 化学1区IF 14.4SWJTU A++
  38. Timur Gimadiev, Ramil Nugmanov, Dinar Batyrshin, Timur Madzhidov, Satoshi Maeda, Pavel Sidorov, Alexandre Varnek. Combined Graph/Relational Database Management System for Calculated Chemical Reaction Pathway Data. Journal of Chemical Information and Modeling 2021, 61 (2) , 554-559. https://doi.org/10.1021/acs.jcim.0c01280EI检索SCI升级版 化学2区SCI基础版 化学2区IF 5.6
  39. Ali Hussain Motagamwala, James A. Dumesic. Microkinetic Modeling: A Tool for Rational Catalyst Design. Chemical Reviews 2021, 121 (2) , 1049-1076. https://doi.org/10.1021/acs.chemrev.0c00394EI检索SCI升级版 化学1区SCI基础版 化学1区IF 51.4
  40. Yu-hong Lam, Yuriy Abramov, Ravi S. Ananthula, Jennifer M. Elward, Lori R. Hilden, Sten O. Nilsson Lill, Per-Ola Norrby, Antonio Ramirez, Edward C. Sherer, Jason Mustakis, Gerald J. Tanoury. Applications of Quantum Chemistry in Pharmaceutical Process Development: Current State and Opportunities. Organic Process Research & Development 2020, 24 (8) , 1496-1507. https://doi.org/10.1021/acs.oprd.0c00222EI检索SCI升级版 化学3区SCI基础版 化学3区IF 3.1
  41. Christoph Brunken, Markus Reiher. Self-Parametrizing System-Focused Atomistic Models. Journal of Chemical Theory and Computation 2020, 16 (3) , 1646-1665. https://doi.org/10.1021/acs.jctc.9b00855SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  42. Sebastian Dohm, Markus Bursch, Andreas Hansen, Stefan Grimme. Semiautomated Transition State Localization for Organometallic Complexes with Semiempirical Quantum Chemical Methods. Journal of Chemical Theory and Computation 2020, 16 (3) , 2002-2012. https://doi.org/10.1021/acs.jctc.9b01266SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  43. Marco Foscato, Vidar R. Jensen. Automated in Silico Design of Homogeneous Catalysts. ACS Catalysis 2020, 10 (3) , 2354-2377. https://doi.org/10.1021/acscatal.9b04952EI检索SCI升级版 化学1区SCI基础版 化学1区IF 11.3
  44. Pei-Lin Kang, Cheng Shang, Zhi-Pan Liu. Glucose to 5-Hydroxymethylfurfural: Origin of Site-Selectivity Resolved by Machine Learning Based Reaction Sampling. Journal of the American Chemical Society 2019, 141 (51) , 20525-20536. https://doi.org/10.1021/jacs.9b11535EI检索SCI升级版 化学1区SCI基础版 化学1区IF 14.4SWJTU A++
  45. Eric D. Hermes, Khachik Sargsyan, Habib N. Najm, Judit Zádor. Accelerated Saddle Point Refinement through Full Exploitation of Partial Hessian Diagonalization. Journal of Chemical Theory and Computation 2019, 15 (11) , 6536-6549. https://doi.org/10.1021/acs.jctc.9b00869SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  46. Valerio Rizzi, Dan Mendels, Emilia Sicilia, Michele Parrinello. Blind Search for Complex Chemical Pathways Using Harmonic Linear Discriminant Analysis. Journal of Chemical Theory and Computation 2019, 15 (8) , 4507-4515. https://doi.org/10.1021/acs.jctc.9b00358SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  47. Sebastian Matera, William F. Schneider, Andreas Heyden, Aditya Savara. Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis. ACS Catalysis 2019, 9 (8) , 6624-6647. https://doi.org/10.1021/acscatal.9b01234EI检索SCI升级版 化学1区SCI基础版 化学1区IF 11.3
  48. Dmitrij Rappoport, Alán Aspuru-Guzik. Predicting Feasible Organic Reaction Pathways Using Heuristically Aided Quantum Chemistry. Journal of Chemical Theory and Computation 2019, 15 (7) , 4099-4112. https://doi.org/10.1021/acs.jctc.9b00126SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  49. Jin Woo Kim, Yeonjoon Kim, Kyung Yup Baek, Kyunghoon Lee, Woo Youn Kim. Performance of ACE-Reaction on 26 Organic Reactions for Fully Automated Reaction Network Construction and Microkinetic Analysis. The Journal of Physical Chemistry A 2019, 123 (22) , 4796-4805. https://doi.org/10.1021/acs.jpca.9b02161EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  50. Stefan Grimme. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. Journal of Chemical Theory and Computation 2019, 15 (5) , 2847-2862. https://doi.org/10.1021/acs.jctc.9b00143SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  51. Idil Ismail, Holly B. V. A. Stuttaford-Fowler, Curtis Ochan Ashok, Christopher Robertson, Scott Habershon. Automatic Proposal of Multistep Reaction Mechanisms using a Graph-Driven Search. The Journal of Physical Chemistry A 2019, 123 (15) , 3407-3417. https://doi.org/10.1021/acs.jpca.9b01014EI检索SCI升级版 化学2区SCI基础版 化学3区IF 2.7SWJTU A++
  52. Satoshi Maeda, Yu Harabuchi. On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path Search. Journal of Chemical Theory and Computation 2019, 15 (4) , 2111-2115. https://doi.org/10.1021/acs.jctc.8b01182SCI升级版 化学1区SCI基础版 化学2区IF 5.7SWJTU A++
  53. Pedro J. Sánchez Gómez, Mauricio Suárez. Plurality and identity: on the educational relations between chemistry and physics. Chemistry Education Research and Practice 2025, https://doi.org/10.1039/D4RP00288ASCI升级版 教育学2区SCI基础版 化学4区IF 2.6
  54. Philippe Gantzer, Ruben Staub, Yu Harabuchi, Satoshi Maeda, Alexandre Varnek. Chemography‐guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst. Molecular Informatics 2025, 44 (1) https://doi.org/10.1002/minf.202400063EI检索SCI升级版 医学4区SCI基础版 医学3区IF 2.8SWJTU A
  55. Seonghwan Kim, Jeheon Woo, Woo Youn Kim. Diffusion-based generative AI for exploring transition states from 2D molecular graphs. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-023-44629-6SCI升级版 综合性期刊1区SCI基础版 综合性期刊1区IF 14.7SWJTU A++
  56. Miguel Steiner, Markus Reiher. A human-machine interface for automatic exploration of chemical reaction networks. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47997-9SCI升级版 综合性期刊1区SCI基础版 综合性期刊1区IF 14.7SWJTU A++
  57. Katja-Sophia Csizi, Miguel Steiner, Markus Reiher. Nanoscale chemical reaction exploration with a quantum magnifying glass. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49594-2SCI升级版 综合性期刊1区SCI基础版 综合性期刊1区IF 14.7SWJTU A++
  58. Basudev Maity, Mitsuo Shoji, Fangjia Luo, Takanori Nakane, Satoshi Abe, Shigeki Owada, Jungmin Kang, Kensuke Tono, Rie Tanaka, Thuc Toan Pham, Mariko Kojima, Yuki Hishikawa, Junko Tanaka, Jiaxin Tian, Misaki Nagama, Taiga Suzuki, Hiroki Noya, Yuto Nakasuji, Asuka Asanuma, Xinchen Yao, So Iwata, Yasuteru Shigeta, Eriko Nango, Takafumi Ueno. Real-time observation of a metal complex-driven reaction intermediate using a porous protein crystal and serial femtosecond crystallography. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49814-9SCI升级版 综合性期刊1区SCI基础版 综合性期刊1区IF 14.7SWJTU A++
  59. Jonathan P. Mailoa, Xin Li, Shengyu Zhang. 3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-54453-1SCI升级版 综合性期刊1区SCI基础版 综合性期刊1区IF 14.7SWJTU A++
  60. Nils van Staalduinen, Christoph Bannwarth. MolBar: a molecular identifier for inorganic and organic molecules with full support of stereoisomerism. Digital Discovery 2024, 3 (11) , 2298-2319. https://doi.org/10.1039/D4DD00208CIF 6.2
  61. Thijs Stuyver. TS‐tools: Rapid and automated localization of transition states based on a textual reaction SMILES input. Journal of Computational Chemistry 2024, 45 (27) , 2308-2317. https://doi.org/10.1002/jcc.27374EI检索SCI升级版 化学3区SCI基础版 化学3区IF 3.4SWJTU A++
  62. Raquel J. Rama, Ainara Nova, M. Carmen Nicasio. Microkinetic Model as a Crucial Tool for Understanding Homogeneous Catalysis. ChemCatChem 2024, 16 (17) https://doi.org/10.1002/cctc.202400224EI检索SCI升级版 化学3区SCI基础版 化学2区IF 3.8SWJTU A++
  63. Khaled Kahouli, Stefaan Simon Pierre Hessmann, Klaus-Robert Müller, Shinichi Nakajima, Stefan Gugler, Niklas Wolf Andreas Gebauer. Molecular relaxation by reverse diffusion with time step prediction. Machine Learning: Science and Technology 2024, 5 (3) , 035038. https://doi.org/10.1088/2632-2153/ad652cEI检索SCI升级版 物理与天体物理2区IF 6.3
  64. Luís P. Viegas, Breno R.L. Galvão. With a little help from our (AI) friend: A general transition state sampling method for tropospheric hydrogen abstraction reactions. Atmospheric Environment 2024, 328 , 120515. https://doi.org/10.1016/j.atmosenv.2024.120515EI检索SCI升级版 环境科学与生态学2区SCI基础版 环境科学与生态学2区IF 4.2
  65. Thomas Weymuth, Jan P. Unsleber, Paul L. Türtscher, Miguel Steiner, Jan-Grimo Sobez, Charlotte H. Müller, Maximilian Mörchen, Veronika Klasovita, Stephanie A. Grimmel, Marco Eckhoff, Katja-Sophia Csizi, Francesco Bosia, Moritz Bensberg, Markus Reiher. SCINE—Software for chemical interaction networks. The Journal of Chemical Physics 2024, 160 (22) https://doi.org/10.1063/5.0206974EI检索SCI升级版 化学2区SCI基础版 化学3区IF 3.1SWJTU A++
  66. Daniele Padula. A Computational Perspective on the Reactivity of π ‐spacers in Self‐Immolative Elimination Reactions. Chemistry – An Asian Journal 2024, 19 (7) https://doi.org/10.1002/asia.202400010EI检索SCI升级版 化学3区SCI基础版 化学3区IF 3.5
  67. G. Ya. Gerasimov, V. Yu. Levashov. Kinetic Models of Combustion of Kerosene. Journal of Engineering Physics and Thermophysics 2024, 97 (2) , 506-524. https://doi.org/10.1007/s10891-024-02918-xEI检索IF 0.6
  68. W.M.C. Sameera, Yosuke Sumiya, Bastian Bjerkem Skjelstad, Satoshi Maeda. Automated Mechanism Discovery. 2024, 454-484. https://doi.org/10.1016/B978-0-12-821978-2.00003-9
  69. Thomas Weymuth, Markus Reiher. Heuristics and Uncertainty Quantification in Rational and Inverse Compound and Catalyst Design. 2024, 485-495. https://doi.org/10.1016/B978-0-12-821978-2.00007-6
  70. Valeria Butera. Density functional theory methods applied to homogeneous and heterogeneous catalysis: a short review and a practical user guide. Physical Chemistry Chemical Physics 2024, 136 https://doi.org/10.1039/D4CP00266KEI检索SCI升级版 化学3区SCI基础版 化学3区IF 2.9SWJTU A++
  71. Chenru Duan, Yuanqi Du, Haojun Jia, Heather J. Kulik. Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model. Nature Computational Science 2023, 3 (12) , 1045-1055. https://doi.org/10.1038/s43588-023-00563-7EI检索IF 12.0
  72. Hiroki Hayashi, Satoshi Maeda, Tsuyoshi Mita. Quantum chemical calculations for reaction prediction in the development of synthetic methodologies. Chemical Science 2023, 14 (42) , 11601-11616. https://doi.org/10.1039/D3SC03319HEI检索SCI升级版 化学1区SCI基础版 化学1区IF 7.6
  73. Kyunghoon Lee, Jun Hyeong Kim, Woo Youn Kim. pyMCD: Python package for searching transition states via the multicoordinate driven method. Computer Physics Communications 2023, 291 , 108831. https://doi.org/10.1016/j.cpc.2023.108831EI检索SCI升级版 物理与天体物理2区SCI基础版 物理2区IF 7.2SWJTU A++
  74. Qiyuan Zhao, Brett M. Savoie. Deep reaction network exploration of glucose pyrolysis. Proceedings of the National Academy of Sciences 2023, 120 (34) https://doi.org/10.1073/pnas.2305884120SCI升级版 综合性期刊1区SCI基础版 综合性期刊1区IF 9.4SWJTU A++
  75. Mikael Kuwahara, Yu Harabuchi, Satoshi Maeda, Jun Fujima, Keisuke Takahashi. Searching chemical action and network (SCAN): an interactive chemical reaction path network platform. Digital Discovery 2023, 2 (4) , 1104-1111. https://doi.org/10.1039/D3DD00026EIF 6.2
  76. G. Ya. Gerasimov, V. Yu. Levashov. Kinetic Models of Gasoline Combustion. Russian Journal of Physical Chemistry B 2023, 17 (4) , 923-935. https://doi.org/10.1134/S1990793123040231SCI升级版 化学4区SCI基础版 化学4区IF 1.4SWJTU A
  77. Г. Я. Герасимов, В. Ю. Левашов. Кинетические модели горения бензина. Химическая физика 2023, 42 (8) , 12-26. https://doi.org/10.31857/S0207401X23080046SWJTU A
  78. Mohamed Ateia, Gabriel Sigmund, Michael J. Bentel, John W. Washington, Adelene Lai, Nathaniel H. Merrill, Zhanyun Wang. Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. One Earth 2023, 6 (8) , 952-963. https://doi.org/10.1016/j.oneear.2023.07.001SCI升级版 环境科学与生态学1区IF 15.1
  79. Rui Xu, Jan Meisner, Alexander M. Chang, Keiran C. Thompson, Todd J. Martínez. First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis. Chemical Science 2023, 14 (27) , 7447-7464. https://doi.org/10.1039/D3SC01202FEI检索SCI升级版 化学1区SCI基础版 化学1区IF 7.6
  80. Katja‐Sophia Csizi, Markus Reiher. Universal QM / MM approaches for general nanoscale applications. WIREs Computational Molecular Science 2023, 13 (4) https://doi.org/10.1002/wcms.1656
  81. Alessandra Toniato, Jan P. Unsleber, Alain C. Vaucher, Thomas Weymuth, Daniel Probst, Teodoro Laino, Markus Reiher. Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning. Digital Discovery 2023, 2 (3) , 663-673. https://doi.org/10.1039/D3DD00006KIF 6.2
  82. Satoshi Maeda, Yu Harabuchi, Hiroki Hayashi, Tsuyoshi Mita. Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method. Annual Review of Physical Chemistry 2023, 74 (1) , 287-311. https://doi.org/10.1146/annurev-physchem-102822-101025EI检索SCI升级版 化学1区SCI基础版 化学1区IF 11.7
  83. Wataru Matsuoka, Yu Harabuchi, Yuuya Nagata, Satoshi Maeda. Highly chemoselective ligands for Suzuki–Miyaura cross-coupling reaction based on virtual ligand-assisted screening. Organic & Biomolecular Chemistry 2023, 21 (15) , 3132-3142. https://doi.org/10.1039/D3OB00398AEI检索SCI升级版 化学3区SCI基础版 化学3区IF 2.9
  84. Lukas Krep, Felix Schmalz, Florian Solbach, Leonid Komissarov, Thomas Nevolianis, Wassja A. Kopp, Toon Verstraelen, Kai Leonhard. A Reactive Molecular Dynamics Study of Chlorinated Organic Compounds. Part II: A ChemTraYzer Study of Chlorinated Dibenzofuran Formation and Decomposition Processes. ChemPhysChem 2023, 24 (7) https://doi.org/10.1002/cphc.202200783EI检索SCI升级版 化学3区SCI基础版 化学3区IF 2.3SWJTU A+
  85. Moritz Bensberg, Markus Reiher. Concentration‐Flux‐Steered Mechanism Exploration with an Organocatalysis Application. Israel Journal of Chemistry 2023, 8 https://doi.org/10.1002/ijch.202200123SCI升级版 化学4区SCI基础版 化学3区IF 2.3
  86. Jan P. Unsleber, Hongbin Liu, Leopold Talirz, Thomas Weymuth, Maximilian Mörchen, Adam Grofe, Dave Wecker, Christopher J. Stein, Ajay Panyala, Bo Peng, Karol Kowalski, Matthias Troyer, Markus Reiher. High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation. The Journal of Chemical Physics 2023, 158 (8) https://doi.org/10.1063/5.0136526EI检索SCI升级版 化学2区SCI基础版 化学3区IF 3.1SWJTU A++
  87. Yoshifumi Nishimura, Hiromi Nakai. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations. The Journal of Chemical Physics 2023, 158 (5) https://doi.org/10.1063/5.0132573EI检索SCI升级版 化学2区SCI基础版 化学3区IF 3.1SWJTU A++
  88. Choon Wee Kee. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis—Challenges and Opportunities. Molecules 2023, 28 (4) , 1715. https://doi.org/10.3390/molecules28041715SCI升级版 化学2区SCI基础版 化学3区IF 4.2SWJTU A+
  89. Pablo Ramos‐Sánchez, Jeremy N. Harvey, José A. Gámez. An automated method for graph‐based chemical space exploration and transition state finding. Journal of Computational Chemistry 2023, 44 (1) , 27-42. https://doi.org/10.1002/jcc.27011EI检索SCI升级版 化学3区SCI基础版 化学3区IF 3.4SWJTU A++
  90. Zhengkai Tu, Thijs Stuyver, Connor W. Coley. Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery. Chemical Science 2023, 14 (2) , 226-244. https://doi.org/10.1039/D2SC05089GEI检索SCI升级版 化学1区SCI基础版 化学1区IF 7.6
  91. Yu Harabuchi, Hiroki Hayashi, Hideaki Takano, Tsuyoshi Mita, Satoshi Maeda. Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox‐Catalyzed Radical Reaction**. Angewandte Chemie International Edition 2023, 62 (1) https://doi.org/10.1002/anie.202211936EI检索SCI升级版 化学1区SCI基础版 化学1区IF 16.1SWJTU A++
  92. Yu Harabuchi, Hiroki Hayashi, Hideaki Takano, Tsuyoshi Mita, Satoshi Maeda. Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox‐Catalyzed Radical Reaction**. Angewandte Chemie 2023, 135 (1) https://doi.org/10.1002/ange.202211936
  93. Mingjian Wen, Evan Walter Clark Spotte-Smith, Samuel M. Blau, Matthew J. McDermott, Aditi S. Krishnapriyan, Kristin A. Persson. Chemical reaction networks and opportunities for machine learning. Nature Computational Science 2023, 3 (1) , 12-24. https://doi.org/10.1038/s43588-022-00369-zEI检索IF 12.0
  94. Siyuan Gong, Yutong Wang, Yajie Tian, Li Wang, Guozhu Liu. Rapid enthalpy prediction of transition states using molecular graph convolutional network. AIChE Journal 2023, 69 (1) https://doi.org/10.1002/aic.17269EI检索SCI升级版 工程技术3区SCI基础版 工程技术3区IF 3.5
  95. Rocío Durán, Nery Villegas-Escobar, Daniela E. Ortega, Ricardo A. Matute. The diabatic model of intermediate stabilization for reaction mechanism analysis: a link to valence bond and Marcus theories. 2023, 347-375. https://doi.org/10.1016/B978-0-32-390257-1.00018-8
  96. M. Podewitz. Towards predictive computational catalysis – a case study of olefin metathesis with Mo imido alkylidene N-heterocyclic carbene catalysts. 2022, 1-23. https://doi.org/10.1039/9781839169342-00001
  97. . Exploration Methods. 2022, 17-68. https://doi.org/10.1039/9781839167744-00017
  98. Cyrille Lavigne, Gabe Gomes, Robert Pollice, Alán Aspuru-Guzik. Guided discovery of chemical reaction pathways with imposed activation. Chemical Science 2022, 13 (46) , 13857-13871. https://doi.org/10.1039/D2SC05135DEI检索SCI升级版 化学1区SCI基础版 化学1区IF 7.6
  99. Tobias M. Pazdera, Johannes Wenz, Matthias Olzmann. The unimolecular decomposition of dimethoxymethane: channel switching as a function of temperature and pressure. Faraday Discussions 2022, 238 , 665-681. https://doi.org/10.1039/D2FD00039CEI检索SCI升级版 化学3区SCI基础版 化学3区IF 3.3
  100. Francesco Bosia, Thomas Weymuth, Markus Reiher. Ultra‐fast spectroscopy for high‐throughput and interactive quantum chemistry. International Journal of Quantum Chemistry 2022, 122 (19) https://doi.org/10.1002/qua.26966EI检索SCI升级版 化学3区SCI基础版 化学4区IF 2.3
Load all citations


《物理化学杂志 A》


引用此文献:J. Phys. Chem. A2019, 123, 2, 385–399
点击复制引用Citation copied!
https://doi.org/10.1021/acs.jpca.8b10007

发布于 2018 年 11 月 13 日


版权所有 © 2018 美国化学学会。本出版物受以下许可协议约束。 使用条款

文章阅读量

14k

Altmetric

10

引用


了解这些指标

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • 摘要

    Figure 1

    Figure 1. General strategies for the exploration of PESs. Left: local curvature information on the PES is exploited to identify TSs and products. Middle: through the application of heuristics new intermediates are identified. Right: intermediates and TSs are explored interactively. In the two latter cases of heuristics-based and interactive explorations, pathways need to be refined a posteriori to obtain MEPs. An efficient exploration protocol may combine strategies from different classes.

    Figure 2

    Figure 2. Schematic course of a typical quantum chemical calculation. (a) Traditionally, the most time-intensive step is the computation step on the CPU. (b) With increasing CPU power, the duration of quantum chemical calculations decreases for a fixed system size and some given electronic structure model. (c) For a quasi-instantaneous calculation, the most time-intensive step is now no longer the computation itself, but the bottleneck becomes the setup and the analysis of the results.

    Figure 3

    Figure 3. Main components of a real-time quantum chemistry framework. The central element is the molecular structure under study (center) that is displayed (top right) to the operator. The operator can move atoms and experience the effects of his manipulations with a computer mouse or a haptic device (top left). Single-point calculations run continuously in the background (bottom) and deliver the nuclear forces underlying the reactivity exploration as well as other relevant quantum chemical properties.

    Figure 4

    Figure 4. Combined strengths of three classes of exploration strategies result in a universally applicable exploration protocol.

  • References


    This article references 262 other publications.

    1. 1
      Masters, C. Homogeneous Transition-Metal Catalysis: A Gentle Art, 1st ed.; Springer, 2011.
    2. 2
      Vinu, R.; Broadbelt, L. J. Unraveling Reaction Pathways and Specifying Reaction Kinetics for Complex Systems. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 2954,  DOI: 10.1146/annurev-chembioeng-062011-081108
    3. 3
      Ross, J. Determination of Complex Reaction Mechanisms. Analysis of Chemical, Biological and Genetic Networks. J. Phys. Chem. A 2008, 112, 21342143,  DOI: 10.1021/jp711313e
    4. 4
      Jorgensen, W. L. The Many Roles of Computation in Drug Discovery. Science 2004, 303, 18131818,  DOI: 10.1126/science.1096361
    5. 5
      Valdez, C. E.; Morgenstern, A.; Eberhart, M. E.; Alexandrova, A. N. Predictive Methods for Computational Metalloenzyme Redesign – a Test Case with Carboxypeptidase A. Phys. Chem. Chem. Phys. 2016, 18, 3174431756,  DOI: 10.1039/C6CP02247B
    6. 6
      Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia Synthesis from First-Principles Calculations. Science 2005, 307, 555558
    7. 7
      Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Jacobsen, K. W.; Bligaard, T.; Nørskov, J. K. Assessing the Reliability of Calculated Catalytic Ammonia Synthesis Rates. Science 2014, 345, 197200,  DOI: 10.1126/science.1253486
    8. 8
      Matera, S.; Maestri, M.; Cuoci, A.; Reuter, K. Predictive-Quality Surface Reaction Chemistry in Real Reactor Models: Integrating First-Principles Kinetic Monte Carlo Simulations into Computational Fluid Dynamics. ACS Catal. 2014, 4, 40814092,  DOI: 10.1021/cs501154e
    9. 9
      Reuter, K. Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis. Catal. Lett. 2016, 146, 541563,  DOI: 10.1007/s10562-015-1684-3
    10. 10
      Baxter, E. T.; Ha, M.-A.; Cass, A. C.; Alexandrova, A. N.; Anderson, S. L. Ethylene Dehydrogenation on Pt4,7,8 Clusters on Al2O3: Strong Cluster Size Dependence Linked to Preferred Catalyst Morphologies. ACS Catal. 2017, 7, 33223335,  DOI: 10.1021/acscatal.7b00409
    11. 11
      Ha, M.-A.; Baxter, E. T.; Cass, A. C.; Anderson, S. L.; Alexandrova, A. N. Boron Switch for Selectivity of Catalytic Dehydrogenation on Size-Selected Pt Clusters on Al2O3. J. Am. Chem. Soc. 2017, 139, 1156811575,  DOI: 10.1021/jacs.7b05894
    12. 12
      Ulissi, Z. W.; Medford, A. J.; Bligaard, T.; Nørskov, J. K. To Address Surface Reaction Network Complexity Using Scaling Relations Machine Learning and DFT Calculations. Nat. Commun. 2017, 8, 14621,  DOI: 10.1038/ncomms14621
    13. 13
      Vereecken, L.; Glowacki, D. R.; Pilling, M. J. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem. Rev. 2015, 115, 40634114,  DOI: 10.1021/cr500488p
    14. 14
      Ludlow, R. F.; Otto, S. Systems Chemistry. Chem. Soc. Rev. 2008, 37, 101108,  DOI: 10.1039/B611921M
    15. 15
      Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford University Press: Oxford, 2001.
    16. 16
      Dewyer, A. L.; Argüelles, A. J.; Zimmerman, P. M. Methods for Exploring Reaction Space in Molecular Systems. WIREs Comput. Mol. Sci. 2018, 8, e1354  DOI: 10.1002/wcms.1354
    17. 17
      Sameera, W. M. C.; Maeda, S.; Morokuma, K. Computational Catalysis Using the Artificial Force Induced Reaction Method. Acc. Chem. Res. 2016, 49, 763773,  DOI: 10.1021/acs.accounts.6b00023
    18. 18
      Hawkins, P. C. D. Conformation Generation: The State of the Art. J. Chem. Inf. Model. 2017, 57, 17471756,  DOI: 10.1021/acs.jcim.7b00221
    19. 19
      Ohno, K.; Maeda, S. A Scaled Hypersphere Search Method for the Topography of Reaction Pathways on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277282,  DOI: 10.1016/j.cplett.2003.12.030
    20. 20
      Maeda, S.; Ohno, K. Ab Initio Studies on Synthetic Routes of Glycine from Simple Molecules via Ammonolysis of Acetolactone: Applications of the Scaled Hypersphere Search Method. Chem. Lett. 2004, 33, 13721373,  DOI: 10.1246/cl.2004.1372
    21. 21
      Maeda, S.; Ohno, K. Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method: Applications to Ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 57425753,  DOI: 10.1021/jp0513162
    22. 22
      Ohno, K.; Maeda, S. Global Reaction Route Mapping on Potential Energy Surfaces of Formaldehyde, Formic Acid, and Their Metal-Substituted Analogues. J. Phys. Chem. A 2006, 110, 89338941,  DOI: 10.1021/jp061149l
    23. 23
      Maeda, S.; Ohno, K.; Morokuma, K. Systematic Exploration of the Mechanism of Chemical Reactions: The Global Reaction Route Mapping (GRRM) Strategy Using the ADDF and AFIR Methods. Phys. Chem. Chem. Phys. 2013, 15, 36833701,  DOI: 10.1039/c3cp44063j
    24. 24
      Satoh, H.; Oda, T.; Nakakoji, K.; Uno, T.; Tanaka, H.; Iwata, S.; Ohno, K. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers. J. Chem. Theory Comput. 2016, 12, 52935308,  DOI: 10.1021/acs.jctc.6b00439
    25. 25
      Maeda, S.; Morokuma, K. A Systematic Method for Locating Transition Structures of A+B→X Type Reactions. J. Chem. Phys. 2010, 132, 241102,  DOI: 10.1063/1.3457903
    26. 26
      Maeda, S.; Morokuma, K. Finding Reaction Pathways of Type A+B→X: Toward Systematic Prediction of Reaction Mechanisms. J. Chem. Theory Comput. 2011, 7, 23352345,  DOI: 10.1021/ct200290m
    27. 27
      Maeda, S.; Taketsugu, T.; Morokuma, K. Exploring Transition State Structures for Intramolecular Pathways by the Artificial Force Induced Reaction Method. J. Comput. Chem. 2014, 35, 166173,  DOI: 10.1002/jcc.23481
    28. 28
      Maeda, S.; Harabuchi, Y.; Takagi, M.; Taketsugu, T.; Morokuma, K. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. Chem. Rec. 2016, 16, 22322248,  DOI: 10.1002/tcr.201600043
    29. 29
      Yoshimura, T.; Maeda, S.; Taketsugu, T.; Sawamura, M.; Morokuma, K.; Mori, S. Exploring the Full Catalytic Cycle of Rhodium(I)–BINAP-Catalysed Isomerisation of Allylic Amines: A Graph Theory Approach for Path Optimisation. Chem. Sci. 2017, 8, 44754488,  DOI: 10.1039/C7SC00401J
    30. 30
      Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. The Biginelli Reaction Is a Urea-Catalyzed Organocatalytic Multicomponent Reaction. J. Org. Chem. 2015, 80, 69596967,  DOI: 10.1021/acs.joc.5b00407
    31. 31
      Saitta, A. M.; Saija, F. Miller Experiments in Atomistic Computer Simulations. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1376813773,  DOI: 10.1073/pnas.1402894111
    32. 32
      Wang, L.-P.; Titov, A.; McGibbon, R.; Liu, F.; Pande, V. S.; Martínez, T. J. Discovering Chemistry with an Ab Initio Nanoreactor. Nat. Chem. 2014, 6, 10441048,  DOI: 10.1038/nchem.2099
    33. 33
      Wang, L.-P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J. Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. J. Chem. Theory Comput. 2016, 12, 638649,  DOI: 10.1021/acs.jctc.5b00830
    34. 34
      Meuwly, M. Reactive Molecular Dynamics: From Small Molecules to Proteins. WIREs Comput. Mol. Sci. 2018, 0, e1386  DOI: 10.1002/wcms.1386
    35. 35
      van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 93969409,  DOI: 10.1021/jp004368u
    36. 36
      Döntgen, M.; Przybylski-Freund, M.-D.; Kröger, L. C.; Kopp, W. A.; Ismail, A. E.; Leonhard, K. Automated Discovery of Reaction Pathways, Rate Constants, and Transition States Using Reactive Molecular Dynamics Simulations. J. Chem. Theory Comput. 2015, 11, 25172524,  DOI: 10.1021/acs.jctc.5b00201
    37. 37
      Fischer, S.; Karplus, M. Conjugate Peak Refinement: An Algorithm for Finding Reaction Paths and Accurate Transition States in Systems with Many Degrees of Freedom. Chem. Phys. Lett. 1992, 194, 252261,  DOI: 10.1016/0009-2614(92)85543-J
    38. 38
      Florián, J.; Goodman, M. F.; Warshel, A. Computer Simulation of the Chemical Catalysis of DNA Polymerases: Discriminating between Alternative Nucleotide Insertion Mechanisms for T7 DNA Polymerase. J. Am. Chem. Soc. 2003, 125, 81638177,  DOI: 10.1021/ja028997o
    39. 39
      Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations. Science 2004, 303, 186195,  DOI: 10.1126/science.1088172
    40. 40
      Imhof, P.; Fischer, S.; Smith, J. C. Catalytic Mechanism of DNA Backbone Cleavage by the Restriction Enzyme EcoRV: A Quantum Mechanical/Molecular Mechanical Analysis. Biochemistry 2009, 48, 90619075,  DOI: 10.1021/bi900585m
    41. 41
      Reidelbach, M.; Betz, F.; Mäusle, R. M.; Imhof, P. Proton Transfer Pathways in an Aspartate-Water Cluster Sampled by a Network of Discrete States. Chem. Phys. Lett. 2016, 659, 169175,  DOI: 10.1016/j.cplett.2016.07.021
    42. 42
      Imhof, P. A. Networks Approach to Modeling Enzymatic Reactions. Methods Enzymol. 2016, 578, 249271,  DOI: 10.1016/bs.mie.2016.05.025
    43. 43
      Senn, H. M.; Thiel, W. QM/MM Methods for Biological Systems. Top. Curr. Chem. 2007, 268, 173290,  DOI: 10.1007/128_2006_084
    44. 44
      Senn, H. M.; Thiel, W. QM/MM Studies of Enzymes. Curr. Opin. Chem. Biol. 2007, 11, 182187,  DOI: 10.1016/j.cbpa.2007.01.684
    45. 45
      Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem., Int. Ed. 2009, 48, 11981229,  DOI: 10.1002/anie.200802019
    46. 46
      Huber, T.; Torda, A. E.; van Gunsteren, W. F. Local Elevation: A Method for Improving the Searching Properties of Molecular Dynamics Simulation. J. Comput.-Aided Mol. Des. 1994, 8, 695708,  DOI: 10.1007/BF00124016
    47. 47
      Laio, A.; Parrinello, M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1256212566,  DOI: 10.1073/pnas.202427399
    48. 48
      Christen, M.; van Gunsteren, W. F. On Searching in, Sampling of, and Dynamically Moving through Conformational Space of Biomolecular Systems: A Review. J. Comput. Chem. 2008, 29, 157166,  DOI: 10.1002/jcc.20725
    49. 49
      Bernardi, R. C.; Melo, M. C. R.; Schulten, K. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 872877,  DOI: 10.1016/j.bbagen.2014.10.019
    50. 50
      Shim, J.; MacKerell, A. D., Jr. Computational Ligand-Based Rational Design: Role of Conformational Sampling and Force Fields in Model Development. MedChemComm 2011, 2, 356370,  DOI: 10.1039/c1md00044f
    51. 51
      Ballard, A. J.; Martiniani, S.; Stevenson, J. D.; Somani, S.; Wales, D. J. Exploiting the Potential Energy Landscape to Sample Free Energy. WIREs Comput. Mol. Sci. 2015, 5, 273289,  DOI: 10.1002/wcms.1217
    52. 52
      De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 2016, 59, 40354061,  DOI: 10.1021/acs.jmedchem.5b01684
    53. 53
      Tsujishita, H.; Hirono, S. Camdas: An Automated Conformational Analysis System Using Molecular Dynamics. J. Comput.-Aided Mol. Des. 1997, 11, 305315,  DOI: 10.1023/A:1007964913898
    54. 54
      Wilson, S. R.; Cui, W.; Moskowitz, J. W.; Schmidt, K. E. Applications of Simulated Annealing to the Conformational Analysis of Flexible Molecules. J. Comput. Chem. 1991, 12, 342349,  DOI: 10.1002/jcc.540120307
    55. 55
      Sperandio, O.; Souaille, M.; Delfaud, F.; Miteva, M. A.; Villoutreix, B. O. MED-3DMC: A New Tool to Generate 3D Conformation Ensembles of Small Molecules with a Monte Carlo Sampling of the Conformational Space. Eur. J. Med. Chem. 2009, 44, 14051409,  DOI: 10.1016/j.ejmech.2008.09.052
    56. 56
      Grebner, C.; Becker, J.; Stepanenko, S.; Engels, B. Efficiency of Tabu-Search-Based Conformational Search Algorithms. J. Comput. Chem. 2011, 32, 22452253,  DOI: 10.1002/jcc.21807
    57. 57
      Shang, C.; Liu, Z.-P. Stochastic Surface Walking Method for Structure Prediction and Pathway Searching. J. Chem. Theory Comput. 2013, 9, 18381845,  DOI: 10.1021/ct301010b
    58. 58
      Zhang, X.-J.; Shang, C.; Liu, Z.-P. From Atoms to Fullerene: Stochastic Surface Walking Solution for Automated Structure Prediction of Complex Material. J. Chem. Theory Comput. 2013, 9, 32523260,  DOI: 10.1021/ct400238j
    59. 59
      Shang, C.; Zhang, X.-J.; Liu, Z.-P. Stochastic Surface Walking Method for Crystal Structure and Phase Transition Pathway Prediction. Phys. Chem. Chem. Phys. 2014, 16, 1784517856,  DOI: 10.1039/C4CP01485E
    60. 60
      Zhang, X.-J.; Liu, Z.-P. Reaction Sampling and Reactivity Prediction Using the Stochastic Surface Walking Method. Phys. Chem. Chem. Phys. 2015, 17, 27572769,  DOI: 10.1039/C4CP04456H
    61. 61
      Vázquez, S. A.; Martínez-Núñez, E. HCN Elimination from Vinyl Cyanide: Product Energy Partitioning, the Role of Hydrogen–Deuterium Exchange Reactions and a New Pathway. Phys. Chem. Chem. Phys. 2015, 17, 69486955,  DOI: 10.1039/C4CP05626D
    62. 62
      Martínez-Núñez, E. An Automated Method to Find Transition States Using Chemical Dynamics Simulations. J. Comput. Chem. 2015, 36, 222234,  DOI: 10.1002/jcc.23790
    63. 63
      Martínez-Núñez, E. An Automated Transition State Search Using Classical Trajectories Initialized at Multiple Minima. Phys. Chem. Chem. Phys. 2015, 17, 1491214921,  DOI: 10.1039/C5CP02175H
    64. 64
      Varela, J. A.; Vázquez, S. A.; Martínez-Núñez, E. An Automated Method to Find Reaction Mechanisms and Solve the Kinetics in Organometallic Catalysis. Chem. Sci. 2017, 8, 38433851,  DOI: 10.1039/C7SC00549K
    65. 65
      Rodriguez, A.; Rodriguez-Fernandez, R.; Vazquez, S. A.; Barnes, G. L.; Stewart, J. J. P.; Martinez-Nunez, E. tsscds2018: A Code for Automated Discovery of Chemical Reaction Mechanisms and Solving the Kinetics. J. Comput. Chem. 2018, 39, 19221930,  DOI: 10.1002/jcc.25370
    66. 66
      Cerjan, C. J.; Miller, W. H. On Finding Transition States. J. Chem. Phys. 1981, 75, 28002806,  DOI: 10.1063/1.442352
    67. 67
      Simons, J.; Joergensen, P.; Taylor, H.; Ozment, J. Walking on Potential Energy Surfaces. J. Phys. Chem. 1983, 87, 27452753,  DOI: 10.1021/j100238a013
    68. 68
      Davis, H. L.; Wales, D. J.; Berry, R. S. Exploring Potential Energy Surfaces with Transition State Calculations. J. Chem. Phys. 1990, 92, 43084319,  DOI: 10.1063/1.457790
    69. 69
      Wales, D. J. Basins of Attraction for Stationary Points on a Potential-Energy Surface. J. Chem. Soc., Faraday Trans. 1992, 88, 653657,  DOI: 10.1039/ft9928800653
    70. 70
      Wales, D. J. Locating Stationary Points for Clusters in Cartesian Coordinates. J. Chem. Soc., Faraday Trans. 1993, 89, 13051313,  DOI: 10.1039/ft9938901305
    71. 71
      Jensen, F. Locating Transition Structures by Mode Following: A Comparison of Six Methods on the Ar8Lennard-Jones Potential. J. Chem. Phys. 1995, 102, 67066718,  DOI: 10.1063/1.469144
    72. 72
      Doye, J. P. K.; Wales, D. J. Surveying a Potential Energy Surface by Eigenvector-Following. Z. Phys. D: At., Mol. Clusters 1997, 40, 194197,  DOI: 10.1007/s004600050192
    73. 73
      Broyden, C. G. Quasi-Newton Methods and Their Application to Function Minimisation. Math. Comp. 1967, 21, 368381,  DOI: 10.1090/S0025-5718-1967-0224273-2
    74. 74
      Munro, L. J.; Wales, D. J. Defect Migration in Crystalline Silicon. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 39693980,  DOI: 10.1103/PhysRevB.59.3969
    75. 75
      Malek, R.; Mousseau, N. Dynamics of Lennard-Jones Clusters: A Characterization of the Activation-Relaxation Technique. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2000, 62, 77237728,  DOI: 10.1103/PhysRevE.62.7723
    76. 76
      Deglmann, P.; Furche, F. Efficient Characterization of Stationary Points on Potential Energy Surfaces. J. Chem. Phys. 2002, 117, 95359538,  DOI: 10.1063/1.1523393
    77. 77
      Reiher, M.; Neugebauer, J. A Mode-Selective Quantum Chemical Method for Tracking Molecular Vibrations Applied to Functionalized Carbon Nanotubes. J. Chem. Phys. 2003, 118, 16341641,  DOI: 10.1063/1.1523908
    78. 78
      Sharada, S. M.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Automated Transition State Searches without Evaluating the Hessian. J. Chem. Theory Comput. 2012, 8, 51665174,  DOI: 10.1021/ct300659d
    79. 79
      Bergeler, M.; Herrmann, C.; Reiher, M. Mode-Tracking Based Stationary-Point Optimization. J. Comput. Chem. 2015, 36, 14291438,  DOI: 10.1002/jcc.23958
    80. 80
      Halgren, T. A.; Lipscomb, W. N. The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States. Chem. Phys. Lett. 1977, 49, 225232,  DOI: 10.1016/0009-2614(77)80574-5
    81. 81
      Ayala, P. Y.; Schlegel, H. B. A Combined Method for Determining Reaction Paths, Minima, and Transition State Geometries. J. Chem. Phys. 1997, 107, 375384,  DOI: 10.1063/1.474398
    82. 82
      Henkelman, G.; Jónsson, H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys. 1999, 111, 70107022,  DOI: 10.1063/1.480097
    83. 83
      Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 99019904,  DOI: 10.1063/1.1329672
    84. 84
      Henkelman, G.; Jónsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 99789985,  DOI: 10.1063/1.1323224
    85. 85
      Maragakis, P.; Andreev, S. A.; Brumer, Y.; Reichman, D. R.; Kaxiras, E. Adaptive Nudged Elastic Band Approach for Transition State Calculation. J. Chem. Phys. 2002, 117, 46514658,  DOI: 10.1063/1.1495401
    86. 86
      E, W.; Ren, W.; Vanden-Eijnden, E. String Method for the Study of Rare Events. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, 052301,  DOI: 10.1103/PhysRevB.66.052301
    87. 87
      E, W.; Ren, W.; Vanden-Eijnden, E. Finite Temperature String Method for the Study of Rare Events. J. Phys. Chem. B 2005, 109, 66886693,  DOI: 10.1021/jp0455430
    88. 88
      Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Efficient Exploration of Reaction Paths via a Freezing String Method. J. Chem. Phys. 2011, 135, 224108,  DOI: 10.1063/1.3664901
    89. 89
      Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications. J. Chem. Theory Comput. 2011, 7, 40194025,  DOI: 10.1021/ct200654u
    90. 90
      Zimmerman, P. Reliable Transition State Searches Integrated with the Growing String Method. J. Chem. Theory Comput. 2013, 9, 30433050,  DOI: 10.1021/ct400319w
    91. 91
      Vaucher, A. C.; Reiher, M. Minimum Energy Paths and Transition States by Curve Optimization. J. Chem. Theory Comput. 2018, 14, 30913099,  DOI: 10.1021/acs.jctc.8b00169
    92. 92
      Broadbelt, L. J.; Stark, S. M.; Klein, M. T. Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates. Ind. Eng. Chem. Res. 1994, 33, 790799,  DOI: 10.1021/ie00028a003
    93. 93
      Broadbelt, L. J.; Stark, S. M.; Klein, M. T. Computer Generated Reaction Modelling: Decomposition and Encoding Algorithms for Determining Species Uniqueness. Comput. Chem. Eng. 1996, 20, 113129,  DOI: 10.1016/0098-1354(94)00009-D
    94. 94
      Broadbelt, L. J.; Pfaendtner, J. Lexicography of Kinetic Modeling of Complex Reaction Networks. AIChE J. 2005, 51, 21122121,  DOI: 10.1002/aic.10599
    95. 95
      Evans, M. G.; Polanyi, M. Inertia and Driving Force of Chemical Reactions. Trans. Faraday Soc. 1938, 34, 1124,  DOI: 10.1039/tf9383400011
    96. 96
      Matheu, D. M.; Dean, A. M.; Grenda, J. M.; Green, W. H. Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis. J. Phys. Chem. A 2003, 107, 85528565,  DOI: 10.1021/jp0345957
    97. 97
      Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H. Reaction Mechanism Generator: Automatic Construction of Chemical Kinetic Mechanisms. Comput. Phys. Commun. 2016, 203, 212225,  DOI: 10.1016/j.cpc.2016.02.013
    98. 98
      Harper, M. R.; Van Geem, K. M.; Pyl, S. P.; Marin, G. B.; Green, W. H. Comprehensive Reaction Mechanism for N-Butanol Pyrolysis and Combustion. Combust. Flame 2011, 158, 1641,  DOI: 10.1016/j.combustflame.2010.06.002
    99. 99
      van Geem, K. M.; Reyniers, M.-F.; Marin, G. B.; Song, J.; Green, W. H.; Matheu, D. M. Automatic Reaction Network Generation Using RMG for Steam Cracking of N-hexane. AIChE J. 2006, 52, 718730,  DOI: 10.1002/aic.10655
    100. 100
      Petway, S. V.; Ismail, H.; Green, W. H.; Estupiñán, E. G.; Jusinski, L. E.; Taatjes, C. A. Measurements and Automated Mechanism Generation Modeling of OH Production in Photolytically Initiated Oxidation of the Neopentyl Radical. J. Phys. Chem. A 2007, 111, 38913900,  DOI: 10.1021/jp0668549
    101. 101
      Hansen, N.; Merchant, S. S.; Harper, M. R.; Green, W. H. The Predictive Capability of an Automatically Generated Combustion Chemistry Mechanism: Chemical Structures of Premixed Iso-Butanol Flames. Combust. Flame 2013, 160, 23432351,  DOI: 10.1016/j.combustflame.2013.05.013
    102. 102
      Slakman, B. L.; Simka, H.; Reddy, H.; West, R. H. Extending Reaction Mechanism Generator to Silicon Hydride Chemistry. Ind. Eng. Chem. Res. 2016, 55, 1250712515,  DOI: 10.1021/acs.iecr.6b02402
    103. 103
      Seyedzadeh Khanshan, F.; West, R. H. Developing Detailed Kinetic Models of Syngas Production from Bio-Oil Gasification Using Reaction Mechanism Generator (RMG). Fuel 2016, 163, 2533,  DOI: 10.1016/j.fuel.2015.09.031
    104. 104
      Han, K.; Green, W. H.; West, R. H. On-the-Fly Pruning for Rate-Based Reaction Mechanism Generation. Comput. Chem. Eng. 2017, 100, 18,  DOI: 10.1016/j.compchemeng.2017.01.003
    105. 105
      Dana, A. G.; Buesser, B.; Merchant, S. S.; Green, W. H. Automated Reaction Mechanism Generation Including Nitrogen as a Heteroatom. Int. J. Chem. Kinet. 2018, 50, 243258,  DOI: 10.1002/kin.21154
    106. 106
      Grambow, C. A.; Jamal, A.; Li, Y.-P.; Green, W. H.; Zádor, J.; Suleimanov, Y. V. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods. J. Am. Chem. Soc. 2018, 140, 10351048,  DOI: 10.1021/jacs.7b11009
    107. 107
      Suleimanov, Y. V.; Green, W. H. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods. J. Chem. Theory Comput. 2015, 11, 4248,  DOI: 10.1021/acs.jctc.5b00407
    108. 108
      Schlegel, H. B. Optimization of Equilibrium Geometries and Transition Structures. J. Comput. Chem. 1982, 3, 214218,  DOI: 10.1002/jcc.540030212
    109. 109
      Schlegel, H. B. Estimating the Hessian for Gradient-Type Geometry Optimizations. Theoret. Chim. Acta 1984, 66, 333340,  DOI: 10.1007/BF00554788
    110. 110
      Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States. J. Comput. Chem. 1996, 17, 4956,  DOI: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
    111. 111
      Bhoorasingh, P. L.; West, R. H. Transition State Geometry Prediction Using Molecular Group Contributions. Phys. Chem. Chem. Phys. 2015, 17, 3217332182,  DOI: 10.1039/C5CP04706D
    112. 112
      Rappoport, D.; Galvin, C. J.; Zubarev, D. Y.; Aspuru-Guzik, A. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry. J. Chem. Theory Comput. 2014, 10, 897907,  DOI: 10.1021/ct401004r
    113. 113
      Zubarev, D. Y.; Rappoport, D.; Aspuru-Guzik, A. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle. Sci. Rep. 2015, 5, 8009,  DOI: 10.1038/srep08009
    114. 114
      Rappoport, D.; Aspuru-Guzik, A. Predicting Feasible Organic Reaction Pathways Using Heuristically Aided Quantum Chemistry. ChemRxiv Preprint 2018,  DOI: 10.26434/chemrxiv.6649565.v1
    115. 115
      Butlerow, A. Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 1861, 120, 295298,  DOI: 10.1002/jlac.18611200308
    116. 116
      Levy, D. E. Arrow-Pushing in Organic Chemistry: An Easy Approach to Understanding Reaction Mechanisms, 2nd ed.; Wiley, 2017.
    117. 117
      Kim, Y.; Woo Kim, J.; Kim, Z.; Youn Kim, W. Efficient Prediction of Reaction Paths through Molecular Graph and Reaction Network Analysis. Chem. Sci. 2018, 9, 825835,  DOI: 10.1039/C7SC03628K
    118. 118
      Zimmerman, P. M. Automated Discovery of Chemically Reasonable Elementary Reaction Steps. J. Comput. Chem. 2013, 34, 13851392,  DOI: 10.1002/jcc.23271
    119. 119
      Zimmerman, P. M. Navigating Molecular Space for Reaction Mechanisms: An Efficient, Automated Procedure. Mol. Simul. 2015, 41, 4354,  DOI: 10.1080/08927022.2014.894999
    120. 120
      Zimmerman, P. M. Growing String Method with Interpolation and Optimization in Internal Coordinates: Method and Examples. J. Chem. Phys. 2013, 138, 184102,  DOI: 10.1063/1.4804162
    121. 121
      Zimmerman, P. M. Single-Ended Transition State Finding with the Growing String Method. J. Comput. Chem. 2015, 36, 601611,  DOI: 10.1002/jcc.23833
    122. 122
      Jafari, M.; Zimmerman, P. M. Reliable and Efficient Reaction Path and Transition State Finding for Surface Reactions with the Growing String Method. J. Comput. Chem. 2017, 38, 645658,  DOI: 10.1002/jcc.24720
    123. 123
      Nett, A. J.; Zhao, W.; Zimmerman, P. M.; Montgomery, J. Highly Active Nickel Catalysts for C–H Functionalization Identified through Analysis of Off-Cycle Intermediates. J. Am. Chem. Soc. 2015, 137, 76367639,  DOI: 10.1021/jacs.5b04548
    124. 124
      Li, M. W.; Pendleton, I. M.; Nett, A. J.; Zimmerman, P. M. Mechanism for Forming B,C,N,O Rings from NH3BH3and vCO2ia Reaction Discovery Computations. J. Phys. Chem. A 2016, 120, 11351144,  DOI: 10.1021/acs.jpca.5b11156
    125. 125
      Pendleton, I. M.; Pérez-Temprano, M. H.; Sanford, M. S.; Zimmerman, P. M. Experimental and Computational Assessment of Reactivity and Mechanism in C(sp3)–N Bond-Forming Reductive Elimination from Palladium(IV). J. Am. Chem. Soc. 2016, 138, 60496060,  DOI: 10.1021/jacs.6b02714
    126. 126
      Zhao, Y.; Nett, A. J.; McNeil, A. J.; Zimmerman, P. M. Computational Mechanism for Initiation and Growth of Poly(3-Hexylthiophene) Using Palladium N-Heterocyclic Carbene Precatalysts. Macromolecules 2016, 49, 76327641,  DOI: 10.1021/acs.macromol.6b01648
    127. 127
      Dewyer, A. L.; Zimmerman, P. M. Finding Reaction Mechanisms, Intuitive or Otherwise. Org. Biomol. Chem. 2017, 15, 501504,  DOI: 10.1039/C6OB02183B
    128. 128
      Ludwig, J. R.; Zimmerman, P. M.; Gianino, J. B.; Schindler, C. S. Iron(III)-Catalysed Carbonyl–Olefin Metathesis. Nature 2016, 533, 374379,  DOI: 10.1038/nature17432
    129. 129
      Smith, M. L.; Leone, A. K.; Zimmerman, P. M.; McNeil, A. J. Impact of Preferential π-Binding in Catalyst-Transfer Polycondensation of Thiazole Derivatives. ACS Macro Lett. 2016, 5, 14111415,  DOI: 10.1021/acsmacrolett.6b00886
    130. 130
      Ludwig, J. R.; Phan, S.; McAtee, C. C.; Zimmerman, P. M.; Devery, J. J.; Schindler, C. S. Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. J. Am. Chem. Soc. 2017, 139, 1083210842,  DOI: 10.1021/jacs.7b05641
    131. 131
      Dewyer, A. L.; Zimmerman, P. M. Simulated Mechanism for Palladium-Catalyzed, Directed γ-Arylation of Piperidine. ACS Catal. 2017, 7, 54665477,  DOI: 10.1021/acscatal.7b01390
    132. 132
      Habershon, S. Sampling Reactive Pathways with Random Walks in Chemical Space: Applications to Molecular Dissociation and Catalysis. J. Chem. Phys. 2015, 143, 094106,  DOI: 10.1063/1.4929992
    133. 133
      Habershon, S. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling. J. Chem. Theory Comput. 2016, 12, 17861798,  DOI: 10.1021/acs.jctc.6b00005
    134. 134
      Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design. Acc. Chem. Res. 2016, 49, 10611069,  DOI: 10.1021/acs.accounts.6b00096
    135. 135
      Doney, A. C.; Rooks, B. J.; Lu, T.; Wheeler, S. E. Design of Organocatalysts for Asymmetric Propargylations through Computational Screening. ACS Catal. 2016, 6, 79487955,  DOI: 10.1021/acscatal.6b02366
    136. 136
      Guan, Y.; Wheeler, S. E. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation. Angew. Chem. 2017, 129, 92299233,  DOI: 10.1002/ange.201704663
    137. 137
      Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. AARON: An Automated Reaction Optimizer for New Catalysts. J. Chem. Theory Comput. 2018, 14, 5249,  DOI: 10.1021/acs.jctc.8b00578
    138. 138
      Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 17931874,  DOI: 10.1021/cr990029p
    139. 139
      Geerlings, P.; Proft, F. D. Conceptual DFT: The Chemical Relevance of Higher Response Functions. Phys. Chem. Chem. Phys. 2008, 10, 30283042,  DOI: 10.1039/b717671f
    140. 140
      Proft, F. D.; Ayers, P. W.; Geerlings, P. The Chemical Bond; Wiley-Blackwell, 2014; pp 233270.
    141. 141
      Bergeler, M.; Simm, G. N.; Proppe, J.; Reiher, M. Heuristics-Guided Exploration of Reaction Mechanisms. J. Chem. Theory Comput. 2015, 11, 57125722,  DOI: 10.1021/acs.jctc.5b00866
    142. 142
      Gánti, T. Organization of Chemical Reactions into Dividing and Metabolizing Units: The Chemotons. BioSystems 1975, 7, 1521,  DOI: 10.1016/0303-2647(75)90038-6
    143. 143
      Yandulov, D. V.; Schrock, R. R. Reduction of Dinitrogen to Ammonia at a Well-Protected Reaction Site in a Molybdenum Triamidoamine Complex. J. Am. Chem. Soc. 2002, 124, 62526253,  DOI: 10.1021/ja020186x
    144. 144
      Yandulov, D. V.; Schrock, R. R.; Rheingold, A. L.; Ceccarelli, C.; Davis, W. M. Synthesis and Reactions of Molybdenum Triamidoamine Complexes Containing Hexaisopropylterphenyl Substituents. Inorg. Chem. 2003, 42, 796813,  DOI: 10.1021/ic020505l
    145. 145
      Eschenmoser, A.; Loewenthal, E. Chemistry of Potentially Prebiological Natural Products. Chem. Soc. Rev. 1992, 21, 116,  DOI: 10.1039/cs9922100001
    146. 146
      Delidovich, I. V.; Simonov, A. N.; Taran, O. P.; Parmon, V. N. Catalytic Formation of Monosaccharides: From the Formose Reaction towards Selective Synthesis. ChemSusChem 2014, 7, 18331846,  DOI: 10.1002/cssc.201400040
    147. 147
      Simm, G. N.; Reiher, M. Context-Driven Exploration of Complex Chemical Reaction Networks. J. Chem. Theory Comput. 2017, 13, 61086119,  DOI: 10.1021/acs.jctc.7b00945
    148. 148
      Proppe, J.; Reiher, M. Mechanism Deduction from Noisy Chemical Reaction Networks. J. Chem. Theory Comput. 2018, submitted, [arXiv: 1803.09346].
    149. 149
      Husch, T.; Vaucher, A. C.; Reiher, M. Semiempirical Molecular Orbital Models based on the Neglect of Diatomic Differential Overlap Approximation. Int. J. Quantum Chem. 2018, e25799  DOI: 10.1002/qua.25799
    150. 150
      Husch, T.; Reiher, M. Comprehensive analysis of the neglect of diatomic differential overlap approximation. J. Chem. Theory Comput. 2018, 14, 51695179,  DOI: 10.1021/acs.jctc.8b00601
    151. 151
      Simm, G. N.; Proppe, J.; Reiher, M. Error Assessment of Computational Models in Chemistry. Chimia 2017, 71, 202208,  DOI: 10.2533/chimia.2017.202
    152. 152
      Proppe, J.; Reiher, M. Reliable Estimation of Prediction Uncertainty for Physicochemical Property Models. J. Chem. Theory Comput. 2017, 13, 32973317,  DOI: 10.1021/acs.jctc.7b00235
    153. 153
      Weymuth, T.; Proppe, J.; Reiher, M. Statistical Analysis of Semiclassical Dispersion Corrections. J. Chem. Theory Comput. 2018, 14, 24802494,  DOI: 10.1021/acs.jctc.8b00078
    154. 154
      Proppe, J.; Husch, T.; Simm, G. N.; Reiher, M. Uncertainty quantification for quantum chemical models of complex reaction networks. Faraday Discuss. 2016, 195, 497520,  DOI: 10.1039/C6FD00144K
    155. 155
      Simm, G.; Reiher, M. Error-Controlled Exploration of Chemical Reaction Networks with Gaussian Processes. J. Chem. Theory Comput. 2018, 14, 52385248,  DOI: 10.1021/acs.jctc.8b00504
    156. 156
      Lagorce, D.; Pencheva, T.; Villoutreix, B. O.; Miteva, M. A. DG-AMMOS: A New Tool to Generate 3D Conformation of Small Molecules Using Distance Geometry and Automated Molecular Mechanics Optimization for in Silico Screening. BMC Chem. Biol. 2009, 9, 6,  DOI: 10.1186/1472-6769-9-6
    157. 157
      Riniker, S.; Landrum, G. A. Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation. J. Chem. Inf. Model. 2015, 55, 25622574,  DOI: 10.1021/acs.jcim.5b00654
    158. 158
      Vainio, M. J.; Johnson, M. S. Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm. J. Chem. Inf. Model. 2007, 47, 24622474,  DOI: 10.1021/ci6005646
    159. 159
      Leite, T. B.; Gomes, D.; Miteva, M. A.; Chomilier, J.; Villoutreix, B. O.; Tufféry, P. Frog: A FRee Online druG 3D Conformation Generator. Nucleic Acids Res. 2007, 35, W568W572,  DOI: 10.1093/nar/gkm289
    160. 160
      Miteva, M. A.; Guyon, F.; Tufféry, P. Frog2: Efficient 3D Conformation Ensemble Generator for Small Compounds. Nucleic Acids Res. 2010, 38, W622W627,  DOI: 10.1093/nar/gkq325
    161. 161
      Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572584,  DOI: 10.1021/ci100031x
    162. 162
      Schärfer, C.; Schulz-Gasch, T.; Hert, J.; Heinzerling, L.; Schulz, B.; Inhester, T.; Stahl, M.; Rarey, M. CONFECT: Conformations from an Expert Collection of Torsion Patterns. ChemMedChem 2013, 8, 16901700,  DOI: 10.1002/cmdc.201300242
    163. 163
      Guba, W.; Meyder, A.; Rarey, M.; Hert, J. Torsion Library Reloaded: A New Version of Expert-Derived SMARTS Rules for Assessing Conformations of Small Molecules. J. Chem. Inf. Model. 2016, 56, 15,  DOI: 10.1021/acs.jcim.5b00522
    164. 164
      Batter, J.; Brooks, F. GROPE-I: A Computer Display to the Sense of Feel. Proceedings of the International Federation of Information Processing 1971, 759763
    165. 165
      Noll, A. M. Man-Machine Tactile Communication. J. Soc. Inform. Dis. 1972, 6–11, 30
    166. 166
      Atkinson, W. D.; Bond, K. E.; Tribble, G. L.; Wilson, K. R. Computing with Feeling. Comp. and Graph. 1977, 2, 97103,  DOI: 10.1016/0097-8493(77)90009-7
    167. 167
      Lancaster, S. J. Immersed in virtual molecules. Nature Rev. Chem. 2018, 2, 253254,  DOI: 10.1038/s41570-018-0043-5
    168. 168
      Aspuru-Guzik, A.; Lindh, R.; Reiher, M. The Matter (R)evolution. ACS Cent. Sci. 2018, 4, 144152,  DOI: 10.1021/acscentsci.7b00550
    169. 169
      Matthews, D. Science goes virtual. Nature 2018, 557, 127128,  DOI: 10.1038/d41586-018-04997-2
    170. 170
      Cruz-Neira, C.; Sandin, D. J.; DeFanti, T. A. Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, NY, USA, 1993; pp 135142.
    171. 171
      Ai, Z.; Fröhlich, T. Molecular Dynamics Simulation in Virtual Environments. Comput. Graphics Forum 1998, 17, 267273,  DOI: 10.1111/1467-8659.00273
    172. 172
      Prins, J. F.; Hermans, J.; Mann, G.; Nyland, L. S.; Simons, M. A Virtual Environment for Steered Molecular Dynamics. Future Gener. Comp. Sy. 1999, 15, 485495,  DOI: 10.1016/S0167-739X(99)00005-9
    173. 173
      Ǩrenek, A. Haptic Rendering of Complex Force Fields. Proceedings of the Workshop on Virtual Environments 2003; ACM: New York, NY, USA, 2003; pp 231239.
    174. 174
      Lee, Y.-G.; Lyons, K. W. Smoothing Haptic Interaction Using Molecular Force Calculations. Comput.-Aided Design 2004, 36, 7590,  DOI: 10.1016/S0010-4485(03)00080-0
    175. 175
      Morin, S.; Redon, S. A Force-Feedback Algorithm for Adaptive Articulated-Body Dynamics Simulation. IEEE International Conference on Robotics and Automation; IEEE, 2007; pp 32453250.
    176. 176
      Daunay, B.; Régnier, S. Stable Six Degrees of Freedom Haptic Feedback for Flexible Ligand-Protein Docking. Comput.-Aided Design 2009, 41, 886895,  DOI: 10.1016/j.cad.2009.06.010
    177. 177
      Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Haptic Feedback for Molecular Simulation. 2009 IEEE/RSJ. International Conference on Intelligent Robots and Systems; IEEE, 2009; pp 237242.
    178. 178
      Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Comparing Position and Force Control for Interactive Molecular Simulators with Haptic Feedback. J. Mol. Graphics Modell. 2010, 29, 280289,  DOI: 10.1016/j.jmgm.2010.06.003
    179. 179
      Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Haptic Molecular Simulation Based on Force Control. 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; IEEE, 2010; pp 329334.
    180. 180
      Bolopion, A.; Cagneau, B.; Redon, S.; Régnier, S. Variable Gain Haptic Coupling for Molecular Simulation. 2011 IEEE World Haptics Conference; IEEE, 2011; pp 469474.
    181. 181
      Durlach, N.; Mavor, A.; Development, C.; Board, C.; Council, N. Virtual Reality: Scientific and Technological Challenges; National Academies Press, 1994.
    182. 182
      Mark, W. R.; Randolph, S. C.; Finch, M.; Van Verth, J. M.; Taylor, R. M., II. Adding Force Feedback to Graphics Systems: Issues and Solutions. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, 1996; pp 447452.
    183. 183
      Ruspini, D. C.; Kolarov, K.; Khatib, O. The Haptic Display of Complex Graphical Environments. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, 1997; pp 345352.
    184. 184
      Cruz-Neira, C.; Langley, R.; Bash, P. VIBE: A Virtual Biomolecular Environment for Interactive Molecular Modeling. Comput. Chem. 1996, 20, 469477,  DOI: 10.1016/0097-8485(96)00009-5
    185. 185
      Férey, N.; Nelson, J.; Martin, C.; Picinali, L.; Bouyer, G.; Tek, A.; Bourdot, P.; Burkhardt, J.; Katz, B.; Ammi, M.; Etchebest, C.; Autin, L. Multisensory VR Interaction for Protein-Docking in the CoRSAIRe Project. Virtual Reality 2009, 13, 273293,  DOI: 10.1007/s10055-009-0136-z
    186. 186
      Glowacki, D. R.; O’Connor, M.; Calabro, G.; Price, J.; Tew, P.; Mitchell, T.; Hyde, J.; Tew, D. P.; Coughtrie, D. J.; McIntosh-Smith, S. A GPU-Accelerated Immersive Audio-Visual Framework for Interaction with Molecular Dynamics Using Consumer Depth Sensors. Faraday Discuss. 2014, 169, 6387,  DOI: 10.1039/C4FD00008K
    187. 187
      Arbon, R. E.; Jones, A. J.; Bratholm, L. A.; Mitchell, T.; Glowacki, D. R. Sonifying Stochastic Walks on Biomolecular Energy Landscapes. 2018, arXiv 1803.05805.
    188. 188
      Ouh-young, M.; Pique, M.; Hughes, J.; Srinivasan, N.; Brooks, F. P. Using a Manipulator for Force Display in Molecular Docking. IEEE International Conference on Robotics and Automation; IEEE, 1988; pp 18241829.
    189. 189
      Brooks, F. P., Jr.; Ouh-Young, M.; Batter, J. J.; Jerome Kilpatrick, P. Project GROPE — Haptic Displays for Scientific Visualization. SIGGRAPH Comput. Graph. 1990, 24, 177185,  DOI: 10.1145/97880.97899
    190. 190
      Levine, D.; Facello, M.; Hallstrom, P.; Reeder, G.; Walenz, B.; Stevens, F. Stalk: An Interactive System for Virtual Molecular Docking. IEEE Comput. Sci. Eng. 1997, 4, 5565,  DOI: 10.1109/99.609834
    191. 191
      Brooks, F. P., Jr. Impressions by a dinosaur. Faraday Discuss. 2014, 169, 521527,  DOI: 10.1039/C4FD00130C
    192. 192
      O’Connor, M.; Deeks, H. M.; Dawn, E.; Metatla, O.; Roudaut, A.; Sutton, M.; Thomas, L. M.; Glowacki, B. R.; Sage, R.; Tew, P.; Wonnacott, M.; Bates, P.; Mulholland, A. J.; Glowacki, D. R. Sampling Molecular Conformations and Dynamics in a Multiuser Virtual Reality Framework. Sci. Adv. 2018, 4, eaat2731  DOI: 10.1126/sciadv.aat2731
    193. 193
      Bayazit, O.; Song, G.; Amato, N. Ligand Binding with OBPRM and User Input. IEEE International Conference on Robotics and Automation; IEEE, 2001; pp 954959.
    194. 194
      Nagata, H.; Mizushima, H.; Tanaka, H. Concept and Prototype of Protein-Ligand Docking Simulator with Force Feedback Technology. Bioinformatics 2002, 18, 140146,  DOI: 10.1093/bioinformatics/18.1.140
    195. 195
      Lai-Yuen, S. K.; Lee, Y.-S. Computer-Aided Molecular Design (CAMD) with Force-Torque Feedback. Ninth International Conference on Computer Aided Design and Computer Graphics; ACM: New York, 2005; pp 199204.
    196. 196
      Birmanns, S.; Wriggers, W. Interactive Fitting Augmented by Force-Feedback and Virtual Reality. J. Struct. Biol. 2003, 144, 123131,  DOI: 10.1016/j.jsb.2003.09.018
    197. 197
      Wollacott, A. M.; Merz, K. M., Jr. Haptic Applications for Molecular Structure Manipulation. J. Mol. Graphics Modell. 2007, 25, 801805,  DOI: 10.1016/j.jmgm.2006.07.005
    198. 198
      Subasi, E.; Basdogan, C. A New Haptic Interaction and Visualization Approach for Rigid Molecular Docking in Virtual Environments. Presence 2008, 17, 7390,  DOI: 10.1162/pres.17.1.73
    199. 199
      Heyd, J.; Birmanns, S. Immersive Structural Biology: A New Approach to Hybrid Modeling of Macromolecular Assemblies. Virtual Reality 2009, 13, 245255,  DOI: 10.1007/s10055-009-0129-y
    200. 200
      Anthopoulos, A.; Pasqualetto, G.; Grimstead, I.; Brancale, A. Haptic-Driven, Interactive Drug Design: Implementing a GPU-Based Approach to Evaluate the Induced Fit Effect. Faraday Discuss. 2014, 169, 323342,  DOI: 10.1039/C3FD00139C
    201. 201
      Iakovou, G.; Hayward, S.; Laycock, S. D. A Real-Time Proximity Querying Algorithm for Haptic-Based Molecular Docking. Faraday Discuss. 2014, 169, 359377,  DOI: 10.1039/C3FD00123G
    202. 202
      Iakovou, G.; Hayward, S.; Laycock, S. D. Adaptive GPU-Accelerated Force Calculation for Interactive Rigid Molecular Docking Using Haptics. J. Mol. Graphics Modell. 2015, 61, 112,  DOI: 10.1016/j.jmgm.2015.06.003
    203. 203
      Iakovou, G.; Hayward, S.; Laycock, S. D. Virtual Environment for Studying the Docking Interactions of Rigid Biomolecules with Haptics. J. Chem. Inf. Model. 2017, 57, 11421152,  DOI: 10.1021/acs.jcim.7b00051
    204. 204
      Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; Wriggers, W.; Schulten, K. In Computational Molecular Dynamics: Challenges, Methods, Ideas; Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A., Reich, S., Skeel, R., Eds.; Lecture Notes in Computational Science and Engineering; Springer: Berlin, Heidelberg, 1999; Vol. 4, pp 3965.
    205. 205
      Grubmüller, H.; Heymann, B.; Tavan, P. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force. Science 1996, 271, 997999,  DOI: 10.1126/science.271.5251.997
    206. 206
      Izrailev, S.; Stepaniants, S.; Balsera, M.; Oono, Y.; Schulten, K. Molecular Dynamics Study of Unbinding of the Avidin-Biotin Complex. Biophys. J. 1997, 72, 15681581,  DOI: 10.1016/S0006-3495(97)78804-0
    207. 207
      Balsera, M.; Stepaniants, S.; Izrailev, S.; Oono, Y.; Schulten, K. Reconstructing Potential Energy Functions from Simulated Force-Induced Unbinding Processes. Biophys. J. 1997, 73, 12811287,  DOI: 10.1016/S0006-3495(97)78161-X
    208. 208
      Isralewitz, B.; Izrailev, S.; Schulten, K. Binding Pathway of Retinal to Bacterio-Opsin: A Prediction by Molecular Dynamics Simulations. Biophys. J. 1997, 73, 29722979,  DOI: 10.1016/S0006-3495(97)78326-7
    209. 209
      Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690,  DOI: 10.1103/PhysRevLett.78.2690
    210. 210
      Nelson, M.; Humphrey, W.; Kufrin, R.; Gursoy, A.; Dalke, A.; Kale, L.; Skeel, R.; Schulten, K. MDScope — a Visual Computing Environment for Structural Biology. Comput. Phys. Commun. 1995, 91, 111133,  DOI: 10.1016/0010-4655(95)00045-H
    211. 211
      Rapaport, D. Interactive Molecular Dynamics. Phys. A 1997, 240, 246254,  DOI: 10.1016/S0378-4371(97)00148-9
    212. 212
      Rapaport, D. C. An Introduction to Interactive Molecular-Dynamics Simulations. Comput. Phys. 1997, 11, 337347,  DOI: 10.1063/1.168612
    213. 213
      Leech, J.; Prins, J. F.; Hermans, J. SMD: Visual Steering of Molecular Dynamics for Protein Design. IEEE Comput. Sci. Eng. 1996, 3, 3845,  DOI: 10.1109/99.556511
    214. 214
      Vormoor, O. Quick and Easy Interactive Molecular Dynamics Using Java3D. Comput. Sci. Eng. 2001, 3, 98104,  DOI: 10.1109/5992.947113
    215. 215
      Stone, J. E.; Gullingsrud, J.; Schulten, K. A System for Interactive Molecular Dynamics Simulation. Proceedings of the 2001 Symposium on Interactive 3D Graphics; ACM: New York, NY, USA, 2001; pp 191194.
    216. 216
      Grayson, P.; Tajkhorshid, E.; Schulten, K. Mechanisms of Selectivity in Channels and Enzymes Studied with Interactive Molecular Dynamics. Biophys. J. 2003, 85, 3648,  DOI: 10.1016/S0006-3495(03)74452-X
    217. 217
      Férey, N.; Delalande, O.; Grasseau, G.; Baaden, M. A VR Framework for Interacting with Molecular Simulations. Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology; ACM: New York, NY, USA, 2008; pp 9194.
    218. 218
      Dreher, M.; Piuzzi, M.; Turki, A.; Chavent, M.; Baaden, M.; Férey, N.; Limet, S.; Raffin, B.; Robert, S. Interactive Molecular Dynamics: Scaling up to Large Systems. Procedia Comput. Sci. 2013, 18, 2029,  DOI: 10.1016/j.procs.2013.05.165
    219. 219
      Dreher, M.; Prevoteau-Jonquet, J.; Trellet, M.; Piuzzi, M.; Baaden, M.; Raffin, B.; Ferey, N.; Robert, S.; Limet, S. ExaViz: A Flexible Framework to Analyse, Steer and Interact with Molecular Dynamics Simulations. Faraday Discuss. 2014, 169, 119142,  DOI: 10.1039/C3FD00142C
    220. 220
      Stone, J. E.; Kohlmeyer, A.; Vandivort, K. L.; Schulten, K. In Advances in Visual Computing; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, 2010; Vol. 6454, pp 382393.
    221. 221
      Luehr, N.; Jin, A. G. B.; Martínez, T. J. Ab Initio Interactive Molecular Dynamics on Graphical Processing Units (GPUs). J. Chem. Theory Comput. 2015, 11, 45364544,  DOI: 10.1021/acs.jctc.5b00419
    222. 222
      Surles, M. C.; Richardson, J. S.; Richardson, D. C.; Brooks, F. P. Sculpting Proteins Interactively: Continual Energy Minimization Embedded in a Graphical Modeling System. Protein Sci. 1994, 3, 198210,  DOI: 10.1002/pro.5560030205
    223. 223
      Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012, 4, 17,  DOI: 10.1186/1758-2946-4-17
    224. 224
      NANO-D. INRIA, SAMSON Software, Version ∼0.5.0; http://www.samson-connect.net/, 2016 (Accessed: 09 February 2018).
    225. 225
      Bosson, M.; Richard, C.; Plet, A.; Grudinin, S.; Redon, S. Interactive Quantum Chemistry: A Divide-and-Conquer ASED-MO Method. J. Comput. Chem. 2012, 33, 779790,  DOI: 10.1002/jcc.22905
    226. 226
      Rossi, R.; Isorce, M.; Morin, S.; Flocard, J.; Arumugam, K.; Crouzy, S.; Vivaudou, M.; Redon, S. Adaptive Torsion-Angle Quasi-Statics: A General Simulation Method with Applications to Protein Structure Analysis and Design. Bioinformatics 2007, 23, i408i417,  DOI: 10.1093/bioinformatics/btm191
    227. 227
      Bosson, M.; Grudinin, S.; Bouju, X.; Redon, S. Interactive Physically-Based Structural Modeling of Hydrocarbon Systems. J. Comput. Phys. 2012, 231, 25812598,  DOI: 10.1016/j.jcp.2011.12.006
    228. 228
      Bosson, M.; Grudinin, S.; Redon, S. Block-Adaptive Quantum Mechanics: An Adaptive Divide-and-Conquer Approach to Interactive Quantum Chemistry. J. Comput. Chem. 2013, 34, 492504,  DOI: 10.1002/jcc.23157
    229. 229
      Jaillet, L.; Artemova, S.; Redon, S. IM-UFF: Extending the Universal Force Field for Interactive Molecular Modeling. J. Mol. Graphics Modell. 2017, 77, 350362,  DOI: 10.1016/j.jmgm.2017.08.023
    230. 230
      Disz, T.; Papka, M.; Stevens, R.; Pellegrino, M.; Taylor, V. Virtual Reality Visualization of Parallel Molecular Dynamics Simulation. Proceedings of High-Performance Computing 1995, 483487
    231. 231
      Akkiraju, N.; Edelsbrunner, H.; Fu, P.; Qian, J. Viewing Geometric Protein Structures from inside a CAVE. IEEE Comput. Graph. Appl. 1996, 16, 5861,  DOI: 10.1109/38.511855
    232. 232
      Salvadori, A.; Del Frate, G.; Pagliai, M.; Mancini, G.; Barone, V. Immersive Virtual Reality in Computational Chemistry: Applications to the Analysis of QM and MM Data. Int. J. Quantum Chem. 2016, 116, 17311746,  DOI: 10.1002/qua.25207
    233. 233
      García-Hernández, R. J.; Kranzlmüller, D. Virtual Reality Toolset for Material Science: NOMAD VR Tools. Augmented Reality, Virtual Reality, and Computer Graphics . 2017; pp 309319.
    234. 234
      Haase, H.; Strassner, J.; Dai, F. VR Techniques for the Investigation of Molecule Data. Computers & Graphics 1996, 20, 207217,  DOI: 10.1016/0097-8493(95)00127-1
    235. 235
      Sauer, C.; Hastings, W.; Okamura, A. M. Virtual Environment for Exploring Atomic Bonding. Proceedings of EuroHaptics 2004; International Design Foundation, 2004; pp 232239.
    236. 236
      Norrby, M.; Grebner, C.; Eriksson, J.; Boström, J. Molecular Rift: Virtual Reality for Drug Designers. J. Chem. Inf. Model. 2015, 55, 24752484,  DOI: 10.1021/acs.jcim.5b00544
    237. 237
      Harvey, E.; Gingold, C. Haptic Representation of the Atom. 2000 IEEE Conference on Information Visualization. An International Conference on Computer Visualization and Graphics; IEEE, 2000; pp 232235.
    238. 238
      Comai, S.; Mazza, D. A Haptic-Enhanced System for Molecular Sensing. Human-Computer Interaction – INTERACT 2009; Springer, 2009; pp 493496.
    239. 239
      Satoh, H.; Nukada, T.; Akahane, K.; Sato, M. Construction of Basic Haptic Systems for Feeling the Intermolecular Force in Molecular Models. J. Comput. Aided Chem. 2006, 7, 3847,  DOI: 10.2751/jcac.7.38
    240. 240
      Stocks, M. B.; Hayward, S.; Laycock, S. D. Interacting with the Biomolecular Solvent Accessible Surface via a Haptic Feedback Device. BMC Struct. Biol. 2009, 9, 69,  DOI: 10.1186/1472-6807-9-69
    241. 241
      Sankaranarayanan, G.; Weghorst, S.; Sanner, M.; Gillet, A.; Olson, A. Role of Haptics in Teaching Structural Molecular Biology. 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems; IEEE, 2003; pp 363366.
    242. 242
      Persson, P. B.; Cooper, M. D.; Tibell, L. A. E.; Ainsworth, S.; Ynnerman, A.; Jonsson, B. H. Designing and Evaluating a Haptic System for Biomolecular Education. 2007 IEEE Virtual Reality Conference; IEEE, 2007; pp 171178.
    243. 243
      Sourina, O.; Torres, J.; Wang, J. In Transactions on Edutainment II; Pan, Z., Cheok, A. D., Müller, W., Rhalibi, A. E., Eds.; Springer: Berlin, Heidelberg, 2009; Chapter Visual Haptic-Based Biomolecular Docking and Its Applications in E-Learning, pp 105118.
    244. 244
      Bivall, P.; Ainsworth, S.; Tibell, L. A. E. Do Haptic Representations Help Complex Molecular Learning?. Sci. Educ. 2011, 95, 700719,  DOI: 10.1002/sce.20439
    245. 245
      Chastine, J. W.; Zhu, Y.; Brooks, J. C.; Owen, G. S.; Harrison, R. W.; Weber, I. T. A Collaborative Multi-View Virtual Environment for Molecular Visualization and Modeling. Coordinated and Multiple Views in Exploratory Visualization; IEEE, 2005; pp 7784.
    246. 246
      Nadan, T.; Haffegee, A.; Watson, K. Collaborative and Parallelized Immersive Molecular Docking. International Conference on Computational Science 2009, 5545, 737745,  DOI: 10.1007/978-3-642-01973-9_82
    247. 247
      Hou, X.; Sourina, O.; Klimenko, S. Visual Haptic-Based Collaborative Molecular Docking. IFMBE Proceedings 2014, 43, 360363,  DOI: 10.1007/978-3-319-02913-9_92
    248. 248
      Davies, E.; Tew, P.; Glowacki, D.; Smith, J.; Mitchell, T. Evolutionary and Biologically Inspired Music, Sound, Art and Design. Proceedings of the 5th International Conference, EvoMUSART 2016, Porto, Portugal, March 30 – April 1, 2016; Johnson, C., Ciesielski, V., Correia, J. a., Machado, P., Eds.; Springer International Publishing, 2016; pp 1730.
    249. 249
      Mitchell, T.; Hyde, J.; Tew, P.; Glowacki, D. R. Danceroom Spectroscopy: At the Frontiers of Physics, Performance, Interactive Art and Technology. Leonardo 2016, 49, 138147,  DOI: 10.1162/LEON_a_00924
    250. 250
      Marti, K. H.; Reiher, M. Haptic Quantum Chemistry. J. Comput. Chem. 2009, 30, 20102020,  DOI: 10.1002/jcc.21201
    251. 251
      Haag, M. P.; Marti, K. H.; Reiher, M. Generation of Potential Energy Surfaces in High Dimensions and Their Haptic Exploration. ChemPhysChem 2011, 12, 32043213,  DOI: 10.1002/cphc.201100539
    252. 252
      Haag, M. P.; Reiher, M. Real-Time Quantum Chemistry. Int. J. Quantum Chem. 2013, 113, 820,  DOI: 10.1002/qua.24336
    253. 253
      Haag, M. P.; Reiher, M. Studying Chemical Reactivity in a Virtual Environment. Faraday Discuss. 2014, 169, 89118,  DOI: 10.1039/C4FD00021H
    254. 254
      Haag, M. P.; Vaucher, A. C.; Bosson, M.; Redon, S.; Reiher, M. Interactive Chemical Reactivity Exploration. ChemPhysChem 2014, 15, 33013319,  DOI: 10.1002/cphc.201402342
    255. 255
      Mühlbach, A. H.; Vaucher, A. C.; Reiher, M. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies. J. Chem. Theory Comput. 2016, 12, 12281235,  DOI: 10.1021/acs.jctc.5b01156
    256. 256
      Atsumi, T.; Nakai, H. Molecular Orbital Propagation to Accelerate Self-Consistent-Field Convergence in an Ab Initio Molecular Dynamics Simulation. J. Chem. Phys. 2008, 128, 094101,  DOI: 10.1063/1.2839857
    257. 257
      Atsumi, T.; Nakai, H. Acceleration of Self-Consistent-Field Convergence in Ab Initio Molecular Dynamics and Monte Carlo Simulations and Geometry Optimization. Chem. Phys. Lett. 2010, 490, 102108,  DOI: 10.1016/j.cplett.2010.03.012
    258. 258
      Vaucher, A. C.; Haag, M. P.; Reiher, M. Real-Time Feedback from Iterative Electronic Structure Calculations. J. Comput. Chem. 2016, 37, 805812,  DOI: 10.1002/jcc.24268
    259. 259
      Vaucher, A. C.; Reiher, M. Steering Orbital Optimization out of Local Minima and Saddle Points Toward Lower Energy. J. Chem. Theory Comput. 2017, 13, 12191228,  DOI: 10.1021/acs.jctc.7b00011
    260. 260
      Vaucher, A. C.; Reiher, M. Molecular Propensity as a Driver for Explorative Reactivity Studies. J. Chem. Inf. Model. 2016, 56, 14701478,  DOI: 10.1021/acs.jcim.6b00264
    261. 261
      Heuer, M. A.; Vaucher, A. C.; Haag, M. P.; Reiher, M. Integrated Reaction Path Processing from Sampled Structure Sequences. J. Chem. Theory Comput. 2018, 14, 20522062,  DOI: 10.1021/acs.jctc.8b00019
    262. 262
      Reiher, M.; SCINE – Software for Chemical Interaction Networks. http://scine.ethz.ch (Accessed: 12. September 2018).