这是用户在 2025-3-13 10:23 为 https://app.immersivetranslate.com/pdf-pro/2b0b94b7-ec38-448d-b4f2-358eb996e9a6/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
الاتحاد للقطـارات

Version Log - Internal
版本日志 - 内部

Version  版本 Date  日期 Name  名称 Description of Review Changes
审查修改说明
AA1 20 / 11 / 2024 20 / 11 / 2024 20//11//202420 / 11 / 2024 Gabriele D'Aronco  加布里埃尔-达龙科 Preparer  筹备人
AA2 21 / 11 / 2024 21 / 11 / 2024 21//11//202421 / 11 / 2024 Pau Graell Verifier  校验器
AA3 21 / 11 / 2024 21 / 11 / 2024 21//11//202421 / 11 / 2024 Javier Valero  哈维尔-瓦莱罗 Approver  批准人
AA4 22 / 11 / 2024 22 / 11 / 2024 22//11//202422 / 11 / 2024 Roberto Villar  罗伯托-比利亚尔 QPA
Version Date Name Description of Review Changes AA1 20//11//2024 Gabriele D'Aronco Preparer AA2 21//11//2024 Pau Graell Verifier AA3 21//11//2024 Javier Valero Approver AA4 22//11//2024 Roberto Villar QPA | Version | Date | Name | Description of Review Changes | | | :---: | :---: | :--- | :--- | :--- | | AA1 | $20 / 11 / 2024$ | Gabriele D'Aronco | Preparer | | | AA2 | $21 / 11 / 2024$ | Pau Graell | Verifier | | | AA3 | $21 / 11 / 2024$ | Javier Valero | Approver | | | AA4 | $22 / 11 / 2024$ | Roberto Villar | QPA | |

Revision Log - To Client
修订日志 - 致客户

Revision  修订 Date  日期 Description of Changes  变更说明
AA 22/11/2024 First Release  首次发布
Revision Date Description of Changes AA 22/11/2024 First Release | Revision | Date | Description of Changes | | :---: | :---: | :---: | | AA | 22/11/2024 | First Release | | | | | | | | | | | | | | | | | | | | |
This document including its attachments is the property of Etihad Rail. It contains confidential proprietary information and may be legally privilege. The reproduction, distribution, utilization or communication of this document, or any part thereof, is strictly prohibited unless expressly permitted by Etihad Rail.
本文件及其附件为阿提哈德铁路公司所有。本文件包含机密专有信息,可能享有法律特权。除非得到阿提哈德铁路公司的明确许可,否则严禁复制、分发、使用或传播本文件或其任何部分。

Table of Content  目录

1 INTRODUCTION AND SCOPE … 11
2 REFERENCES AND STANDARDS … 11
2 参考资料和标准 ... 11

2.1 References … 11
2.1 参考文献 ... 11

2.2 Codes and standards … 11
2.2 规范和标准...... 11

2.3 UNITS … 11
2.3 个单位 ... 11

2.4 DESIGN SOFTWARE … 11
2.4 设计软件 ... 11

2.4.1. Structural design … 11
2.4.1.结构设计 ... 11

3 GENERAL DESIGN PARAMETERS … 12
3 一般设计参数 ... 12

3.1 MATERIALS AND DURABILITY … 12
3.1 材料和耐久性 ... 12

3.1.1. Durability. … 12
3.1.1.耐久性... 12

3.1.2. Concrete … 12
3.1.2.混凝土 ... 12

3.1.3. Steel reinforcement … 13
3.1.3.钢筋 ... 13

4 GEOTECHNICS … 13
4 岩土工程...... 13

4.1 Design Approach … 13
4.1 设计方法 ... 13

4.1.1. Partial Factors for limits states verification … 13
4.1.1.

4.2 Geotechnical Data … 15
4.2 岩土工程数据 ... 15

5 DESIGN LOADS AND COMBINATIONS … 17
5 设计荷载和组合 ... 17

5.1 LOAD COMBINATIONS … 17
5.1 载荷组合 ... 17

5.1.1. Ultimate limit state … 17
5.1.1.

5.1.2. Serviceability limit states. … 17
5.1.2.适用性极限状态... 17

5.2 LOADS DEFINITION … 17
5.2.1. Dead loads. … 17
5.2.1.死荷载... 17

5.2.2. Earth Pressure Loads … 17
5.2.2.土压力荷载 ... 17

5.2.3. Super Imposed loads … 20
5.2.3.超强荷载...... 20

5.2.4. Imposed loads … 20
5.2.4.外加荷载 ... 20

5.2.5. Railway loads … 21
5.2.5.铁路荷载...... 21

5.2.6. Wind loads … 23
5.2.6.风荷载 ... 23

5.2.7. Thermal actions … 23
5.2.7.热作用...... 23

5.2.8. Seismic actions … 24
5.2.8.地震作用...... 24

5.2.9. Settlements … 25
5.2.9.结算...... 25

5.2.10. Construction Loads … 25
5.2.10.

6 STRUCTURAL DESCRIPTION OF REEM STATION … 26
6.1 Underground Station … 27
6.1 地下车站 ... 27

6.1.1. Geometrical definition … 27
6.1.1.几何定义...... 27

6.1.2. Structural Scheme … 27
6.1.2.结构方案...... 27

6.1.3. Cross-section … 27
6.1.3.横截面

6.2 TRANSITION ZONES (SWITCHES) … 29
6.2 过渡区(开关)......29

6.2.1. Cross-section … 29
6.2.1.横截面 ... 29

6.3 CUT AND COVER … 31
6.3 切割和覆盖...... 31

7 PRELIMINARY CALCULATION OF THE STATION … 32
7.1 Underground structure … 32
7.1 地下结构...... 32

7.1.1. D D quad D\quad D-Wall design … 33
7.1.1. D D quad D\quad D -墙面设计 ... 33

7.1.2. Main Transverse Framed Structure … 49
7.1.2.

7.1.3. Slabs … 73
7.1.3.板材 ... 73

7.2 Bоттом SLAB … 83
7.2 Bоттом SLAB ... 83

7.2.1. Uplift Stability … 83
7.2.1.

UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY P2103-AUH-EAS-RP-71100-AA
除非另有说明,本文件的印刷本未经控制,仅供参考 P2103-AUH-EAS-RP-71100-AA

REEM STATION (ADR). STRUCTURE REPORT
雷姆站(ADR)。结构报告

7.2.2. ULS Check … 90
7.2.2.ULS 检查 ... 90

7.3 Transition zones … 103
7.3 过渡区...... 103

7.3.1. D D DD-wall design … 103
7.3.1. D D DD - 墙面设计 ... 103

7.3.2. Bottom slab … 103
7.3.2.底板 ... 103

8 PRELIMINARY CALCULATION OF THE CUT AND COVER AT NORTH OF STATION … 117
8 火车站以北的挖方和覆土初步计算...... 117

8.1 General description … 117
8.2 Methodology … 117
8.3 Construction sequence … 117
8.3 施工顺序...... 117

8.4 Ground Properties … 118
8.4 地面特性 ... 118

8.5 Retrieval shaft Section … 118
8.5 回收轴部分...... 118

8.5.1. Introduction … 118
8.5.1.导言 ... 118

8.5.2. D-Walls … 118
8.5.2.D 型墙 ... 118

8.5.3. Bracing system … 133
8.5.3.支撑系统 ... 133

8.5.4. Top slab … 143
8.5.4.顶板 ... 143

8.5.5. Bottom slab … 149
8.5.5.底板

8.6 CUT AND Cover Section … 161
8.6.1. Introduction … 161
8.6.1.导言 ... 161

8.6.2. D-walls … 161
8.6.2.D 型墙 161

8.6.3. Top slab … 172
8.6.3.顶板 ... 172

8.6.4. Bottom slab … 173
8.6.4.底板

9 BILL OF QUANTITIES … 182
9 工程量清单...... 182

Index of figures  数字索引
Figure 4-1 Geotechnical Design Note for ADR Station … 16
Figure 4-2 Ground types according to EC 8 - Table 3.3. … 16
图 4-2 根据 EC 8 表 3.3 确定的地面类型。... 16

Figure 5-1 Load model 71 and characteristic values for vertical loads … 21
图 5-1 荷载模型 71 和垂直荷载的特征值 ... 21

Figure 5-2 Load model SW/0 and SW/2 … 21
图 5-2 装载模型 SW/0 和 SW/2 ... 21

Figure 5-3 Characteristic values for vertical loads for load models SW/0 and SW/2 … 21
图 5-3 负载模型 SW/0 和 SW/2 的垂直负载特征值 ... 21

Figure 6-1 Reem station and cut and cover layout. … 26
图 6-1 Reem 管理站和切割与覆盖布局。... 26

Figure 6-2 3D view of ADR station … 26
图 6-2 ADR 工作站的 3D 视图...... 26

Figure 6-3 3D view of ADR cut and cover with retrieval shaft. … 27
图 6-3 ADR 切割和盖板与回收轴的 3D 视图。... 27

Figure 6-4 Typical cross section of passenger building structure of REEM station … 28
图 6-4 REEM 火车站客运大楼结构的典型横截面...... 28

Figure 6-5 Typical cross section of passenger building structure of REEM Station with doubled columns … 28
Figure 6-6 View in plan of the northern open ramp or transition zone … 29
Figure 6-7 Typical cross section of transition zone with high width … 30
图 6-7 高宽度过渡带的典型横截面...... 30

Figure 6-8 Typical cross section of the transition zone with reduced width … 30
Figure 6-9 View in plan of the cut and cover … 31
Figure 6-10 Section of the cut and cover … 32
Figure 7-1 Diagram Envelopes ULS DA-1 / 1 … 37
图 7-1 图表包络 ULS DA-1 / 1 ... 37

Figure 7-2 Diagram Envelopes ALS DA-1 / 1 … 37
图 7-2 图示包络线 ALS DA-1 / 1 ... 37

Figure 7-3 Diagram Phase 1 ULS DA-1 / 1 … 37
图 7-3 图表 第 1 阶段 ULS DA-1 / 1 ... 37

Figure 7-4 Diagram Phase 6 ULS DA-1 / 1 … 37
图 7-4 图表 第 6 阶段 ULS DA-1 / 1 ... 37

Figure 7-5 Diagram Phase 9 ULS DA-1 / 1 … 38
图 7-5 图表 第 9 期 ULS DA-1 / 1 ... 38

UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

P2103-AUH-EAS-RP-71100-AA
Figure 7-6 Diagram Phase 11 ULS DA-1 / 1 … 38
图 7-6 图表 第 11 期 ULS DA-1 / 1 ... 38

Figure 7-7 Diagram Phase 14 ULS DA-1 / 1 … 38
图 7-7 图表 第 14 期 ULS DA-1 / 1 ... 38

Figure 7-8 Diagram Phase 17 ULS DA-1 / 1 … 38
图 7-8 图表 第 17 期 ULS DA-1 / 1 ... 38

Figure 7-9 Diagram Phase 20 ULS DA-1 / 1 … 39
图 7-9 图表 第 20 期 ULS DA-1 / 1 ... 39

Figure 7-10 Diagram Phase 23 ULS DA-1 / 1 … 39
图 7-10 图表 第 23 期 ULS DA-1 / 1 ... 39

Figure 7-11 Diagram Phase 28 ULS DA-1 / 1 … 39
图 7-11 图表 第 28 期 ULS DA-1 / 1 ... 39

Figure 7-12 Diagram Phase 29 ULS DA-1 / 1 … 39
图 7-12 图 29 ULS DA-1 / 1 ... 39

Figure 7-13 Diagram Phase 38 ULS DA-1 / 1 … 40
图 7-13 图表阶段 38 ULS DA-1 / 1 ... 40

Figure 7-14 Diagram Phase 39 ALS DA-1 / 1 … 40
图 7-14 图表阶段 39 ALS DA-1 / 1 ... 40

Figure 7-15 Diagram Envelopes ULS DA-1 / 2 … 41
图 7-15 图表包络 ULS DA-1 / 2 ... 41

Figure 7-16 Diagram Envelopes ALS DA-1 / 2 … 41
图 7-16 图示包络线 ALS DA-1 / 2 ... 41

Figure 7-17 Diagram Phase 1 ULS DA-1 / 2 … 41
图 7-17 图表 第 1 阶段 ULS DA-1 / 2 ... 41

Figure 7-18 Diagram Phase 6 ULS DA-1 / 2 … 41
图 7-18 图表 第 6 期 ULS DA-1 / 2 ... 41

Figure 7-19 Diagram Phase 9 ULS DA-1 / 2 … 42
图 7-19 图表 第 9 期 ULS DA-1 / 2 ... 42

Figure 7-20 Diagram Phase 11 ULS DA-1 / 2. … 42
图 7-20 图表 第 11 期 ULS DA-1 / 2... 42

Figure 7-21 Diagram Phase 14 ULS DA-1 / 2. … 42
图 7-21 图表 第 14 期 ULS DA-1 / 2... 42

Figure 7-22 Diagram Phase 17 ULS DA-1 / 2 … 42
图 7-22 图表 第 17 期 ULS DA-1 / 2 ... 42

Figure 7-23 Diagram Phase 20 ULS DA-1 / 2 … 43
图 7-23 图表 第 20 期 ULS DA-1 / 2 ... 43

Figure 7-24 Diagram Phase 23 ULS DA-1 / 2. … 43
图 7-24 图表 第 23 期 ULS DA-1 / 2... 43

Figure 7-25 Diagram Phase 28 ULS DA-1 / 2 … 43
图 7-25 图表 第 28 期 ULS DA-1 / 2 ... 43

Figure 7-26 Diagram Phase 29 ULS DA-1 / 2. … 43
图 7-26 图 29 ULS DA-1 / 2... 43

Figure 7-27 Diagram Phase 38 ULS DA-1 / 2. … 44
图 7-27 图 38 ULS DA-1 / 2... 44

Figure 7-28 Diagram Phase 39 ULS DA-1 / 2. … 44
图 7-28 图阶段 39 ULS DA-1 / 2... 44

Figure 7-29 Model definition for section type of passenger building and underground structure … 51
图 7-29 客运大楼和地下结构剖面类型的模型定义 ... 51

Figure 7-30 0.50m slab self-weight definition … 52
图 7-30 0.50 米楼板自重定义...... 52

Figure 7-31 Permanent loads definition … 52
图 7-31 永久负载定义 ... 52

Figure 7-32 Soil weight loads definition … 53
图 7-32 土重载荷定义...... 53

Figure 7-33 Imposed loads definition … 54
图 7-33 外加载荷定义 ... 54

Figure 7-34 Deformation for the earthquake situation ( 4.78 mm ) … 54
图 7-34 地震情况下的变形(4.78 毫米)...... 54

Figure 7-35 Axial forces ( N Ed , max = 54446 kN N Ed , max = 54446 kN N_(Ed,max)=-54446kN\mathrm{N}_{\mathrm{Ed}, \max }=-54446 \mathrm{kN} ) … 55
图 7-35 轴向力 ( N Ed , max = 54446 kN N Ed , max = 54446 kN N_(Ed,max)=-54446kN\mathrm{N}_{\mathrm{Ed}, \max }=-54446 \mathrm{kN} ) ... 55

Figure 7-36 Bending moments on top (roof) slab … 56
Figure 7-37 Bending moments on intermediate slabs … 56
图 7-37 中间楼板上的弯矩 ... 56

Figure 7-38 Shear forces on top slab (left) and on intermediate slabs (right) … 57
Figure 7-39 Axial forces ( N Ed , max = 37300 kN N Ed , max = 37300 kN N_(Ed,max)=-37300kN\mathrm{N}_{\mathrm{Ed}, \max }=-37300 \mathrm{kN} ) … 58
图 7-39 轴向力 ( N Ed , max = 37300 kN N Ed , max = 37300 kN N_(Ed,max)=-37300kN\mathrm{N}_{\mathrm{Ed}, \max }=-37300 \mathrm{kN} ) ... 58

Figure 7-40 Bending moments - roof slab … 59
图 7-40 弯曲力矩 - 屋顶板 ... 59

Figure 7-41 Bending moments - intermediate slab … 59
图 7-41 弯曲力矩 - 中间板 ... 59

Figure 7-42 Shear forces. Shear force at d distance from the end of the column equal to 6450 kN for building’s beams60
图 7-42 剪力。建筑物梁在距柱端 d 处的剪力等于 6450 千牛60

Figure 7-43 Reem Station Building. Cross section studied for uplift verification. … 84
图 7-43 里姆站大楼。为进行翘曲验证而研究的横截面。... 84

Figure 7-44 Failure of stability at the bottom of the D-walls. Red line indicates the surface of rupture. … 84
图 7-44 D 型墙底部稳定性失效。红线表示破裂面。... 84

UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。
Figure 7-45 Failure of stability at the bottom face of the bottom slab. Red line indicates the surface of rupture85
图 7-45 底板底面失稳。红线表示破裂面85

Figure 7-46 Bottom slab model defined in SAP2000 … 91
图 7-46 SAP2000 中定义的底板模型 ... 91

Figure 7-47 Columns reactions at SLS … 92
图 7-47 SLS 的立柱反应...... 92

Figure 7-48 Columns reactions at ULS … 92
图 7-48 柱在 ULS 时的反应...... 92

Figure 7-49 Platform weight ( q = 1.56 m 19 kN / m 3 30 kN / m 2 q = 1.56 m 19 kN / m 3 30 kN / m 2 q=1.56m*19kN//m^(3)~~30kN//m^(2)\mathrm{q}=1.56 \mathrm{~m} \cdot 19 \mathrm{kN} / \mathrm{m}^{3} \approx 30 \mathrm{kN} / \mathrm{m}^{2} ) … 93
图 7-49 平台重量 ( q = 1.56 m 19 kN / m 3 30 kN / m 2 q = 1.56 m 19 kN / m 3 30 kN / m 2 q=1.56m*19kN//m^(3)~~30kN//m^(2)\mathrm{q}=1.56 \mathrm{~m} \cdot 19 \mathrm{kN} / \mathrm{m}^{3} \approx 30 \mathrm{kN} / \mathrm{m}^{2} ) ... 93

Figure 7-50 Slab track weight ( q = 0.86 m 22 kN / m 3 20 kN / m 2 q = 0.86 m 22 kN / m 3 20 kN / m 2 q=0.86m*22kN//m^(3)~~20kN//m^(2)q=0.86 \mathrm{~m} \cdot 22 \mathrm{kN} / \mathrm{m}^{3} \approx 20 \mathrm{kN} / \mathrm{m}^{2} ) … 93
图 7-50 板轨重量 ( q = 0.86 m 22 kN / m 3 20 kN / m 2 q = 0.86 m 22 kN / m 3 20 kN / m 2 q=0.86m*22kN//m^(3)~~20kN//m^(2)q=0.86 \mathrm{~m} \cdot 22 \mathrm{kN} / \mathrm{m}^{3} \approx 20 \mathrm{kN} / \mathrm{m}^{2} ) ... 93

Figure 7-51 Water pressure ( q = 23 m 10 kN / m 3 = 230 kN / m 2 q = 23 m 10 kN / m 3 = 230 kN / m 2 q=23m*10kN//m^(3)=230kN//m^(2)q=23 \mathrm{~m} \cdot 10 \mathrm{kN} / \mathrm{m}^{3}=230 \mathrm{kN} / \mathrm{m}^{2} ) … 94
图 7-51 水压 ( q = 23 m 10 kN / m 3 = 230 kN / m 2 q = 23 m 10 kN / m 3 = 230 kN / m 2 q=23m*10kN//m^(3)=230kN//m^(2)q=23 \mathrm{~m} \cdot 10 \mathrm{kN} / \mathrm{m}^{3}=230 \mathrm{kN} / \mathrm{m}^{2} ) ... 94

Figure 7-52 Live loads: Trains ( q = 30 kN / m 2 q = 30 kN / m 2 q=30kN//m^(2)q=30 \mathrm{kN} / \mathrm{m}^{2} ) and passengers ( q = 5 kN / m 2 q = 5 kN / m 2 q=5kN//m^(2)\mathrm{q}=5 \mathrm{kN} / \mathrm{m}^{2} ) … 94
图 7-52 活载荷:列车 ( q = 30 kN / m 2 q = 30 kN / m 2 q=30kN//m^(2)q=30 \mathrm{kN} / \mathrm{m}^{2} ) 和乘客 ( q = 5 kN / m 2 q = 5 kN / m 2 q=5kN//m^(2)\mathrm{q}=5 \mathrm{kN} / \mathrm{m}^{2} ) ... 94

Figure 7-53 Transverse bending moments in the slab in STR combination 1 … 95
图 7-53 STR 组合 1 中楼板的横向弯矩 ... 95

Figure 7-54 Longitudinal bending moments in the slab in STR combination 1 … 96
图 7-54 STR 组合 1 中楼板的纵向弯矩 ... 96

Figure 7-55 Transverse bending moments in the slab in STR combination 2 … 96
图 7-55 STR 组合 2 中楼板的横向弯矩 ... 96

Figure 7-56 Longitudinal bending moments in the slab in STR combination 2 … 97
图 7-56 STR 组合 2 中楼板的纵向弯矩 ... 97

Figure 7-57 Bottom slab model defined in SAP2000 … 109
图 7-57 SAP2000 中定义的底板模型 ... 109

Figure 7-58 Slab track weight ( q = 1.20 23 kN / m 3 = 27.60 kN / m 2 q = 1.20 23 kN / m 3 = 27.60 kN / m 2 q=1.20*23kN//m^(3)=27.60kN//m^(2)\mathrm{q}=1.20 \cdot 23 \mathrm{kN} / \mathrm{m}^{3}=27.60 \mathrm{kN} / \mathrm{m}^{2} ) … 109
图 7-58 板轨重量 ( q = 1.20 23 kN / m 3 = 27.60 kN / m 2 q = 1.20 23 kN / m 3 = 27.60 kN / m 2 q=1.20*23kN//m^(3)=27.60kN//m^(2)\mathrm{q}=1.20 \cdot 23 \mathrm{kN} / \mathrm{m}^{3}=27.60 \mathrm{kN} / \mathrm{m}^{2} ) ... 109

Figure 7 59 7 59 7-597-59 Water pressure ( q = 23 m 10 kN / m 3 = 230 kN / m 2 q = 23 m 10 kN / m 3 = 230 kN / m 2 q=23m*10kN//m^(3)=230kN//m^(2)\mathrm{q}=23 \mathrm{~m} \cdot 10 \mathrm{kN} / \mathrm{m}^{3}=230 \mathrm{kN} / \mathrm{m}^{2} ) … 110
7 59 7 59 7-597-59 水压 ( q = 23 m 10 kN / m 3 = 230 kN / m 2 q = 23 m 10 kN / m 3 = 230 kN / m 2 q=23m*10kN//m^(3)=230kN//m^(2)\mathrm{q}=23 \mathrm{~m} \cdot 10 \mathrm{kN} / \mathrm{m}^{3}=230 \mathrm{kN} / \mathrm{m}^{2} ) ... 110

Figure 7-60 Live loads: Trains ( q = 30 kN / m 2 q = 30 kN / m 2 q=30kN//m^(2)q=30 \mathrm{kN} / \mathrm{m}^{2} ) and passengers ( q = 5 kN / m 2 q = 5 kN / m 2 q=5kN//m^(2)\mathrm{q}=5 \mathrm{kN} / \mathrm{m}^{2} ) … 110
图 7-60 活载荷:列车 ( q = 30 kN / m 2 q = 30 kN / m 2 q=30kN//m^(2)q=30 \mathrm{kN} / \mathrm{m}^{2} ) 和乘客 ( q = 5 kN / m 2 q = 5 kN / m 2 q=5kN//m^(2)\mathrm{q}=5 \mathrm{kN} / \mathrm{m}^{2} ) ... 110

Figure 7-61 SLS reactions … 111
图 7-61 SLS 反应...... 111

Figure 7-62 ULS reactions … 111
图 7-62 ULS 反应...... 111

Figure 7-63 Transverse bending moments in the slab in STR combination 1 … 112
图 7-63 STR 组合 1 中楼板的横向弯矩 ... 112

Figure 7-64 Longitudinal bending moments in the slab in STR combination 1 … 113
图 7-64 STR 组合 1 中楼板的纵向弯矩 ... 113

Figure 7-65 Transverse bending moments in the slab in STR combination 2 … 113
图 7-65 STR 组合 2 中楼板的横向弯矩 ... 113

Figure 7-66 Longitudinal bending moments in the slab in STR combination 2 … 114
图 7-66 STR 组合 2 中楼板的纵向弯矩 ... 114

Figure 8-1. View in plan of the Retrieval Shaft at the North of Reem Station … 118
图 8-1.里姆站北部的回收井平面图...... 118

Figure 8-2 Section TYPE of the Retrieval Shaft at the North of the Reem Station … 121
Figure 8-3 DA1-1 ULS Internal Forces Envelopes … 122
图 8-3 DA1-1 ULS 内力包络线...... 122

Figure 8-4 DA1-1 ALS Internal Forces Envelopes … 122
图 8-4 DA1-1 ALS 内力包络线...... 122

Figure 8-5 DA1-1 ULS Phase 01 … 122
图 8-5 DA1-1 ULS 01 阶段 ... 122

Figure 8-6 DA1-1 ULS Phase 06 … 122
图 8-6 DA1-1 ULS 第 06 阶段...... 122

Figure 8-7 DA1-1 ULS Phase 09 … 123
图 8-7 DA1-1 ULS 第 09 阶段...... 123

Figure 8-8 DA1-1 ULS Phase 12 … 123
图 8-8 DA1-1 ULS 第 12 阶段...... 123

Figure 8-9 DA1-1 ULS Phase 15 … 123
图 8-9 DA1-1 ULS 第 15 阶段...... 123

Figure 8-10 DA1-1 ULS Phase 18 … 123
图 8-10 DA1-1 ULS 第 18 阶段...... 123

Figure 8-11 DA1-1 ULS Phase 19 … 124
图 8-11 DA1-1 ULS 第 19 阶段...... 124

Figure 8-12 DA1-1 ULS Phase 20 … 124
图 8-12 DA1-1 ULS 第 20 阶段 ... 124

Figure 8-13 DA1-2 ULS Internal Forces Envelopes … 124
图 8-13 DA1-2 ULS 内力包络线...... 124

Figure 8-14 DA1-2 ALS Internal Forces Envelopes … 124
图 8-14 DA1-2 ALS 内力包络线 ... 124

Figure 8-15 DA1-2 ULS Phase 01 … 125
图 8-15 DA1-2 ULS 第 01 阶段 ... 125

Figure 8-16 DA1-2 ULS Phase 06 … 125
图 8-16 DA1-2 ULS 第 06 阶段 ... 125

Figure 8-17 DA1-2 ULS Phase 09 … 125
图 8-17 DA1-2 ULS 第 09 阶段...... 125

UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

P2103-AUH-EAS-RP-71100-AA
Figure 8-18 DA1-2 ULS Phase 12 … 125
图 8-18 DA1-2 ULS 第 12 阶段 ... 125

Figure 8-19 DA1-2 ULS Phase 15 … 126
图 8-19 DA1-2 ULS 第 15 阶段...... 126

Figure 8-20 DA1-2 ULS Phase 18 … 126
图 8-20 DA1-2 ULS 第 18 阶段...... 126

Figure 8-21 DA1-2 ULS Phase 19 … 126
图 8-21 DA1-2 ULS 第 19 阶段...... 126

Figure 8-22 DA1-2 ULS Phase 20 … 126
图 8-22 DA1-2 ULS 第 20 阶段 ... 126

Figure 8-23 View of the bracing system of retrieval shaft model in SAP2000 … 133
图 8-23 SAP2000 中回收轴模型的支撑系统视图...... 133

Figure 8-24 Horizontal pressure defined in SAP2000 … 134
图 8-24 SAP2000 中定义的水平压力 ... 134

Figure 8-25 Axial forces obtained. Concrete ring, N Ed = 26640 kN N Ed = 26640 kN N_(Ed)=-26640kN\mathrm{N}_{\mathrm{Ed}}=-26640 \mathrm{kN}, and strut, N Ed = 39056 kN N Ed = 39056 kN N_(Ed)=-39056kN\mathrm{N}_{\mathrm{Ed}}=-39056 \mathrm{kN} … 134
图 8-25 获得的轴向力。混凝土环 N Ed = 26640 kN N Ed = 26640 kN N_(Ed)=-26640kN\mathrm{N}_{\mathrm{Ed}}=-26640 \mathrm{kN} 和支柱 N Ed = 39056 kN N Ed = 39056 kN N_(Ed)=-39056kN\mathrm{N}_{\mathrm{Ed}}=-39056 \mathrm{kN} ... 134

Figure 8-26 Bending moments obtained for concrete ring ( M Ed = 46555 / + 58125 kNm M Ed = 46555 / + 58125 kNm M_(Ed)=-46555//+58125kNm\mathrm{M}_{\mathrm{Ed}}=-46555 /+58125 \mathrm{kNm} ) … 135
图 8-26 混凝土环 ( M Ed = 46555 / + 58125 kNm M Ed = 46555 / + 58125 kNm M_(Ed)=-46555//+58125kNm\mathrm{M}_{\mathrm{Ed}}=-46555 /+58125 \mathrm{kNm} ) 获得的弯矩 ... 135

Figure 8-27 Shear forces obtained for concrete ring ( V Ed = 18620 kN V Ed = 18620 kN V_(Ed)=18620kN\mathrm{V}_{\mathrm{Ed}}=18620 \mathrm{kN} ) … 135
图 8-27 混凝土环 ( V Ed = 18620 kN V Ed = 18620 kN V_(Ed)=18620kN\mathrm{V}_{\mathrm{Ed}}=18620 \mathrm{kN} ) 获得的剪力 ... 135

Figure 8-28 Retrieval shaft top slab cross section … 143
Figure 8-29 Failure of stability at the bottom of the D-walls. Red line indicates the surface of rupture. … 150
图 8-29 D 型墙底部稳定性失效。红线表示破裂面。... 150

Figure 8-30 Failure of stability at the bottom face of the bottom slab. Red line indicates the surface of rupture … 151
图 8-30 底板底面失稳。红线表示破裂面...... 151

Figure 8-31 Structural scheme for bottom slab … 156
图 8-31 底板结构方案 ... 156

Figure 8-32 Cut and Cover - North of Reem Station. Elevation … 161
图 8-32 切削覆盖层 - 里姆站以北。标高 ... 161

Figure 8-33 Section TYPE for the Cut and Cover Stretch at the North of Reem Station … 163
Figure 8-34 DA1-1 ULS Internal Forces Envelopes … 164
图 8-34 DA1-1 ULS 内力包络线...... 164

Figure 8-35 DA1-1 ALS Internal Forces Envelopes … 164
图 8-35 DA1-1 ALS 内力包络线 .... 164

Figure 8-36 DA1-1 ULS Phase 01 … 165
图 8-36 DA1-1 ULS 01 阶段 ... 165

Figure 8-37 DA1-1 ULS Phase 03 … 165
图 8-37 DA1-1 ULS 03 阶段...... 165

Figure 8-38 DA1-1 ULS Phase 06 … 165
图 8-38 DA1-1 ULS 第 06 阶段 ... 165

Figure 8-39 DA1-1 ULS Phase 10 … 165
图 8-39 DA1-1 ULS 第 10 阶段 ... 165

Figure 8-40 DA1-1 ULS Phase 13 … 165
图 8-40 DA1-1 ULS 第 13 阶段...... 165

Figure 8-41 DA1-1 ULS Phase 16 … 165
图 8-41 DA1-1 ULS 第 16 阶段...... 165

Figure 8-42 DA1-1 ULS Phase 19 … 166
图 8-42 DA1-1 ULS 第 19 阶段 ... 166

Figure 8-43 DA1-1 ULS Phase 20 … 166
图 8-43 DA1-1 ULS 第 20 阶段 ... 166

Figure 8-44 DA1-1 ULS Phase 21 … 166
图 8-44 DA1-1 ULS 第 21 阶段...... 166

Figure 8-45 DA1-1 ULS Phase 22 … 166
图 8-45 DA1-1 ULS 第 22 阶段 ... 166

Figure 8-46 DA1-2 ULS Internal Forces Envelopes … 167
图 8-46 DA1-2 ULS 内力包络线...... 167

Figure 8-47 DA1-2 ALS Internal Forces Envelopes … 167
图 8-47 DA1-2 ALS 内力包络线 ... 167

Figure 8-48 DA1-2 ULS Phase 01 … 167
图 8-48 DA1-2 ULS 第 01 阶段 ... 167

Figure 8-49 DA1-2 ULS Phase 03 … 167
图 8-49 DA1-2 ULS 03 阶段 ... 167

Figure 8-50 DA1-2 ULS Phase 06 … 168
图 8-50 DA1-2 ULS 第 06 阶段 ... 168

Figure 8-51 DA1-2 ULS Phase 10 … 168
图 8-51 DA1-2 ULS 第 10 阶段 ... 168

Figure 8-52 DA1-2 ULS Phase 13 … 168
图 8-52 DA1-2 ULS 第 13 阶段 ... 168

Figure 8-53 DA1-2 ULS Phase 16 … 168
图 8-53 DA1-2 ULS 第 16 阶段 ... 168

Figure 8-54 DA1-2 ULS Phase 19 … 169
图 8-54 DA1-2 ULS 第 19 阶段 ... 169

Figure 8-55 DA1-2 ULS Phase 20 … 169
图 8-55 DA1-2 ULS 第 20 阶段 ... 169

Figure 8-56 DA1-2 ULS Phase 21 … 169
图 8-56 DA1-2 ULS 第 21 阶段 ... 169

UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

P2103-AUH-EAS-RP-71100-AA

REEM STATION (ADR). STRUCTURE REPORT
雷姆站(ADR)。结构报告

Figure 8-57 DA1-2 ULS Phase 22 … 169
图 8-57 DA1-2 ULS 第 22 阶段 ... 169

Figure 8-58 Cut and cover top slab cross section 1 ( L > 20 m L > 20 m L > 20m\mathrm{L}>20 \mathrm{~m} ) … 172
图 8-58 切割和覆盖顶板横截面 1 ( L > 20 m L > 20 m L > 20m\mathrm{L}>20 \mathrm{~m} ) ... 172

Figure 8-59 Structural scheme for bottom slab (15 m+15 m) … 177
Index of tables  表格索引
Table 2-1 References … 11
表 2-1 参考文献 ... 11

Table 2-2 Software used for the structural design … 12
Table 3-1 Concrete types as per EN 1992-1-1 … 12
表 3-1 符合 EN 1992-1-1 标准的混凝土类型 ... 12

Table 4-1 Partial factors for actions according to tables NA. A1.2(B) and NA. A1.2© for the STR and GEO limit states … 13
表 4-1 根据表 NA.A1.2(B) 和 NA.A1.2©表中 STR 和 GEO 极限状态的部分系数...... 13

Table 4-2 Partial factors for soil parameters for the STR and GEO limit states … 14
Table 4-3 Partial factors for resistances of bored piles for the STR and GEO limit states … 14
表 4-3 STR 和 GEO 极限状态下钻孔灌注桩抗力的部分系数....................

Table 4-4 Partial factors for actions according for the UPL limit state … 14
Table 4-5 Partial factors for soil parameters for the UPL limit state … 14
Table 4-6 Partial factors for resistances for the UPL limit state … 15
表 4-6 UPL 极限状态的电阻局部系数 ... 15

Table 4-7 Ground materials characterization. ADR Station … 16
表 4-7 地面材料特征。ADR 站 ... 16

Table 5-1 Weight of Materials and Finishes … 17
Table 5-2 Removable loads … 20
表 5-2 可移动负载...... 20

Table 5-3 Finishing loads … 20
表 5-3 加工负载...... 20

Table 5-4 Imposed loads to be considered in elevated stations … 20
Table 5-5 Classes of structures subjected to impact from derailed railway traffic (table 4.3, EN 1991-1-7) … 22
Table 5-6 Indicative static equivalent design forces due to impact for class A structures over or alongside railways (table 4.4, EN 1991-1-7) … 22
Table 5-7 Basic wind speeds in UAE … 23
表 5-7 阿联酋的基本风速...... 23

Table 5-8 Design wind pressure for different UAE locations … 23
Table 5-9 Values of the parameters describing Type 2 elastic response spectra as per Table 3.3 of the 1998-1 … 24
Table 5-10 Recommended values of parameters describing the vertical elastic response as per Table 3.4 of the EN 1998-1. … 25
表 5-10 EN 1998-1 表 3.4 中描述垂直弹性响应的参数的建议值。... 25

Table 5-11 Spectral acceleration … 25
表 5-11 光谱加速度 ... 25

Table 7-1 Static - k a k a k_(a)k_{a} and k p k p k_(p)k_{p} - and Dynamic - k A D k A D k_(AD)k_{A D} and k P D k P D k_(PD)k_{P D} - pressure coefficients of the Geotechnical Units. DA-1 Combination 1 … 33
表 7-1 静态 - k a k a k_(a)k_{a} k p k p k_(p)k_{p} - 以及动态 - k A D k A D k_(AD)k_{A D} k P D k P D k_(PD)k_{P D} - 岩土力学单元的压力系数。DA-1 组合 1 ... 33

Table 7-2 Static - k a k a k_(a)k_{a} and k p k p k_(p)k_{p} - and Dynamic - k A D k A D k_(AD)k_{A D} and k P D k P D k_(PD)k_{P D} - pressure coefficients of the Geotechnical Units. DA-1Combination 233
表 7-2 岩土单元的静态 - k a k a k_(a)k_{a} k p k p k_(p)k_{p} - 以及动态 - k A D k A D k_(AD)k_{A D} k P D k P D k_(PD)k_{P D} - 压力系数。DA-1组合 233

Table 7-3 Moment Md Design values on D-walls … 45
表 7-3 D 型墙的力矩 Md 设计值...................

Table 7-4 Shear Force Q d Q d Q_(d)Q_{d} Design values on D-walls … 45
表 7-4 D 型墙的剪力 Q d Q d Q_(d)Q_{d} 设计值 ... 45

Table 7-5 Forces on Top Slab Design values … 45
表 7-5 顶板受力设计值...... 45

Table 7-6 Forces on Intermediate Slabs Design values … 45
表 7-6 中间板上的力 设计值...... 45

Table 7-7 Forces on Bottom Slab Design values. … 46
表 7-7 底板受力设计值 .... 46

Table 7-8 Forces on Temporary Anchorages Design values … 46
表 7-8 临时锚固件上的力 设计值...... 46

Table 7-9 Columns design forces … 69
表 7-9 柱的设计力 ... 69

Table 7-10 Friction resistance per ml of D-Wall … 90
表 7-10 每毫升 D 型墙的摩擦阻力 ... 90

UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

P2103-AUH-EAS-RP-71100-AA
REEM STATION (ADR). STRUCTURE REPORT
雷姆站(ADR)。结构报告

Table 7-11 Bottom slab design bending moments … 97
表 7-11 底板设计弯矩 ... 97

Table 7-12 Friction resistance per ml of D-Wall … 108
表 7-12 每毫升 D 型墙的摩擦阻力...... 108

Table 7-13 Bottom slab design bending moments … 114
表 7-13 底板设计弯矩...... 114

Table 8-1 Chainage and section type of the studied sections. … 117
表 8-1 所研究路段的里程和路段类型。... 117

Table 8-2 Diaphragm-Walls E•I Inertia Moment Modulus … 120
Table 8-3 Considered Stiffness values for the Retrieval Shaft at the North of the Reem Station. … 120
表 8-3 雷姆站北面取物竖井的考虑刚度值... 120

Table 8-4 Geometry features for the Calculation Section - Retrieval Shaft at the North of the Reem Station … 121
Table 8-5 Moment M d M d M_(d)M_{d} Design values on D-walls - Section RETRIEVAL SHAFT … 128
表 8-5 D 型墙的力矩 M d M d M_(d)M_{d} 设计值 - 截面回转支撑 ... 128

Table 8-6 Shear force Q d Q d Q_(d)Q_{d} Design values on D-walls - Section RETRIEVAL SHAFT … 128
表 8-6 D 型墙的剪力 Q d Q d Q_(d)Q_{d} 设计值 - 截面回转支撑 ... 128

Table 8-7 Axial Forces on Top Slab - Section RETRIEVAL SHAFT … 128
Table 8-8 Axial Forces on Temporary Anchors - Section RETRIEVAL SHAFT … 128
Table 8-9 Axial Forces on Permanent Struts - Section RETRIEVAL SHAFT … 128
Table 8-10 Axial Forces on Bottom Slab - Section RETRIEVAL SHAFT … 129
Table 8-11 Concrete ring reinforcement definition … 142
Table 8-12 Strut reinforcement definition. … 142
表 8-12 支杆加固定义。... 142

Table 8-13 Diaphragm-Walls E•I Inertia Moment Modulus … 162
Table 8-14 Considered Stiffness values for the Cut and Cover Section in the North of Reem Station. … 162
表 8-14 里姆站以北明挖加盖段的考虑刚度值... 162

Table 8-15 Geometry features for the Calculation Section - C&C Section … 163
Table 8-16 Moment Md Design values on D-walls - Cut and Cover Section … 171
Table 8-17 Shear force Q d Q d Q_(d)Q_{d} Design values on D-walls - Cut and Cover Section … 171
表 8-17 D 型墙的剪力 Q d Q d Q_(d)Q_{d} 设计值 - 截面和盖面 ... 171

Table 8-18 Axial Forces on Top Slab - Cut and Cover Section … 171
Table 8-19 Axial Forces on Temporary Struts - Cut and Cover Section. … 171
表 8-19 临时支撑杆上的轴向力 - 切割和覆盖部分。... 171

Table 8-20 Axial Forces on Permanent Struts - Cut and Cover Section … 171
Table 8-21 Axial Forces on Bottom Slab - Cut and Cover Section … 171
qquad\qquad

1 INTRODUCTION AND SCOPE
1 引言和范围

The scope of this document is to provide a concept design structural definition of the station called Al Reem Station, including a Cut and Cover at its exit, for the Phase 1 UAE High Speed Rail (HSR) Project. The design shall be in compliance with the Contract and shall incorporate International Best Practices.
本文件的范围是为阿联酋高速铁路(HSR)项目一期工程提供一个名为 Al Reem 站的概念设计结构定义,包括其出口处的切割和盖板。设计应符合合同规定,并采用国际最佳做法。

2 REFERENCES AND STANDARDS
2 参考资料和标准

2.1 References  2.1 参考资料

The following documents are included as a reference guide:
以下文件可作为参考指南:
Document No.  文件编号 Document Name  文件名称
2103-AUH-EBB-RP-75222 Geotechnical Report for Concept Design
概念设计岩土工程报告
P2103-AUH-ERA-RP-75001 Phase 1E - Section Reem - Jubail. Railway Alignment Design Report
第 1E 期 - 里姆-朱拜勒段。铁路线路设计报告
P2103-UAE-EAS-RP-05108 Building Structures Design Criteria
建筑结构设计标准
P2103-UAE-EST-RP-02125-00

阿拉伯联合酋长国高速铁路项目隧道和地下设计标准
UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND
DESIGN CRITERIA
UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND DESIGN CRITERIA| UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND | | :--- | | DESIGN CRITERIA |
P2103-UAE-EST-RP-02105-00 RAILWAY STRUCTURES DESIGN CRITERIA
铁路结构设计标准
P2103-UAE-EBB-RP-03001 Seismic Hazard Assessment Study
地震危害评估研究
P2103-AUH-EAD-RP-75002

ADR - 阿布扎比终点站(al reem)功能和规模报告(概念设计)
ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND
SIZING REPORT (CONCEPT DESIGN)
ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND SIZING REPORT (CONCEPT DESIGN)| ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND | | :--- | | SIZING REPORT (CONCEPT DESIGN) |
Document No. Document Name 2103-AUH-EBB-RP-75222 Geotechnical Report for Concept Design P2103-AUH-ERA-RP-75001 Phase 1E - Section Reem - Jubail. Railway Alignment Design Report P2103-UAE-EAS-RP-05108 Building Structures Design Criteria P2103-UAE-EST-RP-02125-00 "UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND DESIGN CRITERIA" P2103-UAE-EST-RP-02105-00 RAILWAY STRUCTURES DESIGN CRITERIA P2103-UAE-EBB-RP-03001 Seismic Hazard Assessment Study P2103-AUH-EAD-RP-75002 "ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND SIZING REPORT (CONCEPT DESIGN)"| Document No. | Document Name | | :--- | :--- | | 2103-AUH-EBB-RP-75222 | Geotechnical Report for Concept Design | | P2103-AUH-ERA-RP-75001 | Phase 1E - Section Reem - Jubail. Railway Alignment Design Report | | P2103-UAE-EAS-RP-05108 | Building Structures Design Criteria | | P2103-UAE-EST-RP-02125-00 | UAE HIGH-SPEED RAIL PROJECT TUNNELS AND UNDERGROUND <br> DESIGN CRITERIA | | P2103-UAE-EST-RP-02105-00 | RAILWAY STRUCTURES DESIGN CRITERIA | | P2103-UAE-EBB-RP-03001 | Seismic Hazard Assessment Study | | P2103-AUH-EAD-RP-75002 | ADR - ABU DHABI TERMINAL STATION (AL REEM) FUNCTIONAL AND <br> SIZING REPORT (CONCEPT DESIGN) |
Table 2-1 References  表 2-1 参考资料

2.2 Codes and standards
2.2 规范和标准

Refer to Design Criteria Reports included in chapter 2.
请参阅第 2 章中的 "设计标准报告"。

2.3 Units  2.3 单位

The Metric SI system will be used throughout the project unless otherwise stated.
除非另有说明,否则整个项目都将使用公制 SI 系统。

[m], [mm], [kN], [kN/m²], [kN/m³], [MPa], [kPa], [ C ] , [ rad ] , [ ] C , [ rad ] , {:^(@)C],[rad],[^(@)]\left.{ }^{\circ} \mathrm{C}\right],[\mathrm{rad}],\left[{ }^{\circ}\right].

2.4 Design software  2.4 设计软件

2.4.1. Structural design
2.4.1.结构设计

The following software will be used for the structural design.
结构设计将使用以下软件。

qquad\qquad
Calculation type  计算类型 Software and description
软件和说明
FE structures modelling  FE 结构建模 SAP 2000
D-walls calculations  D 型墙计算 RIDO
Structural drawings  结构图 REVIT
Sectional verifications  分区核查 Fagus or Excel spread sheets
法格斯或 Excel 电子表格
Limit State calculations
极限状态计算
Excel Spread sheets  Excel 电子表格
Calculation type Software and description FE structures modelling SAP 2000 D-walls calculations RIDO Structural drawings REVIT Sectional verifications Fagus or Excel spread sheets Limit State calculations Excel Spread sheets| Calculation type | Software and description | | :--- | :--- | | FE structures modelling | SAP 2000 | | D-walls calculations | RIDO | | Structural drawings | REVIT | | Sectional verifications | Fagus or Excel spread sheets | | Limit State calculations | Excel Spread sheets |
Table 2-2 Software used for the structural design.
表 2-2 结构设计所用软件

3 GENERAL DESIGN PARAMETERS
3 一般设计参数

3.1 Materials and durability
3.1 材料和耐用性

3.1.1. Durability  3.1.1.耐久性

All the general requirements concerning the durability of the elements are defined in the documents P2103-UAE-EAS-RP-05108 Building Structures Design Criteria and P2103-UAE- EST-RP-02125-00 Tunnels and Underground Design Criteria. Below, it is detailed some characteristics considered in Al Reem Station (also called ADR Station) for this preliminar stage, however, the contractor shall provide the durability assesment during detailed design stage.
P2103-UAE-EAS-RP-05108 《建筑结构设计标准》和 P2103-UAE- EST-RP-02125-00 《隧道和地下设计标准》中规定了有关构件耐久性的所有一般要求。下文详细介绍了 Al Reem 车站(又称 ADR 车站)在初步阶段考虑的一些特点,但承包商应在详细设计阶段提供耐久性评估。

3.1.2. Concrete  3.1.2.混凝土

3.1.2.1 Concrete properties
3.1.2.1 混凝土特性

For ADR Station, the following classes of concrete will be used:
ADR 站将使用以下等级的混凝土:
Element  要素 Concrete type  混凝土类型 Exposure Class  暴露等级
Piles (*)  桩 (*) C35/45 XC2 - XS2 - XA3
Foundations (*)  基础 (*) C35/45 XC2 - XS2 - XA3
Foundation slab (*)  地基板 (*) C35/45 XC2 - XS2 - XA3
D-Walls and walls (*)
D 墙和墙 (*)
C35/45 XC2 - XS2 - XA3
Columns  专栏 C35/45 XC3 - XS1
Slabs  板材 C35/45 XC3 - XS1
Beams  横梁 C35/45 XC3 - XS1
Blinding concrete  刺眼的混凝土 C16/20 -
Element Concrete type Exposure Class Piles (*) C35/45 XC2 - XS2 - XA3 Foundations (*) C35/45 XC2 - XS2 - XA3 Foundation slab (*) C35/45 XC2 - XS2 - XA3 D-Walls and walls (*) C35/45 XC2 - XS2 - XA3 Columns C35/45 XC3 - XS1 Slabs C35/45 XC3 - XS1 Beams C35/45 XC3 - XS1 Blinding concrete C16/20 -| Element | Concrete type | Exposure Class | | :--- | :--- | :--- | | Piles (*) | C35/45 | XC2 - XS2 - XA3 | | Foundations (*) | C35/45 | XC2 - XS2 - XA3 | | Foundation slab (*) | C35/45 | XC2 - XS2 - XA3 | | D-Walls and walls (*) | C35/45 | XC2 - XS2 - XA3 | | Columns | C35/45 | XC3 - XS1 | | Slabs | C35/45 | XC3 - XS1 | | Beams | C35/45 | XC3 - XS1 | | Blinding concrete | C16/20 | - |
Table 3-1 Concrete types as per EN 1992-1-1
表 3-1 符合 EN 1992-1-1 标准的混凝土类型

(*) Concrete properties shall be confirmed as per geotechnical results and environmental conditions.
(*) 混凝土性能应根据岩土工程结果和环境条件加以确认。

3.1.2.2 Concrete cover  3.1.2.2 混凝土覆盖层

Concrete covers are defined in P2103-UAE-EAS-RP-05108 and P2103-UAE-ECB-RP-02105.
混凝土盖板在 P2103-UAE-EAS-RP-05108 和 P2103-UAE-ECB-RP-02105 中定义。

3.1.3. Steel reinforcement
3.1.3.钢筋

All reinforcing steel shall be S500B with minimum yield strength ( f y f y f_(y)\mathrm{f}_{\mathrm{y}} ) of 500 MPa .
所有钢筋均应为 S500B,最小屈服强度( f y f y f_(y)\mathrm{f}_{\mathrm{y}} )为 500 兆帕。

The steel reinforcement properties are defined in P2103-UAE-EAS-RP-05108 and P2103-UAE-ECB-RP-02105.
钢筋性能在 P2103-UAE-EAS-RP-05108 和 P2103-UAE-ECB-RP-02105 中定义。

4 GEOTECHNICS  4 地球技术

4.1 Design Approach  4.1 设计方法

4.1.1. Partial Factors for limits states verification
4.1.1.极限状态核查的部分因素

Underground structures shall be designed in accordance with the requirements established in Eurocode 7 and Eurocode 8 5 8 5 8-58-5. In designing by Eurocode, EQU, GEO, STR, UPL and HYD ultimate limit states must be taken into consideration, where relevant.
地下结构应根据欧洲规范 7 和欧洲规范 8 5 8 5 8-58-5 中规定的要求进行设计。在按照欧洲规范进行设计时,必须酌情考虑 EQU、GEO、STR、UPL 和 HYD 极限状态。
The verification of global uplift will be performed according UPL limit state while the verification of structural (STR) and ground (GEO) limit states will be performed according to Design Approach 1:
将根据 UPL 极限状态进行总体翘曲验证,而结构(STR)和地面(GEO)极限状态的验证将根据设计方法 1 进行:
  • Combination 1: A1+M1+R1  组合 1:A1+M1+R1
  • Combination 2: A2+M2+R4  组合 2:A2+M2+R4
Annex A of Eurocode 7 defines the following partial safety factors, which will be considered in the analyses.
《欧洲规范》第 7 条附件 A 规定了以下部分安全系数,在分析中将予以考虑。

Partial factors for actions and effects of actions - (STR and GEO)
行动的部分因素和行动的影响--(STR 和 GEO)

Actions  行动 Symbol  符号 A1 A2
Permanent  永久性 Unfavourable  不利 γ G γ G gamma_(G)\gamma_{G} 1.35 1.00
Favourable  有利 1.00 1.00
Variable  可变 Unfavourable  不利 γ Q γ Q gamma_(Q)\gamma_{Q} 1.50 1.30
Favourable  有利 0.00 0.00
Actions Symbol A1 A2 Permanent Unfavourable gamma_(G) 1.35 1.00 Favourable 1.00 1.00 Variable Unfavourable gamma_(Q) 1.50 1.30 Favourable 0.00 0.00| Actions | | Symbol | A1 | A2 | | :---: | :---: | :---: | :---: | :---: | | Permanent | Unfavourable | $\gamma_{G}$ | 1.35 | 1.00 | | | Favourable | | 1.00 | 1.00 | | Variable | Unfavourable | $\gamma_{Q}$ | 1.50 | 1.30 | | | Favourable | | 0.00 | 0.00 |
Table 4-1 Partial factors for actions according to tables NA. A1.2(B) and NA. A1.2© for the STR and GEO limit states
表 4-1 根据表 NA.A1.2(B) 和 NA.A1.2©表中 STR 和 GEO 极限状态的部分系数

Partial factors for Soil parameters - (STR and GEO)
土壤参数的部分因数--(STR 和 GEO)

Soil parameter  土壤参数 Symbol  符号 M1 M2
Angle of internal friction*
内摩擦角*
γ φ γ φ gamma_(varphi^('))\gamma_{\varphi^{\prime}} 1.00 1.25
Effective stress coehesion
有效应力系数
γ c γ c gamma_(c^('))\gamma_{c^{\prime}} 1.00 1.25
Soil parameter Symbol M1 M2 Angle of internal friction* gamma_(varphi^(')) 1.00 1.25 Effective stress coehesion gamma_(c^(')) 1.00 1.25| Soil parameter | Symbol | M1 | M2 | | :---: | :---: | :---: | :---: | | Angle of internal friction* | $\gamma_{\varphi^{\prime}}$ | 1.00 | 1.25 | | Effective stress coehesion | $\gamma_{c^{\prime}}$ | 1.00 | 1.25 |
Soil parameter  土壤参数 Symbol  符号 M1 M2
Total stress cohesion  总应力内聚力 γ c u γ c u gamma_(cu)\gamma_{c u} 1.00 1.40
Uniaxial compression strength
单轴压缩强度
γ q u γ q u gamma_(qu)\gamma_{q u} 1.00 1.40
Weight density  重量密度 γ γ γ γ gamma_(gamma)\gamma_{\gamma} 1.00 1.00
*factor applied to tan ϕ ϕ phi^(')\phi^{\prime}
* 因子应用于 tan ϕ ϕ phi^(')\phi^{\prime}
Soil parameter Symbol M1 M2 Total stress cohesion gamma_(cu) 1.00 1.40 Uniaxial compression strength gamma_(qu) 1.00 1.40 Weight density gamma_(gamma) 1.00 1.00 *factor applied to tan phi^(') | Soil parameter | Symbol | M1 | M2 | | :---: | :---: | :---: | :---: | | Total stress cohesion | $\gamma_{c u}$ | 1.00 | 1.40 | | Uniaxial compression strength | $\gamma_{q u}$ | 1.00 | 1.40 | | Weight density | $\gamma_{\gamma}$ | 1.00 | 1.00 | | *factor applied to tan $\phi^{\prime}$ | | | |
Table 4-2 Partial factors for soil parameters for the STR and GEO limit states
表 4-2 STR 和 GEO 极限状态下土壤参数的部分系数

Partial factors for Resistance of piles- (STR and GEO) - Set R
桩抗力局部系数--(STR 和 GEO)--设为 R

Resistance  阻力 Symbol  符号 R 1 R 1 R1\mathbf{R 1} R4
Base  基地 γ b γ b gamma_(b)\gamma_{b} 1.0 2.0
Shaft (compression)  轴(压缩) γ s γ s gamma_(s)\gamma_{s} 1.0 1.6
Total/combined (compression)
总计/合并(压缩)
γ t γ t gamma_(t)\gamma_{t} 1.0 2.0
Shaf in tension  紧张的沙夫 γ s , t γ s , t gamma_(s,t)\gamma_{s, t} 1.0 2.0
Resistance Symbol R1 R4 Base gamma_(b) 1.0 2.0 Shaft (compression) gamma_(s) 1.0 1.6 Total/combined (compression) gamma_(t) 1.0 2.0 Shaf in tension gamma_(s,t) 1.0 2.0| Resistance | Symbol | $\mathbf{R 1}$ | R4 | | :---: | :---: | :---: | :---: | | Base | $\gamma_{b}$ | 1.0 | 2.0 | | Shaft (compression) | $\gamma_{s}$ | 1.0 | 1.6 | | Total/combined (compression) | $\gamma_{t}$ | 1.0 | 2.0 | | Shaf in tension | $\gamma_{s, t}$ | 1.0 | 2.0 |
Table 4-3 Partial factors for resistances of bored piles for the STR and GEO limit states
表 4-3 STR 和 GEO 极限状态下钻孔灌注桩抗力的部分系数

Partial factors for actions and effects of actions - (UPL)
行动的部分因素和行动的影响--(UPL)

Actions  行动 Symbol  符号 UPL
Destabilising  破坏稳定 γ G γ G gamma_(G)\gamma_{G} 1.10
Stabilising  稳定 0.90
Variable  可变 Destabilising  破坏稳定 1.50
Stabilising  稳定 0.00
Actions Symbol UPL Destabilising gamma_(G) 1.10 Stabilising 0.90 Variable Destabilising 1.50 Stabilising 0.00| Actions | Symbol | UPL | | | :---: | :--- | :---: | :---: | | | Destabilising | $\gamma_{G}$ | 1.10 | | | Stabilising | | 0.90 | | Variable | Destabilising | | 1.50 | | | Stabilising | | 0.00 |
Table 4-4 Partial factors for actions according for the UPL limit state
表 4-4 根据 UPL 极限状态采取行动的部分因素

Partial factors for Soil parameters - (UPL)
土壤参数的局部因子--(UPL)

Soil parameter  土壤参数 Symbol  符号 UPL

抗剪角度 ( ) (^(**))\left(^{*}\right)
Angle of shearing resistance
( ) (^(**))\left(^{*}\right)
Angle of shearing resistance (^(**))| Angle of shearing resistance | | :---: | | $\left(^{*}\right)$ |
γ φ γ φ gamma_(varphi^('))\gamma_{\varphi^{\prime}} 1.25
Effective cohesion  有效的凝聚力 γ c γ c gamma_(c')\gamma_{c \prime} 1.25
Undrained shear strength
无排水剪切强度
γ c u γ c u gamma_(cu)\gamma_{c u} 1.40
*factor applied to tan ϕ ϕ phi^(')\phi^{\prime}
* 因子应用于 tan ϕ ϕ phi^(')\phi^{\prime}
Soil parameter Symbol UPL "Angle of shearing resistance (^(**))" gamma_(varphi^(')) 1.25 Effective cohesion gamma_(c') 1.25 Undrained shear strength gamma_(cu) 1.40 *factor applied to tan phi^(') | Soil parameter | Symbol | UPL | | | :---: | :---: | :---: | :---: | | Angle of shearing resistance <br> $\left(^{*}\right)$ | $\gamma_{\varphi^{\prime}}$ | 1.25 | | | Effective cohesion | $\gamma_{c \prime}$ | 1.25 | | | Undrained shear strength | $\gamma_{c u}$ | 1.40 | | | *factor applied to tan $\phi^{\prime}$ | | | |
Table 4-5 Partial factors for soil parameters for the UPL limit state ETIHAD RAIL
表 4-5 埃蒂哈德铁路 UPL 极限状态下土壤参数的部分系数

Partial factors for resistances - (UPL)
电阻部分因数 - (UPL)

Resistance  阻力 Symbol  符号 UPL
Tensile pile resistance  抗拉桩 γ s , t γ s , t gamma_(s,t)\gamma_{s, t} ( ) (^(**))\left(^{*}\right)
Anchorages  锚地 γ a γ a gamma_(a)\gamma_{a} 1.40
(*) Piles design should comply with clauses A3.3.2 and A.3.3.3 2 2 ^(2)^{2}
(*) 桩基设计应符合第 A3.3.2 和 A.3.3.3 2 2 ^(2)^{2} 条的规定。
Resistance Symbol UPL Tensile pile resistance gamma_(s,t) (^(**)) Anchorages gamma_(a) 1.40 (*) Piles design should comply with clauses A3.3.2 and A.3.3.3 ^(2) | Resistance | Symbol | UPL | | :---: | :---: | :---: | | Tensile pile resistance | $\gamma_{s, t}$ | $\left(^{*}\right)$ | | Anchorages | $\gamma_{a}$ | 1.40 | | (*) Piles design should comply with clauses A3.3.2 and A.3.3.3 $^{2}$ | | |
Table 4-6 Partial factors for resistances for the UPL limit state
表 4-6 UPL 极限状态的电阻局部系数

Clause A3.3.2 in BS NA EN 1997-1 indicates that a model factor of 1.40 should be applied in the calculations of the characteristic resistances for piles. Additionally defines the partial factors for pile’s resistances calculations (R1 and R4 sets) which correspond to the ones defined in Table 4-3.
BS NA EN 1997-1 第 A3.3.2 条指出,在计算桩的特性阻力时,应采用 1.40 的模型系数。此外,还定义了用于计算桩抗力的部分系数(R1 和 R4 组),与表 4-3 中定义的系数一致。

4.2 Geotechnical Data  4.2 岩土工程数据

Geotechnical properties have been established based on the Geotechnical Design Notes for ADR Station.
岩土特性是根据 ADR 站的岩土设计说明确定的。
GEOTECHNICAL DESIGN NOTE
岩土工程设计说明
GENERAL
Line:  线: Intercity service Abu Dhabi-Dubai
阿布扎比-迪拜城际服务
Section:  部分: AI Reem Island - Saadiyat Island
AI 里姆岛 - 萨迪亚特岛
STRUCTURE INFORMATION  结构信息
Type:  类型 Station  车站
Str. ID:  Str.ID: Al Reem Station  Al Reem 火车站
Chainage start:  链条启动: 0+000
Chainage end:  链条末端: 0+800
Nb. tracks  注:轨道
Main dimensions (m):  主要尺寸(米):
Structural typology:  结构类型学: Cut & Cover  剪切和覆盖
GEOTECHNICAL CONTEXT AND ASSUMPTIONS
岩土工程背景和假设
GEOTECHNICAL DESIGN NOTE GENERAL Line: Intercity service Abu Dhabi-Dubai Section: AI Reem Island - Saadiyat Island STRUCTURE INFORMATION Type: Station Str. ID: Al Reem Station Chainage start: 0+000 Chainage end: 0+800 Nb. tracks Main dimensions (m): Structural typology: Cut & Cover GEOTECHNICAL CONTEXT AND ASSUMPTIONS | GEOTECHNICAL DESIGN NOTE | | | :---: | :---: | | GENERAL | | | Line: | Intercity service Abu Dhabi-Dubai | | Section: | AI Reem Island - Saadiyat Island | | STRUCTURE INFORMATION | | | Type: | Station | | Str. ID: | Al Reem Station | | Chainage start: | 0+000 | | Chainage end: | 0+800 | | Nb. tracks | | | Main dimensions (m): | | | Structural typology: | Cut & Cover | | GEOTECHNICAL CONTEXT AND ASSUMPTIONS | |
Proposed profile:  建议的概况:
Ground Water Depth:  地下水深度:
Design Code and Ground Type:
设计规范和地面类型:

Geotechnical parameters:
岩土工程参数:
UG
  ID (说明)
ID
(Description)
ID (Description)| ID | | :---: | | (Description) |
Soil Type  土壤类型
Z final Z final  Z_("final ")\mathbf{Z}_{\text {final }}
( m ) ( m ) (m)(\mathbf{m})
Z_("final ") (m)| $\mathbf{Z}_{\text {final }}$ | | :---: | | $(\mathbf{m})$ |
Z final Z final  Z_("final ")\mathbf{Z}_{\text {final }}
( m ) ( m ) (m)(\mathbf{m})
Z_("final ") (m)| $\mathbf{Z}_{\text {final }}$ | | :--- | | $(\mathbf{m})$ |
N SPT N SPT  N_("SPT ")\mathbf{N}_{\text {SPT }}
Y Y Y\mathbf{Y}
( k N / m 3 ) k N / m 3 (kN//m^(3))\left(\mathbf{k N} / \mathbf{m}^{3}\right)
Y (kN//m^(3))| $\mathbf{Y}$ | | :---: | | $\left(\mathbf{k N} / \mathbf{m}^{3}\right)$ |
φ φ varphi^(')\boldsymbol{\varphi}^{\mathbf{\prime}}
( ( ) ( (^(())\left({ }^{( }\right)
varphi^(') (^(())| $\boldsymbol{\varphi}^{\mathbf{\prime}}$ | | :---: | | $\left({ }^{( }\right)$ |
c c c^(')\mathbf{c}^{\prime}
( k P a ) ( k P a ) (kPa)(\mathbf{k P a})
c^(') (kPa)| $\mathbf{c}^{\prime}$ | | :---: | | $(\mathbf{k P a})$ |
E E E\mathbf{E}
( k P a ) ( k P a ) (kPa)(\mathbf{k P a})
E (kPa)| $\mathbf{E}$ | | :---: | | $(\mathbf{k P a})$ |
σ c i σ c i sigma ci\boldsymbol{\sigma c i}
( M p a ) ( M p a ) (Mpa)(\mathbf{M p a})
sigma ci (Mpa)| $\boldsymbol{\sigma c i}$ | | :---: | | $(\mathbf{M p a})$ |
R Q D R Q D RQD\mathbf{R Q D} Coef. Poisson  系数泊松 m b m b mb\mathbf{m b} s s s\mathbf{s} a a a\mathbf{a}
1 MD-SAND Cohesionless  无凝聚力 0,0 7,0 19 18 31,0 0,0 15.000 0,30
2 SST Rock - jointed  岩石 - 有节 7,0 20,0 20 45,0 52,0 150.000 2,70 50,00 0,30 1,99400 0,00248 0,50400
3 MDS Rock - jointed  岩石 - 有节 20,0 30,0 20 24,0 38,0 40000 1,50 40,00 0,28 0,51000 0,00065 0,50800
UG "ID (Description)" Soil Type "Z_("final ") (m)" "Z_("final ") (m)" N_("SPT ") "Y (kN//m^(3))" "varphi^(') (^(())" "c^(') (kPa)" "E (kPa)" "sigma ci (Mpa)" RQD Coef. Poisson mb s a 1 MD-SAND Cohesionless 0,0 7,0 19 18 31,0 0,0 15.000 0,30 2 SST Rock - jointed 7,0 20,0 20 45,0 52,0 150.000 2,70 50,00 0,30 1,99400 0,00248 0,50400 3 MDS Rock - jointed 20,0 30,0 20 24,0 38,0 40000 1,50 40,00 0,28 0,51000 0,00065 0,50800| UG | ID <br> (Description) | Soil Type | $\mathbf{Z}_{\text {final }}$ <br> $(\mathbf{m})$ | $\mathbf{Z}_{\text {final }}$ <br> $(\mathbf{m})$ | $\mathbf{N}_{\text {SPT }}$ | $\mathbf{Y}$ <br> $\left(\mathbf{k N} / \mathbf{m}^{3}\right)$ | $\boldsymbol{\varphi}^{\mathbf{\prime}}$ <br> $\left({ }^{( }\right)$ | $\mathbf{c}^{\prime}$ <br> $(\mathbf{k P a})$ | $\mathbf{E}$ <br> $(\mathbf{k P a})$ | $\boldsymbol{\sigma c i}$ <br> $(\mathbf{M p a})$ | $\mathbf{R Q D}$ | Coef. Poisson | $\mathbf{m b}$ | $\mathbf{s}$ | $\mathbf{a}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 1 | MD-SAND | Cohesionless | 0,0 | 7,0 | 19 | 18 | 31,0 | 0,0 | 15.000 | | | 0,30 | | | | | 2 | SST | Rock - jointed | 7,0 | 20,0 | | 20 | 45,0 | 52,0 | 150.000 | 2,70 | 50,00 | 0,30 | 1,99400 | 0,00248 | 0,50400 | | 3 | MDS | Rock - jointed | 20,0 | 30,0 | | 20 | 24,0 | 38,0 | 40000 | 1,50 | 40,00 | 0,28 | 0,51000 | 0,00065 | 0,50800 |
RECOMMENDATIONS  建议
Geotechnical Risks:  岩土工程风险:
0.0 to 7.0 m MD SAND ( SL + 4 , 0 ) ( SL + 4 , 0 ) quad(SL+4,0)\quad(\mathrm{SL}+4,0)
0.0 至 7.0 米 MD 砂 ( SL + 4 , 0 ) ( SL + 4 , 0 ) quad(SL+4,0)\quad(\mathrm{SL}+4,0)

7.0 to 20 m SST
7.0 至 20 米海平面
From 20.0 to depth MDS
从 20.0 到 MDS 深度

0 , 0 m 0 , 0 m 0,0m0,0 \mathrm{~m} elevation   0 , 0 m 0 , 0 m 0,0m0,0 \mathrm{~m} 提升
B
Geotechnical paramers:  岩土工程参数:
Literature refers to low to moderate risk of cavities in Saadiyat Island, mainly at the contact between the Ghayati (formed by
文献提到,萨迪亚特岛的龋齿风险为低度至中度,主要发生在盖亚提(由藻类形成的)和萨迪亚特(由藻类形成的)之间的接触处。

sandstone and calcarenite) and the Gachsaran Formation (constituted by mudstone, gypsum and siltstone). The investigations currenlty available do not reach that contact. For this reason, during future stages of the present project the geotechnical investigations in the area, shall be focused on:
由砂岩和方解石组成)和加赫萨兰层(由泥岩、石膏和粉砂岩组成)。目前进行的勘测还没有达到这一接触点。因此,在本项目的未来阶段,将重点对该地区进行岩土工程勘察:

-Detection of karst through massive geophysics and boreholes at specific location where evidence of karst are detected. -Swelling potential of mudstone, siltstone and gypsum
-通过大规模地球物理探测和在发现岩溶迹象的特定地点进行钻孔探测岩溶。-泥岩、粉砂岩和石膏的膨胀潜力
In this environment of extreme variability, the actual rock conditions for a specific drilled shaft cannot be determined with any degree of accuracy prior to construction. Design, construction, and inspection have to be flexible enough to adjust to conditions actually encountered. Probe holes for downhole inspection and identification of cavities and seams along the sides and beneath the base of the D W alls shall be executed during construction.
在这种极端多变的环境中,特定钻井的实际岩石条件无法在施工前准确确定。设计、施工和检查必须足够灵活,以适应实际遇到的情况。在施工过程中,应打探孔进行井下检查,并确定井筒两侧和底部的空洞和接缝。

These aspects shall be carefully considered for the design of deep excavations, particularly when the structure is founded in the Gachsaran formation.
在设计深基坑时应仔细考虑这些方面,特别是当结构建立在加克萨兰地层中时。
Dewatering:  脱水:
According to the geotechnical information available, the stations D Walls will be embedded in the Gachsaran Formation. Due to the expected low permeability of this formation, no considerable water ingress is expected during excavation. Therefore, the dewatering inside the station can be carried out through French drains to evacuate the water trapped in the ground. Thus, no impact is foreseen on adjacent structures.
根据现有的岩土工程资料,车站 D 的围墙将埋在 Gachsaran 地层中。由于该地层的渗透性较低,预计在挖掘过程中不会有大量的水渗入。因此,车站内部的脱水工作可通过法国式排水沟进行,以排出滞留在地下的水。因此,预计不会对邻近结构造成影响。
In case cavities are detected at the analysed area, groun treatment shall be carried out prior to the construction of the station to gurantee the stability and watertightness of the excavation.
如果在分析区域发现空洞,则应在建造车站之前对空洞进行处理,以确保挖掘的稳定性和水密性。
Figure 4-1 Geotechnical Design Note for ADR Station.
图 4-1 ADR 站的岩土工程设计说明。
ID (Description)  ID (说明) Soil Type  土壤类型 Zinitial (m) Zfinal (m) Nspt Y ( kN / m 3 ) ( kN / m 3 ) (kN//m3)(\mathrm{kN} / \mathrm{m} 3) φ ( ) φ [varphi^(')],[(^(@))]\begin{aligned} & \hline \varphi^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned} c ( kPa ) c ( kPa ) {:[c^(')],[(kPa)]:}\begin{gathered} \mathbf{c}^{\prime} \\ (\mathrm{kPa}) \end{gathered} E ( kPa ) E ( kPa ) {:[E],[(kPa)]:}\begin{gathered} \mathrm{E} \\ (\mathrm{kPa}) \end{gathered}
MD-Sand  MD 砂 Cohesionless  无凝聚力 0.0 7.0 19 18 31 0.0 15000
SST Rock - jointed  岩石 - 有节 7.0 20.0 - 20 45 52.0 150000
MDS Rock - jointed  岩石 - 有节 20.0 30.0 - 20 24.0 38.0 40000
SST Rock - jointed  岩石 - 有节 30.0 50.0 - 20 45 52.0 150000
MDS Rock - jointed  岩石 - 有节 50.0 70.0 - 20 24.0 38.0 40000
ID (Description) Soil Type Zinitial (m) Zfinal (m) Nspt Y (kN//m3) "varphi^(') (^(@))" "c^(') (kPa)" "E (kPa)" MD-Sand Cohesionless 0.0 7.0 19 18 31 0.0 15000 SST Rock - jointed 7.0 20.0 - 20 45 52.0 150000 MDS Rock - jointed 20.0 30.0 - 20 24.0 38.0 40000 SST Rock - jointed 30.0 50.0 - 20 45 52.0 150000 MDS Rock - jointed 50.0 70.0 - 20 24.0 38.0 40000| ID (Description) | Soil Type | Zinitial (m) | Zfinal (m) | Nspt | Y $(\mathrm{kN} / \mathrm{m} 3)$ | $\begin{aligned} & \hline \varphi^{\prime} \\ & \left({ }^{\circ}\right) \end{aligned}$ | $\begin{gathered} \mathbf{c}^{\prime} \\ (\mathrm{kPa}) \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ (\mathrm{kPa}) \end{gathered}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | MD-Sand | Cohesionless | 0.0 | 7.0 | 19 | 18 | 31 | 0.0 | 15000 | | SST | Rock - jointed | 7.0 | 20.0 | - | 20 | 45 | 52.0 | 150000 | | MDS | Rock - jointed | 20.0 | 30.0 | - | 20 | 24.0 | 38.0 | 40000 | | SST | Rock - jointed | 30.0 | 50.0 | - | 20 | 45 | 52.0 | 150000 | | MDS | Rock - jointed | 50.0 | 70.0 | - | 20 | 24.0 | 38.0 | 40000 |
Table 4-7 Ground materials characterization. ADR Station.
表 4-7 地面材料特征。ADR 站。

Based on the ground characteristics, site ground may be classified as TYPE B, according to EC 8, as indicated in figures above.
如上图所示,根据地面特征,场地地面可按 EC 8 划分为 B 类。
The value of S S SS parameter, describing the recommended Type 1 elastic response spectra is set equal to 1.35 as indicated in table 3.3 of EC 8 :
如 EC 8 表 3.3 所示,描述推荐的 1 类弹性响应谱的 S S SS 参数值设为 1.35:
Ground type  地面类型 S S S\mathbf{S} T B ( s ) T B ( s ) T_(B)(s)\boldsymbol{T}_{\boldsymbol{B}}(\boldsymbol{s}) T C ( s ) T C ( s ) T_(C)(s)\boldsymbol{T}_{\boldsymbol{C}}(\boldsymbol{s}) T D ( s ) T D ( s ) T_(D)(s)\boldsymbol{T}_{\boldsymbol{D}}(\boldsymbol{s})
A 1,00 0,05 0,25 1,20
B 1 , 3 5 1 , 3 5 1,35\mathbf{1 , 3 5} 0 , 0 5 0 , 0 5 0,05\mathbf{0 , 0 5} 0 , 2 5 0 , 2 5 0,25\mathbf{0 , 2 5} 1 , 2 0 1 , 2 0 1,20\mathbf{1 , 2 0}
C 1,50 0,10 0,25 1,20
D 1,80 0,10 0,30 1,20
E 1,60 0,05 0,25 1,20
Ground type S T_(B)(s) T_(C)(s) T_(D)(s) A 1,00 0,05 0,25 1,20 B 1,35 0,05 0,25 1,20 C 1,50 0,10 0,25 1,20 D 1,80 0,10 0,30 1,20 E 1,60 0,05 0,25 1,20| Ground type | $\mathbf{S}$ | $\boldsymbol{T}_{\boldsymbol{B}}(\boldsymbol{s})$ | $\boldsymbol{T}_{\boldsymbol{C}}(\boldsymbol{s})$ | $\boldsymbol{T}_{\boldsymbol{D}}(\boldsymbol{s})$ | | :---: | :---: | :---: | :---: | :---: | | A | 1,00 | 0,05 | 0,25 | 1,20 | | B | $\mathbf{1 , 3 5}$ | $\mathbf{0 , 0 5}$ | $\mathbf{0 , 2 5}$ | $\mathbf{1 , 2 0}$ | | C | 1,50 | 0,10 | 0,25 | 1,20 | | D | 1,80 | 0,10 | 0,30 | 1,20 | | E | 1,60 | 0,05 | 0,25 | 1,20 |
Figure 4-2 Ground types according to EC 8 - Table 3.3.
图 4-2 根据 EC 8 表 3.3 确定的地面类型。
الاتحاد للقطـارات
ETIHADRAIL

5 DESIGN LOADS AND COMBINATIONS
5 设计荷载和组合

5.1 Load combinations  5.1 载荷组合

Additional information concerning load combinations be found in the P2103-UAE-EAS-RP-05108 Building Structures Design Criteria.
有关荷载组合的其他信息,请参见 P2103-UAE-EAS-RP-05108 《建筑结构设计标准》。

5.1.1. Ultimate limit state
5.1.1.极限状态

Refer to P2103-UAE-EAS-RP-05108 Building Structures Design Criteria.
请参考 P2103-UAE-EAS-RP-05108 建筑结构设计标准。

5.1.2. Serviceability limit states
5.1.2.适用性极限状态

Refer to P2103-UAE-EAS-RP-05108 Building Structures Design Criteria.
请参考 P2103-UAE-EAS-RP-05108 建筑结构设计标准。

5.2 Loads Definition  5.2 载荷定义

The structures shall be designed to resist load effects due to construction staging, dead load, imposed load, earth pressure/surcharge, temperature, creep and shrinkage, wind load and seismic load. The documents P2103-UAE-ECB R P 02105 R P 02105 RP-02105R P-02105 and P2103-UAE-EAS-RP-05108 give detailed information about the loads in the project. However, here below we strictally define the loads considered on ADR buried station.
结构设计应能抵抗施工分期、自重、外加荷载、土压/附加荷载、温度、蠕变和收缩、风荷载和地震荷载造成的荷载影响。P2103-UAE-ECB R P 02105 R P 02105 RP-02105R P-02105 和 P2103-UAE-EAS-RP-05108 号文件详细介绍了项目中的荷载。不过,在下文中,我们将严格定义 ADR 预埋站所考虑的荷载。

5.2.1. Dead loads  5.2.1.死荷载

Dead load (DL) comprises the self-weight for all the structural elements and shall be evaluated in accordance with the following densities:
自重(DL)包括所有结构构件的自重,应根据以下密度进行评估:
Material  材料 Weight density ( k N / m 3 ) k N / m 3 (kN//m^(3))\left(\mathbf{k N} / \mathbf{m}^{\mathbf{3}}\right)  重量密度 ( k N / m 3 ) k N / m 3 (kN//m^(3))\left(\mathbf{k N} / \mathbf{m}^{\mathbf{3}}\right)
Non-reinforced concrete  非钢筋混凝土 24.00
Reinforced and prestressed concrete
钢筋混凝土和预应力混凝土
25.00
Steel   78.5
Material Weight density (kN//m^(3)) Non-reinforced concrete 24.00 Reinforced and prestressed concrete 25.00 Steel 78.5| Material | Weight density $\left(\mathbf{k N} / \mathbf{m}^{\mathbf{3}}\right)$ | | :--- | :--- | | Non-reinforced concrete | 24.00 | | Reinforced and prestressed concrete | 25.00 | | Steel | 78.5 |
Table 5-1 Weight of Materials and Finishes
表 5-1 材料和表面处理的重量

5.2.2. Earth Pressure Loads
5.2.2.土压力荷载

Earth pressure loads in retaining structures shall be calculated as per EN 1997-1 Section 9. In general, they are calculated as per a triangular distribution where the total value is:
挡土结构中的土压力荷载应根据 EN 1997-1 第 9 节进行计算。一般情况下,它们按三角形分布计算,其中总值为
E a = 1 2 γ K d H 2 E a = 1 2 γ K d H 2 E_(a)=(1)/(2)*gamma^(')*K_(d)*H^(2)E_{a}=\frac{1}{2} \cdot \gamma^{\prime} \cdot K_{d} \cdot H^{2}
Where K d K d K_(d)K_{d} will depend upon each situation being either the rest coefficient K 0 K 0 K_(0)K_{0}, the active coefficient K a K a K_(a)K_{a} or the passive coefficient K p K p K_(p)K_{p} these are calculated as follows:
其中 K d K d K_(d)K_{d} 取决于每种情况下的静止系数 K 0 K 0 K_(0)K_{0} 、主动系数 K a K a K_(a)K_{a} 或被动系数 K p K p K_(p)K_{p} ,计算公式如下:
  • At rest coefficient - K 0 K 0 K_(0)K_{0}
    静止系数 - K 0 K 0 K_(0)K_{0}
At rest, coefficient will be calculated as:
静止时,系数的计算公式为
K 0 = 1 sin φ K 0 = 1 sin φ K_(0)=1-sin varphi^(')K_{0}=1-\sin \varphi^{\prime}
Being φ φ varphi^(')\varphi^{\prime} the angle of shearing resistance in terms of effective stress.
φ φ varphi^(')\varphi^{\prime} 有效应力的抗剪角。
  • Active earth pressure coefficient - K a K a K_(a)K_{a}
    活动土压力系数 - K a K a K_(a)K_{a}
It will be calculated as per Boussinesq-Rankine’s formulation:
它将按照 Boussinesq-Rankine 公式计算:
K a = tan 2 ( 45 ϕ 2 ) K a = tan 2 45 ϕ 2 K_(a)=tan^(2)(45-(phi)/(2))K_{a}=\tan ^{2}\left(45-\frac{\phi}{2}\right)
Where ϕ ϕ phi\phi is the soil characteristic stress friction angle.
其中, ϕ ϕ phi\phi 为土壤特征应力摩擦角。
  • Passive earth pressure coefficient K p K p -K_(p)-K_{p}
    被动土压力系数 K p K p -K_(p)-K_{p}
It will also be calculated as per Boussinesq-Rankine’s formulation:
它也将按照 Boussinesq-Rankine 的公式进行计算:
K p = tan 2 ( 45 + ϕ 2 ) K p = tan 2 45 + ϕ 2 K_(p)=tan^(2)(45+(phi)/(2))K_{p}=\tan ^{2}\left(45+\frac{\phi}{2}\right)
For cohesive soils the following formulation will be used:
对于粘性土,将采用以下配方:
σ h = K a σ v 2 c K a σ h = K p σ v + 2 c K p σ h = K a σ v 2 c K a σ h = K p σ v + 2 c K p {:[sigma_(h)=K_(a)*sigma_(v)-2csqrt(K_(a))],[sigma_(h)=K_(p)*sigma_(v)+2csqrt(K_(p))]:}\begin{aligned} & \sigma_{h}=K_{a} \cdot \sigma_{v}-2 c \sqrt{K_{a}} \\ & \sigma_{h}=K_{p} \cdot \sigma_{v}+2 c \sqrt{K_{p}} \end{aligned}
Being c c cc the cohesion.
c c cc 的凝聚力。

Seismic earth pressure  地震土压力

The total design force acting on the retaining structure from the land-ward side, E A D E A D E_(AD)E_{A D}, is given by
从向陆一侧作用在挡土结构上的总设计力 E A D E A D E_(AD)E_{A D} 的计算公式为
E A D = 1 2 γ ( 1 ± k v ) K A D H 2 + E w S + E w d E A D = 1 2 γ 1 ± k v K A D H 2 + E w S + E w d E_(AD)=(1)/(2)*gamma*(1+-k_(v))*K_(AD)*H^(2)+E_(wS)+E_(wd)E_{A D}=\frac{1}{2} \cdot \gamma \cdot\left(1 \pm k_{v}\right) \cdot K_{A D} \cdot H^{2}+E_{w S}+E_{w d}
Where:  在哪里?
H wall height  H 墙壁高度
E w s E w s E_(ws)quadE_{w s} \quad static water force
E w s E w s E_(ws)quadE_{w s} \quad 静态水力

E w d E w d E_(wd)E_{w d} dynamic water force
E w d E w d E_(wd)E_{w d} 动态水力

γ γ gammaquad\gamma \quad soil unit weight
γ γ gammaquad\gamma \quad 土壤单位重量

K A D K A D K_(AD)quadK_{A D} \quad earth pressure coefficient (static + dynamic)
K A D K A D K_(AD)quadK_{A D} \quad 土压力系数(静态 + 动态)

k v k v k_(v)quadk_{v} \quad vertical seismic coefficient
k v k v k_(v)quadk_{v} \quad 垂直地震系数

The earth pressure coefficient may be computed from the Mononobe and Okabe formula.
土压力系数可根据 Mononobe 和 Okabe 公式计算得出。

For active states:  对于活动状态:
β ϕ d θ K A D = sin 2 ( ψ + ϕ d θ ) cos θ sin 2 ψ sin ( ψ θ δ d ) [ 1 + [ sin ( ϕ d + δ d ) sin ( ϕ d β θ ) sin ( ψ θ δ d ) sin ( ψ + β ) ] 2 β ϕ d θ K A D = sin 2 ψ + ϕ d θ cos θ sin 2 ψ sin ψ θ δ d 1 + sin ϕ d + δ d sin ϕ d β θ sin ψ θ δ d sin ( ψ + β ) 2 beta <= phi_(d)^(')-thetaquadK_(AD)=(sin^(2)(psi+phi_(d)^(')-theta))/(cos theta*sin^(2)psi*sin(psi-theta-delta_(d))[1+[(sin(phi_(d)^(')+delta_(d))*sin(phi_(d)^(')-beta-theta))/(sin(psi-theta-delta_(d))*sin(psi+beta)))]^(2)\left.\beta \leq \phi_{d}^{\prime}-\theta \quad K_{A D}=\frac{\sin ^{2}\left(\psi+\phi_{d}^{\prime}-\theta\right)}{\cos \theta \cdot \sin ^{2} \psi \cdot \sin \left(\psi-\theta-\delta_{d}\right)\left[1+\left[\frac{\sin \left(\phi_{d}^{\prime}+\delta_{d}\right) \cdot \sin \left(\phi_{d}^{\prime}-\beta-\theta\right)}{\sin \left(\psi-\theta-\delta_{d}\right) \cdot \sin (\psi+\beta)}\right.\right.}\right]^{2}
β > ϕ d θ K A D = sin 2 ( ψ + ϕ θ ) cos θ sin 2 ψ sin ( ψ θ δ d ) β > ϕ d θ K A D = sin 2 ( ψ + ϕ θ ) cos θ sin 2 ψ sin ψ θ δ d beta > phi_(d)^(')-thetaquadK_(AD)=(sin^(2)(psi+phi-theta))/(cos theta*sin^(2)psi*sin(psi-theta-delta_(d)))\beta>\phi_{d}^{\prime}-\theta \quad K_{A D}=\frac{\sin ^{2}(\psi+\phi-\theta)}{\cos \theta \cdot \sin ^{2} \psi \cdot \sin \left(\psi-\theta-\delta_{d}\right)}
In the preceding expressions the following notations are used:
在前面的表达式中使用了以下符号:

ϕ d ϕ d phi_(d)^(')quad\phi_{d}^{\prime} \quad is the design value of the angle of shearing resistance of soil.
ϕ d ϕ d phi_(d)^(')quad\phi_{d}^{\prime} \quad 是土壤抗剪角度的设计值。
ϕ d = tan 1 ( tan ϕ γ ) ϕ d = tan 1 tan ϕ γ phi_(d)^(')=tan^(-1)((tan phi^('))/(gamma))\phi_{d}^{\prime}=\tan ^{-1}\left(\frac{\tan \phi^{\prime}}{\gamma}\right)
ψ ψ psi\psi and β β beta\beta are the inclination angles of the back of the wall and backfill surface from the horizontal line, respectively.
ψ ψ psi\psi β β beta\beta 分别是墙背面和回填面与水平线的倾斜角。

δ d δ d delta_(d)quad\delta_{d} \quad is the design value of the friction angle between the soil and the wall.
δ d δ d delta_(d)quad\delta_{d} \quad 是土壤与墙壁之间摩擦角的设计值。
δ d = tan 1 ( tan δ γ ) δ d = tan 1 tan δ γ delta_(d)=tan^(-1)((tan delta)/(gamma))\delta_{d}=\tan ^{-1}\left(\frac{\tan \delta}{\gamma}\right)
is the angle defined below:
是下面定义的角度:
tan θ = k h 1 ± k v tan θ = k h 1 ± k v tan theta=(k_(h))/(1+-k_(v))\tan \theta=\frac{k_{h}}{1 \pm k_{v}}
To consider the total dynamic earth pressure, a dynamic increment is added to the static earth pressure. This increment is computed as follows.
为了考虑总的动态土压力,在静态土压力的基础上增加了一个动态增量。该增量的计算方法如下
Δ E A D = 1 2 γ H 2 ( K A D K A E ) Δ E A D = 1 2 γ H 2 K A D K A E DeltaE_(AD)=(1)/(2)*gamma*H^(2)*(K_(AD)-K_(AE))\Delta E_{A D}=\frac{1}{2} \cdot \gamma \cdot H^{2} \cdot\left(K_{A D}-K_{A E}\right)
Where:  在哪里?
H H H quadH \quad wall height   H H H quadH \quad 墙壁高度
γ γ gammaquad\gamma \quad soil unit weight
γ γ gammaquad\gamma \quad 土壤单位重量

K A D K A D K_(AD)quadK_{A D} \quad earth pressure coefficient (static + dynamic)
K A D K A D K_(AD)quadK_{A D} \quad 土压力系数(静态 + 动态)

K A E K A E K_(AE)quadK_{A E} \quad active earth pressure coefficient (static)
K A E K A E K_(AE)quadK_{A E} \quad 有源土压力系数(静态)
Inertial loads  惯性负载
In addition, the seismic action creates inertial forces acting in both horizontal and vertical direction. These forces are also taken into account in the abutment design and can be written as follows:
此外,地震作用还会产生作用于水平和垂直方向的惯性力。这些力在基台设计中也要考虑在内,可写成以下形式:
F H = k h W i F v = k v W i F H = k h W i F v = k v W i F_(H)=k_(h)sumW_(i)quadF_(v)=k_(v)sumW_(i)F_{H}=k_{h} \sum W_{i} \quad F_{v}=k_{v} \sum W_{i}
Where:  在哪里?
W i W i W_(i)quadW_{i} \quad vertical forces (masses)
W i W i W_(i)quadW_{i} \quad 垂直力(质量)

k h , k v k h , k v k_(h),k_(v)quadk_{h}, k_{v} \quad horizontal and vertical seismic coefficients affecting all the masses
k h , k v k h , k v k_(h),k_(v)quadk_{h}, k_{v} \quad 影响所有质点的水平和垂直地震系数
k h = α S r k h = α S r k_(h)=alpha(S)/(r)k_{h}=\alpha \frac{S}{r}
k v = ± 0.5 k h k v = ± 0.5 k h k_(v)=+-0.5k_(h)quadk_{v}= \pm 0.5 k_{h} \quad if a v g / a g a v g / a g ^(a_(vg))//a_(g){ }^{a_{v g}} / a_{g} is larger than 0.6
k v = ± 0.5 k h k v = ± 0.5 k h k_(v)=+-0.5k_(h)quadk_{v}= \pm 0.5 k_{h} \quad 如果 a v g / a g a v g / a g ^(a_(vg))//a_(g){ }^{a_{v g}} / a_{g} 大于 0.6

k v = ± 0.33 k h k v = ± 0.33 k h k_(v)=+-0.33k_(h)quadk_{v}= \pm 0.33 k_{h} \quad otherwise   k v = ± 0.33 k h k v = ± 0.33 k h k_(v)=+-0.33k_(h)quadk_{v}= \pm 0.33 k_{h} \quad 否则
α = a g γ I α = a g γ I alpha=a_(g)*gamma_(I)\alpha=a_{g} \cdot \gamma_{I}, where a g a g a_(g)a_{g} is the value of the Peak Ground acceleration from UAE High Speed Rail Project Seismic Hazard Assessment Study, P2103-UAE-EBB-RP-03001, considering a Return Period of 2475 years.
α = a g γ I α = a g γ I alpha=a_(g)*gamma_(I)\alpha=a_{g} \cdot \gamma_{I} ,其中 a g a g a_(g)a_{g} 是阿联酋高速铁路项目地震危害评估研究 P2103-UAE-EBB-RP-03001 中的峰值地面加速度值,考虑到 2475 年的回归期。

In this case, k v k v k_(v)\mathrm{k}_{\mathrm{v}} is considered as null, a g a g a_(g)\mathrm{a}_{\mathrm{g}} is 0.121 , and γ I γ I gamma_(I)\gamma_{I} is established as equal to 1.0 , as indicated in UAE High Speed Rail Project Building Structures Design Criteria, P2103-UAE-EAS-RP-05108-AC.
在这种情况下, k v k v k_(v)\mathrm{k}_{\mathrm{v}} 视为空, a g a g a_(g)\mathrm{a}_{\mathrm{g}} 为 0.121, γ I γ I gamma_(I)\gamma_{I} 等于 1.0,如《阿联酋高速铁路项目建筑结构设计标准》P2103-UAE-EAS-RP-05108-AC 所示。
For the basic design, and according to the geotechnical data on site, the ground is considered type “B”; the spectrum 2 is considered as indicated in UAE High Speed Rail Project Seismic Hazard Assessment Study, P2103-UAE-EBB-RP03001.
在基本设计中,根据现场岩土工程数据,地基被视为 "B "型;频谱 2 被视为阿联酋高速铁路项目地震危害评估研究 P2103-UAE-EBB-RP03001。
In the absence of test results on the backfill material, the following design criteria in determining earth pressures as per recommendations of the Abu Dhabi Quality and Conformity Council - Road Structures Design Manual (TR-516) as a minimum will be used:
在没有回填材料测试结果的情况下,将根据阿布扎比质量和合格委员会的建议,至少采用以下设计标准来确定土压力--《道路结构设计手册》(TR-516):
  • Soil density = 19 kN / m 3 = 19 kN / m 3 =19kN//m^(3)=19 \mathrm{kN} / \mathrm{m}^{3}  土壤密度 = 19 kN / m 3 = 19 kN / m 3 =19kN//m^(3)=19 \mathrm{kN} / \mathrm{m}^{3}
  • Friction angle = 30 = 30 =30^(@)=30^{\circ}  摩擦角 = 30 = 30 =30^(@)=30^{\circ}
Hydrostatic water pressure will be considered during construction stages as well as the final stage of completion as per applicable ground water levels at each stage.
在施工阶段和最后竣工阶段,将根据每个阶段适用的地下水位考虑静水压力。
Where the foundations are deeper than the water table level, the uplift forces due to flotation will be considered.
当地基深度超过地下水位时,将考虑因漂浮而产生的隆起力。

5.2.3. Super Imposed loads
5.2.3.超强荷载

Superimposed dead load comprises the self-weight for all secondary elements that rest upon the structure, such as tracks (slab track or ballast) and anchorages, utility cables and ducts, railings, waterproofing, coatings layers, and linings.
叠加自重包括结构上所有次要构件的自重,如轨道(板轨或道碴)和锚固件、公用电缆和管道、栏杆、防水层、涂层和衬里。
The nominal load values and the weighting factors to be considered to determine the characteristic load values to be applied in the design are given in the tables below (ref. BS EN 1991-1-1 and its NA).
下表(参考 BS EN 1991-1-1 及其 NA)列出了额定荷载值和加权系数,以确定设计中应用的特征荷载值。
Removable loads:  可拆卸负载:
Element  要素 Unit weight (kN/m m 3 ) m 3 {:m^(3))\left.\mathbf{m}^{\mathbf{3}}\right)
单位重量 (kN/m m 3 ) m 3 {:m^(3))\left.\mathbf{m}^{\mathbf{3}}\right) )
Ballast  镇流器 21.1
Waterproofing and protective covering
防水和保护层
22.0
Concrete protective layer
混凝土保护层
25.0
Bitumen asphalt  沥青 23.0
Dry sand, earth, or gravel infill
干沙、土或砾石填充物
20.0
Element Unit weight (kN/m {:m^(3)) Ballast 21.1 Waterproofing and protective covering 22.0 Concrete protective layer 25.0 Bitumen asphalt 23.0 Dry sand, earth, or gravel infill 20.0| Element | Unit weight (kN/m $\left.\mathbf{m}^{\mathbf{3}}\right)$ | | :---: | :---: | | Ballast | 21.1 | | Waterproofing and protective covering | 22.0 | | Concrete protective layer | 25.0 | | Bitumen asphalt | 23.0 | | Dry sand, earth, or gravel infill | 20.0 |
Table 5-2 Removable loads
表 5-2 可移动负载

Finishes:  饰面
Element  要素

额定负载值 ( k N / m 2 ) k N / m 2 (kN//m^(2))\left(\mathbf{k N} / \mathbf{m}^{2}\right)
Nominal load value
( k N / m 2 ) k N / m 2 (kN//m^(2))\left(\mathbf{k N} / \mathbf{m}^{2}\right)
Nominal load value (kN//m^(2))| Nominal load value | | :---: | | $\left(\mathbf{k N} / \mathbf{m}^{2}\right)$ |
Floor finish  地板饰面 1.60 kN / m 2 1.60 kN / m 2 1.60kN//m^(2)1.60 \mathrm{kN} / \mathrm{m}^{2}
Mortar screed  砂浆匀浆 0.50 kN / m 2 0.50 kN / m 2 0.50kN//m^(2)0.50 \mathrm{kN} / \mathrm{m}^{2}
Gypsum board ceiling 20mm
20 毫米石膏板天花板
0.20 kN / m 2 0.20 kN / m 2 0.20kN//m^(2)0.20 \mathrm{kN} / \mathrm{m}^{2}
Suspended steel channel for ceilings
用于天花板的悬挂式槽钢
0.10 kN / m 2 0.10 kN / m 2 0.10kN//m^(2)0.10 \mathrm{kN} / \mathrm{m}^{2}
Metal roofing  金属屋顶 0.06 kN / m 2 0.06 kN / m 2 0.06kN//m^(2)0.06 \mathrm{kN} / \mathrm{m}^{2}
Mechanical duct allowances
机械管道预留
0.20 kN / m 2 0.20 kN / m 2 0.20kN//m^(2)0.20 \mathrm{kN} / \mathrm{m}^{2}
Element "Nominal load value (kN//m^(2))" Floor finish 1.60kN//m^(2) Mortar screed 0.50kN//m^(2) Gypsum board ceiling 20mm 0.20kN//m^(2) Suspended steel channel for ceilings 0.10kN//m^(2) Metal roofing 0.06kN//m^(2) Mechanical duct allowances 0.20kN//m^(2)| Element | Nominal load value <br> $\left(\mathbf{k N} / \mathbf{m}^{2}\right)$ | | :---: | :---: | | Floor finish | $1.60 \mathrm{kN} / \mathrm{m}^{2}$ | | Mortar screed | $0.50 \mathrm{kN} / \mathrm{m}^{2}$ | | Gypsum board ceiling 20mm | $0.20 \mathrm{kN} / \mathrm{m}^{2}$ | | Suspended steel channel for ceilings | $0.10 \mathrm{kN} / \mathrm{m}^{2}$ | | Metal roofing | $0.06 \mathrm{kN} / \mathrm{m}^{2}$ | | Mechanical duct allowances | $0.20 \mathrm{kN} / \mathrm{m}^{2}$ |
Table 5-3 Finishing loads
表 5-3 加工负载

So, for the PE stage a superimposed load value of 2.66 kN / m 2 2.66 kN / m 2 2.66kN//m^(2)2.66 \mathrm{kN} / \mathrm{m}^{2} has been defined to consider all elements listed above on the slab levels and a 1.50 m filling above the roof slab.
因此,对于 PE 阶段,我们定义了 2.66 kN / m 2 2.66 kN / m 2 2.66kN//m^(2)2.66 \mathrm{kN} / \mathrm{m}^{2} 的叠加荷载值,以考虑楼板层上的所有上述元素以及屋顶板上方 1.50 米的填充物。

5.2.4. Imposed loads  5.2.4.外加荷载

5.2.4.1 Characteristic values
5.2.4.1 特性值

Occupancy or Use  占用或使用

类别,根据 EN 1 9 9 1 1 1 1 9 9 1 1 1 1991-1-1\mathbf{1 9 9 1 - 1 - 1}
Category, as per EN
1 9 9 1 1 1 1 9 9 1 1 1 1991-1-1\mathbf{1 9 9 1 - 1 - 1}
Category, as per EN 1991-1-1| Category, as per EN | | :---: | | $\mathbf{1 9 9 1 - 1 - 1}$ |

均匀载荷(千牛米/平方米),符合 EN 1 9 9 1 1 1 1 9 9 1 1 1 1991-1-1\mathbf{1 9 9 1 - 1 - 1} 标准
Uniform Load (kN/m²), as per EN
1 9 9 1 1 1 1 9 9 1 1 1 1991-1-1\mathbf{1 9 9 1 - 1 - 1}
Uniform Load (kN/m²), as per EN 1991-1-1| Uniform Load (kN/m²), as per EN | | :---: | | $\mathbf{1 9 9 1 - 1 - 1}$ |
Platforms / Concourse (Public)
平台/大厅(公共)
C5 5.0
Office buildings  办公楼
Offices  办事处 B 2.5
Lobbies and 1st floor corridors
大堂和一楼走廊
C3 5.0
Corridors above 1st floor
一楼以上的走廊
C2 4.0
Technical rooms  技术室 E1 7.5
Access Floor system - Computer use
进入楼层系统 - 计算机使用
C3 5.0
Stores / Shops  商店 5.0
Retail, all floors  零售,所有楼层 D1
Occupancy or Use "Category, as per EN 1991-1-1" "Uniform Load (kN/m²), as per EN 1991-1-1" Platforms / Concourse (Public) C5 5.0 Office buildings Offices B 2.5 Lobbies and 1st floor corridors C3 5.0 Corridors above 1st floor C2 4.0 Technical rooms E1 7.5 Access Floor system - Computer use C3 5.0 Stores / Shops 5.0 Retail, all floors D1 | Occupancy or Use | Category, as per EN <br> $\mathbf{1 9 9 1 - 1 - 1}$ | Uniform Load (kN/m²), as per EN <br> $\mathbf{1 9 9 1 - 1 - 1}$ | | :---: | :---: | :---: | | Platforms / Concourse (Public) | C5 | 5.0 | | Office buildings | | | | Offices | B | 2.5 | | Lobbies and 1st floor corridors | C3 | 5.0 | | Corridors above 1st floor | C2 | 4.0 | | Technical rooms | E1 | 7.5 | | Access Floor system - Computer use | C3 | 5.0 | | Stores / Shops | | 5.0 | | Retail, all floors | D1 | |
Table 5-4 Imposed loads to be considered in elevated stations. ETIHADRAIL
表 5-4 高架车站应考虑的外加荷载。ETIHADRAIL

(*) ^(**)^{*} technical rooms loads will be confirmed in the D&B stage according to final equipment layout.
(*) ^(**)^{*} 技术用房的负荷将在设计和预算阶段根据最终设备布局进行确认。

For the PE analysis level of detail, a typical 5.0 KN / m 2 5.0 KN / m 2 5.0KN//m^(2)5.0 \mathrm{KN} / \mathrm{m}^{2} of live load has been used for all areas. On D&B stage, the specific loads will be applied according to final room locations.
对于 PE 分析的详细程度,所有区域都采用了典型的 5.0 KN / m 2 5.0 KN / m 2 5.0KN//m^(2)5.0 \mathrm{KN} / \mathrm{m}^{2} 活荷载。在 D&B 阶段,将根据房间的最终位置施加具体荷载。

5.2.5. Railway loads  5.2.5.铁路荷载

The railway traffic loads in general follows Section 6.3 of EN 1991-2 and shall be in accordance with Local Roadway Authority requirement. The dynamic effects of the railway loads shall follow Section 6.4 of EN 1991-2.
铁路交通荷载一般应遵循 EN 1991-2 第 6.3 节的规定,并应符合当地道路管理局的要求。铁路荷载的动态效应应遵循 EN 1991-2 第 6.4 节的规定。

5.2.5.1 Vertical loads.  5.2.5.1 垂直荷载。

5.2.5.1.1 Load model 71
5.2.5.1.1 装载模型 71

Load 71 has been modelled as:
负载 71 的模型为

Figure 5-1 Load model 71 and characteristic values for vertical loads
图 5-1 荷载模型 71 和垂直荷载的特征值

The characteristic values of the Load Model 71 shall be multiplied by a classification factor α = 1.21 α = 1.21 alpha=1.21\alpha=1.21
载荷模型 71 的特征值应乘以分类系数 α = 1.21 α = 1.21 alpha=1.21\alpha=1.21

For the determination of the most adverse load effects from the application of Load Model 71 the following is to be considered:
在确定应用载荷模型 71 所产生的最不利载荷影响时,应考虑以下因素:
  • for structures carrying three or more tracks, Load Model 71 shall be applied to one track or to two tracks or 0.75 times Load Model 71 to three or more of the tracks.
    对于承载三条或三条以上轨道的结构,应在一条轨道或两条轨道上使用 71 号荷载模型,或在三条或三条以上轨道上使用 0.75 倍 71 号荷载模型。

5.2.5.1.2 Load models SW/0 and SW/2
5.2.5.1.2 装载模型 SW/0 和 SW/2

Load Model SW/O represents the static effect of vertical loading due to normal rail traffic on continuous beams, and Load Model SW/2 represents the static effect of vertical loading due to heavy rail traffic. The load arrangement shall be taken as shown in the next figure, with the characteristic values of the vertical loads according to the following table:
荷载模型 SW/O 表示正常轨道交通对连续梁产生的垂直荷载静效应,荷载模型 SW/2 表示重载轨道交通产生的垂直荷载静效应。荷载布置如下图所示,垂直荷载的特征值如下表所示:

Figure 5-2 Load model SW/0 and SW/2
图 5-2 装载模型 SW/0 和 SW/2
  负载模式
Load
Model
Load Model| Load | | :---: | | Model |
q vk q vk q_(vk)q_{\mathrm{vk}}
[ kN / m ] [ kN / m ] [kN//m][\mathrm{kN} / \mathrm{m}]
q_(vk) [kN//m]| $q_{\mathrm{vk}}$ | | :---: | | $[\mathrm{kN} / \mathrm{m}]$ |
a a aa
[ m ] [ m ] [m][\mathrm{~m}]
a [m]| $a$ | | :---: | | $[\mathrm{~m}]$ |
c c cc
[ m ] [ m ] [m][\mathrm{~m}]
c [m]| $c$ | | :---: | | $[\mathrm{~m}]$ |
SW/0 133 15,0 5,3
SW/2 150 25,0 7,0
"Load Model" "q_(vk) [kN//m]" "a [m]" "c [m]" SW/0 133 15,0 5,3 SW/2 150 25,0 7,0| Load <br> Model | $q_{\mathrm{vk}}$ <br> $[\mathrm{kN} / \mathrm{m}]$ | $a$ <br> $[\mathrm{~m}]$ | $c$ <br> $[\mathrm{~m}]$ | | :---: | :---: | :---: | :---: | | SW/0 | 133 | 15,0 | 5,3 | | SW/2 | 150 | 25,0 | 7,0 |
Figure 5-3 Characteristic values for vertical loads for load models SW/0 and SW/2
图 5-3 荷载模型 SW/0 和 SW/2 的垂直荷载特征值
Load Model SW/0 shall be multiplied by the factor α = 1.21 α = 1.21 alpha=1.21\alpha=1.21 in accordance with the previous section.
负载模式 SW/0 应根据上一节的规定乘以系数 α = 1.21 α = 1.21 alpha=1.21\alpha=1.21

For the determination of the most adverse load effects from the application of Load Model SW/O the following is to be considered:
为确定 SW/O 负载模型的应用对负载的最不利影响,应考虑以下几点:
  • for structures carrying three or more tracks, Load Model SW/0 shall be applied to one track or to two tracks or 0.75 times Load Model SW/0 to three or more of the tracks.
    对于承载三条或更多轨道的结构,应在一条或两条轨道上使用 SW/0 荷载模型,或在三条或更多轨道上使用 0.75 倍 SW/0 荷载模型。

5.2.5.1.1 Accidental loads due to derailed rail traffic under adjacent structures
5.2.5.1.1 相邻结构下轨道交通脱轨造成的意外荷载

In this section it is included the load definition for accidental loads in the station structure, according to EN 1997-1-7 and UIC-Code 777-2.
在本节中,根据 EN 1997-1-7 和 UIC Code 777-2 标准,对车站结构中的意外荷载进行了定义。

Railway stations can be considered as Class A structures, according to Table 4.3 of EN 1991-1-7 as it is shown next:
根据 EN 1991-1-7 表 4.3,火车站可被视为 A 级结构,如下图所示:
Class A  A 级

横跨或靠近运营中铁路的建筑物,这些建筑物或长期有人居住,或作为临时人员聚集场所,或由一层以上的建筑物组成。
Structures that span across or near to the operational railway that are either
permanently occupied or serve as a temporary gathering place for people or
consist of more than one storey.
Structures that span across or near to the operational railway that are either permanently occupied or serve as a temporary gathering place for people or consist of more than one storey.| Structures that span across or near to the operational railway that are either | | :--- | | permanently occupied or serve as a temporary gathering place for people or | | consist of more than one storey. |
Class B  B 级

横跨或靠近运营中铁路的大型建筑,如承载车辆交通的桥梁或非永久性占用或不作为临时人员聚集场所的单层建筑。
Massive structures that span across or near the operational railway such as
bridges carrying vehicular traffic or single storey buildings that are not
permanently occupied or do not serve as a temporary gathering place for
people.
Massive structures that span across or near the operational railway such as bridges carrying vehicular traffic or single storey buildings that are not permanently occupied or do not serve as a temporary gathering place for people.| Massive structures that span across or near the operational railway such as | | :--- | | bridges carrying vehicular traffic or single storey buildings that are not | | permanently occupied or do not serve as a temporary gathering place for | | people. |
Class A "Structures that span across or near to the operational railway that are either permanently occupied or serve as a temporary gathering place for people or consist of more than one storey." Class B "Massive structures that span across or near the operational railway such as bridges carrying vehicular traffic or single storey buildings that are not permanently occupied or do not serve as a temporary gathering place for people."| Class A | Structures that span across or near to the operational railway that are either <br> permanently occupied or serve as a temporary gathering place for people or <br> consist of more than one storey. | | :---: | :--- | | Class B | Massive structures that span across or near the operational railway such as <br> bridges carrying vehicular traffic or single storey buildings that are not <br> permanently occupied or do not serve as a temporary gathering place for <br> people. |
Table 5-5 Classes of structures subjected to impact from derailed railway traffic (table 4.3, EN 1991-1-7).
表 5-5 受脱轨铁路车辆撞击的结构等级(表 4.3,EN 1991-1-7)。
For Class A structures where the maximum speed of rail traffic at the location is less or equal to 120 km / h 120 km / h 120km//h120 \mathrm{~km} / \mathrm{h}, according to chapter 4.5.1.4 of EN 1991-1-7, the static equivalent forces due to an impact on supporting structural members can be considered as indicated in table 4.4:
根据 EN 1991-1-7 第 4.5.1.4 章,对于轨道交通最高速度小于或等于 120 km / h 120 km / h 120km//h120 \mathrm{~km} / \mathrm{h} 的 A 级结构,可考虑表 4.4 所示的因冲击支撑结构构件而产生的静态等效应力:

从结构部件到最近轨道中心线的距离 " d d dd " (m)
Distance " d d dd " from structural elements to the
centreline of the nearest track
(m)
Distance " d " from structural elements to the centreline of the nearest track (m)| Distance " $d$ " from structural elements to the | | :--- | | centreline of the nearest track | | (m) |
   F d x a F d x F_(dx)^("a ")F_{d x}{ }^{\text {a }} (kN)
Force F d x a F d x F_(dx)^("a ")F_{d x}{ }^{\text {a }}
(kN)
Force F_(dx)^("a ") (kN)| Force $F_{d x}{ }^{\text {a }}$ | | :---: | | (kN) |
   F d y a F d y F_(dy)^("a ")F_{d y}{ }^{\text {a }} (kN)
Force F d y a F d y F_(dy)^("a ")F_{d y}{ }^{\text {a }}
(kN)
Force F_(dy)^("a ") (kN)| Force $F_{d y}{ }^{\text {a }}$ | | :---: | | (kN) |
Structural elements: d < 3 m d < 3 m d < 3md<3 \mathrm{~m}
结构元素: d < 3 m d < 3 m d < 3md<3 \mathrm{~m}

根据具体项目而定。更多信息见附件 B
To be specified for the
individual project.
Further information is set
out in Annex B
To be specified for the individual project. Further information is set out in Annex B| To be specified for the | | :--- | | individual project. | | Further information is set | | out in Annex B |

根据具体项目而定。更多信息见附件 B
To be specified for the
individual project.
Further information is set out
in Annex B
To be specified for the individual project. Further information is set out in Annex B| To be specified for the | | :--- | | individual project. | | Further information is set out | | in Annex B |

适用于连续墙和墙式结构:3 m d 5 m m d 5 m m <= d <= 5m\mathrm{~m} \leq d \leq 5 \mathrm{~m}
For continuous walls and wall type structures: 3
m d 5 m m d 5 m m <= d <= 5m\mathrm{~m} \leq d \leq 5 \mathrm{~m}
For continuous walls and wall type structures: 3 m <= d <= 5m| For continuous walls and wall type structures: 3 | | :--- | | $\mathrm{~m} \leq d \leq 5 \mathrm{~m}$ |
4000 1500
d > 5 m d > 5 m d > 5md>5 \mathrm{~m} 0 0
a x = x = x=x= track direction; y = y = y=y= perpendicular to track direction.
a x = x = x=x= 轨道方向; y = y = y=y= 垂直于轨道方向。
"Distance " d " from structural elements to the centreline of the nearest track (m)" "Force F_(dx)^("a ") (kN)" "Force F_(dy)^("a ") (kN)" Structural elements: d < 3m "To be specified for the individual project. Further information is set out in Annex B" "To be specified for the individual project. Further information is set out in Annex B" "For continuous walls and wall type structures: 3 m <= d <= 5m" 4000 1500 d > 5m 0 0 a x= track direction; y= perpendicular to track direction. | Distance " $d$ " from structural elements to the <br> centreline of the nearest track <br> (m) | Force $F_{d x}{ }^{\text {a }}$ <br> (kN) | Force $F_{d y}{ }^{\text {a }}$ <br> (kN) | | :--- | :--- | :--- | | Structural elements: $d<3 \mathrm{~m}$ | To be specified for the <br> individual project. <br> Further information is set <br> out in Annex B | To be specified for the <br> individual project. <br> Further information is set out <br> in Annex B | | For continuous walls and wall type structures: 3 <br> $\mathrm{~m} \leq d \leq 5 \mathrm{~m}$ | 4000 | 1500 | | $d>5 \mathrm{~m}$ | 0 | 0 | | a $x=$ track direction; $y=$ perpendicular to track direction. | | |
Table 5-6 Indicative static equivalent design forces due to impact for class A structures over or alongside railways (table 4.4, EN 1991-1-7).
表 5-6 铁路上方或沿线 A 级结构因冲击而产生的指示性静态等效设计力(EN 1991-1-7 表 4.4)。
These forces should be considered separately and are applied at 1.80 m above top of rail level, as recommended value from EN 1991-1-7 and defined in UIC-Code 777-2.
根据 EN 1991-1-7 标准的建议值和 UIC 代码 777-2 的定义,这些力应单独考虑,并施加在轨道顶部以上 1.80 米处。
These forces are in accordance with UIC-Code 777-2, as described in chapters 3 and 5.
这些力符合 UIC 代码 777-2 的规定,详见第 3 章和第 5 章。

A crash-wall will be defined when distance from track axis to supporting structural member is between 3 m to 5 m , which minimal dimensions shall be in accordance to the ones described in chapter 5.4.4.1 of UIC-Code 777-2.
当轨道轴线与支撑结构件之间的距离在 3 米至 5 米之间时,即为防撞墙,其最小尺寸应符合 UIC 规范 777-2 第 5.4.4.1 章中所述的尺寸。
Load combination for accidental actions are defined in EN 1990.
EN 1990 规定了意外情况下的载荷组合。

5.2.6. Wind loads  5.2.6.风荷载

Wind loads shall be calculated in accordance with EN 1991-1-4 as appropriate, and the local jurisdiction requirements.
风荷载应酌情按照 EN 1991-1-4 标准和当地管辖要求进行计算。

The 10 minutes mean wind speed is 31.2 m / s 31.2 m / s 31.2m//s31.2 \mathrm{~m} / \mathrm{s}.
10 分钟平均风速为 31.2 m / s 31.2 m / s 31.2m//s31.2 \mathrm{~m} / \mathrm{s}
Location  地点 Abu Dhabi  阿布扎比
Basic wind speed as per ER
根据 ER 确定的基本风速
31.2 m / s 31.2 m / s 31.2m//s31.2 \mathrm{~m} / \mathrm{s}
Location Abu Dhabi Basic wind speed as per ER 31.2m//s| Location | Abu Dhabi | | :--- | :--- | | Basic wind speed as per ER | $31.2 \mathrm{~m} / \mathrm{s}$ |
Table 5-7 Basic wind speeds in UAE
表 5-7 阿联酋的基本风速

From it, the peak wind pressure will be calculated as per EN 1991-1-4, Section 4:
根据 EN 1991-1-4,第 4 节,将计算出峰值风压:
q p ( z ) = [ 1 + 7 l v ( z ) ] 1 2 ρ v m 2 ( z ) q p ( z ) = 1 + 7 l v ( z ) 1 2 ρ v m 2 ( z ) q_(p)(z)=[1+7*l_(v)(z)]*(1)/(2)*rho*v_(m)^(2)(z)q_{p}(z)=\left[1+7 \cdot l_{v}(z)\right] \cdot \frac{1}{2} \cdot \rho \cdot v_{m}^{2}(z)
The turbulence intensity is defined as:
湍流强度定义为
l v ( z ) = σ v v m ( z ) = k l c 0 ( z ) ln ( Z z 0 ) l v ( z ) = σ v v m ( z ) = k l c 0 ( z ) ln Z z 0 l_(v)(z)=(sigma_(v))/(v_(m)(z))=(k_(l))/(c_(0)(z)*ln((Z)/(z_(0))))l_{v}(z)=\frac{\sigma_{v}}{v_{m}(z)}=\frac{k_{l}}{c_{0}(z) \cdot \ln \left(\frac{Z}{z_{0}}\right)}
where  其中
ρ ρ rho\rho is the air density, taken as 1.25 kg / m 3 1.25 kg / m 3 1.25kg//m^(3)1.25 \mathrm{~kg} / \mathrm{m}^{3}
ρ ρ rho\rho 是空气密度,取值为 1.25 kg / m 3 1.25 kg / m 3 1.25kg//m^(3)1.25 \mathrm{~kg} / \mathrm{m}^{3}

k l k l k_(l)k_{l} is the turbulence factor, taken as 1.0
k l k l k_(l)k_{l} 是湍流系数,取 1.0

c 0 ( z ) c 0 ( z ) c_(0)(z)c_{0}(z) is the orography factor, taken as 1.0
c 0 ( z ) c 0 ( z ) c_(0)(z)c_{0}(z) 是地形系数,取 1.0

z 0 = 0.01 m z 0 = 0.01 m z_(0)=0.01mz_{0}=0.01 \mathrm{~m} for Abu Dhabi, Dubai, Al Ain, and Sharjah because of the considered terrain category class I ( z 0 , 1 z 0 , 1 z_(0,1)\mathrm{z}_{0,1} ) as per Table 4.1 of the code.
z 0 = 0.01 m z 0 = 0.01 m z_(0)=0.01mz_{0}=0.01 \mathrm{~m} 阿布扎比、迪拜、艾因和沙迦的地形类别为 I 类( z 0 , 1 z 0 , 1 z_(0,1)\mathrm{z}_{0,1} ),如规范表 4.1 所示。
The mean velocity is defined as:
平均速度的定义是
v m ( z ) = c r ( z ) c 0 ( z ) v b v m ( z ) = c r ( z ) c 0 ( z ) v b v_(m)(z)=c_(r)(z)*c_(0)(z)*v_(b)v_{m}(z)=c_{r}(z) \cdot c_{0}(z) \cdot v_{b}
Where,  在哪里?
c 0 ( z ) c 0 ( z ) c_(0)(z)c_{0}(z) is the orography factor, taken as 1.0 , and c r ( z ) = k r ln ( z z 0 ) c r ( z ) = k r ln z z 0 c_(r)(z)=k_(r)*ln((z)/(z_(0)))c_{r}(z)=k_{r} \cdot \ln \left(\frac{z}{z_{0}}\right)
c 0 ( z ) c 0 ( z ) c_(0)(z)c_{0}(z) 是地形系数,取 1.0, c r ( z ) = k r ln ( z z 0 ) c r ( z ) = k r ln z z 0 c_(r)(z)=k_(r)*ln((z)/(z_(0)))c_{r}(z)=k_{r} \cdot \ln \left(\frac{z}{z_{0}}\right) 是地形系数,取 1.0。
k r = 0.19 ( z 0 z 0 , I I ) 0.07 k r = 0.19 z 0 z 0 , I I 0.07 k_(r)=0.19*((z_(0))/(z_(0,II)))^(0.07)k_{r}=0.19 \cdot\left(\frac{z_{0}}{z_{0, I I}}\right)^{0.07}
For ADR station ( z = 23 m ) ( z = 23 m ) (z=23m)(z=23 \mathrm{~m}), the design wind pressure is:
对于 ADR 站 ( z = 23 m ) ( z = 23 m ) (z=23m)(z=23 \mathrm{~m}) ,设计风压为:
Location  地点 Design wind pressure q p ( k N / m 2 ) q p k N / m 2 q_(p)(kN//m^(2))\mathbf{q}_{\mathrm{p}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)
设计风压 q p ( k N / m 2 ) q p k N / m 2 q_(p)(kN//m^(2))\mathbf{q}_{\mathrm{p}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)
ADR Station  ADR 站 2.00
Location Design wind pressure q_(p)(kN//m^(2)) ADR Station 2.00| Location | Design wind pressure $\mathbf{q}_{\mathrm{p}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$ | | :--- | :---: | | ADR Station | 2.00 |
Table 5-8 Design wind pressure for different UAE locations.
表 5-8 阿联酋不同地点的设计风压
Wind loads are considered according to EN 1991-1-4 Ch. 5. In this preliminary design there are only considered horizontal loads and are calculated as pressure loads. Pressure coefficients are calculated according to EN 1991-1-4 Ch. 7.2. Net pressure coefficients (external pressure coefficient + internal pressure coefficient) considered are:
风荷载根据 EN 1991-1-4 第 5 章进行考虑。 在本初步设计中,只考虑了水平荷载,并作为压力荷载进行计算。压力系数根据 EN 1991-1-4 第 7.2 章计算。考虑的净压力系数(外部压力系数 + 内部压力系数)为
  • 1.1 1.1 quad1.1\quad 1.1 for windward faces ( 0.8 + 0.3 ) ( 0.8 + 0.3 ) (0.8+0.3)(0.8+0.3)
    1.1 1.1 quad1.1\quad 1.1 迎风面 ( 0.8 + 0.3 ) ( 0.8 + 0.3 ) (0.8+0.3)(0.8+0.3)
  • 0.7 0.7 quad-0.7\quad-0.7 for downwind faces. (-0.5-0.2)
    0.7 0.7 quad-0.7\quad-0.7 顺风面。(-0.5-0.2)

5.2.7. Thermal actions  5.2.7.热行动

The thermal actions considered are, as per P2103-UAE-ECB-RP-02105 are:
根据 P2103-UAE-ECB-RP-02105,所考虑的热作用包括
  • Δ T + = + 30 C Δ T + = + 30 C DeltaT+=+30^(@)C\Delta \mathrm{T}+=+30^{\circ} \mathrm{C} and Δ T = 30 C ) Δ T = 30 C {: DeltaT-=-30^(@)C)\left.\Delta \mathrm{T}-=-30^{\circ} \mathrm{C}\right)   Δ T + = + 30 C Δ T + = + 30 C DeltaT+=+30^(@)C\Delta \mathrm{T}+=+30^{\circ} \mathrm{C} Δ T = 30 C ) Δ T = 30 C {: DeltaT-=-30^(@)C)\left.\Delta \mathrm{T}-=-30^{\circ} \mathrm{C}\right)
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

P2103-AUH-EAS-RP-71100-AA
qquad\qquad

5.2.8. Seismic actions  5.2.8.地震作用

The seismic action has been represented by a response spectrum. The horizontal component is in accordance with BS EN 1998-1 section 3.2.2.2, depending on the ground type at the foundation of the supports of the bridge.
地震作用用反应谱来表示。水平分量符合 BS EN 1998-1 第 3.2.2.2 节的规定,取决于桥梁支架地基处的地基类型。

5.2.8.1 Horizontal elastic response spectrum
5.2.8.1 水平弹性响应谱

For the two orthogonal horizontal components of the seismic actions, the elastic response spectrum S e ( T ) S e ( T ) S_(e)(T)\mathrm{S}_{\mathrm{e}}(\mathrm{T}) is defined by the following expression from EN 1998-1.
对于地震作用的两个正交水平分量,弹性反应谱 S e ( T ) S e ( T ) S_(e)(T)\mathrm{S}_{\mathrm{e}}(\mathrm{T}) 由 EN 1998-1 中的以下表达式定义。
{ 0 T T B : S c ( T ) = a g S [ 1 + T T B ( 2 , 5 η 1 ) ] T B T T C : S c ( T ) = a g S 2 , 5 η T C T T D : S c ( T ) = a g S 2 , 5 η [ T c T ] T D T 4 s : S c ( T ) = a g S 2 , 5 η [ T c T D T 2 ] 0 T T B : S c ( T ) = a g S 1 + T T B ( 2 , 5 η 1 ) T B T T C : S c ( T ) = a g S 2 , 5 η T C T T D : S c ( T ) = a g S 2 , 5 η T c T T D T 4 s : S c ( T ) = a g S 2 , 5 η T c T D T 2 {[0 <= T <= T_(B):S_(c)(T)=a_(g)*S*[1+(T)/(T_(B))*(2,5*eta-1)]],[T_(B) <= T <= T_(C):S_(c)(T)=a_(g)*S*2","5*eta],[T_(C) <= T <= T_(D):S_(c)(T)=a_(g)*S*2","5*eta*[(T_(c))/(T)]],[T_(D) <= T <= 4s:S_(c)(T)=a_(g)*S*2","5*eta*[(T_(c)*T_(D))/(T^(2))]]:}\left\{\begin{array}{c} 0 \leq T \leq T_{B}: S_{c}(T)=a_{g} \cdot S \cdot\left[1+\frac{T}{T_{B}} \cdot(2,5 \cdot \eta-1)\right] \\ T_{B} \leq T \leq T_{C}: S_{c}(T)=a_{g} \cdot S \cdot 2,5 \cdot \eta \\ T_{C} \leq T \leq T_{D}: S_{c}(T)=a_{g} \cdot S \cdot 2,5 \cdot \eta \cdot\left[\frac{T_{c}}{T}\right] \\ T_{D} \leq T \leq 4 s: S_{c}(T)=a_{g} \cdot S \cdot 2,5 \cdot \eta \cdot\left[\frac{T_{c} \cdot T_{D}}{T^{2}}\right] \end{array}\right.
Being  存在
  • S e ( T ) = S e ( T ) = S_(e)(T)=S_{e}(T)= elastic response spectrum
    S e ( T ) = S e ( T ) = S_(e)(T)=S_{e}(T)= 弹性响应谱
  • T = T = T=\mathrm{T}= vibration period of a linear single-degree-of-freedom system
    T = T = T=\mathrm{T}= 线性单自由度系统的振动周期
  • a g = γ I a g R = 1.0 × 1.2 = 1.20 m / s 2 a g = γ I a g R = 1.0 × 1.2 = 1.20 m / s 2 a_(g)=gamma_(I)**a_(gR)=1.0 xx1.2=1.20m//s^(2)a_{g}=\gamma_{I} * a_{g R}=1.0 \times 1.2=1.20 \mathrm{~m} / \mathrm{s}^{2},
  • S = 1.35 S = 1.35 quad S=1.35\quad S=1.35 (soil factor considered for ground type B B BB )
    S = 1.35 S = 1.35 quad S=1.35\quad S=1.35 B B BB 地面类型考虑的土壤系数 )
  • η = η = eta=\eta= damping correction factor that will be considered as 5 % 5 % 5%5 \%
    η = η = eta=\eta= 阻尼修正系数,将被视为 5 % 5 % 5%5 \%
  • T B , T C T B , T C T_(B),T_(C)T_{B}, T_{C} and T D = T D = T_(D)=T_{D}= limits of the different branches
    不同分支的 T B , T C T B , T C T_(B),T_(C)T_{B}, T_{C} T D = T D = T_(D)=T_{D}= 界限
The values of S , T B , T C S , T B , T C S,T_(B),T_(C)S, T_{B}, T_{C} and T D T D T_(D)T_{D} depend upon the ground type and might take the following values both for type 2 spectra:
S , T B , T C S , T B , T C S,T_(B),T_(C)S, T_{B}, T_{C} T D T D T_(D)T_{D} 的值取决于地面类型,对于类型 2 光谱,这两个值可能如下:
Ground type  地面类型 S T B ( s ) T B ( s ) T_(B)(s)T_{B}(s) T C ( s ) T C ( s ) T_(C)(s)T_{C}(s) T D ( s ) T D ( s ) T_(D)(s)T_{D}(s)
A 1,0 0,05 0,25 1,20
B 1 , 3 5 1 , 3 5 1,35\mathbf{1 , 3 5} 0 , 0 5 0 , 0 5 0,05\mathbf{0 , 0 5} 0 , 2 5 0 , 2 5 0,25\mathbf{0 , 2 5} 1 , 2 0 1 , 2 0 1,20\mathbf{1 , 2 0}
C 1,5 0,10 0,25 1,20
D 1,8 0,10 0,30 1,20
E 1,6 0,05 0,25 1,20
Ground type S T_(B)(s) T_(C)(s) T_(D)(s) A 1,0 0,05 0,25 1,20 B 1,35 0,05 0,25 1,20 C 1,5 0,10 0,25 1,20 D 1,8 0,10 0,30 1,20 E 1,6 0,05 0,25 1,20| Ground type | S | $T_{B}(s)$ | $T_{C}(s)$ | $T_{D}(s)$ | | :--- | :---: | :---: | :---: | :---: | | A | 1,0 | 0,05 | 0,25 | 1,20 | | B | $\mathbf{1 , 3 5}$ | $\mathbf{0 , 0 5}$ | $\mathbf{0 , 2 5}$ | $\mathbf{1 , 2 0}$ | | C | 1,5 | 0,10 | 0,25 | 1,20 | | D | 1,8 | 0,10 | 0,30 | 1,20 | | E | 1,6 | 0,05 | 0,25 | 1,20 |
Table 5-9 Values of the parameters describing Type 2 elastic response spectra as per Table 3.3 of the 1998-1.
表 5-9 1998-1 表 3.3 中描述 2 类弹性响应谱的参数值。

5.2.8.2 Vertical elastic response spectrum
5.2.8.2 垂直弹性响应谱

The vertical elastic response spectrum is determined as per section 3.2.2.3 of the EN 1998-1 using the following formulation:
根据 EN 1998-1 第 3.2.2.3 节的规定,采用以下公式确定垂直弹性响应谱:
{ 0 T T B : S v c ( T ) = a v g [ 1 + T T B ( 3 , 0 η 1 ) ] T B T T C : S v c ( T ) = a v g S 3 , 0 η T C T T D : S v c ( T ) = a v g 3 , 0 η [ T c T ] T D T 4 s : S v c ( T ) = a v g 3 , 0 η [ T c T D T 2 ] 0 T T B : S v c ( T ) = a v g 1 + T T B ( 3 , 0 η 1 ) T B T T C : S v c ( T ) = a v g S 3 , 0 η T C T T D : S v c ( T ) = a v g 3 , 0 η T c T T D T 4 s : S v c ( T ) = a v g 3 , 0 η T c T D T 2 {[0 <= T <= T_(B):S_(vc)(T)=a_(vg)*[1+(T)/(T_(B))*(3,0*eta-1)]],[T_(B) <= T <= T_(C):S_(vc)(T)=a_(vg)*S*3","0*eta],[T_(C) <= T <= T_(D):S_(vc)(T)=a_(vg)*3","0*eta*[(T_(c))/(T)]],[T_(D) <= T <= 4s:S_(vc)(T)=a_(vg)*3","0*eta*[(T_(c)*T_(D))/(T^(2))]]:}\left\{\begin{array}{c} 0 \leq T \leq T_{B}: S_{v c}(T)=a_{v g} \cdot\left[1+\frac{T}{T_{B}} \cdot(3,0 \cdot \eta-1)\right] \\ T_{B} \leq T \leq T_{C}: S_{v c}(T)=a_{v g} \cdot S \cdot 3,0 \cdot \eta \\ T_{C} \leq T \leq T_{D}: S_{v c}(T)=a_{v g} \cdot 3,0 \cdot \eta \cdot\left[\frac{T_{c}}{T}\right] \\ T_{D} \leq T \leq 4 s: S_{v c}(T)=a_{v g} \cdot 3,0 \cdot \eta \cdot\left[\frac{T_{c} \cdot T_{D}}{T^{2}}\right] \end{array}\right.
Where the following parameters shall be used for type 2 spectra:
其中第 2 类光谱应使用以下参数:
Spectrum  光谱 a v g / a g a v g / a g a_(vg)//a_(g)a_{v g} / a_{g} T B ( s ) T B ( s ) T_(B)(s)T_{B}(s) T C ( s ) T C ( s ) T_(C)(s)T_{C}(s) T D ( s ) T D ( s ) T_(D)(s)T_{D}(s)
Type 2  第二类 0,45 0,05 0,15 1,0
Spectrum a_(vg)//a_(g) T_(B)(s) T_(C)(s) T_(D)(s) Type 2 0,45 0,05 0,15 1,0| Spectrum | $a_{v g} / a_{g}$ | $T_{B}(s)$ | $T_{C}(s)$ | $T_{D}(s)$ | | :--- | :---: | :---: | :---: | :---: | | Type 2 | 0,45 | 0,05 | 0,15 | 1,0 |
Table 5-10 Recommended values of parameters describing the vertical elastic response as per Table 3.4 of the EN 1998-1.
表 5-10 EN 1998-1 表 3.4 中描述垂直弹性响应的参数建议值。

The value of the design ground acceleration has been taken from P2103-UAE-EBB-RP-03001-AC3 Seismic Hazard Assessment Study. The values that have been considered ADR Station (located in zone 1) are summarized in table below.
设计地面加速度值取自 P2103-UAE-EBB-RP-03001-AC3 地震危险评估研究。下表汇总了 ADR 站(位于 1 区)的考虑值。
Zone  区域 Spectral acceleration (g) for V s , 30 = 800 m / s V s , 30 = 800 m / s V_(s,30)=800m//s\mathrm{V}_{\mathrm{s}, 30}=800 \mathrm{~m} / \mathrm{s}
V s , 30 = 800 m / s V s , 30 = 800 m / s V_(s,30)=800m//s\mathrm{V}_{\mathrm{s}, 30}=800 \mathrm{~m} / \mathrm{s} 的频谱加速度(g)
Return Period = 100 = 100 =100=100 years
回报期 = 100 = 100 =100=100
Return Period = 475 = 475 =475=475 years
回报期 = 475 = 475 =475=475
Return Period = 1000 = 1000 =1000=1000 years
回报期 = 1000 = 1000 =1000=1000
Return Period = 2475 = 2475 =2475=2475 years
回报期 = 2475 = 2475 =2475=2475
T = 0.01 sec T = 0.01 sec {:[T=],[0.01sec]:}\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered} T = 0.2 sec T = 0.2 sec {:[T=],[0.2sec]:}\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered} T = 1 sec T = 1 sec {:[T=],[1sec]:}\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered} T = 0.01 sec T = 0.01 sec {:[T=],[0.01sec]:}\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered} T = 0.2 sec T = 0.2 sec {:[T=],[0.2sec]:}\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered} T = 1 sec T = 1 sec {:[T=],[1sec]:}\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered} T = 0.01 sec T = 0.01 sec {:[T=],[0.01sec]:}\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered} T = 0.2 sec T = 0.2 sec {:[T=],[0.2sec]:}\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered} T = 1 sec T = 1 sec {:[T=],[1sec]:}\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered} T = 0.01 sec T = 0.01 sec {:[T=],[0.01sec]:}\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered} T = 0.2 sec T = 0.2 sec {:[T=],[0.2sec]:}\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered} T = 1 sec T = 1 sec {:[T=],[1sec]:}\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered}
1 0.016 0.030 0.013 0.043 0.084 0.031 0.069 0.141 0.044 0.121 0.257 0.064
Zone Spectral acceleration (g) for V_(s,30)=800m//s Return Period =100 years Return Period =475 years Return Period =1000 years Return Period =2475 years "T= 0.01sec" "T= 0.2sec" "T= 1sec" "T= 0.01sec" "T= 0.2sec" "T= 1sec" "T= 0.01sec" "T= 0.2sec" "T= 1sec" "T= 0.01sec" "T= 0.2sec" "T= 1sec" 1 0.016 0.030 0.013 0.043 0.084 0.031 0.069 0.141 0.044 0.121 0.257 0.064| Zone | Spectral acceleration (g) for $\mathrm{V}_{\mathrm{s}, 30}=800 \mathrm{~m} / \mathrm{s}$ | | | | | | | | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | Return Period $=100$ years | | | Return Period $=475$ years | | | Return Period $=1000$ years | | | Return Period $=2475$ years | | | | | $\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 0.01 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 0.2 \mathrm{sec} \end{gathered}$ | $\begin{gathered} \mathrm{T}= \\ 1 \mathrm{sec} \end{gathered}$ | | 1 | 0.016 | 0.030 | 0.013 | 0.043 | 0.084 | 0.031 | 0.069 | 0.141 | 0.044 | 0.121 | 0.257 | 0.064 |
Table 5-11 Spectral acceleration
表 5-11 光谱加速度

5.2.9. Settlements  5.2.9.定居点

Settlement checks are not deemed critical for the design of this type of structure, where D-walls are deep foundation structures and don’t support rail tracks.
沉降检查对于此类结构的设计并不重要,因为 D 型墙是深基础结构,不支撑轨道。

Deflection limits due to differential settlements for the bottom slab shall be checked at a later design stage according to EN 1990:2002+A1 chapter A2.4.4.1 deflection limits.
应根据 EN 1990:2002+A1 第 A2.4.4.1 章中的挠度限制,在后期设计阶段检查由差异沉降引起的底板挠度限制。

5.2.10. Construction Loads
5.2.10.施工荷载

The construction loads to be considered are defined in table 4.1 of EN 1991-1-6.
EN 1991-1-6 表 4.1 规定了需要考虑的施工荷载。

The construction loads will be lower than the expected service loads, and thus, these have not been considered in the calculation.
施工荷载将低于预期的使用荷载,因此在计算中没有考虑这些荷载。

6 STRUCTURAL DESCRIPTION OF REEM STATION
6 雷姆站的结构说明

Al Reem Station is a 6-tracked, and 6-platformed underground station designed in full network length, L = 400 m L = 400 m L=400mL=400 \mathrm{~m}. The station additionally includes switch boxes area in the north and south. According to the alignment, the depth of the station is around -28 (TOR at -25).
Al Reem 车站是一个 6 轨道、6 站台的地下车站,全线网设计, L = 400 m L = 400 m L=400mL=400 \mathrm{~m} 。车站还包括南北两侧的开关箱区域。根据线路走向,车站埋深约为 -28(TOR 为 -25)。

At the exit of the station, and before reaching the beginning of the TBM alignment, a cut and cover of approximately 180 m has been designed. This cut and cover is located at the same depth as the station and the width (free distance between screens) is variable. At the edge of the cut and cover the TBM retrieval shaft is found.
在车站出口处,在到达隧道掘进机线路起点之前,设计了一个长约 180 米的明挖覆盖层。井口深度与车站深度相同,宽度(筛网之间的自由距离)可变。在开挖覆盖层的边缘,可以找到 TBM 回采井。
Structurally, the station is composed of:
从结构上看,车站由以下部分组成:
  • The underground structure and the passenger building.
    地下结构和客运大楼。
  • Two transition zones (switches) at the entrance and exit of the station
    车站出入口的两个过渡区(开关
  • A cut and cover (specifically, the cut and cover is not part of the station, although its calculation will also be justified in this document, given its position in the layout).
    明挖洞和盖板(具体来说,明挖洞和盖板不属于车站的一部分,但鉴于其在布局中的位置,本文件也将对其计算进行说明)。

Figure 6-1 Reem station and cut and cover layout.
图 6-1 雷姆站和切割与盖板布局。

Figure 6-2 3D view of ADR station.
图 6-2 ADR 站的 3D 视图。

Figure 6-3 3D view of ADR cut and cover with retrieval shaft.
图 6-3 ADR 切割和盖板与回收轴的三维视图。
In the following chapters the different elements listed above are described.
以下各章将介绍上述不同要素。

6.1 Underground Station  6.1 地下车站

6.1.1. Geometrical definition
6.1.1.几何定义

Underground ADR Station (AI Reem Station) is 440.0 m long and 65.5 m wide. The buried structure includes 5 structural levels:
地下 ADR 站(AI Reem 站)长 440.0 米,宽 65.5 米。地下结构包括 5 层:
  • Roof level at +5.50
    屋顶水位为 +5.50
  • S01 level at - 1.950
    S01 级别为 - 1.950
  • S02 level at -8.750
    S02 水平为 -8.750
  • Concourse level at -15.550
    大厅层为 -15.550
  • Bottom slab level at -26.20
    底板水位为 -26.20
The platform level is at -23.900 and the top of rail is at -25.000 .
平台水平面为-23.900,轨道顶端为-25.000。

6.1.2. Structural Scheme
6.1.2.结构方案

The station’s box is formed by 1.2 m thick diaphragm walls propped by reinforced concrete frames spaced generally every 15.0 m and connected by a 0.50 m reinforced concrete slab at each level. The frames are formed by multi-span transverse reinforced concrete beams of variable height between 1.50 m and 1.80 m . Beam spans are 12.25 + 19.3 + 19.3 + 12.25 m 12.25 + 19.3 + 19.3 + 12.25 m 12.25+19.3+19.3+12.25m12.25+19.3+19.3+12.25 \mathrm{~m}. The beams are supported by 1.80 m diameter columns. When stairs and automatic stairs connect platforms and ground levels the columns supporting the structure are modified to allow its implementation: columns are doubled to two rectangular cross sections of 0.65 × 1.50 m 0.65 × 1.50 m 0.65 xx1.50m0.65 \times 1.50 \mathrm{~m}. At bottom level, a slab of 1.50 m has been defined to resist uplift forces due to underground water pressure.
车站的箱体由 1.2 米厚的地下连续墙构成,由钢筋混凝土框架支撑,间距一般为 15.0 米,每层由 0.50 米的钢筋混凝土板连接。框架由高度在 1.50 米至 1.80 米之间的多跨横向钢筋混凝土梁组成。梁的跨度为 12.25 + 19.3 + 19.3 + 12.25 m 12.25 + 19.3 + 19.3 + 12.25 m 12.25+19.3+19.3+12.25m12.25+19.3+19.3+12.25 \mathrm{~m} 。梁由直径为 1.80 米的支柱支撑。当楼梯和自动楼梯连接平台和地面层时,支撑结构的柱子将进行修改,以便于实施:柱子加倍为两个矩形截面 0.65 × 1.50 m 0.65 × 1.50 m 0.65 xx1.50m0.65 \times 1.50 \mathrm{~m} 。在底层,定义了一个 1.50 米的板,以抵抗由于地下水压力而产生的上浮力。

6.1.3. Cross-section  6.1.3.横截面

Next figure shows the typical cross section of the passenger building:
下图显示了客运大楼的典型横截面:

Figure 6-4 Typical cross section of passenger building structure of REEM station
图 6-4 REEM 火车站客运大楼结构的典型横截面图

Figure 6-5 Typical cross section of passenger building structure of REEM Station with doubled columns
图 6-5 REEM 站客运大楼双柱结构的典型横截面图

6.2 TRANSITION ZONES (SWITCHES)
6.2 过渡区(开关)

Linking the station building to the alignment, two transition zones are designed. In these transition areas, the variable separation between D-walls depends on the tracks alignment and takes its maximum value at the entrance and at the exit of the station.
在车站建筑与线路之间,设计了两个过渡区。在这些过渡区内,D 型墙之间的可变间隔取决于轨道线路,并在车站入口和出口处达到最大值。
Structurally, the D-walls will be strutted at the same levels than the main station by means of beams supported on columns due to the hight length. Between transversal axis of columns, longitudinal crash walls will be designed in order to reduce the impact loads due to derailment.
从结构上看,D 型墙由于长度较长,将通过支撑在支柱上的梁在与主站相同的高度上支撑。在支柱横向轴线之间,将设计纵向防撞墙,以减少脱轨造成的冲击荷载。
Next figure shows the view in plan of the northern transition zone:
下图为北部过渡区平面图:

Figure 6-6 View in plan of the northern open ramp or transition zone
图 6-6 北部开放式坡道或过渡区平面图

6.2.1. Cross-section  6.2.1.横截面

Next figures show the two typical cross sections of the transition zone.
下图显示了过渡区的两个典型横截面。

Figure 6-7 Typical cross section of transition zone with high width
图 6-7 高宽度过渡带的典型横截面图

Figure 6-8 Typical cross section of the transition zone with reduced width
图 6-8 宽度减小的过渡区典型横截面图

6.3 CUT AND COVER
6.3 切割和覆盖

At the exit of the northern transition zone, a cut and cover has been designed.
在北部过渡区的出口处,设计了一个切割和覆盖层。

Figure 6-9 View in plan of the cut and cover
图 6-9 切割和覆盖平面图

The separation of the two D-walls is adapted to the alignment, and it is variable from 12 m to 27.65 m . At its end, a retrieval shaft is designed to allow the extraction of the TBM coming from the north. The shaft has external dimensions of 26.80 mx 39.40 m and it is strutted by means of rings each 5.10 meters.
两道 D 形墙之间的间距可根据走线调整,从 12 米到 27.65 米不等。在其末端,设计了一个回收井,以便从北面取出隧道掘进机。竖井外部尺寸为 26.80 米 x 39.40 米,每 5.10 米有一个支撑环。
Due to the high-water pressure, when the width of the bottom slab is higher to 23 meters, central modules of D-walls have been designed to reduce the effects of uplift.
由于水压较高,当底板宽度增至 23 米时,设计了 D 型墙的中央模块,以减少隆起的影响。

Figure 6-10 Section of the cut and cover
图 6-10 切口和盖板的剖面图

7 PRELIMINARY CALCULATION OF THE STATION
7 车站的初步计算

In this section there are included the calculations done for the different parts of the ADR Station to verify the geometry and to obtain the reinforcement ratios of the different structural parts.
本节包括对 ADR 站不同部分进行的计算,以验证几何形状并获得不同结构部分的配筋率。

The structure of the ADR station has been separated into three parts:
发展成果评估站的结构分为三个部分:
  • First part considering the passenger station building and its underground part.
    第一部分是客运站大楼及其地下部分。
  • Second part to design the bottom slab that supports platforms and resist the uplift forces due to water pressure.
    第二部分是设计底板,用于支撑平台和抵抗水压造成的上浮力。
  • Third part considering the structures in the transition zone.
    第三部分考虑过渡区的结构。
Simplified calculations have been performed for the different parts to achieve this goal. In the following chapters there are presented the calculations done.
为实现这一目标,我们对不同部件进行了简化计算。下文各章将介绍计算结果。

7.1 Underground structure
7.1 地下结构

This chapter includes the calculations to define the reinforcements ratios of the underground structure of the Reem Station. The structural elements studied are:
本章包括确定里姆车站地下结构配筋率的计算。所研究的结构元素包括
  • The D-walls  D 型墙
  • The typical transverse framed structure (slabs and columns)
    典型的横向框架结构(板和柱)
REEM STATION (ADR). STRUCTURE REPORT
雷姆站(ADR)。结构报告

蹀 sener
illineco  伊利诺伊州
  • Foundations (bottom slab)
    地基(底板)
Different calculations have been performed to define the reinforcements.
我们进行了不同的计算来确定钢筋。

7.1.1. D-Wall design  7.1.1.D 型墙设计

7.1.1.1 Model  7.1.1.1 模式

7.1.1.1.1 Generalities  7.1.1.1.1 概述

A model of the diaphragm wall - D-Wall - has been performed by means of RIDO Software. This software calculates the stability of the wall considering a one-meter width. It also calculates the internal forces of this wall after the successive stages of its construction.
利用 RIDO 软件对地下连续墙(D-Wall)进行了建模。该软件可计算一米宽隔墙的稳定性。该软件还能计算连续墙在连续施工阶段后的内力。

So, the input data to introduce regarding the mechanical parameters of the structure are the corresponding to one-meter width of wall.
因此,有关结构力学参数的输入数据是与一米宽墙壁相对应的数据。

7.1.1.1.2 Ground Properties
7.1.1.1.2 地面特性

As per the available GI data defined in chapter 4.2, the characteristic values for the involved ground are summarized in Table 4-7.
根据第 4.2 章中定义的可用地理信息数据,表 4-7 汇总了相关地面的特征值。

Based on these parameters, the corresponding static and dynamic pressure coefficients have been obtained.
根据这些参数,可以得到相应的静压和动压系数。

The static and dynamic pressure coefficients that have been used in RIDO software to analyse the D-walls stability, according to DA 1 EC 1997-1 both combinations 1 and 2, are presented in the tables below - Table 7-1 and Table 7-2, respectively.
根据 DA 1 EC 1997-1 组合 1 和 2,RIDO 软件在分析 D 型墙稳定性时使用的静压和动压系数分别见下表 - 表 7-1 和表 7-2。
Geotechnical Unit  岩土工程股
Y = Y Y = Y Y=Y^(**)Y=Y^{*}
kN / m 3 kN / m 3 kN//m^(3)\mathrm{kN} / \mathrm{m}^{3}
Y=Y^(**) kN//m^(3)| $Y=Y^{*}$ | | :--- | | $\mathrm{kN} / \mathrm{m}^{3}$ |
k h k h k_(h)k_{h}
g
k_(h) g| $k_{h}$ | | :--- | | g |
k v k v k_(v)k_{v}
g g g\mathbf{g}
k_(v) g| $k_{v}$ | | :--- | | $\mathbf{g}$ |
Ψ Ψ Psi\boldsymbol{\Psi} φ d = = φ k φ d = = φ k {:[varphi^(')d=],[=varphi^(')k]:}\begin{aligned} & \varphi^{\prime} \mathrm{d}= \\ & =\varphi^{\prime} \mathrm{k} \end{aligned} φ φ d = = φ k rad φ φ d = = φ k  rad  {:[varphivarphi_(d)^(')=],[=varphi_(k)],[" rad "]:}\begin{aligned} & \varphi \varphi_{\mathrm{d}}^{\prime}= \\ & =\varphi_{\mathrm{k}} \\ & \text { rad } \end{aligned} k 0 k 0 k_(0)\mathbf{k}_{0} k h / ( 1 + k v ) k h / 1 + k v k_(h)//(1+k_(v))k_{h} /\left(1+k_{v}\right) θ = atan ( k h / ( 1 + k v ) ) θ = atan k h / 1 + k v {:[theta=],[atan(k_(h)//(1+k_(v)))]:}\begin{gathered} \theta= \\ \operatorname{atan}\left(k_{h} /\left(1+k_{v}\right)\right) \end{gathered} β β beta\beta Ka   K p K p K_(p)\mathrm{K}_{\mathrm{p}} k AD k AD  k_("AD ")\mathrm{k}_{\text {AD }} kPD
MD-SAND 18 0.163 0 90.0 31.0 0.54 0.485 0.163 9.28 0.0 0.27 5.31 0.42 2.78
SST 20 0.163 0 90.0 45.0 0.79 0.293 0.163 9.28 0.0 0.14 18.09 0.25 5.35
MDS 20 0.163 0 90.0 24.0 0.42 0.593 0.163 9.28 0.0 0.36 3.36 0.54 2.07
Geotechnical Unit "Y=Y^(**) kN//m^(3)" "k_(h) g" "k_(v) g" Psi "varphi^(')d= =varphi^(')k" "varphivarphi_(d)^(')= =varphi_(k) rad " k_(0) k_(h)//(1+k_(v)) "theta= atan(k_(h)//(1+k_(v)))" beta Ka K_(p) k_("AD ") kPD MD-SAND 18 0.163 0 90.0 31.0 0.54 0.485 0.163 9.28 0.0 0.27 5.31 0.42 2.78 SST 20 0.163 0 90.0 45.0 0.79 0.293 0.163 9.28 0.0 0.14 18.09 0.25 5.35 MDS 20 0.163 0 90.0 24.0 0.42 0.593 0.163 9.28 0.0 0.36 3.36 0.54 2.07| Geotechnical Unit | $Y=Y^{*}$ <br> $\mathrm{kN} / \mathrm{m}^{3}$ | $k_{h}$ <br> g | $k_{v}$ <br> $\mathbf{g}$ | $\boldsymbol{\Psi}$ | $\begin{aligned} & \varphi^{\prime} \mathrm{d}= \\ & =\varphi^{\prime} \mathrm{k} \end{aligned}$ | $\begin{aligned} & \varphi \varphi_{\mathrm{d}}^{\prime}= \\ & =\varphi_{\mathrm{k}} \\ & \text { rad } \end{aligned}$ | $\mathbf{k}_{0}$ | $k_{h} /\left(1+k_{v}\right)$ | $\begin{gathered} \theta= \\ \operatorname{atan}\left(k_{h} /\left(1+k_{v}\right)\right) \end{gathered}$ | $\beta$ | Ka | $\mathrm{K}_{\mathrm{p}}$ | $\mathrm{k}_{\text {AD }}$ | kPD | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | MD-SAND | 18 | 0.163 | 0 | 90.0 | 31.0 | 0.54 | 0.485 | 0.163 | 9.28 | 0.0 | 0.27 | 5.31 | 0.42 | 2.78 | | SST | 20 | 0.163 | 0 | 90.0 | 45.0 | 0.79 | 0.293 | 0.163 | 9.28 | 0.0 | 0.14 | 18.09 | 0.25 | 5.35 | | MDS | 20 | 0.163 | 0 | 90.0 | 24.0 | 0.42 | 0.593 | 0.163 | 9.28 | 0.0 | 0.36 | 3.36 | 0.54 | 2.07 |
Table 7-1 Static - k a k a k_(a)k_{a} and k p k p k_(p)k_{p} - and Dynamic - kAD and kPD - pressure coefficients of the Geotechnical Units. DA-1 Combination 1.
表 7-1 岩土力学单元的静压系数 k a k a k_(a)k_{a} k p k p k_(p)k_{p} 以及动压系数 kAD 和 kPD。DA-1 组合 1.
Geotechnical Unit  岩土工程股 Y = Y k N / m 3 Y = Y k N / m 3 {:[Y=Y^(**)],[kN//m^(3)]:}\begin{aligned} & Y=Y^{*} \\ & k N / m^{3} \end{aligned}
k h k h k_(h)k_{h}
g
k_(h) g| $k_{h}$ | | :--- | | g |
k v k v k_(v)k_{v} g g g\mathbf{g} Ψ Ψ Psi\boldsymbol{\Psi} ϕ d ϕ d phi^(')d\phi^{\prime} \mathrm{d}
φ d φ d varphi^(')d\varphi^{\prime} \mathrm{d}
rad
varphi^(')d rad| $\varphi^{\prime} \mathrm{d}$ | | :--- | | rad |
ko k h / ( 1 + k v ) k h / 1 + k v k_(h)//(1+k_(v))k_{h} /\left(1+k_{v}\right) 0 = atan ( k h / ( 1 + k v ) ) 0 0 = atan k h / 1 + k v 0 {:[0=],[atan(k_(h)//(1+k_(v)))],[0]:}\begin{gathered} 0= \\ \operatorname{atan}\left(k_{h} /\left(1+k_{v}\right)\right) \\ 0 \end{gathered} β β beta\beta K a K a K_(a)\mathrm{K}_{\mathrm{a}} K p K p K_(p)\mathrm{K}_{\mathrm{p}} k AD k AD  k_("AD ")\mathrm{k}_{\text {AD }} K PD K PD  K_("PD ")\mathrm{K}_{\text {PD }}
MD-SAND 18 0.163 0 90.0 26.0 0.45 0.56 0.163 9.28 0.0 0.33 3.80 0.51 2.22
SST 20 0.163 0 90.0 39.0 0.67 0.37 0.163 9.28 0.0 0.19 10.00 0.32 3.93
MDS 20 0.163 0 90.0 20.0 0.34 0.66 0.163 9.28 0.0 0.43 2.66 0.63 1.73
Geotechnical Unit "Y=Y^(**) kN//m^(3)" "k_(h) g" k_(v) g Psi phi^(')d "varphi^(')d rad" ko k_(h)//(1+k_(v)) "0= atan(k_(h)//(1+k_(v))) 0" beta K_(a) K_(p) k_("AD ") K_("PD ") MD-SAND 18 0.163 0 90.0 26.0 0.45 0.56 0.163 9.28 0.0 0.33 3.80 0.51 2.22 SST 20 0.163 0 90.0 39.0 0.67 0.37 0.163 9.28 0.0 0.19 10.00 0.32 3.93 MDS 20 0.163 0 90.0 20.0 0.34 0.66 0.163 9.28 0.0 0.43 2.66 0.63 1.73| Geotechnical Unit | $\begin{aligned} & Y=Y^{*} \\ & k N / m^{3} \end{aligned}$ | $k_{h}$ <br> g | $k_{v}$ $\mathbf{g}$ | $\boldsymbol{\Psi}$ | $\phi^{\prime} \mathrm{d}$ | $\varphi^{\prime} \mathrm{d}$ <br> rad | ko | $k_{h} /\left(1+k_{v}\right)$ | $\begin{gathered} 0= \\ \operatorname{atan}\left(k_{h} /\left(1+k_{v}\right)\right) \\ 0 \end{gathered}$ | $\beta$ | $\mathrm{K}_{\mathrm{a}}$ | $\mathrm{K}_{\mathrm{p}}$ | $\mathrm{k}_{\text {AD }}$ | $\mathrm{K}_{\text {PD }}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | MD-SAND | 18 | 0.163 | 0 | 90.0 | 26.0 | 0.45 | 0.56 | 0.163 | 9.28 | 0.0 | 0.33 | 3.80 | 0.51 | 2.22 | | SST | 20 | 0.163 | 0 | 90.0 | 39.0 | 0.67 | 0.37 | 0.163 | 9.28 | 0.0 | 0.19 | 10.00 | 0.32 | 3.93 | | MDS | 20 | 0.163 | 0 | 90.0 | 20.0 | 0.34 | 0.66 | 0.163 | 9.28 | 0.0 | 0.43 | 2.66 | 0.63 | 1.73 |
Table 7-2 Static - k a k a k_(a)k_{a} and k p k p k_(p)k_{p} - and Dynamic - k A D k A D k_(AD)k_{A D} and k P D k P D k_(PD)k_{P D} - pressure coefficients of the Geotechnical Units. DA-1 Combination 2.
表 7-2 岩土力学单元的静态 - k a k a k_(a)k_{a} k p k p k_(p)k_{p} - 以及动态 - k A D k A D k_(AD)k_{A D} k P D k P D k_(PD)k_{P D} - 压力系数。DA-1 组合 2.

7.1.1.1.3 Calculation Section
7.1.1.1.3 计算部分

The Design Approach DA 1 - refer to Eurocode EN 1997-1 - is considered in calculating the D-Walls Stability. The construction stages will govern the response of the diaphragm wall.
在计算地下连续墙稳定性时,要考虑 DA 1 设计方法(参见欧洲规范 EN 1997-1)。施工阶段将影响地下连续墙的响应。

The typical cross section of the underground structure - described in Figure 6-4- has been studied.
图 6-4 描述了地下结构的典型横截面。

The D-wall designed for this typical cross section has a constant thickness of 1.2 m . The geometry properties of the typical cross section - excavation elevation, struts and slabs elevations, GWT levels staging, etc. - are presented next:
为该典型横截面设计的 D 型墙厚度恒定为 1.2 米。典型横截面的几何特性--开挖标高、支柱和板标高、GWT 水平分段等。- 接下来将介绍其几何特性:

每个挖掘阶段的 D-WALLS 预埋长度
D-WALLS
EMBEDDED
LENGTH per EXCAVATION STAGE
D-WALLS EMBEDDED LENGTH per EXCAVATION STAGE| D-WALLS | | :--- | | EMBEDDED | | LENGTH per EXCAVATION STAGE |
D-WALLS INTERNAL FACE DISTANCE
D 型墙内表面距离
GWT LEVELS  GWT 等级 EXCAVATION LEVELS  挖掘深度 STRUTTING ELEMENTS LEVELS
支撑构件水平
STRUTTING EL. TYPE  绷带 EL.类型
#zBot=-53
#t=55 m  #t=55 米 L = 63.1 m L = 63.1 m L=63.1m\mathrm{L}=63.1 \mathrm{~m} #zWat=0 #zExc1=2 #zAnc1=3 Temp Anchorage  温度 安克雷奇
#t=51.5 m  #t=51.5 米 L=63.1m  长=63.1米 #zWat2=-2 #zExc2=-1.5 #zAnc2=-0.5 Temp Anchorage  温度 安克雷奇
#t=48 m L=63.1m  长=63.1米 #zWat31=-5.5 #zExc31=-5 #zAnc31-4 Temp Anchorage  温度 安克雷奇
#t=44 m L=63.1m  长=63.1米 #zWat32=-9.5 #zExc32=-9 #zAnc32=-8 Temp Anchorage  温度 安克雷奇
#t=40.5 m  #t=40.5 米 L=63.1m  长=63.1米 #zWat41=-13 #zExc41=-12.5 #zAnc41=-11.5 Temp Anchorage  温度 安克雷奇
#t=37 m  #t=37 米 L=63.1m  长=63.1米 #zWat42=-16.5 #zExc42=-16 #zAnc42=-15 Temp Anchorage  温度 安克雷奇
#t=33.5 m  #t=33.5 米 L=63.1m  长=63.1米 #zWat51=-20 #zExc51=-19.5 #zAnc51=-18.5 Temp Anchorage  温度 安克雷奇
#t=30 m  #t=30 米 L = 63.1 m L = 63.1 m L=63.1m\mathrm{L}=63.1 \mathrm{~m} #zWat52=-23.5 #zExc52=-23 #zAnc52=-22 Temp Anchorage  温度 安克雷奇
#t=25.3 m  #t=25.3 米 L = 63.1 m L = 63.1 m L=63.1m\mathrm{L}=63.1 \mathrm{~m} #zWat5=-28.2 #zExc5=-27.7 #zStr5=-27 Bottom Slab  底板
#t=25.3 m  #t=25.3 米 L=63.1m  长=63.1米 #zWat5=-28.2, #zWat=0 #zStr4=-15.9 Permanent SLAB  永久 SLAB
#t=25.3 m  #t=25.3 米 L = 63.1 m L = 63.1 m L=63.1m\mathrm{L}=63.1 \mathrm{~m} #zWat5=-28.2, #zWat=0 #zStr3=-9.1 Permanent SLAB  永久 SLAB
#t=25.3 m  #t=25.3 米 L=63.1m  长=63.1米 #zWat5=-28.2, #zWat=0 #zStr2=-2.3 Permanent SLAB  永久 SLAB
#t=25.3 m  #t=25.3 米 L=63.1m  长=63.1米 #zWat5=-28.2, #zWat=0 #zStr1=5.3 Top Slab  顶部板坯
"D-WALLS EMBEDDED LENGTH per EXCAVATION STAGE" D-WALLS INTERNAL FACE DISTANCE GWT LEVELS EXCAVATION LEVELS STRUTTING ELEMENTS LEVELS STRUTTING EL. TYPE #zBot=-53 #t=55 m L=63.1m #zWat=0 #zExc1=2 #zAnc1=3 Temp Anchorage #t=51.5 m L=63.1m #zWat2=-2 #zExc2=-1.5 #zAnc2=-0.5 Temp Anchorage #t=48 m L=63.1m #zWat31=-5.5 #zExc31=-5 #zAnc31-4 Temp Anchorage #t=44 m L=63.1m #zWat32=-9.5 #zExc32=-9 #zAnc32=-8 Temp Anchorage #t=40.5 m L=63.1m #zWat41=-13 #zExc41=-12.5 #zAnc41=-11.5 Temp Anchorage #t=37 m L=63.1m #zWat42=-16.5 #zExc42=-16 #zAnc42=-15 Temp Anchorage #t=33.5 m L=63.1m #zWat51=-20 #zExc51=-19.5 #zAnc51=-18.5 Temp Anchorage #t=30 m L=63.1m #zWat52=-23.5 #zExc52=-23 #zAnc52=-22 Temp Anchorage #t=25.3 m L=63.1m #zWat5=-28.2 #zExc5=-27.7 #zStr5=-27 Bottom Slab #t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr4=-15.9 Permanent SLAB #t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr3=-9.1 Permanent SLAB #t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr2=-2.3 Permanent SLAB #t=25.3 m L=63.1m #zWat5=-28.2, #zWat=0 #zStr1=5.3 Top Slab| D-WALLS <br> EMBEDDED <br> LENGTH per EXCAVATION STAGE | D-WALLS INTERNAL FACE DISTANCE | GWT LEVELS | EXCAVATION LEVELS | STRUTTING ELEMENTS LEVELS | STRUTTING EL. TYPE | | :---: | :---: | :---: | :---: | :---: | :---: | | | | | #zBot=-53 | | | | #t=55 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat=0 | #zExc1=2 | #zAnc1=3 | Temp Anchorage | | #t=51.5 m | L=63.1m | #zWat2=-2 | #zExc2=-1.5 | #zAnc2=-0.5 | Temp Anchorage | | #t=48 m | L=63.1m | #zWat31=-5.5 | #zExc31=-5 | #zAnc31-4 | Temp Anchorage | | #t=44 m | L=63.1m | #zWat32=-9.5 | #zExc32=-9 | #zAnc32=-8 | Temp Anchorage | | #t=40.5 m | L=63.1m | #zWat41=-13 | #zExc41=-12.5 | #zAnc41=-11.5 | Temp Anchorage | | #t=37 m | L=63.1m | #zWat42=-16.5 | #zExc42=-16 | #zAnc42=-15 | Temp Anchorage | | #t=33.5 m | L=63.1m | #zWat51=-20 | #zExc51=-19.5 | #zAnc51=-18.5 | Temp Anchorage | | #t=30 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat52=-23.5 | #zExc52=-23 | #zAnc52=-22 | Temp Anchorage | | #t=25.3 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat5=-28.2 | #zExc5=-27.7 | #zStr5=-27 | Bottom Slab | | #t=25.3 m | L=63.1m | #zWat5=-28.2, #zWat=0 | | #zStr4=-15.9 | Permanent SLAB | | #t=25.3 m | $\mathrm{L}=63.1 \mathrm{~m}$ | #zWat5=-28.2, #zWat=0 | | #zStr3=-9.1 | Permanent SLAB | | #t=25.3 m | L=63.1m | #zWat5=-28.2, #zWat=0 | | #zStr2=-2.3 | Permanent SLAB | | #t=25.3 m | L=63.1m | #zWat5=-28.2, #zWat=0 | | #zStr1=5.3 | Top Slab |
As per the construction sequence described in drawings, the stages considered will be the following:
根据图纸中描述的施工顺序,将考虑以下阶段:
Application of the surface surcharge of 10 kPa
Excavation down to the Level of Temporary Anchor #1
Installation of Temporary Anchor #1
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #2
Excavation down to the Level of Temporary Anchor #2
Installation of Temporary Anchor #2
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #31
Excavation down to the Level of Temporary Anchor #31
Installation of Temporary Anchor #31
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #32
Excavation down to the Level of Temporary Anchor #32
Installation of Temporary Anchor #32
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #41
Excavation down to the Level of Temporary Anchor #41
Installation of Temporary Anchor #41
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #42
Excavation down to the Level of Temporary Anchor #42
Installation of Temporary Anchor #42
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #51
Excavation down to the Level of Temporary Anchor #51
Installation of Temporary Anchor #51
Pumping down to 0.5 m below the Excavation Level of Temporary Anchor #52
Excavation down to the Level of Temporary Anchor #52
Installation of Temporary Anchor #52
Pumping down to 0.5 m below the Excavation Level #5
Excavation down to the Level #5
Installation of Permanent Bottom Slab #5
Installation of Permanent Slabs #4, #3, #2 and #1. The latest is Top Slab.
GWT restoration. The GWT is set to the original elevation.
Remove of the Temporary Anchor #52
Remove of the Temporary Anchor #51
Remove of the Temporary Anchor #42
Remove of the Temporary Anchor #41
Remove of the Temporary Anchor #32
拆除 32 号临时锚栓

35 Remove of the Temporary Anchor #31
35 拆除 31 号临时锚固件

36 Remove of the Temporary Anchor #2
36 拆除 2 号临时锚固件

37 Remove of the Temporary Anchor #1
37 拆除 1 号临时锚固件

38 Top fill construction Modification of the Earth Pressure Coefficient from Static conditions to Dynamic Conditions
38 顶部填土施工 从静态条件到动态条件的土压力系数修正

7.1.1.1.4 Stiffnesses of elements
7.1.1.1.4 各要素的刚度

The following stiffness coefficients have been considered in RIDO’s calculations:
RIDO 的计算考虑了以下刚度系数:
  • D-Wall: The stiffness of the wall corresponds to the bending stiffness of the 1.20 m -width wall. And it can be calculated as follows (concrete C30/37):
    D 型墙:墙的刚度相当于 1.20 米宽墙的弯曲刚度。其计算公式如下(混凝土 C30/37):
( E I ) wall = E c B e 3 12 ( E I ) wall  = E c B e 3 12 (EI)_("wall ")=E_(c)*((B)*e^(3))/(12)(E I)_{\text {wall }}=E_{c} \cdot \frac{\mathrm{~B} \cdot \mathrm{e}^{3}}{12}
  • Permanent Slabs: The definitive slabs are introduced to the RIDO as permanent struts. L is considered equal to the distance between the wall and the closest pillar. Their stiffness per lineal meter will be:
    永久板:永久板作为永久支柱引入 RIDO。L等于墙与最近支柱之间的距离。其每线米的刚度为
K Slab = E A L K Slab  = E A L K_("Slab ")=(EA)/(L)K_{\text {Slab }}=\frac{E A}{L}
  • Bottom Slab: The bottom slab is introduced to the RIDO as permanent strut. L is considered equal to the distance between the external walls. Their stiffness per lineal meter will be:
    底板:底板作为永久支撑引入 RIDO。L 等于外墙之间的距离。其每延米的刚度为
K BotSlab = E A L 2 K BotSlab  = E A L 2 K_("BotSlab ")=(EA)/((L)/(2))K_{\text {BotSlab }}=\frac{E A}{\frac{L}{2}}
  • Provisional Anchors: The provisional anchors are modelled into RIDO software by means of a stiffness, like a strut, considering a maximum length of 20 m .
    临时锚杆:在 RIDO 软件中,临时锚杆通过刚度建模,就像支柱一样,最大长度为 20 米。
The value of the stiffness for the temporary anchorages comes from an iterative calculation process:
临时锚固件的刚度值来自迭代计算过程:
  • First an arbitrary high value is set on the model as stiffness per linear meter.
    首先在模型上任意设定一个高值,作为每延米的刚度。
  • The resultant axial force on the temporary anchors is used to obtain the minimum area of steel by means of tensile capacity verification (Equation 1) for temporary anchors:
    临时锚固件上产生的轴向力通过临时锚固件的抗拉能力验证(公式 1)来获得最小钢筋面积:
P N d A T f p k 1.25 and P N d A T f y k 1.10 , where P N d = Factored Nominal load per anchor A T = Steel tie rod or cable area f p k = Failure limit for steel f y k = Elastic limit for steel P N d A T f p k 1.25  and  P N d A T f y k 1.10 ,  where  P N d =  Factored Nominal load per anchor  A T =  Steel tie rod or cable area  f p k =  Failure limit for steel  f y k =  Elastic limit for steel  {:[(P_(Nd))/(A_(T)) <= (f_(pk))/(1.25)" and "(P_(Nd))/(A_(T)) <= (f_(yk))/(1.10)","],[" where "P_(Nd)=" Factored Nominal load per anchor "],[A_(T)=" Steel tie rod or cable area "],[f_(pk)=" Failure limit for steel "],[f_(yk)=" Elastic limit for steel "]:}\begin{aligned} \frac{P_{N d}}{A_{T}} \leq \frac{f_{p k}}{1.25} & \text { and } \frac{P_{N d}}{A_{T}} \leq \frac{f_{y k}}{1.10}, \\ \text { where } P_{N d} & =\text { Factored Nominal load per anchor } \\ A_{T} & =\text { Steel tie rod or cable area } \\ & f_{p k}=\text { Failure limit for steel } \\ & f_{y k}=\text { Elastic limit for steel } \end{aligned}
Equation 1  Equation  1 " Equation "1\text { Equation } 1
  • The resultant axial force on the temporary anchors is used to obtain the grout bulb length by means of grout bulb pull-out verification (Equation 2):
    临时锚固件上产生的轴向力通过灌浆球拉出验证(公式 2)来获得灌浆球长度:
P N d π D N L b a a d m where P N d = Factored Nominal load per anchor D N = Bulb Nominal diameter L b = Grout Bulb length P N d π D N L b a a d m  where  P N d =  Factored Nominal load per anchor  D N =  Bulb Nominal diameter  L b =  Grout Bulb length  {:[(P_(Nd))/(pi*D_(N)*L_(b)) <= a_(adm)],[qquad{:[" where "P_(Nd)=" Factored Nominal load per anchor "],[D_(N)=" Bulb Nominal diameter "],[L_(b)=" Grout Bulb length "]:}]:}\begin{aligned} & \frac{P_{N d}}{\pi \cdot D_{N} \cdot L_{b}} \leq a_{a d m} \\ & \qquad \begin{aligned} \text { where } P_{N d} & =\text { Factored Nominal load per anchor } \\ D_{N} & =\text { Bulb Nominal diameter } \\ L_{b} & =\text { Grout Bulb length } \end{aligned} \end{aligned}
Equation 2  Equation  2 " Equation "2\text { Equation } 2
a adm = a adm  = a_("adm ")=a_{\text {adm }}= allowable adherence resistance against pull-out of the ground around the grout bulb, that can be obtained by means of the following equation:
a adm = a adm  = a_("adm ")=a_{\text {adm }}= 灌浆球周围地面抗拔的允许附着阻力,可通过下式求得:
a a d m = c 1.6 + σ tan ( ϕ ) 1.35 Equation 3 a a d m = c 1.6 + σ tan ϕ 1.35  Equation  3 a_(adm)=(c^('))/(1.6)+sigma^(')*(tan(phi^(')))/(1.35)quad" Equation "3a_{a d m}=\frac{c^{\prime}}{1.6}+\sigma^{\prime} \cdot \frac{\tan \left(\phi^{\prime}\right)}{1.35} \quad \text { Equation } 3
Where a adm = a adm  = a_("adm ")=a_{\text {adm }}= allowable adherence resistance against pull-out of the ground around the grout bulb
其中 a adm = a adm  = a_("adm ")=a_{\text {adm }}= 为防止灌浆球周围地面拉出的允许附着阻力

c = c = c^(')=c^{\prime}= Effective cohesion on ground-concrete grout bulb contact
c = c = c^(')=c^{\prime}= 地面-混凝土灌浆球接触时的有效内聚力

= = O/^(')=\emptyset^{\prime}= Effective friction angle on ground-concrete grout bulb contact
= = O/^(')=\emptyset^{\prime}= 地面与混凝土灌浆球接触的有效摩擦角

σ = σ = sigma^(')=\sigma^{\prime}= Ground effective pressure on bulb centre plus 1 / 3 1 / 3 1//31 / 3 times the applied grout injection pressure
σ = σ = sigma^(')=\sigma^{\prime}= 球心上的地面有效压力加上 1 / 3 1 / 3 1//31 / 3 施加的注浆压力的倍数
  • The values for the unit stiffness for the temporary anchors are obtained using the usual equation:
    临时锚固件的单位刚度值可通过常用公式计算得出:
K Anchor = E A L / 2 K Anchor  = E A L / 2 K_("Anchor ")=(EA)/(L//2)K_{\text {Anchor }}=\frac{E A}{L / 2}
Equation 4  公式 4
Where L = L = L=L= Design length of the anchors, which is the free length of the anchor + the grout bulb length divided by 2.
其中 L = L = L=L= 锚固件的设计长度,即锚固件的自由长度 + 灌浆球长度除以 2。
  • The model is run using the obtained value of k anchors k anchors  k_("anchors ")k_{\text {anchors }} (Equation 4) and the process is repeated until the axial reaction obtained in RIDO coincides with the one used in the previous iteration when calculating the stiffness k anchor k anchor  k_("anchor ")k_{\text {anchor }}
    使用获得的 k anchors k anchors  k_("anchors ")k_{\text {anchors }} 值(公式 4)运行模型,并重复该过程,直到 RIDO 中获得的轴向反作用力与上一次迭代计算刚度 k anchor k anchor  k_("anchor ")k_{\text {anchor }} 时使用的轴向反作用力相吻合。
D-wall  D 型墙 Inertia  惯性
  底板
Bottom
Slab
Bottom Slab| Bottom | | :---: | | Slab |
Stiffness  刚度
  永久性石板
Permanent
Slabs
Permanent Slabs| Permanent | | :---: | | Slabs |
Stiffness  刚度 Top Slab  顶部板坯 Stiffness  刚度
e 1.2 m Ec  生态 3.10 E + 07 3.10 E + 07 3.10E+073.10 \mathrm{E}+07 kN / m 2 kN / m 2 kN//m^(2)\mathrm{kN} / \mathrm{m}^{2} 3.10 E + 07 3.10 E + 07 3.10E+073.10 \mathrm{E}+07 kN / m 2 kN / m 2 kN//m^(2)\mathrm{kN} / \mathrm{m}^{2} 3.10 E + 07 3.10 E + 07 3.10E+073.10 \mathrm{E}+07 kN / m 2 kN / m 2 kN//m^(2)\mathrm{kN} / \mathrm{m}^{2}
E c E c E_(c)\mathrm{E}_{\mathrm{c}} 31000000 kN / m 2 kN / m 2 kN//m^(2)\mathrm{kN} / \mathrm{m}^{2} h 1.5 m 0.5 m 0.5 m
b 1 ml  毫升 b 1 m 1 m 1 m
L 63.1 m 24.0 m 24.0 m
E l E l E*l\mathrm{E} \cdot \mathbf{l} 4 4 6 4 0 0 0 4 4 6 4 0 0 0 4464000\mathbf{4 4 6 4 0 0 0} k N m 2 k N m 2 kN*m^(2)\mathbf{k N} \cdot \mathrm{m}^{2} k k k\mathbf{k} 1 4 7 3 8 5 1 1 4 7 3 8 5 1 1473851\mathbf{1 4 7 3 8 5 1} k N / m l k N / m l kN//ml\mathbf{k N} / \mathbf{m l} 1 2 9 1 6 6 7 1 2 9 1 6 6 7 1291667\mathbf{1 2 9 1 6 6 7} k N / ml k N / ml kN//ml\mathbf{k N} / \mathrm{ml} 1 2 9 1 6 6 7 1 2 9 1 6 6 7 1291667\mathbf{1 2 9 1 6 6 7} k N / m l k N / m l kN//ml\mathbf{k N} / \mathbf{m l}
D-wall Inertia "Bottom Slab" Stiffness "Permanent Slabs" Stiffness Top Slab Stiffness e 1.2 m Ec 3.10E+07 kN//m^(2) 3.10E+07 kN//m^(2) 3.10E+07 kN//m^(2) E_(c) 31000000 kN//m^(2) h 1.5 m 0.5 m 0.5 m b 1 ml b 1 m 1 m 1 m L 63.1 m 24.0 m 24.0 m E*l 4464000 kN*m^(2) k 1473851 kN//ml 1291667 kN//ml 1291667 kN//ml| | D-wall | Inertia | | Bottom <br> Slab | Stiffness | Permanent <br> Slabs | Stiffness | Top Slab | Stiffness | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | e | 1.2 | m | Ec | $3.10 \mathrm{E}+07$ | $\mathrm{kN} / \mathrm{m}^{2}$ | $3.10 \mathrm{E}+07$ | $\mathrm{kN} / \mathrm{m}^{2}$ | $3.10 \mathrm{E}+07$ | $\mathrm{kN} / \mathrm{m}^{2}$ | | $\mathrm{E}_{\mathrm{c}}$ | 31000000 | $\mathrm{kN} / \mathrm{m}^{2}$ | h | 1.5 | m | 0.5 | m | 0.5 | m | | b | 1 | ml | b | 1 | m | 1 | m | 1 | m | | | | | L | 63.1 | m | 24.0 | m | 24.0 | m | | $\mathrm{E} \cdot \mathbf{l}$ | $\mathbf{4 4 6 4 0 0 0}$ | $\mathbf{k N} \cdot \mathrm{m}^{2}$ | $\mathbf{k}$ | $\mathbf{1 4 7 3 8 5 1}$ | $\mathbf{k N} / \mathbf{m l}$ | $\mathbf{1 2 9 1 6 6 7}$ | $\mathbf{k N} / \mathrm{ml}$ | $\mathbf{1 2 9 1 6 6 7}$ | $\mathbf{k N} / \mathbf{m l}$ |
The used value for calculations is ksup = 10000 kN / ml = 10000 kN / ml =10000kN//ml=10000 \mathrm{kN} / \mathrm{ml}, on the four top temporary anchors, and k I NF = 20000 kN / ml k I NF = 20000 kN / ml k_(INF)=20000kN//ml\mathrm{k}_{\mathrm{I} \mathrm{NF}}=20000 \mathrm{kN} / \mathrm{ml}, on the four lowest temporary anchors.
计算中使用的值为四个顶部临时锚固点的 ksup = 10000 kN / ml = 10000 kN / ml =10000kN//ml=10000 \mathrm{kN} / \mathrm{ml} 和四个最低临时锚固点的 k I NF = 20000 kN / ml k I NF = 20000 kN / ml k_(INF)=20000kN//ml\mathrm{k}_{\mathrm{I} \mathrm{NF}}=20000 \mathrm{kN} / \mathrm{ml}

7.1.1.2 Internal Forces  7.1.1.2 内力

7.1.1.2.1 Graphs  7.1.1.2.1 图表

The figures below show the diagrams plots to the stages in ULS and ALS and diagram final envelope that have been obtained in the calculation:
下图显示了 ULS 和 ALS 中各阶段的示意图以及计算得出的最终包络线示意图:
الاتحاد للقطارات
ETIHADRAIL
Figure 7-1 Diagram Envelopes ULS DA-1 / 1
图 7-1 图表包络线 ULS DA-1 / 1

Figure 7-3 Diagram Phase 1 ULS DA-1 / 1
图 7-3 第 1 阶段 ULS DA-1 / 1 图

Figure 7-2 Diagram Envelopes ALS DA-1 / 1
图 7-2 图示包络线 ALS DA-1 / 1

Figure 7-4 Diagram Phase 6 ULS DA-1 / 1
图 7-4 图表 第 6 阶段 ULS DA-1 / 1
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。
الاتحاد للقطارات
ETIHADRAIL
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。
الاتحاد للقطارات
ETIHADRAIL
Figure 7-9 Diagram Phase 20 ULS DA-1 / 1
图 7-9 图表 第 20 期 ULS DA-1 / 1

Figure 7-11 Diagram Phase 28 ULS DA-1 / 1
图 7-11 第 28 期 ULS DA-1 / 1 图
Figure 7-10 Diagram Phase 23 ULS DA-1 / 1
图 7-10 图表 第 23 期 ULS DA-1 / 1

Figure 7-12 Diagram Phase 29 ULS DA-1 / 1
图 7-12 第 29 期 ULS DA-1 / 1 图
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

Figure 7-13 Diagram Phase 38 ULS DA-1 / 1
图 7-13 图表 第 38 期 ULS DA-1 / 1
ETIHADRAIL
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。
الاتحاد للقطارات
ETIHADRAIL
Figure 7-19 Diagram Phase 9 ULS DA-1 / 2
图 7-19 第 9 期 ULS DA-1 / 2 图

Figure 7-21 Diagram Phase 14 ULS DA-1 / 2
图 7-21 图表 第 14 期 ULS DA-1 / 2

Figure 7-20 Diagram Phase 11 ULS DA-1 / 2
图 7-20 图表 第 11 期 ULS DA-1 / 2

Figure 7-22 Diagram Phase 17 ULS DA-1 / 2
图 7-22 图表 第 17 期 ULS DA-1 / 2
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。
الاتحاد للقطارات
ETIHADRAIL
Figure 7-23 Diagram Phase 20 ULS DA-1 / 2
图 7-23 图表 第 20 期 ULS DA-1 / 2

Figure 7-25 Diagram Phase 28 ULS DA-1 / 2
图 7-25 第 28 期 ULS DA-1 / 2 图

Figure 7-24 Diagram Phase 23 ULS DA-1 / 2
图 7-24 图表 第 23 期 ULS DA-1 / 2

Figure 7-26 Diagram Phase 29 ULS DA-1 / 2
图 7-26 第 29 期 ULS DA-1 / 2 图
UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

㰬果 sener "Illineco

Figure 7-28 Diagram Phase 39 ULS DA-1 / 2
图 7-28 第 39 期 ULS DA-1 / 2 图

7.1.1.2.2 Summary  7.1.1.2.2 小结

Next tables summarize the critical values of loads that the diaphragm wall and strutting elements are expected to support, corresponding to both the Ultimate Limit State ULS and the Accidental Limit State -ALS. To obtain the internal forces design values, we have multiplied them by the corresponding coefficient γ Q γ Q gamma_(Q)\gamma_{Q}.
下表总结了地下连续墙和支撑构件在极限状态 ULS 和意外极限状态 -ALS 下预计承受的临界荷载值。为了获得内力设计值,我们将其乘以相应的系数 γ Q γ Q gamma_(Q)\gamma_{Q}
D-WALLS
MOMENT M d _("d "){ }_{\text {d }} m kN / ml m kN / ml m*kN//ml\mathrm{m} \cdot \mathrm{kN} / \mathrm{ml} DESIGN APPROACH 1 COMBINATION 1
设计方法 1 组合 1
DESIGN APPROACH 1 COMBINATION 2
设计方法 1 组合 2
ULS ALS ULS ALS
Max.  最大 Min. Max.  最大 Min. Max.  最大 Min. Max.  最大 Min.
5205 -5078 3951 -4053 3939 -4851 3965 -5215
D-WALLS MOMENT M _("d ") m*kN//ml DESIGN APPROACH 1 COMBINATION 1 DESIGN APPROACH 1 COMBINATION 2 ULS ALS ULS ALS Max. Min. Max. Min. Max. Min. Max. Min. 5205 -5078 3951 -4053 3939 -4851 3965 -5215| D-WALLS | | | | | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | MOMENT M ${ }_{\text {d }}$ $\mathrm{m} \cdot \mathrm{kN} / \mathrm{ml}$ | DESIGN APPROACH 1 COMBINATION 1 | | | | DESIGN APPROACH 1 COMBINATION 2 | | | | | | ULS | | ALS | | ULS | | ALS | | | | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | | | 5205 | -5078 | 3951 | -4053 | 3939 | -4851 | 3965 | -5215 |
Table 7-3 Moment Md Design values on D-walls
表 7-3 D 型墙的力矩 Md 设计值

D-WALLS
D-WALLS
SHEAR FORCE Q d Q d Q_(d)\mathbf{Q}_{\mathbf{d}} kN/ml
剪切力 Q d Q d Q_(d)\mathbf{Q}_{\mathbf{d}} kN/ml
DESIGN APPROACH 1 COMBINATION 1
设计方法 1 组合 1
DESIGN APPROACH 1 COMBINATION 2
设计方法 1 组合 2
ULS ALS ULS ALS
Max.  最大 Min. Max.  最大 Min. Max.  最大 Min. Max.  最大 Min.
2343 -1554 1982 -1445 1770 -1408 2059 -1748
D-WALLS SHEAR FORCE Q_(d) kN/ml DESIGN APPROACH 1 COMBINATION 1 DESIGN APPROACH 1 COMBINATION 2 ULS ALS ULS ALS Max. Min. Max. Min. Max. Min. Max. Min. 2343 -1554 1982 -1445 1770 -1408 2059 -1748| D-WALLS | | | | | | | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | SHEAR FORCE $\mathbf{Q}_{\mathbf{d}}$ kN/ml | DESIGN APPROACH 1 COMBINATION 1 | | | | DESIGN APPROACH 1 COMBINATION 2 | | | | | | ULS | | ALS | | ULS | | ALS | | | | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | | | 2343 | -1554 | 1982 | -1445 | 1770 | -1408 | 2059 | -1748 |
TOP SLAB  顶部平板
TOP SLAB  顶部平板
AXIAL REACTION  轴向反应 DESIGN APPROACH 1 COMBINATION 1
设计方法 1 组合 1
ALS DESIGN APPROACH 1 COMBINATION 2
设计方法 1 组合 2
ULS -71 ULS
TOP SLAB AXIAL REACTION DESIGN APPROACH 1 COMBINATION 1 ALS DESIGN APPROACH 1 COMBINATION 2 ULS -71 ULS| TOP SLAB | | | | | :---: | :---: | :---: | :---: | :---: | | AXIAL REACTION | DESIGN APPROACH 1 COMBINATION 1 | ALS | DESIGN APPROACH 1 COMBINATION 2 | | | ULS | -71 | ULS |
Table 7-5 Forces on Top Slab Design values
表 7-5 顶板受力设计值

INTERMEDIATE SLABS  中间板
AXIAL REACTION kN/ml  轴向反作用力 kN/ml DESIGN APPROACH 1 COMBINATION 1
设计方法 1 组合 1
DESIGN APPROACH 1 COMBINATION 2
设计方法 1 组合 2
ULS ALS ULS ALS
-2111 -2032 -1832 -2378
AXIAL REACTION kN/ml DESIGN APPROACH 1 COMBINATION 1 DESIGN APPROACH 1 COMBINATION 2 ULS ALS ULS ALS -2111 -2032 -1832 -2378| AXIAL REACTION kN/ml | DESIGN APPROACH 1 COMBINATION 1 | | DESIGN APPROACH 1 COMBINATION 2 | | | :---: | :---: | :---: | :---: | :---: | | | ULS | ALS | ULS | ALS | | | -2111 | -2032 | -1832 | -2378 |
Table 7-6 Forces on Intermediate Slabs Design values
表 7-6 中间板上的力 设计值
BOTTOM SLAB  底板
AXIAL REACTION kN/ml  轴向反作用力 kN/ml DESIGN APPROACH 1 COMBINATION 1
设计方法 1 组合 1
DESIGN APPROACH 1 COMBINATION 2
设计方法 1 组合 2
ULS ALS ULS ALS
-894 -1079 -655 -1126
Table 7-7 Forces on Bottom Slab Design values
表 7-7 底板受力设计值
TEMPORARY ANCHORAGES  临时锚地
AXIAL REACTION kN/ml  轴向反作用力 kN/ml DESIGN APPROACH 1 COMBINATION 1
设计方法 1 组合 1
DESIGN APPROACH 1 COMBINATION 2
设计方法 1 组合 2
ULS ALS ULS ALS
-727 0 -627 0
BOTTOM SLAB AXIAL REACTION kN/ml DESIGN APPROACH 1 COMBINATION 1 DESIGN APPROACH 1 COMBINATION 2 ULS ALS ULS ALS -894 -1079 -655 -1126 Table 7-7 Forces on Bottom Slab Design values TEMPORARY ANCHORAGES AXIAL REACTION kN/ml DESIGN APPROACH 1 COMBINATION 1 DESIGN APPROACH 1 COMBINATION 2 ULS ALS ULS ALS -727 0 -627 0| BOTTOM SLAB | | | | | | :---: | :---: | :---: | :---: | :---: | | AXIAL REACTION kN/ml | DESIGN APPROACH 1 COMBINATION 1 | | DESIGN APPROACH 1 COMBINATION 2 | | | | ULS | ALS | ULS | ALS | | | -894 | -1079 | -655 | -1126 | | Table 7-7 Forces on Bottom Slab Design values | | | | | | TEMPORARY ANCHORAGES | | | | | | AXIAL REACTION kN/ml | DESIGN APPROACH 1 COMBINATION 1 | | DESIGN APPROACH 1 COMBINATION 2 | | | | ULS | ALS | ULS | ALS | | | -727 | 0 | -627 | 0 |

7.1.1.3 Steel Reinforcement Design of D-Wall
7.1.1.3 D 型墙的钢筋设计

7.1.1.3.1 Internal forces
7.1.1.3.1 内力

The most unfavorable results will be used in structural verifications, which are summarized in the following tables.
最不利的结果将用于结构核查,核查结果汇总于下表。
{ M E d , U L S = 5205 kN m Q E d , U L S = 2343 kN M E d , U L S = 5205 kN m Q E d , U L S = 2343 kN {[M_(Ed,ULS)=5205kN*m],[Q_(Ed,ULS)=2343kN]:}\left\{\begin{array}{c} M_{E d, U L S}=5205 \mathrm{kN} \cdot \mathrm{~m} \\ Q_{E d, U L S}=2343 \mathrm{kN} \end{array}\right.

7.1.1.3.2 Longitudinal reinforcement
7.1.1.3.2 纵向加固

Next paragraphs give a preliminary calculation to define the steel reinforcement of the D-wall. The diagrams show that the maximum positive bending moment and the maximum negative bending moment are similar. The same sectional calculation can be done for both sections. The steel reinforcement will be the same, but the most reinforced steel layer will be placed in the back or in the intrados depending on the case. (mid-span and intermediate slab support).
接下来的段落给出了确定 D 型墙钢筋的初步计算结果。从图中可以看出,最大正弯矩和最大负弯矩是相似的。可以对两个截面进行相同的截面计算。钢筋将是相同的,但根据具体情况,钢筋最多的一层将放在后部或内侧。(中跨和中间板支撑)。
REEM STATION (ADR). STRUCTURE REPORT
雷姆站(ADR)。结构报告
Cross-section E_1.20 (): Efficiency M y = 5205.0 ; M y = 5205.0 ; My=5205.0;M y=5205.0 ; eff ( M , N ) = 0.91 ( M , N ) = 0.91 (M,N)=0.91quad(M, N)=0.91 \quad OK
横截面 E_1.20 ():效率 M y = 5205.0 ; M y = 5205.0 ; My=5205.0;M y=5205.0 ; 效能 ( M , N ) = 0.91 ( M , N ) = 0.91 (M,N)=0.91quad(M, N)=0.91 \quad 确定

Ultimate strength analysis Cross section (Girder): E_1.20
极限强度分析 横截面(大梁):E_1.20

Action forces / Efficiency: eff ( M , N ) = 0.91 ( M , N ) = 0.91 (M,N)=0.91(\mathrm{M}, \mathrm{N})=0.91 OK
作用力/效率:eff ( M , N ) = 0.91 ( M , N ) = 0.91 (M,N)=0.91(\mathrm{M}, \mathrm{N})=0.91 确定
Bending and axial force
弯曲力和轴向力
Shear forces and torsion
剪力和扭力
Complete CS eff(M,N,V,T) H
完整 CS eff(M,N,V,T) H
No.   AP P N [ kN ] N [ kN ] N_([kN])\underset{[\mathrm{kN}]}{\mathrm{N}} My y [ kNm ] My y [ kNm ] {:[My_(y)],[[kNm]]:}\begin{gathered} \mathrm{My}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered} M z M z M_(z)M_{z} [kNm]   M z M z M_(z)M_{z} [kNm] (千牛米 eff ( M , N ) [ 1  eff  ( M , N ) [ 1 {:[" eff "(M","N)],[[-1]:}\begin{gathered} \text { eff }(M, N) \\ {[-1} \end{gathered} V y [ kN ] V y [ kN ] {:[V_(y)],[[kN]]:}\begin{gathered} \mathrm{V}_{\mathrm{y}} \\ {[\mathrm{kN}]} \end{gathered} V z [ kN ] V z [ kN ] {:[V_(z)],[[kN]]:}\begin{aligned} & V_{z} \\ & {[\mathrm{kN}]} \end{aligned} T [kNm] eff ( V , T ) [ 1  eff  ( V , T ) [ 1 {:[" eff "(V","T)],[[-1]:}\begin{gathered} \text { eff }(\mathrm{V}, \mathrm{~T}) \\ {[-1} \end{gathered}
1 ! ULS  !ULS 0 5205.0 0 0.91
Bending and axial force Shear forces and torsion Complete CS eff(M,N,V,T) H No. AP P N_([kN]) "My_(y) [kNm]" M_(z) [kNm] " eff (M,N) [-1" "V_(y) [kN]" "V_(z) [kN]" T [kNm] " eff (V,T) [-1" 1 ! ULS 0 5205.0 0 0.91 | | | | Bending and axial force | | | | Shear forces and torsion | | | | Complete CS eff(M,N,V,T) H | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | No. | AP | P | $\underset{[\mathrm{kN}]}{\mathrm{N}}$ | $\begin{gathered} \mathrm{My}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $M_{z}$ [kNm] | $\begin{gathered} \text { eff }(M, N) \\ {[-1} \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{y}} \\ {[\mathrm{kN}]} \end{gathered}$ | $\begin{aligned} & V_{z} \\ & {[\mathrm{kN}]} \end{aligned}$ | T [kNm] | $\begin{gathered} \text { eff }(\mathrm{V}, \mathrm{~T}) \\ {[-1} \end{gathered}$ | | | 1 | ! ULS | | 0 | 5205.0 | 0 | 0.91 | | | | | |
Analysis parameters !ULS Standard: Eurocode EN
分析参数 !ULS 标准:欧洲规范 EN

Extreme stresses and strain
极端应力和应变

Name  名称 Class  班级 yq [ m ] yq [ m ] {:[yq],[[m]]:}\begin{gathered} \mathrm{yq} \\ {[\mathrm{~m}]} \end{gathered} z q [ m ] z q [ m ] {:[z_(q)],[[m]]:}\begin{gathered} \mathrm{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered} ε [ % 0 ] ε [ % 0 ] {:[epsi],[[%0]]:}\begin{gathered} \varepsilon \\ {[\% 0]} \end{gathered} σ d [ N / mm 2 ] σ d N / mm 2 {:[sigma_(d)],[[(N)//mm^(2)]]:}\begin{gathered} \sigma_{d} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \end{gathered} H γ H γ H^(gamma)\stackrel{\gamma}{\mathrm{H}}
C1 C30/37 1. 1.2 -3.5 -17. 1.76
C1 C30/37 0. 0. 11.1 0. 1.76
R3 S500 0.05 1.15 -2.9 -434.8 1.15
R1 S500 0.05 0.05 10.5 434.8 1.15
Name Class "yq [m]" "z_(q) [m]" "epsi [%0]" "sigma_(d) [(N)//mm^(2)]" H^(gamma) C1 C30/37 1. 1.2 -3.5 -17. 1.76 C1 C30/37 0. 0. 11.1 0. 1.76 R3 S500 0.05 1.15 -2.9 -434.8 1.15 R1 S500 0.05 0.05 10.5 434.8 1.15| Name | Class | $\begin{gathered} \mathrm{yq} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \mathrm{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \varepsilon \\ {[\% 0]} \end{gathered}$ | $\begin{gathered} \sigma_{d} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \end{gathered}$ | $\stackrel{\gamma}{\mathrm{H}}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C1 | C30/37 | 1. | 1.2 | -3.5 | -17. | 1.76 | | C1 | C30/37 | 0. | 0. | 11.1 | 0. | 1.76 | | R3 | S500 | 0.05 | 1.15 | -2.9 | -434.8 | 1.15 | | R1 | S500 | 0.05 | 0.05 | 10.5 | 434.8 | 1.15 |

Ultimate state "!ULS"  最终状态"!ULS

Intemal forces  内部部队 Strain and Curvature  应变和曲率 Stiffness Values  刚度值
N [ kN ] N [ kN ] {:[N],[[kN]]:}\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered} My y [ kNm ] My y [ kNm ] {:[My_(y)],[[kNm]]:}\begin{gathered} \mathrm{My}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered} M z [ kNm ] M z [ kNm ] {:[M_(z)],[[kNm]]:}\begin{gathered} \mathrm{M}_{z} \\ {[\mathrm{kNm}]} \end{gathered} ε x [ % 00 ] ε x [ % 00 ] {:[epsi_(x)],[[%00]]:}\begin{gathered} \varepsilon_{x} \\ {[\% 00]} \end{gathered} x y [ km 1 ] x y km 1 {:[x_(y)],[[km^(-1)]]:}\begin{gathered} x_{y} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered} χ z [ km 1 ] χ z km 1 {:[chi_(z)],[[km^(-1)]]:}\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered} N / ε x [ kN ] N / ε x [ kN ] {:[N//epsi_(x)],[[kN]]:}\begin{aligned} & \mathrm{N} / \varepsilon_{\mathrm{x}} \\ & {[\mathrm{kN}]} \end{aligned} M y / x y [ kNm 2 ] M y / x y kNm 2 {:[M_(y)//x_(y)],[[kNm^(2)]]:}\begin{aligned} & \mathrm{M}_{y} / x_{y} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned} M 2 / x Z [ kNm 2 ] M 2 / x Z kNm 2 {:[M_(2)//x_(Z)],[[kNm^(2)]]:}\begin{gathered} M_{2} / x_{Z} \\ {\left[\mathrm{kNm}^{2}\right]} \end{gathered}
-0.3 5739.6 0. 3.8 12.2 0.0 77.17 471173.36 14074749.4
Intemal forces Strain and Curvature Stiffness Values "N [kN]" "My_(y) [kNm]" "M_(z) [kNm]" "epsi_(x) [%00]" "x_(y) [km^(-1)]" "chi_(z) [km^(-1)]" "N//epsi_(x) [kN]" "M_(y)//x_(y) [kNm^(2)]" "M_(2)//x_(Z) [kNm^(2)]" -0.3 5739.6 0. 3.8 12.2 0.0 77.17 471173.36 14074749.4| Intemal forces | | | Strain and Curvature | | | Stiffness Values | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered}$ | $\begin{gathered} \mathrm{My}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \mathrm{M}_{z} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \varepsilon_{x} \\ {[\% 00]} \end{gathered}$ | $\begin{gathered} x_{y} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $\begin{aligned} & \mathrm{N} / \varepsilon_{\mathrm{x}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{y} / x_{y} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | $\begin{gathered} M_{2} / x_{Z} \\ {\left[\mathrm{kNm}^{2}\right]} \end{gathered}$ | | -0.3 | 5739.6 | 0. | 3.8 | 12.2 | 0.0 | 77.17 | 471173.36 | 14074749.4 |

7.1.1.3.3 Transversal reinforcement
7.1.1.3.3 横向加固

The shear capacity of the concrete section without transversal steel is calculated as follows:
无横向钢筋混凝土截面的抗剪承载力计算如下:
V C , R d = C R d , c ξ ( 100 ρ l f c k ) 1 3 b d V C , R d = C R d , c ξ 100 ρ l f c k 1 3 b d V_(C,Rd)=C_(Rd,c)*xi*(100*rho_(l)*f_(ck))^((1)/(3))*b*dV_{C, R d}=C_{R d, c} \cdot \xi \cdot\left(100 \cdot \rho_{l} \cdot f_{c k}\right)^{\frac{1}{3}} \cdot b \cdot d
Where:  在哪里?
ξ = 1 + 200 d ρ l = A s l b d ξ = 1 + 200 d ρ l = A s l b d {:[xi=1+sqrt((200 )/(d))],[rho_(l)=(A_(sl))/(b*d)]:}\begin{gathered} \xi=1+\sqrt{\frac{200}{d}} \\ \rho_{l}=\frac{A_{s l}}{b \cdot d} \end{gathered}
So:  那么
b b b\boldsymbol{b} d d d\boldsymbol{d} A s l A s l A_(sl)\boldsymbol{A}_{\boldsymbol{s l}} ξ ξ xi\boldsymbol{\xi} ρ l ρ l rho_(l)\boldsymbol{\rho}_{\boldsymbol{l}} V C , R d V C , R d V_(C,Rd)\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{R} \boldsymbol{d}} V E d V E d V_(Ed)\boldsymbol{V}_{\boldsymbol{E} \boldsymbol{d}}
A s w d A s w d A_(swd)\boldsymbol{A}_{\boldsymbol{s} \boldsymbol{w} \boldsymbol{d}}
m m m m mm\boldsymbol{m m}
A_(swd) mm| $\boldsymbol{A}_{\boldsymbol{s} \boldsymbol{w} \boldsymbol{d}}$ | | :---: | | $\boldsymbol{m m}$ |
m m m m mm\boldsymbol{m m} m m 2 m m 2 mm^(2)\boldsymbol{m m}^{2} - - k N k N kN\boldsymbol{k N} k N k N kN\boldsymbol{k N} m m 2 / m m m 2 / m mm^(2)//m\boldsymbol{m m}^{2} / \boldsymbol{m}
1000 1109 18131.70 1.425 1.63 % 1.63 % 1.63%1.63 \% 694.0 2343 3915
b d A_(sl) xi rho_(l) V_(C,Rd) V_(Ed) "A_(swd) mm" mm mm^(2) - - kN kN mm^(2)//m 1000 1109 18131.70 1.425 1.63% 694.0 2343 3915| $\boldsymbol{b}$ | $\boldsymbol{d}$ | $\boldsymbol{A}_{\boldsymbol{s l}}$ | $\boldsymbol{\xi}$ | $\boldsymbol{\rho}_{\boldsymbol{l}}$ | $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{R} \boldsymbol{d}}$ | $\boldsymbol{V}_{\boldsymbol{E} \boldsymbol{d}}$ | $\boldsymbol{A}_{\boldsymbol{s} \boldsymbol{w} \boldsymbol{d}}$ <br> $\boldsymbol{m m}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\boldsymbol{m m}$ | $\boldsymbol{m m}^{2}$ | - | - | $\boldsymbol{k N}$ | $\boldsymbol{k N}$ | $\boldsymbol{m m}^{2} / \boldsymbol{m}$ | | | 1000 | 1109 | 18131.70 | 1.425 | $1.63 \%$ | 694.0 | 2343 | 3915 |
4 s ϕ 16 / 200 4 s ϕ 16 / 200 4s phi16//2004 s \phi 16 / 200 per meter width will be disposed to resist the shear design forces.
4 s ϕ 16 / 200 4 s ϕ 16 / 200 4s phi16//2004 s \phi 16 / 200 每米宽度将用于抵抗剪切设计力。

7.1.1.4 Provisional anchors
7.1.1.4 临时锚固件

The maximum reaction of the provisional anchors is equal to 273 kN / m 273 kN / m 273kN//m273 \mathrm{kN} / \mathrm{m} under ULS combination. Considering that these anchors are separated each 4 meters, the total reaction is 1092 kN .
在 ULS 组合下,临时锚的最大反力等于 273 kN / m 273 kN / m 273kN//m273 \mathrm{kN} / \mathrm{m} 。考虑到这些锚杆每隔 4 米,总反力为 1092 千牛。

7.1.2. Main Transverse Framed Structure
7.1.2.主横向框架结构

This chapter includes the calculations to define the reinforcements ratios of the passenger building of the ADR Station. The structural elements studied are:
本章包括确定 ADR 火车站客运大楼配筋率的计算。所研究的结构元素包括
  • The building slabs  楼板
  • The beams of the main transverse frames
    主横梁的横梁
  • The columns of the main transverse frames
    主横向框架的支柱
Different calculations have been performed to define the reinforcements: a simplified calculations for the slabs and a simplified 2D model for the main frames of the station.
为确定钢筋,我们进行了不同的计算:板的简化计算和车站主框架的简化二维模型。
The description of the passenger Building structure is included in section 6.
客运大楼结构说明见第 6 节。

Following chapters include the model and loads definition, the results obtained and the reinforcements calculations.
以下各章包括模型和载荷定义、获得的结果以及加固计算。

7.1.2.1 Model description
7.1.2.1 模型说明

A SAP2000 model has been performed to evaluate the design internal forces of the Passenger’s building. The model geometry defined is the typical main frames of the passenger’s building. A 2D model of the main frames has been defined.
SAP2000 模型用于评估客运大楼的设计内力。模型的几何形状是乘客大楼的典型主框架。定义了主框架的二维模型。
  • Section type:  科室类型:

Figure 7-29 Model definition for section type of passenger building and underground structure.
图 7-29 客运大楼和地下结构剖面类型的模型定义。

Illineco  伊利诺伊州

7.1.2.2 Loads application
7.1.2.2 负载应用

In this section there is included the loads definition applied to the models in SAP2000 described in previous chapter.
本节包括前一章所述 SAP2000 中模型所采用的载荷定义。

Figure 7 300.50 m 7 300.50 m 7-300.50m7-300.50 \mathrm{~m} slab self-weight definition
7 300.50 m 7 300.50 m 7-300.50m7-300.50 \mathrm{~m} 板自重定义

Figure 7-31 Permanent loads definition
图 7-31 永久负载定义

Figure 7-32 Soil weight loads definition
图 7-32 土重载荷定义


Figure 7-33 Imposed loads definition
图 7-33 外加载荷定义

The earthquake action has been considered by the application of an imposed deformation, the same obtained in the Dwall earthquake calculation, to simulate the earthquake load acting over the D-walls.
地震作用是通过施加与 D 型墙地震计算相同的外加变形来考虑的,以模拟作用在 D 型墙上的地震荷载。

Figure 7-34 Deformation for the earthquake situation ( 4.78 mm )
图 7-34 地震情况下的变形(4.78 毫米)

7.1.2.3 Internal forces  7.1.2.3 内力

Next are presented the internal forces obtained from the SAP2000 model to obtain the reinforcement definition for the ULS and earthquake situations.
接下来介绍了从 SAP2000 模型中获得的内力,从而得出超低偿付能力和地震情况下的加固定义。
  • Results ULS:  结果 ULS:
Figure 7-35 Axial forces ( N Ed , max = 54446 kN ) N Ed ,  max  = 54446 kN {:N_(Ed," max ")=-54446kN)\left.\mathrm{N}_{\mathrm{Ed}, \text { max }}=-54446 \mathrm{kN}\right)
图 7-35 轴向力 ( N Ed , max = 54446 kN ) N Ed ,  max  = 54446 kN {:N_(Ed," max ")=-54446kN)\left.\mathrm{N}_{\mathrm{Ed}, \text { max }}=-54446 \mathrm{kN}\right) )

ETIHADRAIL
Figure 7-36 Bending moments on top (roof) slab
图 7-36 顶板(屋顶)上的弯矩

Figure 7-37 Bending moments on intermediate slabs
图 7-37 中间楼板上的弯矩


Figure 7-38 Shear forces on top slab (left) and on intermediate slabs (right)
图 7-38 顶板(左)和中间板(右)上的剪力
  • Results in Earthquake situation
    地震情况的结果

Figure 7-39 Axial forces ( N Ed , max = 37300 kN ) N Ed , max = 37300 kN (N_(Ed,max)=-37300kN)\left(\mathrm{N}_{\mathrm{Ed}, \max }=-37300 \mathrm{kN}\right)
图 7-39 轴向力 ( N Ed , max = 37300 kN ) N Ed , max = 37300 kN (N_(Ed,max)=-37300kN)\left(\mathrm{N}_{\mathrm{Ed}, \max }=-37300 \mathrm{kN}\right)


Figure 7-40 Bending moments - roof slab
图 7-40 弯曲力矩 - 屋顶板

Figure 7-41 Bending moments - intermediate slab
图 7-41 弯曲力矩 - 中间板

Figure 7-42 Shear forces. Shear force at d distance from the end of the column equal to 6450 kN for building’s beams
图 7-42 剪力。建筑物梁在距柱端 d 处的剪力等于 6450 kN
As it can be observed in previous figures, the results obtained in persistent situation (ULS) are higher than the ones obtained in earthquake situation. Only in columns, earthquake internal forces are more critical. Since material factors for persistent situations are more unfavourable than the ones of earthquake situation, in general, only persistent situation are verified to define reinforcements.
从前面的图表中可以看出,持续状态(ULS)下的结果高于地震状态下的结果。只有在柱子中,地震内力更为关键。由于持续工况下的材料因素比地震工况下的材料因素更为不利,因此一般情况下,只有持续工况下才能验证加固的定义。

7.1.2.4 ULS Checks  7.1.2.4 ULS 检查

In this section there are presented the reinforcements definition for following elements:
本节介绍了以下元素的加固定义:
  • Beams on roof slab
    屋顶板上的横梁
  • Beams on intermediate slabs
    中间板上的横梁
  • Diameter 1.80 m columns
    直径 1.80 米的圆柱

7.1.2.4.1 Roof slab beams. Longitudinal reinforcement proposal
7.1.2.4.1 屋面板梁。纵向加固建议

  • Negative bending moments:
    负弯矩
Cross-section SLAB_1.80_NEG (C35/45;S500): Outline, Reinforcements
横截面 SLAB_1.80_NEG (C35/45;S500):轮廓,加固

Ultimate strength analysis Cross section (Girder): SLAB_1.80_NEG
极限强度分析 横截面(大梁):SLAB_1.80_NEG

Action forces / Efficiency: eff(M,N)=0.85 OK
作用力/效率:Eff(M,N)=0.85 OK
Bending and axial force
弯曲力和轴向力
Shear forces and torsion
剪力和扭力
Complete CS eff ( M , N , V , T )  Complete CS   eff  ( M , N , V , T ) {:[" Complete CS "],[" eff "(M","N","V","T)]:}\begin{aligned} & \text { Complete CS } \\ & \text { eff }(M, N, V, T) \end{aligned}
No.   AP P N [ KN ] N [ KN ] N_([KN])\underset{[\mathrm{KN}]}{\mathrm{N}} M y [ kNm ] M y [ kNm ] {:[M_(y)],[[kNm]]:}\begin{gathered} M_{y} \\ {[\mathrm{kNm}]} \end{gathered} M z [ kNm ] M z [ kNm ] [M_(z)],[[kNm]]\begin{gathered} M_{z} \\ {[\mathrm{kNm}]} \\ \hline \end{gathered} eff ( M , N ) H ) eff ( M , N ) H ) [eff(M","N)],[H)]\begin{gathered} \mathrm{eff}(\mathrm{M}, \mathrm{~N}) \\ \mathrm{H}) \\ \hline \end{gathered} V y [ k N ] V y [ k N ] {:[V_(y)],[[kN]]:}\begin{gathered} V_{y} \\ {[k N]} \end{gathered} V z [ kN ] V z [ kN ] {:[V_(z)],[[kN]]:}\begin{aligned} & V_{z} \\ & {[\mathrm{kN}]} \end{aligned} T [ kNm ] T [ kNm ] {:[T],[[kNm]]:}\begin{gathered} T \\ {[\mathrm{kNm}]} \end{gathered} eff(V,T) H 1  eff(V,T)  H 1 {:[" eff(V,T) "],[H-1]:}\begin{gathered} \text { eff(V,T) } \\ H-1 \end{gathered}
1 ! ULS  !ULS 0 -39400.0 0 0.85
Bending and axial force Shear forces and torsion " Complete CS eff (M,N,V,T)" No. AP P N_([KN]) "M_(y) [kNm]" "M_(z) [kNm]" "eff(M,N) H)" "V_(y) [kN]" "V_(z) [kN]" "T [kNm]" " eff(V,T) H-1" 1 ! ULS 0 -39400.0 0 0.85 | | | | Bending and axial force | | | | Shear forces and torsion | | | | $\begin{aligned} & \text { Complete CS } \\ & \text { eff }(M, N, V, T) \end{aligned}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | No. | AP | P | $\underset{[\mathrm{KN}]}{\mathrm{N}}$ | $\begin{gathered} M_{y} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} M_{z} \\ {[\mathrm{kNm}]} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{eff}(\mathrm{M}, \mathrm{~N}) \\ \mathrm{H}) \\ \hline \end{gathered}$ | $\begin{gathered} V_{y} \\ {[k N]} \end{gathered}$ | $\begin{aligned} & V_{z} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{gathered} T \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \text { eff(V,T) } \\ H-1 \end{gathered}$ | | | 1 | ! ULS | | 0 | -39400.0 | 0 | 0.85 | | | | | |

Analysis parameters !ULS Standard: Eurocode EN
分析参数 !ULS 标准:欧洲规范 EN

ID Diagram σ ε σ ε sigma-epsi\sigma-\varepsilon  图表 σ ε σ ε sigma-epsi\sigma-\varepsilon Strain Limits  应变极限 Partial safety factor  部分安全系数 Various parameters  各种参数
C s ε c 2 [ % 0 ] ε c 2 [ % 0 ] {:[epsi_(c2)],[[%0]]:}\begin{aligned} & \varepsilon_{\mathrm{c} 2} \\ & {[\% 0]} \end{aligned} ε cu3 [ % 0 ] ε cu3  [ % 0 ] {:[epsi_("cu3 ")],[[%0]]:}\begin{aligned} & \varepsilon_{\text {cu3 }} \\ & {[\% 0]} \end{aligned} ε u d [ % 2 ] ε u d % 2 {:[epsi_(ud)],[[%^(2)]]:}\begin{aligned} & \varepsilon_{u d} \\ & {\left[\%{ }^{2}\right]} \end{aligned} σ s [ N / mm 2 ] σ s N / mm 2 {:[sigma_(s)],[[(N)//mm^(2)]]:}\begin{gathered} \sigma_{\mathrm{s}} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \end{gathered} α c c [ ] α c c [ ] {:[alpha_(cc)],[[-]]:}\begin{gathered} \alpha_{c c} \\ {[-]} \end{gathered} γ s [ 1 γ s [ 1 {:[gamma_(s)],[[-1]:}\begin{aligned} & \gamma_{s} \\ & {[-1} \end{aligned} φ 1 φ 1 {:[varphi],[-1]:}\begin{gathered} \varphi \\ -1 \end{gathered} 1 1 11
! ULS  !ULS 2/0 1 1 1 -2. -3.5 20. 0.85 1.5 1.15 1.15 1.1 45. 0.
θ θ theta\theta : Inclination of diagonal in compression
θ θ theta\theta :压缩时对角线的倾斜度
ID Diagram sigma-epsi Strain Limits Partial safety factor Various parameters C s "epsi_(c2) [%0]" "epsi_(cu3 ) [%0]" "epsi_(ud) [%^(2)]" "sigma_(s) [(N)//mm^(2)]" "alpha_(cc) [-]" "gamma_(s) [-1" "varphi -1" 1 ! ULS 2/0 1 1 1 -2. -3.5 20. 0.85 1.5 1.15 1.15 1.1 45. 0. theta : Inclination of diagonal in compression | ID | Diagram $\sigma-\varepsilon$ | | | | Strain Limits | | | | Partial safety factor | | | | | Various parameters | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | C | s | | | $\begin{aligned} & \varepsilon_{\mathrm{c} 2} \\ & {[\% 0]} \end{aligned}$ | $\begin{aligned} & \varepsilon_{\text {cu3 }} \\ & {[\% 0]} \end{aligned}$ | $\begin{aligned} & \varepsilon_{u d} \\ & {\left[\%{ }^{2}\right]} \end{aligned}$ | $\begin{gathered} \sigma_{\mathrm{s}} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \end{gathered}$ | $\begin{gathered} \alpha_{c c} \\ {[-]} \end{gathered}$ | | $\begin{aligned} & \gamma_{s} \\ & {[-1} \end{aligned}$ | | | | $\begin{gathered} \varphi \\ -1 \end{gathered}$ | $1$ | | ! ULS | 2/0 | 1 | 1 | 1 | -2. | -3.5 | 20. | | 0.85 | 1.5 | 1.15 | 1.15 | 1.1 | 45. | 0. | | | $\theta$ : Inclination of diagonal in compression | | | | | | | | | | | | | | | | |

Extreme stresses and strain
极端应力和应变

Name  名称 Class  班级 y q [ m ] y q [ m ] {:[y_(q)],[[m]]:}\begin{gathered} \mathrm{y}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered} z q [ m ] z q [ m ] {:[z_(q)],[[m]]:}\begin{gathered} \mathrm{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered} ε [ % 0 ] ε [ % 0 ] {:[epsi],[[%0]]:}\begin{gathered} \varepsilon \\ {[\% 0]} \end{gathered} [ N / mm 2 ] N / mm 2 [N//mm^(2)]\left[\mathrm{N} / \mathrm{mm}^{2}\right]
γ γ gamma\gamma
F
gamma F| $\gamma$ | | :---: | | F |
C1 C35/45 2. 0.2 -3.5 -19.8 1.76
C1 c35/45 -3.5 2. 3.2 0. 1.76
R2 S500 1.95 0.25 3.3 3.3 -3.3-3.3 -434.8 1.15
R1 S500 -3.45 1.95 3. 434.8 1.15
Name Class "y_(q) [m]" "z_(q) [m]" "epsi [%0]" [N//mm^(2)] "gamma F" C1 C35/45 2. 0.2 -3.5 -19.8 1.76 C1 c35/45 -3.5 2. 3.2 0. 1.76 R2 S500 1.95 0.25 -3.3 -434.8 1.15 R1 S500 -3.45 1.95 3. 434.8 1.15| Name | Class | $\begin{gathered} \mathrm{y}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \mathrm{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \varepsilon \\ {[\% 0]} \end{gathered}$ | $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$ | $\gamma$ <br> F | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C1 | C35/45 | 2. | 0.2 | -3.5 | -19.8 | 1.76 | | C1 | c35/45 | -3.5 | 2. | 3.2 | 0. | 1.76 | | R2 | S500 | 1.95 | 0.25 | $-3.3$ | -434.8 | 1.15 | | R1 | S500 | -3.45 | 1.95 | 3. | 434.8 | 1.15 |

Ultimate state "!ULS"  最终状态"!ULS

Internal forces  内部力量 Strain and Curvature  应变和曲率 Stiffness Values  刚度值
N [ kN ] N [ kN ] {:[N],[[kN]]:}\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered} M y [ kNm ] M y [ kNm ] {:[M_(y)],[[kNm]]:}\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered} M z [ kNm ] M z [ kNm ] {:[M_(z)],[[kNm]]:}\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered} ε x [ % on ] ε x [ %  on  ] {:[epsi_(x)],[[%" on "]]:}\begin{gathered} \varepsilon_{x} \\ {[\% \text { on }]} \end{gathered} [ km χ y 1 ] km χ y 1 [km^({:chi_(y)^(-1)]):}\left[\mathrm{km}^{\left.\chi_{y}^{-1}\right]}\right. χ z 1 [ km 1 ] χ z 1 km 1 {:[chi_(z)^(-1)],[[km^(-1)]]:}\begin{gathered} \chi_{z}^{-1} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}
   N / ε x N / ε x N//epsi_(x)N / \varepsilon_{x} [千牛]
N / ε x N / ε x N//epsi_(x)N / \varepsilon_{x}
[kN]
N//epsi_(x) [kN]| $N / \varepsilon_{x}$ | | :--- | | [kN] |
M N / xy y [ kNm 2 ] M N / xy y kNm 2 {:[M_(N)//xy_(y)],[[kNm^(2)]]:}\begin{aligned} & \mathrm{M}_{\mathrm{N}} / \mathrm{xy}_{\mathrm{y}} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned} M z / χ 2 [ kNm 2 ] M z / χ 2 kNm 2 {:[M_(z)//chi_(2)],[[kNm^(2)]]:}\begin{aligned} & \mathrm{M}_{z} / \chi_{2} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}
-1. -46459. -0.3 0.8 -3.5 0.1 1188.73 13384917.9 4417.93
Internal forces Strain and Curvature Stiffness Values "N [kN]" "M_(y) [kNm]" "M_(z) [kNm]" "epsi_(x) [% on ]" [km^({:chi_(y)^(-1)]):} "chi_(z)^(-1) [km^(-1)]" "N//epsi_(x) [kN]" "M_(N)//xy_(y) [kNm^(2)]" "M_(z)//chi_(2) [kNm^(2)]" -1. -46459. -0.3 0.8 -3.5 0.1 1188.73 13384917.9 4417.93| Internal forces | | | Strain and Curvature | | | Stiffness Values | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered}$ | $\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \varepsilon_{x} \\ {[\% \text { on }]} \end{gathered}$ | $\left[\mathrm{km}^{\left.\chi_{y}^{-1}\right]}\right.$ | $\begin{gathered} \chi_{z}^{-1} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $N / \varepsilon_{x}$ <br> [kN] | $\begin{aligned} & \mathrm{M}_{\mathrm{N}} / \mathrm{xy}_{\mathrm{y}} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{z} / \chi_{2} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | | -1. | -46459. | -0.3 | 0.8 | -3.5 | 0.1 | 1188.73 | 13384917.9 | 4417.93 |
  • Positive bending moments:
    正弯矩
Cross-section SLAB_1.30_POS (C35/45;S500): Outline, Reinforcements
横截面 SLAB_1.30_POS (C35/45;S500):轮廓,加固

REEM STATION (ADR). STRUCTURE REPORT
雷姆站(ADR)。结构报告
Cross-section SLAB_1.30_POS (C35/45;S500): Efficiency My=17000.0; eff(M,N)=0.86 OK
横截面 SLAB_1.30_POS (C35/45;S500):效率 My=17000.0; eff(M,N)=0.86 OK

Ultimate strength analysis Cross section (Girder): SLAB_1.30_POS
极限强度分析 横截面(大梁):SLAB_1.30_POS

Action forces / Efficiency: eff(M,N)=0.86 OK
作用力/效率:Eff(M,N)=0.86 OK
Bending and axial force
弯曲力和轴向力
Shear forces and torsion
剪力和扭力

完整的 CS eff(M,N,V,T) [-]
Complete CS eff(M,N,V,T)
[-]
Complete CS eff(M,N,V,T) [-]| Complete CS eff(M,N,V,T) | | :--- | | [-] |
No.   AP P
N
[kN]
N [kN]| N | | :--- | | [kN] |
My [ kNm ]
我的 [ 千牛米 ]
M z M z M_(z)M_{z} [kNm]   M z M z M_(z)M_{z} [kNm] (千牛米 eff(M,N) [ ]  eff(M,N)  [ ] {:[" eff(M,N) "],[[-]]:}\begin{gathered} \text { eff(M,N) } \\ {[-]} \end{gathered} V y [ kN ] V y [ kN ] {:[V_(y)],[[kN]]:}\begin{gathered} V_{y} \\ {[\mathrm{kN}]} \end{gathered} V z [ kN ] V z [ kN ] {:[V_(z)],[[kN]]:}\begin{gathered} V_{z} \\ {[\mathrm{kN}]} \end{gathered} T [ kNm ]
T [ 千牛米 ]
eff(V,T) [ ]  eff(V,T)  [ ] {:[" eff(V,T) "],[[-]]:}\begin{gathered} \text { eff(V,T) } \\ {[-]} \end{gathered}
1 ! ULS  !ULS 0 17000.0 0 0.86
Bending and axial force Shear forces and torsion "Complete CS eff(M,N,V,T) [-]" No. AP P "N [kN]" My [ kNm ] M_(z) [kNm] " eff(M,N) [-]" "V_(y) [kN]" "V_(z) [kN]" T [ kNm ] " eff(V,T) [-]" 1 ! ULS 0 17000.0 0 0.86 | | | | Bending and axial force | | | | Shear forces and torsion | | | | Complete CS eff(M,N,V,T) <br> [-] | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | No. | AP | P | N <br> [kN] | My [ kNm ] | $M_{z}$ [kNm] | $\begin{gathered} \text { eff(M,N) } \\ {[-]} \end{gathered}$ | $\begin{gathered} V_{y} \\ {[\mathrm{kN}]} \end{gathered}$ | $\begin{gathered} V_{z} \\ {[\mathrm{kN}]} \end{gathered}$ | T [ kNm ] | $\begin{gathered} \text { eff(V,T) } \\ {[-]} \end{gathered}$ | | | 1 | ! ULS | | 0 | 17000.0 | 0 | 0.86 | | | | | |

Analysis parameters !ULS Standard: Eurocode EN
分析参数 !ULS 标准:欧洲规范 EN

ID Diagram σ ε σ ε sigma-epsi\sigma-\varepsilon  图表 σ ε σ ε sigma-epsi\sigma-\varepsilon Strain Limits  应变极限 Partial safety factor  部分安全系数 Various parameters  各种参数
c s ε c 2 ε c 2 epsi_(c2)\varepsilon_{\mathrm{c} 2} [%]
ε cu ε cu  epsi_("cu ")\varepsilon_{\text {cu }}
[%0]
epsi_("cu ") [%0]| $\varepsilon_{\text {cu }}$ | | :--- | | [%0] |
ε ud ε ud  epsi_("ud ")\varepsilon_{\text {ud }}
[%0]
epsi_("ud ") [%0]| $\varepsilon_{\text {ud }}$ | | :--- | | [%0] |
[ N / mm 2 ] N / mm 2 [N//mm^(2)]\left[\mathrm{N} / \mathrm{mm}^{2}\right] α c c [ ] α c c [ ] [alpha_(cc)],[[-]]\begin{gathered} \alpha_{c c} \\ {[-]} \\ \hline \end{gathered} γ c [ ] γ c [ ] {:[gamma_(c)],[[-]],[]:}\begin{aligned} & \gamma_{c} \\ & {[-]} \\ & \hline \end{aligned} γ s [ 1 γ s [ 1 {:[gamma_(s)],[[-1],[]:}\begin{aligned} & \gamma_{\mathrm{s}} \\ & {[-1} \\ & \hline \end{aligned} φ [ ] φ [ ] [varphi],[[-]]\begin{gathered} \varphi \\ {[-]} \\ \hline \end{gathered}
! ULS  !ULS 2/0 1 1 1 -2. -3.5 20. 0.85 1.5 1.15 1.15 1.1 45. 0.
ID Diagram sigma-epsi Strain Limits Partial safety factor Various parameters c s epsi_(c2) [%] "epsi_("cu ") [%0]" "epsi_("ud ") [%0]" [N//mm^(2)] "alpha_(cc) [-]" "gamma_(c) [-] " "gamma_(s) [-1 " "varphi [-]" ! ULS 2/0 1 1 1 -2. -3.5 20. 0.85 1.5 1.15 1.15 1.1 45. 0. | ID | Diagram $\sigma-\varepsilon$ | | | | Strain Limits | | | | Partial safety factor | | | | | Various parameters | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | c | s | | | $\varepsilon_{\mathrm{c} 2}$ [%] | $\varepsilon_{\text {cu }}$ <br> [%0] | $\varepsilon_{\text {ud }}$ <br> [%0] | $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$ | $\begin{gathered} \alpha_{c c} \\ {[-]} \\ \hline \end{gathered}$ | $\begin{aligned} & \gamma_{c} \\ & {[-]} \\ & \hline \end{aligned}$ | $\begin{aligned} & \gamma_{\mathrm{s}} \\ & {[-1} \\ & \hline \end{aligned}$ | | | | $\begin{gathered} \varphi \\ {[-]} \\ \hline \end{gathered}$ | | | ! ULS | 2/0 | 1 | 1 | 1 | -2. | -3.5 | 20. | | 0.85 | 1.5 | 1.15 | 1.15 | 1.1 | 45. | 0. | |
Inclination of diagonal in compression
压缩时对角线的倾斜度

φ φ varphiquad\varphi \quad : Creep coefficient
φ φ varphiquad\varphi \quad :蠕变系数

Extreme stresses and strain
极端应力和应变

Name  名称 Class  班级 y q y q y_(q)y_{q} [ m [ m [m[\mathrm{~m} z q [ m ] z q [ m ] {:[z_(q)],[[m]]:}\begin{gathered} \mathbf{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered} ε [ % 6 ] ε % 6 {:[epsi],[[%_(6)]]:}\begin{gathered} \varepsilon \\ {\left[\%{ }_{6}\right]} \end{gathered} σ d [ N / mm 2 ] σ d N / mm 2 {:[sigma_(d)],[[(N)//mm^(2)]]:}\begin{gathered} \sigma_{\mathrm{d}} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \end{gathered} γ γ gamma\gamma [ ] [ ] [-][-]
C1 C35/45 5.5 2. -1.5 -18.6 1.76
C1 C35/45 0. 0.5 20.7 0. 1.76
R1 S500 5.45 1.95 -0.8 -151.9 1.15
R2 S500 0.05 0.55 20. 434.8 1.15
Name Class y_(q) [m "z_(q) [m]" "epsi [%_(6)]" "sigma_(d) [(N)//mm^(2)]" gamma [-] C1 C35/45 5.5 2. -1.5 -18.6 1.76 C1 C35/45 0. 0.5 20.7 0. 1.76 R1 S500 5.45 1.95 -0.8 -151.9 1.15 R2 S500 0.05 0.55 20. 434.8 1.15| Name | Class | $y_{q}$ $[\mathrm{~m}$ | $\begin{gathered} \mathbf{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \varepsilon \\ {\left[\%{ }_{6}\right]} \end{gathered}$ | $\begin{gathered} \sigma_{\mathrm{d}} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \end{gathered}$ | $\gamma$ $[-]$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C1 | C35/45 | 5.5 | 2. | -1.5 | -18.6 | 1.76 | | C1 | C35/45 | 0. | 0.5 | 20.7 | 0. | 1.76 | | R1 | S500 | 5.45 | 1.95 | -0.8 | -151.9 | 1.15 | | R2 | S500 | 0.05 | 0.55 | 20. | 434.8 | 1.15 |

Ultimate state "!ULS"  最终状态"!ULS

Internal forces  内部力量 Strain and Curvature  应变和曲率 Stiffness Values  刚度值
N [ kN ] N [ kN ] {:[N],[[kN]]:}\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered} M y [ kNm ] M y [ kNm ] {:[M_(y)],[[kNm]]:}\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered} M z [ kNm ] M z [ kNm ] {:[M_(z)],[[kNm]]:}\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered} ε x [ % 0 ] ε x [ % 0 ] {:[epsi_(x)],[[%0]]:}\begin{gathered} \varepsilon_{x} \\ {[\% 0]} \end{gathered} χ y [ km 1 ] χ y km 1 {:[chi_(y)],[[km^(-1)]]:}\begin{gathered} \chi_{y} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered} χ z [ km 1 ] χ z km 1 {:[chi_(z)],[[km^(-1)]]:}\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}
   N / ε x N / ε x N//epsi_(x)N / \varepsilon_{x} [千牛]
N / ε x N / ε x N//epsi_(x)N / \varepsilon_{x}
[kN]
N//epsi_(x) [kN]| $N / \varepsilon_{x}$ | | :--- | | [kN] |
M y / χ y 1 [ kNm 2 ] M y / χ y 1 kNm 2 {:[M_(y)//chi_(y_(1))],[[kNm^(2)]]:}\begin{aligned} & \mathrm{M}_{\mathrm{y}} / \chi_{y_{1}} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned} M z / χ z [ kNm 2 ] M z / χ z kNm 2 {:[M_(z)//chi_(z)],[[kNm^(2)]]:}\begin{aligned} & \mathrm{M}_{\mathrm{z}} / \chi_{z} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}
-1.5 19834.8 0. 5.6 14.8 0.0 259.85 1337698.01 9024.93
Internal forces Strain and Curvature Stiffness Values "N [kN]" "M_(y) [kNm]" "M_(z) [kNm]" "epsi_(x) [%0]" "chi_(y) [km^(-1)]" "chi_(z) [km^(-1)]" "N//epsi_(x) [kN]" "M_(y)//chi_(y_(1)) [kNm^(2)]" "M_(z)//chi_(z) [kNm^(2)]" -1.5 19834.8 0. 5.6 14.8 0.0 259.85 1337698.01 9024.93| Internal forces | | | Strain and Curvature | | | Stiffness Values | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered}$ | $\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \varepsilon_{x} \\ {[\% 0]} \end{gathered}$ | $\begin{gathered} \chi_{y} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $N / \varepsilon_{x}$ <br> [kN] | $\begin{aligned} & \mathrm{M}_{\mathrm{y}} / \chi_{y_{1}} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{\mathrm{z}} / \chi_{z} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | | -1.5 | 19834.8 | 0. | 5.6 | 14.8 | 0.0 | 259.85 | 1337698.01 | 9024.93 |

7.1.2.4.2 Intermediate slab beams. Longitudinal reinforcement proposal
7.1.2.4.2 中间板梁。纵向加固建议

  • Negative bending moments:
    负弯矩


Ultimate strength analysis Cross section (Girder): SLAB_1.80_NEG1
极限强度分析 横截面(大梁):SLAB_1.80_NEG1

Action forces / Efficiency: eff(M,N)=0.81 OK
作用力/效率:Eff(M,N)=0.81 OK
No.   AP P Bending and axial force
弯曲力和轴向力
Shear forces and torsion
剪力和扭力
Complete CS eff(M,N,V,T) [ ]  Complete CS   eff(M,N,V,T) [ ] {:[" Complete CS "],[" eff(M,N,V,T)"[-]]:}\begin{aligned} & \text { Complete CS } \\ & \text { eff(M,N,V,T)}[-] \end{aligned}
N [ kN ] N [ kN ] N_([kN])\underset{[\mathrm{kN}]}{\mathrm{N}} M y [ kNm ] M y [ kNm ] {:[M_(y)],[[kNm]]:}\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered} M z [ kNm ] M z [ kNm ] {:[M_(z)],[[kNm]]:}\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered} eff ( M , N ) [ 1 eff ( M , N ) [ 1 {:[eff(M","N)],[[-1]:}\begin{gathered} \mathrm{eff}(\mathrm{M}, \mathrm{~N}) \\ {[-1} \end{gathered} V y [ kNN ] V y [ kNN ] {:[V_(y)],[[kNN]]:}\begin{gathered} V_{y} \\ {[\mathrm{kNN}]} \end{gathered} V 2 [ kN ] V 2 [ kN ] {:[V_(2)],[[kN]]:}\begin{gathered} \mathrm{V}_{2} \\ {[\mathrm{kN}]} \end{gathered} [ k Nm ] [ k Nm ] {:[TT],[[kNm]]:}\begin{gathered} \top \\ {[\mathrm{k} \mathrm{Nm}]} \end{gathered} eff ( V , T ) [ 1  eff  ( V , T ) [ 1 {:[" eff "(V","T)],[[-1]:}\begin{gathered} \text { eff }(V, T) \\ {[-1} \end{gathered}
1 !ULS 0 -17200.0 0 0.81
No. AP P Bending and axial force Shear forces and torsion " Complete CS eff(M,N,V,T)[-]" N_([kN]) "M_(y) [kNm]" "M_(z) [kNm]" "eff(M,N) [-1" "V_(y) [kNN]" "V_(2) [kN]" "TT [kNm]" " eff (V,T) [-1" 1 !ULS 0 -17200.0 0 0.81 | No. | AP | P | Bending and axial force | | | | Shear forces and torsion | | | | $\begin{aligned} & \text { Complete CS } \\ & \text { eff(M,N,V,T)}[-] \end{aligned}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | | | $\underset{[\mathrm{kN}]}{\mathrm{N}}$ | $\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \mathrm{eff}(\mathrm{M}, \mathrm{~N}) \\ {[-1} \end{gathered}$ | $\begin{gathered} V_{y} \\ {[\mathrm{kNN}]} \end{gathered}$ | $\begin{gathered} \mathrm{V}_{2} \\ {[\mathrm{kN}]} \end{gathered}$ | $\begin{gathered} \top \\ {[\mathrm{k} \mathrm{Nm}]} \end{gathered}$ | $\begin{gathered} \text { eff }(V, T) \\ {[-1} \end{gathered}$ | | | 1 | !ULS | | 0 | -17200.0 | 0 | 0.81 | | | | | |
Analysis parameters !ULS Standard: Eurocode EN
分析参数 !ULS 标准:欧洲规范 EN


θ θ theta\theta : Inclination of diagonal in compression
θ θ theta\theta :压缩时对角线的倾斜度

φ φ varphi\varphi : Creep coefficient
φ φ varphi\varphi :蠕变系数

Extreme stresses and strain
极端应力和应变

Name  名称 Class  班级 yq q [ m ] yq q [ m ] {:[yq_(q)],[[m]]:}\begin{gathered} \mathrm{yq}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered} z q [ m ] z q [ m ] {:[z_(q)],[[m]]:}\begin{gathered} \mathrm{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered} ε [ % 0 ] ε [ % 0 ] {:[epsi],[[%0]]:}\begin{gathered} \varepsilon \\ {[\% 0]} \end{gathered} σ d σ d sigma_(d)\sigma_{d} [ N / mm 2 ] N / mm 2 [(N)//mm^(2)]\left[\mathrm{~N} / \mathrm{mm}^{2}\right] γ γ gamma\gamma [ ] [ ] [-][-]
C1 C35/45 2. 0.2 -3.5 -19.8 1.76
C1 C35/45 -3.5 2. 15.3 0. 1.76
R2 S500 1.95 0.25 -3. -434.8 1.15
R1 S500 -3.45 1.95 14.7 434.8 1.15
Name Class "yq_(q) [m]" "z_(q) [m]" "epsi [%0]" sigma_(d) [(N)//mm^(2)] gamma [-] C1 C35/45 2. 0.2 -3.5 -19.8 1.76 C1 C35/45 -3.5 2. 15.3 0. 1.76 R2 S500 1.95 0.25 -3. -434.8 1.15 R1 S500 -3.45 1.95 14.7 434.8 1.15| Name | Class | $\begin{gathered} \mathrm{yq}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \mathrm{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \varepsilon \\ {[\% 0]} \end{gathered}$ | $\sigma_{d}$ $\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$ | $\gamma$ $[-]$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C1 | C35/45 | 2. | 0.2 | -3.5 | -19.8 | 1.76 | | C1 | C35/45 | -3.5 | 2. | 15.3 | 0. | 1.76 | | R2 | S500 | 1.95 | 0.25 | -3. | -434.8 | 1.15 | | R1 | S500 | -3.45 | 1.95 | 14.7 | 434.8 | 1.15 |

Ultimate state "!ULS"  最终状态"!ULS

Internal forces  内部力量 Strain and Curvature  应变和曲率 Stiffness Values  刚度值
N [ kN ] N [ kN ] N_([kN])\underset{[\mathrm{kN}]}{\mathrm{N}} M y [ kNm l M y [ kNm l {:[M_(y)],[[kNml]:}\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm} \mathrm{l}} \end{gathered} M z M z M_(z)\mathrm{M}_{\mathrm{z}} [kNm]   M z M z M_(z)\mathrm{M}_{\mathrm{z}} [kNm] (千牛米 ε x [ % 0 ] ε x [ % 0 ] {:[epsi_(x)],[[%0]]:}\begin{gathered} \varepsilon_{x} \\ {[\% 0]} \end{gathered} χ y [ km 1 ] χ y km 1 {:[chi_(y)],[[km^(-1)]]:}\begin{gathered} \chi_{y} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered} χ z [ km 1 χ z km 1 {:[chi_(z)],[[km^(-1)~|]:}\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right\rceil} \end{gathered} N / ε x N / ε x N//epsi_(x)N / \varepsilon_{\mathrm{x}} [ kN ] [ kN ] [kN][\mathrm{kN}] M y / χ y [ kNm 2 ] M y / χ y kNm 2 {:[M_(y)//chi_(y)],[[kNm^(2)]]:}\begin{aligned} & \mathrm{M}_{y} / \chi_{y} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned} M z / χ z [ kNm m 2 ] M z / χ z kNm m 2 {:[M_(z)//chi_(z)],[[kNmm^(2)]]:}\begin{aligned} & \mathrm{M}_{z} / \chi_{z} \\ & {\left[\mathrm{kNm} \mathrm{~m}^{2}\right]} \end{aligned}
-1.4 -21167.4 0. 9.2 -10.4 0.0 154.37 2029964.64 99007.9
Internal forces Strain and Curvature Stiffness Values N_([kN]) "M_(y) [kNml" M_(z) [kNm] "epsi_(x) [%0]" "chi_(y) [km^(-1)]" "chi_(z) [km^(-1)~|" N//epsi_(x) [kN] "M_(y)//chi_(y) [kNm^(2)]" "M_(z)//chi_(z) [kNmm^(2)]" -1.4 -21167.4 0. 9.2 -10.4 0.0 154.37 2029964.64 99007.9| Internal forces | | | Strain and Curvature | | | Stiffness Values | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\underset{[\mathrm{kN}]}{\mathrm{N}}$ | $\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ {[\mathrm{kNm} \mathrm{l}} \end{gathered}$ | $\mathrm{M}_{\mathrm{z}}$ [kNm] | $\begin{gathered} \varepsilon_{x} \\ {[\% 0]} \end{gathered}$ | $\begin{gathered} \chi_{y} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right\rceil} \end{gathered}$ | $N / \varepsilon_{\mathrm{x}}$ $[\mathrm{kN}]$ | $\begin{aligned} & \mathrm{M}_{y} / \chi_{y} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{z} / \chi_{z} \\ & {\left[\mathrm{kNm} \mathrm{~m}^{2}\right]} \end{aligned}$ | | -1.4 | -21167.4 | 0. | 9.2 | -10.4 | 0.0 | 154.37 | 2029964.64 | 99007.9 |
  • Positive bending moments:
    正弯矩
Cross-section SLAB_1.30_POS1 (C35/45;S500): Outline, Reinforcements
横截面 SLAB_1.30_POS1 (C35/45;S500):轮廓,加固

REEM STATION (ADR). STRUCTURE REPORT
雷姆站(ADR)。结构报告

Ultimate strength analysis Cross section (Girder): SLAB_1.30_POS1
极限强度分析 横截面(大梁):SLAB_1.30_POS1

Action forces / Efficiency: eff(M,N)=0.81 OK
作用力/效率:Eff(M,N)=0.81 OK

Analysis parameters !ULS Standard: Eurocode EN
分析参数 !ULS 标准:欧洲规范 EN
ID Diagram σ ε σ ε sigma-epsi\sigma-\varepsilon  图表 σ ε σ ε sigma-epsi\sigma-\varepsilon Strain Limits  应变极限 σ s σ s sigma_(s)\sigma_{s} [ N / mm 2 ] N / mm 2 [N//mm^(2)]\left[\mathrm{N} / \mathrm{mm}^{2}\right] Partial safety factor  部分安全系数 Various parameters  各种参数
c s ε c 2 [ % 0 ] ε c 2 [ % 0 ] {:[epsi_(c2)],[[%0]]:}\begin{aligned} & \varepsilon_{c 2} \\ & {[\% 0]} \end{aligned} ε cu ε cu  epsi_("cu ")\varepsilon_{\text {cu }} [ % ] [ % ] [%][\%]
   ε ud ε ud  epsi_("ud ")\varepsilon_{\text {ud }} [%]
ε ud ε ud  epsi_("ud ")\varepsilon_{\text {ud }}
[%]
epsi_("ud ") [%]| $\varepsilon_{\text {ud }}$ | | :--- | | [%] |
α c c α c c alpha_(cc)\alpha_{c c} [ ] [ ] [-][-] γ s [ 1 γ s [ 1 {:[gamma_(s)],[[-1]:}\begin{aligned} & \gamma_{\mathrm{s}} \\ & {[-1} \end{aligned} φ [ ] φ [ ] {:[varphi],[[-]]:}\begin{gathered} \varphi \\ {[-]} \end{gathered}
! ULS  !ULS 2/0 1 1 1 -2. -3.5 20. 0.85 1.5 1.15 1.15 1.1 45. 0.
ID Diagram sigma-epsi Strain Limits sigma_(s) [N//mm^(2)] Partial safety factor Various parameters c s "epsi_(c2) [%0]" epsi_("cu ") [%] "epsi_("ud ") [%]" alpha_(cc) [-] "gamma_(s) [-1" "varphi [-]" ! ULS 2/0 1 1 1 -2. -3.5 20. 0.85 1.5 1.15 1.15 1.1 45. 0. | ID | Diagram $\sigma-\varepsilon$ | | | | Strain Limits | | | $\sigma_{s}$ $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$ | Partial safety factor | | | | | Various parameters | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | c | s | | | $\begin{aligned} & \varepsilon_{c 2} \\ & {[\% 0]} \end{aligned}$ | $\varepsilon_{\text {cu }}$ $[\%]$ | $\varepsilon_{\text {ud }}$ <br> [%] | | $\alpha_{c c}$ $[-]$ | | $\begin{aligned} & \gamma_{\mathrm{s}} \\ & {[-1} \end{aligned}$ | | | | $\begin{gathered} \varphi \\ {[-]} \end{gathered}$ | | | ! ULS | 2/0 | 1 | 1 | 1 | -2. | -3.5 | 20. | | 0.85 | 1.5 | 1.15 | 1.15 | 1.1 | 45. | 0. | |
θ θ theta\theta : Inclination of diagonal in compression
θ θ theta\theta :压缩时对角线的倾斜度

φ φ varphi\varphi : Creep coefficient
φ φ varphi\varphi :蠕变系数
Extreme stresses and strain
极端应力和应变
Name  名称 Class  班级 y q y q y_(q)\mathrm{y}_{\mathrm{q}} [ m ] [ m ] [m][\mathrm{m}] z q [ m ] z q [ m ] {:[z_(q)],[[m]]:}\begin{gathered} \mathbf{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered} ε [ % ] ε [ %  ]  {:[epsi],[[%" ] "]:}\begin{gathered} \varepsilon \\ {[\% \text { ] }} \end{gathered} σ d [ N / mm 2 ] σ d N / mm 2 [sigma_(d)],[[(N)//mm^(2)]]\begin{gathered} \sigma_{d} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \\ \hline \end{gathered} γ γ gamma\gamma [ ] [ ] [-][-]
C1 C35/45 5.5 2. -1. -14.9 1.76
C1 C35/45 0. 0.5 20.7 0. 1.76
R1 S500 -3.45 1.95 -0.3 -55.3 1.15
R2 S500 0.05 0.55 20. 434.8 1.15
Name Class y_(q) [m] "z_(q) [m]" "epsi [% ] " "sigma_(d) [(N)//mm^(2)]" gamma [-] C1 C35/45 5.5 2. -1. -14.9 1.76 C1 C35/45 0. 0.5 20.7 0. 1.76 R1 S500 -3.45 1.95 -0.3 -55.3 1.15 R2 S500 0.05 0.55 20. 434.8 1.15| Name | Class | $\mathrm{y}_{\mathrm{q}}$ $[\mathrm{m}]$ | $\begin{gathered} \mathbf{z}_{\mathrm{q}} \\ {[\mathrm{~m}]} \end{gathered}$ | $\begin{gathered} \varepsilon \\ {[\% \text { ] }} \end{gathered}$ | $\begin{gathered} \sigma_{d} \\ {\left[\mathrm{~N} / \mathrm{mm}^{2}\right]} \\ \hline \end{gathered}$ | $\gamma$ $[-]$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C1 | C35/45 | 5.5 | 2. | -1. | -14.9 | 1.76 | | C1 | C35/45 | 0. | 0.5 | 20.7 | 0. | 1.76 | | R1 | S500 | -3.45 | 1.95 | -0.3 | -55.3 | 1.15 | | R2 | S500 | 0.05 | 0.55 | 20. | 434.8 | 1.15 |

Ultimate state "!ULS"  最终状态"!ULS

Internal forces  内部力量 Strain and Curvature  应变和曲率 Stiffness Values  刚度值
N [ kN ] N [ kN ] {:[N],[[kN]]:}\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered} My y [ kNm ] My y [ kNm ] {:[My_(y)],[[kNm]]:}\begin{gathered} \mathrm{My}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered} Mz z [ kNm ] Mz z [ kNm ] {:[Mz_(z)],[[kNm]]:}\begin{gathered} \mathrm{Mz}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered} ε x [ % ] ε x [ % ] [epsi_(x)],[[%]]\begin{gathered} \varepsilon_{x} \\ {[\%]} \\ \hline \end{gathered} χ y y 1 [ km 1 ] χ y y 1 km 1 {:[chiy_(y)^(-1)],[[km^(-1)]]:}\begin{gathered} \chi y_{y}^{-1} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered} χ z [ km 1 ] χ z km 1 {:[chi_(z)],[[km^(-1)]]:}\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered} N / ε x [ kN ] N / ε x [ kN ] {:[N//epsi_(x)],[[kN]]:}\begin{aligned} & \mathrm{N} / \varepsilon_{\mathrm{x}} \\ & {[\mathrm{kN}]} \end{aligned} My y / χ y [ kNm 2 ] My y / χ y kNm 2 {:[My_(y)//chi_(y)],[[kNm^(2)]]:}\begin{aligned} & \mathrm{My}_{\mathrm{y}} / \chi_{y} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned} M z / χ 2 [ kNm 2 ] M z / χ 2 kNm 2 {:[M_(z)//chi_(2)],[[kNm^(2)]]:}\begin{aligned} & \mathrm{M}_{\mathrm{z}} / \chi_{2} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}
-1.8 9434.8 0. 6.0 14.5 -0.0 309.4 651433.76 30200448.8
Internal forces Strain and Curvature Stiffness Values "N [kN]" "My_(y) [kNm]" "Mz_(z) [kNm]" "epsi_(x) [%]" "chiy_(y)^(-1) [km^(-1)]" "chi_(z) [km^(-1)]" "N//epsi_(x) [kN]" "My_(y)//chi_(y) [kNm^(2)]" "M_(z)//chi_(2) [kNm^(2)]" -1.8 9434.8 0. 6.0 14.5 -0.0 309.4 651433.76 30200448.8| Internal forces | | | Strain and Curvature | | | Stiffness Values | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered}$ | $\begin{gathered} \mathrm{My}_{\mathrm{y}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \mathrm{Mz}_{\mathrm{z}} \\ {[\mathrm{kNm}]} \end{gathered}$ | $\begin{gathered} \varepsilon_{x} \\ {[\%]} \\ \hline \end{gathered}$ | $\begin{gathered} \chi y_{y}^{-1} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $\begin{gathered} \chi_{z} \\ {\left[\mathrm{~km}^{-1}\right]} \end{gathered}$ | $\begin{aligned} & \mathrm{N} / \varepsilon_{\mathrm{x}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{aligned} & \mathrm{My}_{\mathrm{y}} / \chi_{y} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{\mathrm{z}} / \chi_{2} \\ & {\left[\mathrm{kNm}^{2}\right]} \end{aligned}$ | | -1.8 | 9434.8 | 0. | 6.0 | 14.5 | -0.0 | 309.4 | 651433.76 | 30200448.8 |

7.1.2.4.3 Roof slabs beams. Shear reinforcement proposal
7.1.2.4.3 屋面板梁。剪力加固建议

  • Concrete resistance:  耐混凝土性:
V R d , c = [ C R d , c k ( 100 ρ l f c k ) 1 / 3 + k 1 σ c p ] b w d ( v min + k 1 σ c p ) b w d V R d , c = C R d , c k 100 ρ l f c k 1 / 3 + k 1 σ c p b w d v min + k 1 σ c p b w d V_(Rd,c)=[C_(Rd,c)k(100rho_(l)f_(ck))^(1//3)+k_(1)sigma_(cp)]b_(w)d >= (v_(min)+k_(1)sigma_(cp))b_(w)dV_{R d, c}=\left[C_{R d, c} k\left(100 \rho_{l} f_{c k}\right)^{1 / 3}+k_{1} \sigma_{c p}\right] b_{w} d \geq\left(v_{\min }+k_{1} \sigma_{c p}\right) b_{w} d
Where,  在哪里?
C Rd, C Rd,  C_("Rd, ")quadC_{\text {Rd, }} \quad equal to 0.18 / γ c 0.18 / γ c 0.18//gamma_(c)0.18 / \gamma_{c}
C Rd, C Rd,  C_("Rd, ")quadC_{\text {Rd, }} \quad 等于 0.18 / γ c 0.18 / γ c 0.18//gamma_(c)0.18 / \gamma_{c}

UNLESS SPECIFIED OTHERWISE, THIS PRINTED COPY OF THIS DOCUMENT IS UNCONTROLLED AND FOR REFERENCE PURPOSE ONLY
除非另有说明,本文件的印刷本未经控制,仅供参考。

k
ρ ρ rho_(।)quad\rho_{।} \quad equal to ρ l = A s l b w d 0.02 ρ l = A s l b w d 0.02 rho_(l)=(A_(sl))/(b_(w)d) <= 0.02\rho_{l}=\frac{A_{s l}}{b_{w} d} \leq 0.02
ρ ρ rho_(।)quad\rho_{।} \quad 等于 ρ l = A s l b w d 0.02 ρ l = A s l b w d 0.02 rho_(l)=(A_(sl))/(b_(w)d) <= 0.02\rho_{l}=\frac{A_{s l}}{b_{w} d} \leq 0.02

Asi total area of the anchored tensile longitudinal reinforcement
Asi 锚固拉伸纵向钢筋的总面积

b w b w b_(w)quadb_{w} \quad smallest width of the cross-section in the tensile area
b w b w b_(w)quadb_{w} \quad 拉伸区横截面的最小宽度

f ck f ck f_(ck)quad\mathrm{f}_{\mathrm{ck}} \quad Concrete resistance in MPa
f ck f ck f_(ck)quad\mathrm{f}_{\mathrm{ck}} \quad 混凝土阻力(兆帕

k 1 k 1 k_(1)\mathrm{k}_{1}
σ c p σ c p sigma_(cp)quad\sigma_{c p} \quad concrete stress (Considering compression > 0 > 0 > 0>0 ) limited to 0.20 f c k 0.20 f c k 0.20f_(ck)0.20 f_{c k}
σ c p σ c p sigma_(cp)quad\sigma_{c p} \quad 混凝土应力(考虑压缩 > 0 > 0 > 0>0 )限于 0.20 f c k 0.20 f c k 0.20f_(ck)0.20 f_{c k}

V min V min  V_("min ")quad\mathrm{V}_{\text {min }} \quad equal to v min = 0.035 k 3 / 2 f c k 1 / 2 v min  = 0.035 k 3 / 2 f c k 1 / 2 v_("min ")=0.035k^(3//2)*f_(ck)^(1//2)v_{\text {min }}=0.035 k^{3 / 2} \cdot f_{c k}{ }^{1 / 2}
V min V min  V_("min ")quad\mathrm{V}_{\text {min }} \quad 等于 v min = 0.035 k 3 / 2 f c k 1 / 2 v min  = 0.035 k 3 / 2 f c k 1 / 2 v_("min ")=0.035k^(3//2)*f_(ck)^(1//2)v_{\text {min }}=0.035 k^{3 / 2} \cdot f_{c k}{ }^{1 / 2}
V R d , c = [ C R d , c k ( 100 ρ l f c k ) 1 / 3 + k 1 σ c p ] b w d = [ 0.18 1.5 ( 1 + 200 1700 ) ( 100 0.0053 35 ) 1 / 3 ] 2000 1700 = 1384 kN V R d , c = C R d , c k 100 ρ l f c k 1 / 3 + k 1 σ c p b w d = 0.18 1.5 1 + 200 1700 ( 100 0.0053 35 ) 1 / 3 2000 1700 = 1384 kN V_(Rd,c)=[C_(Rd,c)k(100rho_(l)f_(ck))^(1//3)+k_(1)sigma_(cp)]b_(w)d=[(0.18)/(1.5)*(1+sqrt((200)/(1700)))*(100*0.0053*35)^(1//3)]2000*1700=1384kNV_{R d, c}=\left[C_{R d, c} k\left(100 \rho_{l} f_{c k}\right)^{1 / 3}+k_{1} \sigma_{c p}\right] b_{w} d=\left[\frac{0.18}{1.5} \cdot\left(1+\sqrt{\frac{200}{1700}}\right) \cdot(100 \cdot 0.0053 \cdot 35)^{1 / 3}\right] 2000 \cdot 1700=1384 \mathrm{kN}
Not enough to resist the design shear force.
不足以抵抗设计剪力。
  • Vertical reinforcement proposal:
    垂直加固建议:
V R d , s = A s w s z f y w d cot θ V R d , s = A s w s z f y w d cot θ V_(Rd,s)=(A_(sw))/(s)zf_(ywd)cot thetaV_{R d, s}=\frac{A_{s w}}{s} z f_{y w d} \cot \theta
Where,  在哪里?
A sw A sw A_(sw)quad\mathrm{A}_{\mathrm{sw}} \quad Area of the shear reinforcement
A sw A sw A_(sw)quad\mathrm{A}_{\mathrm{sw}} \quad 抗剪钢筋的面积

s Shear reinforcement’s separation
s 抗剪钢筋的分离

f ywd f ywd f_(ywd)quad\mathrm{f}_{\mathrm{ywd}} \quad Design yield strength of the shear reinforcement, limited to 0.8 f y k 0.8 f y k 0.8*f_(yk)0.8 \cdot f_{y k}
f ywd f ywd f_(ywd)quad\mathrm{f}_{\mathrm{ywd}} \quad 抗剪钢筋的设计屈服强度,限于 0.8 f y k 0.8 f y k 0.8*f_(yk)0.8 \cdot f_{y k}

v 1 v 1 v_(1)quad\mathrm{v}_{1} \quad Reduction factor, equal to 0.6
v 1 v 1 v_(1)quad\mathrm{v}_{1} \quad 降低系数,等于 0.6

α cw α cw alpha_(cw)quad\alpha_{\mathrm{cw}} \quad Factor equal to 1.00 for non prestressed structures
α cw α cw alpha_(cw)quad\alpha_{\mathrm{cw}} \quad 非预应力结构的系数等于 1.00

z inner lever arm (considered 1.54 m )
z 内杠杆臂(考虑为 1.54 米)

θ θ thetaquad\theta \quad Angle between the concrete compression strut and the beam axis perpendicular to the shear force (considered cot θ = 1.50 cot θ = 1.50 cot theta=1.50\cot \theta=1.50 )
θ θ thetaquad\theta \quad 混凝土压缩支柱与梁轴线之间垂直于剪力的角度(考虑 cot θ = 1.50 cot θ = 1.50 cot theta=1.50\cot \theta=1.50 )
A s w s = V E d z f y w d cot θ = 9185 1000 1.54 400 1.5 = 100 cm 2 / m A s w s = V E d z f y w d cot θ = 9185 1000 1.54 400 1.5 = 100 cm 2 / m (A_(sw))/(s)=(V_(Ed))/(zf_(ywd)cot theta)=(9185*1000)/(1.54*400*1.5)=100cm^(2)//m\frac{A_{s w}}{s}=\frac{V_{E d}}{z f_{y w d} \cot \theta}=\frac{9185 \cdot 1000}{1.54 \cdot 400 \cdot 1.5}=100 \mathrm{~cm}^{2} / \mathrm{m}
Minimum shear reinforcement:
最小剪力加固:
ρ w , min = 0.08 f c k f y k = 0.08 35 500 = 0.00095 A s w , min S = ρ w , min b w sin α = 0.00095 2.0 1 = 0.0019 m 2 m = 19 cm 2 / m ρ w ,  min  = 0.08 f c k f y k = 0.08 35 500 = 0.00095 A s w , min S = ρ w , min b w sin α = 0.00095 2.0 1 = 0.0019 m 2 m = 19 cm 2 / m {:[rho_(w," min ")=(0.08sqrt(f_(ck)))/(f_(yk))=(0.08*sqrt35)/(500)=0.00095],[(A_(sw,min))/(S)=rho_(w,min)*b_(w)*sin alpha=0.00095*2.0*1=(0.0019m^(2))/(m)=19cm^(2)//m]:}\begin{gathered} \rho_{w, \text { min }}=\frac{0.08 \sqrt{f_{c k}}}{f_{y k}}=\frac{0.08 \cdot \sqrt{35}}{500}=0.00095 \\ \frac{A_{s w, \min }}{S}=\rho_{w, \min } \cdot b_{w} \cdot \sin \alpha=0.00095 \cdot 2.0 \cdot 1=\frac{0.0019 \mathrm{~m}^{2}}{m}=19 \mathrm{~cm}^{2} / \mathrm{m} \end{gathered}
The shear forces can be resisted by 50 s 16 / m 50 s 16 / m 50s16//m50 \mathrm{~s} 16 / \mathrm{m}.
50 s 16 / m 50 s 16 / m 50s16//m50 \mathrm{~s} 16 / \mathrm{m} 可以抵抗剪切力。

7.1.2.4.4 Intermediate slabs beams. Shear reinforcement proposal
7.1.2.4.4 中间板梁。剪力加固建议

The shear capacity of the concrete section without transversal steel is calculated as follows:
无横向钢筋混凝土截面的抗剪承载力计算如下:
V C , R d = C R d , c ξ ( 100 ρ l f c k ) 1 3 b d V C , R d = C R d , c ξ 100 ρ l f c k 1 3 b d V_(C,Rd)=C_(Rd,c)*xi*(100*rho_(l)*f_(ck))^((1)/(3))*b*dV_{C, R d}=C_{R d, c} \cdot \xi \cdot\left(100 \cdot \rho_{l} \cdot f_{c k}\right)^{\frac{1}{3}} \cdot b \cdot d
Where:  在哪里?
ξ = 1 + 200 d ρ l = A s l b d ξ = 1 + 200 d ρ l = A s l b d {:[xi=1+sqrt((200 )/(d))],[rho_(l)=(A_(sl))/(b*d)]:}\begin{gathered} \xi=1+\sqrt{\frac{200}{d}} \\ \rho_{l}=\frac{A_{s l}}{b \cdot d} \end{gathered}
So:  那么
b b b\boldsymbol{b} d d d\boldsymbol{d} A s l A s l A_(sl)\boldsymbol{A}_{\boldsymbol{s l}} ξ ξ xi\boldsymbol{\xi} ρ l ρ l rho_(l)\boldsymbol{\rho}_{\boldsymbol{l}} V C , R d V C , R d V_(C,Rd)\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{R} \boldsymbol{d}} V E d V E d V_(Ed)\boldsymbol{V}_{\boldsymbol{E d}}
A s w d A s w d A_(swd)\boldsymbol{A}_{\boldsymbol{s w d}}
m m m m mm\boldsymbol{m m}
A_(swd) mm| $\boldsymbol{A}_{\boldsymbol{s w d}}$ | | :---: | | $\boldsymbol{m m}$ |
m m m m m m mmm\boldsymbol{m m} \boldsymbol{m} m m 2 m m 2 mm^(2)\boldsymbol{m m}^{2} - - k N k N kN\boldsymbol{k N} k N k N kN\boldsymbol{k N} m m 2 / m m m 2 / m mm^(2)//m\boldsymbol{m m}^{2} / \boldsymbol{m}
2000 1712 6872 1.34 0.20 % 0.20 % 0.20%0.20 \% 1003.1 4007 4333
b d A_(sl) xi rho_(l) V_(C,Rd) V_(Ed) "A_(swd) mm" mmm mm^(2) - - kN kN mm^(2)//m 2000 1712 6872 1.34 0.20% 1003.1 4007 4333| $\boldsymbol{b}$ | $\boldsymbol{d}$ | $\boldsymbol{A}_{\boldsymbol{s l}}$ | $\boldsymbol{\xi}$ | $\boldsymbol{\rho}_{\boldsymbol{l}}$ | $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{R} \boldsymbol{d}}$ | $\boldsymbol{V}_{\boldsymbol{E d}}$ | $\boldsymbol{A}_{\boldsymbol{s w d}}$ <br> $\boldsymbol{m m}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\boldsymbol{m m} \boldsymbol{m}$ | $\boldsymbol{m m}^{2}$ | - | - | $\boldsymbol{k N}$ | $\boldsymbol{k N}$ | $\boldsymbol{m m}^{2} / \boldsymbol{m}$ | | | 2000 | 1712 | 6872 | 1.34 | $0.20 \%$ | 1003.1 | 4007 | 4333 |
40 s ϕ 12 40 s ϕ 12 40 s phi1240 s \phi 12 per meter width will be disposed to resist the shear design forces.
40 s ϕ 12 40 s ϕ 12 40 s phi1240 s \phi 12 每米宽度将用于抵抗剪切设计力。
These reinforcements values result in a reinforcement ratio of 130 k g / m 3 130 k g / m 3 130kg//m^(3)130 \mathbf{k g} / \mathbf{m}^{\mathbf{3}} for both beams (roof slab beams and intermediate slabs beams).
根据这些配筋值,两根梁(屋顶板梁和中间板梁)的配筋率均为 130 k g / m 3 130 k g / m 3 130kg//m^(3)130 \mathbf{k g} / \mathbf{m}^{\mathbf{3}}

7.1.2.4.5 Diameter 1.80 m columns. Axial-bending verification
7.1.2.4.5 直径 1.80 米的支柱。轴向弯曲验证

In following table are presented the most unfavourable correspondent internal forces obtained in the columns.
下表列出了各列中获得的最不利的相应内力。
Internal forces combination
内力组合
N Ed [ kN ] N Ed [ kN ] N_(Ed)[kN]\mathrm{N}_{\mathrm{Ed}}[\mathrm{kN}] M Ed [ kNm ] M Ed [ kNm ] M_(Ed)[kNm]\mathrm{M}_{\mathrm{Ed}}[\mathrm{kNm}]
N min M N min M N_(min)-M\mathrm{N}_{\min }-\mathrm{M} -54449 540
N M max N M max N-M_(max)\mathrm{~N}-\mathrm{M}_{\max } -39000 1350
N M max N M max N-M_(max)\mathrm{~N}-\mathrm{M}_{\max } (ALS)   N M max N M max N-M_(max)\mathrm{~N}-\mathrm{M}_{\max }