这是用户在 2024-7-3 14:54 为 https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023WR036332 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
使用 GRACE 后续测距数据以低延迟揭示高时间分辨率洪水演化
Research Article 研究论文
Open Access 开放获取

Revealing High-Temporal-Resolution Flood Evolution With Low Latency Using GRACE Follow-On Ranging Data
使用 GRACE 后续测距数据以低延迟揭示高时间分辨率洪水演化

Hao-si Li

Hao-si Li

Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for more papers by this author
Shuang Yi

Corresponding Author

Shuang Yi

Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Correspondence to:

S. Yi,

s.yi@ucas.ac.cn

Search for more papers by this author
Zi-ren Luo

Zi-ren Luo

Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

Hangzhou Institute for Advanced Study of UCAS, Hangzhou, China

Search for more papers by this author
Peng Xu

Peng Xu

Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

Hangzhou Institute for Advanced Study of UCAS, Hangzhou, China

Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, China

Search for more papers by this author
First published: 15 June 2024

首次发布: 2024 年 6 月 15 日 https://doi.org/10.1029/2023WR036332

Abstract 抽象

An emerging approach is utilizing the line-of-sight gravity difference (LGD) between the twin Gravity Recovery and Climate Experiment Follow-On (GFO) satellites to refine the temporal resolution of water storage estimates from 1 month to days, thus making the data applicable to transient extreme climate events like floods. However, applying the approach to medium-scale climate events (with mass changes of several tens of gigatons) is challenging due to surrounding signal contamination and low signal-to-noise ratios. To address this problem, this study develops an improved algorithm accounting for peripheral signal sources and temporal correlations in mass variation. Two floods in July 2021 in Western Europe and Central China (CC) are chosen as case studies to demonstrate our approach's applicability to moderate floods in complex hydrological settings. The results present the temporal progression of the floods up to a maximum of ∼40 Gt with a scale of 3–5 days. However, the GFO-derived water gain in CC is much lower than expected values from land surface models, indicating a mass deficit during the flood. We find that the potent manipulation of water resources by human activities might impact the predictive capabilities of these models, thereby misrepresenting the hydrological evolution during the flood event. This study refines the viability of applying GFO data to restore transient dynamics characterizing extreme climate events of ∼20 Gt magnitude. We also provide insights on the use of LGD data for high-temporal-resolution estimation of water storage changes and underscore the non-negligible influence of human interventions on short-term hydrological dynamics.
一种新兴方法是利用重力恢复和气候实验后续(GFO)两颗卫星之间的视距重力差(LGD)将储水估计的时间分辨率从1个月细化为几天,从而使数据适用于洪水等瞬态极端气候事件。然而,由于周围信号污染和低信噪比,将该方法应用于中尺度气候事件(质量变化为数十亿吨)具有挑战性。为了解决这个问题,本研究开发了一种改进的算法,可以考虑外围信号源和质量变化中的时间相关性。本文以2021年7月西欧和华中地区的两起洪灾为例,证明了本研究方法对复杂水文环境下中度洪涝的适用性。结果显示了洪水的时间进程,最大可达∼40 Gt,规模为3-5天。然而,GFO得出的CC水增益远低于地表模型的预期值,表明洪水期间存在质量不足。我们发现,人类活动对水资源的有力操纵可能会影响这些模型的预测能力,从而歪曲洪水事件期间的水文演变。本研究完善了应用GFO数据恢复表征∼20 Gt级极端气候事件的瞬态动力学的可行性。我们还提供了有关使用LGD数据对储水量变化进行高时间分辨率估计的见解,并强调了人为干预对短期水文动态的不可忽视的影响。

Key Points 要点

  • Flood monitoring based on the Gravity Recovery and Climate Experiment (GRACE) Follow-On laser and microwave ranging observations with 3–5 days resolution
    基于重力恢复和气候实验(GRACE)后续激光和微波测距观测的洪水监测,分辨率为3-5天

  • Two 2021 summer floods of about 40 gigatons in Western Europe and Central China are compared
    比较了西欧和中国中部的两次 2021 年夏季洪水,约 40 亿吨

  • GRACE Follow-On's flood detectability has been enhanced to detect floods as small as 16 gigatons
    GRACE Follow-On的洪水探测能力得到了增强,可以探测到小至16千兆吨的洪水

1 Introduction 1 引言

Profound global climate changes pose substantial threats to ecosystems and human health worldwide, usually in the form of extreme weather events (EWEs) (Oki & Kanae, 2006). In recent years, the frequency and intensity of EWEs, such as floods, heatwaves, windstorms, and fires, have increased dramatically in most parts of the world (Alderman et al., 2012; Anderson & Bell, 2011; Brunkard et al., 2008; Deb et al., 2020; Heim, 2002). Among these, floods are the most dangerous and costly natural disaster for densely populated cities near rivers. Urban flooding inflicts widespread devastation, jeopardizing the livelihoods of human and regional even national welfare. From 1970 to 2019, floods accounts for the highest frequency of natural disasters (44%), causing the second-largest economic loss and the third-largest casualties (WMO, 2021). Consequently, timely and accurate identification of the flood dynamics and severity is critical to public health and damage mitigation. However, ground observations and conventional satellite remote sensing methods offer sporadic and localized coverage, presenting limitations in balancing spatial and temporal resolution of flood monitoring in complex hydrological environments. This constraint hinders the effective monitoring of floods. In this study, we will present a new approach to derive water storage sequences with a resolution of days using global and continuous gravimetric inter-satellite measurements. Compared to previous similar methods, our improved approach theoretically increases the detectability of gravimetric satellites, particularly in the case of moderate-sized floods.
深刻的全球气候变化对全球生态系统和人类健康构成重大威胁,通常以极端天气事件(EWE)的形式出现(Oki&Kanae,2006)。近年来,洪水、热浪、风暴和火灾等 EWE 的频率和强度在世界大部分地区急剧增加(Alderman 等人,2012 年;Anderson&Bell,2011年;Brunkard 等人,2008 年;Deb 等人,2020 年;Heim,2002年)。其中,洪水是河流附近人口稠密城市最危险、代价最高的自然灾害。城市洪涝造成大范围破坏,危及人类和地区甚至国家福利的生计。从 1970 年到 2019 年,洪水是自然灾害发生频率最高的 (44%),造成第二大经济损失和第三大伤亡(WMO,2021)。因此,及时准确地识别洪水动态和严重程度对于公共卫生和减轻损失至关重要。然而,地面观测和常规卫星遥感方法提供了零星和局部的覆盖范围,在平衡复杂水文环境中洪水监测的空间和时间分辨率方面存在局限性。这种制约因素阻碍了对洪水的有效监测。在这项研究中,我们将提出一种新方法,使用全球和连续重力星间测量来推导具有天分辨率的储水序列。与以前的类似方法相比,我们改进的方法理论上提高了重力卫星的可探测性,特别是在中等规模洪水的情况下。

Historically, flood monitoring and the associated hydrological insights have primarily relied on ground-based rain and stream gauging stations and satellite remote sensing. For ground-based gauging stations, hydrological observations are interrupted due to stations being out of service and are often unshared among upstream and downstream countries in a basin. Moreover, gauging stations are restricted to measuring solely water height, failing to capture the spatial extent of flood events (Klemas, 2015). Therefore, in situ observations are exceedingly limited for widespread floods, while satellite remote sensing measurements enable an overall perspective that transcends national borders. Satellite imagery allows for the creation of detailed maps and models of the affected areas, which can be used to assess the damage extent and identify vulnerable areas at risk of future flooding, but its inability to measure the soil moisture hampers the quantitative analysis of floods (Sanyal & Lu, 2004).
从历史上看,洪水监测和相关的水文见解主要依赖于地面雨量和溪流测量站以及卫星遥感。对于地面测量站,由于台站停止服务,水文观测中断,并且流域的上游和下游国家之间往往不共享。此外,测量站仅限于测量水位高度,无法捕捉到洪水事件的空间范围(Klemas,2015)。因此,对于大范围的洪水,实地观测极为有限,而卫星遥感测量则能够从整体角度超越国界。卫星图像可以创建受影响地区的详细地图和模型,可用于评估破坏程度并确定未来可能发生洪水的脆弱地区,但卫星图像无法测量土壤湿度阻碍了洪水的定量分析(Sanyal&Lu,2004年)。

Diverging from conventional remote sensing techniques, Gravity Recovery and Climate Experiment (GRACE) provides a quantitative assessment of floods on a monthly resolution (Long et al., 2014). Since its launch in 2002, GRACE has continuously detected the global gravity field for 15 years, emerging as a cornerstone in the study of climate change and hydrology for its consistent data with monthly resolution and global coverage (Chen et al., 2022; Rodell et al., 2018; Tapley et al., 2019). Building on its tremendous success, GRACE Follow-On (GFO) was launched on 18 May 2018, as the successor of GRACE (Landerer et al., 2020). GFO hosts the baseline K-band Ranging (KBR) system and the novel Laser Ranging Interferometer (LRI) (Kornfeld et al., 2019). These two instruments operate simultaneously but independently to measure inter-satellite range of ∼220 km at noise levels of 1
与传统的遥感技术不同,重力恢复和气候实验(GRACE)提供了每月分辨率的洪水定量评估(Long等人,2014)。自 2002 年推出以来,GRACE 已连续探测全球重力场 15 年,因其月度分辨率和全球覆盖的一致数据而成为气候变化和水文研究的基石(Chen et al., 2022;Rodell 等人,2018 年;Tapley 等人,2019 年)。在其巨大成功的基础上,GRACE Follow-On (GFO) 于 2018 年 5 月 18 日推出,作为 GRACE 的继任者(Landerer 等人,2020 年)。GFO 拥有基线 K 波段测距 (KBR) 系统和新型激光测距干涉仪 (LRI)(Kornfeld 等人,2019 年)。这两种仪器同时但独立地工作,以测量噪声水平为 1 的 ∼220 km 的卫星间范围
μm/Hz ${\upmu }\mathrm{m}/\sqrt{\text{Hz}}$ and 1  和 1nm/Hz $\text{nm}/\sqrt{\text{Hz}}$, respectively (Abich et al., 2019; Müller et al., 2022). The GRACE and GFO raw measurements undergo data pre-processing by Jet Propulsion Laboratory (JPL) to obtain Level-1B (L1B) data. Subsequently, the L1B data is further processed to derive the Level-2 (L2) monthly gravity field and Level-3 (L3) surface mass concentration. The resulting L2 and L3 data have a spatial resolution of 300–500 km and an uncertainty of 1–2 cm in equivalent water height (EWH) (Tapley et al., 2019; Watkins et al., 2015; Yuan, 2019).
,分别(Abich 等人,2019 年;Müller 等人,2022 年)。GRACE和GFO原始测量值由喷气推进实验室(JPL)进行数据预处理,以获得1B级(L1B)数据。随后,对L1B数据进行进一步处理,得出2级(L2)月重力场和3级(L3)表面质量浓度。由此产生的 L2 和 L3 数据的空间分辨率为 300-500 公里,等效水高 (EWH) 的不确定性为 1-2 厘米(Tapley 等人,2019 年;Watkins 等人,2015 年;袁,2019)。

Heavy rainfall often triggers severe flooding on time scales ranging from hours to days. Therefore, the monthly resolution of L2 and L3 data makes it difficult to analyze the temporal details of EMEs like floods. In addition, the typical 2-month delay of L2 and L3 data fails to satisfy the requirement for timeliness within 1 week. To overcome these limitations, the Institute of Geodesy at the Graz University of Technology (ITSG) applies the Kalman smoothing to obtain the daily snapshots of the global gravity field (Kvas et al., 2019). Gouweleeuw et al. (2018) pioneered the assessment of significant flood occurrences in the Ganges–Brahmaputra Delta during 2004 and 2007. They affirmed the potential of the ITSG daily solution for large-scale flood monitoring. Furthermore, an innovative approach emerges in the form of the line-of-sight gravity difference (LGD) between the twin gravimetric satellites. This novel metric is computed from GFO L1B inter-satellite ranging data directly, promising to improve the temporal resolution to a time scale of days with a latency of around 2 weeks (Han, Yeo, et al., 2021). The LGD is a generalized measurement of GFO, carrying the physical significance of representing the line-of-sight (LOS) projection of the perturbation gravity acceleration exerted on the GFO twin satellites. Thus, its calculation involves subtracting the instantaneous inter-satellite ranging measurements (KBR1B and LRI1B) from the dynamical orbits integrated by a reference gravity field, measurements of non-gravitational accelerations and other tidal effects (Ghobadi-Far et al., 2018; Han, Ghobadi-Far, et al., 2021). Therefore, LGD reveals in situ surface mass anomalies relative to the reference state. As the GFO constellation flies over a positive mass anomaly, the inter-satellite separation diminishes, resulting in negative LGD anomalies. Furthermore, because GFO repeats its trajectory over the same surface mass anomaly within 3–5 days, the temporal resolution of LGD data is reduced to days. This idea has previously been utilized to investigate flooding in Australia and Bangladesh (Han, Yeo, et al., 2021; Han, Ghobadi-Far, et al., 2021). In these researches, the overpass LRI LGD measurements were assumed to only represent the instantaneous surface water storage (SWS) in the study regions and the peripheral signals were thus neglected. This assumption is reasonable as these two floods were much larger than their surrounding signals. However, in general, complex hydrological environments can result in the LGD generated by the flooding mixing with other neighboring signals, that is, the leakage effect (Yi & Heki, 2020), making estimates of flood magnitudes from existing inversion methods susceptible to bias.
强降雨通常会引发数小时至数天不等的严重洪水。因此,L2 和 L3 数据的月度分辨率使得分析 EME 的时间细节(如洪水)变得困难。此外,L2 和 L3 数据典型的 2 个月延迟无法满足 1 周内及时性的要求。为了克服这些限制,格拉茨理工大学大地测量研究所(ITSG)应用卡尔曼平滑来获得全球重力场的每日快照(Kvas等人,2019)。Gouweleeuw等人(2018)率先评估了2004年和2007年恒河-布拉马普特拉河三角洲的重大洪水事件。他们肯定了ITSG日常解决方案在大规模洪水监测方面的潜力。此外,还出现了一种创新方法,即双重力卫星之间的视距重力差(LGD)。这个新指标是直接从GFO L1B星间测距数据计算得出的,有望将时间分辨率提高到延迟约为2周的天数时间尺度(Han, Yeo, et al., 2021)。LGD是GFO的广义测量,具有表示GFO双卫星上施加的扰动重力加速度的视距(LOS)投影的物理意义。因此,其计算涉及从参考重力场积分的动态轨道中减去瞬时星间测距测量值(KBR1B 和 LRI1B)、非重力加速度和其他潮汐效应的测量值(Ghobadi-Far 等人,2018 年;Han、Ghobadi-Far 等人,2021 年)。因此,LGD揭示了相对于参考态的原位表面质量异常。 当GFO星座飞越正质量异常时,星间分离减小,导致LGD负异常。此外,由于GFO在3-5天内重复其在相同表面质量异常上的轨迹,因此LGD数据的时间分辨率减少到几天。这个想法以前曾被用于调查澳大利亚和孟加拉国的洪水(Han, Yeo, et al., 2021;Han、Ghobadi-Far 等人,2021 年)。在这些研究中,假设立交桥LRI LGD测量仅代表研究区域的瞬时地表储水量(SWS),因此忽略了外围信号。这个假设是合理的,因为这两次洪水比周围的信号大得多。然而,一般来说,复杂的水文环境会导致洪水与其他相邻信号混合产生的LGD,即泄漏效应(Yi & Heki,2020),使得现有反演方法对洪水幅度的估计容易受到偏差的影响。

The main objective of this study is to develop an advanced low-latency inversion algorithm for high-temporal-resolution monitoring of flood dynamics using the GFO LRI and KBR LGD. Our enhanced method, which builds on previous algorithms (Han, Yeo, et al., 2021; Han, Ghobadi-Far, et al., 2021), considers the signal interference from neighboring regions with hydrological complexity, as well as the temporal correlation inherent to the flood events. As a result, our method strengthens the ability to extract medium-amplitude mass change signals with improved stability. To validate the efficacy of this algorithm, this study examines two floods in July 2021 occurring in Western Europe (WE) and Zhengzhou, Central China (CC), respectively. The analysis focuses on deriving temporal progressions of total water storage (TWS) in WE and CC, elucidating the dynamic evolution every few days from June to August 2021. Additionally, we discuss the underlying factors contributing to the difference between the inundation events in WE and CC, as well as the intricate interplay between anthropogenic interventions and flood occurrences. Moreover, this study further validates the inversion results using the ITSG daily solution and demonstrates better stability of our method. We also compare the performance of the existing and our inversion approach across a range of signal-to-noise ratios (SNRs). This algorithm enables the thorough exploration and comprehension of the temporal patterns and mechanisms of inundation in terms of days, along with their intricate connections to human activities, offering valuable insights for formulating robust flood contingency strategies.
本研究的主要目的是开发一种先进的低延迟反演算法,用于使用 GFO LRI 和 KBR LGD 对洪水动力学进行高时间分辨率监测。我们的增强方法建立在以前的算法之上(Han, Yeo, et al., 2021;Han, Ghobadi-Far, et al., 2021)考虑了来自邻近地区的信号干扰与水文复杂性,以及洪水事件固有的时间相关性。因此,我们的方法增强了提取中等幅度质量变化信号的能力,并提高了稳定性。为了验证该算法的有效性,本研究考察了 2021 年 7 月分别发生在西欧 (WE) 和华中郑州 (CC) 的两次洪水。分析重点推导了WE和CC总储水量(TWS)的时间变化,阐明了2021年6月至8月每隔几天的动态演变。此外,我们还讨论了导致 WE 和 CC 洪水事件之间差异的潜在因素,以及人为干预与洪水发生之间错综复杂的相互作用。此外,本研究进一步验证了使用ITSG日解的反演结果,并证明了该方法的稳定性更好。我们还比较了现有方法和我们的反演方法在一系列信噪比 (SNR) 下的性能。该算法能够彻底探索和理解以天为单位的洪水时间模式和机制,以及它们与人类活动的错综复杂的联系,为制定稳健的洪水应急策略提供有价值的见解。

2 Data 2 数据

2.1 Study Regions 2.1 研究区域

WE and CC are densely populated, industrialized, and frequently flooded. However, Zhengzhou and its environs have more dams and reservoirs and a larger proportion of arable land than WE, including the Xiaolangdi Dam (XD) with a total capacity of 12.8 km3 (Kong et al., 2022). In mid-July 2021, WE experienced intense rainstorm events and flooding caused by a persistent low-pressure system, which led to the accumulated precipitation reaching 200%–400% of the long-term average (1982–2010) in Western European countries. The record-breaking rainfall on 14 July 2021, caused widespread flooding of the Meuse and Rhine Rivers, resulting in severe casualties and property damage (Koks et al., 2021). Meanwhile, from 17 to 23 July 2021, Zhengzhou and its adjacent areas suffered from extraordinary rainfall and flooding due to the western Pacific subtropical pressure and the continental high pressure (Su et al., 2021; Xiao et al., 2022).
WE 和 CC 人口稠密、工业化且经常被洪水淹没。然而,郑州及其周边地区的水坝和水库数量比WE多,耕地比例更大,包括总容量为12.8公里 3 的小浪地大坝(XD)(Kong et al., 2022)。2021 年 7 月中旬,西欧国家经历了持续低压系统引发的雨和洪水,导致西欧国家的累积降水量达到长期平均水平(1982-2010 年)的 200%-400%。2021 年 7 月 14 日创纪录的降雨导致默兹河和莱茵河大面积洪水泛滥,造成严重人员伤亡和财产损失(Koks et al.,2021)。同时,2021年7月17日至23日,受西太平洋副热带气压和大陆高压影响,郑州及其邻近地区遭受特异大降雨和洪涝灾害(Su et al., 2021;Xiao 等人,2022 年)。

2.2 Inter-Satellite Measurements of GFO
2.2 GFO的星间测量

We use the inter-satellite measurements of GFO, KBR1B, and LRI1B, to derive TWS change (TWSC). Both KBR1B and LRI1B data sets encompass the inter-satellite quantities (range, its first derivative called range-rate, and its second derivative called range-acceleration) and the light-time correction, necessitated by the finite velocity of light (Yan et al., 2021). Moreover, an additional correction, the so-called antenna offset correction, needs to be added to KBR data. This correction projects the inter-satellite distance between individual satellites' KBR antenna phase centers into that along the line-of-sight direction. After these corrections, KBR1B and LRI1B reflect the static gravity signal, the non-gravitational accelerations and the perturbations caused by surface mass change, like floods.
我们利用GFO、KBR1B和LRI1B的星间测量来推导TWS变化(TWSC)。KBR1B 和 LRI1B 数据集都包含卫星间量(距离,其一阶导数称为距离速率,二阶导数称为距离加速度)和光时校正,这是有限光速所必需的(Yan et al., 2021)。此外,还需要在KBR数据中添加额外的校正,即所谓的天线偏移校正。该校正将单个卫星的KBR天线相位中心之间的星间距离投影到沿视线方向的距离中。经过这些修正后,KBR1B和LRI1B反映了静态重力信号,非重力加速度以及由表面质量变化引起的扰动,如洪水。

This paper uses the KBR1B and LRI1B of release (RL) 04 with a latency of ∼2 weeks. During the period from June to August 2021, the LRI intermittently entered diagnostic mode for a total of 29 days and the GFO satellites were transitioned to nadir pointing. Hence, no LRI data was available during the diagnostic mode periods. Consequently, for the analysis of floods in WE, we examine 87 arcs of KBR1B data and 50 arcs of LRI1B data from June to August. Similarly, for studying floods in CC, we analyze 43 arcs of KBR1B data and 30 arcs of LRI1B data.
本文使用版本 (RL) 04 的 KBR1B 和 LRI1B,延迟为 ∼2 周。在2021年6月至8月期间,LRI间歇性进入诊断模式共29天,GFO卫星过渡到最低点指向。因此,在诊断模式期间没有可用的LRI数据。因此,为了分析WE的洪水,我们检查了6月至8月的87个KBR1B数据弧和50个LRI1B数据弧。同样,为了研究 CC 中的洪水,我们分析了 43 个 KBR1B 数据弧和 30 个 LRI1B 数据弧。

2.3 Soil Moisture Changes From Models
2.3 模型土壤水分变化

We use a land surface model (LSM) of Global Land Data Assimilation System (GLDAS) to derive soil moisture changes (SMC). GLDAS ingests satellite- and ground-based data to produce land surface results. GLDAS currently operates four LSMs: Mosaic, NOAH CLM and VIC (Rodell et al., 2004) and NOAH is use in this study. The temporal and spatial resolution of GLDAS/NOAH is 0.25° × 0.25° and 3 hours. In this study, we use four-layer soil moisture, rain precipitation rate and runoff from GLDAS/NOAH v2.1.
本文采用全球土地数据同化系统(GLDAS)的地表模型(LSM)推导土壤水分变化(SMC)。GLDAS摄取卫星和地面数据以生成地表结果。GLDAS目前运行着四种LSM:Mosaic,NOAH CLM和VIC(Rodell等人,2004年),NOAH用于本研究。GLDAS/NOAH的时空分辨率为0.25°×0.25°和3小时。在这项研究中,我们使用了来自GLDAS/NOAH v2.1的四层土壤水分、降雨量和径流。

When flooding occurs, the SMC is expected to be weaker than that in TWS due to the additional contribution of SWS that occurs in terms of inundation and deep infiltration. Therefore, the difference between GFO and LSM can be used to derive SWS changes (SWSC). Even so, since these models do not simulate human activities, such as groundwater extraction and dam construction, the difference may also be attributable to the anthropogenic influences (Yi et al., 2016).
当洪水发生时,由于SWS在淹没和深层渗透方面的额外贡献,预计SMC将弱于TWS。因此,GFO 和 LSM 之间的差异可用于推导 SWS 变化 (SWSC)。即便如此,由于这些模型没有模拟人类活动,例如地下水开采和大坝建设,因此差异也可能归因于人为影响(Yi et al., 2016)。

2.4 Streamflow, Sedimentation, Reservoir Storage Within the Yellow River Basin
2.4 黄河流域内的径流、沉积、水库蓄水

The Yellow River Basin (YRB), renowned as one of the most disaster-vulnerable river basins in human history, has witnessed the implementation of a series of pivotal water conservancy management projects, including XD. The streamflow, sedimentation and reservoir storage data used in this study is measured by ground-based stations and obtained from the Information Center, Ministry of Water Resources, China.
黄河流域被誉为人类历史上最易受灾害影响的河流流域之一,见证了包括黄河流域在内的一系列关键水利管理项目的实施。本研究使用的流量、沉积和水库蓄水数据由地面站测量,并从中国水利部信息中心获得。

2.5 Daily and Monthly Snapshot of the Global Gravity Field
2.5 全球重力场的每日和每月快照

To compare with the GFO LGD measurements, we employ the daily gravity solution processed by ITSG (Kvas et al., 2019) and the monthly gravity solution processed by ITSG and JPL (NASA Jet Propulsion Laboratory, 2022) to generate synthetic LGDs. Both solutions are presented in the form of spherical harmonics coefficients (SHCs), with the ITSG daily solution having a maximum degree of 40, the JPL monthly solution having a maximum degree of 96 and the ITSG monthly solution having a maximum degree of 120.
为了与 GFO LGD 测量值进行比较,我们采用 ITSG 处理的每日重力解(Kvas 等人,2019 年)和 ITSG 和 JPL(NASA 喷气推进实验室,2022 年)处理的月重力解来生成合成 LGD。两种解都以球谐波系数 (SHC) 的形式表示,ITSG 每日解的最大度数为 40,JPL 月度解的最大度数为 96,ITSG 月度解的最大度数为 120。

3 Methods 3 方法

In this section, we present a detailed overview of the key components and steps in the study's methodology, highlighting its applicability in monitoring the moderate floods within the complex hydrological contexts. This section elucidates the methods of deriving the LGD measurements from instantaneous GFO L1B data, synthesizing the LGD from SHC and gridded data and estimating the TWSC from GFO LGD considering the hydrological surroundings and temporal correlation of the floods. Furthermore, a closed-loop test for the estimation algorithm using the GLDAS SMC is performed for validation.
在本节中,我们详细介绍了研究方法的关键组成部分和步骤,强调了其在复杂水文背景下监测中度洪水的适用性。本节阐明了从瞬时GFO L1B数据推导LGD测量值的方法,从SHC和网格化数据合成LGD,并考虑水文环境和洪水的时间相关性从GFO LGD估算TWSC。此外,使用GLDAS SMC对估计算法进行了闭环测试以进行验证。

3.1 Processing LGD From GFO L1B Data
3.1 从GFO L1B数据处理LGD

In accordance with the algorithm developed by Han, Ghobadi-Far, et al. (2021), LGD is computed as follows: First, we use Gravity Recovery Object Oriented Programming System to integrate dynamic reference orbits of GFO twin satellites (Mayer-Gürr et al., 2021), and Table 1 provides a full compilation of perturbation models and GFO measurements, including Earth's gravity force, solid Earth tide, ocean tide, N-body perturbation, non-gravitational force, atmosphere and ocean de-aliasing, etc. Notably, the Earth's gravity force is calculated by combining the JPL monthly L2 solution (degrees 0–96) with the high-degree (97–200) portion of GOCO06s for a full consideration of global gravity field before the flooding occurrence. This hybrid gravity field is an equivalence of rectifying low-degree temporal gravity signals that are not captured by GOCO06s through the integration of JPL data (Ghobadi-Far et al., 2020, 2022). Then, we synthesize range-rate using the integrated orbits and derive range-rate residual by subtracting the range-rate in LRI1B and KRB1B from the synthetic reference range-rate. Next, the LGD is computed by filtering range-acceleration residual—the numerical difference of the range-rate residual—by the frequency domain transfer function (Z(f) = 1.0 + 3.5−4f −1.04) described in Ghobadi-Far et al. (2018). As shown in Figures 4c and 4f, the LGD reflects the instantaneous gravity perturbation caused by TWSC referenced to the mean TWS in June 2021.
根据Han, Ghobadi-Far, et al. ( 2021)开发的算法,LGD的计算方法如下: 首先,我们使用重力恢复面向对象的规划系统来整合GFO双卫星的动态参考轨道(Mayer-Gürr et al., 2021),表1提供了扰动模型和GFO测量的完整汇编,包括地球的重力, 固体地球潮汐、海洋潮汐、N体扰动、非引力、大气和海洋去混叠等。值得注意的是,地球的重力是通过将JPL每月L2解(0-96度)与GOCO06s的高度(97-200度)部分相结合来计算的,以充分考虑洪水发生前的全球重力场。这种混合重力场是通过整合 JPL 数据来纠正 GOCO06 未捕获的低度时间重力信号的等价物(Ghobadi-Far 等人,2020 年,2022 年)。然后,我们使用积分轨道合成距离率,并通过从合成参考距离率中减去LRI1B和KRB1B中的距离率来推导出距离率残差。接下来,通过Ghobadi-Far等人(2018)中描述的频域传递函数(Z(f)= 1.0 + 3.5 −4 f −1.04 )滤波距离-加速度残差(距离-速率残差的数值差)来计算LGD。如图4c和图4f所示,LGD反映了2021年6月TWSC与平均TWS相关的瞬时重力扰动。

Table 1. Models and Measurements Used for Orbit Integration
表 1.用于轨道积分的模型和测量
Description 描述 Model and measurements 模型和测量 Maximum degree 最高学位 Latency 延迟
Astronomical models 天文模型
Earth rotation 地球自转 IERS 2010a IERS 2010 a
Ephemerides 星历表 JPL DE432b 喷气推进实验室 DE432 b
Potential models 潜在模型
Earth's gravity field 地球重力场 d/o 0–96: JPL unfiltered monthly mean gravity field for June 2021 RL6.1c
d/o 0–96:2021 年 6 月 JPL 未经过滤的月平均重力场 RL6.1 c
Temporal: d/o 96 时间:d/o 96
d/o 97–200: GOCO06s (static, trend and annual)d
d/o 97–200: GOCO06s(静态、趋势和年度) d
Static: d/o 200 静态: d/o 200
Solid Earth tide Solid Earth潮汐 IERS 2010, anelastica
IERS 2010,非弹性 a
d/o 4
Ocean tide 海洋潮汐 FES2014be FES2014b系列 e d/o 180
Pole tide 极地潮汐 IERS 2010, linear mean polea
IERS 2010,线性平均极点 a
c21, s21
c,s 21 21
Ocean pole tide 海洋极地潮汐 Desai (2002) 德赛 ( 2002) d/o 220
Atmospheric tides 大气潮汐 AOD1B RL07f AOD1B RL07 f d/o 180 1–3 days 1–3 天
AOD AOD1B RL07f AOD1B RL07 f d/o 180 1–3 days 1–3 天
Relativistic corrections
相对论修正
IERS 2010a IERS 2010 a
N-body tides (Moon, Sun, planets) JPL DE432b
Measurements
Non-gravitational forces ACT1B RL04g ∼14 days
Satellites' attitude SCA1B RL04g ∼14 days
Precise orbit determination GNV1B RL04g ∼14 days
  • Note. d/o = degree and order.
    注意。d/o = 度数和顺序。
  • a Luzum & Petit (2012).
    a Luzum和Petit(2012)。
  • b Folkner et al. (2014).
    b Folkner等人(2014)。
  • c NASA Jet Propulsion Laboratory (2022).
    c 美国宇航局喷气推进实验室 ( 2022).
  • d Kvas et al. (2021).
    d Kvas 等人( 2021 年)。
  • e Carrere et al. (2015).
    e Carrere等人(2015)。
  • f Shihora et al. (2022).
    Shihora 等人( 2022 年)。
  • g Wen et al. (2019).
    g 温等人(2019)。

Figure 1 compares the KBR and LRI LGD with and without reference orbits on 17 July 2021. Below 10 mHz, the reference-free LGDs from KBR/LRI are four orders of magnitude smaller than the reference-reserved counterparts, indicating that the subtraction of the reference orbits is effective in removing background signals at mid and low frequencies. Furthermore, the frequency components for reference-free KBR LGD and LRI LGD show similarity, demonstrating mutual validation of data quality. The SNRs of the reference-free KBR and LRI LGD reach one at 25 and 40 mHz, respectively. Beyond the frequencies where the SNR equals one, the LGD components are predominantly influenced by high-frequency noise that can hardly be reduced by the reference orbits. Additionally, the LGD component at 10 mHz corresponds to gravity signals at degree ∼54, or a surface gravity anomaly with a scale of ∼360 km. Therefore, the LGDs of KBR and LRI are capable of capturing the flooding in WE and CC during July 2021. To suppress the high-frequency stochastic noise, we apply a band-pass filter with cutoff frequencies of 1 and 12 mHz for the KBR LGDs and 1 and 30 mHz for the LRI LGDs. It is to mention that the LGDs used in the subsequent text refer to the reference-free LGDs. Furthermore, it is important to note that the discontinuity in the reference-free LRI LGD (black box in Figure 1) is likely due to the different error levels between the JPL temporal gravity model and the GOCO06s.
图 1 比较了 2021 年 7 月 17 日有和没有参考轨道的 KBR 和 LRI LGD。在10 mHz以下,KBR/LRI的无参考LGD比保留参考的LGD小4个数量级,表明减去参考轨道可以有效地去除中低频的背景信号。此外,无参考KBR LGD和LRI LGD的频率分量具有相似性,表明数据质量相互验证。无参考 KBR 和 LRI LGD 的 SNR 分别在 25 和 40 mHz 时达到 1。除了 SNR 等于 1 的频率之外,LGD 分量主要受高频噪声的影响,而参考轨道几乎无法降低这些噪声。此外,10 mHz 的 LGD 分量对应于 ∼54 度的重力信号,或尺度为 ∼360 km 的地表重力异常。因此,KBR 和 LRI 的 LGD 能够捕获 2021 年 7 月期间 WE 和 CC 的洪水。为了抑制高频随机噪声,我们应用了一个带通滤波器,KBR LGD的截止频率为1和12 mHz,LRI LGD的截止频率为1和30 mHz。值得一提的是,后续文本中使用的 LGD 是指无引用的 LGD。此外,需要注意的是,无参考LRI LGD(图1中的黑匣子)的不连续性可能是由于JPL时间重力模型和GOCO06之间的误差水平不同。

Details are in the caption following the image

Amplitude Spectral Densities (ASD) of line-of-sight gravity difference (LGD) computed from KBR1B (purple) and LRI1B (yellow) on 17 July 2021. For comparison, the ASDs of LGD in which the reference orbits are reserved are shown (orange for KBR1B, blue for LRI1B). Dashed vertical lines indicate the lower and upper stopband frequencies of the band-pass filters applied to LGD (black and green for K-band Ranging LGD, red and black for Laser Ranging Interferometer LGD).
2021 年 7 月 17 日从 KBR1B(紫色)和 LRI1B(黄色)计算的视距重力差 (LGD) 的振幅光谱密度 (ASD)。为了进行比较,显示了保留参考轨道的LGD的ASD(KBR1B为橙色,LRI1B为蓝色)。垂直虚线表示应用于 LGD 的带通滤波器的下限带频率和上限(黑色和绿色表示 K 波段测距 LGD,红色和黑色表示激光测距干涉仪 LGD)。

3.2 Synthesize LGD From Models
3.2 从模型合成LGD

The definition of LGD is mathematically expressed as follows:
δgLOS(t)=(δV1)(δV2),eLOS=δg1δg2,eLOS=δg1δg2,r1r2|r1r2|, $\begin{array}{c}\delta {g}^{LOS}(t)=\left\langle \nabla \left(\delta {V}_{1}\right)-\nabla \left(\delta {V}_{2}\right),\,{\boldsymbol{e}}^{LOS}\right\rangle =\left\langle \delta {\boldsymbol{g}}_{1}-\delta {\boldsymbol{g}}_{2},{\boldsymbol{e}}^{LOS}\right\rangle =\left\langle \delta {\boldsymbol{g}}_{1}-\delta {\boldsymbol{g}}_{2},\frac{{\boldsymbol{r}}_{1}-{\boldsymbol{r}}_{2}}{\vert {\boldsymbol{r}}_{1}-{\boldsymbol{r}}_{2}\vert }\right\rangle ,\end{array}$ (1)
where δVi and δgi(i = 1,2) are the perturbation gravity potential and acceleration for each GFO satellite, eLOS is the LOS unit vector, ri is the position vector in Cartesian coordinates, and the notations || $\vert \,\vert $ and 〈⋅, ⋅〉 denote the magnitude of a vector and the inner product of two vectors, separately. In this section, the formulas for synthesizing LGD from gridded data and SHC, originally introduced in Ghobadi-Far et al. (2022), are reformulated for this study.

3.2.1 LGD From Gridded Data
3.2.1 来自网格化数据的 LGD

The soil moisture of GLDAS is represented in the form of EWH grids. In the Earth-fixed frame, at a specific point (ri, ϕi, λi) where the ith GFO satellite is located, the perturbation gravitational potential can be expressed as a result of the EWH anomaly set on the Earth's surface (Moritz, 1980).
GLDAS的土壤湿度以EWH网格的形式表示。在地球固定坐标系中,在第i颗GFO卫星所在的特定点(r,φ,λ)上,扰动引力势可以表示为地球表面设置的EWH异常的结果(Moritz,1980)。
δVi=Gj=1JρwAjσjRl=0(1+kl)(Rri)l+1Pl(cosψij), $\begin{array}{c}\delta {V}_{i}=G\sum\limits _{j=1}^{J}\frac{{\rho }_{w}{A}_{j}{\sigma }_{j}}{{R}_{\bigoplus}}\sum\limits _{l=0}^{\infty }\left(1+{k}_{l}\right){\left(\frac{{R}_{\bigoplus}}{{r}_{i}}\right)}^{l+1}{P}_{l}\left(\cos \,{\psi }_{ij}\right),\end{array}$ (2)
where j indicates the index of the EWH anomaly set, J is the number of EWH anomalies, ρw is the density of water, σj is the jth EWH anomaly, Aj is the area of the jth anomaly, R is the semi-major axis radius of the Earth, G is the gravitational constant, kl is the love number of degree l and Pl is the Legendre polynomial of degree l with the angular distance ψij between the ith satellite and the jth anomaly. ψij is given by,
其中 j 表示 EWH 异常集的指数,J 是 EWH 异常的数量,ρ w 是水的密度,σ 是第 j 个 EWH 异常,A 是第 j 个异常的面积,R 是地球的半长轴半径,G 是引力常数,k 是 l 度的爱情数,P 是 l 度的勒让德多项式,角距离ψ ij 第i颗卫星和第Jth异常。 ij ψ是由以下人员给出的,
cosψij=sinϕisinϕj+cosϕicosϕjcos(λiλj), $\begin{array}{c}\cos \hspace*{.5em}{\psi }_{ij}=\sin \hspace*{.5em}{\phi }_{i}\hspace*{.5em}\sin \hspace*{.5em}{\phi }_{j}+\cos \hspace*{.5em}{\phi }_{i}\hspace*{.5em}\cos \hspace*{.5em}{\phi }_{j}\hspace*{.5em}\cos \left({\lambda }_{i}-{\lambda }_{j}\right),\end{array}$ (3)
In spherical coordinates, the perturbation gravity acceleration
在球坐标中,扰动重力加速度
δgi $\delta {\boldsymbol{g}}_{i}$ is given by the gradient of the perturbation potential (Ghobadi-Far et al., 2022),
由扰动电位的梯度给出(Ghobadi-Far 等人,2022 年),
[δViN(ri,ϕi,λi)δViE(ri,ϕi,λi)δViU(ri,ϕi,λi)]=[1ridδVidϕi1ricosϕidδVidλidδVidri]=GρwR2Ψiσ, $\begin{array}{c}\left[\begin{array}{@{}c@{}}\delta {V}_{iN}\left({r}_{i},{\phi }_{i},{\lambda }_{i}\right)\\ \delta {V}_{iE}\left({r}_{i},{\phi }_{i},{\lambda }_{i}\right)\\ \delta {V}_{iU}\left({r}_{i},{\phi }_{i},{\lambda }_{i}\right)\end{array}\right]=\left[\begin{array}{@{}c@{}}\frac{1}{{r}_{i}}\frac{d\delta {V}_{i}}{d{\phi }_{i}}\\ \frac{1}{{r}_{i}\,\cos \,{\phi }_{i}}\frac{d\delta {V}_{i}}{d{\lambda }_{i}}\\ \frac{d\delta {V}_{i}}{d{r}_{i}}\end{array}\right]=\frac{G{\rho }_{w}}{{{R}_{\bigoplus}}^{2}}{\boldsymbol{\Psi }}^{\boldsymbol{i}}\boldsymbol{\sigma },\end{array}$ (4)
where  哪里σ=[σ1,,σJ]T $\boldsymbol{\sigma }={\left[{\sigma }_{1},\text{\ldots },\hspace*{.5em}{\sigma }_{J}\right]}^{T}$ and  
Ψi=[l=0a1ldPl(cosψi1)dϕil=0ajldPl(cosψij)dϕil=0aJldPl(cosψiJ)dϕil=0b1ldPl(cosψi1)dλil=0bjldPl(cosψij)dλil=0bJldPl(cosψiJ)dλil=0c1lPl(cosψi1)l=0cjlPl(cosψij)l=0cJlPl(cosψiJ)], $\begin{array}{c}{\boldsymbol{\Psi }}^{i}=\left[\begin{array}{@{}lllll@{}}\sum\limits _{l=0}^{\infty }{a}_{1}^{l}\frac{d{P}_{l}\left(\cos \,{\psi }_{i1}\right)}{d{\phi }_{i}}& \text{\ldots }& \sum\limits _{l=0}^{\infty }{a}_{j}^{l}\frac{d{P}_{l}\left(\cos \,{\psi }_{ij}\right)}{d{\phi }_{i}}& \text{\ldots }& \sum\limits _{l=0}^{\infty }{a}_{J}^{l}\frac{d{P}_{l}\left(\cos \,{\psi }_{iJ}\right)}{d{\phi }_{i}}\\ \sum\limits _{l=0}^{\infty }{b}_{1}^{l}\frac{d{P}_{l}\left(\cos \,{\psi }_{i1}\right)}{d{\lambda }_{i}}& \text{\ldots }& \sum\limits _{l=0}^{\infty }{b}_{j}^{l}\frac{d{P}_{l}\left(\cos \,{\psi }_{ij}\right)}{d{\lambda }_{i}}& \text{\ldots }& \sum\limits _{l=0}^{\infty }{b}_{J}^{l}\frac{d{P}_{l}\left(\cos \,{\psi }_{iJ}\right)}{d{\lambda }_{i}}\\ \sum\limits _{l=0}^{\infty }{c}_{1}^{l}{P}_{l}\left(\cos \,{\psi }_{i1}\right)& \text{\ldots }& \sum\limits _{l=0}^{\infty }{c}_{j}^{l}{P}_{l}\left(\cos \,{\psi }_{ij}\right)& \text{\ldots }& \sum\limits _{l=0}^{\infty }{c}_{J}^{l}{P}_{l}\left(\cos \,{\psi }_{iJ}\right)\end{array}\right],\end{array}$ (5)
with ajl=Aj(1+kl)(Rri)l+2 ${a}_{j}^{l}={A}_{j}\left(1+{k}_{l}\right)\,{\left(\frac{{R}_{\bigoplus}}{{r}_{i}}\right)}^{l+2}$, bjl=Aj(1+kl)cosϕi(Rri)l+2 ${b}_{j}^{l}={A}_{j}\frac{\left(1+{k}_{l}\right)}{\cos \,{\phi }_{i}}{\left(\frac{{R}_{\bigoplus}}{{r}_{i}}\right)}^{l+2}$, and  cjl=Aj(1+kl)(1+l)(Rri)l+2 ${c}_{j}^{l}=-{A}_{j}\left(1+{k}_{l}\right){(1+l)\left(\frac{{R}_{\bigoplus}}{{r}_{i}}\right)}^{l+2}$. According to the chain rule of differentiation,
.根据分化链法则,
dPl(cosψij)dϕi=dcosψijdϕiPl(cosψij)=[cosϕisinϕjsinϕicosϕjcos(λiλj)]Pl(cosψij) $\frac{d{P}_{l}\left(\cos \,{\psi }_{ij}\right)}{d{\phi }_{i}}=\frac{d\,\cos \,{\psi }_{ij}}{d{\phi }_{i}}{P}_{l}^{\prime }\left(\cos \,{\psi }_{ij}\right)=\left[\cos \,{\phi }_{i}\,\sin \,{\phi }_{j}-\sin \,{\phi }_{i}\,\cos \,{\phi }_{j}\,\cos \left({\lambda }_{i}-{\lambda }_{j}\right)\right]{P}_{l}^{\prime }\left(\cos \,{\psi }_{ij}\right)$ and  dPl(cosψij)dλi=dcosψijdλiPl(cosψij)=cosϕicosϕjsin(λiλj)Pl(cosψij) $\frac{d{P}_{l}\left(\cos \,{\psi }_{ij}\right)}{d{\lambda }_{i}}=\frac{d\,\cos \,{\psi }_{ij}}{d{\lambda }_{i}}{P}_{l}^{\prime }\left(\cos \,{\psi }_{ij}\right)=-\cos \,{\phi }_{i}\,\cos \,{\phi }_{j}\,\sin \left({\lambda }_{i}-{\lambda }_{j}\right){P}_{l}^{\prime }\left(\cos \,{\psi }_{ij}\right)$, where  哪里Pl ${P}_{l}^{\prime }$ is the first derivative of the Legendre polynomial and can be expressed in a recursive form as
是勒让德多项式的一阶导数,可以用递归形式表示为
(x21)Px(x)=xlPl(x)lPl1(x) ${\left({x}^{2}-1\right)P}_{x}^{\prime }(x)=xl{P}_{l}(x)-l{P}_{l-1}(x)$. The transformation matrix from the spherical coordinates to the Cartesian coordinates for GFO satellite i is (Ghobadi-Far et al., 2022)
.GFO卫星i从球面坐标到笛卡尔坐标的变换矩阵是(Ghobadi-Far等人,2022)
Qi=[sinϕicosλisinλicosϕicosλisinϕisinλicosλicosϕisinλicosϕi0sinϕi], $\begin{array}{c}{\boldsymbol{Q}}^{\boldsymbol{i}}=\left[\begin{array}{@{}ccc@{}}-\sin \,{\phi }_{i}\,\cos \,{\lambda }_{i}& -{\sin \,\lambda }_{i}& \cos \,{\phi }_{i}\,\cos \,{\lambda }_{i}\\ -\sin \,{\phi }_{i}\,\sin \,{\lambda }_{i}& {\cos \,\lambda }_{i}& \cos \,{\phi }_{i}{\sin \,\lambda }_{i}\\ \cos \,{\phi }_{i}& 0& \sin \,{\phi }_{i}\end{array}\right],\end{array}$ (6)
Therefore, the LGD generated by the EWH gridded anomalies is presented as (Ghobadi-Far et al., 2022)
因此,由EWH网格化异常生成的LGD表示为(Ghobadi-Far等人,2022)
δgLOS(t)=GρwR·eLOS(Q1Ψ1Q2Ψ2)σ, $\begin{array}{c}\delta {g}^{LOS}(t)=\frac{G{\rho }_{w}}{{R}_{\bigoplus}}\cdot {\boldsymbol{e}}^{LOS}\left({\boldsymbol{Q}}^{1}{{\Psi }}^{1}-{\boldsymbol{Q}}^{2}{{\Psi }}^{2}\right)\boldsymbol{\sigma },\end{array}$ (7)

3.2.2 LGD From SHC
3.2.2 来自 SHC 的 LGD

Besides the Legendre expansion in Equation 1, the spherical harmonics expansion with the given SHC (δClm and δSlm) also describes the perturbation geopotential at position (ri, ϕi, λi) as follows
除了公式 1 中的勒让德展开外,给定 SHC (δC lm 和 δS lm ) 的球谐波展开还描述了位置 (r, φ, λ) 处的扰动位势如下
δVi=GMril=2Lml(Rri)(δClmcosmλi+δSlmsinmλi)·Plm(sinϕi), $\begin{array}{c}\delta {V}_{i}=\frac{GM}{{r}_{i}}\sum\limits _{l=2}^{L}\sum\limits _{m}^{l}\left(\frac{{R}_{\bigoplus}}{{r}_{i}}\right)\left(\delta {C}_{lm}{\cos \,m\lambda }_{i}+\delta {S}_{lm}{\sin \,m\lambda }_{i}\right)\cdot {\overline{P}}_{lm}\left(\sin \,{\phi }_{i}\right),\end{array}$ (8)
where M is the total mass of the Earth, Plm ${\overline{P}}_{lm}$ denotes the fully normalized associated Legendre polynomial of degree l and order m, and L is the maximum truncation degree. Ghobadi-Far et al. (2022) provides a detailed explanation of the LGD computation from SHC in the spherical coordinates and its subsequent transformation to Cartesian coordinates. For computational simplicity, we opt for formulating the LGD computation in the Cartesian coordinates directly. Denote the position in the Cartesian coordinates (xi, yi, zi) corresponding to the spherical coordinates (ri, ϕi, λi)
其中 M 是地球的总质量, Plm ${\overline{P}}_{lm}$ 表示 l 次和 m 阶的完全归一化相关勒让德多项式,L 是最大截断度。Ghobadi-Far et al. ( 2022) 详细解释了 SHC 在球面坐标中的 LGD 计算及其随后向笛卡尔坐标的变换。为了计算简单,我们选择直接用笛卡尔坐标来表示LGD计算。表示笛卡尔坐标 (x, y, z) 中的位置,对应于球坐标 (r, φ, λ)
δgi=[δgixδgiyδgiz]=[l=2Lm=0lδgix,lml=2Lm=0lδgiy,lml=2Lm=0lδgiz,lm], $\begin{array}{c}\delta {\boldsymbol{g}}_{\boldsymbol{i}}=\left[\begin{array}{@{}c@{}}\delta {g}_{ix}\\ \delta {g}_{iy}\\ \delta {g}_{iz}\end{array}\right]=\left[\begin{array}{@{}c@{}}\sum\limits _{l=2}^{L}\sum\limits _{m=0}^{l}\delta {g}_{ix,lm}\\ \sum\limits _{l=2}^{L}\sum\limits _{m=0}^{l}\delta {g}_{iy,lm}\\ \sum\limits _{l=2}^{L}\sum\limits _{m=0}^{l}\delta {g}_{iz,lm}\end{array}\right],\end{array}$ (9)
where δgix, δgiy and δgiz represent the Cartesian components of gravity acceleration acting on the ith satellite. Additionally, δgix,lm, δgiy,lm and δgiz,lm are the components of gravity acceleration associated with degree l and order m of δgix, δgiy and δgiz. The degree components are calculated by (Montenbruck et al., 2002, chap. 3)
其中 δg ix 、 δg iy 和 δg iz 表示作用在第 i 颗卫星上的重力加速度的笛卡尔分量。此外,δg ix,lm , δg iy,lm 和 δg iz,lm 是重力加速度的分量,与 δg 、δg ix iy 和 δg iz 的 l 度和 m 阶相关。度分量由下式计算(Montenbruck et al., 2002, chapter 3)
{δgix,lm={GMR2[b1El+1,1·δCl0],m=0GM2R2[b2(El+1,m+1·δClmFl+1,m+1·δSlm)+b3(El+1,m1·δClm+Fl+1,m1·δSlm)],m>0δgiy,lm={GMR2[b1Fl+1,1·δCl0],m=0GM2R2[b2(Fl+1,m+1·δClm+El+1,m+1·δSlm)b3(Fl+1,m1·δClmEl+1,m1·δSlm)],m>0δgiz,lm=GMR2[b4(El+1,m·δClmFl+1,m·δSlm)], \begin{align*}\left\{\begin{array}{@{}l@{}}\delta {g}_{ix,lm}=\left\{\begin{array}{@{}ll@{}}\frac{GM}{{R}_{\bigoplus}^{2}}\left[-{b}_{1}{E}_{l+1,1}\cdot \delta {C}_{l0}\right],& m=0\\ \frac{GM}{2{R}_{\bigoplus}^{2}}\left[\begin{array}{@{}c@{}}{b}_{2}\left(-{E}_{l+1,m+1}\cdot \delta {C}_{lm}-{F}_{l+1,m+1}\cdot \delta {S}_{lm}\right)\\ +{b}_{3}\left({E}_{l+1,m-1}\cdot \delta {C}_{lm}+{F}_{l+1,m-1}\cdot \delta {S}_{lm}\right)\end{array}\right],& m > 0\end{array}\right.\\ \delta {g}_{iy,lm}=\left\{\begin{array}{@{}ll@{}}\frac{GM}{{R}_{\bigoplus}^{2}}\left[-{b}_{1}{F}_{l+1,1}\cdot \delta {C}_{l0}\right],& m=0\\ \frac{GM}{2{R}_{\bigoplus}^{2}}\left[\begin{array}{@{}c@{}}{b}_{2}\left(-{F}_{l+1,m+1}\cdot \delta {C}_{lm}+{E}_{l+1,m+1}\cdot \delta {S}_{lm}\right)\\ -{b}_{3}\left({F}_{l+1,m-1}\cdot \delta {C}_{lm}-{E}_{l+1,m-1}\cdot \delta {S}_{lm}\right)\end{array}\right],& m > 0\end{array}\right.\\ \delta {g}_{iz,lm}=\frac{GM}{{R}_{\bigoplus}^{2}}\left[{b}_{4}\left(-{E}_{l+1,m}\cdot \delta {C}_{lm}-{F}_{l+1,m}\cdot \delta {S}_{lm}\right)\right],\end{array}\right.\end{align*} (10)
where the coefficients bi (i = 1,2,3,4) are given by (Montenbruck et al., 2002, chap. 3)
其中系数 b (i = 1,2,3,4) 由下式给出(Montenbruck 等人,2002 年,第 3 章)
{b1=(l+1)(l+2)(2l+1)2(2l+3),b2=(l+m+1)(l+m+2)(2l+1)2l+3,b3=(lm+1)(lm+2)(2l+2)(1+δ1,m)2l+3,b4=(lm+1)(l+m+1)(2l+1)2l+3, \begin{align*}\left\{\begin{array}{@{}l@{}}{b}_{1}=\sqrt{\frac{(l+1)(l+2)(2l+1)}{2(2l+3)}},\\ {b}_{2}=\sqrt{\frac{(l+m+1)(l+m+2)(2l+1)}{2l+3}},\\ {b}_{3}=\sqrt{\frac{(l-m+1)(l-m+2)(2l+2)\left(1+{\delta }_{1,m}\right)}{2l+3}},\\ {b}_{4}=\sqrt{\frac{(l-m+1)(l+m+1)(2l+1)}{2l+3}},\end{array}\right.\end{align*} (11)
And δ1,m ${\delta }_{1,m}$ is the Dirac delta function. Furthermore, El,m ${E}_{l,m}$ and Fl,m ${F}_{l,m}$ in Equation 10 satisfy the recurrence relations (Montenbruck et al., 2002, chap. 3)
并且是 δ1,m ${\delta }_{1,m}$ 狄拉克 delta 函数。此外, El,m ${E}_{l,m}$ Fl,m ${F}_{l,m}$ 在等式 10 中满足递归关系(Montenbruck 等人,2002 年,第 3 章)
El,m={(2l+1)(2l1)(lm)(l+m)·ziRri2El1,m(2l+1)(lm1)(l+m1)(lm)(l+m)(2l3)·R2ri2El2,m,lm2m+12m·(xiRri2Em1,m1yiRri2Fm1,m1),l=m \begin{align*}{E}_{l,m}=\left\{\begin{array}{@{}cc@{}}\begin{array}{l}\sqrt{\frac{(2l+1)(2l-1)}{(l-m)(l+m)}}\cdot \frac{{z}_{i}{R}_{\bigoplus}}{{r}_{i}^{2}}{E}_{l-1,m}\\ -\sqrt{\frac{(2l+1)(l-m-1)(l+m-1)}{(l-m)(l+m)(2l-3)}}\cdot \frac{{R}_{\bigoplus}^{2}}{{r}_{i}^{2}}{E}_{l-2,m},\end{array}& l\ne m\\ \sqrt{\frac{2m+1}{2m}}\cdot \left(\frac{{x}_{i}{R}_{\bigoplus}}{{r}_{i}^{2}}{E}_{m-1,m-1}-\frac{{y}_{i}{R}_{\bigoplus}}{{r}_{i}^{2}}{F}_{m-1,m-1}\right),& l=m\end{array}\right.\end{align*} (12)
Fl,m={(2l+1)(2l1)(lm)(l+m)·ziRri2Fl1,m(2l+1)(lm1)(l+m1)(lm)(l+m)(2l3)·R2ri2Fl2,m,lm2m+12m·(xiRri2Fm1,m1+yiRri2Em1,m1),l=m \begin{align*}{F}_{l,m}=\left\{\begin{array}{@{}cc@{}}\begin{array}{l}\sqrt{\frac{(2l+1)(2l-1)}{(l-m)(l+m)}}\,\cdot \,\frac{{z}_{i}{R}_{\bigoplus}}{{r}_{i}^{2}}{F}_{l-1,m}\\ -\sqrt{\frac{(2l+1)(l-m-1)(l+m-1)}{(l-m)(l+m)(2l-3)}}\cdot \frac{{R}_{\bigoplus}^{2}}{{r}_{i}^{2}}{F}_{l-2,m},\end{array}& l\ne m\\ \sqrt{\frac{2m+1}{2m}}\,\cdot \,\left(\frac{{x}_{i}{R}_{\bigoplus}}{{r}_{i}^{2}}{F}_{m-1,m-1}+\frac{{y}_{i}{R}_{\bigoplus}}{{r}_{i}^{2}}{E}_{m-1,m-1}\right),& l=m\end{array}\right.\end{align*} (13)
The initial values for the above recurrences described in Equations 12 and 13 are known as (Montenbruck et al., 2002, chap.3)
等式 12 和 13 中描述的上述重复的初始值称为(Montenbruck 等人,2002 年,第 3 章)
{E0,0=Rri,F0,0=0,E1,1=3xiR2ri3,F1,1=3yiR2ri3, \begin{align*}\left\{\begin{array}{@{}l@{}}{E}_{0,0}=\frac{{R}_{\bigoplus}}{{r}_{i}},\\ {F}_{0,0}=0,\\ {E}_{1,1}=\frac{\sqrt{3}{x}_{i}{R}_{\bigoplus}^{2}}{{r}_{i}^{3}},\\ {F}_{1,1}=\frac{\sqrt{3}{y}_{i}{R}_{\bigoplus}^{2}}{{r}_{i}^{3}},\end{array}\right.\end{align*} (14)

By substituting Equation 9 into Equation 1, we obtain the formula for computing the LGD from SHC.
通过将公式 9 代入公式 1,我们得到了计算 SHC 的 LGD 的公式。

3.3 Estimation of TWSC
3.3 TWSC的估计

LGD anomalies are linearly proportional to the surface mass anomalies beneath the orbits, and can be reformulated from Equation 7 as
LGD异常与轨道下方的表面质量异常成线性比例,可以从公式7重新表述为
d=Gβ, \begin{align*}\boldsymbol{d}=\boldsymbol{G}\boldsymbol{\beta },\end{align*} (15)
where G denotes the design matrix converting TWSC to LGD values, β is the parameter vector to be estimated (TWSC) and d is the observation vector (LRI/KBR LGD).
其中 G 表示将 TWSC 转换为 LGD 值的设计矩阵,β 是要估计的参数向量 (TWSC),d 是观测向量 (LRI/KBR LGD)。
Han et al. (2021a, 2021b) estimate the TWSC attributed to mega-floods from each of the overpassing LGD observations by ridge regression in a row. The spatial distribution of TWSC in the study regions is predefined based on the SMC, relative to the mean of June 2021, assuming uniform water distribution within. Given this study's focus on estimating moderate TWSC amidst a considerable intensity of hydrological conditions, we empirically identify extra regions, besides the study region affected by floods, as energy absorbers for the peripheral signals outside the study region based on the SMC snapshot. In Figures 4a and 4d, the study region is denoted as “1,” while six extra regions for WE case are labeled with numbers greater than one and five for CC case. This leads to a linear regression model between LGD observations and uniform TWSC over both the study and extra regions. Thus, the ith region is discretized in Ni nodes with a one-degree resolution. The uniformity of TWSC within each region implies the coherence among the TWSC values of individual nodes. Moreover, the contribution of the TWSC in each region is the summation of the TWSC values inside. To formulate this linear relationship between the LGD and the TWSC of the nodes within the regions, we denote the design matrix for the kth arc used in the estimation as Gk. The ith column in Gk, indicating the association between the LGD measurements and the TWSC in the ith region, is given by
Gki=nNiGki,n, \begin{align*}{\boldsymbol{G}}_{k}^{i}=\sum\limits _{n}^{{N}_{i}}{\boldsymbol{G}}_{k}^{i,n},\end{align*} (16)
where n is the index of the nodes in the ith region, and Gki,n ${\boldsymbol{G}}_{k}^{i,n}$ is the stencil LGD caused by the nth node.
At the satellite altitude of GFO, recovering the TWSC on the Earth's surface from in-orbit measurements is an ill-conditioned downward continuation problem. We use Tikhonov regularization to reduce the ill-condition and stabilize the solution (Aster et al., 2018, chap. 5). Furthermore, the flood dynamics demonstrates temporal interdependencies throughout different phases of flood events, including the onset, peak occurrence, and recession. To infer TWSC across the entire process of flood evolution with temporal correlation, we estimate all arc-wise solutions simultaneously by stacking the observation equations for all arcs, and apply the first-order Tikhonov regularization to account for the temporal correlation of the solution. Therefore, the solution with time smoothing is obtained by minimizing the following objective function,
min|Gβd|22+α2|βkβk1|22, \begin{align*}\min {\vert \boldsymbol{G}\boldsymbol{\beta }-\boldsymbol{d}\vert }_{2}^{2}+{\alpha }^{2}{\vert {\boldsymbol{\beta }}_{k}-{\boldsymbol{\beta }}_{k-1}\vert }_{2}^{2},\end{align*} (17)
where α is the regularization parameter, and the design matrix G, observation vector d, the TWSC values of all regions for kth arc βk and the TWSC values of all regions for all arcs β in batch estimation are structured as follows
G=[G11G1iG1IGk1GkiGkIGK1GKiGKI] $\boldsymbol{G}=\left[\begin{array}{@{}ccccccccccccccccc@{}}{\boldsymbol{G}}_{1}^{1}& & & & & & {\boldsymbol{G}}_{1}^{i}& & & & & & {\boldsymbol{G}}_{1}^{I}& & & & \\\ & \ddots & & & & & & \ddots & & & & & & \ddots & & & \\\ & & {\boldsymbol{G}}_{k}^{1}& & & \text{\ldots }& & & {\boldsymbol{G}}_{k}^{i}& & & \text{\ldots }& & & {\boldsymbol{G}}_{k}^{I}& & \\\ & & & \ddots & & & & & & \ddots & & & & & & \ddots & \\ & & & & {\boldsymbol{G}}_{K}^{1}& & & & & & {\boldsymbol{G}}_{K}^{i}& & & & & & {\boldsymbol{G}}_{K}^{I}\end{array}\right]$ (18)
d=[d1TdkTdKT]T, \begin{align*}\boldsymbol{d}={\left[\begin{array}{@{}ccccc@{}}{\boldsymbol{d}}_{1}^{T}& {\cdots}& {\boldsymbol{d}}_{k}^{T}& {\cdots}& {\boldsymbol{d}}_{K}^{T}\end{array}\right]}^{T},\end{align*} (19)
βk=[βk1,,βki,,βkI]T, \begin{align*}{\boldsymbol{\beta }}_{k}={\left[\begin{array}{@{}c@{}}{\beta }_{k}^{1}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{k}^{i}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{k}^{I}\end{array}\right]}^{T},\end{align*} (20)
β=[β11,,βk1,,βK1,,β1i,,βki,,βKi,,β1I,,βkI,,βKI]T, \begin{align*}\boldsymbol{\beta }={\left[\begin{array}{@{}c@{}}{\beta }_{1}^{1},\end{array}\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{k}^{1}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{K}^{1}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{1}^{i}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{k}^{i}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{K}^{i}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{1}^{I}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{k}^{I}\end{array},\begin{array}{c}{\cdots}\end{array},\begin{array}{c}{\beta }_{K}^{I}\end{array}\right]}^{T},\end{align*} (21)
where the superscript T denotes the transpose symbol, I and K are the number of the regions and arcs used in the estimation, dk is the LGD for the kth arc, and βki ${\beta }_{k}^{i}$ is the TWSC in the ith grid for the kth arc. In situations where LRI ranging measurements are occasionally unavailable, we adopt a strategic approach to uphold the continuity of the observation vector while ensuring overall compatibility with the design matrix. Due to the lower noise level of LRI measurements (Abich et al., 2019), our primary preference is to construct the observation vector dk from LRI LGD. However, to maintain the completeness of observations where the LRI LGD is unavailable for specific arcs, we pragmatically address data gaps by supplementing the observation vector with the KBR LGD of these arcs in such cases.
The Tikhonov regularization solution for Equation 17 can be written as
方程 17 的 Tikhonov 正则化解可以写成
βˆ=(GTG+α2LTL)GTd, \begin{align*}\widehat{\boldsymbol{\beta }}=\left({\boldsymbol{G}}^{T}\boldsymbol{G}+{\alpha }^{2}{\boldsymbol{L}}^{T}\boldsymbol{L}\right){\boldsymbol{G}}^{T}\boldsymbol{d},\end{align*} (22)
where L is the first-order regularization matrix, given by,
其中 L 是一阶正则化矩阵,由下式给出,
L=[L1LiLI], \begin{align*}\boldsymbol{L}=\left[\begin{array}{@{}ccccc@{}}{\boldsymbol{L}}_{1}& & & & \\\ & {\ddots}& & & \\\ & & {\boldsymbol{L}}_{i}& & \\\ & & & {\ddots}& \\ & & & & {\boldsymbol{L}}_{I}\end{array}\right],\end{align*} (23)
with  
Li=[1111111111], ${\boldsymbol{L}}_{i}=\left[\begin{array}{@{}ccccccccc@{}}-1& 1& & & & & & & \\\ & -1& 1& & & & & & \\\ & & & \ddots & & & & & \\\ & & & & & -1& 1& & \\\ & & & & & & -1& 1& \\ & & & & & & & -1& 1\end{array}\right],$ (24)
The workflow of the above algorithm is summarized in Figure 2a, outlining the process of LGD computation and TWSC estimation using LGD. To demonstrate the viability of the inverse algorithm, a closed-loop test is performed following the procedure as depicted in Figure 2b. This closed-loop test involves the LGD synthesis using GLDAS SMC, the subsequent estimation of SMC from the synthetic LGD, and a comparison of uncertainty between the GLDAS SMC and the inversion results. Furthermore, we use Nash-Sutcliffe Efficiency (NSE) to evaluate the performance of the SMC estimation compared with model values, providing a quantitative measure of the accuracy with which the estimation captures the variations and patterns of the model values (Nash & Sutcliffe, 1970)
NSE=1i=1I(βeiβmi)2i=1I(βmiβm)2, \begin{align*}\mathrm{N}\mathrm{S}\mathrm{E}=1-\frac{\sum\limits _{i=1}^{I}{\left({\beta }_{e}^{i}-{\beta }_{m}^{i}\right)}^{2}}{\sum\limits _{i=1}^{I}{\left({\beta }_{m}^{i}-{\overline{\beta }}_{m}\right)}^{2}},\end{align*} (25)
where βmi ${\beta }_{m}^{i}$ is the SMC model value in the study region for the ith arc, βei ${\beta }_{e}^{i}$ is the SMC estimation value in the study region for the ith arc, and βm ${\overline{\beta }}_{m}$ is the mean of modeled SMC model values over all arcs. Figure 3 shows the time series of GLDAS SMC, the inversion results and their residual for the study regions in WE and CC. The study regions are represented by the black polygons in the inset. The selection of regularization factors is based on minimizing the residuals between the GLDAS SMC and the inversion. The resulting root mean square errors (RMSE) are 2.64 giga tone (Gt) and 3.18 Gt, and the NSEs are 0.85 and 0.97 for the study regions in WE and CC, respectively. This closed-loop test illustrates the effectiveness of estimating TWSC every 3–5 days using LGD data from the above inversion algorithm.
Details are in the caption following the image

(a) The flow of the estimation of TWSC from the GFO instantaneous measurements. (b) The flow of the close-loop test of the Global Land Data Assimilation System soil moisture changes estimation.
(a) 根据GFO瞬时测量值对TWSC的估计。(b) 全球土地数据同化系统土壤湿度变化估计闭环试验的流程。

Details are in the caption following the image

(a) Soil moisture changes (SMC) in the Western Europe study region for Global Land Data Assimilation System (green), the SMC inversion in the same region (blue) and their residual (gray). In the inset, the study region extent is delineated by the black line and the nodes are marked by black dots. (b) Similar to (a), but for Central China.
(a) 全球土地数据同化系统西欧研究区域的土壤水分变化(SMC)(绿色)、同一区域的土壤湿度反演(蓝色)及其残差(灰色)。在插图中,研究区域范围由黑线划定,节点用黑点标记。(b) 与(a)类似,但适用于华中地区。

4 Results 4 结果

4.1 Temporal Evolution of Floods
4.1 洪水的时间演变

Following the algorithm in Figure 2a, we obtain the GFO LGD from KBR1B and LRI1B relative to the monthly mean gravity field of June 2021 (the month right before the flooding occurs). Our data processing covers the period from June to August 2021, including 87 arcs (3°–13°E and 20° to 70°N) crossing over the study area in WE (∼396,215 km2) and 43 arcs (112°–119°E and 10° to 60°N) over the study area in CC (∼285,218 km2). Figures 4a and 4d show the ground tracks ranging from 20° to 70°N in WE and 10 to 60°N in CC, respectively. Figures 4b and 4e show the daily average precipitation from GLDAS within each study area. Figures 4c and 4f compare the GFO LGD measurements, the synthetic LGDs from GLDAS SMC and those from ITSG daily solution. To facilitate visual comparison across different times, we incrementally accumulated 3 nm/s2 to the LGD data of each arc in Figure 4c and 5 nm/s2 to the data in Figure 4f. This separation aids in intuitively analyzing the variation trends of LGD anomalies.
按照图 2a 中的算法,我们从 KBR1B 和 LRI1B 获得了相对于 2021 年 6 月(洪水发生前一个月)的月平均重力场的 GFO LGD。我们的数据处理涵盖 2021 年 6 月至 8 月期间,包括 87 条弧线(3°-13°E 和 20°-70°N)越过 WE 的研究区域(∼396,215 公里 2 )和 43 条弧线(112°–119°E 和 10° 至 60°N)越过 CC 的研究区域(∼285,218 公里 2 )。图 4a 和 4d 分别显示了 WE 的 20° 至 70°N 和 CC 的 10 至 60°N 的地面轨迹。图4b和图4e显示了每个研究区域内GLDAS的日平均降水量。图 4c 和 4f 比较了 GFO LGD 测量值、GLDAS SMC 的合成 LGD 和 ITSG 日常溶液的测量值。为了便于在不同时间进行视觉比较,我们对图4c中每个弧的LGD数据进行了3 nm/s 2 的增量累积,对图4f中的数据进行了5 nm/s 2 的累积。这种分离有助于直观地分析LGD异常的变化趋势。

Details are in the caption following the image

Overpassing ground track arcs of GFO (purple) from June to August in Western Europe (a) and Central China (d). The background image indicates the Global Land Data Assimilation System (GLDAS) soil moisture changes (SMC) in equivalent water height on 14 July 2021 (a) and 22 July 2021 (d) compared to the monthly average for June. (b), (e) Average precipitation in the study regions. (c), (f) line-of-sight gravity difference (LGD) of K-band Ranging (red solid) and Laser Ranging Interferometer (red dashed), and synthetic LGDs from SMC of GLDAS (green) and spherical harmonics coefficient of ITSG daily solution (blue). The LGDs right over the study area are shaded. The top tick labels indicate the dates when GFO satellites flew over the study region, and the hash sign marks LGDs from ascending tracks. Black arrows connect precipitation and LGDs for the same dates.
6-8月在西欧(a)和中国中部(d)的GFO(紫色)地面轨道弧。背景图显示了2021年7月14日(a)和2021年7月22日(d)全球土地数据同化系统(GLDAS)等效水高的土壤湿度变化(SMC)与6月的月平均值相比。(b)、(e) 研究区平均降水量。(c)、(f)K波段测距仪(红色实心)和激光测距干涉仪(红色虚线)的视距重力差(LGD),以及GLDAS的SMC合成LGD(绿色)和ITSG日溶的球谐波系数(蓝色)。研究区域正上方的 LGD 处于阴影状态。顶部的刻度标签表示GFO卫星飞越研究区域的日期,哈希符号标记来自上升轨道的LGD。黑色箭头连接同一日期的降水和 LGD。

The Sahara Desert is characterized by minimal hydrological processes, leading to subtle gravity changes that are presumed to be negligible. Consequently, both the measured LGDs and the synthetic LGDs (Figure 4c) display magnitudes on the order of 0.1 nm/s2, underscoring the inherent uncertainty in LGD computations, typically at the level of a few 0.1 nm/s2. Moreover, the independent KBR and LRI LGD measurements (Figure 4c) show similar temporal patterns, demonstrating the mutual validation of LGD computation, and also suggesting that the discontinuity in Figure 1 has minimal impact on short-term and regional studies such as monitoring of flooding events. However, it is crucial to recognize the potential limitations of the ad-hoc hybrid gravity field for long-term and large-scale applications of satellite gravimetry.
撒哈拉沙漠的特点是水文过程极少,导致细微的重力变化,据推测可以忽略不计。因此,测量的LGD和合成的LGD(图4c)都显示出0.1 nm/s 2 的量级,强调了LGD计算中固有的不确定性,通常在0.1 nm/s 2 的水平上。此外,独立的KBR和LRI LGD测量(图4c)显示出相似的时间模式,证明了LGD计算的相互验证,也表明图1中的不连续性对短期和区域研究(如洪水事件监测)的影响最小。然而,至关重要的是要认识到临时混合重力场对卫星重力测量的长期和大规模应用的潜在局限性。

The GFO LGD around 50°N indicate the TWSC in the WE study region. Priori to day of year (DOY) 186 (July 5), the GFO LGD and the GLDAS LGDs show a near convergence around 50°N, owing to the absence of surface flooding. In essence, the TWSC, as detected by GFO, can be attributed to the alteration in SMC. However, discernible divergence between the observed and synthetic LGDs commenced as early as July 5, coinciding with a series of daily rainfall events. This suggests a growing contribution from SWSC, and that the soil had likely become saturated since July 5. Consequently, the notable surge of precipitation on July 13 and 14 (DOY 194 and 195) (Figure 4b) accentuated the SWSC, leading to a more noticeable divergence. Meanwhile, negative anomalies appeared in the GFO LGD around 50°N, changing from >−1 nm/s2 to around −2 nm/s2 (Figure 4c), indicating the TWSC surplus due to the extensive floods. The results of the two LGDs converged as the flooding receded on July 21 and 23 (DOY 202 and 204).
50°N附近的GFO LGD表示WE研究区域的TWSC。先验到186年(7月5日)的某一天(DOY),由于没有地表洪水,GFO LGD和GLDAS LGD在北纬50°附近显示出接近收敛。从本质上讲,GFO检测到的TWSC可以归因于SMC的改变。然而,观测到的LGD和合成的LGD之间早在7月5日就开始出现明显的差异,这与一系列日降雨事件相吻合。这表明SWSC的贡献越来越大,并且自7月5日以来土壤可能已经饱和。因此,7月13日和14日(DOY 194和195)的降水量明显激增(图4b)加剧了SWSC,导致了更明显的差异。同时,在北纬50°左右的GFO LGD中出现了负异常,从>-1 nm/s 2 变化到-2 nm/s 2 左右(图4c),表明由于大范围的洪水,TWSC过剩。随着7月21日和23日洪水的消退,两个LGD的结果趋于一致(DOY 202和204)。

In Figure 4c, the GFO LGD reflect signals sources outside the study region as well. For example, the GFO LGD and the synthetics both contain positive anomalies between 52° and 70°N and around 45°N, likely attributed to TWS loss in Northern Europe and Southern Europe, including the Apennines, the Balkans and the Iberian Peninsula, respectively (Figure 4a). These signal sources underscore the necessity of peripheral regions divided in Figure 4. However, positive anomalies between 52° and 70°N in the synthetic LGDs continued from early July to early August, while the GFO LGD only shows such anomalies starting from July 29 (DOY 210) with a smaller latitude span, indicating the temporal evolution and spatial distribution of the LSM in some regions are different from the observation.
在图4c中,GFO LGD也反映了研究区域之外的信号源。例如,GFO LGD和合成物都包含52°至70°N和45°N左右的正异常,可能归因于北欧和南欧的TWS损失,包括亚平宁山脉、巴尔干半岛和伊比利亚半岛(图4a)。这些信号源强调了图4中划分外围区域的必要性。然而,从7月初到8月上旬,合成LGD在52°和70°N之间的正异常持续存在,而GFO LGD仅从7月29日(DOY 210)开始出现此类异常,纬度跨度较小,表明LSM在一些区域的时间演化和空间分布与观测结果不同。

The results for CC are shown in Figures 4d–4f. The TWSC in the CC study region is represented by the GFO LGDs around 35°N. With the advent of the rainstorm (Figure 4e) and the subsequent floods on DOY 201 (July 20), the negative anomalies around 35°N are reduced from about –1 nm/s2 to <−2 nm/s2, indicating an abrupt increase of TWSC in CC. Meanwhile, the positive anomalies around 28°N and the negative anomalies around 50°N indicate TWS deficits in Southern China and TWS increases in Mongolia. Contrary to the situations in WE, GFO LGD in the CC study region shows weaker negative anomalies than the synthetic GLDAS LGD.
CC 的结果如图 4d–4f 所示。CC研究区域的TWSC由35°N附近的GFO LGDs表示。 随着暴雨的到来(图4e)和随后的DOY 201(7月20日)洪水,35°N附近的负异常从约-1 nm/s 2 减少到<-2 nm/s 2 ,表明CC中的TWSC突然增加。同时,28°N附近的正异常和50°N附近的负异常表明华南地区TWS不足,蒙古国TWS增加。与WE的情况相反,CC研究区域的GFO LGD显示出比合成GLDAS LGD更弱的负异常。

For better visualization, the relative magnitude differences between GFO and GLDAS are sampled at two key latitudes: 50°N (Figure 5b) and 35°N (Figure 5f), which are located in the center of the study regions. As stated previously, it is anticipated that the GFO series, reflecting the total changes in surface water, soil moisture, and groundwater, will have a greater (more negative) amplitude than the GLDAS series, which represents only changes in soil moisture. The results for WE conform to this expectation, but those for CC show an unexpected pattern—the TWSC is even less variable than its soil moisture component. It indicates that additional differences between GFO and GLDAS must influence, and we speculate that the most likely cause is the absence of the CC's considerable human activities in GLDAS.
为了更好地可视化,GFO和GLDAS之间的相对星等差异在两个关键纬度进行采样:50°N(图5b)和35°N(图5f),它们位于研究区域的中心。如前所述,预计反映地表水、土壤湿度和地下水总变化的GFO系列将比仅代表土壤湿度变化的GLDAS系列具有更大(更负)的振幅。WE的结果符合这一预期,但CC的结果显示出一个意想不到的模式——TWSC的可变性甚至小于其土壤水分。这表明GFO和GLDAS之间的其他差异必须产生影响,我们推测最可能的原因是CC在GLDAS中没有大量的人类活动。

Details are in the caption following the image

Average precipitation in the study regions of Western Europe (WE) (a) and Central China (CC) (e) from mid-June to mid-August. (b), (f) The line-of-sight gravity difference (LGD) values (scatter) at 50°N for WE and 35°N for CC (f), and their polynomial fitting (line, red for Laser Ranging Interferometer and K-band Ranging, blue for Global Land Data Assimilation System (GLDAS)). (c), (g) Total water storage estimated by the GFO LGDs (red), the soil moisture changes from GLDAS model (blue) and their residual (GFO minus GLDAS, gray). In comparison, the monthly L2 results of July 2021 are shown in green. The error bars are based on 2-sigma error from the inversion of the GFO LGDs. The black vertical lines indicate the advent of floods. (d), (h) Some examples showing the GFO LGDs (green), their fit (blue) and the residual (red dashed). The corresponding days of 2021 are displayed along the series.
6月中旬至8月中旬西欧(WE)(a)和华中(CC)(e)研究区的平均降水量。(b)、(f) WE在50°N和CC(f)在50°N和35°N处的视距重力差(LGD)值(散射),及其多项式拟合(线,红色表示激光测距干涉仪和K波段测距,蓝色表示全球陆地数据同化系统(GLDAS))。(c), (g) GFO LGDs估计的总储水量(红色)、GLDAS模型的土壤湿度变化(蓝色)及其残余量(GFO减去GLDAS,灰色)。相比之下,2021 年 7 月的 L2 月度结果以绿色显示。误差线基于GFO LGD反转的2-sigma误差。黑色的垂直线表示洪水的到来。(d)、(h) 一些示例显示了GFO LGD(绿色)、它们的拟合度(蓝色)和残差(红色虚线)。2021 年的相应日期沿该系列显示。

The TWSCs relative to the June mean in the study regions are estimated based on the overpassing LGD arcs from June to August. Figures 5c and 5g show the high-resolution time series of TWSC estimated from the GFO LGDs and the SMC from GLDAS model of the study regions in WE and CC, respectively. Ten examples of LGD fitting (Figures 5d and 5h) illustrate the details of the inversion process. In Figure 5c, the TWSC from GFO LGDs consistently exceeded the SMC values. Their differences (gray lines) clearly present the temporal evolution of the SWSC, which was developing in a bimodal pattern peaking on July 4 and July 26 (DOY 185 and 207) due to the prolonged precipitation in June and July. From Figure 5a, an abrupt increase of ∼15 Gt in the SWSC began on July 13 (DOY 194) and lasted until July 19 (DOY 200), coinciding with the arrival of the mid-July rainstorm in WE. Afterward, as no further precipitation until July 24 (DOY 205), SWSC remained at ∼20 Gt, while GFO TWSC and SMC decreased. By late July, the TWSC and SWSC reached their maximum of approximately 40 Gt and 25 Gt, respectively. Within 12 days after August 3 (DOY 215), the accumulated water (∼25 Gt) for over a month vanished. The green bar in Figure 5c shows the TWSC between July and June based on the monthly L2 product, which only roughly provides the average quantity. This comparison illustrates how the inversion of the GFO LGD contributes to comprehending the temporal and magnitude characteristics of transient climate events compared to the traditional monthly resolution.
根据 6 月至 8 月的超 LGD 弧估计了研究区域相对于 6 月平均值的 TWSC。图5c和图5g分别显示了从WE和CC研究区域的GFO LGDs和GLDAS模型估计的TWSC的高分辨率时间序列。LGD拟合的10个示例(图5d和5h)说明了反转过程的细节。在图5c中,GFO LGD的TWSC始终超过SMC值。它们的差异(灰线)清楚地表明了SWSC的时间演变,由于6月和7月的长时间降水,SWSC以双峰模式发展,在7月4日和7月26日(DOY 185和207)达到峰值。从图5a可以看出,SWSC从7月13日(DOY 194)开始突然增加约15 Gt,一直持续到7月19日(DOY 200),恰逢7月中旬暴雨的到来。此后,由于直到7月24日(DOY 205)才有进一步的降水,SWSC保持在∼20 Gt,而GFO TWSC和SMC下降。到7月下旬,TWSC和SWSC分别达到约40 Gt和25 Gt的最大值。在8月3日(DOY 215)之后的12天内,一个多月的积水(∼25 Gt)消失了。图 5c 中的绿色条形显示了 7 月至 6 月期间基于月度 L2 产品的 TWSC,该产品仅粗略地提供了平均数量。这种比较说明了与传统的月度分辨率相比,GFO LGD的反转如何有助于理解瞬态气候事件的时间和震级特征。

The situation in CC presents a more intricate scenario. Following several days of rainfall from July 2 (DOY 183), TWSC steadily increased from −10 Gt to 10 Gt, mirroring a rise in SMC from 0 Gt to 30 Gt. Notably, heavy rainfall on July 20 (DOY 201) caused a significant ∼20 Gt jump in TWSC by July 21 (DOY 202) compared to the levels observed on July 18 (DOY 199). TWSC continued to rise by 7 Gt with subsequent rainfall and remains at ∼33 Gt until July 29 (DOY 210). Afterward, TWSC gradually decreased until August 8 (DOY 220). While the TWSC curve (red) suggests a seemingly typical flood evolution based on GFO LGD inversion, Figure 5g highlights a notable finding: throughout July, the TWSC estimated by GFO consistently falls below the SMC from GLDAS. The maximum deviation of the TWSC by GFO from the SMC reaches around −25 Gt from July 11 to July 17 (DOY 192 to 198). Interestingly, the heaviest precipitation occurred on July 20 (DOY 201). However, the residual (GFO–GLDAS, supposedly representing SWSC) on July 20 had already continuously dropped to nearly −17 Gt relative to the June average. This pre-flooding process mostly cancel out the following increase in SWSC caused by flooding. Logically, the SWSC cannot be negative because we indeed experienced widespread inundation (Feng, 2021). Therefore, a more plausible explanation is that the LSM overestimates the soil moisture. CC comprises several large populated cities and is undergoing intense manipulation of water resources, including dam construction, groundwater extraction and various ecological restoration (ER) programs (Cao et al., 2022), possibly transforming the environments in CC from nature-dominated to human-dominated.
CC 中的情况呈现出更复杂的情况。从7月2日(DOY 183)开始连续几天的降雨之后,TWSC从-10 Gt稳步增加到10 Gt,反映了SMC从0 Gt上升到30 Gt。 值得注意的是,7月20日(DOY 201)的强降雨导致7月21日(DOY 202)的TWSC大幅上升了∼20 Gt,而7月18日(DOY 199)观察到的水平。在随后的降雨中,TWSC继续上升了7 Gt,并一直保持在∼33 Gt,直到7月29日(DOY 210)。之后,TWSC逐渐下降,直到8月8日(DOY 220)。虽然TWSC曲线(红色)表明基于GFO LGD反转的看似典型的洪水演变,但图5g突出了一个值得注意的发现:整个7月,GFO估计的TWSC一直低于GLDAS的SMC。从7月11日到7月17日(DOY 192至198),GFO对TWSC与SMC的最大偏差达到-25 Gt左右。有趣的是,最强的降水发生在 7 月 20 日(DOY 201)。然而,7月20日的残差(GFO-GLDAS,据称代表SWSC)相对于6月的平均值已经持续下降到近-17 Gt。这种洪水前的过程主要抵消了洪水引起的SWSC的以下增加。从逻辑上讲,SWSC 不可能是负面的,因为我们确实经历了广泛的洪水泛滥(Feng,2021 年)。因此,一个更合理的解释是LSM高估了土壤湿度。CC 由几个人口稠密的大城市组成,并且正在经历对水资源的密集操纵,包括大坝建设、地下水开采和各种生态恢复 (ER) 计划(Cao et al., 2022),可能会将 CC 的环境从自然主导转变为人类主导。

4.2 Human Activities Not Covered in GLDAS
4.2 GLDAS未涵盖的人类活动

Water resources in the CC region is strongly manipulated by human activities, particularly in terms of dam building and groundwater extraction. These human activities are not accounted for in the GLDAS model but included in GFO observations. Therefore, the examination of the ∼25 Gt deficit in GFO–GLDAS allows for an exploration of human effects. The XD located in the study region ranks as the largest dam in the middle and downstream of YRB (inset in Figure 6) and it is the main factor we examined here. The XD has at least three impacts on local mass transport that may result in changes in GFO–GLDAS values. First, the GLDAS model lacks representation of the water storage in reservoirs. The reservoir storage of the XD changes yearly and keeps a relatively high-water level most of the year (Figure 6a). As a countermeasure against potential advent of floods in July every year, the XD releases its storage in advance from June and maintains the lowest water level in July until resuming water retention in August. In 2021, the monthly mean reservoir storage reduced from 4 Gt in June to 0.3 Gt in July.
CC地区的水资源受到人类活动的严重操纵,特别是在大坝建设和地下水开采方面。这些人类活动没有被纳入GLDAS模型,但被纳入GFO观测。因此,对GFO-GLDAS中∼25 Gt赤字的检查允许探索人类影响。位于研究区域的XD是YRB中下游最大的大坝(图6插图),也是我们在这里研究的主要因素。XD对局部质量输送至少有三个影响,可能导致GFO-GLDAS值的变化。首先,GLDAS模型缺乏对水库储水量的表示。XD的水库蓄水量每年都在变化,一年中的大部分时间都保持着相对较高的水位(图6a)。为了应对每年7月可能发生的洪水,XD从6月开始提前释放蓄水,并在7月保持最低水位,直到8月恢复蓄水。2021年,月平均水库蓄水量从6月的4 Gt减少到7月的0.3 Gt。

Details are in the caption following the image

(a) The reservoir storage of Xiaolangdi Dam (XD) from July 2020 to September 2022. (b) The accumulated runoff for XD from Global Land Data Assimilation System (darker green), the ground-based stations (lighter green) and the accumulated concentration from the ground-based station at XD (blue). (c) The sediment content at the XD from January to September 2021. The measurements are lacking from January to June. The inset shows the boundary of Yellow River Basin, the location of XD and the study region in Central China.
(a) 2020年7月至2022年9月小浪地大坝蓄水量。(b) 全球陆地数据同化系统(深绿色)、地面台站(浅绿色)和XD地面台站(蓝色)的XD累积径流。(c) 2021年1月至9月XD的沉积物含量。1 月至 6 月缺乏测量值。插图显示了黄河流域的边界、XD的位置和中国中部的研究区域。

Second, together with upstream dams, water supply from the Yellow River runoff to the local water system may be partially intercepted. By comparing the in-situ runoffs observations in the Yellow River with the simulated one in GLDAS simulations, we find that the GLDAS model overestimates the accumulated runoff at the XD by about 8 Gt during the study period, which is likely stems from a dozen of dams in the upper stream (Xie et al., 2019). The deficit indicates that the study region is less replenished by upper stream than GLDAS suggests, potentially resulting in an equivalent loss in TWS. Third, as the Yellow River is abundant in sediment (its particular water color also gives its name), the timely water storage and release of the XD creates artificial flood peaks to scour and transport sediment, thereby reducing the siltation of downstream of the YRB. We estimate the mass change in sediment content in the river, although it is crucial to note that in-situ measurements of sediment content are notably incomplete (Figure 6c). As a result, the estimation is based on the maximum observed value in early July, approximating it to be around 2 Gt.
其次,与上游大坝一起,黄河径流到当地水系统的供水可能会被部分截留。通过比较黄河原位径流观测结果与GLDAS模拟结果,我们发现GLDAS模型在研究期间高估了XD的累积径流约8 Gt,这可能源于上游的十几座水坝(Xie et al., 2019)。赤字表明,研究区域上游的补充比GLDAS所暗示的要少,这可能导致TWS的等效损失。第三,由于黄河泥沙丰富(黄河特殊的水色也得名),黄河的及时蓄水和放水形成了人工洪峰,冲刷和输送泥沙,从而减少了黄河下游的淤积。我们估计了河流中沉积物含量的质量变化,但必须注意的是,沉积物含量的原位测量明显不完整(图6c)。因此,估计是基于7月初的最大观测值,大约为2 Gt。

Our investigation into these three contributors that directly reflect the human interference with water resources in the YRB accounts for 14 Gt of the total 25 Gt mass deficit. In fact, the enormous civil and agricultural water use can greatly exaggerate the observed reduction of water in reservoirs and runoff. Accurate model and quantification of these human activities is beyond the scope of this study. Annual water withdrawals in the YRB have steadily increased from 33.6 Gt in 2003 to 40.5 Gt in 2021 (http://www.yrcc.gov.cn/other/hhgb). Additionally, the ER programs in the YRB drives dominantly an increase in natural land cover types (such as forest and grassland) at the expense of human-intensive land uses (such as farms), resulting in a severe 3.6 Gt/year loss in TWS from 2002 to 2021.
我们对这三个贡献者的调查直接反映了人类对 YRB 水资源的干扰,占总 25 Gt 质量赤字的 14 Gt。事实上,大量的民用和农业用水会大大夸大观察到的水库和径流中的水量减少。这些人类活动的准确建模和量化超出了本研究的范围。YRB 的年取水量从 2003 年的 33.6 Gt 稳步增加到 2021 年的 40.5 Gt (http://www.yrcc.gov.cn/other/hhgb)。此外,YRB 中的 ER 计划主要推动了自然土地覆盖类型(如森林和草原)的增加,而牺牲了人类密集型土地利用(如农场),导致 2002 年至 2021 年的 TWS 严重损失 3.6 Gt/年。

Our results reveal a significant shift in water resource allocation and condition due to extensive and long-term use and manipulation. This has led to differences between LSM simulations (e.g., 50 Gt simulated mass increase) and observed reality (39 Gt). This divergence highlights the substantial impact of human activities on hydrological processes, especially in regions with extensive water management infrastructure.
我们的研究结果显示,由于广泛和长期的使用和操纵,水资源分配和条件发生了重大变化。这导致了LSM模拟(例如,50 Gt模拟质量增加)和观察到的现实(39 Gt)之间的差异。这种差异凸显了人类活动对水文过程的重大影响,特别是在拥有广泛水管理基础设施的地区。

4.3 Cross-Validation With ITSG Daily Solution
4.3 与ITSG日常解决方案的交叉验证

To further access the effectiveness and accuracy of our LGD inversion method, we conducted a comparative analysis with the ITSG daily solution, known for its success in flood monitoring (Gouweleeuw et al., 2018). As depicted in Figure 7, we compare the TWSC estimated from GFO LGD and the ITSG daily solution for both the WE and CC cases spanning from June to October 2021. In the WE case, the TWSCs from both GFO LGD and ITSG daily solution aligned during the flood development and peaking stages, demonstrating the detectability of GFO LGD observations in this flooding event. However, we noted that the ITSG daily solutions experienced a suspiciously giant post-flooding decline in September and October (purple shaded area in Figure 7a), reaching the lowest point on September 6. This amount of mass loss is equivalent to 1 year's melting of the Greenland Ice Sheet and is therefore physically impossible. As a result, the overall RMSE between the two estimates reaches 39.47 Gt over the entire period.
为了进一步了解我们的 LGD 反演方法的有效性和准确性,我们与 ITSG 日常解决方案进行了比较分析,该解决方案以其在洪水监测方面的成功而闻名(Gouweleeuw 等人,2018 年)。如图 7 所示,我们比较了 2021 年 6 月至 10 月期间 WE 和 CC 案例的 GFO LGD 和 ITSG 每日解决方案估计的 TWSC。在WE案例中,来自GFO LGD和ITSG日溶液的TWSC在洪水发展和峰值阶段对齐,证明了GFO LGD观测值在这次洪水事件中的可探测性。然而,我们注意到,ITSG每日解决方案在9月和10月经历了可疑的巨大洪水后下降(图7a中的紫色阴影区域),在9月6日达到最低点。这种质量损失相当于格陵兰冰盖1年的融化,因此在物理上是不可能的。因此,在整个期间内,两个估计值之间的总体RMSE达到39.47 Gt。

Details are in the caption following the image

(a) Average precipitation in the study region (blue bar), TWSC estimated from GFO line-of-sight gravity difference (LGD) measurements (red line), ITSG daily solution with a scale factor of 1.124 (green line), their difference (gray line) and the TWSC from L2 solution (blue line) for Western Europe case. The purple shaded area spans from September to October 2021. (b) Similar to (a), but for Central China case. The scale factor for ITSG daily solution is 1.127. The blue and green shaded areas show the flooding process captured by LGD and ITSG daily solution, respectively.
(a) 研究区域的平均降水量(蓝条)、根据 GFO 视距重力差 (LGD) 测量值估计的 TWSC(红线)、比例因子为 1.124 的 ITSG 每日解(绿线)、它们的差值(灰线)和 TWSC 来自西欧情况下的 L2 解(蓝线)。紫色阴影区域从 2021 年 9 月持续到 10 月。(b) 与(a)类似,但适用于华中地区的情况。ITSG 每日解决方案的比例因子为 1.127。蓝色和绿色阴影区域分别表示 LGD 和 ITSG 每日解决方案捕获的洪水过程。

For the CC case, the RMSE was 13.32 Gt, indicating a better agreement compared to the WE case. In this case, against the background of a seasonal uptrend (orange line in Figure 7b), the LGD TWSC time series shows a notable jump caused by rainfall (red shaded area). This sharp jump reflects the complete flooding process of rapid onset, retreat and return to the seasonal pattern. In contrast, the ITSG TWSC time series depicts the cumulative flooding session initiating much earlier on June 29th (DOY 180), 17 days before the LGD estimation, and barely captures the receding stages, resulting in a prolonged and flat flooding process (green shaded area). This indicates that stronger temporal filtering and smoothing are applied in the ITSG daily solutions. Moreover, we also show two suspicious mass change (>50 Gt) in the ITSG daily solution for the CC case. Besides, the standard deviations of ITSG TWSC values within the purple shaded area show higher variability compared to those outside the region. Specifically, the standard deviations outside the purple shaded area are 19.20 Gt and 9.53 Gt for the CC and WE cases, respectively, which are considerably lower than the values inside (26.99 Gt and 32.23 Gt).
对于CC案例,RMSE为13.32 Gt,表明与WE案例相比具有更好的一致性。在这种情况下,在季节性上升趋势的背景下(图7b中的橙色线),LGD TWSC时间序列显示出降雨引起的显着跳跃(红色阴影区域)。这种急剧的跳跃反映了快速开始、退去和回归季节性模式的完整洪水过程。相比之下,ITSG TWSC 时间序列描绘了 6 月 29 日(DOY 180)更早开始的累积洪水时段,比 LGD 估计早 17 天,并且几乎没有捕捉到消退阶段,导致洪水过程延长且平坦(绿色阴影区域)。这表明在 ITSG 日常解决方案中应用了更强的时间过滤和平滑。此外,我们还在 CC 案例的 ITSG 每日解决方案中显示了两个可疑的质量变化 (>50 Gt)。此外,与区域外相比,紫色阴影区域内的ITSG TWSC值的标准差表现出更高的变异性。具体而言,CC 和 WE情况的紫色阴影区域外的标准差分别为 19.20 Gt 和 9.53 Gt,远低于内部值(26.99 Gt 和 32.23 Gt)。

As the GFO LGD estimates are tuned to the regional characteristics and manual quality control is applied, they are expected to demonstrate greater quality stability and heightened sensitivity to storm-induced TWSC signals. Therefore, theoretically, our approach has an improved performance in accurately capturing the intricate dynamics of flood evolution.
由于GFO LGD的估计值根据区域特征进行了调整,并应用了手动质量控制,因此预计它们将表现出更高的质量稳定性和对风暴引起的TWSC信号的高度敏感性。因此,从理论上讲,我们的方法在准确捕捉洪水演变的复杂动态方面具有更高的性能。

5 Discussion 5 讨论

As exemplified by Han et al. (2021a, 2021b), previous studies primarily dealt with estimating TWSC in the context of mega-flood events, where the consequential signal generated by such substantial flooding dominate the hydrological surroundings. Consequently, the application of ridge regression with a diagonal matrix as the regularization proves effective in stabilizing TWSC estimations, as the dominating impact of mega-floods is well captured within this framework. In contrast, the scope of this study is to address challenges associated with medium-sized flooding, an aspect that has not been extensively explored in previous methodologies.
正如Han et al. ( 2021a, 2021b)所举例的那样,以前的研究主要涉及在特大洪水事件的背景下估计TWSC,其中由这种大规模洪水产生的后果信号主导了水文环境。因此,应用对角矩阵作为正则化的脊回归被证明可以有效地稳定TWSC估计,因为特大洪水的主要影响在这个框架内得到了很好的捕捉。相比之下,本研究的范围是解决与中型洪水相关的挑战,这是以前的方法中尚未广泛探讨的一个方面。

Medium-sized floods do not exert the same dominant influence, and their effects on the LGD observations become intertwined with other signals. Additionally, in ridge regression, the regularization using diagonal matrix aims to minimize the norm of the solution vector (TWSC time series), pushing each element toward zero. Instead, the temporal correlation regularization is a more reasonable alternative. This regularization technique, by minimizing the first derivative of the flooding process, is more attuned to the natural causes of flooding. The TWSC is the integral of precipitation, runoff and evaporation. Consequently, the TWSC time series are a more gradual process compared to precipitation, further justifying the preference for temporal correlation regularization in capturing the flooding processes.
中型洪水不会产生相同的主导影响,它们对LGD观测的影响与其他信号交织在一起。此外,在岭回归中,使用对角矩阵的正则化旨在最小化解向量(TWSC 时间序列)的范数,从而将每个元素推向零。相反,时间相关正则化是一种更合理的选择。这种正则化技术通过最小化洪水过程的一阶导数,更能适应洪水的自然原因。TWSC是降水、径流和蒸发的组成部分。因此,与降水相比,TWSC时间序列是一个更加渐进的过程,这进一步证明了在捕获洪水过程时对时间相关正则化的偏好是合理的。

To substantiate our method, a numerical test employing GLDAS SMC data is presented to demonstrate its capability to navigate the complexities associated with estimating TWSC in diverse hydrological scenarios. Figure 8 presents the results from ridge regression without extra considering of surrounding signal sources. In this configuration, the RMSEs for the WE and the CC cases surged to 5.03 Gt and 8.17 Gt, respectively, while the NSEs for these cases reduced to 0.45 and 0.77. Specifically, for the WE case, the inversion results and their residual with the GLDAS SMC show pronounced oscillations, leading to a significant reduction of 0.4 in NSE. This, in turn, rendered the inversion results less capable of capturing the detailed evolution of SMC, particularly evident in replicating the peak value on July 16 (DOY 197). Simultaneously, in the CC case, the inversion results faltered in capturing SMC during the flood receding process. This deficiency resulted in a notable 4.99 Gt increase in RMSE, with a maximum residual peaking at approximately 20 on August 17 (DOY 229). These findings underscore the critical importance of our tailored approach, as it not only enhances the accuracy of TWSC estimation but also ensures the fidelity of the algorithm in capturing intricate hydrological dynamics during both flood events and receding phases.
为了证实我们的方法,本文提出了一个使用GLDAS SMC数据的数值测试,以证明其能够驾驭与不同水文情景下估计TWSC相关的复杂性。图 8 显示了山脊回归的结果,没有额外考虑周围的信号源。在这种配置中,WE和CC案例的RMSE分别飙升至5.03 Gt和8.17 Gt,而这些案例的NSE降至0.45和0.77。具体而言,对于WE情况,反演结果及其与GLDAS SMC的残差显示出明显的振荡,导致NSE显着降低0.4。这反过来又使反演结果无法捕捉到SMC的详细演变,这在复制7月16日的峰值(DOY 197)时尤为明显。同时,在CC情况下,反演结果在洪水退去过程中捕获SMC时表现不佳。这种缺陷导致RMSE显着增加4.99 Gt,最大残余峰值在8月17日(DOY 229)约为20。这些发现强调了我们量身定制的方法的至关重要性,因为它不仅提高了TWSC估计的准确性,而且还确保了算法在洪水事件和消退阶段捕获复杂水文动态的保真度。

Details are in the caption following the image

Similar to Figure 3, but the estimation is based on the ridge regression (no temporal regularization) and no consideration of extra regions.
与图 3 类似,但估计基于岭回归(无时间正则化),不考虑额外区域。

Next, we conduct numerical experiments utilizing GLDAS SMC data for both WE and CC cases across a range of SNRs to validate the robustness of our methodology. As previously noted, the typical noise level associated with LGD is on the order of a few times 0.1 nm/s2. Therefore, we superimposed Gaussian white noise with a standard deviation of 0.4 nm/s2 to the synthetic GLDAS LGD data. Employing this noise level as our baseline, we scale the peak flooding values of the synthetic GLDAS LGD to simulate various magnitudes of floods, corresponding to various SNR scenarios (e.g., a scaling factor greater than 1.0 indicates that the flooding signal is amplified and therefore more likely to be detected).
接下来,我们利用一系列 SNR 的 WE 和 CC 案例的 GLDAS SMC 数据进行数值实验,以验证我们方法的稳健性。如前所述,与LGD相关的典型噪声水平约为0.1 nm/s 2 的几倍。因此,我们将标准偏差为0.4 nm/s 2 的高斯白噪声叠加到合成的GLDAS LGD数据中。以该噪声水平为基线,我们缩放合成GLDAS LGD的峰值洪水值,以模拟各种规模的洪水,对应于各种SNR场景(例如,比例因子大于1.0表示洪水信号被放大,因此更有可能被检测到)。

Figure 9 shows that our method outperforms the previous approach for both WE and CC cases. At the highest scale factor where the flooding signal in LGD is amplified by 6 times (corresponding to a mass anomaly of ∼240 Gt), the performances of both methods are closely aligned, suggesting that in the ideal case of a strong signal source, the outputs of the two methods are identical. With declining scale factors, our method maintains lower relative errors and higher NSEs. Here, we empirically define that the inversion result is “acceptable” when the relative error threshold is less than 0.25 and the NSE threshold is greater than 0.85. Therefore, for the WE case, our method achieves an acceptable output at a scale factor of 0.6, while the previous method reaches these thresholds at a scale factor of 2.5. Similarly, for the CC case, our and previous method surpass these thresholds at scale factors of 0.4 and 1.2, respectively. Based on the actual flood magnitude of ∼40 Gt for both cases, our method is capable of recovering flood with a magnitude of 24 Gt and 16 Gt in WE and CC, separately, or equivalent to approximately 1.5 nm/s2 in LGD measurements. These values hint at the detectability of our method for future applications. It's worth noting that the performance of our method also depends on the complexity of the peripheral signals, so the conclusion here may vary from case to case.
图 9 显示,我们的方法在 WE 和 CC 情况下都优于之前的方法。在LGD中的泛洪信号放大6倍(对应于∼240 Gt的质量异常)的最高比例因子下,两种方法的性能非常一致,这表明在强信号源的理想情况下,两种方法的输出是相同的。随着比例因子的下降,我们的方法保持了较低的相对误差和较高的NSE。在这里,我们根据经验定义,当相对误差阈值小于 0.25 且 NSE 阈值大于 0.85 时,反演结果是“可接受的”。因此,对于WE情况,我们的方法在0.6的比例因子下实现了可接受的输出,而之前的方法在2.5的比例因子下达到了这些阈值。同样,对于 CC 情况,我们和以前的方法分别在 0.4 和 1.2 的比例因子上超过了这些阈值。基于两种情况下∼40 Gt的实际洪水量级,我们的方法能够分别恢复WE和CC中24 Gt和16 Gt的洪水,或者相当于LGD测量中约1.5 nm/s 2 的洪水。这些值暗示了我们的方法在未来应用中的可检测性。值得注意的是,我们方法的性能还取决于外围信号的复杂性,因此这里的结论可能因情况而异。

Details are in the caption following the image

(a), (c) The relative errors and Nash-Sutcliffe Efficiency of Global Land Data Assimilation System soil moisture changes and its inversion results under scale factors to the signal for the Western Europe case. (b), (d) Similar to (a), (c), but for the Central China case.
(a)、(c) 全球土地数据同化系统土壤水分变化及其反演结果在比例因子下对西欧信号的相对误差和Nash-Sutcliffe效率。(b)、(d) 与(a)、(c)类似,但适用于华中地区的情况。

6 Conclusions 6 结论

This study presents a novel method to monitor the moderate flood events using the LGD data, derived from GFO's laser and microwave inter-satellite measurements. This advanced data elevates the temporal resolution from the conventional monthly scale to a 3–5 days granularity, allowing the GFO to capture transient surface mass variations in gravity with a delay of ∼14 days. Thus, this enhancement realizes the full potential of GFO's high-precision inter-satellite observations, broadening its range and applicability in understanding EWEs, with a particular focus on the evolution of floods. Our contribution lies in the development of an innovative inversion algorithm for precisely estimating the local water storage change within complex hydrological environment, incorporating its time-correlation nature. To demonstrate the effectiveness of our method, we applied it to two devastating floods ravaged CC and WE in July 2021. This study estimates the TWSC of these two floods with a temporal solution of 3–5 days, providing detailed insights into the dynamics of flood evolution. In the case of CC, the TWSC detected by GFO is abnormally smaller than the GLDAS SMC by 25 Gt. We attribute this deviation to human manipulation of water resources, a factor absent in the LSMs. Our analysis reveals that 14 Gt of 25 Gt mass deficit can be explained by the decreased reservoir storage of XD between June and July (4 Gt), GLDAS's overestimation of the surface runoff (8 Gt) and the subsequent sediment concentration (2 Gt). The CC case serves as a reminder of the limitations inherent in LSMs when assessing regions profoundly shaped by prolonged human activities. Beyond the case study, this study shows that our method outperforms the ITSG daily solution with better stability and capability of capturing transient flood events. Additionally, evaluation of the existing and our approach using GLDAS SMC data across a range of SNRs highlights the applicability and robustness of our inversion method. We find that our method may be applicable to flooding events greater than 20 Gt in size. This study underscores the immense value of high-temporal-resolution observations provided by GFO LGD measurements and our LGD-based inversion algorithm. Our methodology facilitates a more propound analysis and comprehension of the complex dynamics of the medium-sized extreme events, particularly under the noisy environmental conditions.
本研究提出了一种利用GFO激光和微波星间测量数据的LGD数据监测中度洪水事件的新方法。这些先进的数据将时间分辨率从传统的月度尺度提升到3-5天的粒度,使GFO能够以∼14天的延迟捕获重力中的瞬态表面质量变化。因此,这一改进充分发挥了GFO高精度星间观测的潜力,扩大了其在理解EWE方面的范围和适用性,特别关注洪水的演变。我们的贡献在于开发了一种创新的反演算法,用于精确估计复杂水文环境中的局部储水量变化,并结合其时间相关性。为了证明我们方法的有效性,我们将其应用于 2021 年 7 月蹂躏 CC 和 WE 的两次毁灭性洪水。本研究以 3-5 天的时间解估计了这两次洪水的 TWSC,为洪水演变的动态提供了详细的见解。在CC的情况下,GFO检测到的TWSC异常小于GLDAS SMC25 Gt。我们将这种偏差归因于人为对水资源的操纵,这是LSM中不存在的一个因素。我们的分析表明,25 Gt 质量赤字中有 14 Gt 可以解释为 6 月至 7 月期间 XD 的储层储存量减少 (4 Gt)、GLDAS 对地表径流的高估 (8 Gt) 和随后的沉积物浓度 (2 Gt)。CC案例提醒我们,在评估长期人类活动深刻影响的区域时,LSM固有的局限性。 除了案例研究之外,本研究表明,我们的方法优于 ITSG 日常解决方案,具有更好的稳定性和捕获瞬态洪水事件的能力。此外,在一系列 SNR 中使用 GLDAS SMC 数据对现有方法和我们方法的评估突出了我们的反演方法的适用性和稳健性。我们发现我们的方法可能适用于大于 20 Gt 的洪水事件。这项研究强调了GFO LGD测量和我们基于LGD的反演算法提供的高时间分辨率观测的巨大价值。我们的方法有助于对中型极端事件的复杂动态进行更有力的分析和理解,特别是在嘈杂的环境条件下。

Acknowledgments 确认

This work was supported by the National Natural Science Foundation of China, China (E214040201, E421040401), the University of Chinese Academy of Sciences Research Start-up Grant (110400M003), the Fundamental Research Funds for the Central Universities (E2ET0411X2, E3ER0402A2). This study benefited from discussions with Prof. Shin-Chan Han on LGD data processing. We are grateful for these institutes and data services that made the GRACE-FO, gravity and land surface model data available: NASA Jet Propulsion Laboratory, University of Texas Center for Space Research, NASA Goddard Space Flight Center, and Technology University of Graz Institute of Geodesy. Furthermore, we would like to acknowledge that a preprint version of this paper is available online https://essopenarchive.org/users/572752/articles/617463-revealing-high-temporal-resolution-flood-evolution-with-low-latency-using-grace-follow-on-ranging-data.
这项工作得到了中国国家自然科学基金(E214040201,E421040401),中国科学院大学研究启动基金(110400M003),中央大学基础研究基金(E2ET0411X2,E3ER0402A2)的支持。本研究得益于与Shin-Chan Han教授关于LGD数据处理的讨论。我们感谢这些提供GRACE-FO、重力和地表模型数据的研究所和数据服务:美国宇航局喷气推进实验室、德克萨斯大学空间研究中心、美国宇航局戈达德太空飞行中心和格拉茨科技大学大地测量研究所。此外,我们要确认,本文的预印本版本可在线获取 https://essopenarchive.org/users/572752/articles/617463-revealing-high-temporal-resolution-flood-evolution-with-low-latency-using-grace-follow-on-ranging-data。