Carbon Quantum Dots from Amino Acids Revisited: Survey of Renewable Precursors toward High Quantum-Yield Blue and Green Fluorescence 從氨基酸重新探討碳量子點:可再生前驅體的調查以實現高量子產率的藍色和綠色螢光
Anna Kolanowska,* Grzegorz Dzido, Maciej Krzywiecki, Mateusz M. Tomczyk, Dariusz Łukowiec, 安娜·科拉諾夫斯卡,格熱戈日·季多,馬切伊·克日維茨基,馬特烏什·M·湯奇克,達里烏什·盧科維茨Szymon Ruczka, and Sławomir Boncel* 西門·魯茨卡,斯瓦沃米爾·邦策爾*
ACCESS I Lull Metrics & More 国 Aricice Recommendations (3) Supporting Information| ACCESS I | Lull Metrics & More | 国 Aricice Recommendations | (3) Supporting Information |
| :---: | :---: | :---: | :---: |
Abstract 摘要
Carbon quantum dots (CQDs) were synthesized via a green, one-step hydrothermal method. As CQD precursors, nine amino acids of different structural descriptors (negatively/ positively charged in water, polar, hydrophobic, sulfur-containing, and other/complex ones) were surveyed: Asp, Cys, Gly, His, Leu, Lys, Phe, Pro, and Ser. The reactions were performed in an autoclave in the presence of citric acid at 180^(@)C180^{\circ} \mathrm{C} for 24 h and yielded core-shell CQDs. CQDs were comprehensively characterized by transmission electron microscopy, dynamic light scattering, Raman, UV/Vis, infrared, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. At the excitation wavelength of lambda_(ex)=350nm\lambda_{\mathrm{ex}}=350 \mathrm{~nm}, Cys-, Phe-, Leu-, and Lys-based CQDs displayed the highest quantum yield blue fluorescence- 90 +-5,90+-4,87+-5\pm 5,90 \pm 4,87 \pm 5, and 67+-3%67 \pm 3 \%, respectively-superior to the conventional fluorescent dyes. Strikingly, for Lys- and Phe-CQDs, dissimilar trends in the excitation-emission wavelength relationships were identified, that is, constantly strong red shifts versus excitation wavelength-independent emission. Cys- and Lys-CQDs were water-dispersible toward the narrow unimodal distribution of hydrodynamic diameters- 0.6 and 2.5 nm , respectively. Additionally, Lys- and Cys-CQDs, with high absolute zeta potential values, formed stable aqueous colloids in a broad range of pH(2,7\mathrm{pH}(2,7, and 12). The results constitute important premises for water-based applications of CQDs, such as bioimaging or photocatalysis. 碳量子點(CQDs)是通過一種綠色的一步水熱法合成的。作為 CQD 前驅體,調查了九種具有不同結構描述符的氨基酸(在水中帶負/正電、極性、疏水性、含硫及其他/複雜的):天冬氨酸、半胱氨酸、甘氨酸、組氨酸、亮氨酸、賴氨酸、苯丙氨酸、脯氨酸和絲氨酸。反應在自壓釜中進行,並在檸檬酸的存在下於 180^(@)C180^{\circ} \mathrm{C} 下進行 24 小時,產生了核殼 CQDs。CQDs 通過透射電子顯微鏡、動態光散射、拉曼光譜、紫外/可見光、紅外線、X 射線光電子能譜和螢光光譜進行了全面表徵。在激發波長為 lambda_(ex)=350nm\lambda_{\mathrm{ex}}=350 \mathrm{~nm} 時,基於半胱氨酸、苯丙氨酸、亮氨酸和賴氨酸的 CQDs 顯示出最高的量子產率藍色螢光-90 +-5,90+-4,87+-5\pm 5,90 \pm 4,87 \pm 5 和 67+-3%67 \pm 3 \% ,優於傳統螢光染料。值得注意的是,對於賴氨酸和苯丙氨酸 CQDs,發現了激發-發射波長關係的不同趨勢,即持續強烈的紅移與激發波長無關的發射。半胱氨酸和賴氨酸 CQDs 在水中可分散,具有狹窄的單峰水動力直徑分佈-0.6 和 2。5 奈米,分別。此外,具有高絕對電位值的賴氨酸和半胱氨酸量子點,在廣泛的 pH(2,7\mathrm{pH}(2,7 和 12)範圍內形成了穩定的水性膠體。這些結果為量子點的水基應用,如生物成像或光催化,提供了重要的前提。
■ INTRODUCTION ■ 介紹
Carbon quantum dots (CQDs) are fluorescent nanomolecules or nanoparticles smaller than 10nm.^(1,2)10 \mathrm{~nm} .^{1,2} The most studied 0 D CQDs consist of a more graphitized, sp^(2)\mathrm{sp}^{2}-carbon rich core surrounded with a 5-50 wt % amorphous shell of polar functional groups. ^(3-6){ }^{3-6} The structure of CQDs results in their excellent solubility in water, negligible cytotoxicity, and biocompatibility, ^(7){ }^{7} and while bearing carboxylic groups, CQDs are conveniently functionalizable. ^(8){ }^{8} CQDs combine the unique optical properties of quantum dots (QDs) with the electronic properties of carbon (nano)materials. Importantly, CQDs display a quantum limitation effect, translating into tunable absorption and emission. ^(9){ }^{9} It means that after excitation, the energy of the emitted photons depends on the CQD size and its molecular structure. Hence, small CQDs fluoresce in blue while the emission wavelengths increase, with the CQD diameter spanning the entire range of visible light up to infrared (IR). ^(10){ }^{10} Theoretical calculations of the emission wavelength of pristine zigzag-edged CQDs showed that CQDs of diameters 0.5 and 2.31 nm fluoresced at 235.2 to 999.5 nm wavelengths, respectively. ^(11){ }^{11} At the same time, altering the core-shell CQD composition by N -, S-, P-, or B-doping enhances the fluorescence quantum yield (QY). Such doping alters the energy between the lowest unoccupied (LUMO) and the highest occupied molecular orbitals (HOMO). ^(12){ }^{12} By the interplay of CQD chemistry and morphology, it is possible to obtain fluorescence in the full spectral range from ultraviolet (UV) to near-IR (NIR). With the above characteristics, CQDs emerge as promising biosensors, ^(13){ }^{13} imaging agents, ^(14){ }^{14} and drug delivery systems, ^(15){ }^{15} along with multi-modality. Due to their high electron mobility, long hot-electron lifetimes, ultrafast electron extraction, tunable band gaps, excellent electron donor/acceptor properties, and strong stable fluorescence, CQDs are considered as photocatalysts ^(16,17){ }^{16,17} and working elements in optoelectronic devices. ^(18){ }^{18} 碳量子點(CQDs)是小於 10nm.^(1,2)10 \mathrm{~nm} .^{1,2} 的螢光納米分子或納米顆粒。最常研究的 0D CQDs 由一個更石墨化的、 sp^(2)\mathrm{sp}^{2} 富碳核心組成,周圍包裹著 5-50 wt%的無定形極性官能團外殼。 ^(3-6){ }^{3-6} CQDs 的結構使其在水中的優異溶解性、微不足道的細胞毒性和生物相容性得以實現, ^(7){ }^{7} 而且由於含有羧基,CQDs 也方便進行功能化。 ^(8){ }^{8} CQDs 結合了量子點(QDs)的獨特光學特性和碳(納米)材料的電子特性。重要的是,CQDs 顯示出量子限制效應,轉化為可調的吸收和發射。 ^(9){ }^{9} 這意味著在激發後,發射光子的能量取決於 CQD 的大小及其分子結構。因此,小型 CQDs 在藍色範圍內螢光,而隨著 CQD 直徑的增加,發射波長也隨之增加,涵蓋了可見光的整個範圍直至紅外線(IR)。 ^(10){ }^{10} 對原始鋸齒邊 CQDs 的發射波長的理論計算顯示,直徑為 0.5 和 2.31 納米的 CQDs 分別在 235.2 至 999.5 納米的波長範圍內螢光。 ^(11){ }^{11} 同時,通過 N、S、P 或 B 掺雜改變核心-殼 CQD 的組成可以增強螢光量子產率 (QY)。這種掺雜改變了最低未佔有分子軌道 (LUMO) 和最高佔有分子軌道 (HOMO) 之間的能量。 ^(12){ }^{12} 通過 CQD 化學和形態的相互作用,可以在從紫外線 (UV) 到近紅外線 (NIR) 的全光譜範圍內獲得螢光。憑藉上述特性,CQD 成為有前景的生物傳感器, ^(13){ }^{13} 成像劑, ^(14){ }^{14} 和藥物傳遞系統, ^(15){ }^{15} 以及多模態。由於其高電子遷移率、長熱電子壽命、超快電子提取、可調帶隙、優秀的電子供體/受體特性和強穩定的螢光,CQD 被視為光催化劑 ^(16,17){ }^{16,17} 和光電設備中的工作元件。 ^(18){ }^{18}
CQDs can be synthesized via a bottom-up approach from renewable sources such as fruit and vegetable peels, ^(19-22){ }^{19-22} nuts, ^(23-25){ }^{23-25} wastes, ^(26,27){ }^{26,27} or larger carbon (nano) materials in the top-down methods. ^(28,29){ }^{28,29} CQDs containing mainly carbon and oxygen (and hydrogen) suffer from low QY, while N -doping is the most frequently applied strategy to improve fluorescence. This modification introduces structural defects and new energy states and increases the number of electrons in the conduction band. Therefore, well-defined, small-molecule amino acids (AAs) emerge as promising candidates for the synthetic precursors of CQDs. AAs are renewable, abundant (global volume of the AA market reached 10.3 MT in 2021), relatively inexpensive ( 110-1300110-1300 USD kg ^(-1){ }^{-1} ), and non-toxic. ^(30){ }^{30} Zwitterionic and polyfunctional AAs can be variously charged depending on pH and equipped with hydrophilic (hydroxy -OH or mercapto -SH groups) or hydrophobic (aliphatic and/or aromatic) moieties, which, in turn, provides tunability of the optical properties of CQDs. ^(31,32){ }^{31,32} CQDs 可以通過自下而上的方法從可再生資源合成,例如水果和蔬菜的皮、 ^(19-22){ }^{19-22} 堅果、 ^(23-25){ }^{23-25} 廢料、 ^(26,27){ }^{26,27} 或者在自上而下的方法中使用較大的碳(納米)材料。 ^(28,29){ }^{28,29} 主要由碳和氧(以及氫)組成的 CQDs 受到低量子產率(QY)的影響,而氮摻雜是改善螢光的最常用策略。這種改性引入了結構缺陷和新的能量狀態,並增加了導電帶中的電子數量。因此,明確定義的小分子氨基酸(AAs)成為 CQDs 合成前驅體的有前景候選者。AAs 是可再生的,豐富的(2021 年全球氨基酸市場達到 10.3 百萬噸),相對便宜( 110-1300110-1300 美元/公斤 ^(-1){ }^{-1} ),且無毒。 ^(30){ }^{30} 兩性離子和多功能的 AAs 可以根據 pH 值而帶有不同的電荷,並配備親水性(羥基 -OH 或巰基 -SH 基團)或疏水性(脂肪族和/或芳香族)基團,這反過來又提供了 CQDs 光學性質的可調性。 ^(31,32){ }^{31,32}
Here, we propose a facile and sustainable one-step hydrothermal synthesis of CQDs from various AAs (hydrophilic, hydrophobic, aromatic, and aliphatic) and citric acid (CA) as the precursors of the core and shell, respectively. Our method covers a fully controlled four-stage synthesis, that is, dehydration, polymerization, passivation, and carbonization. The as-synthesized CQDs exhibit blue to green fluorescenceexhibiting red-shifts depending on the synthetic precursorwith merits of narrow size distribution and excellent water solubility, while the excitation wavelength falls in the range of 300 to 480 nm . Importantly, using cystein, phenylalanine, and leucine-as the synthetic precursors under the optimized conditions-we show that it is possible to obtain CQDs with high QYs superior to the conventional fluorescent dyes. LysCQDs emerged as also forming stable aqueous dispersions in a broad range of pH . The overall characteristics allow us to address the key prerequisites for numerous applications. 在此,我們提出了一種簡便且可持續的一步水熱合成方法,利用各種氨基酸(親水性、疏水性、芳香性和脂肪族)和檸檬酸作為核心和外殼的前驅物。我們的方法涵蓋了完全控制的四階段合成,即脫水、聚合、鈍化和碳化。合成的碳量子點顯示出從藍色到綠色的螢光,根據合成前驅物的不同而呈現紅移,具有狹窄的尺寸分佈和優異的水溶性,激發波長範圍在 300 至 480 納米之間。重要的是,使用半胱氨酸、苯丙氨酸和亮氨酸作為在優化條件下的合成前驅物,我們展示了獲得高量子產率的碳量子點的可能性,優於傳統螢光染料。LysCQDs 也在廣泛的 pH 範圍內形成穩定的水性分散體。整體特性使我們能夠滿足多種應用的關鍵前提條件。
- MATERIALS AND METHODS - 材料與方法
Materials. Synthesis of CQDs. CA, quinine sulfate (QS), 7diethylamino-4-methylcoumarin (Coumarin 1), and AAs were purchased from Sigma-Aldrich. CQDs were synthesized using a one-step hydrothermal method. CA ( 1.5 mmol ) and AA (aspartic acid, cysteine, glycine, histidine, leucine, lysine, phenylalanine, proline, and serine) ( 1.5 mmol ) were dissolved in distilled water (10mL)(10 \mathrm{~mL}). The amount of water was adjusted to dissolve CA and AA at room temperature. The solution was heated in a Teflon-coated autoclave at 180^(@)C180^{\circ} \mathrm{C} for 24 h in a laboratory dryer. The autoclave was allowed to cool down to room temperature, and the post-reaction mixture was centrifuged at 5500 rpm for 15 min to separate the larger particles. The resulting supernatant was filtered through a 0.22 mu\mu m-syringe filter (Minisart NY hydrophilic polyamide, 25 mm ). Following purification, the solution was frozen in liquid nitrogen and lyophilized until dried. 材料。CQDs 的合成。CA、奎寧硫酸鹽(QS)、7-二乙氨基-4-甲基香豆素(香豆素 1)和氨基酸(AAs)均購自 Sigma-Aldrich。CQDs 是使用一步水熱法合成的。CA(1.5 毫摩爾)和氨基酸(天冬氨酸、半胱氨酸、甘氨酸、組氨酸、亮氨酸、賴氨酸、苯丙氨酸、脯氨酸和絲氨酸)(1.5 毫摩爾)溶解在蒸餾水中 (10mL)(10 \mathrm{~mL}) 。調整水的量以在室溫下溶解 CA 和氨基酸。將溶液在 Teflon 塗層的高壓鍋中加熱至 180^(@)C180^{\circ} \mathrm{C} ,在實驗室乾燥器中保持 24 小時。高壓鍋冷卻至室溫後,將反應後的混合物以 5500 轉/分鐘離心 15 分鐘,以分離較大的顆粒。得到的上清液通過 0.22 mu\mu 微米注射器過濾器(Minisart NY 親水性聚酰胺,25 毫米)過濾。經過純化後,將溶液在液氮中冷凍並凍乾至乾燥。
Instrumentation. The characterization of CQDs was performed by transmission electron microscopy (TEM) (S/ TEM Titan 80-300 operated at 300 kV , Field Electron and Ion Company), combustional elemental analysis (PerkinElmer 2400 Series II CHNS/O, PerkinElmer), thermogravimetric analysis (TGA) (TGA 8000, PerkinElmer), Raman (inVia Confocal Raman microscope, Renishaw), UV-Vis (HP 8452A UV-Vis Diode Array Spectrophotometer, Hewlett Packard), fluorescence spectroscopy (SpectraMax i3x, Molecular Devices and FluoroMax Plus, Horiba Scientific), Fourier-transform IR 儀器。CQDs 的特徵化是通過透射電子顯微鏡(TEM)(S/TEM Titan 80-300,操作電壓 300 kV,Field Electron and Ion Company)、燃燒元素分析(PerkinElmer 2400 系列 II CHNS/O,PerkinElmer)、熱重分析(TGA)(TGA 8000,PerkinElmer)、拉曼光譜(inVia 共焦拉曼顯微鏡,Renishaw)、紫外-可見光(HP 8452A 紫外-可見光二極管陣列分光光度計,Hewlett Packard)、螢光光譜(SpectraMax i3x,Molecular Devices 和 FluoroMax Plus,Horiba Scientific)、傅立葉變換紅外光譜。
(FT-IR) (Nicolet 6700 FT-IR, Thermo Fischer Scientific), and X-ray photoelectron spectroscopy (XPS) (PreVac EA15, PreVac). Additionally, by applying dynamic light scattering (DLS), nanoparticle size and zeta-potential were determined (Zetasizer Nano S90, Malvern Panalytical). (FT-IR) (Nicolet 6700 FT-IR, Thermo Fischer Scientific) 和 X 射線光電子能譜 (XPS) (PreVac EA15, PreVac)。此外,通過應用動態光散射 (DLS),確定了納米顆粒的大小和 ζ 電位 (Zetasizer Nano S90, Malvern Panalytical)。
Transmission Electron Microscopy. The nanomorphology of CQDs was determined based on TEM images collected using a transmission electron microscope S/TEM TITAN 80300. The samples were prepared by dispersion and ultrasonication of CQDs in ultrapure ethanol and then placed on a copper TEM grid with lacey carbon films ( 200 mesh). 透射電子顯微鏡。CQDs 的納米形態是根據使用透射電子顯微鏡 S/TEM TITAN 80300 收集的 TEM 影像來確定的。樣品是通過在超純乙醇中分散和超聲處理 CQDs 來製備的,然後放置在帶有蕾絲碳膜的銅 TEM 網格上(200 目)。
Combustional Elemental Analysis. A sample of CQDs (ca. 2-10mg2-10 \mathrm{mg} ) was accurately weighed into small tin capsules. At elevated temperatures, in the presence of excess oxygen, the organic materials combusted into CO_(2),H_(2)O,SO_(2)\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}, and N_(x)O_(y)\mathrm{N}_{x} \mathrm{O}_{y} compounds (next reduced by fine copper particles in the reduction tube to N_(2)\mathrm{N}_{2} ). For quantitative analysis, CO_(2),H_(2)O\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, SO_(2)\mathrm{SO}_{2}, and N_(2)\mathrm{N}_{2} content represent carbon, hydrogen, sulfur, and nitrogen content, respectively. Oxygen content was calculated indirectly from the difference between the sample weight and the sum of the other element contents. 燃燒元素分析。將一樣 CQDs(約 2-10mg2-10 \mathrm{mg} )準確稱量到小錫膠囊中。在高溫下,在過量氧氣的存在下,這些有機材料燃燒成 CO_(2),H_(2)O,SO_(2)\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2} 和 N_(x)O_(y)\mathrm{N}_{x} \mathrm{O}_{y} 化合物(接著在還原管中被細銅顆粒還原為 N_(2)\mathrm{N}_{2} )。對於定量分析, CO_(2),H_(2)O\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O} 、 SO_(2)\mathrm{SO}_{2} 和 N_(2)\mathrm{N}_{2} 的含量分別代表碳、氫、硫和氮的含量。氧含量則是通過樣品重量與其他元素含量總和之間的差異間接計算得出的。
TGA Analysis. TGA curves were acquired under nitrogen (flow rate of 40mLmin^(-1)40 \mathrm{~mL} \mathrm{~min}^{-1} ). The samples ( 1-5mg1-5 \mathrm{mg} ) were heated in alumina crucibles up to 800^(@)C800^{\circ} \mathrm{C} at a heating rate of 20 ^(@)Cmin-1{ }^{\circ} \mathrm{C} \min ^{-1}. TGA 分析。TGA 曲線是在氮氣下獲得的(流速為 40mLmin^(-1)40 \mathrm{~mL} \mathrm{~min}^{-1} )。樣品( 1-5mg1-5 \mathrm{mg} )在鋁土礦坩埚中加熱至 800^(@)C800^{\circ} \mathrm{C} ,加熱速率為 20 ^(@)Cmin-1{ }^{\circ} \mathrm{C} \min ^{-1} 。
Raman Spectroscopy. Raman spectra were obtained at 514 nm (a green laser) with a laser power of 5%5 \%, a 2400 line per mm grating, 20 xx20 \times magnification, and an exposure time of 15 s. For each material, three accumulations were collected in three locations within the sample. The spectra were averaged and normalized to the G-band. 拉曼光譜學。拉曼光譜是在 514 納米(綠色激光)下獲得的,激光功率為 5%5 \% ,2400 條/mm 的光柵, 20 xx20 \times 倍放大,曝光時間為 15 秒。對於每種材料,在樣品的三個位置收集了三次累積數據。光譜被平均並標準化到 G 帶。
FT-IR Spectroscopy. Spectra were collected in the range of 400-4000cm^(-1)400-4000 \mathrm{~cm}^{-1}, with 16 scans for each sample with a resolution of 4cm^(-1)4 \mathrm{~cm}^{-1}. Lyophilized CQDs were mixed with dry KBr in an agate mortar and then pressed in an evacuable slot to form a pellet under 40 MPa pressure for 2 min using a hydraulic press. FT-IR 光譜學。光譜在 400-4000cm^(-1)400-4000 \mathrm{~cm}^{-1} 範圍內收集,每個樣本進行 16 次掃描,解析度為 4cm^(-1)4 \mathrm{~cm}^{-1} 。冷凍乾燥的量子點與乾燥的 KBr 在瑪瑙研缽中混合,然後在可抽氣的槽中以 40 MPa 的壓力壓制 2 分鐘,形成顆粒。
X-ray Photoelectron Spectroscopy. XPS measurements were performed in a UHV multi-chamber experimental setup with a PreVac EA15 hemispherical electron energy analyzer fitted with a 2D multi-channel plate detector. The system base pressure was equal to 9xx10^(-9)Pa9 \times 10^{-9} \mathrm{~Pa}. An Mg-Kalpha\mathrm{Mg}-\mathrm{K} \alpha X-ray source (PreVac dual-anode XR-40B source, excitation energy of 1253.60 eV ) was used to excite the sample. Pass energy was set to 200 eV for the survey spectra collection (scanning step of 0.9 eV ) and to 100 eV for high-accuracy energy regions (scanning step of 0.06 eV ). All measurements were done with a normal take-off angle and the curved analyzer exit slit ( 0.8 xx0.8 \times 25 mm ) choice for the highest energy resolution. The binding energy scale of the analyzer was calibrated to the Au_(4)f_(7//2)\mathrm{Au}_{4} \mathrm{f}_{7 / 2} (84.0 eV ) region of the gold-covered sample placed at the same sample stage. ^(33){ }^{33} The acquired spectra were fitted using CasaXPS software. The components were fitted with the sum of Gauss (30%) and Lorenz (70%) functions, while the Shirley function was applied for background subtraction. X 射線光電子能譜。XPS 測量是在一個超高真空多腔體實驗設置中進行的,配備有 PreVac EA15 半球形電子能量分析儀和 2D 多通道板檢測器。系統的基準壓力為 9xx10^(-9)Pa9 \times 10^{-9} \mathrm{~Pa} 。使用 Mg-Kalpha\mathrm{Mg}-\mathrm{K} \alpha X 射線源(PreVac 雙陽極 XR-40B 源,激發能量為 1253.60 eV)來激發樣品。通過能量設置為 200 eV 以收集調查光譜(掃描步長為 0.9 eV),高精度能量區域設置為 100 eV(掃描步長為 0.06 eV)。所有測量均以正常的起飛角度進行,並選擇了曲面分析儀的出口狹縫( 0.8 xx0.8 \times 25 mm)以獲得最高的能量分辨率。分析儀的束縛能量刻度已校準至 Au_(4)f_(7//2)\mathrm{Au}_{4} \mathrm{f}_{7 / 2} (84.0 eV)區域,該區域的金覆蓋樣品放置在同一樣品台上。 ^(33){ }^{33} 獲得的光譜使用 CasaXPS 軟件進行擬合。組件使用高斯(30%)和洛倫茲(70%)函數的總和進行擬合,同時應用 Shirley 函數進行背景扣除。
UV-Vis Spectroscopy. UV-Vis spectra were obtained in quartz cuvettes ( 2 mL ) with a 10 mm optical path at a scanning rate of 1.0 nm from 250 to 800 nm . 紫外-可見光光譜。紫外-可見光光譜是在石英比色皿(2 mL)中以 10 mm 的光路,在 250 至 800 nm 範圍內以 1.0 nm 的掃描速率獲得的。
Fluorescence Spectroscopy. The fluorescence spectra were measured under different excitation wavelengths (from 250 to 480 nm ) for 200 muL200 \mu \mathrm{~L} of the sample transferred to a clear bottom 96 -well plate (scan speed 20nmmin-120 \mathrm{~nm} \min ^{-1} ). 螢光光譜學。螢光光譜在不同的激發波長(從 250 到 480 納米)下測量,樣本轉移到透明底部的 96 孔板中(掃描速度 20nmmin-120 \mathrm{~nm} \min ^{-1} )。
Figure 1. Skeletal molecular formulae of AAs with different structural descriptors as the CQD precursors, including the net charge in water (a) and the general synthetic pathway toward CQDs-here illustrated by the hydrothermal transformation of Asp via the four-stage decomposition (b). 圖 1. 具有不同結構描述符的氨基酸的骨架分子式,作為量子點前驅物,包括在水中的淨電荷(a)以及通往量子點的一般合成途徑-這裡通過天冬氨酸的四階段分解的水熱轉化來說明(b)。
The QY (varphi)(\varphi) of CQDs was calculated using QS (varphi=54%)(\varphi=54 \%) in 0.1MH_(2)SO_(4(aq))0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} and Coumarin 1(varphi=59%)1(\varphi=59 \%) in ethanol as the references by comparing the integrated photoluminescence intensity and absorbance. ^(34,35){ }^{34,35} Samples of aqueous CQD suspensions of different concentrations were prepared by keeping the absorbance values less than 0.1 at their excitation wavelengths (similar to different CQD concentrations). Next, the integrated photoluminescence intensities for all samples were measured. The integrated photoluminescence intensity was plotted against absorbance, and the slope values of the obtained linear plots were measured. The QY was calculated using the below equation QY (varphi)(\varphi) 的 CQDs 是通過比較整合的光致發光強度和吸收度,使用 QS (varphi=54%)(\varphi=54 \%) 在 0.1MH_(2)SO_(4(aq))0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} 和乙醇中的香豆素 1(varphi=59%)1(\varphi=59 \%) 作為參考來計算的。 ^(34,35){ }^{34,35} 以保持其激發波長下的吸收值低於 0.1(類似於不同的 CQD 濃度),準備了不同濃度的水相 CQD 懸浮液樣品。接下來,測量了所有樣品的整合光致發光強度。將整合的光致發光強度與吸收度繪製成圖,並測量所獲得的線性圖的斜率值。QY 是使用以下方程計算的。
where: varphi\varphi-QY; S-integrated fluorescence intensity (area under spectrum); II-fluorescence intensity; eta\eta-refractive index; and xx-CQD sample. 在哪裡: varphi\varphi -QY;S-綜合螢光強度(光譜下的面積); II -螢光強度; eta\eta -折射率;以及 xx -CQD 樣本。
DLS Measurement. The hydrodynamic diameter and zeta potential of CQDs were measured by DLS using a monochromatic coherent He-Ne\mathrm{He}-\mathrm{Ne} laser with a fixed wavelength of 633 nm . The measurements were performed in triplicate for 2 mL of sample ( 1mgmL^(-1)1 \mathrm{mg} \mathrm{mL}^{-1} ) in distilled water. The zeta potential for each sample was measured for three pH values: 2.0, 7.0, and 12.0. The pH of the suspension was adjusted by adding HCl_((aq))\mathrm{HCl}_{(\mathrm{aq})} or NaOH_((aq))\mathrm{NaOH}_{(\mathrm{aq})}. DLS 測量。CQDs 的水動力直徑和 ζ 電位是使用波長為 633 nm 的單色相干 He-Ne\mathrm{He}-\mathrm{Ne} 激光進行 DLS 測量的。對於 2 mL 的樣本 ( 1mgmL^(-1)1 \mathrm{mg} \mathrm{mL}^{-1} ) 在蒸餾水中進行了三次重複測量。每個樣本的 ζ 電位在三個 pH 值下測量:2.0、7.0 和 12.0。通過添加 HCl_((aq))\mathrm{HCl}_{(\mathrm{aq})} 或 NaOH_((aq))\mathrm{NaOH}_{(\mathrm{aq})} 調整懸浮液的 pH 值。
RESULTS AND DISCUSSION 結果與討論
The molecular structure of the AA substrates and the conditions represent the most important variables in the properties-by-design synthesis of CQDs. As optimized, white to yellowish mat CQD powders were synthesized via the hydrothermal method, lasting 24 h at 180^(@)C180^{\circ} \mathrm{C}-employing as substrates nine different AAs and CAs (as the main carbon core precursor) (Figure 1). Our synthetic protocol was inspired by numerous earlier studies. For instance, Chahal et al. proved that the application of both CA and AAs is necessary for higher yields in the CQD synthesis, displaying high QYs. ^(36){ }^{36} Indeed, in the absence of CA, the synthesis of CQDs proceeds at low yields. The authors claimed that CA played two roles in the CQD preparation. First, CA emerged as a multifunctional compound bearing three carboxyl groups and one hydroxyl group, indicating several sites to react with AAs and also with other CA molecules. Second, CA served as a Brønsted acidic catalyst in the addition-elimination reactions. AA 基質的分子結構和條件是 CQDs 設計合成中最重要的變數。經過優化,白色至淡黃色的 CQD 粉末是通過水熱法合成的,持續 24 小時,使用九種不同的 AA 和 CA 作為基質(作為主要碳核心前驅物)(圖 1)。我們的合成方案受到許多早期研究的啟發。例如,Chahal 等人證明了同時應用 CA 和 AA 對於提高 CQD 合成的產量是必要的,顯示出高的量子產率(QY)。事實上,在缺乏 CA 的情況下,CQDs 的合成產量較低。作者聲稱 CA 在 CQD 製備中扮演了兩個角色。首先,CA 作為一種多功能化合物,具有三個羧基和一個羥基,顯示出多個與 AA 和其他 CA 分子反應的位點。其次,CA 在加成-消除反應中作為布朗斯特酸催化劑。
Here, the rationale behind the selection of AAs was to cover their most important structural descriptors (Figure 1a). The CQD products of the synthesis from the particular AA (in the form of three-letter international codes) are denoted as AACQDs such as, for example, Phe-CQD, representing Lphenylalanine-derived CQDs. The unique colors of molecular formulae of AAs are consequently applied in the analyses and spectra throughout the entire work for the sake of clarity and unambiguity. 在這裡,選擇氨基酸的理由是涵蓋它們最重要的結構描述符(圖 1a)。來自特定氨基酸的合成產物(以三個字母的國際代碼形式)被稱為 AACQDs,例如 Phe-CQD,代表 L-苯丙氨酸衍生的 CQDs。因此,氨基酸的分子式獨特顏色在整個工作中被應用於分析和光譜,以便於清晰和明確。
AAs bear amino and carboxylic acid groups, enabling the formation of a variety of nitrogen and oxygen functionalities 氨基酸具有氨基和羧酸基團,使得能夠形成多種氮和氧的官能團
TGA was applied to indirectly trace the chemical nature of CQDs via thermal degradation under pyrolytic conditions (Figure 2c). Depending on the precursor, CQDs are decomposed in two or three steps (Figure 2d). The weight loss below 200^(@)C200{ }^{\circ} \mathrm{C} corresponds to the moisture evaporation, dehydration (including constitutional water), and the evolution of pyrogases (CO_(2),CO:}\left(\mathrm{CO}_{2}, \mathrm{CO}\right., etc.) from the CQD surface. The losses in the range of 200-350^(@)C200-350^{\circ} \mathrm{C} match the evolution of gasification products from different functional groups (hydroxyl, carboxyl, carbonyl, amide, and amine groups) from the exteriors (cores) of CQDs. ^(40){ }^{40} The decomposition of the carbonaceous material occurred in the TGA 被應用於通過熱降解在熱解條件下間接追蹤 CQDs 的化學性質(圖 2c)。根據前驅物的不同,CQDs 的分解分為兩步或三步(圖 2d)。低於 200^(@)C200{ }^{\circ} \mathrm{C} 的重量損失對應於水分蒸發、脫水(包括結構水)以及從 CQD 表面釋放的熱氣體 (CO_(2),CO:}\left(\mathrm{CO}_{2}, \mathrm{CO}\right. 等。範圍在 200-350^(@)C200-350^{\circ} \mathrm{C} 的損失與來自 CQDs 外部(核心)不同官能團(羥基、羧基、碳基、酰胺和胺基)釋放的氣化產物相匹配。 ^(40){ }^{40} 碳質材料的分解發生在
Figure 3 shows the decomposed XPS spectra of CQDs, most potentially from the applicability point-of-view. Figure 3a-c display XPS spectra of Asp-CQDs. Figure 3a shows the peak of photoemission for C 1 s with the main peak for the carbon atoms located at a bonding energy (BE) of ca. 285 eV . Due to the presence of sp^(2+epsi)\mathrm{sp}^{2+\varepsilon}-carbon atoms, the peak is broad with a long asymmetric tail toward higher BE values. ^(45){ }^{45} With the effect of functionalization, the concentration of sp^(3)\mathrm{sp}^{3}-carbon atoms increased, which resulted in the symmetric peak at 285.5 eV . The peaks corresponding to C-N//C-C=O//CONH_(2)(286.5\mathrm{C}-\mathrm{N} / \mathrm{C}-\mathrm{C}=\mathrm{O} / \mathrm{CONH}_{2}(286.5eV),C=O(287.5eV)\mathrm{eV}), \mathrm{C}=\mathrm{O}(287.5 \mathrm{eV}), and COOH(288.5eV)\mathrm{COOH}(288.5 \mathrm{eV}) bonds/ moieties could be assigned to the CQD surface functionalities. ^(45,46){ }^{45,46} Figure 3b shows XPS spectra obtained in the O 1s BE region with three key peaks at 531,532.5531,532.5, and 534 eV . The peak related to the COOH and OH is observed at a BE of 534 eV , while the one attributable to CO and CONH bonds appears at 532.5 nm . The strong peak at 531 eV can be assigned to C=O\mathrm{C}=\mathrm{O} bonds. ^(45,47){ }^{45,47} Figure 3 c shows the XPS in the N 1s BE region. The occurrence of the N 1s peak at 400 eV indicated the presence of CN//CONH_(2)\mathrm{CN} / \mathrm{CONH}_{2} groups, ^(45,47){ }^{45,47} while the presence of C-N\mathrm{C}-\mathrm{N} bonds was demonstrated in the region of C 1s peak at 286.5 eV . The weak peak at 401.5 eV can be assigned to N-H\mathrm{N}-\mathrm{H} bonds present in the cationic moieties. ^(45){ }^{45} Similarly, Figure 3d-f show XPS spectra for Leu-CQDs. The C 1 s spectrum (Figure 3d) consists of four contributions: 284.5, 285.5, 287.0, and 288.5 eV . The first and main contribution at 284.5 eV can be assigned to the graphitic carbon atoms. The contributions at 285.5,287285.5,287, and 288.5 eV are due to the presence of C-N//O=C-C//CONH_(2),C=O\mathrm{C}-\mathrm{N} / \mathrm{O}=\mathrm{C}-\mathrm{C} / \mathrm{CONH}_{2}, \mathrm{C}=\mathrm{O}, and COOH moieties, respectively. ^(4,47){ }^{4,47} Figure 3e shows the peak of photoemission for O 1 s with three key peaks at 531 , 532 , and 533.5 eV . The peak related to the COOH and OH is observed at a BE of 534 eV , while the one attributable to O-C\mathrm{O}-\mathrm{C} and CONH_(2)\mathrm{CONH}_{2} bonds appears at 532 eV . The weak peak at 531.0 eV can be assigned to C=O\mathrm{C}=\mathrm{O} bonds. ^(45){ }^{45} Figure 3f shows the XPS in the N 1s BE region, with the peaks at 400.0 and 401.5 eV belonging to N-C//CONH_(2)\mathrm{N}-\mathrm{C} / \mathrm{CONH}_{2} and N-H\mathrm{N}-\mathrm{H} moieties, respec- 圖 3 顯示了 CQDs 的分解 XPS 光譜,從應用的角度來看最具潛力。圖 3a-c 顯示了 Asp-CQDs 的 XPS 光譜。圖 3a 顯示了 C 1s 的光發射峰,碳原子的主要峰位於約 285 eV 的鍵能(BE)處。由於存在 sp^(2+epsi)\mathrm{sp}^{2+\varepsilon} -碳原子,該峰較寬,並且在較高 BE 值方向有一個長的非對稱尾部。 ^(45){ }^{45} 隨著功能化的影響, sp^(3)\mathrm{sp}^{3} -碳原子的濃度增加,這導致在 285.5 eV 處出現對稱峰。與 C-N//C-C=O//CONH_(2)(286.5\mathrm{C}-\mathrm{N} / \mathrm{C}-\mathrm{C}=\mathrm{O} / \mathrm{CONH}_{2}(286.5eV),C=O(287.5eV)\mathrm{eV}), \mathrm{C}=\mathrm{O}(287.5 \mathrm{eV}) 和 COOH(288.5eV)\mathrm{COOH}(288.5 \mathrm{eV}) 鍵/基團相對應的峰可歸因於 CQD 表面功能性。 ^(45,46){ }^{45,46} 圖 3b 顯示了在 O 1s BE 區域獲得的 XPS 光譜,具有三個關鍵峰,分別位於 531,532.5531,532.5 和 534 eV。與 COOH 和 OH 相關的峰在 534 eV 處被觀察到,而歸因於 CO 和 CONH 鍵的峰出現在 532.5 nm。531 eV 處的強峰可歸因於 C=O\mathrm{C}=\mathrm{O} 鍵。 ^(45,47){ }^{45,47} 圖 3c 顯示了 N 1s BE 區域的 XPS。 N 1s 峰出現在 400 eV 表明存在 CN//CONH_(2)\mathrm{CN} / \mathrm{CONH}_{2} 基團, ^(45,47){ }^{45,47} ,而 C-N\mathrm{C}-\mathrm{N} 鍵的存在則在 C 1s 峰的 286.5 eV 區域中顯示出來。401.5 eV 的弱峰可歸因於存在於陽離子部分的 N-H\mathrm{N}-\mathrm{H} 鍵。 ^(45){ }^{45} 同樣,圖 3d-f 顯示了 Leu-CQDs 的 XPS 光譜。C 1s 光譜(圖 3d)由四個貢獻組成:284.5、285.5、287.0 和 288.5 eV。284.5 eV 的第一個主要貢獻可歸因於石墨碳原子。 285.5,287285.5,287 和 288.5 eV 的貢獻分別是由於 C-N//O=C-C//CONH_(2),C=O\mathrm{C}-\mathrm{N} / \mathrm{O}=\mathrm{C}-\mathrm{C} / \mathrm{CONH}_{2}, \mathrm{C}=\mathrm{O} 和 COOH 基團的存在。 ^(4,47){ }^{4,47} 圖 3e 顯示了 O 1s 的光發射峰,具有三個關鍵峰值,分別為 531、532 和 533.5 eV。與 COOH 和 OH 相關的峰在 534 eV 的束縛能(BE)處被觀察到,而可歸因於 O-C\mathrm{O}-\mathrm{C} 和 CONH_(2)\mathrm{CONH}_{2} 鍵的峰出現在 532 eV。531.0 eV 的弱峰可歸因於 C=O\mathrm{C}=\mathrm{O} 鍵。 ^(45){ }^{45} 圖 3f 顯示了 N 1s BE 區域的 XPS,峰值在 400.0 和 401。5 eV 屬於 N-C//CONH_(2)\mathrm{N}-\mathrm{C} / \mathrm{CONH}_{2} 和 N-H\mathrm{N}-\mathrm{H} 基團,分別-
Figure 5. Fluorescence emission spectra of Lys- (left) with its exemplary ( lambda_(ex)=400nm\lambda_{\mathrm{ex}}=400 \mathrm{~nm} ) deconvolution (middle) and Phe-CQDs (right) at different excitation wavelengths (ranging from 300 to 480 nm ). 圖 5. 在不同激發波長(範圍從 300 到 480 納米)下,Lys-(左)及其示例性( lambda_(ex)=400nm\lambda_{\mathrm{ex}}=400 \mathrm{~nm} )去卷積(中)和 Phe-CQDs(右)的螢光發射光譜。
tively. ^(45,47){ }^{45,47} XPS spectra shown in Figure 3g-i clearly revealed that carbon, nitrogen, sulfur, and oxygen are present at the Cys-CQD surface. In the decomposed XPS spectra, the C 1s peaks at 284, 285, 285.5, 286.5, and 288.5 eV shown in Figure 3 g can be assigned to carbon in the form of C-C//C-H,C-S\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{S}, C-N//O=C-C//CONH_(2)C=O\mathrm{C}-\mathrm{N} / \mathrm{O}=\mathrm{C}-\mathrm{C} / \mathrm{CONH}_{2} \mathrm{C}=\mathrm{O}, and COOH^(45,47)\mathrm{COOH}^{45,47} The O 1 s peaks (Figure 3h) at 531.0,532.5531.0,532.5, and 534.0 eV are associated with oxygen in the states of O=C,O-C//CONH_(2)\mathrm{O}=\mathrm{C}, \mathrm{O}-\mathrm{C} / \mathrm{CONH}_{2}, and COOH//OH\mathrm{COOH} / \mathrm{OH}, respectively. ^(45){ }^{45} The N 1s peaks at 400 and 402 eV shown in Figure 3i indicate that nitrogen occurs mostly in the form of N-C//CONH_(2)\mathrm{N}-\mathrm{C} / \mathrm{CONH}_{2} and N-H\mathrm{N}-\mathrm{H}. The S 2 p spectrum in Figure 3i (inset) shows a broad peak at ∼164eV\sim 164 \mathrm{eV}, originating from C-S\mathrm{C}-\mathrm{S} and S-H\mathrm{S}-\mathrm{H} bonds with their spin-orbit splitting (separation of 1.18 eV ) counterparts. ^(48,49){ }^{48,49} XPS 光譜如圖 3g-i 所示,清楚顯示出碳、氮、硫和氧存在於 Cys-CQD 表面。在分解的 XPS 光譜中,圖 3g 中的 C 1s 峰值在 284、285、285.5、286.5 和 288.5 eV 可歸因於以 C-C//C-H,C-S\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{S} 、 C-N//O=C-C//CONH_(2)C=O\mathrm{C}-\mathrm{N} / \mathrm{O}=\mathrm{C}-\mathrm{C} / \mathrm{CONH}_{2} \mathrm{C}=\mathrm{O} 和 COOH^(45,47)\mathrm{COOH}^{45,47} 形式存在的碳。圖 3h 中的 O 1s 峰值在 531.0,532.5531.0,532.5 和 534.0 eV 與氧在 O=C,O-C//CONH_(2)\mathrm{O}=\mathrm{C}, \mathrm{O}-\mathrm{C} / \mathrm{CONH}_{2} 和 COOH//OH\mathrm{COOH} / \mathrm{OH} 狀態下相關。圖 3i 中的 N 1s 峰值在 400 和 402 eV 顯示氮主要以 N-C//CONH_(2)\mathrm{N}-\mathrm{C} / \mathrm{CONH}_{2} 和 N-H\mathrm{N}-\mathrm{H} 形式存在。圖 3i(插圖)中的 S 2p 光譜顯示在 ∼164eV\sim 164 \mathrm{eV} 處有一個寬峰,源自 C-S\mathrm{C}-\mathrm{S} 和 S-H\mathrm{S}-\mathrm{H} 鍵及其自旋-軌道分裂(1.18 eV 的分離)對應物。
FT-IR spectra (Figure 4) were used to further identify the functionalities in CQDs. The broad band in the range 30003500cm^(-1)3500 \mathrm{~cm}^{-1} can be attributed to stretching vibrations of O-H^(50)\mathrm{O}-\mathrm{H}^{50} and N-H^(51)\mathrm{N}-\mathrm{H}^{51} groups. The band at 3042cm^(-1)3042 \mathrm{~cm}^{-1} corresponds to the stretching vibrations of C-H\mathrm{C}-\mathrm{H} in the aromatic species ^(52){ }^{52} while at 2966cm^(-1)2966 \mathrm{~cm}^{-1} in the aliphatic species. ^(53){ }^{53} The strong absorption band at 1636cm^(-1)1636 \mathrm{~cm}^{-1} corresponds to the stretching vibrations of carbonyl (C=O)(\mathrm{C}=\mathrm{O}) groups. ^(54){ }^{54} The absorption peak at 1591cm^(-1)1591 \mathrm{~cm}^{-1} belongs to the C-N\mathrm{C}-\mathrm{N} stretching vibration, ^(55){ }^{55} while the peaks at 1570,1467 , and 1494 and 1340cm^(-1)1340 \mathrm{~cm}^{-1} can be assigned to the stretching vibrations of C=C\mathrm{C}=\mathrm{C} and bending vibrations of C-H.^(54)\mathrm{C}-\mathrm{H} .{ }^{54} The bands appear at 1314, 1255, and 1143cm^(-1)1143 \mathrm{~cm}^{-1}, indicating the presence of the C-O\mathrm{C}-\mathrm{O} stretching mode and the bending vibrations of NH_(2)*^(53,56,57)\mathrm{NH}_{2} \cdot{ }^{53,56,57} Those bands (with only small shifts) are observed for all CQD samples (Figure S3). The presence of the C=C\mathrm{C}=\mathrm{C} peak indicates that CQDs could also be composed of a fraction of the polycrystalline graphitic domains (referring back to SAED, Figure S2), whereas the other signals were assignable to -OH , C=O,C-N,N-H\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{N}-\mathrm{H}, and C-H\mathrm{C}-\mathrm{H} functionalities. Many different vibrations were also found in the fingerprint regions, including C-O,C-N,C-C\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{C} bond stretches, and C-H\mathrm{C}-\mathrm{H} deformation vibrations. For Cys-CQDs, a specific but relatively weak band at 2551cm^(-1)2551 \mathrm{~cm}^{-1} appears, conforming to the stretching vibrations of S-H\mathrm{S}-\mathrm{H} bonds. ^(58){ }^{58} Importantly, the concentration of the functional groups affects the fluorescence properties. Moieties like -CO and -COOH can reduce the energy gap and, therefore, red-shift the emission wavelength and reduce the QY . On the other hand, -OH groups can stabilize the surface sites, hence increasing the QY. Amino groups act as donors, transferring the electrons to the carbon core and stabilizing the emissive energy traps, increasing the QY. ^(59){ }^{59} FT-IR 光譜(圖 4)被用來進一步識別 CQDs 中的功能性。範圍在 3000 3500cm^(-1)3500 \mathrm{~cm}^{-1} 的寬帶可歸因於 O-H^(50)\mathrm{O}-\mathrm{H}^{50} 和 N-H^(51)\mathrm{N}-\mathrm{H}^{51} 基團的伸縮振動。位於 3042cm^(-1)3042 \mathrm{~cm}^{-1} 的帶對應於芳香物種 ^(52){ }^{52} 中 C-H\mathrm{C}-\mathrm{H} 的伸縮振動,而在脂肪物種的 2966cm^(-1)2966 \mathrm{~cm}^{-1} 中。 ^(53){ }^{53} 在 1636cm^(-1)1636 \mathrm{~cm}^{-1} 的強吸收帶對應於羰基 (C=O)(\mathrm{C}=\mathrm{O}) 基團的伸縮振動。 ^(54){ }^{54} 在 1591cm^(-1)1591 \mathrm{~cm}^{-1} 的吸收峰屬於 C-N\mathrm{C}-\mathrm{N} 的伸縮振動, ^(55){ }^{55} ,而在 1570、1467 和 1494 及 1340cm^(-1)1340 \mathrm{~cm}^{-1} 的峰可歸因於 C=C\mathrm{C}=\mathrm{C} 的伸縮振動和 C-H.^(54)\mathrm{C}-\mathrm{H} .{ }^{54} 的彎曲振動。帶出現在 1314、1255 和 1143cm^(-1)1143 \mathrm{~cm}^{-1} ,顯示出 C-O\mathrm{C}-\mathrm{O} 的伸縮模式和 NH_(2)*^(53,56,57)\mathrm{NH}_{2} \cdot{ }^{53,56,57} 的彎曲振動的存在。這些帶(僅有小的位移)在所有 CQD 樣本中均有觀察到(圖 S3)。 C=C\mathrm{C}=\mathrm{C} 峰的存在表明 CQDs 也可能由一部分多晶石墨域組成(參考 SAED,圖 S2),而其他信號可歸因於 -OH、 C=O,C-N,N-H\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{N}-\mathrm{H} 和 C-H\mathrm{C}-\mathrm{H} 功能性。 在指紋區域中也發現了許多不同的振動,包括 C-O,C-N,C-C\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{C} 鍵伸縮和 C-H\mathrm{C}-\mathrm{H} 變形振動。對於 Cys-CQDs,出現了一個特定但相對較弱的帶在 2551cm^(-1)2551 \mathrm{~cm}^{-1} ,符合 S-H\mathrm{S}-\mathrm{H} 鍵的伸縮振動。 ^(58){ }^{58} 重要的是,官能團的濃度影響螢光特性。像-CO 和-COOH 這樣的基團可以降低能隙,因此使發射波長紅移並降低量子產率(QY)。另一方面,-OH 基團可以穩定表面位點,從而增加 QY。氨基作為供體,將電子轉移到碳核心並穩定發光能量陷阱,增加 QY。 ^(59){ }^{59}
The optical properties of CQDs were evaluated by UV-Vis and fluorescence spectroscopy. All CQDs exhibited a strong absorption shoulder at 220-230nm220-230 \mathrm{~nm} attributed to pi-pi^(**)\pi-\pi^{*} electron transition of the aromatic domains in the C=C\mathrm{C}=\mathrm{C} and C=N\mathrm{C}=\mathrm{N} bonds. In addition, the peaks at 300 nm are due to the n-pi^(**)\mathrm{n}-\pi^{*} transition in the pi\pi-conjugated structure. As all types of CQDs displayed a slight absorption at 350 nm due to the n-pi^(**)\mathrm{n}-\pi^{*} electron transition of the C=O\mathrm{C}=\mathrm{O} groups, the fluorescence spectra were recorded for different excitation wavelengths. Upon UV irradiation (lambda=365nm)(\lambda=365 \mathrm{~nm}), bright fluorescence was observed for all CQDs, and the color of the CQD dispersions changed from yellowish to bright blue. Depending on the CQD precursor, the excitation-emission spectra typically showed a strong red-shift due to differences in the degree of surface oxidation and also an increase in the number of surface defects (Figure S4). ^(60){ }^{60} Along with a change in the AA precursor, the photoluminescence peak of CQDs shifted from approximately 420 nm for Leu-CQDs to 450 nm for Phe-CQDs (for the excitation wavelength of 350 nm ); yet, FWHM is rather high. CQDs 的光學性質通過紫外-可見光和螢光光譜進行評估。所有 CQDs 在 220-230nm220-230 \mathrm{~nm} 處顯示出強烈的吸收肩峰,這歸因於 pi-pi^(**)\pi-\pi^{*} 芳香域中的電子躍遷,涉及 C=C\mathrm{C}=\mathrm{C} 和 C=N\mathrm{C}=\mathrm{N} 鍵。此外,300 nm 處的峰值是由於 n-pi^(**)\mathrm{n}-\pi^{*} 在 pi\pi -共軛結構中的躍遷。由於所有類型的 CQDs 在 350 nm 處顯示出輕微的吸收,這是由於 n-pi^(**)\mathrm{n}-\pi^{*} 的電子躍遷,涉及 C=O\mathrm{C}=\mathrm{O} 基團,因此對不同激發波長記錄了螢光光譜。在紫外線照射下 (lambda=365nm)(\lambda=365 \mathrm{~nm}) ,所有 CQDs 均顯示出明亮的螢光,且 CQD 分散液的顏色從淡黃色變為明亮的藍色。根據 CQD 前驅體,激發-發射光譜通常顯示出強烈的紅移,這是由於表面氧化程度的差異以及表面缺陷數量的增加(圖 S4)。 ^(60){ }^{60} 隨著 AA 前驅體的變化,CQDs 的光致發光峰從 Leu-CQDs 的約 420 nm 移至 Phe-CQDs 的 450 nm(激發波長為 350 nm);然而,FWHM 相對較高。
For most samples, for example, Lys-CQDs (Figure 5, left), the emission wavelength could be related to the excitation wavelength; that is, along with the changed excitation wavelength from 300 to 480 nm . The photoluminescence peak of the Lys-CQDs was constantly red-shifted. 對於大多數樣本,例如 Lys-CQDs(圖 5,左側),發射波長可以與激發波長相關;也就是說,隨著激發波長從 300 nm 變化到 480 nm,Lys-CQDs 的光致發光峰不斷紅移。
This excitation-dependent photoluminescence behavior has been extensively reported in fluorescent carbon-based nanomaterials, which might be due to the optical selection of differently sized CQDs and the interactions between the surface functionalities and the C -sp ^(2){ }^{2}-core. ^(61){ }^{61} A completely different scenario was observed for Phe-CQDs (Figure 5, right), which showed changes in the fluorescence intensity when the excitation wavelength was increased, while the position of the fluorescence peak was redshifted, but to a constant position. Moreover, the spectra for excitationdependent Lys-CQDs exhibited a broader emission peak than for the excitation-wavelength-independent Phe-CQDs. Deconvolution of the fluorescence spectra of Lys-CQDs (Figure 5, middle) revealed that the broad bands could actually be the combination of two or more bands with different fluorescence maxima. This phenomenon again confirms that one deals with a mixture of CQDs, and there are more types of excitation energies trapped on the surface of CQDs. 這種依賴於激發的光致發光行為在螢光碳基納米材料中已被廣泛報導,這可能是由於不同大小的碳量子點(CQDs)的光學選擇以及表面功能性與 C -sp ^(2){ }^{2} -核心之間的相互作用。對於 Phe-CQDs(圖 5,右側),觀察到完全不同的情況,當激發波長增加時,螢光強度發生變化,而螢光峰的位置則紅移,但保持在一個恆定的位置。此外,依賴於激發的 Lys-CQDs 的光譜顯示出比不依賴於激發波長的 Phe-CQDs 更寬的發射峰。對 Lys-CQDs 的螢光光譜進行解卷積(圖 5,中間)顯示,這些寬帶實際上可能是兩個或更多具有不同螢光最大值的帶的組合。這一現象再次證實了我們處理的是一種 CQDs 的混合物,並且有更多類型的激發能量被困在 CQDs 的表面。
QY has been measured following the reported protocols using QS as the reference (Table 1). QY can be correlated with QY 已按照報告的協議進行測量,並以 QS 作為參考(表 1)。QY 可以與...相關聯。
Table 1. Fluorescence ( lambda_(ex)=350nm\lambda_{\mathrm{ex}}=350 \mathrm{~nm} ) of CQDs versus References 表 1. CQDs 的螢光 ( lambda_(ex)=350nm\lambda_{\mathrm{ex}}=350 \mathrm{~nm} ) 與參考文獻的比較
^(a)QS{ }^{a} \mathrm{QS} as a standard (QY=54%,lambda_(em)=439(nm)).^(b)\left(\mathrm{QY}=54 \%, \lambda_{\mathrm{em}}=439 \mathrm{~nm}\right) .{ }^{b} Coumarin 1 as a standard (QY=59%;lambda_(em)=445(nm))\left(\mathrm{QY}=59 \% ; \lambda_{\mathrm{em}}=445 \mathrm{~nm}\right). ^(a)QS{ }^{a} \mathrm{QS} 作為標準 (QY=54%,lambda_(em)=439(nm)).^(b)\left(\mathrm{QY}=54 \%, \lambda_{\mathrm{em}}=439 \mathrm{~nm}\right) .{ }^{b} 香豆素 1 作為標準 (QY=59%;lambda_(em)=445(nm))\left(\mathrm{QY}=59 \% ; \lambda_{\mathrm{em}}=445 \mathrm{~nm}\right) 。
the chemical character of AAs. Hydrophobic AA precursors like Cys, Phe, and Leu yielded CQDs of the highest QY. The lowest QY was found for hydrophilic Ser- and Asp-CQDs. Interestingly, a QY similar to that of Ser-CQDs and Asp-CQDs was determined for hydrophobic Pro-CQDs. The lower QYvalue in this case can be connected to the smaller volume of the side chain. This is probably also the reason why the CQD derived from Leu containing a branched chain displayed a higher QY than the Gly-CQD. 氨基酸的化學特性。疏水性氨基酸前體如半胱氨酸、苯丙氨酸和亮氨酸產生的量子產率最高。親水性絲氨酸和天冬氨酸的量子產率最低。有趣的是,疏水性脯氨酸的量子產率與絲氨酸和天冬氨酸的量子產率相似。在這種情況下,較低的量子產率可以與側鏈的較小體積相關聯。這也可能是為什麼來自含有支鏈的亮氨酸的量子點顯示出比甘氨酸量子點更高的量子產率的原因。
For Cys-CQD, one can observe a higher QY due to the presence of sulfur as the doping heteroatom. The existence of sulfur could introduce defect sites, which alters the energy states and creates additional transition ways for electrons in the band structure of CQDs; or due to the similar electronegativity of carbon and sulfur, sulfur atoms could replace some of the carbon atoms in the core, resulting in high QYs. ^(62){ }^{62} Those results agree with the literature data (Table 2). The hydrophobic character and larger volume of the side chains generally enhance the QY. The aromatic moiety hinders the interactions with polar solvents and, as a consequence, simplifies the electronic transition from HOMO to LUMO within. Similarly, hydrophilic side chains increase the interaction strength, with polar solvents reducing the extent of electronic transitions and hence QY. 對於 Cys-CQD,可以觀察到由於硫作為摻雜異質原子的存在,導致較高的量子產率(QY)。硫的存在可能引入缺陷位點,改變能量狀態並為 CQDs 的能帶結構中的電子創造額外的躍遷途徑;或者由於碳和硫的電負性相似,硫原子可能取代核心中的一些碳原子,從而導致高 QY。這些結果與文獻數據(表 2)一致。側鏈的疏水性特徵和較大體積通常增強 QY。芳香基團阻礙了與極性溶劑的相互作用,因此簡化了從 HOMO 到 LUMO 的電子躍遷。同樣,親水性側鏈增強了相互作用強度,極性溶劑減少了電子躍遷的程度,從而降低了 QY。
Table 2 shows that AAs were frequently used as the synthetic precursors of CQDs. Nevertheless, most of the studies focused on the applications of CQDs (antibacterial agents, ^(66){ }^{66} sensors of toxic metal ions ^(67){ }^{67} or rutin, ^(69){ }^{69} and cellular imaging agents ^(70){ }^{70} ) rather than on the structural differences between CQDs and their origins. The role of the functional group was studied by Hsu and Chang, ^(37){ }^{37} while Gly was used as the only AA CQD synthetic precursor. Despite this, they found that AAs were promising candidates for the synthesis of watersoluble and photoluminescent CQDs. These results became an inspiration for other researchers. Similar trends were indicated by Jiang et al. ^(68){ }^{68} Sahiner et al. prepared CQDs using a microwave assisted method. For the synthesis of CQDs, they used two types of AAs: those with positively charged side chains (Arg, Lys, and His) and those containing sulfur (Cys and Met). Cys-CQDs displayed the highest QY; however, no prospective results were achieved for Met-CQDs. This is probably a consequence of the insufficient incorporation of - SH groups into the CQD structure. For Cys-CQDs, the zeta potential was negative because of the presence of thiols of the lowest isoelectric point. For Met-CQDs, this value was positive, which may suggest a lower functionalization with -SH groups. This, in turn, can be connected with the lower S/ C mass ratio and a higher thermal stability for Met. ^(63){ }^{63} Yan et al. designed CQDs exhibiting three excitation peaks and excitation-independent emission. Apart from Trp and Gly, glucose was used as the precursor, and CQDs were tested toward the selective detection of Al^(3+)\mathrm{Al}^{3+}. ^(64){ }^{64} The most comprehensive studies of CQDs synthesized using AAs were performed by Pandit et al., ^(65){ }^{65} where CQDs were synthesized via a hydrothermal method in the presence of CA. Nonetheless, it should be emphasized that the QY for the so-obtained CQDs is far from the results presented in our work. The differences in QY could be the consequence of the proposed mechanism of 表 2 顯示,氨基酸(AAs)經常被用作碳量子點(CQDs)的合成前驅體。然而,大多數研究集中在 CQDs 的應用(抗菌劑、毒性金屬離子的傳感器或芦丁,以及細胞成像劑)上,而不是 CQDs 及其來源之間的結構差異。Hsu 和 Chang 研究了功能團的作用,而甘氨酸(Gly)被用作唯一的氨基酸 CQD 合成前驅體。儘管如此,他們發現氨基酸是合成水溶性和光致發光 CQDs 的有前景的候選者。這些結果成為其他研究者的靈感。江等人也顯示出類似的趨勢。Sahiner 等人使用微波輔助方法製備 CQDs。為了合成 CQDs,他們使用了兩種類型的氨基酸:帶有正電荷側鏈的氨基酸(精氨酸、賴氨酸和組氨酸)和含硫的氨基酸(半胱氨酸和蛋氨酸)。半胱氨酸-CQDs 顯示出最高的量子產率;然而,蛋氨酸-CQDs 未能取得預期的結果。這可能是由於- SH 基團在 CQD 結構中的不充分掺入所致。 對於 Cys-CQDs,因為存在最低等電點的硫醇,ζ電位為負。對於 Met-CQDs,這個值為正,這可能表明其-SH 基團的功能化程度較低。這反過來可以與較低的 S/C 質量比和 Met 的較高熱穩定性相關聯。 ^(63){ }^{63} Yan 等人設計了顯示三個激發峰和激發無關發射的 CQDs。除了 Trp 和 Gly 外,還使用了葡萄糖作為前驅體,並對 CQDs 進行了選擇性檢測的測試 Al^(3+)\mathrm{Al}^{3+} 。 ^(64){ }^{64} Pandit 等人進行了使用氨基酸合成 CQDs 的最全面研究, ^(65){ }^{65} 其中 CQDs 是在 CA 存在下通過水熱法合成的。然而,應強調的是,所獲得 CQDs 的量子產率遠低於我們工作的結果。QY 的差異可能是所提出機制的結果
Table 2. Comparison of CQDs Prepared from Various AAs ^(a){ }^{a} 表 2. 不同氨基酸製備的量子點比較 ^(a){ }^{a}
Figure 6. DLS data of the CQD volume-size distribution in the aqueous suspension under neutral pH ; solid lines represent unimodal distribution curves. 圖 6. 在中性 pH 下水性懸浮液中 CQD 體積-大小分佈的 DLS 數據;實線表示單峰分佈曲線。
the polymerization-carbonization process during hydrothermal synthesis. The growth of CQDs could be described by a competing generation of oligomers and carbonization. Hence, the composition of CQD depends on the reaction temperature and time because those parameters affect the number of polymeric structures, the appearance of microcrystalline regions or lattices, and the consumption of the polymer for core building. Zeng et al. showed that for the same substrates, one could obtain polymer chains/carbon structures or highly carbonized CQDs and spherical particles with an amorphous core or graphitic carbogenic particles. ^(71){ }^{71} In summary, the differences in temperature and time influence the carbonization degree and, as a consequence, the optical CQD properties. 在水熱合成過程中的聚合-碳化過程。CQDs 的生長可以用寡聚物和碳化的競爭生成來描述。因此,CQD 的組成取決於反應的溫度和時間,因為這些參數影響聚合物結構的數量、微晶區域或晶格的出現,以及聚合物在核心建設中的消耗。曾等人顯示,對於相同的基材,可以獲得聚合物鏈/碳結構或高度碳化的 CQDs 和具有非晶核心或石墨碳顆粒的球形粒子。總之,溫度和時間的差異影響碳化程度,從而影響光學 CQD 的特性。
Last but not least, for water-based applicabilities, DLS analysis was performed to determine the average size of CQDs and the stability of CQD aqueous dispersions (Figure 6). The diameters were found in the range of 0.2 to 100 nm . The dispersion containing the smallest CQD s, also with the lowest size distribution, was prepared from Cys-CQDs. Ser-, His-, and Asp-CQD dispersions also contained a small amount of larger particles. The lowest content of particles smaller than 10 nm was observed for Gly (only 21 vol %). 最後但同樣重要的是,針對水性應用,進行了 DLS 分析以確定 CQDs 的平均大小和 CQD 水性分散液的穩定性(圖 6)。直徑範圍為 0.2 至 100 納米。含有最小 CQDs 的分散液,且尺寸分佈最小,是由 Cys-CQDs 製備的。Ser-、His-和 Asp-CQD 分散液也含有少量較大顆粒。Gly 的 10 納米以下顆粒含量最低(僅 21 體積百分比)。
In colloids, the zeta potential is the difference between the potential of the outer mobile and the inner stationary layer attached to the particle dispersed in the continuous phase and can be considered as an indicator of dispersion stability. Samples with a high absolute value of zeta potential are electrically stabilized by repulsion, while those with low zeta potential tend to coagulate or flocculate. In the case of CQDs, multiple surface functional groups can improve the dispersion of CQDs in aqueous or, generally, polar solvents. And so, practically all CQDs had a negative zeta potential at neutral pH (Figure S5). This fact indicates that the CQD surfaces were rich in ionizable, negatively charged moieties like carboxylic (or thiol, etc.) groups, which fully corresponds to the previous analyses. The highest absolute values of the zeta potential in the broadest pH scale were found for Lys- and Cys-CQDs, providing excellent dispersibility and stability in water. At pH=\mathrm{pH}= 7, for His-, Leu-, Asp-, and Phe-CQDs, zeta potential values were almost neutral, while for Pro-CQDs, the zeta potential was positive. At pH=2\mathrm{pH}=2, most of the amine groups were 在膠體中,ζ電位是分散在連續相中的粒子所附著的外部可移動層和內部靜止層之間的電位差,可以被視為分散穩定性的指標。具有高絕對值的ζ電位的樣品通過排斥作用進行電氣穩定,而低ζ電位的樣品則傾向於凝聚或絮凝。在量子點的情況下,多種表面官能團可以改善量子點在水性或一般極性溶劑中的分散性。因此,幾乎所有的量子點在中性 pH 下都具有負的ζ電位(圖 S5)。這一事實表明,量子點的表面富含可離子化的負電荷基團,如羧基(或硫醇等)基團,這與之前的分析完全一致。在最廣泛的 pH 範圍內,Lys-和 Cys-量子點的ζ電位絕對值最高,提供了優異的水中分散性和穩定性。在 pH 7 時,His-、Leu-、Asp-和 Phe-量子點的ζ電位值幾乎為中性,而 Pro-量子點的ζ電位則為正值。在 pH 1 時,大多數胺基團都已經...
protonated, giving the overall higher positive surface charge. At alkaline suspension, the zeta potential remains highly negative to reflect the presence of stable anions for all CQDs. 質子化,導致整體表面電荷較高的正值。在鹼性懸浮液中,zeta 電位保持高度負值,以反映所有 CQDs 中穩定陰離子的存在。
- CONCLUSIONS - 結論
CQDs obtained from sustainable sources such as AAs and via a green hydrothermal method represent an excellent class of application-tunable carbon nanomaterials. Here, the structural characterization and spectral properties of CQDs have been studied. The blue (and green) fluorescent CQDs were obtained without a purification step, while Cys-, Phe-, Leu-, and Lys-CQDs showed high QYs, conquering the conventional dyes. It was found that the structure of AAs had a great impact on the optical properties of CQDs, such as emission wavelength, excitation wavelength-dependent fluorescence, and QY. Moreover, the water stability of Lys-CQDs (and to a lesser extent, Cys-CQDs) was not compromised by extreme pH environments. 從可持續來源如氨基酸(AAs)獲得的量子點(CQDs)以及通過綠色水熱法製備的量子點,代表了一類優秀的可調應用碳納米材料。在此,對 CQDs 的結構特徵和光譜性質進行了研究。藍色(和綠色)螢光 CQDs 在未經純化的情況下獲得,而半胱氨酸(Cys)、苯丙氨酸(Phe)、亮氨酸(Leu)和賴氨酸(Lys)CQDs 顯示出高量子產率(QYs),超越了傳統染料。研究發現,氨基酸的結構對 CQDs 的光學性質有很大影響,例如發射波長、激發波長依賴的螢光和量子產率。此外,賴氨酸 CQDs(以及在較小程度上,半胱氨酸 CQDs)的水穩定性在極端 pH 環境下並未受到損害。
Despite the promising results listed above, it must be emphasized that future research must address, if synthesized in a versatile and economic approach from sustainable sources, the separation of CQDs by size. The separation step and covalent functionalization with a well-defined linker via, for example, carboxylic groups, should lead not only to a narrower size distribution of water-soluble and water-stable CQDs but also, first of all, allow for full-color fluorescence without changing the excitation wavelength as the most pressing requirement toward programmable fluorescent probes and catalysts-only to mention the most ready-to-scaleup applications. 儘管上述結果令人鼓舞,但必須強調的是,未來的研究必須解決從可持續來源以多功能和經濟的方法合成的 CQDs 按大小分離的問題。這一步驟的分離和通過例如羧基的明確連接劑進行的共價功能化,不僅應該導致水溶性和水穩定 CQDs 的尺寸分佈更窄,而且首先應該實現全色螢光,而不改變激發波長,這是朝向可編程螢光探針和催化劑的最迫切需求——僅提及最容易擴展的應用。
Representative TEM and SAED images of CQDs, fluorescence spectra of CQDs as a function of the exciting wavelength from 200 to 480 nm , and zeta potential of CQD dispersions at various pH values for zeta potential distribution(PDF) 代表性的碳量子點(CQDs)透射電子顯微鏡(TEM)和選擇性電子衍射(SAED)影像,CQDs 在 200 至 480 納米激發波長下的螢光光譜,以及不同 pH 值下 CQD 分散液的ζ電位分佈(PDF)
Grzegorz Dzido - Faculty of Chemistry, Department of Chemical Engineering and Process Design, Silesian University of Technology, 44-100 Gliwice, Poland 格熱戈日·季多 - 化學系,化學工程與工藝設計系,西里西亞科技大學,44-100 格利維采,波蘭
Maciej Krzywiecki - Institute of Physics-CSE, Silesian University of Technology, 44-100 Gliwice, Poland; (1) orcid.org/0000-0002-6151-8810 Maciej Krzywiecki - 物理學研究所-CSE,西里西亞科技大學,44-100 格利維采,波蘭; (1) orcid.org/0000-0002-6151-8810
Mateusz M. Tomczyk - Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland; (1) orcid.org/0000-0002-9594-4535 Mateusz M. Tomczyk - 化學系,物理化學與聚合物技術系,西里西亞科技大學,44-100 格利維采,波蘭; (1) orcid.org/0000-0002-9594-4535
The authors declare no competing financial interest. 作者聲明沒有競爭性的財務利益。
ACKNOWLEDGMENTS 致謝
This work was supported by the National Science Centre grant PRELUDIUM-18 (UMO-2019/35/N/ST5/02563). S.B. is also very grateful for the financial support from the National Science Centre (Poland) grant no. 2019/33/B/ST5/01412 in the framework of the OPUS program. 本研究得到了國家科學中心 PRELUDIUM-18(UMO-2019/35/N/ST5/02563)資助。S.B. 也非常感謝國家科學中心(波蘭)在 OPUS 計劃框架下的資助,資助號碼為 2019/33/B/ST5/01412。
REFERENCES 參考文獻
(1) Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. 王, X.; 馮, Y.; 董, P.; 黃, J. 碳量子點的迷你評論:製備、性質及電催化應用。前沿化學 2019, 7, 671。
(2) Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of CarbonBased Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179-2195. (2) Liu, J.; Li, R.; Yang, B. 碳點:一種具有廣泛應用的新型碳基納米材料。ACS Cent. Sci. 2020, 6, 2179-2195.
(3) Sivasankarapillai, V. S.; Vishnu Kirthi, A. V.; Akksadha, M.; Indu, S.; Dhiviya Dharshini, U. D.; Pushpamalar, J.; Karthik, L. Recent advancements in the applications of carbon nanodots: exploring the rising star of nanotechnology. Nanoscale Adv. 2020, 2, 1760-1773. (3) Sivasankarapillai, V. S.; Vishnu Kirthi, A. V.; Akksadha, M.; Indu, S.; Dhiviya Dharshini, U. D.; Pushpamalar, J.; Karthik, L. 碳納米點應用的最新進展:探索納米技術的冉冉升起之星。Nanoscale Adv. 2020, 2, 1760-1773。
(4) Khan, S.; Dunphy, A.; Anike, M. S.; Belperain, S.; Patel, K.; Chiu, N. H. L.; Jia, Z. Recent Advances in Carbon Nanodots: A Promising Nanomaterial for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6786. (4) Khan, S.; Dunphy, A.; Anike, M. S.; Belperain, S.; Patel, K.; Chiu, N. H. L.; Jia, Z. 碳納米點的最新進展:一種有前景的生物醫學應用納米材料。國際分子科學期刊 2021, 22, 6786。
(5) González-González, R. B.; González, L. T.; Madou, M.; LeyvaPorras, C.; Martinez-Chapa, S. O.; Mendoza, A. Mendoza. Purification, and Characterization of Carbon Dots from NonActivated and Activated Pyrolytic Carbon Black. Nanomaterials 2022, 12, 298. (5) González-González, R. B.; González, L. T.; Madou, M.; LeyvaPorras, C.; Martinez-Chapa, S. O.; Mendoza, A. Mendoza. 從非活化和活化熱解炭黑中純化和表徵碳點。納米材料 2022, 12, 298。
(6) Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials 2021, 11, 3419. (6) 崔, L.; 任, X.; 孫, M.; 劉, H.; 夏, L. 碳點:合成、性質及應用。納米材料 2021, 11, 3419.
(7) Azam, N.; Najabat Ali, M. N.; Javaid Khan, T. J. Carbon Quantum Dots for Biomedical Applications: Review and Analysis. Front. Mater. 2021, 8, 700403. (7) Azam, N.; Najabat Ali, M. N.; Javaid Khan, T. J. 碳量子點在生物醫學應用中的應用:回顧與分析。前沿材料 2021, 8, 700403。
(8) Shabashini, A.; Panja, S. K.; Nandi, G. C. Applications of Carbon Dots (CQDs) in Latent Fingerprints Imaging. Chem.-Asian J. 2021, 16, 1057-10721057-1072. (8) Shabashini, A.; Panja, S. K.; Nandi, G. C. 碳點(CQDs)在潛在指紋成像中的應用。化學-亞洲期刊 2021, 16, 1057-10721057-1072 .
(9) Rasal, A. S.; Yadav, S.; Yadav, A.; Kashale, A. A.; Manjunatha, S. T.; Altaee, A.; Chang, J.-Y. Carbon Quantum Dots for Energy Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 6515-6541. (9) Rasal, A. S.; Yadav, S.; Yadav, A.; Kashale, A. A.; Manjunatha, S. T.; Altaee, A.; Chang, J.-Y. 碳量子點在能源應用中的應用:綜述。ACS Appl. Nano Mater. 2021, 4, 6515-6541.
(10) Qian, Z.; Ma, J.; Shan, X.; Shao, L.; Zhou, J.; Chen, J.; Feng, H. Surface Functionalization of Graphene Quantum Dots with Small Organic Molecules from Photoluminescence Modulation to Bioimaging Applications: An Experimental and Theoretical Investigation. RSC Adv. 2013, 3, 14571-14579. (10) Qian, Z.; Ma, J.; Shan, X.; Shao, L.; Zhou, J.; Chen, J.; Feng, H. 用小有機分子對石墨烯量子點進行表面功能化:從光致發光調制到生物成像應用的實驗與理論研究。RSC Adv. 2013, 3, 14571-14579.
(11) Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954-6960. (11) Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. 揭示石墨烯量子點的可調光致發光特性。材料化學期刊 C 2014, 2, 6954-6960。
(12) Saengsrichan, A.; Saikate, C.; Silasana, P.; Khemthong, P.; Wanmolee, W.; Phanthasri, J.; Youngjan, S.; Posoknistakul, P.; Ratchahat, S.; Laosiripojana, N.; Wu, K. C.-W.; Sakdaronnarong, C. The Role of N and S Doping on Photoluminescent Characteristics of Carbon Dots from Palm Bunches for Fluorimetric Sensing of Fe^(3+)\mathrm{Fe}^{3+} Ion. Int. J. Mol. Sci. 2022, 23, 5001. (12) Saengsrichan, A.; Saikate, C.; Silasana, P.; Khemthong, P.; Wanmolee, W.; Phanthasri, J.; Youngjan, S.; Posoknistakul, P.; Ratchahat, S.; Laosiripojana, N.; Wu, K. C.-W.; Sakdaronnarong, C. 碳點在棕櫚果串中掺雜氮和硫對其光致發光特性的影響及其在氟測定中的應用。國際分子科學期刊 2022, 23, 5001。
(13) Ji, C.; Zhou, Y.; Leblanc, R. M.; Peng, Z. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens. 2020, 5, 27242741. (13) Ji, C.; Zhou, Y.; Leblanc, R. M.; Peng, Z. 碳點在生物感測中的最新發展:綜述。ACS Sens. 2020, 5, 27242741.
(14) Wang, Q.; Feng, Z.; He, H.; Hu, X.; Mao, J.; Chen, X.; Liu, L.; Wei, X.; Liu, D.; Bi, S.; Wang, X.; Ge, B.; Yu, D.; Huang, F. Nonblinking carbon dots for imaging and tracking receptors on a live cell membrane. Chem. Commun. 2021, 57, 5554-5557. (14) 王琦;馮志;何浩;胡旭;毛建;陳曉;劉莉;魏曉;劉丹;畢思;王旭;葛彬;余丹;黃飛。非閃爍碳點用於成像和追蹤活細胞膜上的受體。化學通訊 2021, 57, 5554-5557。
(15) Nair, A.; Haponiuk, J. T.; Thomas, S.; Gopi, S. Natural carbonbased quantum dots and their applications in drug delivery: A review. Biomed. Pharmacother. 2020, 132, 110834. (15) Nair, A.; Haponiuk, J. T.; Thomas, S.; Gopi, S. 天然碳基量子點及其在藥物傳遞中的應用:綜述。生物醫學藥物治療 2020, 132, 110834。
(16) Han, M.; Zhu, S.; Lu, S.; Song, Y.; Feng, T.; Tao, S.; Liu, J.; Yang, B. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nanotoday 2018, 19, 201-218. (16) 韓明;朱思;陸思;宋陽;馮天;陶思;劉俊;楊博。碳點光催化的最新進展:分類、機制及應用。納米今日 2018, 19, 201-218。
(17) Shi, R.; Li, Z.; Yu, H.; Shang, L.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Zhang, T. Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/ TiO_(2)\mathrm{TiO}_{2} Composites for Photocatalytic Hydrogen Evolution. ChemSusChem 2017, 10, 4650-46564650-4656. (17) 石瑞;李志;余浩;商亮;周超;Waterhouse, G. I. N.;吳立志;張婷。氮摻雜水平對氮摻雜碳量子點/ TiO_(2)\mathrm{TiO}_{2} 複合材料在光催化氫產生性能的影響。ChemSusChem 2017, 10, 4650-46564650-4656 。
(18) Yuan, Y.; Meng, T.; He, P.; Shi, Y.; Li, Y.; Li, X.; Fan, L.; Yang, S. Carbon quantum dots: an emerging material for optoelectronic applications. J. Mater. Chem. C 2019, 7, 6820-6835. (18) 袁, Y.; 孟, T.; 何, P.; 石, Y.; 李, Y.; 李, X.; 樊, L.; 楊, S. 碳量子點:一種新興的光電應用材料。材料化學期刊 C 2019, 7, 6820-6835.
(19) Bankoti, K.; Rameshbabu, A. P.; Datta, S.; Das, B.; Mitra, A.; Dhara, S. Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing. J. Mater. Chem. B 2017, 5, 65796592. (19) Bankoti, K.; Rameshbabu, A. P.; Datta, S.; Das, B.; Mitra, A.; Dhara, S. 洋蔥衍生碳納米點用於活細胞成像和加速皮膚創傷癒合。J. Mater. Chem. B 2017, 5, 65796592.
(20) Vandarkuzhali, S. A. A.; Natarajan, S.; Jeyabalan, S.; Sivaraman, G.; Singaravadivel, S.; Muthusubramanian, S.; Viswanathan, B. Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega 2018, 3, 12584-1259212584-12592. (20) Vandarkuzhali, S. A. A.; Natarajan, S.; Jeyabalan, S.; Sivaraman, G.; Singaravadivel, S.; Muthusubramanian, S.; Viswanathan, B. 鳳梨皮衍生碳點:作為傳感器、分子鍵盤鎖和記憶裝置的應用。ACS Omega 2018, 3, 12584-1259212584-12592 .
(21) Tyagi, A.; Tripathi, K. M.; Singh, N.; Choudhary, S.; Gupta, R. K. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 2016, 6, 7242372432 . (21) Tyagi, A.; Tripathi, K. M.; Singh, N.; Choudhary, S.; Gupta, R. K. 從檸檬皮廢料綠色合成碳量子點:在感測和光催化中的應用。RSC Adv. 2016, 6, 7242372432 .
(22) Raul, P. K.; Santra, P.; Goswami, D.; Tyagi, V.; Yellappa, C.; Mauka, V.; Devi, R. R.; Chattopadhyay, P.; Jayaram, R. V.; Dwivedi, S. K. Green synthesis of carbon dot silver nanohybrids from fruits and vegetable’s peel waste: Applications as potent mosquito larvicide. Curr. Res. Green Sustainable Chem. 2021, 4, 100158. (22) Raul, P. K.; Santra, P.; Goswami, D.; Tyagi, V.; Yellappa, C.; Mauka, V.; Devi, R. R.; Chattopadhyay, P.; Jayaram, R. V.; Dwivedi, S. K. 從水果和蔬菜的皮廢料中綠色合成碳點銀納米混合物:作為有效的蚊子幼蟲殺滅劑的應用。當前研究:綠色可持續化學 2021, 4, 100158。
(23) Ma, X.; Dong, Y.; Sun, H.; Chen, N. Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Mater. Today Chem. 2017, 5, 1-10. (23) 馬, X.; 董, Y.; 孫, H.; 陳, N. 來自花生殼的高螢光碳點作為銅離子的潛在探針:合成過程的優化與分析。材料今日化學. 2017, 5, 1-10.
(24) Arkan, E.; Barati, A.; Rahmanpanah, M.; Hosseinzadeh, L.; Moradi, S.; Hajialyani, M. Green Synthesis of Carbon Dots Derived from Walnut Oil and an Investigation of Their Cytotoxic and Apoptogenic Activities toward Cancer Cells. Adv. Pharm. Bull. 2018, 8,149-1558,149-155. (24) Arkan, E.; Barati, A.; Rahmanpanah, M.; Hosseinzadeh, L.; Moradi, S.; Hajialyani, M. 來自胡桃油的碳點綠色合成及其對癌細胞的細胞毒性和促凋亡活性的研究。藥學進展. 2018, 8,149-1558,149-155 .
(25) Chauhan, P.; Mundekkad, D.; Mukherjee, A.; Chaudhary, S.; Umar, A.; Baskoutas, S. Coconut Carbon Dots: Progressive LargeScale Synthesis, Detailed Biological Activities and Smart Sensing Aptitudes towards Tyrosine. Nanomaterials 2022, 12, 162. (25) Chauhan, P.; Mundekkad, D.; Mukherjee, A.; Chaudhary, S.; Umar, A.; Baskoutas, S. 椰子碳點:漸進式大規模合成、詳細生物活性及對酪氨酸的智能感應能力。納米材料 2022, 12, 162.
(26) Aji, M. P.; Wati, A. L.; Priyanto, A.; Karunawan, J.; Nuryadin, B. W.; Wibowo, E.; Marwoto, P.; Sulhadi. Polymer carbon dots from plastics waste upcycling. Environ. Nanotechnol., Monit. Manage. 2018, 9,136-1409,136-140. (26) Aji, M. P.; Wati, A. L.; Priyanto, A.; Karunawan, J.; Nuryadin, B. W.; Wibowo, E.; Marwoto, P.; Sulhadi. 從塑料廢料升級製作的聚合物碳點。環境納米技術,監測管理。2018 年, 9,136-1409,136-140 。
(27) Chaudhary, S.; Kumari, M.; Chauhan, P.; Ram Chaudhary, G. R. Upcycling of plastic waste into fluorescent carbon dots: An environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications. Waste Manage. 2021, 120,675-686120,675-686. (27) Chaudhary, S.; Kumari, M.; Chauhan, P.; Ram Chaudhary, G. R. 將塑料廢料升級為螢光碳點:一種環境可行的轉化為生物相容性 C-dot,具有在分析應用中的潛在前景。廢物管理。2021 年, 120,675-686120,675-686 。
(28) Shinde, D. B.; Pillai, V. K. Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chem.-Eur. J. 2012, 18, 12522-12528. (28) Shinde, D. B.; Pillai, V. K. 從多壁碳納米管電化學製備發光石墨烯量子點。化學-歐洲期刊 2012, 18, 12522-12528。
(29) Kaczmarek, A.; Hoffman, J.; Morgiel, J.; Mościcki, T.; Stobiński, L.; Szymański, Z.; Małolepszy, A. Luminescent Carbon Dots Synthesized by the Laser Ablation of Graphite in Polyethyleneimine and Ethylenediamine. Materials 2021, 14, 729. (29) Kaczmarek, A.; Hoffman, J.; Morgiel, J.; Mościcki, T.; Stobiński, L.; Szymański, Z.; Małolepszy, A. 由聚乙烯亞胺和乙二胺中的石墨激光脫落合成的發光碳點。材料 2021, 14, 729。
(30) Xie, L.; Liu, R.; Chen, X.; He, M.; Zhang, Y.; Chen, S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front. Bioeng. Biotechnol. 2021, 9, 744657. 謝, L.; 劉, R.; 陳, X.; 何, M.; 張, Y.; 陳, S. 基於賴氨酸、組氨酸或精氨酸的微胞:設計結構以增強藥物傳遞。前沿生物工程與生物技術. 2021, 9, 744657.
(31) Zhao, Q.; Li, X.; Wang, X.; Zang, Z.; Liu, H.; Li, L.; Yu, X.; Yang, X.; Lu, Z.; Zhang, X. Surface amino group modulation of carbon dots with blue, green and red emission as Cu^(2+)\mathrm{Cu}^{2+} ion reversible detector. Appl. Surf. Sci. 2022, 598, 153892. (31) 趙, Q.; 李, X.; 王, X.; 臧, Z.; 劉, H.; 李, L.; 余, X.; 楊, X.; 陸, Z.; 張, X. 表面氨基團調控藍色、綠色和紅色發光的碳點作為 Cu^(2+)\mathrm{Cu}^{2+} 離子可逆檢測器。應用表面科學 2022, 598, 153892.
(32) Zhao, B.; Tan, Z. Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Light-Emitting Diodes. Adv. Sci. 2021, 8, 2001977. (32) 趙, B.; 譚, Z. 螢光碳點:出色的電致發光材料,用於發光二極體。進階科學 2021, 8, 2001977.
(33) Lindau, I.; Pianetta, P.; Yu, K. Y.; Spicer, W. E. Photoemission of gold in the energy range 30-300eV30-300 \mathrm{eV} using synchrotron radiation. Phys. Rev. B: Solid State 1976, 13, 492-495. (33) Lindau, I.; Pianetta, P.; Yu, K. Y.; Spicer, W. E. 使用同步輻射在能量範圍 30-300eV30-300 \mathrm{eV} 下的金光發射。物理評論 B:固態 1976, 13, 492-495。
(34) Esfandiari, N.; Bagheri, Z.; Ehtesabi, H.; Fatahi, Z.; Tavana, H.; Latifi, H. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon 2019, 5, No. e02940. (34) Esfandiari, N.; Bagheri, Z.; Ehtesabi, H.; Fatahi, Z.; Tavana, H.; Latifi, H. 碳點碳化程度對細胞的細胞毒性和光誘導毒性的影響。Heliyon 2019, 5, No. e02940.
(35) Jones, G., II; Jackson, W. R.; Halpern, A. M. Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chem. Phys. Lett. 1980, 72, 391-395. (35) Jones, G., II; Jackson, W. R.; Halpern, A. M. 媒介對香豆素激光染料的螢光量子產率和壽命的影響。化學物理快報 1980, 72, 391-395。
(36) Chahal, S.; Yousefi, N.; Tufenkji, N. Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustainable Chem. Eng. 2020, 8, 5566-5575. (36) Chahal, S.; Yousefi, N.; Tufenkji, N. 從苯丙氨酸和檸檬酸綠色合成高量子產率的碳點:化學計量和氮摻雜的作用。ACS 可持續化學工程 2020, 8, 5566-5575.
(37) Hsu, P. C.; Chang, H. T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem. Сomтиn. 2012, 48, 3984-3986. (37) Hsu, P. C.; Chang, H. T. 從親水性化合物合成高品質碳納米點:官能團的作用。化學通訊 2012, 48, 3984-3986。
(38) Han, B.; Hu, X.; Zhang, X.; Huang, X.; An, M.; Chen, X.; Zhao, D.; Li, J. The fluorescence mechanism of carbon dots based on the separation and identification of small molecular fluorophores. RSC Adv. 2022, 12, 11640-11648. (38) Han, B.; Hu, X.; Zhang, X.; Huang, X.; An, M.; Chen, X.; Zhao, D.; Li, J. 基於小分子螢光體的分離與識別的碳點螢光機制。RSC Adv. 2022, 12, 11640-11648.
(39) Abinaya, K.; Rajkishore, S. K.; Lakshmanan, A.; Anandham, R.; Dhananchezhiyan, P.; Praghadeesh, M. Synthesis and characterization of carbon dots from coconut shell by optimizing the hydrothermal carbonization process. J. Appl. Nat. Sci. 2021, 13, 1151-1157. (39) Abinaya, K.; Rajkishore, S. K.; Lakshmanan, A.; Anandham, R.; Dhananchezhiyan, P.; Praghadeesh, M. 透過優化水熱碳化過程合成和表徵來自椰殼的碳點。應用自然科學雜誌 2021, 13, 1151-1157。
(40) Ye, J.; Ni, K.; Liu, J.; Chen, G.; Ikram, M.; Zhu, Y. Oxygen-Rich Carbon Quantum Dots as Catalysts for Selective Oxidation of Amines and Alcohols. ChemCatChem 2018, 10, 259-265. (40) 葉, J.; 倪, K.; 劉, J.; 陳, G.; 伊克拉姆, M.; 朱, Y. 富氧碳量子點作為胺和醇的選擇性氧化催化劑. ChemCatChem 2018, 10, 259-265.
(41) Şenel, B.; Demir, N.; Büyükköroğlu, G.; Yıldız, M. Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharm. J. 2019, 27, 846-858. (41) Şenel, B.; Demir, N.; Büyükköroğlu, G.; Yıldız, M. 石墨烯量子點:合成、特徵、細胞活性、基因毒性及其生物醫學應用。沙烏地阿拉伯藥學期刊 2019, 27, 846-858。
(42) Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102. (42) Jorio, A.; Saito, R. 拉曼光譜在碳納米管應用中的應用。應用物理學雜誌 2021, 129, 021102。
(43) Kim, S.; Shin, D. H.; Kim, C. O.; Kang, S. S.; Joo, S. S.; Choi, S.-H.; Hwang, S. W.; Sone, C. Size-dependence of Raman scattering from graphene quantum dots: Interplay between shape and thickness. Appl. Phys. Lett. 2013, 102, 053108. (43) 金世勳;申大亨;金昌奧;姜世洙;朱世成;崔世赫;黃世煥;曽志。石墨烯量子點的拉曼散射大小依賴性:形狀與厚度之間的相互作用。應用物理快報 2013, 102, 053108。
(44) Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman Spectroscopy of Bottom-Up Synthesized Graphene Quantum Dots: Size and Structure Dependence. Nanoscale 2019, 11, 16571-16581. (44) Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S. K. 自下而上合成的石墨烯量子點的拉曼光譜學:尺寸和結構的依賴性。Nanoscale 2019, 11, 16571-16581.
(45) Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; Rumble, J. R., Jr.NIST Standard Reference Database 20, Version 3.4 (web version) (http:/srdata.nist.gov/xps/), 2003. (45) Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; Rumble, J. R., Jr. NIST 標準參考數據庫 20,版本 3.4(網頁版本)(http:/srdata.nist.gov/xps/),2003。
(46) Moeini, B.; Linford, M. R.; Fairley, N.; Barlow, A.; Cumpson, P.; Morgan, D.; Fernandez, V.; Baltrusaitis, J. Definition of a new (Doniach-Sunjic-Shirley) peak shape for fitting asymmetric signals (46) Moeini, B.; Linford, M. R.; Fairley, N.; Barlow, A.; Cumpson, P.; Morgan, D.; Fernandez, V.; Baltrusaitis, J. 定義一種新的(Doniach-Sunjic-Shirley)峰形以擬合非對稱信號
applied to reduced graphene oxide/graphene oxide XPS spectra. Surf. Interface Anal. 2022, 54, 67-77. 應用於還原氧化石墨烯/氧化石墨烯的 XPS 光譜。表面與界面分析 2022, 54, 67-77。
(47) Beamson, G.; Briggs, D.High Resolution XPS of Organic Polymers—The Scienta ESCA300 Database; Wiley Interscience, 1992. (47) Beamson, G.; Briggs, D. 有機聚合物的高解析度 XPS—Scienta ESCA300 數據庫;Wiley Interscience,1992。
(48) Smart, R. S. C.; Skinner, W. M.; Gerson, A. R. XPS of sulfide mineral surfaces: metal-deficient, polysulfides, defects and elemental sulfur. Surf. Interface Anal. 1999, 28, 101-105. (48) Smart, R. S. C.; Skinner, W. M.; Gerson, A. R. 硫化礦物表面的 XPS:金屬缺乏、多硫化物、缺陷和元素硫。表面與界面分析 1999, 28, 101-105。
(49) Pratt, A. R.; Muir, I. J.; Nesbitt, H. W. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta 1994, 58, 827-841. (49) Pratt, A. R.; Muir, I. J.; Nesbitt, H. W. 鐵鎳礦的 X 射線光電子和奧格電子光譜研究及其空氣氧化機制。地球化學與宇宙化學學報 1994, 58, 827-841。
(50) Hao, Y.; Gan, Z.; Zhu, X.; Li, T.; Wu, X.; Chu, P. K. Emission from Trions in Carbon Quantum Dots. J. Phys. Chem. C 2015, 119, 2956-2962. (50) Hao, Y.; Gan, Z.; Zhu, X.; Li, T.; Wu, X.; Chu, P. K. 碳量子點中的三子發射。J. Phys. Chem. C 2015, 119, 2956-2962.
(51) Tomskaya, A. E.; Egorova, M. N.; Kapitonov, A. N.; Nikolaev, D. V.; Popov, V. I.; Fedorov, A. L.; Smagulova, S. A. Synthesis of Luminescent N-Doped Carbon Dots by Hydrothermal Treatment. Phys. Status Solidi B 2018, 255, 1700222. (51) Tomskaya, A. E.; Egorova, M. N.; Kapitonov, A. N.; Nikolaev, D. V.; Popov, V. I.; Fedorov, A. L.; Smagulova, S. A. 透過水熱處理合成發光的氮摻雜碳點。物理狀態固體 B 2018, 255, 1700222。
(52) De, B.; Kumar, M.; Mandal, B. B.; Karak, N. An in situ prepared photo-luminescent transparent biocompatible hyperbranched epoxy/ carbon dot nanocomposite. RSC Adv. 2015, 5, 74692-74704. 德,B.; 庫馬爾,M.; 曼達爾,B. B.; 卡拉克,N. 一種原位製備的光致發光透明生物相容性超支化環氧樹脂/碳點納米複合材料。RSC Adv. 2015, 5, 74692-74704.
(53) Fan, T.; Zeng, W.; Tang, W.; Yuan, C.; Tong, S.; Cai, K.; Liu, Y.; Huang, W.; Min, Y.; Epstein, A. J. Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res. Lett. 2015, 10, 55. (53) Fan, T.; Zeng, W.; Tang, W.; Yuan, C.; Tong, S.; Cai, K.; Liu, Y.; Huang, W.; Min, Y.; Epstein, A. J. 可控尺寸選擇性方法從氧化石墨烯製備石墨烯量子點。納米尺度研究快報 2015, 10, 55。
(54) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem., Int. Ed. 2010, 49, 4430-4434. (54) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. 水溶性螢光碳量子點及光催化劑設計。Angew. Chem., Int. Ed. 2010, 49, 4430-4434.
(55) Rao, L.; Zhang, Q.; Wen, M.; Mao, Z.; Wei, H.; Chang, H.-J.; Niu, X. Solvent regulation synthesis of single-component white emission carbon quantum dots for white light-emitting diodes. Nanotechnol. Rev. 2021, 10, 465-477. (55) Rao, L.; Zhang, Q.; Wen, M.; Mao, Z.; Wei, H.; Chang, H.-J.; Niu, X. 溶劑調控合成單組分白光發射碳量子點用於白光發光二極體。奈米科技評論 2021, 10, 465-477。
(56) Wang, Q.; Zhang, C.; Shen, G.; Liu, H.; Fu, H.; Cui, D. Fluorescent Carbon Dots as an Efficient siRNA Nanocarrier for its Interference Therapy in Gastric Cancer Cells. J. Nanobiotechnol. 2014, 12,58 . (56) 王琦;張超;沈剛;劉浩;傅華;崔東。螢光碳點作為有效的 siRNA 納米載體,用於其在胃癌細胞中的干擾療法。納米生物技術雜誌 2014, 12, 58。
(57) Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z. Carbon Quantum Dots //Ag_(3)PO_(4)/ \mathrm{Ag}_{3} \mathrm{PO}_{4} Complex Photocatalysts with Enhanced Photocatalytic Activity and Stability Under Visible Light. J. Mater. Chem. 2012, 22, 10501-11050. (57) 張, H.; 黃, H.; 明, H.; 李, H.; 張, L.; 劉, Y.; 康, Z. 碳量子點 //Ag_(3)PO_(4)/ \mathrm{Ag}_{3} \mathrm{PO}_{4} 複合光催化劑在可見光下具有增強的光催化活性和穩定性。材料化學期刊 2012, 22, 10501-11050.
(58) Shi, Y.; Zhang, H.; Yue, Z.; Zhang, Z.; Teng, K.-S.; Li, M.-J.; Yi, C.; Yang, M. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection. Nanotechnology 2013, 24, 375501. (58) 石勇;張華;岳志;張志;滕克生;李美君;易超;楊梅。通過二硫鍵將金納米粒子與二氧化矽納米粒子耦合以檢測谷胱甘肽。納米技術 2013, 24, 375501。
(59) Hu, S. Tuning Optical Properties and Photocatalytic Activities of Carbon-based “Quantum Dots” Through their Surface Groups. Chem. Rec. 2016, 16, 219-230. (59) 胡,S. 通過其表面基團調整碳基“量子點”的光學性質和光催化活性。化學紀錄,2016,16,219-230。
(60) Trapani, D.; Macaluso, R.; Crupi, I.; Mosca, M. Color Conversion Light-Emitting Diodes Based on Carbon Dots: A Review. Materials 2022, 15,545015,5450. (60) Trapani, D.; Macaluso, R.; Crupi, I.; Mosca, M. 基於碳點的顏色轉換發光二極體:綜述。材料 2022, 15,545015,5450 。
(61) Goryacheva, I. Y.; Sapelkin, A. V.; Sukhorukov, G. B. Carbon nanodots: Mechanisms of photoluminescence and principles of application. TrAC, Trends Anal. Chem. 2017, 90, 27-37. (61) Goryacheva, I. Y.; Sapelkin, A. V.; Sukhorukov, G. B. 碳納米點:光致發光機制及應用原則。TrAC, Trends Anal. Chem. 2017, 90, 27-37.
(62) Kadian, S.; Manik, G.; Kalkal, A.; Singh, M.; Chauhan, R. P. Effect of sulfur doping on fluorescence and quantum yield of graphene quantum dots: An experimental and theoretical investigation. Nanotechnology 2019, 30, 435704. (62) Kadian, S.; Manik, G.; Kalkal, A.; Singh, M.; Chauhan, R. P. 硫掺雜對石墨烯量子點的螢光和量子產率的影響:實驗與理論研究。納米技術 2019, 30, 435704。
(63) Sahiner, N.; Suner, S. S.; Sahiner, M.; Silan, C. Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications. J. Fluoresc. 2019, 29, 1191-1200. (63) Sahiner, N.; Suner, S. S.; Sahiner, M.; Silan, C. 來自氨基酸的氮和硫摻雜碳點的潛在生物醫學應用。J. Fluoresc. 2019, 29, 1191-1200.
(64) Yan, C.; Guo, L.; Shao, X.; Shu, Q.; Guan, P.; Wang, J.; Hu, X.; Wang, C. Amino acid-functionalized carbon quantum dots for selective detection of Al^(3+)\mathrm{Al}^{3+} ions and fluorescence imaging in living cells. Anal. Bioanal. Chem. 2021, 413, 3965-3974. (64) 燕, C.; 郭, L.; 邵, X.; 舒, Q.; 管, P.; 王, J.; 胡, X.; 王, C. 氨基酸功能化碳量子點用於選擇性檢測 Al^(3+)\mathrm{Al}^{3+} 離子及活細胞中的螢光成像。分析與生物分析化學. 2021, 413, 3965-3974.
(65) Pandit, S.; Behera, P.; Sahoo, J.; De, M. In Situ Synthesis of Amino Acid Functionalized Carbon Dots with Tunable Properties and Their Biological Applications. ACS Appl. Bio Mater. 2019, 2, 3393-34033393-3403. (65) Pandit, S.; Behera, P.; Sahoo, J.; De, M. 原位合成具有可調性質的氨基酸功能化碳點及其生物應用。ACS Appl. Bio Mater. 2019, 2, 3393-34033393-3403 .
(66) Suner, S. S.; Sahiner, M.; Ayyala, R. S.; Bhethanabotla, V. R.; Sahiner, N. Nitrogen-Doped Arginine Carbon Dots and Its Metal Nanoparticle Composites as Antibacterial Agent. J. Carbon Res. 2020, 6,58 . (66) Suner, S. S.; Sahiner, M.; Ayyala, R. S.; Bhethanabotla, V. R.; Sahiner, N. 氮摻雜的精氨酸碳點及其金屬納米粒子複合材料作為抗菌劑。碳研究期刊 2020, 6, 58。
(67) Wang, Z.; Xu, C.; Lu, Y.; Chen, X.; Yuan, H.; Wei, G.; Ye, G.; Chen, J. Fluorescence Sensor Array based on Amino Acid Derived Carbon Dots for Pattern-based Detection of Toxic Metal Ions. Sens. Actuators, B 2017, 241, 1324-1330. (67) 王, Z.; 許, C.; 陸, Y.; 陳, X.; 袁, H.; 魏, G.; 葉, G.; 陳, J. 基於氨基酸衍生碳點的螢光感測器陣列,用於基於模式的有毒金屬離子檢測。感測器與執行器, B 2017, 241, 1324-1330.
(68) Jiang, J.; He, Y.; Li, S.; Cui, H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun. 2012, 48, 9634-9636. (68) 江, J.; 何, Y.; 李, S.; 崔, H. 氨基酸作為碳納米點的來源:微波輔助一步合成、內在光致發光特性及強烈的化學發光增強。化學通訊. 2012, 48, 9634-9636.
(69) Sinduja, B.; Abraham John, S. A. Sensitive determination of rutin by spectrofluorimetry using carbon dots synthesized from a nonessential amino acid. Spectrochim. Acta, Part A 2018, 193, 486-491. (69) Sinduja, B.; Abraham John, S. A. 利用由非必需氨基酸合成的碳點進行光譜熒光法對芦丁的敏感測定。光譜化學學報,A 部分 2018,193,486-491。
(70) Lin, H.; Huang, J.; Ding, L. Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Application in Dopamine Fluorescence Probe and Cellular Imaging. J. Nanomater. 2019, 2019, 5037243. (70) Lin, H.; Huang, J.; Ding, L. 製備高螢光量子產率的碳點及其在多巴胺螢光探針和細胞成像中的應用。J. Nanomater. 2019, 2019, 5037243.
(71) Zeng, Z.; Feng, T.; Tao, S.; Zhu, S.; Yang, B. Precursordependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light: Sci. Appl. 2021, 10, 142. (71) Zeng, Z.; Feng, T.; Tao, S.; Zhu, S.; Yang, B. 發光碳化聚合物點(CPDs)中的前驅物依賴結構多樣性:命名法。光:科學與應用 2021, 10, 142.
Recommended by ACS 推薦由 ACS 提供
ZnO Nanoparticles Modified by Carbon Quantum Dots for the Photocatalytic Removal of Synthetic Pigment Pollutants 碳量子點修飾的 ZnO 納米粒子用於光催化去除合成顏料污染物
Jing-Jing Xu, Ping-An Zhang, et al. 徐晶晶,張平安等。
FEBRUARY 16, 2023 2023 年 2 月 16 日
ACS OMEGA
READ ◻\square 閱讀 ◻\square
Hydrophobic Carbon Dots Derived from Organic Pollutants and Applications in NIR Anticounterfeiting and Bioimaging 來自有機污染物的疏水性碳點及其在近紅外防偽和生物成像中的應用
Xinyi Shi, Hui Wang, et al. 信義市,王輝等。
APRIL 02, 2023 2023 年 4 月 2 日
LANGMUIR 朗缪尔
READ ◻\square 閱讀 ◻\square
Dual-Emissive Carbon Dots: Exploring Their Fluorescence Properties for Sensitive Turn-Off-On Recognition of Ferric and Pyrophosphate Ions and Its Application in Fluorometr… 雙發射碳點:探索其螢光特性以敏感地關閉-開啟識別鐵離子和焦磷酸根離子及其在螢光測定中的應用…
Arumugam Selva Sharma, Anoopkumar Thekkuveettil, et al. APRIL 12, 2023 阿魯穆甘·塞爾瓦·沙爾馬、阿努普·庫馬爾·特庫維特、等。2023 年 4 月 12 日
LANGMUIR 朗缪尔
READ 【’ 閱讀【’
Review of Carbon Dot-Based Drug Conjugates for Cancer Therapy 碳點基藥物偶聯物在癌症療法中的評估