This application is a continuation-in-part of U.S. application Ser. No. 09/081,260 filed May 19, 1998, now abandoned, and U.S. application Ser. No. 09/194,374 filed Jul. 25, 2000. This application is also related to U.S. application Ser. No. 09/275,061 filed Mar. 23, 1999. All of these applications are incorporated by reference herein. 本申请是1998年5月19日提交、现已放弃的美国申请号09/081,260和2000年7月25日提交的美国申请号09/194,374的部分延续。本申请还与 1999 年 3 月 23 日提交的美国申请 Ser.所有这些申请均并入本文作为参考。
This invention was made with Government support under contract DAAM01-96-C-0061 awarded by the U.S. Army. The Government has certain rights in the invention. 本发明是根据美国陆军授予的 DAAM01-96-C-0061 合同在政府支持下完成的。政府对本发明拥有某些权利。
TECHNICAL FIELD OF THE INVENTION 本发明的技术领域
The present invention relates generally to optical detection systems, and in particular to a multi-channel detection system for the real-time detection of a plurality of different analytes in a fluid sample. 本发明一般涉及光学检测系统,特别是用于实时检测流体样品中多种不同分析物的多通道检测系统。
BACKGROUND OF THE INVENTION 发明背景
There are many applications in the field of chemical processing in which it is desirable to precisely control the temperature of reaction mixtures (e.g., biological samples mixed with chemicals or reagents), to induce rapid temperature transitions in the mixtures, and to detect target analytes in the mixtures. Applications for such heat-exchanging chemical reactions may encompass organic, inorganic, biochemical and molecular reactions, and the like. Examples of thermal chemical reactions include nucleic acid amplification, thermal cycling amplification, such as polymerase chain reaction (PCR), ligase chain reaction (LCR), self-sustained sequence replication, enzyme kinetic studies, homogeneous ligand binding assays, and more complex biochemical mechanistic studies that require complex temperature changes. 在化学处理领域有许多应用,需要精确控制反应混合物(例如与化学品或试剂混合的生物样品)的温度,诱导混合物中的快速温度转换,并检测混合物中的目标分析物。此类热交换化学反应的应用可包括有机、无机、生化和分子反应等。热化学反应的例子包括核酸扩增、热循环扩增,如聚合酶链式反应(PCR)、连接酶链式反应(LCR)、自持序列复制、酶动力学研究、均相配体结合测定,以及需要复杂温度变化的更复杂的生化机理研究。
A preferred detection technique for chemical or biochemical analysis is optical interrogation, typically using fluorescence or chemiluminescence measurements. For ligandbinding assays, time-resolved fluorescence, fluorescence polarization, or optical absorption are often used. For PCR assays, fluorescence chemistries are often employed. 化学或生化分析的首选检测技术是光学检测,通常使用荧光或化学发光测量。配体结合检测通常使用时间分辨荧光、荧光偏振或光学吸收。在 PCR 检测中,通常会使用荧光化学试剂。
Conventional instruments for conducting thermal reactions and for optically detecting the reaction products typically incorporate a block of metal having as many as ninety-six conical reaction tubes. The metal block is heated and cooled either by a Peltier heating/cooling apparatus or by a closed-loop liquid heating/cooling system in which liquid flows through channels machined into the block. Such instruments incorporating a metal block are described in U.S. Pat. No. 5,038,852 to Johnson, U.S. Pat. No. 5,333,675 to Mullis, and U.S. Pat. No. 5,475,6105,475,610 to Atwood. 用于进行热反应和光学检测反应产物的传统仪器通常包括一个金属块,上面有多达 96 个锥形反应管。金属块通过珀尔帖加热/冷却装置或闭环液体加热/冷却系统进行加热和冷却,在闭环液体加热/冷却系统中,液体通过加工到金属块中的通道流动。美国专利 No.No. 5,038,852 to Johnson、U.S. Pat.Mullis的美国专利第5,333,675号和U.S. Pat. 5,475,6105,475,610 号。
These conventional instruments have several disadvantages. First, due to the large thermal mass of a metal block, the heating and cooling rates in these instruments are limited to about 1^(@)C1^{\circ} \mathrm{C}./sec resulting in longer processing times. For example, in a typical PCR application, fifty cycles may require two or more hours to complete. With these relatively slow heating and cooling rates, it has been observed that some processes requiring precise temperature control are inefficient. For example, reactions may occur at the intermediate temperatures, creating unwanted and interfering side products, such as PCR “primer-dimers” or anomalous amplicons, which are detrimental to the analytical process. Poor control of temperature also results in over-consumption of reagents necessary for the intended reaction. 这些传统仪器有几个缺点。首先,由于金属块的热质量大,这些仪器的加热和冷却速度被限制在 1^(@)C1^{\circ} \mathrm{C} ./秒左右,导致处理时间延长。例如,在典型的 PCR 应用中,50 个循环可能需要两个或更长时间才能完成。由于加热和冷却速度相对较慢,人们发现一些需要精确温度控制的过程效率很低。例如,反应可能在中间温度下进行,产生不需要的干扰副产物,如 PCR "引物二聚体 "或异常扩增子,这对分析过程不利。温度控制不当还会导致预期反应所需的试剂消耗过多。
Another disadvantage of these conventional instruments is that they typically do not permit real-time optical detection or continuous optical monitoring of the chemical reaction. For example, in the Perkin Elmer 7700 (ATC) instrument, optical fluorescence detection is accomplished by guiding an optical fiber to each of ninety-six reaction sites in a metal block. A central high power laser sequentially excites each reaction site and captures the fluorescence signal through the optical fiber. Since all of the reaction sites are sequentially excited by a single laser and since the fluorescence is detected by a single spectrometer and photomultiplier tube, simultaneous monitoring of each reaction site is not possible. 这些传统仪器的另一个缺点是通常无法对化学反应进行实时光学检测或连续光学监控。例如,在珀金埃尔默 7700(ATC)仪器中,光学荧光检测是通过将光纤引向金属块中 96 个反应点中的每个反应点来实现的。中央高功率激光器依次激发每个反应点,并通过光纤捕捉荧光信号。由于所有反应点都是由单个激光器依次激发的,而且荧光是由单个光谱仪和光电倍增管检测的,因此无法同时监测每个反应点。
Some of the instrumentation for newer processes requiring real-time optical monitoring of a chemical reaction has only recently become available. One such instrument is the MATCI device disclosed by Northrup et al in U.S. Pat. No. 5,589,1365,589,136. This device uses a modular approach to PCR thermal cycling and optical analysis. Each chemical reaction is performed in its own silicon sleeve and each sleeve has its own associated optical excitation source and fluorescence detector. Using a light-emitting diode (LED) and a solidstate detector, real-time optical data is obtained from a compact, low-power module. The device includes only one light source and one detector for each module, however, so that the simultaneous detection of multiple analytes is not possible. 一些用于需要对化学反应进行实时光学监控的较新工艺的仪器最近才问世。Northrup 等人在美国专利 5,589,1365,589,136 No. 5,589,1365,589,136 。该设备采用模块化方法进行 PCR 热循环和光学分析。每个化学反应都在自己的硅套管中进行,每个套管都有自己的相关光学激发光源和荧光检测器。利用发光二极管(LED)和固态检测器,可从一个小巧、低功耗的模块中获得实时光学数据。不过,该装置每个模块只有一个光源和一个检测器,因此无法同时检测多个分析物。
Another analysis instrument is available from Idaho Technologies and described by Wittwer et al. in “The LightCycler ^(TM)^{\mathrm{TM}} : A Microvolume Multisample Fluorimeter with Rapid Temperature Control”, BioTechniques, Vol. 22, pgs. 176-181, January 1997. The instrument includes a circular carousel with a stepper motor for holding up to twenty-four samples and for sequentially positioning each of the samples over an optics assembly. The temperature of the samples is controlled by a central heating cartridge and a fan positioned in a central chamber of the carousel. Wittwer 等人在 "The LightCycler ^(TM)^{\mathrm{TM}} : A Microvolume Multisample Fluorimeter with Rapid Temperature Control"(《LightCycler^(TM)^{\mathrm{TM}}:一种具有快速温度控制功能的微量多样品荧光计》)一文中介绍了另一种分析仪器,该仪器由 Idaho Technologies 公司提供,《BioTechniques》第 22 卷第 176-181 页,1997 年 1 月。176-181 页,1997 年 1 月。该仪器包括一个带步进电机的圆形转盘,可容纳多达二十四个样品,并将每个样品按顺序放置在光学组件上。样品的温度由一个中央加热盒和一个位于转盘中央腔室的风扇控制。
In operation, the samples are placed in capillaries which are held by the carousel, and each sample is interrogated through a capillary tip by epi-illumination. The light source is a blue LED that is reflected off a first dichroic filter towards the sample. Light is focused to and collected from the capillary tip by an epi-illumination lens. Light emitted from the capillary tip passes through the first dichroic filter, is filtered by one or more additional dichroic filters, and is focused to photodiodes for detection. 在操作过程中,样品被放入由转盘固定的毛细管中,每个样品都通过毛细管尖端的外延照明进行检测。光源是一个蓝色发光二极管,从第一个二向色滤光片反射到样品上。光通过外延照明透镜聚焦到毛细管尖端并从毛细管尖端收集。从毛细管尖端发出的光穿过第一个二向色滤光片,再经过一个或多个二向色滤光片过滤,然后聚焦到光电二极管上进行检测。
Although this instrument permits detection of multiple analytes in a sample undergoing chemical reaction, it has several disadvantages. First, the illumination beams and the emitted light beams have relatively short optical path lengths through the sample volume and share the same path below the capillary tip. This may cause fluorescent emissions from the sample to be weak, leading to poor optical detection sensitivity. Second, the instrument only provides illumination light in one excitation wavelength range. Different fluorescent dyes have different optimal excitation wavelength ranges, however, so that the instrument cannot provide excitation beams in the optimal excitation wavelength range for each of multiple fluorescent dyes in the reaction fluid. Third, the use of dichroic filters may significantly decrease the optical sensitivity of the instrument. Each dichroic filter decreases the intensity of the emitted light by about half, so that the emitted light beams may be weak by the time they reach the detectors. For these reasons, the instrument may exhibit poor sensitivity in detecting fluorescently labeled analytes in the samples. 虽然这种仪器可以检测正在发生化学反应的样品中的多种分析物,但它也有一些缺点。首先,照明光束和发射光束穿过样品体积的光路长度相对较短,并且在毛细管尖端下方共享相同的路径。这可能会导致样品的荧光发射较弱,从而导致光学检测灵敏度较低。其次,仪器只提供一种激发波长范围的照明光。然而,不同的荧光染料有不同的最佳激发波长范围,因此仪器无法为反应液中的每一种多种荧光染料提供最佳激发波长范围内的激发光束。第三,使用二向色滤光片可能会大大降低仪器的光学灵敏度。每个二向色滤光片都会将发射光的强度降低一半左右,因此发射光束到达检测器时可能已经很弱了。因此,仪器在检测样品中的荧光标记分析物时可能会表现出较低的灵敏度。
U.S. Pat. No. 5,675,155 issued to Pentoney et al. discloses another detection system for sequentially and repetitively 美国专利由 Pentoney 等人获得的第 5,675,155 号专利披露了另一种检测系统,该系统可按顺序重复地进行检测。
scanning a plurality of sample volumes and for detecting radiation emitting from each of the samples. The system includes a plurality of coplanar side-by-side capillaries each containing a sample volume. The system also includes an electromagnetic radiation source, a mirror aligned to receive and reflect electromagnetic radiation, a scanner for moving the mirror, a filter wheel for filtering electromagnetic radiation collected from the samples, and a detector aligned to receive the filtered radiation. The sample volume in each capillary column contains fluorescently-labeled samples separated on an electrophoretic medium. 扫描多个样品体积,并检测每个样品发出的辐射。该系统包括多个共面并排毛细管,每个毛细管包含一个样品体积。该系统还包括一个电磁辐射源、一个用于接收和反射电磁辐射的反射镜、一个用于移动反射镜的扫描仪、一个用于过滤从样品中收集到的电磁辐射的过滤轮,以及一个用于接收过滤后辐射的检测器。每个毛细管柱中的样品体积包含在电泳介质上分离的荧光标记样品。
In operation, the radiation source, preferably a laser, directs an excitation beam onto the mirror. The reflected excitation beam passes through a focusing lens and onto a sample volume of a first capillary within the capillary array. Fluorescence emission radiation from the sample is collected and passed through a first filter of the filter wheel which is selected to block light at the wavelength of the laser source and to transmit fluorescence emitted by a first fluorescent dye in the sample volume. Fluorescence transmitted through the first filter is then detected by the detector. A motor then rotates the filter wheel to bring a second filter into the fluorescence emission beam. The second filter transmits fluorescence emitted by a second fluorescence dye, and the fluorescence is measured by the detector. The same process is repeated with third and fourth filters of the filter wheel to measure the fluorescent emission of third and fourth dyes in the sample volume. The entire four-step operation is then performed sequentially and repeatedly with each capillary column in the array. 在操作过程中,辐射源(最好是激光器)将激发光束照射到反射镜上。反射的激发光束穿过聚焦透镜,照射到毛细管阵列中第一个毛细管的样品体积上。样品发出的荧光辐射被收集起来,并通过滤光轮的第一个滤光片,该滤光片被选择用来阻挡激光源波长的光,并透射样品体积中第一种荧光染料发出的荧光。然后,检测器检测通过第一个滤光器的荧光。然后,电机转动滤光片轮,将第二个滤光片带入荧光发射光束。第二个滤光片透过第二种荧光染料发出的荧光,检测器对荧光进行测量。滤光片轮上的第三和第四个滤光片重复同样的过程,以测量样品体积中第三和第四种染料的荧光发射。整个四步操作在阵列中的每个毛细管柱上依次重复进行。
Although this system permits the detection of multiple fluorescent dyes in a sample volume, it has several disadvantages in its use of a moving mirror and a rotating filter wheel. These moving parts typically result in a high cost of the optical system, high maintenance requirements, low reliability, high power consumption, and potential vibratory interference with the optical measurements. 虽然这种系统可以检测一个样品体积中的多种荧光染料,但它有几个缺点,即使用移动镜和旋转滤光轮。这些移动部件通常会导致光学系统成本高、维护要求高、可靠性低、功耗大,以及对光学测量的潜在振动干扰。
SUMMARY 摘要
The present invention overcomes the disadvantages of the prior art by providing an improved system for thermally controlling and optically interrogating reaction mixtures (e.g., biological samples mixed with chemicals or reagents). In contrast to the prior art devices described above, the system of the present invention provides excitation light to each mixture in multiple, distinct excitation wavelength ranges. This ensures that the optimal excitation wavelength range is provided for each of a plurality of analytes in the mixture having different fluorescent, phosphorescent, chemiluminescent, or electrochemiluminescent labels. In addition, the system permits the simultaneous, real-time detection of multiple analytes in the mixture without requiring any moving parts, e.g., carousels or optical filter wheels. Because it has no moving parts, the system of the present invention typically has a lower cost, lower maintenance requirements, higher reliability, and lower power consumption than the prior art devices described above. 本发明克服了现有技术的缺点,提供了一种改进的系统,用于对反应混合物(例如,与化学品或试剂混合的生物样本)进行热控制和光学检测。与上述现有技术装置不同的是,本发明系统为每种混合物提供多个不同激发波长范围的激发光。这可确保为混合物中具有不同荧光、磷光、化学发光或电化学发光标签的多种分析物中的每一种提供最佳激发波长范围。此外,该系统还可同时实时检测混合物中的多种分析物,而无需任何移动部件,如转盘或滤光轮。由于没有移动部件,本发明的系统通常比上述现有技术设备成本更低、维护要求更低、可靠性更高、功耗更低。
The system of the present invention also overcomes the disadvantages of the prior art by providing for extremely rapid and accurate temperature changes of the reaction mixtures. Such tight control of temperature inhibits side reactions, such as the formation of unwanted bubbles or the degradation of components at certain temperatures, that would otherwise interfere with optical detection and analysis. The system is therefore useful in thermally sensitive chemical processes, such as polymerase chain reaction with the first set filters for transmitting the excitation beams in at least four excitation wavelength ranges, and the second optics assembly of each module includes at least four 5 detectors arranged with the second set of filters for detecting emitted light in at least four emission wavelength ranges. The system thus includes at least four separate optical channels for detecting up to four different analytes in each reaction mixture. Also in the preferred embodiment, the 0 system includes a base instrument for receiving the heatexchanging modules. The base instrument includes processing electronics for independently controlling the operation of each module. The system also preferably includes a computer programmed to control the processing electronics in the base instrument. 本发明的系统还克服了现有技术的缺点,可以极其快速准确地改变反应混合物的温度。这种严格的温度控制可抑制副反应,如在特定温度下形成不需要的气泡或成分降解,否则会干扰光学检测和分析。因此,该系统适用于对温度敏感的化学过程,如聚合酶链反应,第一组滤光片用于在至少四个激发波长范围内传输激发光束,每个模块的第二光学组件包括至少四个与第二组滤光片一起布置的探测器,用于检测至少四个发射波长范围内的发射光。因此,该系统包括至少四个独立的光学通道,用于检测每个反应混合物中多达四种不同的分析物。在优选的实施方案中,0 系统还包括一个用于接收热交换模块的基础仪器。基础仪器包括处理电子装置,用于独立控制每个模块的运行。系统最好还包括一台计算机,通过编程控制基础仪器中的处理电子装置。
Although it is presently preferred to position all of the light sources. in the first optics assembly and all of the 虽然目前倾向于将所有光源置于第一光学组件中,而将所有光源置于第二光学组件中。
detectors in the second optics assembly, it is also possible to include both one or more light sources and one or more detectors in each of the optics assemblies. According to a second embodiment of the invention, the first optics assembly comprises a first housing having a first optical window. The first optics assembly also includes a first light source for transmitting a first excitation beam to the reaction mixture through the first window and a first detector for receiving light emitted from the chamber through the first window. The first optics assembly further includes a first set of filters arranged in the first housing for filtering portions of the first excitation beam outside of a first excitation wavelength range, for filtering portions of the emitted light outside of a first emission wavelength range, and for directing the emitted light in the first emission wavelength range to the first detector. The first light source, the first set of filters, and the first detector are rigidly fixed in the first housing. 根据本发明的第二种实施方式,第一光学组件包括具有第一光学窗口的第一外壳,第二光学组件包括具有第一光学窗口的第二探测器,也可以在每个光学组件中同时包括一个或多个光源和一个或多个探测器。根据本发明的第二个实施方案,第一光学组件包括一个具有第一光学窗口的第一外壳。第一光学组件还包括用于通过第一窗口向反应混合物发射第一激发光束的第一光源,以及用于接收通过第一窗口从腔室发射的光的第一检测器。第一光学组件还包括布置在第一外壳中的第一组滤波器,用于过滤第一激发光束中第一激发波长范围之外的部分,过滤第一发射波长范围之外的部分发射光,并将第一发射波长范围内的发射光导向第一检测器。第一光源、第一组滤光器和第一探测器被刚性固定在第一外壳中。
Also according to the second embodiment, the second optics assembly comprises a second housing having a second optical window. The second optics assembly also includes a second light source for transmitting a second excitation beam to the reaction mixture through the second window and a second detector for receiving light emitted from the chamber through the second window. The second optics assembly further includes a second set of filters arranged in the second housing for filtering portions of the second excitation beam outside of a second excitation wavelength range different than the first excitation wavelength range, for filtering portions of the emitted light outside of a second emission wavelength range different than the first emission wavelength range, and for directing the emitted light in the second emission wavelength range to the second detector. The second light source, the second set of filters, and the second detector are rigidly fixed in the second housing, so that the optical system has no moving parts. In the second embodiment, each optics assembly may optionally include an additional detector and filter to provide four optical detection channels for detecting up to four different analytes in each reaction mixture. 同样根据第二实施例,第二光学组件包括具有第二光学窗口的第二外壳。第二光学组件还包括用于通过第二窗口向反应混合物发射第二激发光束的第二光源,以及用于接收通过第二窗口从腔室发射的光的第二检测器。第二光学组件还包括布置在第二壳体中的第二组滤波器,用于过滤第二激发光束中不同于第一激发波长范围的第二激发波长范围之外的部分,过滤不同于第一发射波长范围的第二发射波长范围之外的发射光的部分,并将第二发射波长范围内的发射光导向第二探测器。第二光源、第二组滤光片和第二探测器刚性固定在第二外壳中,因此光学系统没有移动部件。在第二个实施例中,每个光学组件可选择包括一个额外的检测器和滤波器,以提供四个光学检测通道,用于检测每个反应混合物中最多四个不同的分析物。
A more complete understanding of the system of the present invention may be gained upon consideration of the following description and accompanying drawings. 通过阅读以下说明和附图,可以更全面地了解本发明的系统。
BRIEF DESCRIPTION OF THE DRAWINGS 图纸简述
FIG. 1 shows a partially exploded, perspective view of a reaction vessel according to the present invention in which the reaction chamber sidewalls are removed to show the interior of the chamber. 图 1 显示了根据本发明设计的反应容器的部分剖视透视图,其中反应室的侧壁被移除,以显示反应室的内部。
FIG. 2 is a front view of the vessel of FIG. 1. 图 2 是图 1 中容器的正视图。
FIG. 3\mathbf{3} is a side view of the vessel of FIG. 1 inserted in a thermal sleeve formed by opposing thermal plates. 图 3\mathbf{3} 是图 1 中容器的侧视图,容器插入由相对的隔热板形成的隔热套中。
FIG. 4 is a side view of a heat-exchanging module according to the present invention having a thermal sleeve, a pair of optics assemblies, and a cooling system. The reaction vessel of FIG. 1 is inserted into the thermal sleeve. 图 4 是本发明热交换模块的侧视图,该模块具有一个热套筒、一对光学组件和一个冷却系统。图 1 中的反应容器被插入热套管中。
FIGS. 5A-D are a series of intensity vs. wavelength graphs in which: 图 5A-D 是一系列强度与波长的对比图,其中:
FIGS. 5A and 5B show the excitation and emission spectra, respectively, of four dyes typically used in thermal reactions. 图 5A 和 5B 分别显示了四种通常用于热反应的染料的激发光谱和发射光谱。
FIG. 5C shows the effects of filtering the outputs of green and blue LEDs to provide distinct excitation wavelength ranges; and 图 5C 显示了过滤绿色和蓝色 LED 输出以提供不同激发波长范围的效果;以及
FIG. 5D shows the effects of filtering light emitted from each of the four dyes to form distinct emission wavelength ranges. used herein the term “fluid sample” includes both gases and used herein, the term “fluid sample” includes both gases and liquids, preferably the latter. The sample may be an aqueous 图 5D 显示了过滤四种染料中每种染料发出的光以形成不同发射波长范围的效果。在此使用的术语 "流体样品 "包括气体和液体,最好是后者。样品可以是水
solution containing particles, cells, microorganisms, ions, or liquids, preferably the latter. The sample may be an aqueous 含有颗粒、细胞、微生物、离子或液体的溶液,最好是后者。样品可以是水溶液
solution containing particles, cells, microorganisms, ions, or small and large molecules, such as proteins and nucleic 5 acids, etc. In a particular use, the sample may be a bodily fluid, e.g., blood or urine, or a suspension, such as pulverized food. 含有颗粒、细胞、微生物、离子或大小分子(如蛋白质和核酸等)的溶液。在特定用途中,样本可以是体液,如血液或尿液,也可以是悬浮液,如粉碎的食物。
FIG. 8 is a schematic, plan view of an optical detection assembly of the module of FIG. 4. 图 8 是图 4 模块的光学检测组件的平面示意图。
FIG. 9 is an exploded view of the detection assembly of FIG. 8. 图 9 是图 8 检测组件的剖视图。
FIG. 10 is a perspective view of a multi-site reactor system having dynamic, independent, computerimplemented control of each reaction site. 图 10 是多反应位反应器系统的透视图,该系统对每个反应位进行动态、独立的计算机控制。
FIG. 11 is a schematic, block diagram of another multisite reaction system having multiple thermal cycling instruments daisy-chained to a computer and a power source. 图 11 是另一个多位点反应系统的原理框图,该系统中的多台热循环仪器通过菊花链连接到计算机和电源上。
FIG. 12 is a schematic, block diagram of a base instrument of the system of FIG. 10. 图 12 是图 10 系统的基础仪器原理框图。
FIG. 13 is a schematic, block diagram of the electronic components of the heat-exchanging module of FIG. 4. 图 13 是图 4 热交换模块电子元件的原理框图。
FIG. 14 is a schematic, block diagram illustrating the computer controller architecture for the control, diagnostics, programming, and operational functions of the system of FIG. 10. 图 14 是说明图 10 系统控制、诊断、编程和操作功能的计算机控制器结构的方框示意图。
FIG. 15 is a block diagram showing the architecture of FIG. 14 that is preferably reproduced on a graphical user interface for selection of a function by a user. 图 15 是显示图 14 结构的框图,该结构最好再现于用户选择功能的图形用户界面上。
FIGS. 16-18 are a series of sample graphic displays viewable on the user’s computer monitor according to the present invention. 图 16-18 是根据本发明可在用户计算机显示器上查看的一系列图形显示示例。
FIG. 16 illustrates a Program Menu Screen through which site profiles are created and executed. 图 16 展示了一个程序菜单屏幕,通过该屏幕可以创建和执行站点配置文件。
FIG. 17 illustrates an Instrument Menu Screen that displays current thermal cycling status. 图 17 展示了一个仪器菜单屏幕,显示当前的热循环状态。
FIG. 18 illustrates a Library Menu Screen through which desired temperature profiles may be retrieved from memory and executed and through which results may be displayed, transmitted to another computer, and/or printed. 图 18 展示了一个库菜单屏幕,通过该屏幕可以从内存中检索和执行所需的温度曲线,并显示、传输到另一台计算机和/或打印结果。
FIG. 19 is a flow diagram showing the overall control and operation of the system of FIG. 10\mathbf{1 0}. 图 19 是显示图 10\mathbf{1 0} 系统整体控制和操作的流程图。
FIG. 20 is a flow diagram showing the steps for running a selected temperature profile on the system of FIG. 10\mathbf{1 0}. 图 20 是一个流程图,显示了在图 10\mathbf{1 0} 的系统上运行选定温度曲线的步骤。
FIG. 21 is a flow diagram showing the steps for raising the temperature of a reaction mixture according to a preferred embodiment of the invention. 图 21 是一个流程图,显示了根据本发明的一个优选实施方案提高反应混合物温度的步骤。
FIG. 22 is a flow diagram showing the steps for lowering the temperature of a reaction mixture according to the preferred embodiment of the invention. 图 22 是显示根据本发明优选实施例降低反应混合物温度的步骤的流程图。
FIGS. 23A-23B are schematic, plan views of a pair of optics assemblies for use in the module of FIG. 4 according to a second embodiment of the invention. 图 23A-23B 是根据本发明的第二个实施例,用于图 4 模块中的一对光学组件的平面示意图。
FIGS. 24A-24B are schematic, plan views of another pair of optics assemblies for use in the module of FIG. 4 according to a third embodiment of the invention. 图 24A-24B 是根据本发明第三种实施方式,用于图 4 模块的另一对光学组件的平面示意图。
DETAILED DESCRIPTION 详细说明
The present invention provides a system for thermally controlling and optically interrogating a reaction mixture, g., a fluid sample mixed with chemicals or reagents. As 本发明提供了一种对反应混合物(例如,与化学品或试剂混合的流体样品)进行热控制和光学检测的系统。如
FIG. 6 is a schematic, plan view of an optical excitation assembly of the module of FIG. 4. 图 6 是图 4 模块的光学激发组件的平面示意图。
FIG. 7 is an exploded view of the excitation assembly of FIG. 6. 图 7 是图 6 励磁组件的剖视图。
In a preferred embodiment, the system includes reaction vessels for holding the mixtures and heat-exchanging modules for receiving the vessels. Each heat-exchanging module includes a pair of opposing thermal plates between which one of the vessels is inserted for thermal processing, a fan positioned adjacent the plates for cooling the mixture, one or more temperature sensors for measuring the temperature of the plates, and a pair of optics assemblies for optically interrogating the mixture. The system also includes a base unit with processing electronics for receiving the heatexchanging modules and for independently controlling each module. The system further includes a controller, such as a personal computer or network computer, that provides a user interface and controls the operation of the processing electronics. 在一个优选的实施方案中,系统包括用于容纳混合物的反应容器和用于接收容器的热交换模块。每个热交换模块包括一对相对的热板,其中一个容器插入热板之间进行热处理;一个风扇位于热板附近,用于冷却混合物;一个或多个温度传感器,用于测量热板的温度;一对光学组件,用于对混合物进行光学检测。该系统还包括一个带有处理电子装置的基本单元,用于接收热交换模块和独立控制每个模块。系统还包括一个控制器,如个人计算机或网络计算机,提供用户界面并控制处理电子装置的运行。
FIGS. 1-22 illustrate a preferred embodiment of the invention. FIG. 1 shows a partially exploded view of a reaction vessel 2, and FIG. 2 shows a front view of the vessel 2. The vessel 2\mathbf{2} includes a reaction chamber 10\mathbf{1 0} for holding a reaction mixture. The vessel 2\mathbf{2} is designed for optimal heat transfer to and from the reaction mixture and for efficient optical viewing of the mixture. The thin shape of the vessel contributes to optimal thermal kinetics by providing large surfaces for thermal conduction and for contacting thermal plates. In addition, the walls of the vessel 2 provide optical windows into the chamber 10\mathbf{1 0} so that the entire reaction mixture can be optically interrogated. 图 1-22 说明了本发明的一个优选实施例。图 1 显示反应容器 2 的部分剖视图,图 2 显示容器 2 的正视图。容器 2\mathbf{2} 包括一个用于容纳反应混合物的反应室 10\mathbf{1 0} 。容器 2\mathbf{2} 的设计可实现反应混合物之间的最佳热传导,并可对混合物进行有效的光学观察。容器的薄型设计为热传导和热板接触提供了较大的表面,从而有助于优化热动力学。此外,容器 2 的壁提供了进入腔室 10\mathbf{1 0} 的光学窗口,从而可以对整个反应混合物进行光学检测。
In more detail to FIGS. 1-2, the reaction vessel 2\mathbf{2} includes a rigid frame 16 that defines the perimeter of the reaction chamber 10. The frame 16 also includes a port 4 and a channel 8 that connects the port 4 to the reaction chamber 10. Thin, flexible walls 18 (shown in FIG. 1 exploded from the frame 16) are coupled to opposite sides of the frame 16 to form the sidewalls of the chamber 10\mathbf{1 0}. 更详细地参见图 1-2,反应容器 2\mathbf{2} 包括一个刚性框架 16,它限定了反应室 10 的周边。框架 16 还包括一个端口 4 和一个连接端口 4 与反应室 10 的通道 8。薄的柔性壁 18(如图 1 所示,与框架 16 分开)连接到框架 16 的相对侧,形成反应室 10\mathbf{1 0} 的侧壁。
The walls 18 facilitate optimal thermal conductance to the reaction mixture contained in the chamber 10\mathbf{1 0}. The flexible nature of the walls 18 allows for maximum contact with thermal plates. The walls are conformable to the surface of the plates to prevent or minimize gaps between surfaces. Furthermore, the flexible walls continue to conform to the thermal surface if the surface shape changes during the course of the heat-exchanging operation. 壁 18 有利于腔室 10\mathbf{1 0} 中反应混合物的最佳热传导。壁 18 的柔性使其能够与隔热板最大程度地接触。壁可与隔热板表面贴合,以防止或尽量减少表面之间的间隙。此外,如果表面形状在热交换操作过程中发生变化,柔性壁可继续与热表面保持一致。
FIG. 3 shows contact between the reaction vessel and a pair of opposing thermal plates 34A,34B\mathbf{3 4 A}, 34 \mathrm{~B}. At least one of the plates, and preferably both of the plates, includes a heating element, such as a resistor, for heating the reaction mixture in the vessel. The plates 34A, 34B also preferably include temperature sensors, such as thermistors 36A,36B36 \mathrm{~A}, 36 \mathrm{~B}. When the vessel 2 is inserted between the plates, the inner surfaces of the plates contact walls 18. In this position, minimal or no gaps are found between the plate surfaces and the walls 18 of the reaction chamber. For good thermal conductance, the thickness of each wall 18 is preferably between about 0.003 to 0.5 mm , more preferably 0.01 to 0.15 mm , and most preferably 0.025 to 0.08 mm . Each wall 18 may be a film, sheet, or a molded, machined extruded or cast piece, or other convenient thin and flexible structure. 图 3 显示了反应容器与一对相对的热板 34A,34B\mathbf{3 4 A}, 34 \mathrm{~B} 之间的接触。其中至少一块板,最好是两块板都包括加热元件,如电阻器,用于加热容器中的反应混合物。板 34A、34B 最好还包括温度传感器,如热敏电阻 36A,36B36 \mathrm{~A}, 36 \mathrm{~B} 。当容器 2 插入板之间时,板的内表面与壁 18 接触。在此位置,板面与反应室壁 18 之间的间隙极小或没有间隙。为了达到良好的导热效果,每个壁 18 的厚度最好在 0.003 至 0.5 毫米之间,更理想的是 0.01 至 0.15 毫米,最理想的是 0.025 至 0.08 毫米。每个壁 18 可以是薄膜、薄片、模压件、机械挤压件或浇铸件,或其他方便的薄而柔性的结构。
The material composing the walls 18\mathbf{1 8} may be a polyalcohol including polypropylene, polyethylene, polyester, and other polymers, laminates or homogenous polymers, metals or metal laminates, or other materials which may be thin, flexible, conformable and permit high heat transfer and is preferably in the form of a film or sheet. Where the frame 16 of the vessel is a particular material, such as polypropylene, the sidewalls are preferably the same material, such as polypropylene, so that the heat expansion and cooling rates of the walls are substantially the same as the frame. dyes prior to being added to the chamber 10. Alternatively, the sample may be introduced to reagents and dyes in the chamber 10. As shown in FIG. 3, the vessel 2 is placed between the thermal plates 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} so that the walls 18\mathbf{1 8} of the vessel press against and conform to the inner surfaces of the plates. The reaction mixture is exposed to variations in temperature by activating the heating elements on the plates 构成壁 18\mathbf{1 8} 的材料可以是聚醇,包括聚丙烯、聚乙烯、聚酯和其他聚合物、层压材料或均质聚合物、金属或金属层压材料,或其他材料,它们可以很薄、柔韧、顺应性好并允许高热传导,最好是薄膜或薄片形式。如果容器的框架 16 是聚丙烯等特定材料,侧壁最好也是聚丙烯等相同材料,这样侧壁的热膨胀率和冷却率基本上与框架相同。或者,也可以将样品引入腔室 10 中的试剂和染料中。如图 3 所示,将容器 2 放置在热板 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} 之间,使容器壁 18\mathbf{1 8} 紧贴热板内表面并与之保持一致。通过激活板上的加热元件,使反应混合物受到温度变化的影响
34A, 34B. The reaction mixture is then optically interrogated, preferably through the optically transmissive bottom walls 32A, 32B of the frame 16, as shown in FIG. 2. Arrows A in FIG. 2 represent illumination beams entering the chamber 10 through wall 32 A and arrows B represent emitted light exiting the chamber 10 through wall 32B. 34A、34B。然后对反应混合物进行光学检测,最好是通过框架 16 的光学透射底壁 32A、32B,如图 2 所示。图 2 中的箭头 A 代表通过壁 32 A 进入腔室 10 的照明光束,箭头 B 代表通过壁 32B 从腔室 10 出来的发射光。
The walls 32A, 32B are angularly offset from each other to allow optical excitation of labeled analytes in the reaction mixture through the first wall 32 A and optical detection of the labeled analytes through the second wall 32B. It is usually preferred that the walls 32A, 32B are offset at an angle of about 90^(@)90^{\circ}. A 90^(@)90^{\circ} angle between excitation and detection paths assures that a minimum amount of excitation radiation entering through wall 32 A will exit through wall 32B. Also the 90^(@)90^{\circ} angle permits a maximum amount of emitted radiation, e.g. fluorescence, to be collected through wall 32B. In alternative embodiments, the angle between the optical walls may be larger or smaller than 90^(@)90^{\circ}, depending upon the efficiency and sensitivity of the excitation and detection optics. For example, where a detection system effectively discriminates between excitation and emitted light, an angle of less than 90^(@)90^{\circ} between walls may be desired. Conversely, where a detection system fails to efficiently discriminate between excitation and emitted light, an angle greater than 90^(@)90^{\circ} may be of interest. 壁 32A 和 32B 在角度上相互偏移,以便通过第一壁 32A 对反应混合物中的标记分析物进行光激发,并通过第二壁 32B 对标记分析物进行光检测。通常优选的是,壁 32A、32B 以大约 90^(@)90^{\circ} 的角度偏移。激发路径和检测路径之间的 90^(@)90^{\circ} 夹角可确保通过壁 32A 进入的激发辐射从壁 32B 流出的量最小。另外, 90^(@)90^{\circ} 角允许通过壁 32B 收集到最大数量的发射辐射,例如荧光。在其他实施例中,光学壁之间的角度可以大于或小于 90^(@)90^{\circ} ,这取决于激发和检测光学器件的效率和灵敏度。例如,如果检测系统能有效区分激发光和发射光,则光壁之间的夹角可能需要小于 90^(@)90^{\circ} 。相反,如果检测系统无法有效区分激发光和发射光,则可能需要大于 90^(@)90^{\circ} 的角度。
The walls 32A, 32B may be joined to form a “V” shaped point at the bottom of the chamber 10\mathbf{1 0}. Alternatively, the interface of the angled walls need not connect to form a point, but may be separated by an intermediary portion, such as another wall or various mechanical or fluidic features which do not interfere with the thermal and optical performance of the vessel. For example, the angled walls may meet at a port which leads to another processing area in communication with the chamber 10, such as an integrated capillary electrophoresis area. In the presently preferred embodiment, a locating tab 17 extends below the intersection of walls 32A, 32B. The locating tab 17 is used to properly position the vessel 2 in a heat-exchanging module described below with reference to FIG. 4. 壁 32A、32B 可以连接起来,在腔室 10\mathbf{1 0} 的底部形成一个 "V "形点。或者,斜壁的接口不必连接形成一个点,而可以由一个中间部分隔开,例如另一个壁或各种机械或流体特征,这些特征不会干扰容器的热性能和光学性能。例如,倾斜壁可以在一个端口处相接,该端口通向与腔室 10 相通的另一个处理区,如集成毛细管电泳区。在目前优选的实施方案中,定位片 17 延伸至壁 32A 和 32B 的交叉点下方。定位片 17 用于在下面参照图 4 描述的热交换模块中正确定位容器 2。
Optimum optical sensitivity may be attained by maximizing the optical sampling path length of both the light beams exciting the labeled analytes in the reaction mixture and the emitted light that is detected, as represented by the equation: 将激发反应混合物中标记分析物的光束和检测到的发射光的光采样路径长度最大化,可达到最佳光学灵敏度,如公式所示:
I_(d)I_(i)=C*L*AI_{d} I_{i}=C \cdot L \cdot A,
where I_(o)\mathrm{I}_{o} is the illumination output of the emitted light in volts, photons or the like, C is the concentration of analyte to be detected, I_(i)\mathrm{I}_{i} is the input illumination, L is the path length, and A is the intrinsic absorptivity of the dye used to label the analyte. 其中, I_(o)\mathrm{I}_{o} 是以伏特、光子或类似单位表示的发射光的照明输出,C 是要检测的被分析物的浓度, I_(i)\mathrm{I}_{i} 是输入照明,L 是路径长度,A 是用于标记被分析物的染料的本征吸收率。
The thin, flat reaction vessel 2 of the present invention optimizes detection sensitivity by providing maximum optical path length per unit analyte volume. In particular, the vessel 2\mathbf{2} is preferably constructed such that each of the sides of the chamber 10\mathbf{1 0} has a length in the range of 1 to 15 mm , the chamber has a thickness in the range of 0.5 to 5 mm , and the ratio of the length of each side of the chamber to the thickness of the chamber is at least 2:12: 1. These parameters are presently preferred to provide a vessel having a relatively large optical path length through the chamber, i.e. 1 to 15 mm on average, while still keeping the chamber sufficiently thin to allow for extremely rapid heating and cooling of the reaction mixture contained in the chamber. 本发明的薄平反应容器 2 通过提供单位分析物体积的最大光路长度来优化检测灵敏度。特别是,容器 2\mathbf{2} 最好构造成:腔室 10\mathbf{1 0} 的每个侧面的长度在 1 至 15 毫米之间,腔室的厚度在 0.5 至 5 毫米之间,腔室每个侧面的长度与腔室厚度之比至少为 2:12: 1 。目前优选这些参数是为了提供一个具有通过腔室的相对较大光路长度(即平均 1 至 15 毫米)的容器,同时仍然保持腔室足够薄,以便对腔室中的反应混合物进行极快的加热和冷却。
More preferably, the vessel 2\mathbf{2} is constructed such that each of the sides of the chamber 10 has a length in the range of 5 to 12 mm , the chamber has a thickness in the range of 0.5 retainers 40. Additionally, the plates may be spring-biased towards each other as described in U.S. application Ser. No. 09//194,37409 / 194,374 filed Nov. 24, 1998, the disclosure of which is incorporated by reference herein. The housing 38 includes a 0 slot above the plates 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} so that the vessel 2 may be inserted through the slot and between the plates. 更优选的是,容器 2\mathbf{2} 的结构使腔室10的每个侧面的长度在5至12毫米的范围内,腔室的厚度在0.5个保持器40的范围内。此外,如 1998 年 11 月 24 日提交的美国申请 Ser.外壳 38 包括一个位于板 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} 上方的 0 形槽,以便容器 2 可以通过槽插入板之间。
The heat-exchanging module 37\mathbf{3 7} also preferably includes a cooling system, such as a fan 42, for cooling the reaction mixture in the vessel 2 . When the vessel 2 is positioned 55 between the plates 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B}, the chamber of the vessel is cooled by the air circulating from the fan 42 . Alternatively, the cooling system may comprise a Peltier device or other 热交换模块 37\mathbf{3 7} 最好还包括冷却系统,如风扇 42,用于冷却容器 2 中的反应混合物。当容器 2 位于板 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} 之间 55 时,容器腔由风扇 42 循环的空气冷却。或者,冷却系统可以包括一个珀尔帖装置或其他设备。
refrigeration system for carrying a refrigerant or compressed fluid past the reaction vessel. These and other cooling systems are well known in the art. 制冷系统,用于携带制冷剂或压缩流体通过反应容器。这些冷却系统和其他冷却系统都是众所周知的。
The heat-exchanging module 37 further includes an optical excitation assembly 46 and an optical detection assembly 48 for optically interrogating the reaction mixture contained in the vessel 2. The excitation assembly 46 includes a first circuit board 50\mathbf{5 0} for holding its electronic components, and the detection assembly 46 includes a second circuit board 52 for holding its electronic components. The excitation assembly 46 includes multiple light sources, such as LEDs, for exciting fluorescently-labeled analytes in the vessel 2\mathbf{2}. The excitation assembly 46 also includes one or more lenses for collimating the light from the light sources, as well as filters for selecting the excitation wavelength ranges of interest. The detection assembly 48 includes multiple detectors, such as photodiodes, for monitoring the light emitted from the vessel 2. The detection assembly 48 also includes one or more lenses for focusing and collimating the emitted light, as well as filters for selecting the emission wavelength ranges of interest. The specific components of the optics assemblies 46, 48 are described in greater detail below with reference to FIGS. 6-9. 热交换模块 37 还包括光学激发组件 46 和光学检测组件 48,用于对容器 2 中的反应混合物进行光学检测。激发组件 46 包括用于容纳其电子元件的第一电路板 50\mathbf{5 0} ,检测组件 46 包括用于容纳其电子元件的第二电路板 52。激发组件 46 包括多个光源,如 LED,用于激发容器 2\mathbf{2} 中的荧光标记分析物。激发组件 46 还包括一个或多个用于准直来自光源的光的透镜,以及用于选择相关激发波长范围的滤波器。检测组件 48 包括多个检测器,如光电二极管,用于监测容器 2 发出的光。检测组件 48 还包括一个或多个用于聚焦和准直发射光的透镜,以及用于选择相关发射波长范围的滤波器。下文将参照图 6-9 更详细地描述光学组件 46 和 48 的具体组件。
The optics assemblies 46,48\mathbf{4 6}, 48 are positioned in the housing 38 such that when the vessel 2\mathbf{2} is placed between the plates 34A,34B34 \mathrm{~A}, 34 \mathrm{~B}, the first optics assembly 46 is in optical communication with the first optically transmissive bottom wall 32A of the vessel and the second optics assembly 48 is in optical communication with the second optically transmissive bottom wall 32B of the vessel (see FIG. 2). In the preferred embodiment, the optics assemblies 46, 48 are placed in optical communication with the bottom walls of the vessel 2 by simply locating the optics assemblies next to the thermal plates 34A,34B\mathbf{3 4 A}, 34 \mathrm{~B} so that when the vessel is placed between the plates, the optics assemblies 46,48 are physically adjacent the first and second bottom walls of the vessel, respectively. 光学组件 46,48\mathbf{4 6}, 48 位于外壳38中,当容器 2\mathbf{2} 放置在板 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} 之间时,第一光学组件46与容器的第一光学透射底壁32A进行光学通信,第二光学组件48与容器的第二光学透射底壁32B进行光学通信(见图2)。在优选实施例中,光学组件 46、48 与容器 2 的底壁光学通信,只需将光学组件置于热板 34A,34B\mathbf{3 4 A}, 34 \mathrm{~B} 旁即可,这样当容器置于热板之间时,光学组件 46、48 分别与容器的第一和第二底壁物理相邻。
Additionally, the longitudinal axes of the optics assemblies 46,48\mathbf{4 6}, 48 are preferably angularly offset from each other by an angle of about 90^(@)90^{\circ}, and the assemblies 46,48 are preferably positioned such that when the vessel 2 is placed between the plates, the longitudinal axis of the optics assembly 46 is orthogonal to the first bottom wall and the longitudinal axis of the optics assembly 48 is orthogonal to the second bottom wall. A 90^(@)90^{\circ} angle between excitation and detection paths assures that a minimum amount of excitation radiation entering through the first bottom wall of the vessel exits through the second bottom wall. Also the 90^(@)90^{\circ} angle permits a maximum amount of emitted radiation to be collected through the second wall. 此外,光学组件 46,48\mathbf{4 6}, 48 的纵轴最好在角度上相互偏移约 90^(@)90^{\circ} 的角度,组件46、48最好定位成当容器2放置在板之间时,光学组件46的纵轴与第一底壁正交,光学组件48的纵轴与第二底壁正交。激发路径和检测路径之间的 90^(@)90^{\circ} 夹角可确保从容器第一底壁进入的激发辐射从第二底壁排出的量最小。此外, 90^(@)90^{\circ} 角还允许通过第二底壁收集到最大量的发射辐射。
Optionally, a gel or fluid may be used to establish or improve optical communication between each optics assembly and the vessel 2. The gel or fluid should have a refractive index close to the refractive indexes of the elements that it is coupling. In alternative embodiments, optical communication may be established between the optics assemblies and the walls of the vessel via optical fibers; light pipes, wave guides, or similar devices. One advantage of these devices is that they eliminate the need to locate the optics assemblies 46,48 physically adjacent to the thermal plates 34A,34B34 \mathrm{~A}, 34 \mathrm{~B}. This leaves more room around the plates in which to circulate cooling air or refrigerant, so that cooling may be improved. 可选择使用凝胶或流体来建立或改善每个光学组件与容器 2 之间的光通信。凝胶或流体的折射率应接近其耦合元件的折射率。在其他实施方案中,可通过光纤、光导管、波导管或类似装置在光学组件和容器壁之间建立光通信。这些装置的一个优点是无需将光学组件 46、48 安装在热板 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} 附近。这就在隔热板周围留出了更多空间来循环冷却空气或制冷剂,从而改善冷却效果。
In the preferred embodiment, the vessel 2 includes a locating tab 17 (see FIG. 2) that fits into a slot formed between the optics assemblies 46,48\mathbf{4 6 , 4 8} to ensure proper positioning of the vessel 2 for optical detection. For improved 在优选实施例中,容器 2 包括一个定位片 17(见图 2),该定位片与光学组件 46,48\mathbf{4 6 , 4 8} 之间形成的槽相匹配,以确保容器 2 的正确定位,从而进行光学检测。为了改进
detection, the module 37 also preferably includes a lighttight lid (not shown) that is placed over the top of the vessel 2 and sealed to the housing 38\mathbf{3 8} after the vessel is inserted between the plates 34A, 34B. 通过检测,模块 37 最好还包括一个密封盖(未显示),盖子盖在容器 2 的顶部,并在容器插入板 34A、34B 之间后密封到外壳 38\mathbf{3 8} 上。
The housing 38\mathbf{3 8} may be molded from a rigid, highperformance plastic, or other conventional material. The primary functions of the housing 38\mathbf{3 8} are to provide a frame for holding the plates 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} and optics assemblies 46,48 and to provide flow channels and ports for directing cooling fluid, e.g. air or freon, and efficiently guiding the fluid flow across the surface of the plates 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} and reaction vessel 2. 外壳 38\mathbf{3 8} 可由硬质高性能塑料或其他常规材料模制而成。外壳 38\mathbf{3 8} 的主要功能是提供一个用于固定板 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} 和光学组件46、48的框架,以及提供用于引导冷却流体(例如空气或氟利昂)的流道和端口,并有效地引导流体流过板 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} 和反应容器2的表面。
The heat-exchanging module 37\mathbf{3 7} also includes a PC board 54 for holding the electronic components of the module and an edge connector 58 for connecting the module 37 to a base instrument, as will be described below with reference to FIG. 10. The heating elements and thermistors 36A, 36B on the plates 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B}, as well as the optical boards 50\mathbf{5 0} and 52\mathbf{5 2}, are connected to the PC board 54\mathbf{5 4} by flex cables (not shown in FIG. 4 for clarity of illustration). The module 37\mathbf{3 7} may also include a grounding trace 56 for shielding the optical detection circuit. The module 37 also preferably includes an indicator, such as an LED 44, for indicating to a user the current status of the module such as “ready to load sample”, “ready to load reagent,” “heating,” “cooling,” “finished,” or “fault”. 热交换模块 37\mathbf{3 7} 还包括用于容纳模块电子元件的 PC 板 54 和用于将模块 37 连接到基础仪器的边缘连接器 58,下文将参考图 10 进行描述。板 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} 上的加热元件和热敏电阻 36A、36B 以及光学板 50\mathbf{5 0} 和 52\mathbf{5 2} 通过柔性电缆连接到 PC 板 54\mathbf{5 4} 上(为便于说明,图 4 中未显示)。模块 37\mathbf{3 7} 还可包括用于屏蔽光检测电路的接地线 56。模块 37 最好还包括一个指示灯,如 LED 44,用于向用户指示模块的当前状态,如 "准备装载样品"、"准备装载试剂"、"加热"、"冷却"、"完成 "或 "故障"。
FIGS. 5A and 5B show the fluorescent excitation and emission spectra, respectively, of four fluorescent dyes of interest. These dyes are standard fluorescent dyes used with the TaqMan® chemistry (available from the Perkin-Elmer Corporation, Foster City, Calif.) and are well known by their acronyms FAM, TET, TAMRA, and ROX. Although the preferred embodiment is described with reference to these four dyes, it is to be understood that the system of the present invention are not limited to these particular dyes or to the TaqMan® ^(®){ }^{\circledR} chemistry. The system may be used with any fluorophores including, but not limited to, fluorescent dyes used with the Beacons chemistry, dyes used with the Sunrise ^(®){ }^{\circledR} chemistry, and interculating dyes such as ethidium bromide. Fluorescent dyes and labeling chemistries for labeling analytes in a reaction mixture are well known in the art and need not be discussed further herein. Further, although fluorescence detection is presently preferred, the detection system of the present invention is not limited to detection based upon fluorescent labels. The system may be applicable to detection based upon phosphorescent labels, chemiluminescent labels, or electrochemiluminescent labels 图 5A 和 5B 分别显示了四种相关荧光染料的荧光激发光谱和发射光谱。这些染料是与 TaqMan® 化学反应(可从加州福斯特市的珀金-埃尔默公司购买)一起使用的标准荧光染料,其缩写为 FAM、TET、TAMRA 和 ROX。尽管本发明的优选实施方案是参照这四种染料描述的,但应该理解的是,本发明的系统并不局限于这些特定的染料或 TaqMan® ^(®){ }^{\circledR} 化学。该系统可与任何荧光团配合使用,包括但不限于与 Beacons 化学反应配合使用的荧光染料、与 Sunrise ^(®){ }^{\circledR} 化学反应配合使用的染料,以及诸如溴化乙锭之类的交联染料。用于标记反应混合物中的分析物的荧光染料和标记化学方法在本领域众所周知,在此无需进一步讨论。此外,尽管目前首选荧光检测,但本发明的检测系统并不局限于基于荧光标签的检测。该系统也可用于基于磷光标签、化学发光标签或电化学发光标签的检测。
As shown in FIG. 5A, the excitation spectra curves for FAM, TET, TAMRA, and ROX are typically very broad at the base, but sharper at the peaks. As shown in FIG. 5B, the relative emission spectra curves for the same dyes are also very broad at the base and sharper at the peaks. One serious problem is that these dyes have strongly overlapping characteristics in both their excitation and emission spectra. The overlapping characteristics have traditionally made it difficult to distinguish the fluorescent signal of one dye from another when multiple dyes are used to label different analytes in a reaction mixture. 如图 5A 所示,FAM、TET、TAMRA 和 ROX 的激发光谱曲线通常在底部非常宽,但在峰值处较尖锐。如图 5B 所示,相同染料的相对发射光谱曲线也是基底很宽,峰值较尖。一个严重的问题是,这些染料的激发光谱和发射光谱都有很强的重叠特性。传统上,当使用多种染料标记反应混合物中的不同分析物时,这种重叠特性会导致难以区分一种染料和另一种染料的荧光信号。
According to the present invention, multiple light sources are used to provide excitation beams to the dyes in multiple excitation wavelength ranges. Each light source provides excitation light in a wavelength range matched to the peak excitation range of a respective one of the dyes. In the preferred embodiment, the light sources are blue and green LEDs. FIG. 5C shows the effects of filtering the outputs of blue and green LEDs to provide substantially distinct exci- 根据本发明,使用多个光源在多个激发波长范围内为染料提供激发光束。每个光源提供的激发光波长范围与各自染料的峰值激发范围相匹配。在优选的实施方案中,光源为蓝色和绿色 LED。图 5C 显示了过滤蓝光和绿光 LED 的输出以提供基本不同的激发光的效果。
tation wavelength ranges. Typical blue and green LEDs have substantial overlap in the range of around 480 nm through 530 nm . By the filtering regime of the present invention, the blue LED light is filtered to a range of about 450 to 495 nm to match the relative excitation peak for FAM. The green LED light is filtered to a first range of 495 to 527 nm corresponding to the excitation peak for TET, a second range of 527 to 555 nm , corresponding to the excitation peak for TAMRA, and a third range of 555 to 593 nm corresponding to the excitation peak for ROX. 波长范围。典型的蓝光和绿光 LED 在大约 480 纳米到 530 纳米的范围内有大量重叠。根据本发明的滤波机制,蓝色 LED 光被滤波到约 450 至 495 nm 的范围,以匹配 FAM 的相对激发峰。绿色 LED 光被过滤到 495 至 527 nm 的第一范围,与 TET 的激发峰相对应;527 至 555 nm 的第二范围,与 TAMRA 的激发峰相对应;555 至 593 nm 的第三范围,与 ROX 的激发峰相对应。
FIG. 5D shows the effects of filtering light emitted (fluorescent output) from each of the four dyes to form distinct emission wavelength ranges. As shown previously in FIG. 5B, the fluorescent emissions of the dyes before filtering are spherically diffuse with overlapping spectral bandwidths, making it extremely difficult to distinguish the fluorescent output of one dye from another. As shown in FIG. 5D, by filtering the fluorescent outputs of the dyes into substantially distinct wavelength ranges, a series of relatively narrow peaks (detection windows) are obtained, making it possible to distinguish the fluorescent outputs of different dyes, thus enabling the detection of a number of different fluorescently-labeled analytes in a reaction mixture. 图 5D 显示了对四种染料各自发出的光(荧光输出)进行过滤以形成不同发射波长范围的效果。如图 5B 所示,过滤前染料的荧光发射呈球形扩散,光谱带宽重叠,因此极难区分一种染料和另一种染料的荧光输出。如图 5D 所示,通过将染料的荧光输出滤波到基本不同的波长范围内,可获得一系列相对较窄的峰值(检测窗口),从而可以区分不同染料的荧光输出,因此可以检测反应混合物中的多种不同荧光标记的分析物。
FIG. 6 is a schematic, plan view of the optical excitation assembly 46 of the heat-exchanging module. The assembly 46 is positioned adjacent the reaction vessel 2 to transmit excitation beams to the reaction mixture contained in the chamber 10. FIG. 7 is an exploded view of the excitation assembly 46. As shown in FIGS. 6-7, the assembly 46 includes a housing 219 for holding various components of the assembly. Housing 219 preferably comprises one or more molded pieces of plastic. In the preferred embodiment, the housing 219 is a multi-part housing comprised of three housing elements 220A,220B220 \mathrm{~A}, 220 \mathrm{~B}, and 220 C . The upper and lower housing elements 220A and 220C are preferably complementary pieces that couple together and snap-fit into housing element 220B. In this embodiment, the housing elements 220A and 220C are held together by screws 214 . In alternative embodiments, the entire housing 219 may be a one-piece housing that holds a slide-in optics package. 图 6 是热交换模块的光学激发组件 46 的平面示意图。该组件 46 与反应容器 2 相邻,用于将激发光束传送到腔室 10 中的反应混合物。图 7 是激发组件 46 的剖视图。如图 6-7 所示,组件 46 包括一个外壳 219,用于容纳组件的各种部件。外壳 219 最好由一个或多个模制塑料件组成。在优选实施例中,外壳 219 是由三个外壳元件 220A,220B220 \mathrm{~A}, 220 \mathrm{~B} 和 220 C 组成的多部件外壳。上部和下部外壳元件 220A 和 220C 最好是互补件,它们耦合在一起并卡入外壳元件 220B。在本实施例中,外壳元件 220A 和 220C 通过螺钉 214 固定在一起。在其他实施例中,整个外壳 219 可以是一个容纳滑入式光学封装的一体式外壳。
The lower housing element 220C includes an optical window 235 into which is placed a cylindrical rod lens 215 for focusing excitation beams into the chamber 10. In general, the optical window 235 may simply comprise an opening in the housing through which excitation beams may be transmitted to the chamber 10\mathbf{1 0}. The optical window may optionally include an optically transmissive or transparent piece of glass or plastic serving as a window pane, or as in the preferred embodiment, a lens for focusing excitation beams. 下部外壳元件 220C 包括一个光学窗口 235,其中放置了一个圆柱杆透镜 215,用于将激发光束聚焦到腔室 10 中。一般来说,光学窗口 235 可以简单地包括外壳上的一个开口,激发光束可以通过该开口传输到腔室 10\mathbf{1 0} 中。光学窗口可选择包括一块光学透射或透明的玻璃或塑料,用作窗格,或如优选实施例中那样,用于聚焦激发光束的透镜。
The optics assembly 46 also includes four light sources, preferably LEDs 100A,100B,100C100 \mathrm{~A}, 100 \mathrm{~B}, 100 \mathrm{C}, and 100 D , for transmitting excitation beams through the window 235 to the reaction mixture contained in the chamber 10\mathbf{1 0}. In general, each light source may comprise a laser, a light bulb, or an LED. In the preferred embodiment, each light source comprises a pair of directional LEDs. In particular, the four light sources shown in FIGS. 6-7 are preferably a first pair of green LEDs 100 A , a second pair of green LEDs 100 B , a pair of blue LEDs 100 C , and a third pair of green LEDs 100 D . The LEDs receive power through leads 201 which are connected to a power source (not shown in FIGS. 6-7). The LEDs are mounted to the optical circuit board 50\mathbf{5 0} which is attached to the back of the housing element 220 B so that the LEDs are rigidly fixed in the housing. The optical circuit board 50\mathbf{5 0} is connected to the main PC board of the heatexchanging module (shown in FIG. 4) via the flex cable 51. includes a 495 nm high pass reflector 208, a 527 nm high pass reflector 209, a mirror 210, a 555 nm , low pass reflector 211, and a 593 nm low pass reflector 212. The reflecting filters and mirrors 208-212 are angularly offset by 30^(@)30^{\circ} from the low pass filters 203-206. 光学组件 46 还包括四个光源,最好是 LED 100A,100B,100C100 \mathrm{~A}, 100 \mathrm{~B}, 100 \mathrm{C} 和 100 D,用于通过窗口 235 向腔室 10\mathbf{1 0} 中的反应混合物传输激发光束。一般来说,每个光源可包括激光器、灯泡或 LED。在优选实施例中,每个光源包括一对定向 LED。具体来说,图 6-7 中所示的四个光源最好是第一对绿色 LED 100 A、第二对绿色 LED 100 B、一对蓝色 LED 100 C 和第三对绿色 LED 100 D。LED 通过连接到电源(图 6-7 中未显示)的引线 201 接收电源。LED 安装在光学电路板 50\mathbf{5 0} 上,光学电路板连接到外壳元件 220 B 的背面,这样 LED 就被刚性固定在外壳中。光电路板 50\mathbf{5 0} 通过柔性电缆 51 连接到热交换模块的主 PC 板(如图 4 所示)。反射滤波器和反射镜 208-212 与低通滤波器 203-206 的角度偏差为 30^(@)30^{\circ} 。
The excitation assembly 46 transmits excitation beams to the chamber 10\mathbf{1 0} in four distinct excitation wavelength ranges as follows. When the green LEDs 100A are activated, they generate an excitation beam that passes through the pair of 593 nm low pass filters 203 and through the lens 207. The excitation beam then reflects off of the 593 nm low pass reflector 212, passes through the 555 nm , low pass reflector 211, reflects off of the 527 nm high pass reflector 209, and passes through the lens 215 into the reaction chamber 10. The excitation beam from the LEDs 100 A is thus filtered to a wavelength range of 555 to 593 nm corresponding to the peak excitation range for ROX. 激发组件 46 向腔室 10\mathbf{1 0} 发射以下四个不同激发波长范围的激发光束。当绿色 LED 100A 启动时,它们会产生一束激发光束,该光束穿过一对 593 nm 低通滤波器 203 并穿过透镜 207。然后,激发光束从 593 纳米低通反射器 212 上反射,穿过 555 纳米低通反射器 211,从 527 纳米高通反射器 209 上反射,穿过透镜 215 进入反应室 10。这样,来自 LED 100 A 的激发光束被过滤到 555 至 593 nm 的波长范围,与 ROX 的峰值激发范围相对应。
When the green LEDs 100B are activated, they generate an excitation beam that passes through the pair of 555 nm , low pass filters 204, reflects off of the 555 nm , low pass reflector 211, reflects off of the 527 nm high pass reflector 209, and passes through the lens 215 into the reaction chamber 10. The excitation beam from LEDs 100B is thus filtered to a wavelength range of 527 to 555 nm , correspond60 ing to the peak excitation range for TAMRA. 当绿色 LED 100B 启动时,它们产生的激发光束穿过一对 555 纳米低通滤波器 204,从 555 纳米低通反射器 211 反射出来,从 527 纳米高通反射器 209 反射出来,并穿过透镜 215 进入反应室 10。这样,来自 LED 100B 的激发光束被过滤到 527 至 555 nm 的波长范围内,60 相当于 TAMRA 的峰值激发范围。
When the blue LEDs 100 C are activated, they generate an excitation beam that passes through the pair of 495 nm low pass filters 205, through the 495 nm high pass reflector 208, through the 527 nm high pass reflector 209, and through the lens 215 into the reaction chamber 10 . The excitation beam from LEDs 100 C is thus filtered to a wavelength below 495 nm corresponding to the peak excitation range for FAM. 当蓝色 LED 100 C 启动时,它们产生的激发光束穿过一对 495 nm 低通滤波器 205,穿过 495 nm 高通反射器 208,穿过 527 nm 高通反射器 209,并穿过透镜 215 进入反应室 10。这样,来自 LED 100 C 的激发光束就被过滤到与 FAM 的峰值激发范围相对应的低于 495 nm 的波长。
When the green LEDs 100D are activated, they generate an excitation beam that passes through the pair of 527 nm low pass filters 206, reflects off of the mirror 210 , reflects off of the 495 nm high pass reflector 208, passes through the 527 nm high pass reflector 209, and passes through the lens 215 into the reaction chamber 10. The excitation beam from LEDs 100D is thus filtered to a wavelength range of 495 to 527 nm corresponding to the peak excitation range for TET. In operation, the LEDs 100A,100B,100C,100D100 \mathrm{~A}, 100 \mathrm{~B}, 100 \mathrm{C}, 100 \mathrm{D} are sequentially activated to excite the different fluorescent dyes contained in the chamber 10 with excitation beams in substantially distinct wavelength ranges, as will be described in greater detail below. 当绿色 LED 100D 被激活时,它们会产生一束激发光束,该光束穿过一对 527 纳米低通滤波器 206,从反射镜 210 上反射,从 495 纳米高通反射器 208 上反射,穿过 527 纳米高通反射器 209,并穿过透镜 215 进入反应室 10。这样,来自 LED 100D 的激发光束被过滤到 495 至 527 nm 的波长范围,与 TET 的峰值激发范围相对应。在操作过程中,LED 100A,100B,100C,100D100 \mathrm{~A}, 100 \mathrm{~B}, 100 \mathrm{C}, 100 \mathrm{D} 依次被激活,用基本上不同波长范围的激发光束激发反应室 10 中的不同荧光染料,这将在下文中详细说明。
FIG. 8 is a schematic, plan view of the optical detection assembly 48 of the heat-exchanging module. The assembly 48 is positioned adjacent the reaction vessel 2 to receive light emitted from the chamber 10. FIG. 9 is an exploded view of the detection assembly 48. As shown in FIGS. 8-9, the assembly 48 includes a housing 221 for holding various components of the assembly. The housing 221 preferably comprises one or more molded plastic pieces. In the preferred embodiment, the housing 221 is a multi-part housing comprised of upper and lower housing elements 234A and 234B. The housing elements 234A, 234B are complementary, mating pieces that are held together by screws 214. In alternative embodiments, the entire housing 221 may be a one-piece housing that holds a slide-in optics package. 图 8 是热交换模块的光学检测组件 48 的平面示意图。该组件 48 位于反应容器 2 旁,用于接收腔室 10 发出的光。图 9 是检测组件 48 的剖视图。如图 8-9 所示,组件 48 包括一个外壳 221,用于容纳组件的各种部件。外壳 221 最好由一个或多个模制塑料件组成。在优选实施例中,外壳 221 是由上下外壳元件 234A 和 234B 组成的多部分外壳。外壳元件 234A 和 234B 是互补的配合件,通过螺钉 214 固定在一起。在其他实施例中,整个外壳 221 可以是一个容纳滑入式光学组件的一体式外壳。
The lower housing element 234B includes an optical window 237 into which is placed a cylindrical rod lens 232 for collimating light emitted from the chamber 10. In general, the optical window may simply comprise an opening in the housing through which the emitted light may be received. The optical window may optionally include an optically transmissive or transparent piece of glass or plastic serving as a window pane, or as in the preferred embodiment, the lens 232\mathbf{2 3 2} for collimating light emitted from the chamber 10 . 下部外壳元件 234B 包括一个光学窗口 237,窗口内放置了一个圆柱杆透镜 232,用于准直从腔室 10 发射的光线。一般来说,光学窗口可能只是外壳上的一个开口,通过它可以接收发射的光线。光学窗口可选择包括一块光学透射或透明的玻璃或塑料,用作窗格,或如优选实施例中的透镜 232\mathbf{2 3 2} ,用于准直从腔室 10 发射的光线。
The optics assembly 48 also includes four detectors 102A, 102B. 102C, and 102D for detecting light emitted from the chamber 10 and received through the window 237 . In general, each detector may be a photomultiplier tube, CCD, SMOS detector, photodiode, or other solid-state detector. In the preferred embodiment, each detector is a PIN photodiode. The detectors 102A, 102B. 102C, and 102D are preferably rigidly fixed in recesses formed in the lower housing element 234B. The detectors are electrically connected by leads 245 to the optical circuit board 52 (see FIG. 4) which is preferably mounted to the underside of the lower housing element 234B. 光学组件 48 还包括四个探测器 102A、102B.102C 和 102D,用于检测从腔室 10 发射并通过窗口 237 接收的光。一般来说,每个探测器都可以是光电倍增管、CCD、SMOS 探测器、光电二极管或其他固态探测器。在优选实施例中,每个检测器都是 PIN 光电二极管。探测器 102A、102B.102C 和 102D 最好刚性固定在下壳体元件 234B 中形成的凹槽中。探测器通过引线 245 与光电路板 52(见图 4)电连接,光电路板 52 最好安装在下壳体元件 234B 的底部。
The optics assembly 48 further includes a set of filters and lenses arranged in the housing 221 for separating light emitted from the chamber 10 into different emission wavelength ranges and for directing the light in each of the emission wavelength ranges to a respective one of the detectors. As shown in FIG. 9, the lower housing element 234B preferably includes walls 247 that create separate detection channels in the housing, with one of the detectors positioned at the end of each channel. The walls 247 preferably include slots for receiving and rigidly holding the filters and lenses. The filters and lenses may also be rigidly fixed in the housing 221 by an adhesive used alone, or more preferably, with an adhesive used in combination with slots in the housing. 光学组件 48 还包括一组布置在外壳 221 中的滤光片和透镜,用于将从腔室 10 发射的光分离成不同的发射波长范围,并将每个发射波长范围内的光导向各自的一个检测器。如图 9 所示,下壳体元件 234B 最好包括壁 247,在壳体中形成独立的检测通道,每个通道的末端都有一个检测器。壁 247 最好包括用于接收和固定滤光片和透镜的槽。滤光片和透镜也可以通过粘合剂单独固定在外壳 221 中,或更优选地通过粘合剂与外壳中的槽相结合固定在外壳 221 中。
In general, the filters in the optics assembly 48 may be selected to block light emitted from the chamber 10 outside of any desired emission wavelength ranges. The optics 102 C , and 102D. 一般来说,可以选择光学组件 48 中的滤光片来阻挡腔室 10 发射的任何所需发射波长范围之外的光。光学元件 102 C 和 102 D。
The detection assembly 48 detects light emitted from the chamber 10 in four emission wavelength ranges as follows. As shown in FIG. 8, the emitted light passes through the lens 232 and strikes the 565 nm low pass reflector 229. The portion of the light having a wavelength in the range of about 505 to 537 nm (corresponding to the peak emission wavelength range of FAM) reflects from the 565 nm low pass reflector 229 , passes through the 537 nm high pass reflector 230, reflects from the 505 nm high pass reflector 231, passes through the pair of 505 nm high pass filters 223, through the lens 242, through the 515 nm Schott Glass ^((1)){ }^{(1)} filter 222 A , and is detected by the first detector 102 A . 检测组件 48 在以下四个发射波长范围内检测从腔室 10 发射的光。如图 8 所示,发射光穿过透镜 232,照射到 565 纳米低通反射器 229 上。波长在约 505 至 537 nm 范围内(对应于 FAM 的峰值发射波长范围)的部分光从 565 nm 低通反射器 229 反射,穿过 537 nm 高通反射器 230,从 505 nm 高通反射器 231 反射,穿过一对 505 nm 高通滤波器 223,穿过透镜 242,穿过 515 nm 肖特玻璃 ^((1)){ }^{(1)} 滤波器 222 A,并被第一检测器 102 A 检测到。
Meanwhile, the portion of the light having a wavelength 5 in the range of about 537 to 565 nm (corresponding to the peak emission wavelength range of TET) reflects from the 565 nm low pass reflector 229\mathbf{2 2 9}, reflects from the 537 nm high pass reflector 230, passes through the pair of 537 nm high pass filters 224 , through the lens 242, through the 550 nm Schott Glass ^(8){ }^{8} filter 222 B, and is detected by the second detector 102B. 同时,波长 5 在约 537 至 565 nm 范围内(对应于 TET 的峰值发射波长范围)的那部分光从 565 nm 低通反射器 229\mathbf{2 2 9} 反射,从 537 nm 高通反射器 230 反射,通过一对 537 nm 高通滤波器 224,通过透镜 242,通过 550 nm 肖特玻璃 ^(8){ }^{8} 滤波器 222 B,并被第二检测器 102B 检测到。
Similarly, the portion of the light having a wavelength in the range of about 565 to 605 nm (corresponding to the peak emission wavelength range of TAMRA) passes through the 565 nm low pass reflector 229, through the 605 nm high pass reflector 227 , through the pair of 565 nm high pass filters 225, through the lens 242, through the 570 nm Schott 同样,波长在约 565 至 605 纳米范围内(与 TAMRA 的峰值发射波长范围相对应)的那部分光穿过 565 纳米低通反射器 229,穿过 605 纳米高通反射器 227,穿过一对 565 纳米高通滤光片 225,穿过透镜 242,穿过 570 纳米肖特滤光片 225,穿过 570 纳米高通滤光片 227,穿过 565 纳米低通反射器 229,穿过 605 纳米高通反射器 227。
Glass® filter 222C, and is detected by the third detector 102C\mathbf{1 0 2 C}. The portion of the light having a wavelength over 605 nm (corresponding to the peak emission wavelength range of ROX) passes through the 565 nm low pass reflector 229\mathbf{2 2 9}, reflects from the 605 nm high pass reflector 227 , reflects from the mirror 228, passes through the pair of 605 nm high pass filters 226, through the lens 242, through the 620 nm Schott Glass ^((1)){ }^{(1)} filter 222D, and is detected by the fourth detector 102D. In operation, the outputs of detectors 102A, 102B,102C102 \mathrm{~B}, 102 \mathrm{C}, and 102 D are analyzed to determine the concentrations of each of the different dyes contained in the chamber 10, as will be described in greater detail below. Glass® 滤光片 222C,并被第三检测器 102C\mathbf{1 0 2 C} 检测到。波长超过 605 nm(对应于 ROX 的峰值发射波长范围)的部分光穿过 565 nm 低通反射器 229\mathbf{2 2 9} ,从 605 nm 高通反射器 227 反射,从反射镜 228 反射,穿过一对 605 nm 高通滤波器 226,穿过透镜 242,穿过 620 nm 肖特玻璃 ^((1)){ }^{(1)} 滤波器 222D,并被第四探测器 102D 检测到。在操作过程中,对检测器 102A、 102B,102C102 \mathrm{~B}, 102 \mathrm{C} 和 102 D 的输出进行分析,以确定腔室 10 中包含的每种不同染料的浓度,下文将对此进行更详细的描述。
FIG. 10 is a perspective view of a multi-site reactor system 60 according to the present invention. The reactor system 60 comprises a thermal cycler 62 and a controller, such as a personal computer 64 . The thermal cycler 62 comprises a base instrument 66 and multiple heatexchanging modules 37 (described with reference to FIG. 4). The base instrument 66 has a main logic board with edge connectors 68 for receiving the modules 37 . The base instrument 66 also preferably includes a fan 70 for cooling its electronic components. The base instrument 66 may be connected to the controller 64 using any suitable data connection, such as a universal serial bus (USB), ethernet connection, or serial line. It is presently preferred to use a USB that connects to the serial port of computer 64. Although a laptop computer is shown in FIG. 10, the controller may comprise any type of device having a processor. Further, the thermal cycler may be linked to a computer network rather than to a single computer. 图 10 是根据本发明设计的多点反应器系统 60 的透视图。反应器系统 60 包括一个热循环器 62 和一个控制器,如个人计算机 64。热循环仪 62 包括一个基础仪器 66 和多个热交换模块 37(参见图 4)。基础仪器 66 有一个主逻辑板,板上有用于接收模块 37 的边缘连接器 68。基础仪器 66 最好还包括一个风扇 70,用于冷却其电子元件。基础仪器 66 可以通过任何合适的数据连接方式连接到控制器 64,例如通用串行总线 (USB)、以太网连接或串行线路。目前最好使用 USB 连接到计算机 64 的串行端口。虽然图 10 中显示的是笔记本电脑,但控制器可以是任何类型的具有处理器的设备。此外,热循环仪还可以连接到计算机网络,而不是一台计算机。
The term “thermal cycling” is herein intended to mean at least one change of temperature, i.e. increase or decrease of temperature, in a reaction mixture. Therefore, chemicals undergoing thermal cycling may shift from one temperature to another and then stabilize at that temperature, transition to a second temperature or return to the starting temperature. The temperature cycle may be performed only once or may be repeated as many times as required to study or complete the particular chemical reaction of interest. 术语 "热循环 "在此是指反应混合物中至少有一次温度变化,即温度的升高或降低。因此,进行热循环的化学品可以从一个温度转移到另一个温度,然后稳定在该温度,过渡到第二个温度或返回到起始温度。温度循环可以只进行一次,也可以根据研究或完成特定化学反应的需要多次重复。
In the specific embodiment of FIG. 10, the thermal cycler 62 includes sixteen independently-controllable heatexchanging modules 37 arranged in two rows of eight modules each. It is to be understood, however, that the thermal cycler can range from a one to four-site hand-held instrument to a multi-hundred site clinical and research instrument. Common to all these embodiments are one or more independently-controllable modules 37\mathbf{3 7}, and a controller for operating individually programmed independent temperature/time profiles for each module. The thermal time-courses for nucleic acid amplifications or other reactions can be fine tuned to a particular target, and independent control of individual modules 37\mathbf{3 7} permits simultaneous reactions to be run at different thermal profiles. 在图 10 的具体实施例中,热循环仪 62 包括十六个可独立控制的热交换模块 37,每 个模块八个,分两排排列。不过,可以理解的是,热循环仪的范围可以从一到四个部位的手持式仪器到多达上百个部位的临床和研究仪器。所有这些实施方案的共同点是一个或多个可独立控制的模块 37\mathbf{3 7} ,以及一个控制器,用于操作每个模块单独编程的独立温度/时间曲线。核酸扩增或其他反应的热时间曲线可根据特定目标进行微调,独立控制单个模块 37\mathbf{3 7} 可在不同的热曲线下同时运行反应。
The thermal cycler 62 also provides for independent loading, cycling, and unloading of individual sites at different times allowing for optimal use and throughput. The thermal cycler 62 is also modular, in that each heatexchanging module 37 can be individually removed from the base instrument 66 for servicing, repair, or replacement. This modularity reduces downtime since all the modules 37 are not off line to repair one, and the instrument 66 can be upgraded and enlarged to add more sites as needed. The modularity of the thermal cycler 62 also means that individual modules 37 can be precisely calibrated, and modulespecific schedules or corrections can be included in the control programs, e.g., as a series of module-specific calibration or adjustment charts. 热循环仪 62 还可以在不同时间对各个部位进行独立的加载、循环和卸载,从而达到最佳的使用效果和吞吐量。热循环仪 62 也是模块化的,每个热交换模块 37 都可以单独从基础仪器 66 上拆下,以进行保养、维修或更换。这种模块化设计减少了停机时间,因为所有模块 37 都不会因为维修一个模块而停机,而且仪器 66 可以根据需要升级和扩大,以增加更多的站点。热循环仪 62 的模块化还意味着可以对单个模块 37 进行精确校准,并将特定模块的时间表或校正纳入控制程序,例如作为一系列特定模块校准或调整图表。
The thermal cycling system 60 of the invention also has significant advantages in terms of power management. The controller 64 can interleave the thermal profiles of each independent module 37 to save power as compared to a single block heater. For example, current can be reduced by half by control of one module to heat (high power) while a second module is cooling (low power). Thus, by interleaving of pulse power to only so many modules 37 as have reactants in them, the instantaneous current requirements for the base instrument 66 can be minimized, permitting more modules 37 per instrument that can still be powered from a standard 110V,15110 \mathrm{~V}, 15 ampere circuit. Because of this sophisticated power management system, which is made possible by the independent control of the modules 37 , the instrument 66 may also be configured into a hand-held, battery operated device. 本发明的热循环系统 60 在电源管理方面也有显著优势。与单块加热器相比,控制器 64 可以交错控制每个独立模块 37 的热曲线,从而节省电能。例如,通过控制一个模块加热(高功率),同时控制第二个模块冷却(低功率),可以将电流减少一半。因此,通过交错向多个模块 37 提供脉冲功率,使其中只含有反应物,就可以最大限度地降低基本仪器 66 的瞬时电流要求,从而使每个仪器可以使用标准 110V,15110 \mathrm{~V}, 15 安培电路为更多模块 37 供电。由于模块 37 的独立控制使这一复杂的电源管理系统成为可能,因此仪器 66 也可以配置成手持式电池供电设备。
In embodiments in which the base instrument 66 operates on external power, e.g. 110 V AC , the instrument preferably includes two power connections 76, 78. Power is received though the first connection 76 and output through the second connection 78. Similarly, the instrument 66 preferably includes network interface inlet and outlet ports 72, 74 for receiving a data connection through inlet port 72 and outputting data to another base instrument through outlet port 74. As shown schematically in FIG. 11, this arrangement permits multiple thermal cyclers 62A,62B,62C,62\mathbf{6 2} \mathrm{A}, \mathbf{6 2 B}, \mathbf{6 2} \mathrm{C}, \mathbf{6 2} to be daisy-chained from one controller 64 and one external power source 80\mathbf{8 0}. Using a USB, it is theoretically possible to daisy-chain 127\mathbf{1 2 7} thermal cycler instruments to a single controller, although due to limits of computing power, one should use several computers for controlling 127 instruments. 在基础仪器 66 通过外部电源(如 110 伏交流电)运行的实施例中,仪器最好包括两个电源连接 76 和 78。电源通过第一连接 76 接收,通过第二连接 78 输出。同样,仪器 66 最好还包括网络接口入口和出口端口 72、74,用于通过入口端口 72 接收数据连接,并通过出口端口 74 将数据输出到另一个基础仪器。如图 11 中的示意图所示,这种安排允许多个热循环仪 62A,62B,62C,62\mathbf{6 2} \mathrm{A}, \mathbf{6 2 B}, \mathbf{6 2} \mathrm{C}, \mathbf{6 2} 通过一个控制器 64 和一个外部电源 80\mathbf{8 0} 进行菊花链连接。使用 USB,理论上可以将 127\mathbf{1 2 7} 台热循环仪以菊花链方式连接到单个控制器,不过由于计算能力的限制,应该使用多台计算机来控制 127 台仪器。
FIG. 12 is a schematic, block diagram of the base instrument 66. The base instrument includes a power supply 86 for supplying power to the instrument and to each module 37 . The power supply 86 may comprise an AC//DC\mathrm{AC} / \mathrm{DC} converter for receiving power from an external source and converting it to direct current, e.g., receiving 110 V AC and converting it to 12 V DC. Alternatively, the power supply 86 may comprise a battery, e.g., a 12 V battery. 图 12 是基础仪器 66 的原理框图。基础仪器包括一个电源 86,用于向仪器和每个模块 37 供电。电源 86 可以包括一个 AC//DC\mathrm{AC} / \mathrm{DC} 转换器,用于接收外部电源并将其转换为直流电,例如接收 110 V 交流电并将其转换为 12 V 直流电。或者,电源 86 可以包括电池,例如 12 V 电池。
The base instrument 66 also includes a microprocessor or microcontroller 82 containing firmware for controlling the operation of the base instrument 66 and modules 37 . The microcontroller 82 communicates through a network interface 84 to a user interface computer via a USB. Due to current limitations of processing power, it is currently preferred to include at least one microcontroller in the base instrument per sixteen modules 37 . Thus if the base instrument has a thirty-two module capacity, at least two microcontrollers should be installed in the instrument 66 to control the modules. 基础仪器 66 还包括一个微处理器或微控制器 82,其中包含用于控制基础仪器 66 和模块 37 运行的固件。微控制器 82 通过网络接口 84 与用户界面计算机进行 USB 通信。由于目前处理能力的限制,最好是每十六个模块 37 至少有一个微控制器。因此,如果基础仪器有 32 个模块的容量,则仪器 66 中至少应安装两个微控制器来控制模块。
The base instrument 66 further includes a heater power source and control circuit 88, a power distributor 90, a data bus 92, and a module selection control circuit 94. Due to space limitations in patent drawings, control circuit 88, power distributor 90 , data bus 92 , and control circuit 94 are shown only once in the schematic diagram of FIG. 12. However, the base instrument 66 actually contains one set of these four functional components 88, 90, 92, 94 for each heat-exchanging module 37 . Thus, in the embodiment of FIG. 12, the base instrument 66 includes sixteen control circuits 88\mathbf{8 8}, power distributors 90 , data buses 92 , and control circuits 94. 基础仪器 66 还包括加热器电源和控制电路 88、功率分配器 90、数据总线 92 和模块选择控制电路 94。由于专利图的篇幅限制,控制电路 88、功率分配器 90、数据总线 92 和控制电路 94 在图 12 的原理图中只显示了一次。然而,基础仪器 66 实际上为每个热交换模块 37 包含一套这四个功能组件 88、90、92、94。因此,在图 12 的实施例中,基础仪器 66 包括十六个控制电路 88\mathbf{8 8} 、功率分配器 90 、数据总线 92 和控制电路 94。
Similarly, the base instrument 66 also includes one edge connector 68 for each module 37 so that the instrument includes sixteen edge connectors for the embodiment shown in FIG. 12. The edge connectors are preferably 120 pin card edge connectors that provide cableless connection from the 同样,基础仪器 66 还包括一个用于每个模块 37 的边缘连接器 68,因此仪器在图 12 所示的实施例中包括十六个边缘连接器。这些边缘连接器最好是 120 针的卡式边缘连接器,可提供无线缆连接。
base instrument 66 to each of the modules 37 . Each control circuit 88, power distributor 90, data bus 92, and control circuit 94 is connected to a respective one of the edge connectors and to the microcontroller 82 . 基础仪器 66 与每个模块 37 连接。每个控制电路 88、功率分配器 90、数据总线 92 和控制电路 94 分别与一个边缘连接器和微控制器 82 连接。
Each heater power and source control circuit 88 is a power regulator for regulating the amount of power supplied to the heating element(s) of a respective one of the modules 37. The source control circuit 88 is preferably a DC/DC converter that receives a +12 V input from the power supply 86 and outputs a variable voltage between 0 and -24 V . The voltage is varied in accordance with signals received from the microcontroller 82. 每个加热器电源和源控制电路 88 都是一个功率调节器,用于调节提供给模块 37 中各自一个或多个加热元件的功率。源控制电路 88 最好是一个 DC/DC 转换器,它接收来自电源 86 的 +12 V 输入,并输出 0 至 -24 V 之间的可变电压。电压根据从微控制器 82 接收到的信号变化。
Each power distributor 90 provides -5v,+5V,+12V-5 \mathrm{v},+5 \mathrm{~V},+12 \mathrm{~V}, and GND to a respective module 37. The power distributor thus supplies power for the electronic components of the module. Each data bus 92 provides parallel and serial connections between the microcontroller 82\mathbf{8 2} and the digital devices of a respective one of the modules 37 . Each module selection controller 94 allows the microcontroller 82 to address an individual module 37 in order to read or write control or status information. 每个功率分配器 90 为各自的模块 37 提供 -5v,+5V,+12V-5 \mathrm{v},+5 \mathrm{~V},+12 \mathrm{~V} 和 GND。因此,电源分配器为模块的电子元件供电。每个数据总线 92 在微控制器 82\mathbf{8 2} 和各自模块 37 的数字设备之间提供并行和串行连接。每个模块选择控制器 94 允许微控制器 82 寻址单个模块 37,以便读取或写入控制或状态信息。
FIG. 13 is a schematic, block diagram of the electronic components of a heat-exchanging module 37. Each module includes an edge connector 58\mathbf{5 8} for cableless connection to a corresponding edge connector of the base instrument. The module also includes heater plates 34A, 34B each having a resistive heating element as described above. The plates 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} are wired in parallel to receive power input 98 from the base instrument. The plates 34A, 34B also include thermistors 36A, 36B that output analog temperature signals to an analog-to-digital converter 108. The converter 108 converts the analog signals to digital signals and routes them to the microcontroller in the base instrument through the edge connector 58 图 13 是热交换模块 37 的电子元件原理框图。每个模块都包括一个边缘连接器 58\mathbf{5 8} ,用于与基础仪器的相应边缘连接器进行无电缆连接。模块还包括加热板 34A、34B,每个加热板都有一个电阻式加热元件,如上所述。板 34A,34B34 \mathrm{~A}, 34 \mathrm{~B} 并联接线,以接收来自基础仪器的电源输入 98。加热板 34A、34B 还包括热敏电阻 36A、36B,可将模拟温度信号输出到模数转换器 108。转换器 108 将模拟信号转换为数字信号,并通过边缘连接器 58 将其传输到基础仪器中的微控制器。
The heat-exchanging module also includes a cooling system, such as a fan 96 , for cooling the plates 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} and the reaction mixture contained in a vessel inserted between the plates. The fan 96 receives power from the base instrument and is activated by switching a power switch 118\mathbf{1 1 8}. The power switch 118 is in turn controlled by a control logic block 116 that receives control signals from the microcontroller in the base instrument. 热交换模块还包括冷却系统,例如风扇 96,用于冷却板 34A,34B\mathbf{3 4 A}, \mathbf{3 4 B} 和插入板之间容器中的反应混合物。风扇 96 接收来自底座仪器的电源,并通过切换电源开关 118\mathbf{1 1 8} 激活。电源开关 118 反过来由控制逻辑块 116 控制,该逻辑块 116 接收来自底座仪器中微控制器的控制信号。
The module further includes four light sources, such as LEDs 100\mathbf{1 0 0}, for excitation of labeled analytes in the reaction mixture and four detectors 102, preferably photodiodes, for detecting fluorescent emissions from the reaction mixture. The module also includes an adjustable current source 104 for supplying a variable amount of current (e.g., in the range of 0 to 30 mA ) to each LED to vary the brightness of the LED. A digital-to-analog converter 106 is connected between the adjustable current source 104 and the microcontroller of the base instrument to permit the microcontroller to adjust the current source digitally. 该模块还包括四个光源,如 LED 100\mathbf{1 0 0} ,用于激发反应混合物中的标记分析物,以及四个检测器 102,最好是光电二极管,用于检测反应混合物的荧光发射。该模块还包括一个可调电流源 104,用于向每个 LED 提供可变的电流(例如,在 0 至 30 mA 范围内),以改变 LED 的亮度。一个数模转换器 106 连接在可调电流源 104 和基础仪器的微控制器之间,使微控制器能够以数字方式调节电流源。
The adjustable current source 104 is preferably used to ensure that each LED has about the same brightness when activated. Due to manufacturing variances, many LEDs have different brightnesses when provided with the same amount of current. Therefore, it is presently preferred to test the brightness of each LED during manufacture of the heatexchanging module and to store calibration data in a memory 114 of the module. The calibration data indicates the correct amount of current to provide to each LED. The microcontroller reads the calibration data from the memory 114 and controls the current source 104 accordingly. The microcontroller may also control the current source to adjust the brightness of the LEDs 100 in response to optical feedback received from the detectors 102\mathbf{1 0 2}, as is described in greater detail below. increase gain, offset, and reduce noise. The microcontroller in the base instrument controls block 110\mathbf{1 1 0} through a digital output register 112. The output register 112 receives data from the microcontroller and outputs control voltages to the block 110. The block 110 outputs the adjusted detector 0 signals to the microcontroller through the analog-to-digital converter 108 and the edge connector 58 . The module also includes the memory 114, preferably a serial EEPROM, for storing data specific to the module, such as calibration data for the LEDs 100 , thermal plates 34A, 34D, and thermistors 36A,36B36 \mathrm{~A}, 36 \mathrm{~B}, as well as calibration data for a deconvolution algorithm described in detail below. 可调电流源 104 最好用于确保每个 LED 在启动时具有大致相同的亮度。由于制造上的差异,许多 LED 在提供相同电流时亮度不同。因此,目前最好在制造热交换模块时测试每个 LED 的亮度,并将校准数据存储在模块的存储器 114 中。校准数据指示向每个 LED 提供的正确电流值。微控制器从存储器 114 中读取校准数据,并据此控制电流源 104。微控制器还可以控制电流源,以根据从检测器 102\mathbf{1 0 2} 接收到的光学反馈来调整 LED 100 的亮度,这将在下文中详细说明。基础仪器中的微控制器通过数字输出寄存器 112 控制块 110\mathbf{1 1 0} 。输出寄存器 112 接收来自微控制器的数据,并向块 110 输出控制电压。模块 110 通过模数转换器 108 和边缘连接器 58 将调整后的检测器 0 信号输出到微控制器。模块还包括存储器 114,最好是串行 EEPROM,用于存储模块的特定数据,例如 LED 100、热板 34A、34D 和热敏电阻 36A,36B36 \mathrm{~A}, 36 \mathrm{~B} 的校准数据,以及下文详细描述的解卷积算法的校准数据。
FIG. 14 shows the controller architecture, typically resident as software, firmware, or a combination thereof, in a user interface computer and/or the microcontroller 82 of the thermal cycler 62. It should be understood that selected ones of these functions can be located, as needed, in the microcontroller 82, for example in the case of a hand-held field unit, or in a separate computer that communicates with the microcontroller. The distribution of the control functions can be selected by one skilled in the art to be resident in various hardware or software elements to suit the intended use most efficiently. Thus, the control function distribution in a large laboratory or clinical configuration may be quite different than in the hand-held field unit, or intermediate sized mobile unit. In addition, the functions can be selected for the particular purpose, ranging for example from qualitative identification, to single or limited number of site programs, to full quantitative evaluation of a wide range of reactions via an extended library of programs. 图 14 显示了热循环仪 62 的用户界面计算机和/或微控制器 82 中通常以软件、固件或其组合形式存在的控制器结构。不言而喻,这些功能中的某些功能可以根据需要设置在微控制器 82 中,例如在手持式现场设备的情况下,也可以设置在与微控制器通信的独立计算机中。本领域技术人员可以选择控制功能的分布,使其驻留在不同的硬件或软件元件中,以最有效地适应预期用途。因此,大型实验室或临床配置中的控制功能分布可能与手持式现场设备或中型移动设备中的控制功能分布截然不同。此外,还可根据特定目的选择功能,例如从定性识别、单个或数量有限的现场程序,到通过扩展程序库对各种反应进行全面定量评估。
Continuing with FIG. 14, the controller program architecture is software that includes user interface functionality 152 including graphic displays on a monitor (sample displays are shown in FIGS. 15-18), an input keyboard, mouse and the like. Temperature profiles are stored in a profile database 154\mathbf{1 5 4} in a memory 160\mathbf{1 6 0}. The results of individual runs for individual reaction sites are also stored in a results database 156. 继续看图 14,控制器程序架构是一个软件,其中包括用户界面功能 152,包括显示器上的图形显示(示例显示如图 15-18 所示)、输入键盘、鼠标等。温度曲线存储在存储器 160\mathbf{1 6 0} 中的曲线数据库 154\mathbf{1 5 4} 中。单个反应点的单次运行结果也存储在结果数据库 156 中。
The user input device (such as a mouse or keyboard) permits user communication with a profile interpreter 170\mathbf{1 7 0} via a comport 162. Upon user selection, a thermal cycle profile to be run on a selected one of the heat-exchanging modules is selected from the user interface 152, retrieved from the profile database 154, and input to the profile interpreter 170. Additionally, temperature signals obtained from the thermal cycler 62\mathbf{6 2} via a device driver 180\mathbf{1 8 0} are output from the profile interpreter 170 and input to the user interface 152 用户输入设备(如鼠标或键盘)允许用户通过端口 162 与轮廓解释器 170\mathbf{1 7 0} 通信。用户选择后,从用户界面 152 选择要在选定的一个热交换模块上运行的热循环曲线,从曲线数据库 154 中检索,并输入到曲线解释器 170。此外,通过设备驱动器 180\mathbf{1 8 0} 从热循环器 62\mathbf{6 2} 获得的温度信号从温度曲线解释器170输出,并输入到用户界面152。
The profile interpreter 170\mathbf{1 7 0} converts selected thermal profiles into signals representing a set of heater power levels and fan on/off times in order to accomplish the thermal profile selected for each particular heat-exchanging module. An input/output control port 174 outputs a target temperature that becomes an input for the device driver 180 Likewise, the device driver 180\mathbf{1 8 0} outputs the current tempera60 ture sensed by the temperature sensor of each heatexchanging module as data that becomes the input to the profile interpreter 170. The device driver 180\mathbf{1 8 0} also provides appropriate digital signals to the microcontroller 82 in the thermal cycler 62 through the serial bus 65\mathbf{6 5}. The microcon5 troller 82 then runs the temperature profile cycle. 配置文件解释器 170\mathbf{1 7 0} 将选定的热配置文件转换为代表一组加热器功率级别和风扇开/关时间的信号,以实现为每个特定热交换模块选定的热配置文件。同样,设备驱动器 180\mathbf{1 8 0} 将每个热交换模块的温度传感器感应到的当前温度作为数据输出,该数据成为温度曲线解释器 170 的输入。设备驱动器 180\mathbf{1 8 0} 还通过串行总线 65\mathbf{6 5} 向热循环器 62 中的微控制器 82 提供适当的数字信号。然后,微控制器 82 运行温度曲线循环。
FIGS. 15-18 illustrate a series of sample graphical displays that are displayed to the user on the user interface. As 图 15-18 展示了在用户界面上向用户显示的一系列图形示例。如
one skilled in the art will appreciate, the conventional sign-on screen appears when the system initializes, allowing for user identification and any password protection authorization inputs. This is followed by the Program Menu screen 120 of FIG. 15. By selecting the Instructions menu button 122 on the left, additional screens are accessed at any time. As each screen is displayed, it presents options for system operation in text boxes and buttons, along with the text or icon information directing the user how to select each of the options. The creation of these types of screens, including select buttons, check boxes text and graph displays, can be performed by a computer programmer having ordinary skill in the art. 熟悉该技术的人会明白,系统初始化时会出现传统的登录屏幕,允许用户识别和输入密码保护授权。随后是图 15 中的程序菜单屏幕 120。通过选择左侧的 "说明 "菜单按钮 122,可以随时访问其他屏幕。每个屏幕显示时,都会在文本框和按钮中显示系统操作的选项,以及指导用户如何选择每个选项的文本或图标信息。这些屏幕类型的创建,包括选择按钮、复选框文本和图表显示,都可以由具有本领域普通技术的计算机程序员来完成。
The Library button 124\mathbf{1 2 4} accesses thermal profile programs and stored results of past thermal cycle runs that are stored in memory. The result button 126\mathbf{1 2 6} accesses a menu for viewing past results. The reports button 128\mathbf{1 2 8} permits printing records of actual time course temperature traces from past thermal cycle runs. The preferences button 130\mathbf{1 3 0} allows the user to set frequently used inputs runs, while the maintenance button 132\mathbf{1 3 2} allow the user to adjust data structures. The Sign-Off button 134 closes the program. 库按钮 124\mathbf{1 2 4} 可访问热曲线程序和存储在内存中的过去热循环运行结果。结果按钮 126\mathbf{1 2 6} 可进入菜单查看过去的结果。报告按钮 128\mathbf{1 2 8} 允许打印过去热循环运行的实际时间温度轨迹记录。首选项按钮 130\mathbf{1 3 0} 允许用户设置常用的输入运行,而维护按钮 132\mathbf{1 3 2} 允许用户调整数据结构。签出按钮 134 可关闭程序。
FIG. 16 illustrates a sample Program Menu screen through which site programs or thermal profiles (a series of one or more heating and cooling steps) are created. New profiles are created by selecting the NEW button. The template shown permits the user to create a specific userdefined program that is stored in memory. All of the data shown on the screen can be removed by selecting the CLEAR button to start from scratch. The numbers appearing in the small windows 140 disappear, and the user can then enter appropriate values by toggling the up or down arrows 142 under the columns “Temp” and “Time”. The plus and minus keys 144 are used to add or delete steps. Selecting the lower case " x " key 146 deletes the entire field. The program interprets a single step as a “hold”. Multiple steps are interpreted as a cycle, and as noted in the center column 148, the number of cycles may be entered by the user. The program name 149\mathbf{1 4 9} is in the center left window and a brief description 151 of the program to be run is in the lower left window. The program then can be saved under either “Save” with a previously known name or under “Save As” to save the program under the name entered in the window 149 . This new program is then automatically stored in the thermal profile library, e.g., the profile database 154 of FIG. 14. By pressing the “Run” button, the available reaction sites (heatexchanging modules) are displayed in column 131 by specific address. One or more sites can be selected and the program run by again hitting the “Run” button. 图 16 展示了一个程序菜单屏幕示例,通过该屏幕可以创建现场程序或热曲线(一系列一个或多个加热和冷却步骤)。选择 "新建 "按钮即可创建新的预案。所示模板允许用户创建存储在内存中的特定用户定义程序。选择 "清除 "按钮可以删除屏幕上显示的所有数据,从头开始。出现在小窗口 140 中的数字会消失,然后用户可以在 "温度 "和 "时间 "栏下通过上下箭头 142 切换输入适当的数值。加号和减号键 144 用于添加或删除步骤。选择小写 "x "键 146 可以删除整个字段。程序将单步解释为 "保持"。多个步骤被理解为一个周期,如中间栏 148 所示,用户可以输入周期数。程序名称 149\mathbf{1 4 9} 位于左侧窗口中部,左侧窗口下部是要运行程序的简要说明 151。然后,程序可以在 "保存 "窗口中以之前已知的名称保存,或在 "另存为 "窗口中以在 149 窗口中输入的名称保存。新程序将自动保存在热曲线库中,例如图 14 中的曲线数据库 154。按下 "运行 "按钮后,可用的反应点(热交换模块)将按具体地址显示在 131 栏中。再次点击 "运行 "按钮,可选择一个或多个反应点并运行程序。
FIG. 17 illustrates a sample Instrument Menu Screen that displays current thermal cycling status. Each of the four windows labeled 1, 2, 3, 4 identifies one of the four reaction sites (modules) in a four-module instrument. Note that site number 3 has been selected, and it shows the total time to run at the setpoint temperature of 55^(@)C55^{\circ} \mathrm{C}. It also shows both the profile setting and the current temperature, as well as the time left in that particular step. The screen also shows that it is in step one of three steps and cycle 3 of 50 cycles, with 20 seconds left in that cycle. The screen also displays a real-time trace, the curved line in the display 155\mathbf{1 5 5} across the bottom half of the screen, of the progress of the reaction. The individual sites can be polled by simply selecting the specific sites 1,2,3,4dotsN1,2,3,4 \ldots \mathrm{~N} by number. 图 17 是显示当前热循环状态的仪器菜单屏幕示例。标有 1、2、3、4 的四个窗口分别标识了四模块仪器中的四个反应位点(模块)之一。请注意,3 号位点已被选中,它显示了在 55^(@)C55^{\circ} \mathrm{C} 设定点温度下运行的总时间。它还显示了曲线设置和当前温度,以及该步骤的剩余时间。屏幕还显示目前处于三个步骤中的步骤 1 和 50 个周期中的周期 3,该周期还剩 20 秒。屏幕还显示反应进程的实时跟踪,即显示屏 155\mathbf{1 5 5} 中横跨屏幕下半部分的曲线。只需按编号选择特定位点 1,2,3,4dotsN1,2,3,4 \ldots \mathrm{~N} ,即可对各个位点进行轮询。
Additional commands include “Pause”, “Continue” and “Stop” to effect the particular reaction site selected. The “Stop All” command stops all heat-exchanging modules currently in operation. A warning prompt appears when 其他命令包括 "暂停"、"继续 "和 "停止",以影响所选的特定反应点。全部停止 "命令可停止当前正在运行的所有热交换模块。当
“Stop” or “Stop All” is selected to ensure that it was not selected inadvertently. Once the reaction is completed, the real-time display 155 of any particular cycle can be selected in this particular site by moving the scroll bar button 157 along the bottom of the graph. 选择 "停止 "或 "全部停止",以确保不会误选。反应完成后,通过沿图形底部移动滚动条按钮 157,可在此特定位置选择任何特定循环的实时显示 155。
FIG. 18 illustrates a sample Library Menu Screen. As described above with reference to FIG. 14, previously saved programs are stored in the profile database 154. Results from previous runs are stored in the results database 156. Turning to FIG. 18, programs may be selected by scrolling down the program “Name” list in the upper half of the screen, and then assigned a specific reaction site (one of the heat-exchanging modules) by pressing “Run”. Detailed information regarding individual programs is displayed on the lower left quarter 159 of the screen, and previously run programs can be recalled and viewed by selecting the “View/Edit” button. The “Delete” button is used to remove programs from the library after a warning pop-up notice. The Preview display 161 in the lower right of the screen shows a bar graph of the thermal profile selected. 图 18 展示了一个样本程序库菜单屏幕。如上图 14 所述,先前保存的程序存储在配置文件数据库 154 中。以前运行的结果存储在结果数据库 156 中。参见图 18,可通过向下滚动屏幕上半部分的程序 "名称 "列表来选择程序,然后按 "运行 "键分配特定的反应位点(热交换模块之一)。单个程序的详细信息显示在屏幕左下方 159 处,选择 "View/Edit(查看/编辑)"按钮可调用并查看之前运行的程序。删除 "按钮用于在弹出警告通知后从程序库中删除程序。屏幕右下方的 "预览 "显示屏 161 显示所选热量曲线的条形图。
The user interface program also preferably includes a Results Menu Screen in which the results of a particular run are displayed by program name, date, operator, and site. The results can be either real-time results from the operations of the program, or the results can be called up from memory (results database 156 in FIG. 14). The information displayed preferably includes a temperature trace of the entire run of cycles for a selected thermal program and the optical data collected. The information displayed also preferably includes the time the program started and finished, the particular heat-exchanging module (reaction site) used, and the final program status (e.g., completed, failed, or stopped by user). 用户界面程序最好还包括一个结果菜单屏幕,其中按程序名称、日期、操作员和地点显示特定运行的结果。结果可以是程序运行的实时结果,也可以是从内存(图 14 中的结果数据库 156)中调用的结果。显示的信息最好包括所选热处理程序整个循环运行的温度轨迹和收集的光学数据。显示的信息最好还包括程序开始和结束的时间、使用的特定热交换模块(反应部位)以及最终程序状态(例如,完成、失败或用户停止)。
FIG. 19 is a flow-diagram schematically illustrating the steps in the overall software control application executed by the controller of the multi-site reactor system. The application is loaded and executed beginning at step 402\mathbf{4 0 2} where it is determined whether a temperature profile desired by the user exists. If the profile exists, the controller proceeds to step 306. If the desired profile does not exist, it is created by the user in step 404. 图 19 是一个流程图,示意性地说明了多工位反应器系统控制器执行整个软件控制应用程序的步骤。该应用程序从步骤 402\mathbf{4 0 2} 开始加载和执行,在该步骤中确定是否存在用户所需的温度曲线。如果存在,控制器将进入步骤 306。如果不存在所需的温度曲线,则由用户在步骤 404 中创建。
The profile is preferably created through the instrument controller screen shown in FIG. 11. The user/operator initializes the profile variables, e.g., entering the number of the cycles and the setpoint temperatures for each of the temperature steps of a given profile via keyboard and/or selection from the buttons and check boxes on the program graphics display. For example, as shown in FIG. 11, the user may select for the particular application to begin with a 5 minute induction hold at 95^(@)C95^{\circ} \mathrm{C}., then run 35 cycles (repeats) at 95^(@)C95^{\circ} \mathrm{C}. for 30 seconds, cool to 55^(@)C55^{\circ} \mathrm{C}. for 30 seconds, then raise the temperature to 72^(@)C72^{\circ} \mathrm{C}. for 60 seconds. A final hold at 72^(@)C72^{\circ} \mathrm{C}. for 7 minutes may be selected before signaling the run is complete. This temperature profile is then saved in the profile database. 最好通过图 11 所示的仪器控制器屏幕创建预案。用户/操作员初始化预案变量,例如,通过键盘和/或从程序图形显示屏上的按钮和复选框中选择,为给定预案的每个温度步骤输入循环次数和设定点温度。例如,如图 11 所示,用户可为特定应用选择在 95^(@)C95^{\circ} \mathrm{C} .开始 5 分钟的感应保持,然后在 95^(@)C95^{\circ} \mathrm{C} .运行 35 个循环(重复)30 秒,冷却至 55^(@)C55^{\circ} \mathrm{C} .30 秒,然后升温至 72^(@)C72^{\circ} \mathrm{C} .60 秒。在发出运行完成信号之前,可选择在 72^(@)C72^{\circ} \mathrm{C} . 处最后保持 7 分钟。然后将此温度曲线保存在曲线数据库中。
In step 406, the desired temperature profile is loaded from the profile database in response to the user requesting that the profile be run at a selected one of the heat-exchanging modules. In step 408, the controller prompts the user through the user interface to load a reaction vessel containing a reaction mixture into the selected module. Referring to FIG. 4, the user then places the reaction vessel 2 containing the reaction mixture between the thermal plates 34A, 34B of the selected module 37 . Those skilled in the art will appreciate that this step may also be automated using, e.g., robotics. In step 410, the controller runs the selected temperature profile on the reaction mixture in the selected 在步骤 406 中,根据用户要求在选定的一个热交换模块上运行所需的温度曲线,从曲线数据库中加载所需的温度曲线。在步骤 408 中,控制器通过用户界面提示用户将装有反应混合物的反应容器装入所选模块。参见图 4,然后用户将装有反应混合物的反应容器 2 放在所选模块 37 的热板 34A、34B 之间。本领域技术人员可以理解,这一步骤也可以通过机器人等方式实现自动化。在步骤 410 中,控制器对所选模块 37 中的反应混合物运行所选的温度曲线。
module. Step 410 is described in detail below with reference to FIG. 20. Briefly, the selected temperature profile is compiled by the profile interpreter 170 into an intermediate form that is used by the device driver 180 to provide signals to the microcontroller 82 of the thermal cycler instrument 62 (see FIG. 14). 模块下文将参照图 20 详细描述步骤 410。简而言之,所选温度曲线由曲线解释器 170 编译成中间形式,由设备驱动器 180 用于向热循环仪 62 的微控制器 82 提供信号(见图 14)。
The running of the selected temperature profile generally includes iterative loops of polling, pinging, or sampling temperature sensor data and associating the data with the predetermined setpoint temperatures as clock time progresses. At the same time, the controller displays both the selected profile and the current temperature of the thermal plates in the selected heat-exchanging module in real-time on screen as the thermal cycles are run. A cycle counter jj is originally initialized to j_(o)=0\mathrm{j}_{o}=0, and it iterates in each cycle to the number of cycles chosen. After the chosen number of cycles are completed, the program signals that the particular run is “Done”, the timer counter having reached the total time for cycles. In step 412, the controller displays the results of the run, e.g., the optical data indicating detection of target analytes in the reaction mixture, and saves the results in the results database 所选温度曲线的运行一般包括轮询、ping 或温度传感器数据采样的迭代循环,并随着时钟时间的推移将数据与预定的设定点温度相关联。同时,在热循环运行时,控制器会在屏幕上实时显示所选曲线和所选热交换模块中隔热板的当前温度。循环计数器 jj 最初初始化为 j_(o)=0\mathrm{j}_{o}=0 ,在每个循环中按所选的循环次数循环。在所选的循环次数完成后,程序发出信号,表示该次运行 "完成",定时器计数器已达到循环的总时间。在步骤 412 中,控制器显示运行结果,例如显示在反应混合物中检测到目标分析物的光 学数据,并将结果保存在结果数据库中。
FIG. 20 illustrates the steps executed in the running of the selected temperature profile (step 410 in FIG. 19) for a reaction mixture in a selected heat-exchanging module. In step 420\mathbf{4 2 0}, the temperature of the thermal plates in the module is polled. Polling of the plate temperature preferably occurs every 100 milliseconds throughout the running of the temperature profile. As shown in FIG. 3, the temperature sensors, such as thermistors 36A,36B36 \mathrm{~A}, 36 \mathrm{~B} output analog signals indicating the temperature of the plates. The analog signals are converted to digital signals and received by the controller. The controller averages the temperatures of the two plates to determine a plate temperature. 图 20 展示了在选定的热交换模块中为反应混合物运行选定的温度曲线(图 19 中的步骤 410)时执行的步骤。在步骤 420\mathbf{4 2 0} 中,对模块中热板的温度进行轮询。在温度曲线的整个运行过程中,最好每 100 毫秒轮询一次热板温度。如图 3 所示,温度传感器(如热敏电阻 36A,36B36 \mathrm{~A}, 36 \mathrm{~B} )输出指示板温度的模拟信号。模拟信号被转换为数字信号并由控制器接收。控制器对两块板的温度进行平均,以确定板的温度。
In step 422, the controller determines the difference (delta) between the profile target temperature, i.e. the setpoint temperature defined by the user for the particular time in the profile, and the plate temperature. In decision step 424, it is determined if the difference is greater than a threshold value, e.g., 10^(@)C10^{\circ} \mathrm{C}. If the difference is greater than the threshold value, the controller proceeds to step 426, raising the temperature of the plates. The steps included in raising the plate temperature are described in detail below with reference to FIG. 21. 在步骤 422 中,控制器确定剖面目标温度(即用户为剖面中特定时间定义的设定点温度)与平板温度之间的差值 (delta)。在决策步骤 424 中,确定差值是否大于阈值,例如 10^(@)C10^{\circ} \mathrm{C} 。如果差值大于阈值,控制器进入步骤 426,提高印版温度。下面将参照图 21 详细描述提高印版温度的步骤。
If the difference is not greater than the threshold value, the controller determines in step 428\mathbf{4 2 8} if the plate temperature is more than a predetermined amount, e.g., 10^(@)C10^{\circ} \mathrm{C}., higher than the current setpoint temperature. If it is, the controller proceeds to step 430 , lowering the temperature of the plates. The steps included in lowering the temperature of the plates are described in detail below with reference to FIG. 22. Following step 430, the controller proceeds to step 432. 如果差值不大于阈值,控制器将在步骤 428\mathbf{4 2 8} 中确定印版温度是否比当前设定点温度高出预定量,例如 10^(@)C10^{\circ} \mathrm{C} .。如果是,则控制器进入步骤 430,降低印版温度。下文将参照图 22 详细描述降低板材温度的步骤。步骤 430 之后,控制器进入步骤 432。
In step 432, the controller implements standard proportional-integral-derivative (PID) control for maintaining the thermal plates at the current setpoint temperature. Proportioning may be accomplished either by varying the ratio of “on” time to “off” time, or, preferably with proportional analog outputs as known in the art which decrease the average power being supplied either to the heater or the fan as the actual temperature of the plates approaches the setpoint temperature. PID control combines the proportional mode with an automatic reset function (integrating the deviation signal with respect to time) and rate action (summing the integral and deviation signal to shift the proportional band). Standard PID control is well known in the art and need not be described further herein. 在步骤 432 中,控制器执行标准的比例-积分-派生 (PID) 控制,以将隔热板保持在当前设定点温度。比例控制可以通过改变 "开启 "时间与 "关闭 "时间的比例来实现,或者最好使用本领域已知的比例模拟输出,当热板的实际温度接近设定点温度时,模拟输出会降低提供给加热器或风扇的平均功率。PID 控制将比例模式与自动复位功能(相对于时间的偏差信号积分)和速率作用(将积分和偏差信号相加以移动比例带)相结合。标准的 PID 控制是本领域众所周知的,在此无需进一步描述。
In step 434, the reaction mixture contained in the reaction vessel is optically interrogated to determine if the mixture ment of calibration data (described in detail below). For clarity and brevity of explanation, however, the steps of obtaining “dark reading” signals and subtracting the dark signals from the corresponding “light reading” signals will 00 not be further repeated in this description. 在步骤 434 中,对反应容器中的反应混合物进行光学检测,以确定混合物是否含有校准数据(详见下文)。不过,为了说明的清晰和简洁,本说明不再重复获取 "暗读数 "信号和从相应的 "明读数 "信号中减去暗信号的步骤。
Following the dark reading, a “light reading” is taken in each of the four primary optical detection channels as follows. The first pair of LEDs 100 A is activated and the LEDs generate an excitation beam that passes through the 5 pair of 593 nm low pass filters 203, reflects off of the 593 nm low pass reflector 212, passes through the 555 nm , low pass reflector 211, reflects off of the 527 nm high pass reflector 在暗读数之后,在四个主要光学检测通道中的每个通道进行 "光读数",具体如下。激活第一对 LED 100 A,LED 发出的激发光束穿过 5 对 593 nm 低通滤波器 203,从 593 nm 低通反射器 212 反射出来,穿过 555 nm 低通反射器 211,从 527 nm 高通反射器反射出来。
209, and passes through the lens 215 into the reaction chamber 10. The excitation beam from the LEDs 100 A is thus filtered to a wavelength range of 555 to 593 nm corresponding to the peak excitation range for ROX. As shown in FIG. 8, emitted light (fluorescence emission radiation) from the chamber 10\mathbf{1 0} passes through the lens 232\mathbf{2 3 2} of the detection assembly 48 and strikes the 565 nm low pass reflector 229. The portion of the light having a wavelength over 605 nm (corresponding to the peak emission wavelength range of ROX) passes through the 565 nm low pass reflector 229, reflects from the 605 nm high pass reflector 227, reflects from the mirror 228, passes through the pair of 605 nm high pass filters 226\mathbf{2 2 6}, through the lens 242\mathbf{2 4 2}, through the 620 nm Schott Glass® filter 222D, and is detected by the fourth detector 102D. The fourth detector 102D outputs a corresponding signal that is converted to a digital value and recorded. 209 并通过透镜 215 进入反应室 10。因此,来自 LED 100 A 的激发光束被过滤到 555 至 593 nm 的波长范围,与 ROX 的峰值激发范围相对应。如图 8 所示,来自腔室 10\mathbf{1 0} 的发射光(荧光发射辐射)穿过检测组件 48 的透镜 232\mathbf{2 3 2} 并照射到 565 纳米低通反射器 229 上。波长超过 605 nm(对应于 ROX 的峰值发射波长范围)的那部分光穿过 565 nm 低通反射器 229,从 605 nm 高通反射器 227 反射,从镜子 228 反射,穿过一对 605 nm 高通滤波器 226\mathbf{2 2 6} ,穿过透镜 242\mathbf{2 4 2} ,穿过 620 nm 肖特玻璃® 滤波器 222D,并被第四探测器 102D 检测到。第四探测器 102D 输出相应的信号,该信号被转换为数字值并记录下来。
Next, as shown in FIG. 6, the second pair of LEDs 100B is activated and the LEDs generate an excitation beam that passes through the pair of 555 nm , low pass filters 204, reflects off of the 555 nm , low pass reflector 211, reflects off of the 527 nm high pass reflector 209\mathbf{2 0 9}, and passes through the lens 215 into the reaction chamber 10. The excitation beam from LEDs 100B is thus filtered to a wavelength range of 527 to 555 nm , corresponding to the peak excitation range for TAMRA. As shown in FIG. 8, emitted light from the chamber 10 then passes through the lens 232 of the detection assembly 48 and strikes the 565 nm low pass reflector 229 . The portion of the light having a wavelength in the range of about 565 to 605 nm (corresponding to the peak emission wavelength range of TAMRA) passes through the 565 nm low pass reflector 229, through the 605 nm high pass reflector 227, through the pair of 565 nm high pass filters 225, through the lens 242 , through the 570 nm Schott Glass® filter 222C, and is detected by the third detector 102C. The third detector 102C outputs a corresponding signal that is converted to a digital value and recorded. 接下来,如图 6 所示,激活第二对 LED 100B,LED 产生的激发光束穿过一对 555 nm 低通滤波器 204,从 555 nm 低通反射器 211 反射出来,从 527 nm 高通反射器 209\mathbf{2 0 9} 反射出来,并穿过透镜 215 进入反应室 10。因此,来自 LED 100B 的激发光束被过滤到 527 至 555 nm 的波长范围内,与 TAMRA 的峰值激发范围相对应。如图 8 所示,来自反应室 10 的发射光随后穿过检测组件 48 的透镜 232,照射到 565 纳米低通反射器 229 上。波长在约 565 至 605 纳米范围内(对应于 TAMRA 的峰值发射波长范围)的那部分光穿过 565 纳米低通反射器 229,穿过 605 纳米高通反射器 227,穿过一对 565 纳米高通滤光片 225,穿过透镜 242,穿过 570 纳米肖特玻璃®滤光片 222C,并被第三检测器 102C 检测到。第三探测器 102C 输出相应的信号,该信号被转换成数字值并记录下来。
Next, as shown in FIG. 6, the pair of blue LEDs 100C is activated and the LEDs generate an excitation beam that passes through the pair of 495 nm low pass filters 205, through the 495 nm high pass reflector 208, through the 527 nm high pass reflector 209\mathbf{2 0 9}, and through the lens 215 into the reaction chamber 10\mathbf{1 0}. The excitation beam from LEDs 100 C is thus filtered to a wavelength range of about 450 to 495 nm corresponding to the peak excitation range for FAM. As shown in FIG. 8, emitted light from the chamber 10 then passes through the lens 232 of the detection assembly 48\mathbf{4 8} and strikes the 565 nm low pass reflector 229. The portion of the light having a wavelength in the range of about 505 to 537 nm (corresponding to the peak emission wavelength range of FAM) reflects from the 565 nm low pass reflector 229, passes through the 537 nm high pass reflector 230\mathbf{2 3 0}, reflects from the 505 nm high pass reflector 231, passes through the pair of 505 nm high pass filters 223, through the lens 242, through the 515 nm Schott Glass® filter 222A, and is detected by the first detector 102A. The first detector 102A outputs a corresponding signal that is converted to a digital value and recorded. 接下来,如图 6 所示,一对蓝色 LED 100C 被激活,LED 产生的激发光束穿过一对 495 nm 低通滤波器 205、穿过 495 nm 高通反射器 208、穿过 527 nm 高通反射器 209\mathbf{2 0 9} 并穿过透镜 215 进入反应室 10\mathbf{1 0} 。因此,来自 LED 100 C 的激发光束被过滤到与 FAM 的峰值激发范围相对应的约 450 至 495 nm 的波长范围。如图 8 所示,来自反应室 10 的发射光随后穿过检测组件 48\mathbf{4 8} 的透镜 232 并照射到 565 纳米低通反射器 229 上。波长在约 505 至 537 nm 范围内(对应于 FAM 的峰值发射波长范围)的部分光从 565 nm 低通反射器 229 反射,穿过 537 nm 高通反射器 230\mathbf{2 3 0} ,从 505 nm 高通反射器 231 反射,穿过一对 505 nm 高通滤波器 223,穿过透镜 242,穿过 515 nm 肖特玻璃® 滤波器 222A,并被第一检测器 102A 检测到。第一探测器 102A 输出一个相应的信号,该信号被转换成数字值并记录下来。
Next, as shown in FIG. 6, the fourth pair of LEDs 100D is activated and the LEDs generate an excitation beam that passes through the pair of 527 nm low pass filters 206, reflects off of the mirror 210, reflects off of the 495 nm high pass reflector 208, passes through the 527 nm high pass reflector 209, and passes through the lens 215 into the reaction chamber 10 . The excitation beam from LEDs 100D is thus filtered to a wavelength range of 495 to 527 nm corresponding to the peak excitation range for TET. As samples. The reaction buffer should contain no dyes, so that the concentrations of all dyes are zero. The optical reading of the reaction buffer in the four primary detection channels produces four output signals that are converted to corresponding digital values. These four numbers are called Buffer(I), where ’ I ’ is 1,2,31,2,3 or 4 depending upon which detection channel is read. The buffer values are a measure of the background signal or scattered light detected in each primary detection channel without any added fluorescent signal from dyes. 接下来,如图 6 所示,第四对 LED 100D 被激活,LED 产生的激发光束穿过一对 527 nm 低通滤波器 206、反射镜 210、495 nm 高通反射器 208、527 nm 高通反射器 209 并穿过透镜 215 进入反应室 10。这样,来自 LED 100D 的激发光束被过滤到 495 至 527 nm 的波长范围,与 TET 的峰值激发范围相对应。作为样品。反应缓冲液中不含染料,因此所有染料的浓度均为零。反应缓冲液在四个主要检测通道中的光学读数会产生四个输出信号,并转换成相应的数 字值。这四个数字称为 Buffer(I),其中 "I "是 1,2,31,2,3 或 4,取决于读取的是哪个检测通道。缓冲值是对每个主检测通道检测到的本底信号或散射光的测量值,不含任何染料的附加荧光信号。
Next, a reaction mixture containing a known concentration, e.g. 100 nM , of dye #1 is placed into the vessel and again the four channels are read. The four numbers produced are called Rawdye(I, 1). Similar sets of four numbers are obtained for the other three dyes to obtain Rawdye(I, 2), Rawdye(I, 3), and Rawdye(I, 4). The buffer values are then subtracted from the raw dye values to obtain net dye values as follows: 接着,将含有已知浓度(如 100 nM)染料 #1 的反应混合物放入容器中,再次读取四个通道的数据。读出的四个数字称为 Rawdye(I,1)。对其他三种染料进行类似的四组读数,得到 Rawdye(I,2)、Rawdye(I,3) 和 Rawdye(I,4)。然后从染料原始值中减去缓冲值,得到染料净值,如下所示:
Netdye(I,J)=Rawdye(I,J)"-Buffer "(I);(I=1" to "4)\operatorname{Netdye}(I, J)=\operatorname{Rawdye}(I, J) \text {-Buffer }(I) ;(I=1 \text { to } 4)
where I indicates the detection channel, and J indicates the dye number. 其中,I 表示检测通道,J 表示染料编号。
The matrix Netdye(I,J)\operatorname{Netdye}(\mathbf{I}, \mathrm{J}) is then inverted using standard 5 numerical methods (such as Gaussian elimination) to obtain a new matrix called the calibration matrix, Cal(I,J)\mathrm{Cal}(\mathrm{I}, \mathrm{J}). Note that the matrix product of Netdye(I,J)**Cal(I,J)\operatorname{Netdye}(\mathbf{I}, \mathrm{J}) * \mathrm{Cal}(\mathbf{I}, \mathrm{J}) is the unity 然后使用标准 5 数值方法(如高斯消元)对矩阵 Netdye(I,J)\operatorname{Netdye}(\mathbf{I}, \mathrm{J}) 进行反演,得到一个称为校准矩阵 Cal(I,J)\mathrm{Cal}(\mathrm{I}, \mathrm{J}) 的新矩阵。请注意, Netdye(I,J)**Cal(I,J)\operatorname{Netdye}(\mathbf{I}, \mathrm{J}) * \mathrm{Cal}(\mathbf{I}, \mathrm{J}) 的矩阵积是统一的
matrix. Now, any reaction mixture can be read and the output signals of the detectors in the four detection channels converted to values representative of the true concentrations of the dyes in the mixture. The optical reading of the mixture produces four numbers called RawMix(I). The reaction buffer values are then subtracted from the raw mix values to obtain four numbers called Mix(I)\operatorname{Mix}(\mathrm{I}) as follows: 矩阵。现在,可以读取任何反应混合物,并将四个检测通道中检测器的输出信号转换为代表混合物中染料真实浓度的值。混合物的光学读数产生四个数字,称为 RawMix(I)。然后从原始混合值中减去反应缓冲液值,得到以下四个称为 Mix(I)\operatorname{Mix}(\mathrm{I}) 的数字:
In the above equation, the factor of 100 comes from the fact that a concentration of 100 nM was used for the initial calibration measurements. The concentration of 100 nM is used for purposes of example only and is not intended to limit the scope of the invention. In general, the dye concentrations for calibration measurements should be somewhere in the range of 25 to 1,000nM1,000 \mathrm{nM} depending upon the fluorescent efficiency (strength) of the dyes. 在上式中,系数 100 是因为初始校准测量使用的浓度为 100 nM。100 nM 的浓度仅用于举例说明,无意限制本发明的范围。一般来说,用于校准测量的染料浓度应在 25 到 1,000nM1,000 \mathrm{nM} 之间,具体取决于染料的荧光效率(强度)。
Referring again to FIGS. 12-13, the matrices Cal(I,J)\operatorname{Cal}(\mathbf{I}, \mathrm{J}) and Buffer(I) are preferably produced during the manufacture of each heat-exchanging module 37\mathbf{3 7} and stored in the memory 114. When the module 37 is plugged into the base instrument 66, the control software application in the base instrument or external computer reads the matrices into memory and uses the matrices to convert the output signals of the detectors 102 to values indicating the concentration of each dye in the reaction mixture. Because the calibration matrices Cal(I,J)\mathrm{Cal}(\mathrm{I}, \mathrm{J}) and Buffer(I)\operatorname{Buffer}(\mathrm{I}) are dependent upon the particular set of dyes calibrated and the volume of the reaction vessel, it is also preferred to produce and store multiple sets of the matrices for various combinations of dye sets and reaction vessel volumes. This gives the end user greater flexibility in using the system. 再次参考图 12-13,矩阵 Cal(I,J)\operatorname{Cal}(\mathbf{I}, \mathrm{J}) 和缓冲器(I)最好在每个热交换模块 37\mathbf{3 7} 的制造过程中产生,并存储在存储器 114 中。当模块 37 插入基础仪器 66 时,基础仪器或外部计算机中的控制软件应用程序将矩阵读入存储器,并使用矩阵将检测器 102 的输出信号转换为指示反应混合物中每种染料浓度的值。由于校准矩阵 Cal(I,J)\mathrm{Cal}(\mathrm{I}, \mathrm{J}) 和 Buffer(I)\operatorname{Buffer}(\mathrm{I}) 取决于所校准的特定染料组和反应容器的容积,因此最好为染料组和反应容器容积的不同组合生成并存储多组矩阵。这使最终用户在使用系统时具有更大的灵活性。
As one example, calibration matrices could be stored for three different dye sets to be used with three different sizes of reaction vessels (e.g., 25 mul,50 mul,100 mul25 \mu \mathrm{l}, 50 \mu \mathrm{l}, 100 \mu \mathrm{l} ) for a total of nine different sets of calibration matrices. Of course, this is just one example, and many other combinations will be apparent to one skilled in the art. Further, in alternative embodiments, the control software may include functionality to guide the end user through the calibration procedure to enable the user to store and use calibration data for his or her own desired combination of dyes and reaction vessel size. 例如,可以为三种不同的染料组存储校准矩阵,以便与三种不同尺寸的反应容器(例如, 25 mul,50 mul,100 mul25 \mu \mathrm{l}, 50 \mu \mathrm{l}, 100 \mu \mathrm{l} )配合使用,总共可存储九套不同的校准矩阵。当然,这只是一个例子,对于本领域的技术人员来说,许多其他组合都是显而易见的。此外,在其他实施例中,控制软件可包括指导最终用户完成校准程序的功能,使用户能够存储和使用其所需染料组合和反应容器大小的校准数据。
In the operation of the preferred embodiment described above, only the four primary detection channels are read to produce four output signals that are deconvolved or converted to dye concentration values representative of the concentrations of individual dyes in the reaction mixture. In another embodiment, however, one or more alternate detection channels is used to provide data for correcting potential variances in the output signals of the detectors caused by, e.g., air bubbles in the reaction vessel, variances in the shape of the vessel, or slight variances in the position of the vessel between the thermal plates. Any of these variances could potentially cause the background signal or scattered light that is detected by each detector to be different than the background or scattered light detected when generating the buffer values in the matrix Buffer(I). To correct for these variances, the controller is programmed to receive calibration signal(s) from one or more detectors using alternate (non-primary) detection channel(s) and to adjust subsequent output signals received from the primary detection channels in dependence upon the calibration signals received. The from the one or more detectors are then averaged to obtain an actual scatter value S_(A)S_{A}. 在上述优选实施例的操作中,只读取四个主检测通道以产生四个输出信号,这些信号经解卷或转换成染料浓度值,代表反应混合物中各染料的浓度。但在另一个实施方案中,使用一个或多个备用检测通道来提供数据,以校正由反应容器中的气泡、容器形状的变化或容器在热板之间位置的微小变化等原因造成的检测器输出信号的潜在差异。任何这些差异都有可能导致每个检测器检测到的背景信号或散射光与生成矩阵 Buffer(I) 中的缓冲值时检测到的背景或散射光不同。为了纠正这些差异,控制器被编程为使用备用(非主要)检测通道从一个或多个检测器接收校准信号,并根据接收到的校准信号调整从主要检测通道接收到的后续输出信号。然后对来自一个或多个探测器的信号进行平均,以获得实际散射值 S_(A)S_{A} 。
Following the generation of the actual scatter value S_(A)S_{A}, the four primary detection channels are read as described in 0 the preferred embodiment above to obtain the four raw mix values RawMix(I). These raw mix values are then adjusted by the ratio of the actual scatter value S_(A)S_{A} to the nominal scatter value S_(N)(S_(A)//S_(N))\mathrm{S}_{N}\left(\mathrm{~S}_{A} / \mathrm{S}_{N}\right) to correct for variances in background or scatter light due to, e.g., variances in the shape or 5 position of the reaction vessel or air bubbles in the reaction mixture. This is preferably accomplished by multiplying the buffer values Buffer(I) by the ratio of the actual scatter value 在生成实际散射值 S_(A)S_{A} 之后,按照上述优选实施例中的描述读取四个主检测通道,以获得四个原始混合值 RawMix(I)。然后根据实际散射值 S_(A)S_{A} 与标称散射值 S_(N)(S_(A)//S_(N))\mathrm{S}_{N}\left(\mathrm{~S}_{A} / \mathrm{S}_{N}\right) 的比值调整这些原始混合值,以校正由于反应容器的形状或位置或反应混合物中的气泡等因素造成的背景或散射光的差异。最好是将缓冲值 Buffer(I) 乘以实际散射值的比值来实现这一点。 S_(A)S_{A} to the nominal scatter value S_(N)S_{N} to produce adjusted buffer values AdjBuffer(I) as follows: S_(A)S_{A} 到标称散射值 S_(N)S_{N} ,以产生调整后的缓冲区值 AdjBuffer(I) 如下:
The adjusted buffer values are then subtracted from the raw mix values to obtain four numbers called Mix(I)\operatorname{Mix}(\mathrm{I}) as follows: 然后,从原始混合值中减去调整后的缓冲区值,得到以下四个称为 Mix(I)\operatorname{Mix}(\mathrm{I}) 的数字:
Next, as previously described in the preferred embodiment, the true concentrations of the dyes are obtained by matrix multiplication as follows: 接下来,如之前在优选实施方案中所述,通过矩阵乘法得到染料的真实浓度如下:
Truedye (I)=100nM^(**)Cal(I,J)**Mix(I)(I)=100 \mathrm{nM}{ }^{*} \operatorname{Cal}(I, J) * \operatorname{Mix}(I)
Alternatively, the scatter values S_(A)\mathrm{S}_{A} and S_(N)\mathrm{S}_{N} may be used to adjust the output signals of the primary detection channels in other ways, e.g., by multiplying the output values by the ratio of the actual scatter value S_(A)S_{A} to the nominal scatter value S_(N)S_{N}. 或者,可以使用散射值 S_(A)\mathrm{S}_{A} 和 S_(N)\mathrm{S}_{N} 以其他方式调整主检测通道的输出信号,例如,将输出值乘以实际散射值 S_(A)S_{A} 与标称散射值 S_(N)S_{N} 的比值。
Referring again to FIG. 20, following optical detection, the controller proceeds to step 436. In step 436, the controller determines if the profile is complete, e.g., if all of the thermal cycles have been completed. The controller may also be programmed to determine that the profile is complete if suitable dye concentration(s) are optically detected, indicating the presence of the target analyte(s) in the reaction mixture. If the profile is determined to be complete, the profile run ends. If not, then the controller returns to step 420, polling the actual temperature of the thermal plates, and the loop re-executes until the profile is complete. 再次参见图 20,在光学检测之后,控制器进入步骤 436。在步骤 436 中,控制器确定剖面是否完成,例如,是否所有的热循环都已完成。如果光学检测到合适的染料浓度,表明反应混合物中存在目标分析物,控制器也可以编程确定剖面图完成。如果确定分析完成,则分析运行结束。否则,控制器返回步骤 420,轮询热敏板的实际温度,循环重新执行,直到剖面图完成。
It is presently preferred to perform an optical reading of the reaction mixture once per thermal cycle at the lowest temperature in the cycle. Alternatively, the reaction mixture could be optically monitored more frequently or less frequently as desired by the user. One advantage to frequent optical monitoring is that real-time optical data may be used to indicate the progress of the reaction. For example, when a particular predetermined fluorescent threshold is detected in a reaction mixture in a heat-exchanging module, then the temperature cycling for that module may be stopped. Furthermore, optical detection of dye activation, e.g., color change, is useful to control the cycle parameters, not only thermal schedules, but also the state or condition of reactants and products, and quantitative production. Multiple emission wavelengths can be sampled to determine, for example, progression of the reaction, end points, triggers for reagent addition, denaturation (melting), annealing and the like. The data obtained in the real-time monitoring method may be fed back to the controller to alter or adjust the optical “read” parameters. Examples of the optical read parameters include: length of read; power input or frequency to the LEDs; which wavelength should be monitored and when; and the like. 目前,最好是在每个热循环中的最低温度下对反应混合物进行一次光学读数。另外,也可以根据用户的需要更频繁或更不频繁地对反应混合物进行光学监测。频繁光学监测的一个好处是,实时光学数据可用来指示反应的进展情况。例如,当在热交换模块中的反应混合物中检测到特定的预定荧光阈值时,就可以停止该模块的温度循环。此外,对染料活化(如颜色变化)的光学检测有助于控制循环参数,不仅包括热量计划,还包括反应物和产物的状态或条件以及定量生产。可以对多个发射波长进行采样,以确定反应的进展、终点、试剂添加的触发点、变性(熔化)、退火等。实时监测方法获得的数据可反馈给控制器,以改变或调整光学 "读取 "参数。光学 "读取 "参数的例子包括:读取长度;输入 LED 的功率或频率;应监测哪个波长以及何时监测;等等。
One advantage of the optical system of the preferred embodiment is that it provides excitation light to each reaction mixture in multiple, distinct excitation wavelength ranges. This ensures that the optimal excitation wavelength range is provided for each of a plurality of different fluorescently-labeled analytes in the mixture. In a typical implementation of the four-channel system, three of the optical channels are used to detect target analytes (e.g., amplified nucleic acid sequences) while the fourth channel is used to monitor an internal control to check the performance of the system. For example, beta actin is often used as an internal control in nucleic acid amplification reactions because it has a predictable amplification response and can 优选实施例的光学系统的一个优点是,它能为每种反应混合物提供多个不同激发波长范围的激发光。这样就能确保为混合物中多种不同的荧光标记分析物中的每一种提供最佳的激发波长范围。在四通道系统的典型应用中,三个光学通道用于检测目标分析物(如扩增的核酸序列),而第四个通道用于监测内部对照,以检查系统的性能。例如,β-肌动蛋白经常被用作核酸扩增反应的内部对照,因为它具有可预测的扩增反应,并且可以
be easily labeled and monitored to verify that the amplification is occurring properly. 便于标记和监测,以验证放大是否正常进行。
In another possible implementation of the four-channel system, two of the optical channels are utilized to detect target analytes, one of the channels is used to monitor an internal control as described above, and the fourth channel is used to monitor a passive normalizer. The passive normalizer is simply a dye that is placed in a reaction mixture in a known concentration and in a free form so that it will not label any analyte. For example, ROX in a concentration of 100 to 500 nM makes a suitable normalizer. The concentration of the normalizer is monitored throughout the reaction and used to normalize the optical data collected from the other three optical channels. If the calculated concentration of the passive normalizer changes due to evaporation, variances in reaction vessel shapes, or air bubbles in the vessel, the data generated in the other three optical channels is normalized for these variances. 在四通道系统的另一种可能实现方式中,两个光学通道用于检测目标分析物,一个通道用于监测上述内部对照物,第四个通道用于监测被动归一化。被动归一化器是一种染料,以已知浓度和游离形式置于反应混合物中,因此不会标记任何分析物。例如,浓度为 100 至 500 nM 的 ROX 就是一种合适的归一化剂。在整个反应过程中对归一化器的浓度进行监测,并用于归一化从其他三个光学通道收集到的光学数据。如果由于蒸发、反应容器形状的差异或容器中的气泡导致计算出的被动归一化浓度发生变化,则会对其他三个光学通道中生成的数据进行归一化处理。
Another advantage of placing a passive dye in the reaction mixture is that the fluorescent signal from the dye may be used to monitor a number of different reaction parameters. Examples of these parameters include the pH , ionic strength, and temperature of the reaction mixture. The optical signal, such as absorption or fluorescence, received from the dye varies with these parameters so that the passive dye may be used to provide real-time data about these reaction parameters. 在反应混合物中加入被动染料的另一个好处是,染料发出的荧光信号可用于监测许多不同的反应参数。这些参数包括反应混合物的 pH 值、离子强度和温度。从染料接收到的光学信号(如吸收或荧光)会随着这些参数的变化而变化,因此无源染料可用于提供有关这些反应参数的实时数据。
Although it is presently preferred to use the optical excitation and detection assemblies 46, 48 in conjunction with the heat-exchanging module 37 (shown in FIG. 4), it is to be understood that the optics assemblies may also be used alone to optically interrogate a reaction mixture. For example, in one alternative embodiment, the optics assemblies are incorporated in a hand-held apparatus having a slot for receiving a reaction vessel. As in the heat-exchanging module 37 of the preferred embodiment, the optics assemblies are positioned next to the slot so that when the vessel is placed in the slot, the optical excitation and detection assemblies are placed in optical communication with first and second optically transmissive walls of the vessel, respectively. Such an apparatus may resemble the heatexchanging module 37 without the heating and cooling elements. 尽管光学激发和检测组件 46、48 目前最好与热交换模块 37(如图 4 所示)结合使用,但应该理解的是,光学组件也可以单独用于对反应混合物进行光学检测。例如,在一个可供选择的实施方案中,光学组件被安装在一个手持式装置中,该装置具有一个用于接收反应容器的插槽。与优选实施例中的热交换模块 37 一样,光学组件位于槽旁边,这样当容器放入槽中时,光学激发和检测组件分别与容器的第一和第二光学透射壁进行光学通信。这种装置可以类似于没有加热和冷却元件的热交换模块 37。
FIGS. 21-22 illustrate an important improvement to computer-implemented PID control for thermally controlling the reaction mixtures in the reactor system of the present invention. In the preferred embodiment, the controller is programmed to compensate for thermal lag between a thermal plate and a reaction mixture contained in a reaction vessel. The thermal lag is caused by the need for heat to transfer from the plate through a wall of the vessel and into the reaction mixture during heating, or by the need for heat to transfer from the reaction mixture through the wall of the vessel to the plate and/or ambient atmosphere during cooling. 图 21-22 展示了对本发明反应器系统中反应混合物进行热控制的计算机 PID 控制的重要改进。在优选的实施方案中,对控制器进行编程,以补偿隔热板与反应容器中反应混合物之间的热滞后。造成热滞后的原因是在加热过程中,热量需要从隔热板通过容器壁传递到反应混合物中,或者在冷却过程中,热量需要从反应混合物通过容器壁传递到隔热板和/或周围环境中。
In standard PID control, the power supplied to a heater is dependent upon the difference (error) between the actual measured temperature of a device and the desired setpoint temperature. The average power being supplied either to the heater or the fan therefore decreases as the actual temperature of the plates approaches the setpoint temperature. Because the power being supplied to the heater or fan decreases prior to reaching the setpoint temperature, the reaction mixture does not reach the setpoint temperature as rapidly as possible. This temperature lag may cause unwanted side reactions, the formation of unwanted bubbles, the degradation of reaction components at certain temperatures, etc. 在标准 PID 控制中,向加热器提供的功率取决于设备实际测量温度与所需设定温度之间的差值(误差)。因此,当平板的实际温度接近设定温度时,加热器或风扇的平均供电功率就会下降。由于加热器或风扇的功率在达到设定温度之前就会降低,因此反应混合物不会尽快达到设定温度。这种温度滞后可能会导致不必要的副反应、形成不必要的气泡、反应成分在特定温度下降解等。
FIGS. 21-22 show the steps in an improved PID control program used in the preferred embodiment. FIG. 21 illustrates the steps performed to raise the temperature of a reaction mixture. In step 502, the controller sets a variable target temperature that initially exceeds the desired setpoint temperature. For example, if the setpoint temperature is 95^(@)95^{\circ} C., the initial value of the variable target temperature may be set 2 to 10^(@)C10^{\circ} \mathrm{C}. higher. 图 21-22 显示了优选实施例中使用的改进型 PID 控制程序的步骤。图 21 展示了提高反应混合物温度的步骤。在步骤 502 中,控制器设定一个可变目标温度,该温度最初要超过所需的设定点温度。例如,如果设定点温度为 95^(@)95^{\circ} C.,则可变目标温度的初始值可设置为 2 至 10^(@)C10^{\circ} \mathrm{C} .更高。
In step 504, the controller determines a level of power to be supplied to the heating elements to raise the temperature of the plates to the variable target temperature. The controller determines the level of power by inputting the variable target temperature to a standard PID control algorithm. The level of power to be supplied to the heaters is therefore determined in dependence upon the difference (error) between the actual plate temperature and a target temperature that is higher than the desired setpoint temperature. The higher target temperature ensures that a higher level of power is supplied to the heaters to heat the plates, and therefore the reaction mixture, to the setpoint temperature more rapidly. In step 506, the controller sends a control signal to the power and source control circuit in the base instrument to provide power to the heaters at the level determined. 在步骤 504 中,控制器确定向加热元件提供的功率水平,以将板的温度提高到可变目标温度。控制器通过向标准 PID 控制算法输入可变目标温度来确定功率水平。因此,向加热器提供的功率大小取决于板材实际温度与高于预期设定温度的目标温度之间的差值(误差)。较高的目标温度可确保向加热器提供较高的功率水平,以更快地将板加热到设定点温度,从而将反应混合物加热到设定点温度。在步骤 506 中,控制器向基础仪器中的电源和源控制电路发送控制信号,以确定的电平向加 热器供电。
In decision step 508, the controller determines if the actual measured temperature of the plates is greater than or equal to a predetermined threshold value. Suitable threshold values are: the desired setpoint temperature itself; or 1 to 2^(@)2^{\circ} C. below the setpoint temperature, e.g., 93 to 94^(@)C94^{\circ} \mathrm{C}. for a setpoint temperature of 95^(@)C95^{\circ} \mathrm{C}. If the actual plate temperature does not exceed the predetermined threshold value, then the controller returns to step 504 and repeats the loop until the plate temperature equals or exceeds the threshold value. 在决策步骤 508 中,控制器确定平板的实际测量温度是否大于或等于预定阈值。合适的阈值有:所需设定点温度本身;或低于设定点温度 1 至 2^(@)2^{\circ} C.,例如,对于 95^(@)C95^{\circ} \mathrm{C} 的设定点温度,93 至 94^(@)C94^{\circ} \mathrm{C} .如果实际印版温度未超过预定阈值,则控制器返回步骤 504 并重复循环,直到印版温度等于或超过阈值。
When the actual measured temperature of the plates is greater than or equal to the threshold value, the controller decreases the variable target temperature in step 510. The controller preferably decreases the variable target temperature by exponentially decaying the amount by which the variable target temperature exceeds the setpoint temperature. For example, the amount by which the variable target temperature exceeds the desired setpoint temperature may be exponentially decayed as a function of time according to the equation: 当板的实际测量温度大于或等于阈值时,控制器在步骤 510 中降低可变目标温度。控制器最好通过指数衰减可变目标温度超过设定点温度的量来降低可变目标温度。例如,可变目标温度超过所需的设定点温度的量可作为时间的函数按等式进行指数衰减:
Delta=(Delta_("max "))**e(-t//" tau ")\Delta=\left(\Delta_{\text {max }}\right) * e(-t / \text { tau })
where Delta\Delta is equal to the amount by which the variable target temperature exceeds the desired setpoint temperature, Amax is equal to the difference between the initial value of the variable target temperature and the desired setpoint temperature, tt is equal to the elapsed time in tenths of seconds from the start of decay, and tau is equal to a decay time constant. In the system of the present invention, tau preferably has a value in the range of 1 to 4 seconds. It is presently preferred to determine tau empirically for each heat-exchanging module during testing and calibration and to store the value of tau in the module’s memory 114 (FIG. 13). 其中, Delta\Delta 等于可变目标温度超过期望设定点温度的量,Amax 等于可变目标温度的初始值与期望设定点温度之间的差值, tt 等于从开始衰减起以十分之一秒为单位的经过时间,tau 等于衰减时间常数。在本发明的系统中,tau 的值最好在 1 至 4 秒的范围内。目前最好是在测试和校准过程中根据经验确定每个热交换模块的 tau 值,并将 tau 值存储在模块的存储器 114 中(图 13)。
Although the exponential equation given above is presently preferred, it is to be understood that many other exponential decay formulas may be employed and fall within the scope of the invention. Moreover, the variable target temperature may be decreased by other techniques, e.g., it may be decreased linearly. 虽然上述指数方程是目前的首选,但应该理解的是,还可以采用许多其他指数衰减公式,并且都在本发明的范围之内。此外,可变目标温度也可以通过其他技术降低,例如,可以线性降低。
In step 512, the controller determines a new level of power to be supplied to the heating elements to raise the temperature of the plates to the decreased target temperature. The controller determines the level of power by inputting the 在步骤 512 中,控制器确定向加热元件提供的新功率水平,以将板的温度提高到降低的目标温度。控制器通过输入
decreased target temperature to the PID control algorithm. In step 514, the controller sends a control signal to the power and source control circuit in the base instrument to provide power to the heaters at the new level determined 在步骤 514 中,控制器向 PID 控制算法发送目标温度降低的控制信号。在步骤 514 中,控制器向基础仪器中的电源和源控制电路发送控制信号,以新确定的水平向加热器供电。
In decision step 516, the controller determines if the variable target temperature is less than or equal to the setpoint temperature. If it is not, the controller returns to step 510, decreasing the target temperature, and the loop continues until the variable target temperature is less than or equal to the setpoint temperature. When the variable target temperature is less than or equal to the setpoint temperature, the raise-temperature routine ends and standard PID control is resumed. 在决策步骤 516 中,控制器确定可变目标温度是否小于或等于设定温度。如果不是,控制器返回步骤 510,降低目标温度,循环继续,直到可变目标温度小于或等于设定温度。当可变目标温度小于或等于设定温度时,升温例程结束,恢复标准 PID 控制。
FIG. 22 is a flow diagram illustrating the steps performed by the controller to lower the temperature of a reaction mixture to a desired setpoint temperature. In step 602, the controller sets a variable target temperature that is initially lower than the desired setpoint temperature. For example, if the setpoint temperature is 60^(@)C60^{\circ} \mathrm{C}., the initial value of the variable target temperature may be set 2 to 10^(@)C10^{\circ} \mathrm{C}. lower, i.e., 50 to 58^(@)C58^{\circ} \mathrm{C}. 图 22 是说明控制器将反应混合物的温度降低到所需设定点温度的步骤的流程图。在步骤 602 中,控制器设置一个可变目标温度,该温度最初低于所需的设定点温度。例如,如果设定点温度为 60^(@)C60^{\circ} \mathrm{C} .,则可变目标温度的初始值可设置为比 10^(@)C10^{\circ} \mathrm{C} .低 2,即比 58^(@)C58^{\circ} \mathrm{C} .低 50。
In step 604, the controller activates the fan until the actual measured temperature of the plates is less than or equal to a threshold value, preferably the variable target temperature. In step 606, the controller deactivates the fan and increases the target temperature, preferably by exponentially decaying the amount by which the variable target temperature differs from the setpoint temperature using the exponential decay equation given above. For cooling, tau is preferably in the range of 1 to 5 seconds with a preferred value of about 3 seconds. As in the heating example given above, tau may be determined empirically for each heat-exchanging module during testing or calibration and stored in the module’s memory. Alternatively, the variable target temperature may be linearly increased. 在步骤 604 中,控制器启动风扇,直到板的实际测量温度小于或等于阈值,最好是可变目标温度。在步骤 606 中,控制器停用风扇并提高目标温度,最好是通过使用上述指数衰减方程指数衰减可变目标温度与设定温度之间的差值。对于制冷,tau 最好在 1 至 5 秒的范围内,优选值约为 3 秒。与上述加热示例一样,tau 可以在测试或校准过程中根据经验为每个热交换模块确定,并存储在模块内存中。或者,可变目标温度可以线性增加。
In step 608, the controller determines a level of power to be supplied to the heating elements to raise the temperature of the plates to the increased target temperature. The controller determines the level of power by inputting the increased target temperature to the PID control algorithm. In step 610, the controller sends a control signal to the power and source control circuit in the base instrument to provide power to the heaters at the level determined 在步骤 608 中,控制器确定向加热元件提供的功率水平,以将板的温度提高到增加的目标温度。控制器通过将提高的目标温度输入 PID 控制算法来确定功率水平。在步骤 610 中,控制器向基础仪器中的电源和源控制电路发送控制信号,以确定的电量向加 热器供电。
In decision step 612, the controller determines if the variable target temperature is greater than or equal to the setpoint temperature. If it is not, the controller returns to step 606, increasing the target temperature, and the loop continues until the variable target temperature is greater than or equal to the setpoint temperature. When the variable target temperature is greater than or equal to the setpoint temperature, the lower-temperature routine ends and steadystate PID control begins. 在决策步骤 612 中,控制器确定可变目标温度是否大于或等于设定温度。如果不是,控制器返回步骤 606,提高目标温度,循环继续,直到可变目标温度大于或等于设定温度。当可变目标温度大于或等于设定温度时,降温程序结束,稳态 PID 控制开始。
Referring again to FIG. 4, in the preferred embodiment, each heat-exchanging module 37 includes a pair of optics assemblies 46, 48 in which all of the light sources are positioned in the first optics assembly 46 and all of the detectors are positioned in the second optics assembly 48. It is also possible, however, to include both one or more light sources and one or more detectors in each of the optics assemblies. FIGS. 23A-23B illustrate a pair of optics assemblies according to a second embodiment of the invention in which each optics assembly includes a light source for exciting a labeled analyte in a reaction mixture and a detector for detecting light emitted from the mixture 再参照图 4,在优选实施例中,每个热交换模块 37 包括一对光学组件 46、48,其中所有光源都位于第一光学组件 46 中,所有探测器都位于第二光学组件 48 中。不过,也可以在每个光学组件中同时包括一个或多个光源和一个或多个探测器。图 23A-23B 展示了根据本发明第二实施例的一对光学组件,其中每个光学组件包括一个用于激发反应混合物中标记分析物的光源和一个用于检测混合物发出的光的检测器。
FIG. 23A shows a schematic plan view of a first optics assembly 250\mathbf{2 5 0} according to the second embodiment. The assembly 250\mathbf{2 5 0} is positioned adjacent the reaction vessel 2\mathbf{2} to 图 23A 显示了根据第二实施例的第一光学组件 250\mathbf{2 5 0} 的示意平面图。该组件 250\mathbf{2 5 0} 与反应容器 2\mathbf{2} 相邻,以
transmit excitation beams to the reaction mixture contained in the chamber 10\mathbf{1 0}. The assembly 250 includes a housing 252 for holding various components of the assembly. The housing 252\mathbf{2 5 2} preferably comprises one or more molded pieces of plastic. The housing 252\mathbf{2 5 2} is preferably a two-piece housing comprised of complementary bottom and top pieces that are coupled together using, e.g., fasteners such as screws or bolts. In the view of FIG. 23A the top piece of the housing is removed to show the internal components of the optics assembly 250. In alternative embodiments, the housing 252 may be a one-piece housing that holds a slide-in optics package. 10\mathbf{1 0} 中的反应混合物传输激发光束。组件 250 包括一个外壳 252,用于容纳组件的各种部件。外壳 252\mathbf{2 5 2} 最好由一块或多块模制塑料组成。外壳 252\mathbf{2 5 2} 最好是两件式外壳,由互补的底件和顶件组成,这些底件和顶件通过螺钉或螺栓等紧固件连接在一起。在图 23A 的视图中,外壳的顶片被移除,以显示光学组件 250 的内部组件。在其他实施例中,壳体 252 可以是容纳滑入式光学组件的一体式壳体。
The housing 252 includes an optical window 254. In general, the optical window 254 may simply comprise an opening in the housing through which light may be transmitted. The optical window 254 may optionally include an optically transmissive or transparent piece of glass or plastic serving as a window pane, or a lens as in the preferred embodiment. 外壳 252 包括一个光学窗口 254。一般来说,光学窗口 254 可简单地包括外壳上的一个开口,光线可通过该开口传输。光学窗口 254 可以选择包括一块光学透射或透明的玻璃或塑料,作为窗格或透镜(如优选实施例中的透镜)。
The optics assembly 250\mathbf{2 5 0} also includes a light source, preferably a blue LED 256, for transmitting excitation beams to the chamber 10 through the window 254. The LED 256 receives power through leads 253 which are connected to an adjustable current source (not shown in FIG. 23A). The LED 256 is mounted to an optical circuit board 257 which is secured to the back of the housing 252 so that the LED 256 is rigidly fixed in the housing 252. The optical circuit board 257 may be secured to the housing 252 using fasteners such as screws, bolts, glued-in plugs, or the like. A detector 258, preferably a PIN photodiode, is also mounted to the optical circuit board 257 and rigidly fixed in the housing 252 . As in the preferred embodiment, the optical circuit board is preferably connected to the main PC board 54 of the heatexchanging module 37 (shown in FIG. 4) via a flex cable. 光学组件 250\mathbf{2 5 0} 还包括一个光源,最好是蓝色 LED 256,用于通过窗口 254 向腔室 10 发射激发光束。LED 256 通过与可调电流源(图 23A 中未显示)相连的导线 253 接收电源。发光二极管 256 安装在光学电路板 257 上,光学电路板 257 固定在外壳 252 的背面,使发光二极管 256 固定在外壳 252 中。光学电路板 257 可以使用螺钉、螺栓、胶塞等紧固件固定在外壳 252 上。检测器 258(最好是 PIN 光电二极管)也安装在光电路板 257 上,并牢固地固定在外壳 252 中。在优选实施例中,光电路板最好通过柔性电缆连接到热交换模块 37 的主 PC 板 54 上(如图 4 所示)。
The optics assembly 250\mathbf{2 5 0} further includes filters and lenses arranged in the housing 252\mathbf{2 5 2} for filtering excitation beams generated by the LED 256, for filtering light emitted from the chamber 10, and for directing the emitted light to the detector 258\mathbf{2 5 8}. The housing 252 preferably includes recesses or slots for receiving and rigidly holding the filters and lenses. The filters and lenses may also be rigidly fixed in the housing 252 by means of an adhesive used alone, or more preferably, with an adhesive used in combination with slots in the housing. 光学组件 250\mathbf{2 5 0} 还包括布置在外壳 252\mathbf{2 5 2} 中的滤波器和透镜,用于过滤 LED 256 产生的激发光束、过滤从腔室 10 发射的光,以及将发射的光引导到检测器 258\mathbf{2 5 8} 。外壳 252 最好包括用于接收和固定滤光片和透镜的凹槽或槽。滤光片和透镜也可以通过单独使用的粘合剂或更优选的与壳体中的槽结合使用的粘合剂刚性固定在壳体 252 中。
In general, the filters in the optics assembly 250\mathbf{2 5 0} may be selected to provide excitation beams to the reaction mixture in the chamber 10 in any desired excitation wavelength range and to block light emitted from the chamber 10\mathbf{1 0} outside of any desired emission wavelength range. The optics assembly 250\mathbf{2 5 0} may therefore be used with any fluorescent, phosphorescent, chemiluminescent, or electrochemiluminescent labels of interest. For purposes of illustration, one specific embodiment of the assembly 250\mathbf{2 5 0} will now be described in which the assembly 250\mathbf{2 5 0} is designed to provide excitation beams in the peak excitation wavelength range of FAM and to detect light emitted from the chamber 10\mathbf{1 0} in the peak emission wavelength range of TAMRA. 一般来说,可以选择光学组件 250\mathbf{2 5 0} 中的滤光片,以便在任何所需的激发波长范围内为腔室 10 中的反应混合物提供激发光束,并阻挡从腔室 10\mathbf{1 0} 发射的任何所需的发射波长范围之外的光。因此,光学组件 250\mathbf{2 5 0} 可用于任何荧光、磷光、化学发光或电化学发光标签。为了便于说明,现在将描述组件 250\mathbf{2 5 0} 的一个具体实施例,其中组件 250\mathbf{2 5 0} 设计为在 FAM 的峰值激发波长范围内提供激发光束,并在 TAMRA 的峰值发射波长范围内检测从腔室 10\mathbf{1 0} 发射的光。
In this embodiment, two 590 nm bandpass filters 260 and 264 are positioned between the detector 258 and the window 254 for blocking light emitted from the chamber 10\mathbf{1 0} outside of an emission wavelength range of about 575 to 605 nm . A lens 262 is positioned between the filters 260 and 264 for collimating and focusing light to the detector 258. The optics assembly 250 also includes a 570 nm high pass reflector 268 and a 500 nm high pass reflector 270\mathbf{2 7 0}. The reflectors 268,270\mathbf{2 6 8}, 270 are angularly offset 45^(@)45^{\circ} from the bandpass filters 260,264\mathbf{2 6 0}, 264. A lens 251\mathbf{2 5 1} may optionally be positioned in front of the LED eets, for keeping excitation beams from the LED 256 away from the detector 258. 在本实施例中,两个 590 nm 带通滤光片 260 和 264 位于检测器 258 和窗口 254 之间,用于阻挡 10\mathbf{1 0} 室 10\mathbf{1 0} 。反射器 268,270\mathbf{2 6 8}, 270 与带通滤波器 260,264\mathbf{2 6 0}, 264 在角度上偏移 45^(@)45^{\circ} 。透镜 251\mathbf{2 5 1} 可选择安装在 LED eets 的前面,用于使来自 LED 256 的激发光束远离检测器 258。
FIG. 23B shows a schematic plan view of a second optics assembly 274 complementary to the first optics assembly 250. The assembly 274 includes a housing 276 that preferably comprises one or more molded pieces of plastic. The housing 276 is preferably a two-piece housing comprising complementary bottom and top pieces that are coupled together using, e.g., fasteners such as screws or bolts. In the view of FIG. 23 B , the top piece of the housing is removed to show the internal components of the assembly 274 . In alternative embodiments, the housing 276 may be a onepiece housing that holds a slide-in optics package. 图 23B 显示了与第一光学组件 250 互补的第二光学组件 274 的平面示意图。组件 274 包括外壳 276,外壳最好由一个或多个模制塑料件组成。壳体 276 最好是两件式壳体,包括互补的底件和顶件,这些底件和顶件通过螺钉或螺栓等紧固件连接在一起。在图 23 B 的视图中,外壳的顶件被移除,以显示组件 274 的内部组件。在其他实施例中,外壳 276 可以是一个容纳滑入式光学组件的单件外壳。
The housing 276 includes an optical window 278 . In general, the optical window 278 may simply comprise an opening in the housing through which light may be transmitted. The optical window 278 may optionally include an optically transmissive or transparent piece of glass or plastic serving as a window pane, or a lens as in the preferred embodiment. 外壳 276 包括一个光学窗口 278。一般来说,光学窗口 278 可简单地包括外壳上的一个开口,光线可通过该开口传输。光学窗口 278 可以选择包括一块光学透射或透明的玻璃或塑料,用作窗格或透镜,如优选实施例中的透镜。
The optics assembly 274 also includes a light source, preferably a green LED 280, for transmitting excitation beams to the chamber 10 through the window 278 . The LED 280 receives power through leads 281 which are connected to an adjustable current source (not shown in FIG. 23B). The LED 280 is mounted to an optical circuit board 282 which is secured to the back of the housing 276 so that the LED 280 is rigidly fixed in the housing 276. The optical circuit board 282 may be secured to the housing 276 using fasteners such as screws, glued in plugs, or the like. A detector 284, preferably a PIN photodiode, is also mounted to the optical circuit board 282 and rigidly fixed in the housing 276. As in the preferred embodiment, the optical circuit board is preferably connected to the main PC board 54 of the heatexchanging module 37\mathbf{3 7} (shown in FIG. 4) via a flex cable. 光学组件 274 还包括一个光源,最好是绿色 LED 280,用于通过窗口 278 向腔室 10 发射激发光束。LED 280 通过与可调电流源(图 23B 中未显示)相连的导线 281 接收电源。LED 280 安装在光学电路板 282 上,光学电路板 282 固定在外壳 276 的背面,这样 LED 280 就刚性固定在外壳 276 中。光学电路板 282 可以使用螺钉、胶塞等紧固件固定在外壳 276 上。检测器 284(最好是 PIN 光电二极管)也安装在光电路板 282 上,并牢固地固定在外壳 276 中。在优选实施例中,光电路板最好通过柔性电缆连接到热交换模块 37\mathbf{3 7} 的主 PC 板 54(如图 4 所示)。
The optics assembly 274 further includes filters and lenses arranged in the housing 276 for filtering excitation beams generated by the LED 280, for filtering light emitted from the chamber 10, and for directing the emitted light to the detector 284 . The housing 276 preferably includes recesses or slots for receiving and rigidly holding the filters and lenses. The filters and lenses may also be rigidly fixed in the housing by means of an adhesive used alone, or more preferably, with an adhesive used in combination with slots in the housing. 光学组件 274 还包括布置在外壳 276 中的滤波器和透镜,用于过滤 LED 280 产生的激发光束,过滤从腔室 10 发射的光,并将发射的光导向检测器 284。外壳 276 最好包括用于接收和固定滤光片和透镜的凹槽或槽。滤光片和透镜也可以通过单独使用的粘合剂,或更优选的与壳体中的槽结合使用的粘合剂,牢固地固定在壳体中。
In general, the filters in the optics assembly 276 may be selected to provide excitation beams to the reaction mixture in the chamber 10\mathbf{1 0} in any desired excitation wavelength range and to block light emitted from the chamber 10\mathbf{1 0} outside of any desired emission wavelength range. For purposes of illustration, one specific embodiment of the assembly 274 will now be described in which the assembly 274 is designed to provide excitation beams in the peak excitation wavelength range of TAMRA and to detect light emitted from the chamber 10\mathbf{1 0} in the peak emission wavelength range of FAM. In this embodiment, two 525 nm bandpass filters 286 and 290 are positioned between the detector 284 and the window 278 for blocking light emitted from the chamber 10 outside of an emission wavelength range of about 510 to 540 nm . A lens 288 is positioned between the filters 286 and 290 for 5 collimating and focusing light to the detector 284. The optics assembly 274 also includes a 500 nm high pass reflector 296, a 50//5050 / 50 beamsplitter 297, and a 525 nm bandpass filter 292 . 一般来说,可以选择光学组件 276 中的滤波器,以便在任何所需的激发波长范围内为腔室 10\mathbf{1 0} 中的反应混合物提供激发光束,并阻挡从腔室 10\mathbf{1 0} 发射的超出任何所需的发射波长范围的光。为了便于说明,现在将描述组件 274 的一个具体实施例,其中组件 274 被设计为在 TAMRA 的峰值激发波长范围内提供激发光束,并在 FAM 的峰值发射波长范围内检测从腔室 10\mathbf{1 0} 发射的光。在本实施例中,两个 525 nm 带通滤光片 286 和 290 位于检测器 284 和窗口 278 之间,用于阻挡发射波长范围约为 510 至 540 nm 之外从腔室 10 发射的光。透镜 288 位于滤光片 286 和 290 之间,用于将光准直并聚焦到检测器 284。光学组件 274 还包括 500 纳米高通反射器 296、 50//5050 / 50 分光镜 297 和 525 纳米带通滤波器 292。
The reflector 296 and beamsplitter 297 are angularly offset 45^(@)45^{\circ} from the bandpass filters 286, 290. The optics assembly 274 also includes dividers 272, preferably black polycarbonate sheets, for keeping excitation beams from the LED 280 away from the detector 284 反射器 296 和分光器 297 与带通滤波器 286、290 在角度上有 45^(@)45^{\circ} 偏移。光学组件 274 还包括隔板 272,最好是黑色聚碳酸酯板,用于使来自 LED 280 的激发光束远离探测器 284。
In operation, the pair of optics assemblies 250,274\mathbf{2 5 0}, 274 are used to optically interrogate a reaction mixture in the chamber 10 as follows. As shown in FIG. 23A, the blue LED 256 is activated and the LED generates an excitation beam that passes through the 500 nm high pass reflector 270 , through the window 254, and into the reaction chamber 10. The excitation beam from the LED 256 is thus filtered to a wavelength range below 500 nm corresponding to the excitation range for FAM. 在操作过程中,这对光学组件 250,274\mathbf{2 5 0}, 274 用于对腔室 10 中的反应混合物进行如下光学检测。如图 23A 所示,蓝色 LED 256 被激活,LED 产生的激发光束穿过 500 纳米高通反射器 270、窗口 254 并进入反应室 10。因此,LED 256 发出的激发光束被过滤到 500 纳米以下的波长范围,该波长范围与 FAM 的激发范围相对应。
As shown in FIG. 23B, emitted light (e.g., fluorescence radiation from the FAM dye) is transmitted from the chamber 10\mathbf{1 0} through the window 278 of the optics assembly 274 and strikes the beamsplitter 297. A portion of the emitted light reflects from the beamsplitter 297 to the 500 nm high pass reflector 296. The portion of the emitted light having a wavelength in the range of about 510 to 540 nm (corresponding to the peak emission wavelength range of FAM) reflects from the 500 nm high pass reflector 296, passes through the 525 nm bandpass filter 290, through the lens 288, through the 525 nm bandpass filter 286, and is detected by the detector 284 . The detector 284 outputs a corresponding signal that is converted to a digital value and recorded. 如图 23B 所示,发射光(例如,来自 FAM 染料的荧光辐射)从腔室 10\mathbf{1 0} 中穿过光学组件 274 的窗口 278 并照射到分光器 297 上。部分发射光从分光器 297 反射到 500 纳米高通反射器 296。波长在约 510 至 540 nm 范围内(对应于 FAM 的峰值发射波长范围)的那部分发射光从 500 nm 高通反射器 296 反射出来,穿过 525 nm 带通滤波器 290,穿过透镜 288,穿过 525 nm 带通滤波器 286,并被检测器 284 检测到。检测器 284 输出一个相应的信号,将其转换为数字值并记录下来。
Next, the green LED 280 is activated and the LED generates an excitation beam that passes through the 525 nm bandpass filter 292, through the beamsplitter 297, through the window 278, and into the reaction chamber 10 . The excitation beam from the LED 280\mathbf{2 8 0} is thus filtered to a wavelength range of about 510 to 540 nm corresponding to the excitation range for TAMRA. 接下来,绿色 LED 280 被激活,LED 产生的激发光束穿过 525 nm 带通滤波器 292,穿过分光器 297,穿过窗口 278,进入反应室 10。因此,来自 LED 280\mathbf{2 8 0} 的激发光束被过滤到大约 510 至 540 nm 的波长范围,与 TAMRA 的激发范围相对应。
As shown in FIG. 23A, emitted light (e.g., fluorescence radiation from the TAMRA dye) is transmitted from the chamber 10 through the window 254 of the optics assembly 252 and strikes the 500 nm high pass reflector 270\mathbf{2 7 0}. The portion of the emitted light having a wavelength in the range of 575 to 605 nm (corresponding to the peak emission wavelength range of TAMRA) reflects from the 500 nm high pass reflector 270 , reflects from 570 nm high pass reflector 268\mathbf{2 6 8}, passes through the 590 nm bandpass filter 264, through the lens 262\mathbf{2 6 2}, through the 590 nm bandpass filter 260, and is detected by the detector 258\mathbf{2 5 8}. The detector 258\mathbf{2 5 8} outputs a corresponding signal that is converted to a digital value and recorded. 如图 23A 所示,发射光(例如来自 TAMRA 染料的荧光辐射)从腔室 10 穿过光学组件 252 的窗口 254,并照射到 500 纳米高通反射器 270\mathbf{2 7 0} 上。波长在 575 至 605 nm 范围内(对应于 TAMRA 的峰值发射波长范围)的发射光部分从 500 nm 高通反射器 270 反射,从 570 nm 高通反射器 268\mathbf{2 6 8} 反射,通过 590 nm 带通滤波器 264,通过透镜 262\mathbf{2 6 2} ,通过 590 nm 带通滤波器 260,并被检测器 258\mathbf{2 5 8} 检测到。检测器 258\mathbf{2 5 8} 输出相应的信号,该信号被转换成数字值并记录下来。
The remaining operation of the second embodiment is analogous to the operation of the preferred embodiment described above. The output signals of the detectors may be converted to values indicating the true concentration of each dye in the reaction mixture using linear algebra and calibration matrices (in this embodiment two-row calibration matrices rather than the four-row matrices of the preferred embodiment). If the emission spectra of the two dyes used for detection are sufficiently distinct, however, deconvolution of the optical data using linear algebra is not necessary. For example, FAM and TAMRA usually have sufficiently distinct emission spectra. One advantage of the optics assemblies 250, 274 of the second embodiment is that they can be made smaller and more compact than the assemblies of the preferred embodiment. 第二实施例的其余操作类似于上述优选实施例的操作。使用线性代数和校准矩阵(在本实施例中是两排校准矩阵,而不是优选实施例中的四排矩阵),可将检测器的输出信号转换为表示反应混合物中每种染料真实浓度的值。不过,如果用于检测的两种染料的发射光谱足够不同,则无需使用线性代数对光学数据进行解卷积。例如,FAM 和 TAMRA 通常具有足够不同的发射光谱。第二实施例的光学组件 250、274 的一个优点是,它们可以比优选实施例的组件更小、更紧凑。
FIGS. 24A-24B illustrate a pair of optics assemblies 300, 340 according to a third embodiment of the invention. The optics assemblies 300,340\mathbf{3 0 0}, \mathbf{3 4 0} of the third embodiment are similar to the optics assemblies of the second embodiment, 图 24A-24B 展示了根据本发明第三实施例的一对光学组件 300、340。第三实施例的光学组件 300,340\mathbf{3 0 0}, \mathbf{3 4 0} 与第二实施例的光学组件类似、
except that optics assemblies 300,340\mathbf{3 0 0}, \mathbf{3 4 0} each include an additional detector and additional filters to enable detection of up to four differently labeled analytes in a reaction mixture. 但光学组件 300,340\mathbf{3 0 0}, \mathbf{3 4 0} 每一个都包括一个附加检测器和附加过滤器,以便能够检测反应混合物中最多四个不同标记的分析物。
FIG. 24A shows a schematic plan view of the first optics assembly 300\mathbf{3 0 0} according to the third embodiment. The optics assembly 300\mathbf{3 0 0} includes many of the same parts as the first optics assembly 250 (FIG. 23A) of the second embodiment previously described above. These parts are labeled with the same reference numerals in FIG. 24A. In addition to these parts, the assembly 300\mathbf{3 0 0} includes an additional detector 308\mathbf{3 0 8}, preferably a PIN photodiode, which is mounted to the optical circuit board 257 and rigidly fixed in the housing 252. 图 24A 显示了根据第三实施例的第一光学组件 300\mathbf{3 0 0} 的示意性平面图。光学组件 300\mathbf{3 0 0} 包括许多与上述第二实施例的第一光学组件 250(图 23A)相同的部件。这些部件在图 24A 中标有相同的参考数字。除了这些部件之外,组件 300\mathbf{3 0 0} 还包括一个额外的检测器 308\mathbf{3 0 8} ,最好是一个 PIN 光电二极管,该检测器安装在光学电路板 257 上,并刚性固定在外壳 252 中。
The optics assembly 300\mathbf{3 0 0} further includes filters and lenses arranged in the housing 252\mathbf{2 5 2} for filtering excitation beams generated by the LED 256, for separating light emitted from the chamber 10\mathbf{1 0} into two different emission wavelength ranges, and for directing the emitted light in each of the emission wavelength ranges to a respective one of the detectors 258, 308. In general, the filters in the optics assembly 300\mathbf{3 0 0} may be selected to provide excitation beams to the reaction mixture in the chamber 10 in any desired excitation wavelength range and to block light emitted from the chamber 10\mathbf{1 0} outside of any desired emission wavelength ranges. The optics assembly 300\mathbf{3 0 0} may therefore be used with any fluorescent, phosphorescent, chemiluminescent, or electrochemiluminescent labels of interest. For purposes of illustration, one specific embodiment of the assembly 300\mathbf{3 0 0} will now be described in which the assembly is designed to provide excitation beams in the excitation wavelength ranges of FAM and HEX and to detect light emitted from the chamber 10 in the peak emission wavelength ranges of TAMRA and ROX. 光学组件 300\mathbf{3 0 0} 进一步包括布置在外壳 252\mathbf{2 5 2} 中的滤波器和透镜,用于过滤LED 256产生的激发光束,用于将从腔室 10\mathbf{1 0} 发射的光分离成两个不同的发射波长范围,以及用于将每个发射波长范围中的发射光导向各自的检测器258、308之一。一般来说,可以选择光学组件 300\mathbf{3 0 0} 中的滤波器,以便在任何所需的激发波长范围内向腔室 10 中的反应混合物提供激发光束,并阻挡从腔室 10\mathbf{1 0} 发射的任何所需的发射波长范围之外的光。因此,光学组件 300\mathbf{3 0 0} 可用于任何荧光、磷光、化学发光或电化学发光标签。为了便于说明,现在将描述组件 300\mathbf{3 0 0} 的一个具体实施例,该组件设计用于在 FAM 和 HEX 的激发波长范围内提供激发光束,并在 TAMRA 和 ROX 的峰值发射波长范围内检测从腔室 10 发射的光。
In this embodiment, two 590 nm bandpass filters 260 and 264 are positioned between the detector 258\mathbf{2 5 8} and the window 254\mathbf{2 5 4} for blocking light emitted from the chamber 10\mathbf{1 0} outside of an emission wavelength range of about 575 to 605 nm . A lens 262 is positioned between the filters 260 and 264 for collimating and focusing light to the detector 258. Two 600 nm high pass filters 314\mathbf{3 1 4} and 322\mathbf{3 2 2} are positioned between the detector 308 and the window 254. A lens 318 is positioned between the filters 314\mathbf{3 1 4} and 322\mathbf{3 2 2} for collimating and focusing light to the detector 308\mathbf{3 0 8}. The optics assembly 300\mathbf{3 0 0} also includes mirrors 324\mathbf{3 2 4} and 330\mathbf{3 3 0}, a 500 nm high pass reflector 326, and a 600 nm high pass reflector 328 . The mirrors and reflectors 324, 326,328, 330 are angularly offset 45^(@)45^{\circ} from the filters 260,264,314,322260,264,314,322. The optics assembly 300 also includes dividers 332, preferably black polycarbonate sheets, for keeping light generated by the LED 256 away from the detectors 258 and 308. 在本实施例中,两个 590 nm 带通滤光片 260 和 264 位于检测器 258\mathbf{2 5 8} 和窗口 254\mathbf{2 5 4} 之间,用于阻挡从腔室 10\mathbf{1 0} 发射到约 575 到 605 nm 发射波长范围之外的光。透镜 262 位于滤光片 260 和 264 之间,用于将光准直并聚焦到检测器 258。两个 600 纳米高通滤波器 314\mathbf{3 1 4} 和 322\mathbf{3 2 2} 位于检测器 308 和窗口 254 之间。透镜 318 位于滤波器 314\mathbf{3 1 4} 和 322\mathbf{3 2 2} 之间,用于将光准直并聚焦到检测器 308\mathbf{3 0 8} 。光学组件 300\mathbf{3 0 0} 还包括反射镜 324\mathbf{3 2 4} 和 330\mathbf{3 3 0} 、500 纳米高通反射镜 326 和 600 纳米高通反射镜 328。反射镜和反射器 324、326、328、330 与滤波器 260,264,314,322260,264,314,322 在角度上偏移 45^(@)45^{\circ} 。光学组件 300 还包括隔板 332,最好是黑色聚碳酸酯板,用于使 LED 256 产生的光远离探测器 258 和 308。
FIG. 24B shows a schematic plan view of the second optics assembly 340\mathbf{3 4 0} according to the third embodiment. The optics assembly 340\mathbf{3 4 0} includes many of the same parts as the second optics assembly 274 (FIG. 23B) of the second embodiment previously described above. These parts are labeled with the same reference numerals in FIG. 24B. In addition to these parts, the assembly 340\mathbf{3 4 0} includes an additional detector 348, preferably a PIN photodiode, which is mounted to the optical circuit board 282 and rigidly fixed in the housing 276 图 24B 显示了根据第三实施例的第二光学组件 340\mathbf{3 4 0} 的示意性平面图。光学组件 340\mathbf{3 4 0} 包括许多与前面描述的第二实施例的第二光学组件 274(图 23B)相同的部件。这些部件在图 24B 中标有相同的参考数字。除了这些部件之外,组件 340\mathbf{3 4 0} 还包括一个附加的检测器 348,最好是一个 PIN 光电二极管,该检测器安装在光电路板 282 上并刚性固定在外壳 276 中。
The optics assembly 340\mathbf{3 4 0} further includes filters and lenses arranged in the housing 276\mathbf{2 7 6} for filtering excitation beams generated by the LED 280\mathbf{2 8 0}, for separating light emitted from the chamber 10\mathbf{1 0} into two different emission wavelength ranges, and for directing the emitted light in each of the emission wavelength ranges to a respective one of the 光学组件 340\mathbf{3 4 0} 还包括布置在外壳 276\mathbf{2 7 6} 中的滤波器和透镜,用于过滤 LED 280\mathbf{2 8 0} 产生的激发光束,用于将从腔室 10\mathbf{1 0} 发射的光分离成两个不同的发射波长范围,以及用于将每个发射波长范围中的发射光引导到以下装置中的相应一个
detectors 284, 348. In general, the filters in the optics assembly 340\mathbf{3 4 0} may be selected to provide excitation beams to the reaction mixture in the chamber 10 in any desired excitation wavelength range and to block light emitted from the chamber 10 outside of any desired emission wavelength ranges. The optics assembly 340\mathbf{3 4 0} may therefore be used with any fluorescent, phosphorescent, chemiluminescent, or electrochemiluminescent labels of interest. For purposes of illustration, one specific embodiment of the assembly 340 will now be described in which the assembly is designed to provide excitation beams in the excitation wavelength ranges of TAMRA and ROX and to detect light emitted from the chamber 10 in the peak emission wavelength ranges of FAM and HEX. 检测器 284、348。一般来说,可以选择光学组件 340\mathbf{3 4 0} 中的滤波器,以便在任何所需的激发波长范围内为腔室 10 中的反应混合物提供激发光束,并阻挡从腔室 10 发射的任何所需的发射波长范围之外的光。因此,光学组件 340\mathbf{3 4 0} 可与任何感兴趣的荧光、磷光、化学发光或电化学发光标签一起使用。为了便于说明,现在将描述组件 340 的一个具体实施例,其中该组件设计用于提供 TAMRA 和 ROX 激发波长范围内的激发光束,并检测腔室 10 在 FAM 和 HEX 峰值发射波长范围内发射的光。
In this embodiment, two 555 nm , bandpass filters 352\mathbf{3 5 2} and 356 are positioned between the detector 284 and the window 278 for blocking light emitted from the chamber 10 outside of an emission wavelength range of about 540 to 570 nm . A lens 360\mathbf{3 6 0} is positioned between the filters 352 and 356 for collimating and focusing light to the detector 284. Two 525 nm bandpass filters 354 and 362\mathbf{3 6 2} are positioned between the detector 348 and the window 278 for blocking light emitted from the chamber 10 outside of an emission wavelength range of about 510 to 540 nm . A lens 358\mathbf{3 5 8} is positioned between the filters 354\mathbf{3 5 4} and 362\mathbf{3 6 2} for collimating and focusing light to the detector 348\mathbf{3 4 8}. The optics assembly 340\mathbf{3 4 0} also includes mirrors 364\mathbf{3 6 4} and 370, a 50//5050 / 50 beamsplitter 366, and a 537 nm low pass reflector 368\mathbf{3 6 8}. The mirrors and reflectors 364,366,368,370\mathbf{3 6 4}, \mathbf{3 6 6}, \mathbf{3 6 8}, \mathbf{3 7 0} are angularly offset 45^(@)45^{\circ} from the filters 352, 354, 356, 362. The optics assembly 340 also includes dividers 372, preferably black polycarbonate sheets, for keeping light generated by the LED 280 away from the detectors 284 and 348. 在本实施例中,两个 555 nm 的带通滤光片 352\mathbf{3 5 2} 和 356 位于检测器 284 和窗口 278 之间,用于阻挡从腔室 10 发射出的波长范围约为 540 至 570 nm 之外的光。透镜 360\mathbf{3 6 0} 位于滤光片 352 和 356 之间,用于将光准直并聚焦到检测器 284。两个 525 nm 带通滤光片 354 和 362\mathbf{3 6 2} 位于检测器 348 和窗口 278 之间,用于阻挡从腔室 10 发射到约 510 至 540 nm 发射波长范围之外的光。透镜 358\mathbf{3 5 8} 位于滤光片 354\mathbf{3 5 4} 和 362\mathbf{3 6 2} 之间,用于将光准直并聚焦到检测器 348\mathbf{3 4 8} 。光学组件 340\mathbf{3 4 0} 还包括反射镜 364\mathbf{3 6 4} 和370、分光镜 50//5050 / 50 366和537 nm低通反射镜 368\mathbf{3 6 8} 。反射镜和反射器 364,366,368,370\mathbf{3 6 4}, \mathbf{3 6 6}, \mathbf{3 6 8}, \mathbf{3 7 0} 与滤波器 352、354、356 和 362 在角度上偏移 45^(@)45^{\circ} 。光学组件 340 还包括隔板 372,最好是黑色聚碳酸酯板,用于使 LED 280 产生的光远离探测器 284 和 348。
In operation, the pair of optics assemblies 300,340\mathbf{3 0 0}, \mathbf{3 4 0} are used to optically interrogate a reaction mixture in the chamber 10 as follows. As shown in FIG. 24A, the blue LED 256 is activated and the LED generates an excitation beam that passes through the 500 nm high pass reflector 326, through the 600 nm high pass reflector 328, through the window 254, and into the chamber 10. The excitation beam from the LED 256 is thus filtered to a wavelength range below 500 nm to excite the FAM and HEX dyes in the reaction mixture. 在操作过程中,这对光学组件 300,340\mathbf{3 0 0}, \mathbf{3 4 0} 用于对室 10 中的反应混合物进行如下光学检测。如图 24A 所示,蓝色 LED 256 被激活,LED 产生的激发光束穿过 500 纳米高通反射器 326,穿过 600 纳米高通反射器 328,穿过窗口 254,进入腔室 10。这样,来自 LED 256 的激发光束被过滤到低于 500 纳米的波长范围,从而激发反应混合物中的 FAM 和 HEX 染料。
As shown in FIG. 24B, emitted light (e.g., fluorescence radiation from the FAM and HEX dyes) is transmitted from the chamber 10 through the window 278 of the optics assembly 340 and strikes the 537 nm low pass reflector 368 . The portion of the emitted light having a wavelength in the range of 510 to 537 nm (corresponding to the peak emission wavelength range of FAM) reflects from the 537 nm low pass reflector 368\mathbf{3 6 8}, reflects from the mirror 370\mathbf{3 7 0}, passes through the 525 nm bandpass filter 362, through the lens 358, through the 525 nm bandpass filter 354\mathbf{3 5 4}, and is detected by the detector 348\mathbf{3 4 8}. The detector 348\mathbf{3 4 8} outputs a corresponding signal that is converted to a digital value and recorded. 如图 24B 所示,发射光(例如,来自 FAM 和 HEX 染料的荧光辐射)从腔室 10 穿过光学组件 340 的窗口 278 并照射到 537 纳米低通反射器 368 上。波长在 510 至 537 nm 范围内(对应于 FAM 的峰值发射波长范围)的发射光部分从 537 nm 低通反射器 368\mathbf{3 6 8} 反射,从反射镜 370\mathbf{3 7 0} 反射,通过 525 nm 带通滤波器 362,通过透镜 358,通过 525 nm 带通滤波器 354\mathbf{3 5 4} ,并被检测器 348\mathbf{3 4 8} 检测到。检测器 348\mathbf{3 4 8} 输出相应的信号,该信号被转换为数字值并记录下来。
Meanwhile, the portion of the emitted light having a wavelength in the range of 540 to 570 nm (corresponding to the peak emission wavelength range of HEX) passes through the 537 nm low pass reflector 368\mathbf{3 6 8}, reflects from the beamsplitter 366, reflects from the mirror 364\mathbf{3 6 4}, passes through the 555 nm , bandpass filter 352, through the lens 360\mathbf{3 6 0}, through the 555 nm , bandpass filter 356 , and is detected by the detector 284. The detector 284 outputs a corresponding signal that is converted to a digital value and recorded. 同时,波长在 540 至 570 nm 范围内(对应于 HEX 的峰值发射波长范围)的部分发射光通过 537 nm 低通反射器 368\mathbf{3 6 8} ,从分光镜 366 反射,从反射镜 364\mathbf{3 6 4} 反射,通过 555 nm 带通滤波器 352,通过透镜 360\mathbf{3 6 0} ,通过 555 nm 带通滤波器 356,并被检测器 284 检测到。检测器 284 输出相应的信号,该信号被转换为数字值并记录下来。
Next, the green LED 280 is activated and the LED generates an excitation beam that passes through the beamsplitter 366, through the 537 nm low pass reflector 368, izable with the sample polynucleotide, and a second primer hybridizable with a sequence complementary to the polynucleotide. Some or all of the required reagents and dyes may be present in the reaction vessel as shipped, or they may 60 be added to the sample and the reaction mixture delivered through the inlet port of the vessel. Alternatively, the reagents and dyes may be delivered to the reaction chamber of the vessel independently of the sample. The polymerase chain reaction may be performed according to methods well 55 known in the art. 接下来,绿色 LED 280 被激活,LED 产生的激发光束穿过分光器 366、537 纳米低通反射器 368、可与样品多核苷酸杂交的引物和可与多核苷酸互补序列杂交的第二引物。所需的部分或全部试剂和染料可以在装运时就存在于反应容器中,也可以添加到样品中,反应混合物通过反应容器的入口输送。另外,试剂和染料也可以独立于样品输送到反应容器的反应室中。聚合酶链反应可根据本领域熟知的方法 55 进行。
Although amplification by polymerase chain reaction has been described herein, it will be appreciated by persons 虽然本文描述了聚合酶链反应的扩增方法,但以下人员应该明白
skilled in the art that the devices and methods of the present invention may be utilized for a variety of other polynucleotide amplification reactions and ligand-binding assays. Such additional reactions may be thermally cycled or they may be carried out at a single temperature, e.g., nucleic acid sequenced-based amplification (NASBA). Moreover, such reactions may employ a wide variety of amplification reagents and enzymes, including DNA ligase, T7 RNA polymerase and/or reverse transeriptase, among others. Polynucleotide amplification reactions that may be practiced in the system of the invention include, but are not limited to: (1) target polynucleotide amplification methods such as self-sustained sequence replication (3SR) and stranddisplacement amplification (SDA): (2) methods based on amplification of a signal attached to the target polynucleotide, such as “branched chain” DNA amplification; (3) methods based on amplification of probe DNA such as ligase chain reaction (LCR) and QB replicase amplification (QBR); (4) transcription-based methods, such as ligation activated transcription (LAT) and nucleic acid sequence-based amplification (NASBA); and (5) various other amplification methods, such as repair chain reaction (RCR) and cycling probe reaction (CPR). Other applications of the system are intended to be within the scope of the invention where those applications require the transfer of thermal energy to a reaction mixture and/or optical interrogation of the reaction mixture or reaction products. 本领域技术人员认为,本发明的装置和方法可用于其他各种多核苷酸扩增反应和配体结合测定。这些附加反应可以是热循环反应,也可以在单一温度下进行,例如基于核酸测序的扩增反应(NASBA)。此外,此类反应还可采用多种扩增试剂和酶,包括 DNA 连接酶、T7 RNA 聚合酶和/或反转录酶等。可在本发明系统中实施的多核苷酸扩增反应包括但不限于以下几种:(1) 目标多核苷酸扩增方法,如自持续序列复制(3SR)和链置换扩增(SDA):(2) 基于目标多核苷酸所附信号的扩增方法,如 "支链 "DNA 扩增;(3) 基于探针 DNA 的扩增方法,如连接酶链反应(LCR)和 QB 复制酶扩增(QBR);(4) 基于转录的方法,如连接激活转录(LAT)和基于核酸序列的扩增(NASBA);以及 (5) 其他各种扩增方法,如修复链反应(RCR)和循环探针反应(CPR)。本系统的其他应用也属于本发明的范围,只要这些应用需要向反应混合物传递热能和/或对反应混合物或反应产物进行光学检测。
SUMMARY, RAMIFICATIONS, AND SCOPE 摘要、影响和范围
Although the above description contains many specificities, it is to be understood that many different modifications or substitutions may be made to the systems and methods described without departing from the broad scope of the invention. For example, each heat-exchanging module or base instrument may include an electronic filter for receiving signals from the optical detectors and for rejecting any signals outside of a predetermined frequency range, e.g., 950 to 1050 Hz . In this embodiment, each light source is activated by pulsing the light source at a frequency in the predetermined range, and only the detector signals in the range are recorded. The advantage of this detection circuit is that it rejects electronic noise and slow optical drift. 尽管上述描述包含许多具体细节,但应该理解的是,可以对所述系统和方法进行许多不同的修改或替换,而不会偏离本发明的广泛范围。例如,每个热交换模块或基础仪器都可以包括一个电子滤波器,用于接收来自光学探测器的信号,并剔除超出预定频率范围(如 950 至 1050 Hz)的任何信号。在此实施例中,每个光源都是通过以预定范围内的频率脉冲激活的,只有在该范围内的探测器信号才会被记录下来。这种检测电路的优点是可以消除电子噪声和缓慢的光学漂移。
The filters used in the optics assemblies may be designed to provide excitation and emission light in any wavelength ranges of interest, not just the specific wavelength ranges described above. The specific filter wavelengths described above are useful for the exemplary dyes of the preferred embodiment and are not intended to limit the scope of the invention. The choice of fluorescent dyes for any given application depends upon the analytes of interest. One skilled in the art will realize that different combinations of light sources, filters, or filter wavelengths may be used to accommodate the different peak excitation and emission spectra of the selected dyes. Moreover, although blue and green light sources are presently preferred, different color light sources, such as blue-green or amber LEDs, may be used in the system. 光学组件中使用的滤光片可用于提供任何波长范围的激发光和发射光,而不仅仅是上述特定波长范围。上文所述的特定滤光片波长对优选实施例中的示例染料有用,并不打算限制本发明的范围。对于任何特定应用,荧光染料的选择都取决于感兴趣的分析物。本领域的技术人员会意识到,可以使用不同的光源、滤光片或滤光片波长组合来适应所选染料的不同激发和发射光谱峰值。此外,虽然目前首选蓝色和绿色光源,但系统中也可使用不同颜色的光源,如蓝绿色或琥珀色 LED。
Further, although fluorescence excitation and emission detection is a preferred embodiment, optical detection methods such as those used in direct absorption and/or transmission with on-axis geometries may also be applied to the multi-channel detection system of the present invention. Alternative geometries, such as on-axis alignments of light sources and detectors, can be used to monitor changes in dye concentrations and physical conditions (temperature, pH , etc.) of a reaction by measuring absorption of the illumination. The system may also be used to measure time decay 此外,尽管荧光激发和发射检测是一个优选的实施方案,但本发明的多通道检测系统也可采用光学检测方法,如直接吸收和/或透射中使用的轴上几何结构。其他几何结构,如光源和检测器的同轴排列,可用于通过测量照明的吸收来监测染料浓度和反应的物理条件(温度、pH 值等)的变化。该系统还可用于测量时间衰减
fluorescence. Additionally, the multi-channel detection system is not limited to detection based upon fluorescent labels. The detection system may be applicable to detection based upon phosphorescent labels, chemiluminescent labels, or electrochemiluminescent labels. 荧光。此外,多通道检测系统并不局限于基于荧光标签的检测。该检测系统还可用于基于磷光标签、化学发光标签或电化学发光标签的检测。
Therefore, the scope of the invention should be determined by the following claims and their legal equivalents. 因此,本发明的范围应根据以下权利要求及其等同的法律条文来确定。
What is claimed is: 所声称的是
An apparatus for optically interrogating a reaction mixture contained in a reaction vessel having a chamber for holding the mixture, the apparatus comprising: 一种对反应容器中的反应混合物进行光学检测的装置,反应容器有一个用于容纳混合物的腔室,该装置包括
a) a first optics assembly comprising: a) 第一光学组件,包括
i) at least two light sources for transmitting excitation beams to the chamber; i) 至少两个光源,用于向腔室发射激发光束;
ii) a first set of filters for filtering the excitation beams such that each of the beams transmitted to the chamber has a substantially distinct excitation wavelength range; and ii) 第一组滤波器,用于过滤激发光束,使传输到腔室的每个光束都具有基本不同的激发波长范围;以及 iii) 第二组滤波器,用于过滤激发光束,使传输到腔室的每个光束都具有基本不同的激发波长范围。
iii) a first housing for holding the light sources and the first set of filters, wherein the light sources and the first set of filters are rigidly fixed in the first housing; and iii) 用于容纳光源和第一组滤光片的第一外壳,其中光源和第一组滤光片刚性固定在第一外壳中;以及
b) a second optics assembly comprising b) 第二光学组件,包括
i) at least two detectors for detecting light emitted from the chamber in at least two respective emission wavelength ranges; i) 至少两个检测器,用于检测腔室在至少两个各自的发射波长范围内发出的光;
ii) a second set of filters for separating the light emitted from the chamber into the respective emission wavelength ranges; and ii) 第二组滤光片,用于将腔体发出的光分离成各自的发射波长范围;以及
iii) a second housing for holding the detectors and the second set of filters, wherein the detectors and the second set of filters are rigidly fixed in the second housing. iii) 第二外壳,用于容纳探测器和第二组过滤器,其中探测器和第二组过滤器被刚性固定在第二外壳中。
The apparatus of claim 1, wherein the first optics assembly includes at least four light sources arranged with the first set of filters for transmitting the excitation beams in at least four excitation wavelength ranges, and wherein the second optics assembly includes at least four detectors arranged with the second set of filters for detecting the emitted light in at least four emission wavelength ranges. 2.根据权利要求 1 所述的设备,其中第一光学组件包括至少四个光源,与第一组滤光片一起布置,用于在至少四个激发波长范围内发射激发光束;第二光学组件包括至少四个检测器,与第二组滤光片一起布置,用于在至少四个发射波长范围内检测发射光。
The apparatus of claim 1, wherein the vessel includes at least first and second optically transmissive walls defining the chamber, the apparatus includes a slot for receiving the chamber of the vessel, and the first and second optics assemblies are positioned such that when the vessel is placed in the slot, the first and second optics assemblies are in optical communication with the first and second optically transmissive walls, respectively. 2.如权利要求 1 所述的设备,其中容器至少包括限定腔室的第一和第二光学透射壁,设备包括用于接收容器腔室的槽,第一和第二光学组件的位置使得当容器放置在槽中时,第一和第二光学组件分别与第一和第二光学透射壁进行光学通信。
The apparatus of claim 3\mathbf{3}, further comprising: 如权利要求 3\mathbf{3} 所述的设备,还包括
a) opposing plates defining the slot between them; and a) 两块板相对,在两块板之间形成缝隙;以及
b) a heating element coupled to at least one of the plates. b) 加热元件,至少与其中一块板相连。
The apparatus of claim 4 , wherein the plates, heating element, and optics assemblies are incorporated into a heat-exchanging module, the apparatus further comprises a base instrument for receiving the heat-exchanging module, and the base instrument includes electronics for controlling the operation of the module. 5.根据权利要求 4 所述的设备,其中板、加热元件和光学组件被集成到一个热交换模块中,该设备还包括一个用于接收热交换模块的底座仪器,底座仪器包括用于控制模块运行的电子装置。
The apparatus of claim 5 , wherein the heat-exchanging module further comprises a housing and a cooling device disposed within the housing for cooling the reaction mixture contained in the chamber. 6.如权利要求 5 所述的设备,其中热交换模块还包括一个壳体和一个设置在壳体内的冷却装置,用于冷却腔室内的反应混合物。
The apparatus of claim 5 , wherein the base instrument is constructed to receive and control a plurality of such heat-exchanging modules. 6.根据权利要求 5 所述的设备,其中底座仪器的构造可接收和控制多个此类热交换模块。
The apparatus of claim 7 , further comprising at least one computer for controlling the base instrument. 8.如权利要求 7 所述的设备,还包括至少一台用于控制基础仪器的计算机。