Version Date Name Description of Review Changes
AA1 20//11//2024 Gabriele D'Aronco Preparer
AA2 21//11//2024 Pau Graell Verifier
AA3 21//11//2024 Javier Valero Approver
AA4 22//11//2024 Roberto Villar QPA | Version | Date | Name | Description of Review Changes | |
| :---: | :---: | :--- | :--- | :--- |
| AA1 | $20 / 11 / 2024$ | Gabriele D'Aronco | Preparer | |
| AA2 | $21 / 11 / 2024$ | Pau Graell | Verifier | |
| AA3 | $21 / 11 / 2024$ | Javier Valero | Approver | |
| AA4 | $22 / 11 / 2024$ | Roberto Villar | QPA | |
Revision Log - To Client 修订日志 - 致客户
Revision 修订
Date 日期
Description of Changes 变更说明
AA
22/11/2024
First Release 首次发布
Revision Date Description of Changes
AA 22/11/2024 First Release
| Revision | Date | Description of Changes |
| :---: | :---: | :---: |
| AA | 22/11/2024 | First Release |
| | | |
| | | |
| | | |
| | | |
| | | |
This document including its attachments is the property of Etihad Rail. It contains confidential proprietary information and may be legally privilege. The reproduction, distribution, utilization or communication of this document, or any part thereof, is strictly prohibited unless expressly permitted by Etihad Rail. 本文件及其附件为阿提哈德铁路公司所有。本文件包含机密专有信息,可能享有法律特权。除非得到阿提哈德铁路公司的明确许可,否则严禁复制、分发、使用或传播本文件或其任何部分。
REEM STATION (ADR). STRUCTURE REPORT 雷姆站(ADR)。结构报告
Table 7-11 Bottom slab design bending moments … 97 表 7-11 底板设计弯矩 ... 97
Table 7-12 Friction resistance per ml of D-Wall … 108 表 7-12 每毫升 D 型墙的摩擦阻力...... 108
Table 7-13 Bottom slab design bending moments … 114 表 7-13 底板设计弯矩...... 114
Table 8-1 Chainage and section type of the studied sections. … 117 表 8-1 所研究路段的里程和路段类型。... 117
Table 8-2 Diaphragm-Walls E•I Inertia Moment Modulus … 120
Table 8-3 Considered Stiffness values for the Retrieval Shaft at the North of the Reem Station. … 120 表 8-3 雷姆站北面取物竖井的考虑刚度值... 120
Table 8-4 Geometry features for the Calculation Section - Retrieval Shaft at the North of the Reem Station … 121
Table 8-5 Moment M_(d)M_{d} Design values on D-walls - Section RETRIEVAL SHAFT … 128 表 8-5 D 型墙的力矩 M_(d)M_{d} 设计值 - 截面回转支撑 ... 128
Table 8-6 Shear force Q_(d)Q_{d} Design values on D-walls - Section RETRIEVAL SHAFT … 128 表 8-6 D 型墙的剪力 Q_(d)Q_{d} 设计值 - 截面回转支撑 ... 128
Table 8-7 Axial Forces on Top Slab - Section RETRIEVAL SHAFT … 128
Table 8-8 Axial Forces on Temporary Anchors - Section RETRIEVAL SHAFT … 128
Table 8-9 Axial Forces on Permanent Struts - Section RETRIEVAL SHAFT … 128
Table 8-10 Axial Forces on Bottom Slab - Section RETRIEVAL SHAFT … 129
Table 8-11 Concrete ring reinforcement definition … 142
Table 8-12 Strut reinforcement definition. … 142 表 8-12 支杆加固定义。... 142
Table 8-13 Diaphragm-Walls E•I Inertia Moment Modulus … 162
Table 8-14 Considered Stiffness values for the Cut and Cover Section in the North of Reem Station. … 162 表 8-14 里姆站以北明挖加盖段的考虑刚度值... 162
Table 8-15 Geometry features for the Calculation Section - C&C Section … 163
Table 8-16 Moment Md Design values on D-walls - Cut and Cover Section … 171
Table 8-17 Shear force Q_(d)Q_{d} Design values on D-walls - Cut and Cover Section … 171 表 8-17 D 型墙的剪力 Q_(d)Q_{d} 设计值 - 截面和盖面 ... 171
Table 8-18 Axial Forces on Top Slab - Cut and Cover Section … 171
Table 8-19 Axial Forces on Temporary Struts - Cut and Cover Section. … 171 表 8-19 临时支撑杆上的轴向力 - 切割和覆盖部分。... 171
Table 8-20 Axial Forces on Permanent Struts - Cut and Cover Section … 171
Table 8-21 Axial Forces on Bottom Slab - Cut and Cover Section … 171 qquad\qquad
1 INTRODUCTION AND SCOPE 1 引言和范围
The scope of this document is to provide a concept design structural definition of the station called Al Reem Station, including a Cut and Cover at its exit, for the Phase 1 UAE High Speed Rail (HSR) Project. The design shall be in compliance with the Contract and shall incorporate International Best Practices. 本文件的范围是为阿联酋高速铁路(HSR)项目一期工程提供一个名为 Al Reem 站的概念设计结构定义,包括其出口处的切割和盖板。设计应符合合同规定,并采用国际最佳做法。
2 REFERENCES AND STANDARDS 2 参考资料和标准
2.1 References 2.1 参考资料
The following documents are included as a reference guide: 以下文件可作为参考指南:
Document No. 文件编号
Document Name 文件名称
2103-AUH-EBB-RP-75222
Geotechnical Report for Concept Design 概念设计岩土工程报告
P2103-AUH-ERA-RP-75001
Phase 1E - Section Reem - Jubail. Railway Alignment Design Report 第 1E 期 - 里姆-朱拜勒段。铁路线路设计报告
P2103-UAE-EAS-RP-05108
Building Structures Design Criteria 建筑结构设计标准
P2103-UAE-EST-RP-02125-00
阿拉伯联合酋长国高速铁路项目隧道和地下设计标准
UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND
ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND
SIZING REPORT (CONCEPT DESIGN)
ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND
SIZING REPORT (CONCEPT DESIGN)| ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND |
| :--- |
| SIZING REPORT (CONCEPT DESIGN) |
Document No. Document Name
2103-AUH-EBB-RP-75222 Geotechnical Report for Concept Design
P2103-AUH-ERA-RP-75001 Phase 1E - Section Reem - Jubail. Railway Alignment Design Report
P2103-UAE-EAS-RP-05108 Building Structures Design Criteria
P2103-UAE-EST-RP-02125-00 "UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND
DESIGN CRITERIA"
P2103-UAE-EST-RP-02105-00 RAILWAY STRUCTURES DESIGN CRITERIA
P2103-UAE-EBB-RP-03001 Seismic Hazard Assessment Study
P2103-AUH-EAD-RP-75002 "ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND
SIZING REPORT (CONCEPT DESIGN)"| Document No. | Document Name |
| :--- | :--- |
| 2103-AUH-EBB-RP-75222 | Geotechnical Report for Concept Design |
| P2103-AUH-ERA-RP-75001 | Phase 1E - Section Reem - Jubail. Railway Alignment Design Report |
| P2103-UAE-EAS-RP-05108 | Building Structures Design Criteria |
| P2103-UAE-EST-RP-02125-00 | UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND <br> DESIGN CRITERIA |
| P2103-UAE-EST-RP-02105-00 | RAILWAY STRUCTURES DESIGN CRITERIA |
| P2103-UAE-EBB-RP-03001 | Seismic Hazard Assessment Study |
| P2103-AUH-EAD-RP-75002 | ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND <br> SIZING REPORT (CONCEPT DESIGN) |
Table 2-1 References 表 2-1 参考资料
2.2 Codes and standards 2.2 规范和标准
Refer to Design Criteria Reports included in chapter 2. 请参阅第 2 章中的 "设计标准报告"。
2.3 Units 2.3 单位
The Metric SI system will be used throughout the project unless otherwise stated. 除非另有说明,否则整个项目都将使用公制 SI 系统。
[m], [mm], [kN], [kN/m²], [kN/m³], [MPa], [kPa], [ {:^(@)C],[rad],[^(@)]\left.{ }^{\circ} \mathrm{C}\right],[\mathrm{rad}],\left[{ }^{\circ}\right].
2.4 Design software 2.4 设计软件
2.4.1. Structural design 2.4.1.结构设计
The following software will be used for the structural design. 结构设计将使用以下软件。 qquad\qquad
Calculation type 计算类型
Software and description 软件和说明
FE structures modelling FE 结构建模
SAP 2000
D-walls calculations D 型墙计算
RIDO
Structural drawings 结构图
REVIT
Sectional verifications 分区核查
Fagus or Excel spread sheets 法格斯或 Excel 电子表格
Limit State calculations 极限状态计算
Excel Spread sheets Excel 电子表格
Calculation type Software and description
FE structures modelling SAP 2000
D-walls calculations RIDO
Structural drawings REVIT
Sectional verifications Fagus or Excel spread sheets
Limit State calculations Excel Spread sheets| Calculation type | Software and description |
| :--- | :--- |
| FE structures modelling | SAP 2000 |
| D-walls calculations | RIDO |
| Structural drawings | REVIT |
| Sectional verifications | Fagus or Excel spread sheets |
| Limit State calculations | Excel Spread sheets |
Table 2-2 Software used for the structural design. 表 2-2 结构设计所用软件
3 GENERAL DESIGN PARAMETERS 3 一般设计参数
3.1 Materials and durability 3.1 材料和耐用性
3.1.1. Durability 3.1.1.耐久性
All the general requirements concerning the durability of the elements are defined in the documents P2103-UAE-EAS-RP-05108 Building Structures Design Criteria and P2103-UAE- EST-RP-02125-00 Tunnels and Underground Design Criteria. Below, it is detailed some characteristics considered in Al Reem Station (also called ADR Station) for this preliminar stage, however, the contractor shall provide the durability assesment during detailed design stage. P2103-UAE-EAS-RP-05108 《建筑结构设计标准》和 P2103-UAE- EST-RP-02125-00 《隧道和地下设计标准》中规定了有关构件耐久性的所有一般要求。下文详细介绍了 Al Reem 车站(又称 ADR 车站)在初步阶段考虑的一些特点,但承包商应在详细设计阶段提供耐久性评估。
3.1.2. Concrete 3.1.2.混凝土
3.1.2.1 Concrete properties 3.1.2.1 混凝土特性
For ADR Station, the following classes of concrete will be used: ADR 站将使用以下等级的混凝土:
Table 3-1 Concrete types as per EN 1992-1-1 表 3-1 符合 EN 1992-1-1 标准的混凝土类型
(*) Concrete properties shall be confirmed as per geotechnical results and environmental conditions. (*) 混凝土性能应根据岩土工程结果和环境条件加以确认。
3.1.2.2 Concrete cover 3.1.2.2 混凝土覆盖层
Concrete covers are defined in P2103-UAE-EAS-RP-05108 and P2103-UAE-ECB-RP-02105. 混凝土盖板在 P2103-UAE-EAS-RP-05108 和 P2103-UAE-ECB-RP-02105 中定义。
3.1.3. Steel reinforcement 3.1.3.钢筋
All reinforcing steel shall be S500B with minimum yield strength ( f_(y)\mathrm{f}_{\mathrm{y}} ) of 500 MPa . 所有钢筋均应为 S500B,最小屈服强度( f_(y)\mathrm{f}_{\mathrm{y}} )为 500 兆帕。
The steel reinforcement properties are defined in P2103-UAE-EAS-RP-05108 and P2103-UAE-ECB-RP-02105. 钢筋性能在 P2103-UAE-EAS-RP-05108 和 P2103-UAE-ECB-RP-02105 中定义。
4 GEOTECHNICS 4 地球技术
4.1 Design Approach 4.1 设计方法
4.1.1. Partial Factors for limits states verification 4.1.1.极限状态核查的部分因素
Underground structures shall be designed in accordance with the requirements established in Eurocode 7 and Eurocode 8-58-5. In designing by Eurocode, EQU, GEO, STR, UPL and HYD ultimate limit states must be taken into consideration, where relevant. 地下结构应根据欧洲规范 7 和欧洲规范 8-58-5 中规定的要求进行设计。在按照欧洲规范进行设计时,必须酌情考虑 EQU、GEO、STR、UPL 和 HYD 极限状态。
The verification of global uplift will be performed according UPL limit state while the verification of structural (STR) and ground (GEO) limit states will be performed according to Design Approach 1: 将根据 UPL 极限状态进行总体翘曲验证,而结构(STR)和地面(GEO)极限状态的验证将根据设计方法 1 进行:
Combination 1: A1+M1+R1 组合 1:A1+M1+R1
Combination 2: A2+M2+R4 组合 2:A2+M2+R4
Annex A of Eurocode 7 defines the following partial safety factors, which will be considered in the analyses. 《欧洲规范》第 7 条附件 A 规定了以下部分安全系数,在分析中将予以考虑。
Partial factors for actions and effects of actions - (STR and GEO) 行动的部分因素和行动的影响--(STR 和 GEO)
Table 4-5 Partial factors for soil parameters for the UPL limit state ETIHAD RAIL 表 4-5 埃蒂哈德铁路 UPL 极限状态下土壤参数的部分系数
Partial factors for resistances - (UPL) 电阻部分因数 - (UPL)
Resistance 阻力
Symbol 符号
UPL
Tensile pile resistance 抗拉桩
gamma_(s,t)\gamma_{s, t}
(^(**))\left(^{*}\right)
Anchorages 锚地
gamma_(a)\gamma_{a}
1.40
(*) Piles design should comply with clauses A3.3.2 and A.3.3.3 ^(2)^{2} (*) 桩基设计应符合第 A3.3.2 和 A.3.3.3 ^(2)^{2} 条的规定。
Resistance Symbol UPL
Tensile pile resistance gamma_(s,t) (^(**))
Anchorages gamma_(a) 1.40
(*) Piles design should comply with clauses A3.3.2 and A.3.3.3 ^(2) | Resistance | Symbol | UPL |
| :---: | :---: | :---: |
| Tensile pile resistance | $\gamma_{s, t}$ | $\left(^{*}\right)$ |
| Anchorages | $\gamma_{a}$ | 1.40 |
| (*) Piles design should comply with clauses A3.3.2 and A.3.3.3 $^{2}$ | | |
Table 4-6 Partial factors for resistances for the UPL limit state 表 4-6 UPL 极限状态的电阻局部系数
Clause A3.3.2 in BS NA EN 1997-1 indicates that a model factor of 1.40 should be applied in the calculations of the characteristic resistances for piles. Additionally defines the partial factors for pile’s resistances calculations (R1 and R4 sets) which correspond to the ones defined in Table 4-3. BS NA EN 1997-1 第 A3.3.2 条指出,在计算桩的特性阻力时,应采用 1.40 的模型系数。此外,还定义了用于计算桩抗力的部分系数(R1 和 R4 组),与表 4-3 中定义的系数一致。
4.2 Geotechnical Data 4.2 岩土工程数据
Geotechnical properties have been established based on the Geotechnical Design Notes for ADR Station. 岩土特性是根据 ADR 站的岩土设计说明确定的。
GEOTECHNICAL DESIGN NOTE 岩土工程设计说明
GENERAL
Line: 线:
Intercity service Abu Dhabi-Dubai 阿布扎比-迪拜城际服务
Section: 部分:
AI Reem Island - Saadiyat Island AI 里姆岛 - 萨迪亚特岛
STRUCTURE INFORMATION 结构信息
Type: 类型
Station 车站
Str. ID: Str.ID:
Al Reem Station Al Reem 火车站
Chainage start: 链条启动:
0+000
Chainage end: 链条末端:
0+800
Nb. tracks 注:轨道
Main dimensions (m): 主要尺寸(米):
Structural typology: 结构类型学:
Cut & Cover 剪切和覆盖
GEOTECHNICAL CONTEXT AND ASSUMPTIONS 岩土工程背景和假设
GEOTECHNICAL DESIGN NOTE
GENERAL
Line: Intercity service Abu Dhabi-Dubai
Section: AI Reem Island - Saadiyat Island
STRUCTURE INFORMATION
Type: Station
Str. ID: Al Reem Station
Chainage start: 0+000
Chainage end: 0+800
Nb. tracks
Main dimensions (m):
Structural typology: Cut & Cover
GEOTECHNICAL CONTEXT AND ASSUMPTIONS | GEOTECHNICAL DESIGN NOTE | |
| :---: | :---: |
| GENERAL | |
| Line: | Intercity service Abu Dhabi-Dubai |
| Section: | AI Reem Island - Saadiyat Island |
| STRUCTURE INFORMATION | |
| Type: | Station |
| Str. ID: | Al Reem Station |
| Chainage start: | 0+000 |
| Chainage end: | 0+800 |
| Nb. tracks | |
| Main dimensions (m): | |
| Structural typology: | Cut & Cover |
| GEOTECHNICAL CONTEXT AND ASSUMPTIONS | |
Proposed profile: 建议的概况:
Ground Water Depth: 地下水深度:
Design Code and Ground Type: 设计规范和地面类型:
Geotechnical parameters: 岩土工程参数:
UG
ID (说明)
ID
(Description)
ID
(Description)| ID |
| :---: |
| (Description) |
RECOMMENDATIONS 建议
Geotechnical Risks: 岩土工程风险:
0.0 to 7.0 m MD SAND quad(SL+4,0)\quad(\mathrm{SL}+4,0) 0.0 至 7.0 米 MD 砂 quad(SL+4,0)\quad(\mathrm{SL}+4,0)
7.0 to 20 m SST 7.0 至 20 米海平面
From 20.0 to depth MDS 从 20.0 到 MDS 深度 0,0m0,0 \mathrm{~m} elevation 0,0m0,0 \mathrm{~m} 提升
B
Geotechnical paramers: 岩土工程参数:
Literature refers to low to moderate risk of cavities in Saadiyat Island, mainly at the contact between the Ghayati (formed by 文献提到,萨迪亚特岛的龋齿风险为低度至中度,主要发生在盖亚提(由藻类形成的)和萨迪亚特(由藻类形成的)之间的接触处。
sandstone and calcarenite) and the Gachsaran Formation (constituted by mudstone, gypsum and siltstone). The investigations currenlty available do not reach that contact. For this reason, during future stages of the present project the geotechnical investigations in the area, shall be focused on: 由砂岩和方解石组成)和加赫萨兰层(由泥岩、石膏和粉砂岩组成)。目前进行的勘测还没有达到这一接触点。因此,在本项目的未来阶段,将重点对该地区进行岩土工程勘察:
-Detection of karst through massive geophysics and boreholes at specific location where evidence of karst are detected. -Swelling potential of mudstone, siltstone and gypsum -通过大规模地球物理探测和在发现岩溶迹象的特定地点进行钻孔探测岩溶。-泥岩、粉砂岩和石膏的膨胀潜力
In this environment of extreme variability, the actual rock conditions for a specific drilled shaft cannot be determined with any degree of accuracy prior to construction. Design, construction, and inspection have to be flexible enough to adjust to conditions actually encountered. Probe holes for downhole inspection and identification of cavities and seams along the sides and beneath the base of the D W alls shall be executed during construction. 在这种极端多变的环境中,特定钻井的实际岩石条件无法在施工前准确确定。设计、施工和检查必须足够灵活,以适应实际遇到的情况。在施工过程中,应打探孔进行井下检查,并确定井筒两侧和底部的空洞和接缝。
These aspects shall be carefully considered for the design of deep excavations, particularly when the structure is founded in the Gachsaran formation. 在设计深基坑时应仔细考虑这些方面,特别是当结构建立在加克萨兰地层中时。
Dewatering: 脱水:
According to the geotechnical information available, the stations D Walls will be embedded in the Gachsaran Formation. Due to the expected low permeability of this formation, no considerable water ingress is expected during excavation. Therefore, the dewatering inside the station can be carried out through French drains to evacuate the water trapped in the ground. Thus, no impact is foreseen on adjacent structures. 根据现有的岩土工程资料,车站 D 的围墙将埋在 Gachsaran 地层中。由于该地层的渗透性较低,预计在挖掘过程中不会有大量的水渗入。因此,车站内部的脱水工作可通过法国式排水沟进行,以排出滞留在地下的水。因此,预计不会对邻近结构造成影响。
In case cavities are detected at the analysed area, groun treatment shall be carried out prior to the construction of the station to gurantee the stability and watertightness of the excavation. 如果在分析区域发现空洞,则应在建造车站之前对空洞进行处理,以确保挖掘的稳定性和水密性。
Table 4-7 Ground materials characterization. ADR Station. 表 4-7 地面材料特征。ADR 站。
Based on the ground characteristics, site ground may be classified as TYPE B, according to EC 8, as indicated in figures above. 如上图所示,根据地面特征,场地地面可按 EC 8 划分为 B 类。
The value of SS parameter, describing the recommended Type 1 elastic response spectra is set equal to 1.35 as indicated in table 3.3 of EC 8 : 如 EC 8 表 3.3 所示,描述推荐的 1 类弹性响应谱的 SS 参数值设为 1.35:
Ground type S T_(B)(s) T_(C)(s) T_(D)(s)
A 1,00 0,05 0,25 1,20
B 1,35 0,05 0,25 1,20
C 1,50 0,10 0,25 1,20
D 1,80 0,10 0,30 1,20
E 1,60 0,05 0,25 1,20| Ground type | $\mathbf{S}$ | $\boldsymbol{T}_{\boldsymbol{B}}(\boldsymbol{s})$ | $\boldsymbol{T}_{\boldsymbol{C}}(\boldsymbol{s})$ | $\boldsymbol{T}_{\boldsymbol{D}}(\boldsymbol{s})$ |
| :---: | :---: | :---: | :---: | :---: |
| A | 1,00 | 0,05 | 0,25 | 1,20 |
| B | $\mathbf{1 , 3 5}$ | $\mathbf{0 , 0 5}$ | $\mathbf{0 , 2 5}$ | $\mathbf{1 , 2 0}$ |
| C | 1,50 | 0,10 | 0,25 | 1,20 |
| D | 1,80 | 0,10 | 0,30 | 1,20 |
| E | 1,60 | 0,05 | 0,25 | 1,20 |
Figure 4-2 Ground types according to EC 8 - Table 3.3. 图 4-2 根据 EC 8 表 3.3 确定的地面类型。
الاتحاد للقطـارات
ETIHADRAIL
5 DESIGN LOADS AND COMBINATIONS 5 设计荷载和组合
5.1 Load combinations 5.1 载荷组合
Additional information concerning load combinations be found in the P2103-UAE-EAS-RP-05108 Building Structures Design Criteria. 有关荷载组合的其他信息,请参见 P2103-UAE-EAS-RP-05108 《建筑结构设计标准》。
5.1.1. Ultimate limit state 5.1.1.极限状态
Refer to P2103-UAE-EAS-RP-05108 Building Structures Design Criteria. 请参考 P2103-UAE-EAS-RP-05108 建筑结构设计标准。
5.1.2. Serviceability limit states 5.1.2.适用性极限状态
Refer to P2103-UAE-EAS-RP-05108 Building Structures Design Criteria. 请参考 P2103-UAE-EAS-RP-05108 建筑结构设计标准。
5.2 Loads Definition 5.2 载荷定义
The structures shall be designed to resist load effects due to construction staging, dead load, imposed load, earth pressure/surcharge, temperature, creep and shrinkage, wind load and seismic load. The documents P2103-UAE-ECBRP-02105R P-02105 and P2103-UAE-EAS-RP-05108 give detailed information about the loads in the project. However, here below we strictally define the loads considered on ADR buried station. 结构设计应能抵抗施工分期、自重、外加荷载、土压/附加荷载、温度、蠕变和收缩、风荷载和地震荷载造成的荷载影响。P2103-UAE-ECB RP-02105R P-02105 和 P2103-UAE-EAS-RP-05108 号文件详细介绍了项目中的荷载。不过,在下文中,我们将严格定义 ADR 预埋站所考虑的荷载。
5.2.1. Dead loads 5.2.1.死荷载
Dead load (DL) comprises the self-weight for all the structural elements and shall be evaluated in accordance with the following densities: 自重(DL)包括所有结构构件的自重,应根据以下密度进行评估:
Material Weight density (kN//m^(3))
Non-reinforced concrete 24.00
Reinforced and prestressed concrete 25.00
Steel 78.5| Material | Weight density $\left(\mathbf{k N} / \mathbf{m}^{\mathbf{3}}\right)$ |
| :--- | :--- |
| Non-reinforced concrete | 24.00 |
| Reinforced and prestressed concrete | 25.00 |
| Steel | 78.5 |
Table 5-1 Weight of Materials and Finishes 表 5-1 材料和表面处理的重量
5.2.2. Earth Pressure Loads 5.2.2.土压力荷载
Earth pressure loads in retaining structures shall be calculated as per EN 1997-1 Section 9. In general, they are calculated as per a triangular distribution where the total value is: 挡土结构中的土压力荷载应根据 EN 1997-1 第 9 节进行计算。一般情况下,它们按三角形分布计算,其中总值为
Where K_(d)K_{d} will depend upon each situation being either the rest coefficient K_(0)K_{0}, the active coefficient K_(a)K_{a} or the passive coefficient K_(p)K_{p} these are calculated as follows: 其中 K_(d)K_{d} 取决于每种情况下的静止系数 K_(0)K_{0} 、主动系数 K_(a)K_{a} 或被动系数 K_(p)K_{p} ,计算公式如下:
At rest coefficient - K_(0)K_{0} 静止系数 - K_(0)K_{0}
At rest, coefficient will be calculated as: 静止时,系数的计算公式为
Where: 在哪里?
H wall height H 墙壁高度 E_(ws)quadE_{w s} \quad static water force E_(ws)quadE_{w s} \quad 静态水力 E_(wd)E_{w d} dynamic water force E_(wd)E_{w d} 动态水力 gammaquad\gamma \quad soil unit weight gammaquad\gamma \quad 土壤单位重量 K_(AD)quadK_{A D} \quad earth pressure coefficient (static + dynamic) K_(AD)quadK_{A D} \quad 土压力系数(静态 + 动态) k_(v)quadk_{v} \quad vertical seismic coefficient k_(v)quadk_{v} \quad 垂直地震系数
The earth pressure coefficient may be computed from the Mononobe and Okabe formula. 土压力系数可根据 Mononobe 和 Okabe 公式计算得出。
For active states: 对于活动状态: beta <= phi_(d)^(')-thetaquadK_(AD)=(sin^(2)(psi+phi_(d)^(')-theta))/(cos theta*sin^(2)psi*sin(psi-theta-delta_(d))[1+[(sin(phi_(d)^(')+delta_(d))*sin(phi_(d)^(')-beta-theta))/(sin(psi-theta-delta_(d))*sin(psi+beta)))]^(2)\left.\beta \leq \phi_{d}^{\prime}-\theta \quad K_{A D}=\frac{\sin ^{2}\left(\psi+\phi_{d}^{\prime}-\theta\right)}{\cos \theta \cdot \sin ^{2} \psi \cdot \sin \left(\psi-\theta-\delta_{d}\right)\left[1+\left[\frac{\sin \left(\phi_{d}^{\prime}+\delta_{d}\right) \cdot \sin \left(\phi_{d}^{\prime}-\beta-\theta\right)}{\sin \left(\psi-\theta-\delta_{d}\right) \cdot \sin (\psi+\beta)}\right.\right.}\right]^{2} beta > phi_(d)^(')-thetaquadK_(AD)=(sin^(2)(psi+phi-theta))/(cos theta*sin^(2)psi*sin(psi-theta-delta_(d)))\beta>\phi_{d}^{\prime}-\theta \quad K_{A D}=\frac{\sin ^{2}(\psi+\phi-\theta)}{\cos \theta \cdot \sin ^{2} \psi \cdot \sin \left(\psi-\theta-\delta_{d}\right)}
In the preceding expressions the following notations are used: 在前面的表达式中使用了以下符号: phi_(d)^(')quad\phi_{d}^{\prime} \quad is the design value of the angle of shearing resistance of soil. phi_(d)^(')quad\phi_{d}^{\prime} \quad 是土壤抗剪角度的设计值。
psi\psi and beta\beta are the inclination angles of the back of the wall and backfill surface from the horizontal line, respectively. psi\psi 和 beta\beta 分别是墙背面和回填面与水平线的倾斜角。 delta_(d)quad\delta_{d} \quad is the design value of the friction angle between the soil and the wall. delta_(d)quad\delta_{d} \quad 是土壤与墙壁之间摩擦角的设计值。
tan theta=(k_(h))/(1+-k_(v))\tan \theta=\frac{k_{h}}{1 \pm k_{v}}
To consider the total dynamic earth pressure, a dynamic increment is added to the static earth pressure. This increment is computed as follows. 为了考虑总的动态土压力,在静态土压力的基础上增加了一个动态增量。该增量的计算方法如下
Inertial loads 惯性负载
In addition, the seismic action creates inertial forces acting in both horizontal and vertical direction. These forces are also taken into account in the abutment design and can be written as follows: 此外,地震作用还会产生作用于水平和垂直方向的惯性力。这些力在基台设计中也要考虑在内,可写成以下形式:
Where: 在哪里? W_(i)quadW_{i} \quad vertical forces (masses) W_(i)quadW_{i} \quad 垂直力(质量) k_(h),k_(v)quadk_{h}, k_{v} \quad horizontal and vertical seismic coefficients affecting all the masses k_(h),k_(v)quadk_{h}, k_{v} \quad 影响所有质点的水平和垂直地震系数
k_(h)=alpha(S)/(r)k_{h}=\alpha \frac{S}{r}
k_(v)=+-0.5k_(h)quadk_{v}= \pm 0.5 k_{h} \quad if ^(a_(vg))//a_(g){ }^{a_{v g}} / a_{g} is larger than 0.6 k_(v)=+-0.5k_(h)quadk_{v}= \pm 0.5 k_{h} \quad 如果 ^(a_(vg))//a_(g){ }^{a_{v g}} / a_{g} 大于 0.6 k_(v)=+-0.33k_(h)quadk_{v}= \pm 0.33 k_{h} \quad otherwise k_(v)=+-0.33k_(h)quadk_{v}= \pm 0.33 k_{h} \quad 否则 alpha=a_(g)*gamma_(I)\alpha=a_{g} \cdot \gamma_{I}, where a_(g)a_{g} is the value of the Peak Ground acceleration from UAE High Speed Rail Project Seismic Hazard Assessment Study, P2103-UAE-EBB-RP-03001, considering a Return Period of 2475 years. alpha=a_(g)*gamma_(I)\alpha=a_{g} \cdot \gamma_{I} ,其中 a_(g)a_{g} 是阿联酋高速铁路项目地震危害评估研究 P2103-UAE-EBB-RP-03001 中的峰值地面加速度值,考虑到 2475 年的回归期。
In this case, k_(v)\mathrm{k}_{\mathrm{v}} is considered as null, a_(g)\mathrm{a}_{\mathrm{g}} is 0.121 , and gamma_(I)\gamma_{I} is established as equal to 1.0 , as indicated in UAE High Speed Rail Project Building Structures Design Criteria, P2103-UAE-EAS-RP-05108-AC. 在这种情况下, k_(v)\mathrm{k}_{\mathrm{v}} 视为空, a_(g)\mathrm{a}_{\mathrm{g}} 为 0.121, gamma_(I)\gamma_{I} 等于 1.0,如《阿联酋高速铁路项目建筑结构设计标准》P2103-UAE-EAS-RP-05108-AC 所示。
For the basic design, and according to the geotechnical data on site, the ground is considered type “B”; the spectrum 2 is considered as indicated in UAE High Speed Rail Project Seismic Hazard Assessment Study, P2103-UAE-EBB-RP03001. 在基本设计中,根据现场岩土工程数据,地基被视为 "B "型;频谱 2 被视为阿联酋高速铁路项目地震危害评估研究 P2103-UAE-EBB-RP03001。
In the absence of test results on the backfill material, the following design criteria in determining earth pressures as per recommendations of the Abu Dhabi Quality and Conformity Council - Road Structures Design Manual (TR-516) as a minimum will be used: 在没有回填材料测试结果的情况下,将根据阿布扎比质量和合格委员会的建议,至少采用以下设计标准来确定土压力--《道路结构设计手册》(TR-516):
Hydrostatic water pressure will be considered during construction stages as well as the final stage of completion as per applicable ground water levels at each stage. 在施工阶段和最后竣工阶段,将根据每个阶段适用的地下水位考虑静水压力。
Where the foundations are deeper than the water table level, the uplift forces due to flotation will be considered. 当地基深度超过地下水位时,将考虑因漂浮而产生的隆起力。
5.2.3. Super Imposed loads 5.2.3.超强荷载
Superimposed dead load comprises the self-weight for all secondary elements that rest upon the structure, such as tracks (slab track or ballast) and anchorages, utility cables and ducts, railings, waterproofing, coatings layers, and linings. 叠加自重包括结构上所有次要构件的自重,如轨道(板轨或道碴)和锚固件、公用电缆和管道、栏杆、防水层、涂层和衬里。
The nominal load values and the weighting factors to be considered to determine the characteristic load values to be applied in the design are given in the tables below (ref. BS EN 1991-1-1 and its NA). 下表(参考 BS EN 1991-1-1 及其 NA)列出了额定荷载值和加权系数,以确定设计中应用的特征荷载值。
Removable loads: 可拆卸负载:
Element 要素
Unit weight (kN/m {:m^(3))\left.\mathbf{m}^{\mathbf{3}}\right) 单位重量 (kN/m {:m^(3))\left.\mathbf{m}^{\mathbf{3}}\right) )
Ballast 镇流器
21.1
Waterproofing and protective covering 防水和保护层
22.0
Concrete protective layer 混凝土保护层
25.0
Bitumen asphalt 沥青
23.0
Dry sand, earth, or gravel infill 干沙、土或砾石填充物
20.0
Element Unit weight (kN/m {:m^(3))
Ballast 21.1
Waterproofing and protective covering 22.0
Concrete protective layer 25.0
Bitumen asphalt 23.0
Dry sand, earth, or gravel infill 20.0| Element | Unit weight (kN/m $\left.\mathbf{m}^{\mathbf{3}}\right)$ |
| :---: | :---: |
| Ballast | 21.1 |
| Waterproofing and protective covering | 22.0 |
| Concrete protective layer | 25.0 |
| Bitumen asphalt | 23.0 |
| Dry sand, earth, or gravel infill | 20.0 |
Table 5-3 Finishing loads 表 5-3 加工负载
So, for the PE stage a superimposed load value of 2.66kN//m^(2)2.66 \mathrm{kN} / \mathrm{m}^{2} has been defined to consider all elements listed above on the slab levels and a 1.50 m filling above the roof slab. 因此,对于 PE 阶段,我们定义了 2.66kN//m^(2)2.66 \mathrm{kN} / \mathrm{m}^{2} 的叠加荷载值,以考虑楼板层上的所有上述元素以及屋顶板上方 1.50 米的填充物。
5.2.4. Imposed loads 5.2.4.外加荷载
5.2.4.1 Characteristic values 5.2.4.1 特性值
Occupancy or Use 占用或使用
类别,根据 EN 1991-1-1\mathbf{1 9 9 1 - 1 - 1}
Category, as per EN
1991-1-1\mathbf{1 9 9 1 - 1 - 1}
Category, as per EN
1991-1-1| Category, as per EN |
| :---: |
| $\mathbf{1 9 9 1 - 1 - 1}$ |
Uniform Load (kN/m²), as per EN
1991-1-1| Uniform Load (kN/m²), as per EN |
| :---: |
| $\mathbf{1 9 9 1 - 1 - 1}$ |
Platforms / Concourse (Public) 平台/大厅(公共)
C5
5.0
Office buildings 办公楼
Offices 办事处
B
2.5
Lobbies and 1st floor corridors 大堂和一楼走廊
C3
5.0
Corridors above 1st floor 一楼以上的走廊
C2
4.0
Technical rooms 技术室
E1
7.5
Access Floor system - Computer use 进入楼层系统 - 计算机使用
C3
5.0
Stores / Shops 商店
5.0
Retail, all floors 零售,所有楼层
D1
Occupancy or Use "Category, as per EN
1991-1-1" "Uniform Load (kN/m²), as per EN
1991-1-1"
Platforms / Concourse (Public) C5 5.0
Office buildings
Offices B 2.5
Lobbies and 1st floor corridors C3 5.0
Corridors above 1st floor C2 4.0
Technical rooms E1 7.5
Access Floor system - Computer use C3 5.0
Stores / Shops 5.0
Retail, all floors D1 | Occupancy or Use | Category, as per EN <br> $\mathbf{1 9 9 1 - 1 - 1}$ | Uniform Load (kN/m²), as per EN <br> $\mathbf{1 9 9 1 - 1 - 1}$ |
| :---: | :---: | :---: |
| Platforms / Concourse (Public) | C5 | 5.0 |
| Office buildings | | |
| Offices | B | 2.5 |
| Lobbies and 1st floor corridors | C3 | 5.0 |
| Corridors above 1st floor | C2 | 4.0 |
| Technical rooms | E1 | 7.5 |
| Access Floor system - Computer use | C3 | 5.0 |
| Stores / Shops | | 5.0 |
| Retail, all floors | D1 | |
Table 5-4 Imposed loads to be considered in elevated stations. ETIHADRAIL 表 5-4 高架车站应考虑的外加荷载。ETIHADRAIL
(*) ^(**)^{*} technical rooms loads will be confirmed in the D&B stage according to final equipment layout. (*) ^(**)^{*} 技术用房的负荷将在设计和预算阶段根据最终设备布局进行确认。
For the PE analysis level of detail, a typical 5.0KN//m^(2)5.0 \mathrm{KN} / \mathrm{m}^{2} of live load has been used for all areas. On D&B stage, the specific loads will be applied according to final room locations. 对于 PE 分析的详细程度,所有区域都采用了典型的 5.0KN//m^(2)5.0 \mathrm{KN} / \mathrm{m}^{2} 活荷载。在 D&B 阶段,将根据房间的最终位置施加具体荷载。
5.2.5. Railway loads 5.2.5.铁路荷载
The railway traffic loads in general follows Section 6.3 of EN 1991-2 and shall be in accordance with Local Roadway Authority requirement. The dynamic effects of the railway loads shall follow Section 6.4 of EN 1991-2. 铁路交通荷载一般应遵循 EN 1991-2 第 6.3 节的规定,并应符合当地道路管理局的要求。铁路荷载的动态效应应遵循 EN 1991-2 第 6.4 节的规定。
5.2.5.1 Vertical loads. 5.2.5.1 垂直荷载。
5.2.5.1.1 Load model 71 5.2.5.1.1 装载模型 71
Load 71 has been modelled as: 负载 71 的模型为
Figure 5-1 Load model 71 and characteristic values for vertical loads 图 5-1 荷载模型 71 和垂直荷载的特征值
The characteristic values of the Load Model 71 shall be multiplied by a classification factor alpha=1.21\alpha=1.21 载荷模型 71 的特征值应乘以分类系数 alpha=1.21\alpha=1.21 。
For the determination of the most adverse load effects from the application of Load Model 71 the following is to be considered: 在确定应用载荷模型 71 所产生的最不利载荷影响时,应考虑以下因素:
for structures carrying three or more tracks, Load Model 71 shall be applied to one track or to two tracks or 0.75 times Load Model 71 to three or more of the tracks. 对于承载三条或三条以上轨道的结构,应在一条轨道或两条轨道上使用 71 号荷载模型,或在三条或三条以上轨道上使用 0.75 倍 71 号荷载模型。
Load Model SW/O represents the static effect of vertical loading due to normal rail traffic on continuous beams, and Load Model SW/2 represents the static effect of vertical loading due to heavy rail traffic. The load arrangement shall be taken as shown in the next figure, with the characteristic values of the vertical loads according to the following table: 荷载模型 SW/O 表示正常轨道交通对连续梁产生的垂直荷载静效应,荷载模型 SW/2 表示重载轨道交通产生的垂直荷载静效应。荷载布置如下图所示,垂直荷载的特征值如下表所示:
Figure 5-2 Load model SW/0 and SW/2 图 5-2 装载模型 SW/0 和 SW/2
Figure 5-3 Characteristic values for vertical loads for load models SW/0 and SW/2 图 5-3 荷载模型 SW/0 和 SW/2 的垂直荷载特征值
Load Model SW/0 shall be multiplied by the factor alpha=1.21\alpha=1.21 in accordance with the previous section. 负载模式 SW/0 应根据上一节的规定乘以系数 alpha=1.21\alpha=1.21 。
For the determination of the most adverse load effects from the application of Load Model SW/O the following is to be considered: 为确定 SW/O 负载模型的应用对负载的最不利影响,应考虑以下几点:
for structures carrying three or more tracks, Load Model SW/0 shall be applied to one track or to two tracks or 0.75 times Load Model SW/0 to three or more of the tracks. 对于承载三条或更多轨道的结构,应在一条或两条轨道上使用 SW/0 荷载模型,或在三条或更多轨道上使用 0.75 倍 SW/0 荷载模型。
5.2.5.1.1 Accidental loads due to derailed rail traffic under adjacent structures 5.2.5.1.1 相邻结构下轨道交通脱轨造成的意外荷载
In this section it is included the load definition for accidental loads in the station structure, according to EN 1997-1-7 and UIC-Code 777-2. 在本节中,根据 EN 1997-1-7 和 UIC Code 777-2 标准,对车站结构中的意外荷载进行了定义。
Railway stations can be considered as Class A structures, according to Table 4.3 of EN 1991-1-7 as it is shown next: 根据 EN 1991-1-7 表 4.3,火车站可被视为 A 级结构,如下图所示:
Structures that span across or near to the operational railway that are either
permanently occupied or serve as a temporary gathering place for people or
consist of more than one storey.
Structures that span across or near to the operational railway that are either
permanently occupied or serve as a temporary gathering place for people or
consist of more than one storey.| Structures that span across or near to the operational railway that are either |
| :--- |
| permanently occupied or serve as a temporary gathering place for people or |
| consist of more than one storey. |
Massive structures that span across or near the operational railway such as
bridges carrying vehicular traffic or single storey buildings that are not
permanently occupied or do not serve as a temporary gathering place for
people.
Massive structures that span across or near the operational railway such as
bridges carrying vehicular traffic or single storey buildings that are not
permanently occupied or do not serve as a temporary gathering place for
people.| Massive structures that span across or near the operational railway such as |
| :--- |
| bridges carrying vehicular traffic or single storey buildings that are not |
| permanently occupied or do not serve as a temporary gathering place for |
| people. |
Class A "Structures that span across or near to the operational railway that are either
permanently occupied or serve as a temporary gathering place for people or
consist of more than one storey."
Class B "Massive structures that span across or near the operational railway such as
bridges carrying vehicular traffic or single storey buildings that are not
permanently occupied or do not serve as a temporary gathering place for
people."| Class A | Structures that span across or near to the operational railway that are either <br> permanently occupied or serve as a temporary gathering place for people or <br> consist of more than one storey. |
| :---: | :--- |
| Class B | Massive structures that span across or near the operational railway such as <br> bridges carrying vehicular traffic or single storey buildings that are not <br> permanently occupied or do not serve as a temporary gathering place for <br> people. |
Table 5-5 Classes of structures subjected to impact from derailed railway traffic (table 4.3, EN 1991-1-7). 表 5-5 受脱轨铁路车辆撞击的结构等级(表 4.3,EN 1991-1-7)。
For Class A structures where the maximum speed of rail traffic at the location is less or equal to 120km//h120 \mathrm{~km} / \mathrm{h}, according to chapter 4.5.1.4 of EN 1991-1-7, the static equivalent forces due to an impact on supporting structural members can be considered as indicated in table 4.4: 根据 EN 1991-1-7 第 4.5.1.4 章,对于轨道交通最高速度小于或等于 120km//h120 \mathrm{~km} / \mathrm{h} 的 A 级结构,可考虑表 4.4 所示的因冲击支撑结构构件而产生的静态等效应力:
从结构部件到最近轨道中心线的距离 " dd " (m)
Distance " dd " from structural elements to the
centreline of the nearest track
(m)
Distance " d " from structural elements to the
centreline of the nearest track
(m)| Distance " $d$ " from structural elements to the |
| :--- |
| centreline of the nearest track |
| (m) |
力 F_(dx)^("a ")F_{d x}{ }^{\text {a }} (kN)
Force F_(dx)^("a ")F_{d x}{ }^{\text {a }}
(kN)
Force F_(dx)^("a ")
(kN)| Force $F_{d x}{ }^{\text {a }}$ |
| :---: |
| (kN) |
力 F_(dy)^("a ")F_{d y}{ }^{\text {a }} (kN)
Force F_(dy)^("a ")F_{d y}{ }^{\text {a }}
(kN)
Force F_(dy)^("a ")
(kN)| Force $F_{d y}{ }^{\text {a }}$ |
| :---: |
| (kN) |
Structural elements: d < 3md<3 \mathrm{~m} 结构元素: d < 3md<3 \mathrm{~m}
根据具体项目而定。更多信息见附件 B
To be specified for the
individual project.
Further information is set
out in Annex B
To be specified for the
individual project.
Further information is set
out in Annex B| To be specified for the |
| :--- |
| individual project. |
| Further information is set |
| out in Annex B |
根据具体项目而定。更多信息见附件 B
To be specified for the
individual project.
Further information is set out
in Annex B
To be specified for the
individual project.
Further information is set out
in Annex B| To be specified for the |
| :--- |
| individual project. |
| Further information is set out |
| in Annex B |
适用于连续墙和墙式结构:3 m <= d <= 5m\mathrm{~m} \leq d \leq 5 \mathrm{~m}
For continuous walls and wall type structures: 3
m <= d <= 5m\mathrm{~m} \leq d \leq 5 \mathrm{~m}
For continuous walls and wall type structures: 3
m <= d <= 5m| For continuous walls and wall type structures: 3 |
| :--- |
| $\mathrm{~m} \leq d \leq 5 \mathrm{~m}$ |
4000
1500
d > 5md>5 \mathrm{~m}
0
0
a x=x= track direction; y=y= perpendicular to track direction. a x=x= 轨道方向; y=y= 垂直于轨道方向。
"Distance " d " from structural elements to the
centreline of the nearest track
(m)" "Force F_(dx)^("a ")
(kN)" "Force F_(dy)^("a ")
(kN)"
Structural elements: d < 3m "To be specified for the
individual project.
Further information is set
out in Annex B" "To be specified for the
individual project.
Further information is set out
in Annex B"
"For continuous walls and wall type structures: 3
m <= d <= 5m" 4000 1500
d > 5m 0 0
a x= track direction; y= perpendicular to track direction. | Distance " $d$ " from structural elements to the <br> centreline of the nearest track <br> (m) | Force $F_{d x}{ }^{\text {a }}$ <br> (kN) | Force $F_{d y}{ }^{\text {a }}$ <br> (kN) |
| :--- | :--- | :--- |
| Structural elements: $d<3 \mathrm{~m}$ | To be specified for the <br> individual project. <br> Further information is set <br> out in Annex B | To be specified for the <br> individual project. <br> Further information is set out <br> in Annex B |
| For continuous walls and wall type structures: 3 <br> $\mathrm{~m} \leq d \leq 5 \mathrm{~m}$ | 4000 | 1500 |
| $d>5 \mathrm{~m}$ | 0 | 0 |
| a $x=$ track direction; $y=$ perpendicular to track direction. | | |
Table 5-6 Indicative static equivalent design forces due to impact for class A structures over or alongside railways (table 4.4, EN 1991-1-7). 表 5-6 铁路上方或沿线 A 级结构因冲击而产生的指示性静态等效设计力(EN 1991-1-7 表 4.4)。
These forces should be considered separately and are applied at 1.80 m above top of rail level, as recommended value from EN 1991-1-7 and defined in UIC-Code 777-2. 根据 EN 1991-1-7 标准的建议值和 UIC 代码 777-2 的定义,这些力应单独考虑,并施加在轨道顶部以上 1.80 米处。
These forces are in accordance with UIC-Code 777-2, as described in chapters 3 and 5. 这些力符合 UIC 代码 777-2 的规定,详见第 3 章和第 5 章。
A crash-wall will be defined when distance from track axis to supporting structural member is between 3 m to 5 m , which minimal dimensions shall be in accordance to the ones described in chapter 5.4.4.1 of UIC-Code 777-2. 当轨道轴线与支撑结构件之间的距离在 3 米至 5 米之间时,即为防撞墙,其最小尺寸应符合 UIC 规范 777-2 第 5.4.4.1 章中所述的尺寸。
Load combination for accidental actions are defined in EN 1990. EN 1990 规定了意外情况下的载荷组合。
5.2.6. Wind loads 5.2.6.风荷载
Wind loads shall be calculated in accordance with EN 1991-1-4 as appropriate, and the local jurisdiction requirements. 风荷载应酌情按照 EN 1991-1-4 标准和当地管辖要求进行计算。
The 10 minutes mean wind speed is 31.2m//s31.2 \mathrm{~m} / \mathrm{s}. 10 分钟平均风速为 31.2m//s31.2 \mathrm{~m} / \mathrm{s} 。
Location 地点
Abu Dhabi 阿布扎比
Basic wind speed as per ER 根据 ER 确定的基本风速
31.2m//s31.2 \mathrm{~m} / \mathrm{s}
Location Abu Dhabi
Basic wind speed as per ER 31.2m//s| Location | Abu Dhabi |
| :--- | :--- |
| Basic wind speed as per ER | $31.2 \mathrm{~m} / \mathrm{s}$ |
Table 5-7 Basic wind speeds in UAE 表 5-7 阿联酋的基本风速
From it, the peak wind pressure will be calculated as per EN 1991-1-4, Section 4: 根据 EN 1991-1-4,第 4 节,将计算出峰值风压:
where 其中 rho\rho is the air density, taken as 1.25kg//m^(3)1.25 \mathrm{~kg} / \mathrm{m}^{3} rho\rho 是空气密度,取值为 1.25kg//m^(3)1.25 \mathrm{~kg} / \mathrm{m}^{3} k_(l)k_{l} is the turbulence factor, taken as 1.0 k_(l)k_{l} 是湍流系数,取 1.0 c_(0)(z)c_{0}(z) is the orography factor, taken as 1.0 c_(0)(z)c_{0}(z) 是地形系数,取 1.0 z_(0)=0.01mz_{0}=0.01 \mathrm{~m} for Abu Dhabi, Dubai, Al Ain, and Sharjah because of the considered terrain category class I ( z_(0,1)\mathrm{z}_{0,1} ) as per Table 4.1 of the code. z_(0)=0.01mz_{0}=0.01 \mathrm{~m} 阿布扎比、迪拜、艾因和沙迦的地形类别为 I 类( z_(0,1)\mathrm{z}_{0,1} ),如规范表 4.1 所示。
Where, 在哪里? c_(0)(z)c_{0}(z) is the orography factor, taken as 1.0 , and c_(r)(z)=k_(r)*ln((z)/(z_(0)))c_{r}(z)=k_{r} \cdot \ln \left(\frac{z}{z_{0}}\right) c_(0)(z)c_{0}(z) 是地形系数,取 1.0, c_(r)(z)=k_(r)*ln((z)/(z_(0)))c_{r}(z)=k_{r} \cdot \ln \left(\frac{z}{z_{0}}\right) 是地形系数,取 1.0。
k_(r)=0.19*((z_(0))/(z_(0,II)))^(0.07)k_{r}=0.19 \cdot\left(\frac{z_{0}}{z_{0, I I}}\right)^{0.07}
For ADR station (z=23m)(z=23 \mathrm{~m}), the design wind pressure is: 对于 ADR 站 (z=23m)(z=23 \mathrm{~m}) ,设计风压为:
Table 5-8 Design wind pressure for different UAE locations. 表 5-8 阿联酋不同地点的设计风压
Wind loads are considered according to EN 1991-1-4 Ch. 5. In this preliminary design there are only considered horizontal loads and are calculated as pressure loads. Pressure coefficients are calculated according to EN 1991-1-4 Ch. 7.2. Net pressure coefficients (external pressure coefficient + internal pressure coefficient) considered are: 风荷载根据 EN 1991-1-4 第 5 章进行考虑。 在本初步设计中,只考虑了水平荷载,并作为压力荷载进行计算。压力系数根据 EN 1991-1-4 第 7.2 章计算。考虑的净压力系数(外部压力系数 + 内部压力系数)为
quad1.1\quad 1.1 for windward faces (0.8+0.3)(0.8+0.3) quad1.1\quad 1.1 迎风面 (0.8+0.3)(0.8+0.3)
quad-0.7\quad-0.7 for downwind faces. (-0.5-0.2) quad-0.7\quad-0.7 顺风面。(-0.5-0.2)
5.2.7. Thermal actions 5.2.7.热行动
The thermal actions considered are, as per P2103-UAE-ECB-RP-02105 are: 根据 P2103-UAE-ECB-RP-02105,所考虑的热作用包括
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY 除非另有说明,本文件的印刷本未经控制,仅供参考。
P2103-AUH-EAS-RP-71100-AA qquad\qquad
5.2.8. Seismic actions 5.2.8.地震作用
The seismic action has been represented by a response spectrum. The horizontal component is in accordance with BS EN 1998-1 section 3.2.2.2, depending on the ground type at the foundation of the supports of the bridge. 地震作用用反应谱来表示。水平分量符合 BS EN 1998-1 第 3.2.2.2 节的规定,取决于桥梁支架地基处的地基类型。
For the two orthogonal horizontal components of the seismic actions, the elastic response spectrum S_(e)(T)\mathrm{S}_{\mathrm{e}}(\mathrm{T}) is defined by the following expression from EN 1998-1. 对于地震作用的两个正交水平分量,弹性反应谱 S_(e)(T)\mathrm{S}_{\mathrm{e}}(\mathrm{T}) 由 EN 1998-1 中的以下表达式定义。
{[0 <= T <= T_(B):S_(c)(T)=a_(g)*S*[1+(T)/(T_(B))*(2,5*eta-1)]],[T_(B) <= T <= T_(C):S_(c)(T)=a_(g)*S*2","5*eta],[T_(C) <= T <= T_(D):S_(c)(T)=a_(g)*S*2","5*eta*[(T_(c))/(T)]],[T_(D) <= T <= 4s:S_(c)(T)=a_(g)*S*2","5*eta*[(T_(c)*T_(D))/(T^(2))]]:}\left\{\begin{array}{c}
0 \leq T \leq T_{B}: S_{c}(T)=a_{g} \cdot S \cdot\left[1+\frac{T}{T_{B}} \cdot(2,5 \cdot \eta-1)\right] \\
T_{B} \leq T \leq T_{C}: S_{c}(T)=a_{g} \cdot S \cdot 2,5 \cdot \eta \\
T_{C} \leq T \leq T_{D}: S_{c}(T)=a_{g} \cdot S \cdot 2,5 \cdot \eta \cdot\left[\frac{T_{c}}{T}\right] \\
T_{D} \leq T \leq 4 s: S_{c}(T)=a_{g} \cdot S \cdot 2,5 \cdot \eta \cdot\left[\frac{T_{c} \cdot T_{D}}{T^{2}}\right]
\end{array}\right.
quad S=1.35\quad S=1.35 (soil factor considered for ground type BB ) quad S=1.35\quad S=1.35 ( BB 地面类型考虑的土壤系数 )
eta=\eta= damping correction factor that will be considered as 5%5 \% eta=\eta= 阻尼修正系数,将被视为 5%5 \%
T_(B),T_(C)T_{B}, T_{C} and T_(D)=T_{D}= limits of the different branches 不同分支的 T_(B),T_(C)T_{B}, T_{C} 和 T_(D)=T_{D}= 界限
The values of S,T_(B),T_(C)S, T_{B}, T_{C} and T_(D)T_{D} depend upon the ground type and might take the following values both for type 2 spectra: S,T_(B),T_(C)S, T_{B}, T_{C} 和 T_(D)T_{D} 的值取决于地面类型,对于类型 2 光谱,这两个值可能如下:
Ground type 地面类型
S
T_(B)(s)T_{B}(s)
T_(C)(s)T_{C}(s)
T_(D)(s)T_{D}(s)
A
1,0
0,05
0,25
1,20
B
1,35\mathbf{1 , 3 5}
0,05\mathbf{0 , 0 5}
0,25\mathbf{0 , 2 5}
1,20\mathbf{1 , 2 0}
C
1,5
0,10
0,25
1,20
D
1,8
0,10
0,30
1,20
E
1,6
0,05
0,25
1,20
Ground type S T_(B)(s) T_(C)(s) T_(D)(s)
A 1,0 0,05 0,25 1,20
B 1,35 0,05 0,25 1,20
C 1,5 0,10 0,25 1,20
D 1,8 0,10 0,30 1,20
E 1,6 0,05 0,25 1,20| Ground type | S | $T_{B}(s)$ | $T_{C}(s)$ | $T_{D}(s)$ |
| :--- | :---: | :---: | :---: | :---: |
| A | 1,0 | 0,05 | 0,25 | 1,20 |
| B | $\mathbf{1 , 3 5}$ | $\mathbf{0 , 0 5}$ | $\mathbf{0 , 2 5}$ | $\mathbf{1 , 2 0}$ |
| C | 1,5 | 0,10 | 0,25 | 1,20 |
| D | 1,8 | 0,10 | 0,30 | 1,20 |
| E | 1,6 | 0,05 | 0,25 | 1,20 |
Table 5-9 Values of the parameters describing Type 2 elastic response spectra as per Table 3.3 of the 1998-1. 表 5-9 1998-1 表 3.3 中描述 2 类弹性响应谱的参数值。
The vertical elastic response spectrum is determined as per section 3.2.2.3 of the EN 1998-1 using the following formulation: 根据 EN 1998-1 第 3.2.2.3 节的规定,采用以下公式确定垂直弹性响应谱:
{[0 <= T <= T_(B):S_(vc)(T)=a_(vg)*[1+(T)/(T_(B))*(3,0*eta-1)]],[T_(B) <= T <= T_(C):S_(vc)(T)=a_(vg)*S*3","0*eta],[T_(C) <= T <= T_(D):S_(vc)(T)=a_(vg)*3","0*eta*[(T_(c))/(T)]],[T_(D) <= T <= 4s:S_(vc)(T)=a_(vg)*3","0*eta*[(T_(c)*T_(D))/(T^(2))]]:}\left\{\begin{array}{c}
0 \leq T \leq T_{B}: S_{v c}(T)=a_{v g} \cdot\left[1+\frac{T}{T_{B}} \cdot(3,0 \cdot \eta-1)\right] \\
T_{B} \leq T \leq T_{C}: S_{v c}(T)=a_{v g} \cdot S \cdot 3,0 \cdot \eta \\
T_{C} \leq T \leq T_{D}: S_{v c}(T)=a_{v g} \cdot 3,0 \cdot \eta \cdot\left[\frac{T_{c}}{T}\right] \\
T_{D} \leq T \leq 4 s: S_{v c}(T)=a_{v g} \cdot 3,0 \cdot \eta \cdot\left[\frac{T_{c} \cdot T_{D}}{T^{2}}\right]
\end{array}\right.
Where the following parameters shall be used for type 2 spectra: 其中第 2 类光谱应使用以下参数:
Table 5-10 Recommended values of parameters describing the vertical elastic response as per Table 3.4 of the EN 1998-1. 表 5-10 EN 1998-1 表 3.4 中描述垂直弹性响应的参数建议值。
The value of the design ground acceleration has been taken from P2103-UAE-EBB-RP-03001-AC3 Seismic Hazard Assessment Study. The values that have been considered ADR Station (located in zone 1) are summarized in table below. 设计地面加速度值取自 P2103-UAE-EBB-RP-03001-AC3 地震危险评估研究。下表汇总了 ADR 站(位于 1 区)的考虑值。
Settlement checks are not deemed critical for the design of this type of structure, where D-walls are deep foundation structures and don’t support rail tracks. 沉降检查对于此类结构的设计并不重要,因为 D 型墙是深基础结构,不支撑轨道。
Deflection limits due to differential settlements for the bottom slab shall be checked at a later design stage according to EN 1990:2002+A1 chapter A2.4.4.1 deflection limits. 应根据 EN 1990:2002+A1 第 A2.4.4.1 章中的挠度限制,在后期设计阶段检查由差异沉降引起的底板挠度限制。
5.2.10. Construction Loads 5.2.10.施工荷载
The construction loads to be considered are defined in table 4.1 of EN 1991-1-6. EN 1991-1-6 表 4.1 规定了需要考虑的施工荷载。
The construction loads will be lower than the expected service loads, and thus, these have not been considered in the calculation. 施工荷载将低于预期的使用荷载,因此在计算中没有考虑这些荷载。
6 STRUCTURAL DESCRIPTION OF REEM STATION 6 雷姆站的结构说明
Al Reem Station is a 6-tracked, and 6-platformed underground station designed in full network length, L=400mL=400 \mathrm{~m}. The station additionally includes switch boxes area in the north and south. According to the alignment, the depth of the station is around -28 (TOR at -25). Al Reem 车站是一个 6 轨道、6 站台的地下车站,全线网设计, L=400mL=400 \mathrm{~m} 。车站还包括南北两侧的开关箱区域。根据线路走向,车站埋深约为 -28(TOR 为 -25)。
At the exit of the station, and before reaching the beginning of the TBM alignment, a cut and cover of approximately 180 m has been designed. This cut and cover is located at the same depth as the station and the width (free distance between screens) is variable. At the edge of the cut and cover the TBM retrieval shaft is found. 在车站出口处,在到达隧道掘进机线路起点之前,设计了一个长约 180 米的明挖覆盖层。井口深度与车站深度相同,宽度(筛网之间的自由距离)可变。在开挖覆盖层的边缘,可以找到 TBM 回采井。
Structurally, the station is composed of: 从结构上看,车站由以下部分组成:
The underground structure and the passenger building. 地下结构和客运大楼。
Two transition zones (switches) at the entrance and exit of the station 车站出入口的两个过渡区(开关
A cut and cover (specifically, the cut and cover is not part of the station, although its calculation will also be justified in this document, given its position in the layout). 明挖洞和盖板(具体来说,明挖洞和盖板不属于车站的一部分,但鉴于其在布局中的位置,本文件也将对其计算进行说明)。
Figure 6-1 Reem station and cut and cover layout. 图 6-1 雷姆站和切割与盖板布局。
Figure 6-2 3D view of ADR station. 图 6-2 ADR 站的 3D 视图。
Figure 6-3 3D view of ADR cut and cover with retrieval shaft. 图 6-3 ADR 切割和盖板与回收轴的三维视图。
In the following chapters the different elements listed above are described. 以下各章将介绍上述不同要素。
6.1 Underground Station 6.1 地下车站
6.1.1. Geometrical definition 6.1.1.几何定义
Underground ADR Station (AI Reem Station) is 440.0 m long and 65.5 m wide. The buried structure includes 5 structural levels: 地下 ADR 站(AI Reem 站)长 440.0 米,宽 65.5 米。地下结构包括 5 层:
Roof level at +5.50 屋顶水位为 +5.50
S01 level at - 1.950 S01 级别为 - 1.950
S02 level at -8.750 S02 水平为 -8.750
Concourse level at -15.550 大厅层为 -15.550
Bottom slab level at -26.20 底板水位为 -26.20
The platform level is at -23.900 and the top of rail is at -25.000 . 平台水平面为-23.900,轨道顶端为-25.000。
6.1.2. Structural Scheme 6.1.2.结构方案
The station’s box is formed by 1.2 m thick diaphragm walls propped by reinforced concrete frames spaced generally every 15.0 m and connected by a 0.50 m reinforced concrete slab at each level. The frames are formed by multi-span transverse reinforced concrete beams of variable height between 1.50 m and 1.80 m . Beam spans are 12.25+19.3+19.3+12.25m12.25+19.3+19.3+12.25 \mathrm{~m}. The beams are supported by 1.80 m diameter columns. When stairs and automatic stairs connect platforms and ground levels the columns supporting the structure are modified to allow its implementation: columns are doubled to two rectangular cross sections of 0.65 xx1.50m0.65 \times 1.50 \mathrm{~m}. At bottom level, a slab of 1.50 m has been defined to resist uplift forces due to underground water pressure. 车站的箱体由 1.2 米厚的地下连续墙构成,由钢筋混凝土框架支撑,间距一般为 15.0 米,每层由 0.50 米的钢筋混凝土板连接。框架由高度在 1.50 米至 1.80 米之间的多跨横向钢筋混凝土梁组成。梁的跨度为 12.25+19.3+19.3+12.25m12.25+19.3+19.3+12.25 \mathrm{~m} 。梁由直径为 1.80 米的支柱支撑。当楼梯和自动楼梯连接平台和地面层时,支撑结构的柱子将进行修改,以便于实施:柱子加倍为两个矩形截面 0.65 xx1.50m0.65 \times 1.50 \mathrm{~m} 。在底层,定义了一个 1.50 米的板,以抵抗由于地下水压力而产生的上浮力。
6.1.3. Cross-section 6.1.3.横截面
Next figure shows the typical cross section of the passenger building: 下图显示了客运大楼的典型横截面:
Figure 6-4 Typical cross section of passenger building structure of REEM station 图 6-4 REEM 火车站客运大楼结构的典型横截面图
Figure 6-5 Typical cross section of passenger building structure of REEM Station with doubled columns 图 6-5 REEM 站客运大楼双柱结构的典型横截面图
6.2 TRANSITION ZONES (SWITCHES) 6.2 过渡区(开关)
Linking the station building to the alignment, two transition zones are designed. In these transition areas, the variable separation between D-walls depends on the tracks alignment and takes its maximum value at the entrance and at the exit of the station. 在车站建筑与线路之间,设计了两个过渡区。在这些过渡区内,D 型墙之间的可变间隔取决于轨道线路,并在车站入口和出口处达到最大值。
Structurally, the D-walls will be strutted at the same levels than the main station by means of beams supported on columns due to the hight length. Between transversal axis of columns, longitudinal crash walls will be designed in order to reduce the impact loads due to derailment. 从结构上看,D 型墙由于长度较长,将通过支撑在支柱上的梁在与主站相同的高度上支撑。在支柱横向轴线之间,将设计纵向防撞墙,以减少脱轨造成的冲击荷载。
Next figure shows the view in plan of the northern transition zone: 下图为北部过渡区平面图:
Figure 6-6 View in plan of the northern open ramp or transition zone 图 6-6 北部开放式坡道或过渡区平面图
6.2.1. Cross-section 6.2.1.横截面
Next figures show the two typical cross sections of the transition zone. 下图显示了过渡区的两个典型横截面。
Figure 6-7 Typical cross section of transition zone with high width 图 6-7 高宽度过渡带的典型横截面图
Figure 6-8 Typical cross section of the transition zone with reduced width 图 6-8 宽度减小的过渡区典型横截面图
6.3 CUT AND COVER 6.3 切割和覆盖
At the exit of the northern transition zone, a cut and cover has been designed. 在北部过渡区的出口处,设计了一个切割和覆盖层。
Figure 6-9 View in plan of the cut and cover 图 6-9 切割和覆盖平面图
The separation of the two D-walls is adapted to the alignment, and it is variable from 12 m to 27.65 m . At its end, a retrieval shaft is designed to allow the extraction of the TBM coming from the north. The shaft has external dimensions of 26.80 mx 39.40 m and it is strutted by means of rings each 5.10 meters. 两道 D 形墙之间的间距可根据走线调整,从 12 米到 27.65 米不等。在其末端,设计了一个回收井,以便从北面取出隧道掘进机。竖井外部尺寸为 26.80 米 x 39.40 米,每 5.10 米有一个支撑环。
Due to the high-water pressure, when the width of the bottom slab is higher to 23 meters, central modules of D-walls have been designed to reduce the effects of uplift. 由于水压较高,当底板宽度增至 23 米时,设计了 D 型墙的中央模块,以减少隆起的影响。
Figure 6-10 Section of the cut and cover 图 6-10 切口和盖板的剖面图
7 PRELIMINARY CALCULATION OF THE STATION 7 车站的初步计算
In this section there are included the calculations done for the different parts of the ADR Station to verify the geometry and to obtain the reinforcement ratios of the different structural parts. 本节包括对 ADR 站不同部分进行的计算,以验证几何形状并获得不同结构部分的配筋率。
The structure of the ADR station has been separated into three parts: 发展成果评估站的结构分为三个部分:
First part considering the passenger station building and its underground part. 第一部分是客运站大楼及其地下部分。
Second part to design the bottom slab that supports platforms and resist the uplift forces due to water pressure. 第二部分是设计底板,用于支撑平台和抵抗水压造成的上浮力。
Third part considering the structures in the transition zone. 第三部分考虑过渡区的结构。
Simplified calculations have been performed for the different parts to achieve this goal. In the following chapters there are presented the calculations done. 为实现这一目标,我们对不同部件进行了简化计算。下文各章将介绍计算结果。
7.1 Underground structure 7.1 地下结构
This chapter includes the calculations to define the reinforcements ratios of the underground structure of the Reem Station. The structural elements studied are: 本章包括确定里姆车站地下结构配筋率的计算。所研究的结构元素包括
The D-walls D 型墙
The typical transverse framed structure (slabs and columns) 典型的横向框架结构(板和柱)
REEM STATION (ADR). STRUCTURE REPORT 雷姆站(ADR)。结构报告
蹀 sener
illineco 伊利诺伊州
Foundations (bottom slab) 地基(底板)
Different calculations have been performed to define the reinforcements. 我们进行了不同的计算来确定钢筋。
7.1.1. D-Wall design 7.1.1.D 型墙设计
7.1.1.1 Model 7.1.1.1 模式
7.1.1.1.1 Generalities 7.1.1.1.1 概述
A model of the diaphragm wall - D-Wall - has been performed by means of RIDO Software. This software calculates the stability of the wall considering a one-meter width. It also calculates the internal forces of this wall after the successive stages of its construction. 利用 RIDO 软件对地下连续墙(D-Wall)进行了建模。该软件可计算一米宽隔墙的稳定性。该软件还能计算连续墙在连续施工阶段后的内力。
So, the input data to introduce regarding the mechanical parameters of the structure are the corresponding to one-meter width of wall. 因此,有关结构力学参数的输入数据是与一米宽墙壁相对应的数据。
7.1.1.1.2 Ground Properties 7.1.1.1.2 地面特性
As per the available GI data defined in chapter 4.2, the characteristic values for the involved ground are summarized in Table 4-7. 根据第 4.2 章中定义的可用地理信息数据,表 4-7 汇总了相关地面的特征值。
Based on these parameters, the corresponding static and dynamic pressure coefficients have been obtained. 根据这些参数,可以得到相应的静压和动压系数。
The static and dynamic pressure coefficients that have been used in RIDO software to analyse the D-walls stability, according to DA 1 EC 1997-1 both combinations 1 and 2, are presented in the tables below - Table 7-1 and Table 7-2, respectively. 根据 DA 1 EC 1997-1 组合 1 和 2,RIDO 软件在分析 D 型墙稳定性时使用的静压和动压系数分别见下表 - 表 7-1 和表 7-2。
Table 7-2 Static - k_(a)k_{a} and k_(p)k_{p} - and Dynamic - k_(AD)k_{A D} and k_(PD)k_{P D} - pressure coefficients of the Geotechnical Units. DA-1 Combination 2. 表 7-2 岩土力学单元的静态 - k_(a)k_{a} 和 k_(p)k_{p} - 以及动态 - k_(AD)k_{A D} 和 k_(PD)k_{P D} - 压力系数。DA-1 组合 2.
7.1.1.1.3 Calculation Section 7.1.1.1.3 计算部分
The Design Approach DA 1 - refer to Eurocode EN 1997-1 - is considered in calculating the D-Walls Stability. The construction stages will govern the response of the diaphragm wall. 在计算地下连续墙稳定性时,要考虑 DA 1 设计方法(参见欧洲规范 EN 1997-1)。施工阶段将影响地下连续墙的响应。
The typical cross section of the underground structure - described in Figure 6-4- has been studied. 图 6-4 描述了地下结构的典型横截面。
The D-wall designed for this typical cross section has a constant thickness of 1.2 m . The geometry properties of the typical cross section - excavation elevation, struts and slabs elevations, GWT levels staging, etc. - are presented next: 为该典型横截面设计的 D 型墙厚度恒定为 1.2 米。典型横截面的几何特性--开挖标高、支柱和板标高、GWT 水平分段等。- 接下来将介绍其几何特性:
每个挖掘阶段的 D-WALLS 预埋长度
D-WALLS
EMBEDDED
LENGTH per EXCAVATION STAGE
D-WALLS
EMBEDDED
LENGTH per EXCAVATION STAGE| D-WALLS |
| :--- |
| EMBEDDED |
| LENGTH per EXCAVATION STAGE |
D-WALLS INTERNAL FACE DISTANCE D 型墙内表面距离
GWT LEVELS GWT 等级
EXCAVATION LEVELS 挖掘深度
STRUTTING ELEMENTS LEVELS 支撑构件水平
STRUTTING EL. TYPE 绷带 EL.类型
#zBot=-53
#t=55 m #t=55 米
L=63.1m\mathrm{L}=63.1 \mathrm{~m}
#zWat=0
#zExc1=2
#zAnc1=3
Temp Anchorage 温度 安克雷奇
#t=51.5 m #t=51.5 米
L=63.1m 长=63.1米
#zWat2=-2
#zExc2=-1.5
#zAnc2=-0.5
Temp Anchorage 温度 安克雷奇
#t=48 m
L=63.1m 长=63.1米
#zWat31=-5.5
#zExc31=-5
#zAnc31-4
Temp Anchorage 温度 安克雷奇
#t=44 m
L=63.1m 长=63.1米
#zWat32=-9.5
#zExc32=-9
#zAnc32=-8
Temp Anchorage 温度 安克雷奇
#t=40.5 m #t=40.5 米
L=63.1m 长=63.1米
#zWat41=-13
#zExc41=-12.5
#zAnc41=-11.5
Temp Anchorage 温度 安克雷奇
#t=37 m #t=37 米
L=63.1m 长=63.1米
#zWat42=-16.5
#zExc42=-16
#zAnc42=-15
Temp Anchorage 温度 安克雷奇
#t=33.5 m #t=33.5 米
L=63.1m 长=63.1米
#zWat51=-20
#zExc51=-19.5
#zAnc51=-18.5
Temp Anchorage 温度 安克雷奇
#t=30 m #t=30 米
L=63.1m\mathrm{L}=63.1 \mathrm{~m}
#zWat52=-23.5
#zExc52=-23
#zAnc52=-22
Temp Anchorage 温度 安克雷奇
#t=25.3 m #t=25.3 米
L=63.1m\mathrm{L}=63.1 \mathrm{~m}
#zWat5=-28.2
#zExc5=-27.7
#zStr5=-27
Bottom Slab 底板
#t=25.3 m #t=25.3 米
L=63.1m 长=63.1米
#zWat5=-28.2, #zWat=0
#zStr4=-15.9
Permanent SLAB 永久 SLAB
#t=25.3 m #t=25.3 米
L=63.1m\mathrm{L}=63.1 \mathrm{~m}
#zWat5=-28.2, #zWat=0
#zStr3=-9.1
Permanent SLAB 永久 SLAB
#t=25.3 m #t=25.3 米
L=63.1m 长=63.1米
#zWat5=-28.2, #zWat=0
#zStr2=-2.3
Permanent SLAB 永久 SLAB
#t=25.3 m #t=25.3 米
L=63.1m 长=63.1米
#zWat5=-28.2, #zWat=0
#zStr1=5.3
Top Slab 顶部板坯
"D-WALLS
EMBEDDED
LENGTH per EXCAVATION STAGE" D-WALLS INTERNAL FACE DISTANCE GWT LEVELS EXCAVATION LEVELS STRUTTING ELEMENTS LEVELS STRUTTING EL. TYPE
#zBot=-53
#t=55 m L=63.1m #zWat=0 #zExc1=2 #zAnc1=3 Temp Anchorage
#t=51.5 m L=63.1m #zWat2=-2 #zExc2=-1.5 #zAnc2=-0.5 Temp Anchorage
#t=48 m L=63.1m #zWat31=-5.5 #zExc31=-5 #zAnc31-4 Temp Anchorage
#t=44 m L=63.1m #zWat32=-9.5 #zExc32=-9 #zAnc32=-8 Temp Anchorage
#t=40.5 m L=63.1m #zWat41=-13 #zExc41=-12.5 #zAnc41=-11.5 Temp Anchorage
#t=37 m L=63.1m #zWat42=-16.5 #zExc42=-16 #zAnc42=-15 Temp Anchorage
#t=33.5 m L=63.1m #zWat51=-20 #zExc51=-19.5 #zAnc51=-18.5 Temp Anchorage
#t=30 m L=63.1m #zWat52=-23.5 #zExc52=-23 #zAnc52=-22 Temp Anchorage
#t=25.3 m L=63.1m #zWat5=-28.2 #zExc5=-27.7 #zStr5=-27 Bottom Slab
#t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr4=-15.9 Permanent SLAB
#t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr3=-9.1 Permanent SLAB
#t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr2=-2.3 Permanent SLAB
#t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr1=5.3 Top Slab| D-WALLS <br> EMBEDDED <br> LENGTH per EXCAVATION STAGE | D-WALLS INTERNAL FACE DISTANCE | GWT LEVELS | EXCAVATION LEVELS | STRUTTING ELEMENTS LEVELS | STRUTTING EL. TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | #zBot=-53 | | |
| #t=55 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat=0 | #zExc1=2 | #zAnc1=3 | Temp Anchorage |
| #t=51.5 m | L=63.1m | #zWat2=-2 | #zExc2=-1.5 | #zAnc2=-0.5 | Temp Anchorage |
| #t=48 m | L=63.1m | #zWat31=-5.5 | #zExc31=-5 | #zAnc31-4 | Temp Anchorage |
| #t=44 m | L=63.1m | #zWat32=-9.5 | #zExc32=-9 | #zAnc32=-8 | Temp Anchorage |
| #t=40.5 m | L=63.1m | #zWat41=-13 | #zExc41=-12.5 | #zAnc41=-11.5 | Temp Anchorage |
| #t=37 m | L=63.1m | #zWat42=-16.5 | #zExc42=-16 | #zAnc42=-15 | Temp Anchorage |
| #t=33.5 m | L=63.1m | #zWat51=-20 | #zExc51=-19.5 | #zAnc51=-18.5 | Temp Anchorage |
| #t=30 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat52=-23.5 | #zExc52=-23 | #zAnc52=-22 | Temp Anchorage |
| #t=25.3 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat5=-28.2 | #zExc5=-27.7 | #zStr5=-27 | Bottom Slab |
| #t=25.3 m | L=63.1m | #zWat5=-28.2, #zWat=0 | | #zStr4=-15.9 | Permanent SLAB |
| #t=25.3 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat5=-28.2, #zWat=0 | | #zStr3=-9.1 | Permanent SLAB |
| #t=25.3 m | L=63.1m | #zWat5=-28.2, #zWat=0 | | #zStr2=-2.3 | Permanent SLAB |
| #t=25.3 m | L=63.1m | #zWat5=-28.2, #zWat=0 | | #zStr1=5.3 | Top Slab |
As per the construction sequence described in drawings, the stages considered will be the following: 根据图纸中描述的施工顺序,将考虑以下阶段:
Application of the surface surcharge of 10 kPa
Excavation down to the Level of Temporary Anchor #1
Installation of Temporary Anchor #1
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #2
Excavation down to the Level of Temporary Anchor #2
Installation of Temporary Anchor #2
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #31
Excavation down to the Level of Temporary Anchor #31
Installation of Temporary Anchor #31
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #32
Excavation down to the Level of Temporary Anchor #32
Installation of Temporary Anchor #32
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #41
Excavation down to the Level of Temporary Anchor #41
Installation of Temporary Anchor #41
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #42
Excavation down to the Level of Temporary Anchor #42
Installation of Temporary Anchor #42
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #51
Excavation down to the Level of Temporary Anchor #51
Installation of Temporary Anchor #51
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #52
Excavation down to the Level of Temporary Anchor #52
Installation of Temporary Anchor #52
Pumping down to 0.5 m below the Excavation Level #5
Excavation down to the Level #5
Installation of Permanent Bottom Slab #5
Installation of Permanent Slabs #4, #3, #2 and #1. The latest is Top Slab.
GWT restoration. The GWT is set to the original elevation.
Remove of the Temporary Anchor #52
Remove of the Temporary Anchor #51
Remove of the Temporary Anchor #42
Remove of the Temporary Anchor #41
Remove of the Temporary Anchor #32 拆除 32 号临时锚栓
35 Remove of the Temporary Anchor #31 35 拆除 31 号临时锚固件
36 Remove of the Temporary Anchor #2 36 拆除 2 号临时锚固件
37 Remove of the Temporary Anchor #1 37 拆除 1 号临时锚固件
38 Top fill construction Modification of the Earth Pressure Coefficient from Static conditions to Dynamic Conditions 38 顶部填土施工 从静态条件到动态条件的土压力系数修正
7.1.1.1.4 Stiffnesses of elements 7.1.1.1.4 各要素的刚度
The following stiffness coefficients have been considered in RIDO’s calculations: RIDO 的计算考虑了以下刚度系数:
D-Wall: The stiffness of the wall corresponds to the bending stiffness of the 1.20 m -width wall. And it can be calculated as follows (concrete C30/37): D 型墙:墙的刚度相当于 1.20 米宽墙的弯曲刚度。其计算公式如下(混凝土 C30/37):
Permanent Slabs: The definitive slabs are introduced to the RIDO as permanent struts. L is considered equal to the distance between the wall and the closest pillar. Their stiffness per lineal meter will be: 永久板:永久板作为永久支柱引入 RIDO。L等于墙与最近支柱之间的距离。其每线米的刚度为
Bottom Slab: The bottom slab is introduced to the RIDO as permanent strut. L is considered equal to the distance between the external walls. Their stiffness per lineal meter will be: 底板:底板作为永久支撑引入 RIDO。L 等于外墙之间的距离。其每延米的刚度为
Provisional Anchors: The provisional anchors are modelled into RIDO software by means of a stiffness, like a strut, considering a maximum length of 20 m . 临时锚杆:在 RIDO 软件中,临时锚杆通过刚度建模,就像支柱一样,最大长度为 20 米。
The value of the stiffness for the temporary anchorages comes from an iterative calculation process: 临时锚固件的刚度值来自迭代计算过程:
First an arbitrary high value is set on the model as stiffness per linear meter. 首先在模型上任意设定一个高值,作为每延米的刚度。
The resultant axial force on the temporary anchors is used to obtain the minimum area of steel by means of tensile capacity verification (Equation 1) for temporary anchors: 临时锚固件上产生的轴向力通过临时锚固件的抗拉能力验证(公式 1)来获得最小钢筋面积:
{:[(P_(Nd))/(A_(T)) <= (f_(pk))/(1.25)" and "(P_(Nd))/(A_(T)) <= (f_(yk))/(1.10)","],[" where "P_(Nd)=" Factored Nominal load per anchor "],[A_(T)=" Steel tie rod or cable area "],[f_(pk)=" Failure limit for steel "],[f_(yk)=" Elastic limit for steel "]:}\begin{aligned}
\frac{P_{N d}}{A_{T}} \leq \frac{f_{p k}}{1.25} & \text { and } \frac{P_{N d}}{A_{T}} \leq \frac{f_{y k}}{1.10}, \\
\text { where } P_{N d} & =\text { Factored Nominal load per anchor } \\
A_{T} & =\text { Steel tie rod or cable area } \\
& f_{p k}=\text { Failure limit for steel } \\
& f_{y k}=\text { Elastic limit for steel }
\end{aligned}
" Equation "1\text { Equation } 1
The resultant axial force on the temporary anchors is used to obtain the grout bulb length by means of grout bulb pull-out verification (Equation 2): 临时锚固件上产生的轴向力通过灌浆球拉出验证(公式 2)来获得灌浆球长度:
a_("adm ")=a_{\text {adm }}= allowable adherence resistance against pull-out of the ground around the grout bulb, that can be obtained by means of the following equation: a_("adm ")=a_{\text {adm }}= 灌浆球周围地面抗拔的允许附着阻力,可通过下式求得:
Equation 4 公式 4
Where L=L= Design length of the anchors, which is the free length of the anchor + the grout bulb length divided by 2. 其中 L=L= 锚固件的设计长度,即锚固件的自由长度 + 灌浆球长度除以 2。
The model is run using the obtained value of k_("anchors ")k_{\text {anchors }} (Equation 4) and the process is repeated until the axial reaction obtained in RIDO coincides with the one used in the previous iteration when calculating the stiffness k_("anchor ")k_{\text {anchor }} 使用获得的 k_("anchors ")k_{\text {anchors }} 值(公式 4)运行模型,并重复该过程,直到 RIDO 中获得的轴向反作用力与上一次迭代计算刚度 k_("anchor ")k_{\text {anchor }} 时使用的轴向反作用力相吻合。
D-wall D 型墙
Inertia 惯性
底板
Bottom
Slab
Bottom
Slab| Bottom |
| :---: |
| Slab |
Stiffness 刚度
永久性石板
Permanent
Slabs
Permanent
Slabs| Permanent |
| :---: |
| Slabs |
Stiffness 刚度
Top Slab 顶部板坯
Stiffness 刚度
e
1.2
m
Ec 生态
3.10E+073.10 \mathrm{E}+07
kN//m^(2)\mathrm{kN} / \mathrm{m}^{2}
3.10E+073.10 \mathrm{E}+07
kN//m^(2)\mathrm{kN} / \mathrm{m}^{2}
3.10E+073.10 \mathrm{E}+07
kN//m^(2)\mathrm{kN} / \mathrm{m}^{2}
E_(c)\mathrm{E}_{\mathrm{c}}
31000000
kN//m^(2)\mathrm{kN} / \mathrm{m}^{2}
h
1.5
m
0.5
m
0.5
m
b
1
ml 毫升
b
1
m
1
m
1
m
L
63.1
m
24.0
m
24.0
m
E*l\mathrm{E} \cdot \mathbf{l}
4464000\mathbf{4 4 6 4 0 0 0}
kN*m^(2)\mathbf{k N} \cdot \mathrm{m}^{2}
k\mathbf{k}
1473851\mathbf{1 4 7 3 8 5 1}
kN//ml\mathbf{k N} / \mathbf{m l}
1291667\mathbf{1 2 9 1 6 6 7}
kN//ml\mathbf{k N} / \mathrm{ml}
1291667\mathbf{1 2 9 1 6 6 7}
kN//ml\mathbf{k N} / \mathbf{m l}
D-wall Inertia "Bottom
Slab" Stiffness "Permanent
Slabs" Stiffness Top Slab Stiffness
e 1.2 m Ec 3.10E+07 kN//m^(2) 3.10E+07 kN//m^(2) 3.10E+07 kN//m^(2)
E_(c) 31000000 kN//m^(2) h 1.5 m 0.5 m 0.5 m
b 1 ml b 1 m 1 m 1 m
L 63.1 m 24.0 m 24.0 m
E*l 4464000 kN*m^(2) k 1473851 kN//ml 1291667 kN//ml 1291667 kN//ml| | D-wall | Inertia | | Bottom <br> Slab | Stiffness | Permanent <br> Slabs | Stiffness | Top Slab | Stiffness |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| e | 1.2 | m | Ec | $3.10 \mathrm{E}+07$ | $\mathrm{kN} / \mathrm{m}^{2}$ | $3.10 \mathrm{E}+07$ | $\mathrm{kN} / \mathrm{m}^{2}$ | $3.10 \mathrm{E}+07$ | $\mathrm{kN} / \mathrm{m}^{2}$ |
| $\mathrm{E}_{\mathrm{c}}$ | 31000000 | $\mathrm{kN} / \mathrm{m}^{2}$ | h | 1.5 | m | 0.5 | m | 0.5 | m |
| b | 1 | ml | b | 1 | m | 1 | m | 1 | m |
| | | | L | 63.1 | m | 24.0 | m | 24.0 | m |
| $\mathrm{E} \cdot \mathbf{l}$ | $\mathbf{4 4 6 4 0 0 0}$ | $\mathbf{k N} \cdot \mathrm{m}^{2}$ | $\mathbf{k}$ | $\mathbf{1 4 7 3 8 5 1}$ | $\mathbf{k N} / \mathbf{m l}$ | $\mathbf{1 2 9 1 6 6 7}$ | $\mathbf{k N} / \mathrm{ml}$ | $\mathbf{1 2 9 1 6 6 7}$ | $\mathbf{k N} / \mathbf{m l}$ |
The used value for calculations is ksup =10000kN//ml=10000 \mathrm{kN} / \mathrm{ml}, on the four top temporary anchors, and k_(INF)=20000kN//ml\mathrm{k}_{\mathrm{I} \mathrm{NF}}=20000 \mathrm{kN} / \mathrm{ml}, on the four lowest temporary anchors. 计算中使用的值为四个顶部临时锚固点的 ksup =10000kN//ml=10000 \mathrm{kN} / \mathrm{ml} 和四个最低临时锚固点的 k_(INF)=20000kN//ml\mathrm{k}_{\mathrm{I} \mathrm{NF}}=20000 \mathrm{kN} / \mathrm{ml} 。
7.1.1.2 Internal Forces 7.1.1.2 内力
7.1.1.2.1 Graphs 7.1.1.2.1 图表
The figures below show the diagrams plots to the stages in ULS and ALS and diagram final envelope that have been obtained in the calculation: 下图显示了 ULS 和 ALS 中各阶段的示意图以及计算得出的最终包络线示意图:
Next tables summarize the critical values of loads that the diaphragm wall and strutting elements are expected to support, corresponding to both the Ultimate Limit State ULS and the Accidental Limit State -ALS. To obtain the internal forces design values, we have multiplied them by the corresponding coefficient gamma_(Q)\gamma_{Q}. 下表总结了地下连续墙和支撑构件在极限状态 ULS 和意外极限状态 -ALS 下预计承受的临界荷载值。为了获得内力设计值,我们将其乘以相应的系数 gamma_(Q)\gamma_{Q} 。
D-WALLS
MOMENT M _("d "){ }_{\text {d }}m*kN//ml\mathrm{m} \cdot \mathrm{kN} / \mathrm{ml}
DESIGN APPROACH 1 COMBINATION 1 设计方法 1 组合 1
DESIGN APPROACH 1 COMBINATION 2 设计方法 1 组合 2
ULS
ALS
ULS
ALS
Max. 最大
Min.
Max. 最大
Min.
Max. 最大
Min.
Max. 最大
Min.
5205
-5078
3951
-4053
3939
-4851
3965
-5215
D-WALLS
MOMENT M _("d ") m*kN//ml DESIGN APPROACH 1 COMBINATION 1 DESIGN APPROACH 1 COMBINATION 2
ULS ALS ULS ALS
Max. Min. Max. Min. Max. Min. Max. Min.
5205 -5078 3951 -4053 3939 -4851 3965 -5215| D-WALLS | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOMENT M ${ }_{\text {d }}$ $\mathrm{m} \cdot \mathrm{kN} / \mathrm{ml}$ | DESIGN APPROACH 1 COMBINATION 1 | | | | DESIGN APPROACH 1 COMBINATION 2 | | | |
| | ULS | | ALS | | ULS | | ALS | |
| | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. |
| | 5205 | -5078 | 3951 | -4053 | 3939 | -4851 | 3965 | -5215 |
Table 7-3 Moment Md Design values on D-walls 表 7-3 D 型墙的力矩 Md 设计值
D-WALLS
D-WALLS
SHEAR FORCE Q_(d)\mathbf{Q}_{\mathbf{d}} kN/ml 剪切力 Q_(d)\mathbf{Q}_{\mathbf{d}} kN/ml
DESIGN APPROACH 1 COMBINATION 1 设计方法 1 组合 1
DESIGN APPROACH 1 COMBINATION 2 设计方法 1 组合 2
ULS
ALS
ULS
ALS
Max. 最大
Min.
Max. 最大
Min.
Max. 最大
Min.
Max. 最大
Min.
2343
-1554
1982
-1445
1770
-1408
2059
-1748
D-WALLS
SHEAR FORCE Q_(d) kN/ml DESIGN APPROACH 1 COMBINATION 1 DESIGN APPROACH 1 COMBINATION 2
ULS ALS ULS ALS
Max. Min. Max. Min. Max. Min. Max. Min.
2343 -1554 1982 -1445 1770 -1408 2059 -1748| D-WALLS | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SHEAR FORCE $\mathbf{Q}_{\mathbf{d}}$ kN/ml | DESIGN APPROACH 1 COMBINATION 1 | | | | DESIGN APPROACH 1 COMBINATION 2 | | | |
| | ULS | | ALS | | ULS | | ALS | |
| | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. |
| | 2343 | -1554 | 1982 | -1445 | 1770 | -1408 | 2059 | -1748 |
7.1.1.3 Steel Reinforcement Design of D-Wall 7.1.1.3 D 型墙的钢筋设计
7.1.1.3.1 Internal forces 7.1.1.3.1 内力
The most unfavorable results will be used in structural verifications, which are summarized in the following tables. 最不利的结果将用于结构核查,核查结果汇总于下表。
{[M_(Ed,ULS)=5205kN*m],[Q_(Ed,ULS)=2343kN]:}\left\{\begin{array}{c}
M_{E d, U L S}=5205 \mathrm{kN} \cdot \mathrm{~m} \\
Q_{E d, U L S}=2343 \mathrm{kN}
\end{array}\right.
Next paragraphs give a preliminary calculation to define the steel reinforcement of the D-wall. The diagrams show that the maximum positive bending moment and the maximum negative bending moment are similar. The same sectional calculation can be done for both sections. The steel reinforcement will be the same, but the most reinforced steel layer will be placed in the back or in the intrados depending on the case. (mid-span and intermediate slab support). 接下来的段落给出了确定 D 型墙钢筋的初步计算结果。从图中可以看出,最大正弯矩和最大负弯矩是相似的。可以对两个截面进行相同的截面计算。钢筋将是相同的,但根据具体情况,钢筋最多的一层将放在后部或内侧。(中跨和中间板支撑)。
REEM STATION (ADR). STRUCTURE REPORT 雷姆站(ADR)。结构报告
4s phi16//2004 s \phi 16 / 200 per meter width will be disposed to resist the shear design forces. 4s phi16//2004 s \phi 16 / 200 每米宽度将用于抵抗剪切设计力。
7.1.1.4 Provisional anchors 7.1.1.4 临时锚固件
The maximum reaction of the provisional anchors is equal to 273kN//m273 \mathrm{kN} / \mathrm{m} under ULS combination. Considering that these anchors are separated each 4 meters, the total reaction is 1092 kN . 在 ULS 组合下,临时锚的最大反力等于 273kN//m273 \mathrm{kN} / \mathrm{m} 。考虑到这些锚杆每隔 4 米,总反力为 1092 千牛。
7.1.2. Main Transverse Framed Structure 7.1.2.主横向框架结构
This chapter includes the calculations to define the reinforcements ratios of the passenger building of the ADR Station. The structural elements studied are: 本章包括确定 ADR 火车站客运大楼配筋率的计算。所研究的结构元素包括
The building slabs 楼板
The beams of the main transverse frames 主横梁的横梁
The columns of the main transverse frames 主横向框架的支柱
Different calculations have been performed to define the reinforcements: a simplified calculations for the slabs and a simplified 2D model for the main frames of the station. 为确定钢筋,我们进行了不同的计算:板的简化计算和车站主框架的简化二维模型。
The description of the passenger Building structure is included in section 6. 客运大楼结构说明见第 6 节。
Following chapters include the model and loads definition, the results obtained and the reinforcements calculations. 以下各章包括模型和载荷定义、获得的结果以及加固计算。
7.1.2.1 Model description 7.1.2.1 模型说明
A SAP2000 model has been performed to evaluate the design internal forces of the Passenger’s building. The model geometry defined is the typical main frames of the passenger’s building. A 2D model of the main frames has been defined. SAP2000 模型用于评估客运大楼的设计内力。模型的几何形状是乘客大楼的典型主框架。定义了主框架的二维模型。
Section type: 科室类型:
Figure 7-29 Model definition for section type of passenger building and underground structure. 图 7-29 客运大楼和地下结构剖面类型的模型定义。
Illineco 伊利诺伊州
7.1.2.2 Loads application 7.1.2.2 负载应用
In this section there is included the loads definition applied to the models in SAP2000 described in previous chapter. 本节包括前一章所述 SAP2000 中模型所采用的载荷定义。
Figure 7-33 Imposed loads definition 图 7-33 外加载荷定义
The earthquake action has been considered by the application of an imposed deformation, the same obtained in the Dwall earthquake calculation, to simulate the earthquake load acting over the D-walls. 地震作用是通过施加与 D 型墙地震计算相同的外加变形来考虑的,以模拟作用在 D 型墙上的地震荷载。
Figure 7-34 Deformation for the earthquake situation ( 4.78 mm ) 图 7-34 地震情况下的变形(4.78 毫米)
7.1.2.3 Internal forces 7.1.2.3 内力
Next are presented the internal forces obtained from the SAP2000 model to obtain the reinforcement definition for the ULS and earthquake situations. 接下来介绍了从 SAP2000 模型中获得的内力,从而得出超低偿付能力和地震情况下的加固定义。
Results ULS: 结果 ULS:
Figure 7-35 Axial forces ( {:N_(Ed," max ")=-54446kN)\left.\mathrm{N}_{\mathrm{Ed}, \text { max }}=-54446 \mathrm{kN}\right) 图 7-35 轴向力 ( {:N_(Ed," max ")=-54446kN)\left.\mathrm{N}_{\mathrm{Ed}, \text { max }}=-54446 \mathrm{kN}\right) )
ETIHADRAIL
Figure 7-36 Bending moments on top (roof) slab 图 7-36 顶板(屋顶)上的弯矩
Figure 7-37 Bending moments on intermediate slabs 图 7-37 中间楼板上的弯矩
Figure 7-38 Shear forces on top slab (left) and on intermediate slabs (right) 图 7-38 顶板(左)和中间板(右)上的剪力
Figure 7-42 Shear forces. Shear force at d distance from the end of the column equal to 6450 kN for building’s beams 图 7-42 剪力。建筑物梁在距柱端 d 处的剪力等于 6450 kN
As it can be observed in previous figures, the results obtained in persistent situation (ULS) are higher than the ones obtained in earthquake situation. Only in columns, earthquake internal forces are more critical. Since material factors for persistent situations are more unfavourable than the ones of earthquake situation, in general, only persistent situation are verified to define reinforcements. 从前面的图表中可以看出,持续状态(ULS)下的结果高于地震状态下的结果。只有在柱子中,地震内力更为关键。由于持续工况下的材料因素比地震工况下的材料因素更为不利,因此一般情况下,只有持续工况下才能验证加固的定义。
7.1.2.4 ULS Checks 7.1.2.4 ULS 检查
In this section there are presented the reinforcements definition for following elements: 本节介绍了以下元素的加固定义:
Not enough to resist the design shear force. 不足以抵抗设计剪力。
Vertical reinforcement proposal: 垂直加固建议:
V_(Rd,s)=(A_(sw))/(s)zf_(ywd)cot thetaV_{R d, s}=\frac{A_{s w}}{s} z f_{y w d} \cot \theta
Where, 在哪里? A_(sw)quad\mathrm{A}_{\mathrm{sw}} \quad Area of the shear reinforcement A_(sw)quad\mathrm{A}_{\mathrm{sw}} \quad 抗剪钢筋的面积
s Shear reinforcement’s separation s 抗剪钢筋的分离 f_(ywd)quad\mathrm{f}_{\mathrm{ywd}} \quad Design yield strength of the shear reinforcement, limited to 0.8*f_(yk)0.8 \cdot f_{y k} f_(ywd)quad\mathrm{f}_{\mathrm{ywd}} \quad 抗剪钢筋的设计屈服强度,限于 0.8*f_(yk)0.8 \cdot f_{y k} v_(1)quad\mathrm{v}_{1} \quad Reduction factor, equal to 0.6 v_(1)quad\mathrm{v}_{1} \quad 降低系数,等于 0.6 alpha_(cw)quad\alpha_{\mathrm{cw}} \quad Factor equal to 1.00 for non prestressed structures alpha_(cw)quad\alpha_{\mathrm{cw}} \quad 非预应力结构的系数等于 1.00
z inner lever arm (considered 1.54 m ) z 内杠杆臂(考虑为 1.54 米) thetaquad\theta \quad Angle between the concrete compression strut and the beam axis perpendicular to the shear force (considered cot theta=1.50\cot \theta=1.50 ) thetaquad\theta \quad 混凝土压缩支柱与梁轴线之间垂直于剪力的角度(考虑 cot theta=1.50\cot \theta=1.50 )
40 s phi1240 s \phi 12 per meter width will be disposed to resist the shear design forces. 40 s phi1240 s \phi 12 每米宽度将用于抵抗剪切设计力。
These reinforcements values result in a reinforcement ratio of 130kg//m^(3)130 \mathbf{k g} / \mathbf{m}^{\mathbf{3}} for both beams (roof slab beams and intermediate slabs beams). 根据这些配筋值,两根梁(屋顶板梁和中间板梁)的配筋率均为 130kg//m^(3)130 \mathbf{k g} / \mathbf{m}^{\mathbf{3}} 。