这是用户在 2025-1-9 22:03 为 https://onlinelibrary.wiley.com/doi/10.1111/jiec.12771 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
FORUM  论坛
Full Access  全面访问

Advancements in Input-Output Models and Indicators for Consumption-Based Accounting
输入输出模型和基于消费会计的指标进展

Arunima Malik

Corresponding Author

Arunima Malik

ISA, School of Physics A28, Physics Road, The University of Sydney, NSW, Australia

Discipline of Accounting, Sydney Business School, The University of Sydney, NSW, Australia

Address correspondence to: Arunima Malik, ISA, School of Physics A28, Physics Road, The University of Sydney, NSW 2006, Australia. Email: arunima.malik@sydney.edu.auSearch for more papers by this author
Darian McBain

Darian McBain

ISA, School of Physics A28, Physics Road, The University of Sydney, NSW, Australia

Search for more papers by this author
Thomas O. Wiedmann

Thomas O. Wiedmann

Sustainability Assessment Program (SAP), School of Civil and Environmental Engineering, UNSW Sydney, NSW, Australia

ISA, School of Physics A28, Physics Road, The University of Sydney, NSW, Australia

Search for more papers by this author
Manfred Lenzen

Manfred Lenzen

ISA, School of Physics A28, Physics Road, The University of Sydney, NSW, Australia

Search for more papers by this author
Joy Murray

Joy Murray

ISA, School of Physics A28, Physics Road, The University of Sydney, NSW, Australia

Search for more papers by this author
First published: 22 May 2018
Citations: 74

Conflict of interest statement: The authors declare no conflict of interest.
利益冲突声明:作者声明不存在利益冲突。

Summary  摘要

The use of global, multiregional input-output (MRIO) analysis for consumption-based (footprint) accounting has expanded significantly over the last decade. Most of the global studies on environmental and social impacts associated with consumption or embodied in international trade would have been impossible without the rapid development of extended MRIO databases. We present an overview of the developments in the field of MRIO analysis, in particular as applied to consumption-based environmental and social footprints. We first provide a discussion of research published on various global MRIO databases and the differences between them, before focusing on the virtual laboratory computing infrastructure for potentially making MRIO databases more accessible for collaborative research, and also for supporting greater sectoral and regional detail. We discuss work that includes a broader range of extensions, in particular the inclusion of social indicators in consumption-based accounting. We conclude by discussing the need for the development of detailed nested MRIO tables for investigating linkages between regions of different countries, and the applications of the rapidly growing field of global MRIO analysis for assessing a country's performance toward the United Nations Sustainable Development Goals.
全球多区域投入产出(MRIO)分析在基于消费(足迹)核算中的应用在过去十年中得到了显著扩展。大多数关于与消费或体现在国际贸易中的环境和社会影响的研究,如果没有扩展 MRIO 数据库的快速发展,将无法实现。我们概述了 MRIO 分析领域的发展,特别是将其应用于基于消费的环境和社会足迹。我们首先讨论了关于各种全球 MRIO 数据库的研究及其差异,然后重点讨论虚拟实验室计算基础设施,这可能使 MRIO 数据库更容易用于协作研究,并支持更细分的行业和地区。我们讨论了包括更广泛扩展的工作,特别是将社会指标纳入基于消费的核算。 我们通过讨论发展详细嵌套的 MRIO 表格的必要性来结束本文,这些表格用于研究不同国家地区之间的联系,以及全球 MRIO 分析快速发展的领域在评估一个国家实现联合国可持续发展目标方面的应用。

Introduction  引言

Adam Smith1 saw the producer's interests as subservient to those of the consumer. In 1776 he stated that “Consumption is the sole end and purpose of all production.” Even though the world has changed dramatically and globalization has increased the separation between consumers and producers, there is still an inextricable economic link between consumption and production. The interpretation of Smith's statement, however, has changed in a world that is increasingly becoming concerned about the environmental and social impacts of global economic growth (Costanza et al. 2014). Today, scholars are questioning who is responsible for these impacts and how the negative impacts can be mitigated (Jackson 2011, 2016). Understanding these impacts is important not only for consumers and policy makers, but also producers as they respond to information demands from extended producer responsibility, detailed supply-chain analysis, and markets.
亚当·斯密 1 认为生产者的利益从属于消费者的利益。在 1776 年,他提出“消费是所有生产的唯一目的和宗旨。”尽管世界发生了巨大变化,全球化加剧了消费者和生产者之间的分离,但消费和生产之间仍然存在着不可分割的经济联系。然而,在越来越关注全球经济增长的环境和社会影响的世界上,对斯密这一论断的解释已经发生了变化(康斯坦萨等,2014)。如今,学者们正在质疑谁应对这些影响负责,以及如何减轻负面影响(杰克逊,2011,2016)。理解这些影响不仅对消费者和政策制定者重要,对生产者也同样重要,因为他们需要应对来自扩展生产者责任、详细的供应链分析和市场的信息需求。

Literature exists on this topic. In 2009, Wiedmann reviewed the use of multiregional input-output (MRIO) analysis to analyze consumption. He examined the methodological features of around 20 studies from 2007–2009, focusing on consumption-based accounting (CBA) of greenhouse gas (GHG) emissions and resource requirements and its relevance to policy and decision making. He highlighted the limitations associated with using MRIO analysis and some outstanding issues, including sector aggregation, treatment of the Rest of the World (ROW) region, monetary exchange rates, treatment of trade flow matrices, and uncertainties with trade statistics. In 2011, Hertwich reviewed the environmental impacts of consumption, including the emissions and resource requirements of final demand by households and government in different countries. He pointed out that high sector aggregation in MRIO analyses can introduce errors and discussed the impacts of consumption (with particular reference to input-output [I-O] modeling) on the amount of emissions and resource use.
关于这一主题已有文献。2009 年,魏德曼回顾了多区域投入产出(MRIO)分析在消费分析中的应用。他考察了 2007-2009 年约 20 项研究的方法论特征,重点关注基于消费的温室气体(GHG)排放和资源需求核算(CBA)及其对政策和决策的相关性。他指出了使用 MRIO 分析的相关局限性以及一些突出的问题,包括行业汇总、处理世界其他地区(ROW)区域、货币汇率、贸易流量矩阵的处理以及贸易统计数据的不确定性。2011 年,赫特维茨回顾了消费的环境影响,包括不同国家家庭和政府最终需求的排放和资源需求。他指出,MRIO 分析中的高行业汇总可能引入错误,并讨论了消费(特别是输入-输出[I-O]建模)对排放量和资源使用量的影响。

To the authors’ knowledge, no further studies of the overall development in the use of MRIO analysis for quantifying the impacts associated with consumption of goods and services have since been published. The Journal of Industrial Ecology has featured special issues highlighting the role of footprint2 analysis in undertaking CBA and the need to strive for sustainable production and consumption patterns. Of particular relevance to this review are the articles published in the special issues: “Frontiers in footprinting” (Lifset 2014), “Charting the future of life cycle sustainability assessment” (Gloria et al. 2017), “Exploring the circular economy” (Bocken et al. 2017), and the DESIRE Project focusing on the use of MRIO tables for assessing resource use and resource efficiency (Tukker et al. 2018). In this paper, we consider developments in the field since 2011 expanding on prior work in three aspects. We:
据作者所知,自那时以来,尚未发表关于使用 MRIO 分析量化商品和服务消费相关影响的整体发展研究。工业生态学杂志曾推出特刊,强调足迹 2 分析在开展 CBA 中的作用以及努力实现可持续生产和消费模式的必要性。与本次综述特别相关的是特刊中发表的文章:“足迹研究前沿”(Lifset 2014),“绘制生命周期可持续性评估的未来”(Gloria 等,2017),“探索循环经济”(Bocken 等,2017),以及关注使用 MRIO 表评估资源使用和资源效率的 DESIRE 项目(Tukker 等,2018)。在本文中,我们考虑了自 2011 年以来该领域的发展,并在三个方面扩展了先前的工作。我们:
  • 1)

    provide an overview of the evolution of MRIO databases and the addition of greater sectoral and regional detail discussing benefits derived from these enhancements;
    概述 MRIO 数据库的演变以及增加更多行业和地区细节的情况,讨论由此带来的益处

  • 2)

    discuss work that includes a broader range of indicators than those of earlier studies including studies that have employed these indicators for analyzing impacts related to cities; and
    探讨包括比早期研究更广泛的指标的工作,包括那些已将这些指标用于分析城市相关影响的研究

  • 3)

    focus on social indicators and discuss the limitations and future needs and applications of this new and growing field.
    关注社会指标,并讨论这一新兴增长领域的局限性、未来需求与应用。

Evolution of Multiregional Input-Output Databases and Virtual Laboratories
多区域投入产出数据库与虚拟实验室的演进

In this section, we first introduce global MRIO databases developed since 2011 and subsequently updated, followed by a discussion of virtual laboratories that have the potential to make MRIO databases more accessible for collaborative research.
在这一节中,我们首先介绍了自 2011 年以来开发和随后更新的全球 MRIO 数据库,接着讨论了具有使 MRIO 数据库更易于协作研究潜力的虚拟实验室。

Global Multiregional Input-Output Tables
全球多区域投入产出表

While the basic I-O methodology applied to industrial ecology (IE) has not changed fundamentally, there have been several innovations around increasing global coverage, resolution, and accuracy of I-O data. Since the reviews by Wiedmann (2009) and Hertwich (2011), computing power has grown considerably. This has enabled the development of MRIO databases containing data for hundreds of countries. Several global MRIO data sets were summarized in a 2013 special issue of Economic Systems Research (Tukker and Dietzenbacher 2013) and elsewhere (Murray and Lenzen 2013). Here, we focus on four, which have been updated over the years: the Global Trade Analysis Project MRIO table (GTAP-MRIOT), the World Input-Output Database (WIOD), EXIOBASE, and Eora.
尽管应用于工业生态学(IE)的基本 I-O 方法没有发生根本变化,但在增加全球覆盖范围、分辨率和 I-O 数据准确性的方面已经出现了一些创新。自从 Wiedmann(2009)和 Hertwich(2011)的评审以来,计算能力有了显著增长。这使得开发包含数百个国家数据的 MRIO 数据库成为可能。2013 年,《经济系统研究》特刊(Tukker 和 Dietzenbacher 2013)以及其他地方(Murray 和 Lenzen 2013)总结了几个全球 MRIO 数据集。在此,我们关注四个在近年来得到更新的数据集:全球贸易分析项目 MRIO 表(GTAP-MRIOT)、世界投入产出数据库(WIOD)、EXIOBASE 和 Eora。

The GTAP-MRIOT is based on the GTAP database, developed by the Center for Global Trade Analysis at Purdue University. The current version, called GTAP 9 Data Base, features 140 countries and 57 sectors, with information on carbon dioxide (CO2) emissions and five labor skill categories (GTAP 2017). It is a collaboration of researchers and policy makers who contribute to database development and, along with many others, use the database to answer questions, for example, about value added in global production chains or the footprints of products (Andrew and Peters 2013). The WIOD project (Dietzenbacher et al. 2013), updated in November 2016, provides detail on 56 sectors for 28 European Union (EU) countries and 15 other major countries for years 2000–2014 (compared to years 1995–2011, in the 2013 release). The recent update of the WIOD includes detailed data on manufacturing and business services sectors to enable a more comprehensive analysis of global value chains (Timmer et al. 2015). The 2013 data set offers information on socioeconomic and environmental accounts. The socioeconomic accounts are expected to be made available for the 2016 version in early 2018 (WIOD 2018). Recently, the WIOD was extended at the subnational level to include all NUTS (Nomenclature of territorial units for statistics) regions of Europe (Thissen et al. Forthcoming). The first version of EXIOBASE was developed under the EXIOPOL project (Tukker et al. 2013). Since then, the database has been updated under the CREEA3 and DESIRE4 projects to yield EXIOBASE2 and EXIOBASE3, respectively (Wood et al. 2015; Stadler et al. 2018). The database includes information on 15 land-use types, 48 types of raw materials, 172 types of water use, and three employment skill levels for comprehensively quantifying resource footprints of nations (Tukker et al. 2014, 2016). EXIOBASE3 features data on 44 countries plus five ROW regions, 200 products, and 163 industries. A special issue on the DESIRE project provides information about the construction of EXIOBASE3, and the use of this updated database for assessing the environmental impacts embodied in trade (Tukker et al. 2018). Eora was developed at the University of Sydney (Lenzen et al. 2013a). At the time of construction, it covered 187 countries, with a range of 25 to 400 sectors depending on the country, and 35 environmental indicators over the period 1990–2011. Since then, it has been updated to extend the time series to 2014 and to include up to 220 countries and a range of social accounts (e.g., employment, corruption and poverty). It has been applied to questions on global supply-chain GHG emissions (Malik and Lan 2016) as well as biodiversity (Lenzen et al. 2012) and water use (Lenzen et al. 2013b).
GTAP-MRIOT 基于普渡大学全球贸易分析中心开发的 GTAP 数据库。当前版本称为 GTAP 9 数据库,包含 140 个国家和 57 个部门,涵盖二氧化碳(CO 2 )排放和五个劳动力技能类别(GTAP 2017)的信息。它是研究人员和政策制定者的合作项目,他们为数据库开发做出贡献,并与其他人一起使用数据库来回答问题,例如关于全球生产链中的增值或产品足迹(Andrew 和 Peters 2013)。WIOD 项目(Dietzenbacher 等人,2013 年),于 2016 年 11 月更新,为 2000-2014 年的 28 个欧盟国家和其他 15 个主要国家提供了 56 个部门的详细信息(与 2013 年发布的 1995-2011 年相比)。WIOD 的最新更新包括制造业和商业服务业的详细数据,以实现全球价值链的更全面分析(Timmer 等人,2015 年)。2013 年的数据集提供了社会经济和环境账户的信息。预计社会经济账户将在 2018 年初的 2016 年版中提供(WIOD 2018)。 最近,WIOD 在次国家层面得到扩展,包括欧洲所有 NUTS(统计地区名称)地区(Thissen 等人,即将出版)。EXIOBASE 的第一个版本是在 EXIOPOL 项目下开发的(Tukker 等人,2013)。从那时起,数据库在 CREEA 3 和 DESIRE 4 项目下进行了更新,分别产生了 EXIOBASE2 和 EXIOBASE3(Wood 等人,2015;Stadler 等人,2018)。该数据库包括关于 15 种土地利用类型、48 种原材料类型、172 种用水类型以及三个就业技能水平的信息,以全面量化国家的资源足迹(Tukker 等人,2014,2016)。EXIOBASE3 包含 44 个国家和五个区域外地区的数据,200 种产品和 163 个行业。关于 DESIRE 项目的一个特刊提供了有关 EXIOBASE3 构建的信息以及使用此更新数据库评估贸易中体现的环境影响(Tukker 等人,2018)。Eora 是在悉尼大学开发的(Lenzen 等人,2013a)。 在建设时期,它覆盖了 187 个国家,根据国家不同,涵盖 25 至 400 个部门,以及 1990 年至 2011 年期间的 35 个环境指标。此后,它已更新,将时间序列扩展到 2014 年,并包括多达 220 个国家以及一系列社会账户(例如,就业、腐败和贫困)。它已被应用于关于全球供应链温室气体排放(Malik 和 Lan 2016)以及生物多样性(Lenzen 等人 2012)和水资源利用(Lenzen 等人 2013b)的问题。

These databases vary in the number of regions, sectors, and physical account extensions and follow different approaches for the compilation of global MRIO data. Some of the differences include varying data sources used for the construction of the tables and different approaches used for harmonizing data. For example, the construction of the EXIOBASE relied on a multistage process of harmonization, whereas the Eora database followed a single automated reconciliation step at the time of construction (Geschke et al. 2014). Understanding what questions each MRIO database was developed to address, and why there are differences in results, assists researchers in identifying the best one for the job. To this end, another special issue of Economic Systems Research was devoted to analyzing the differences between the several databases presented above (Inomata and Owen 2014). Unsurprisingly, differences in the compilation of MRIO tables mean that no two databases yield exactly the same analytical outcomes for CBA (Owen 2017). For example Steen-Olsen and colleagues (2014) analyzed the effect of sectoral aggregation on CO2 multipliers, concluding that those databases with more detailed sectoral resolution showed more accurate results.
这些数据库在区域、部门和物理账户扩展的数量上有所不同,并采用不同的方法编制全球 MRIO 数据。其中一些差异包括构建表格所使用的数据来源不同以及用于数据协调的方法不同。例如,EXIOBASE 的构建依赖于多阶段的协调过程,而 Eora 数据库在构建时遵循了一个单一的自动化协调步骤(Geschke 等人,2014 年)。了解每个 MRIO 数据库旨在解决哪些问题以及为什么结果存在差异,有助于研究人员确定最适合这项工作的数据库。为此,经济系统研究的一个特别问题被用于分析上述几个数据库之间的差异(Inomata 和 Owen,2014 年)。不出所料,MRIO 表格编制的差异意味着没有任何两个数据库为 CBA(Owen,2017 年)产生完全相同的分析结果。 例如,Steen-Olsen 及其同事(2014 年)分析了部门汇总对 CO 2 乘数的影响,得出结论:那些具有更详细部门分辨率的数据库显示的结果更准确。

Subnational Multiregional Input-Output Tables
次级多区域投入产出表

Recently, advances have been made in adding subnational, regional detail to IE studies, such as for Australia (Daniels et al. 2011; Lenzen et al. 2014), Spain (Escobedo-Cardeñoso and Oosterhaven 2011; Cazcarro et al. 2013), China (Feng et al. 2013; Wang et al. 2015; Zhao et al. 2015; Wiedenhofer et al. 2017), and Germany (Többen and Kronenberg 2011, 2015). One of the main challenges for constructing subnational MRIO tables is the absence of detailed data at a subnational level. In such a case, nonsurvey methods are often used for constructing subnational input-output tables (IOTs), as demonstrated by Többen and Kronenberg (2015), who used the CHARM nonsurvey method for their study.
近期,在将次国家、地区细节纳入 IE 研究中取得了进展,例如澳大利亚(Daniels 等人,2011;Lenzen 等人,2014)、西班牙(Escobedo-Cardeñoso 和 Oosterhaven,2011;Cazcarro 等人,2013)、中国(Feng 等人,2013;Wang 等人,2015;Zhao 等人,2015;Wiedenhofer 等人,2017)和德国(Többen 和 Kronenberg,2011,2015)。构建次国家 MRIO 表的主要挑战之一是缺乏次国家层面的详细数据。在这种情况下,通常使用非调查方法来构建次国家投入产出表(IOTs),如 Többen 和 Kronenberg(2015)所示,他们在其研究中使用了 CHARM 非调查方法。

Subnational MRIO tables are useful for understanding within-country impacts of inter-regional interactions. Understanding these interactions is crucial for a large country such as China. For example, Feng and colleagues (2013) and Su and Ang (2014) used a subnational MRIO table of China for quantifying emissions embodied in China's inter-regional trade. Likewise, Feng and colleagues (2012) used China's subnational MRIO table for appraising the regional flows of water. Dietzenbacher and colleagues (2012) demonstrated that a conventional IOT cannot distinguish between domestic production and production of both processed and normal exports. The authors therefore used a tripartite IOT to make a distinction between the three classes of production, concluding that for the case of China assessments using an ordinary IOT result in an overestimation of emissions embodied in China's exports (see also Su et al. 2013).
次级区域 MRIO 表有助于理解国内区域间互动的影响。对于像中国这样的大国,理解这些互动至关重要。例如,冯及其同事(2013 年)和苏、安(2014 年)使用中国的次级区域 MRIO 表来量化中国区域间贸易中体现的排放。同样,冯及其同事(2012 年)使用中国的次级区域 MRIO 表来评估区域水流。迪岑巴赫及其同事(2012 年)证明,传统的 IOT 无法区分国内生产和加工及普通出口的生产。因此,作者使用三分法 IOT 来区分三类生产,得出结论:对于中国的情况,使用普通 IOT 进行评估会导致对中国出口中体现的排放高估(参见苏等,2013 年)。

Subnational MRIO tables are also being used for enumerating the environmental, social, and economic impacts of a new product or industry in a regional economy. This is evident in a study undertaken by Malik and colleagues (2015), who analyzed the triple-bottom-line impacts of biofuel production in Western Australia. Likewise, Rodríguez-Alloza and colleagues (2015) enumerated the energy and GHG requirements of a new technology for road pavement construction in New South Wales (NSW), Australia. The advent of virtual laboratories (section: Advent of Virtual Laboratories) has supported construction of subnational IOTs for countries such as China (Wang 2017) and Indonesia (Faturay et al. 2017), paving way for regional assessments for enumerating the impacts of cities, in particular GHG emissions (see section: Example Application of Global Consumption-Based Accounting: Cities).
次国家 MRIO 表也被用于统计区域经济中新产品或行业的环境、社会和经济影响。这在 Malik 及其同事(2015 年)进行的研究中表现得尤为明显,他们分析了澳大利亚西澳大利亚州生物燃料生产的综合影响。同样,Rodríguez-Alloza 及其同事(2015 年)统计了澳大利亚新南威尔士州(NSW)道路路面建设新技术的能源和温室气体排放需求。虚拟实验室的出现(章节:虚拟实验室的兴起)支持了中国(王,2017 年)和印度尼西亚(Faturay 等,2017 年)等国家次国家 IOTs 的建设,为评估城市影响,特别是温室气体排放的影响铺平了道路(参见章节:全球消费基础会计的示例应用:城市)。

Hybrid Models  混合模型

Recently, the accuracy of I-O models has been improved by replacing monetary data (which may be affected by price inhomogeneity) with physical data in hybrid-unit models. Examples are: the construction of hybrid tables using the EXIOBASE database (Merciai and Schmidt 2017); calculation of raw material consumption (the material footprint) for the EU (Schoer et al. 2012); inland marine transportation (Ewing et al. 2011); disaggregation of the electricity sector in a Chinese I-O model to evaluate the primary energy embodied in Chinese final consumption (Lindner and Guan 2014); and the construction of a multiregional solid waste account (Tisserant et al. 2017).
最近,通过在混合单位模型中将货币数据(可能受价格非均匀性影响)替换为物理数据,提高了 I-O 模型的准确性。例如:使用 EXIOBASE 数据库(Merciai 和 Schmidt 2017)构建混合表;计算欧盟的原材料消耗(物质足迹)(Schoer 等,2012);内陆海运运输(Ewing 等,2011);对中国 I-O 模型中的电力部门进行分解以评估中国最终消费中体现的初级能源(Lindner 和 Guan 2014);以及构建一个多区域固体废物账户(Tisserant 等,2017)。

Another advance has been the adaptation of global and subnational MRIO frameworks to include process-based, life cycle inventory data to enable hybrid life cycle assessment (LCA) applications. Applications have focused on the assessment of renewable energy technologies based on integrated hybrid LCA by linking process data to I-O matrices (Acquaye et al. 2011, 2012; Wiedmann et al. 2011; Hertwich et al. 2015) or by inserting new sectors derived from process information into the IOTs (Malik et al. 2015; Moran et al. 2015; Teh et al. 2017). MRIO-based hybrid LCA represents a way forward in I-O–assisted LCA because with increasing globalization LCA applications will increasingly deal with functional units that draw on inputs sourced from many countries. Only an MRIO model underpinning a hybrid LCA exercise can ensure that country-specific production recipes as well as international trade are being considered during the enumeration of a functional unit's supply chain. Hybrid I-O/LCA will increasingly be recognized as an important tool as civil society, organizations, and governments seek to report progress toward the Sustainable Development Goals (SDGs), more so as the United Nations (UN) prepares to update the guidelines on social LCA (Ekener 2017).
全球和次国家层面 MRIO 框架的适应,包括基于过程的、生命周期库存数据,以实现混合生命周期评估(LCA)应用。应用主要集中在基于综合混合 LCA 对可再生能源技术的评估,通过将过程数据与 I-O 矩阵相连接(Acquaye 等人,2011,2012;Wiedmann 等人,2011;Hertwich 等人,2015)或通过将来自过程信息的新部门插入到 IOTs 中(Malik 等人,2015;Moran 等人,2015;Teh 等人,2017)。基于 MRIO 的混合 LCA 代表了在 I-O 辅助 LCA 中的前进方向,因为随着全球化的增加,LCA 应用将越来越多地处理从许多国家获取输入的功能单元。只有支撑混合 LCA 活动的 MRIO 模型才能确保在功能单元供应链的列举过程中考虑了特定国家的生产配方以及国际贸易。 混合 I-O/LCA 将越来越被视为一个重要工具,因为民间社会、组织和政府寻求报告实现可持续发展目标(SDGs)的进展,尤其是在联合国(UN)准备更新关于社会 LCA 的指南时(Ekener 2017)。

Advent of Virtual Laboratories
虚拟实验室的兴起

While the creation of a number of MRIO databases has advanced the field of input-output analysis (IOA), it has been a time-consuming process with possible replication of people power and resources. To automate and streamline the process of MRIO table compilation and update, researchers from a consortium of Australian academic institutions constructed the Industrial Ecology Virtual Laboratory (IELab) infrastructure for compiling the most detailed subnational IOT to date, for Australia (Lenzen et al. 2014). Based on a unique root-base-branch relationship, the Australian IELab allows for data to be stored in the most detailed regional and sectoral classification at the root level. While impossible to construct a table at the root classification because of a lack of computing power, the regional and sectoral resolutions can be aggregated to construct tables within the processing power of current computing technology, thus giving users the flexibility of defining the regions and sectors to be included in an MRIO table depending on their research question. This IELab flexibility has resulted in a range of case studies, for example, triple-bottom-line assessment of biofuel production (Malik et al. 2015, 2016), IOA of waste flows (Reynolds et al. 2014, 2015a; Fry et al. 2016), small island assessments (Malik 2016), environmental impacts of food production (Reynolds et al. 2015b), carbon footprinting of cities (Chen et al. 2016a; Wiedmann et al. 2016), renewable electricity generation (Wolfram et al. 2016), and the assessment of construction materials and the built environment (Teh et al. 2015).
尽管创建多个 MRIO 数据库推动了投入产出分析(IOA)领域的发展,但这是一个耗时且可能重复人力和资源的过程。为了自动化和简化 MRIO 表格编制和更新的过程,来自澳大利亚学术机构联盟的研究人员构建了工业生态学虚拟实验室(IELab)基础设施,用于编制迄今为止最详细的澳大利亚次国家级 IOT(Lenzen 等人,2014 年)。基于独特的根-分支关系,澳大利亚 IELab 允许在根级别存储最详细的区域和行业分类数据。由于计算能力不足,无法在根分类级别构建表格,但可以在当前计算技术的处理能力内,将区域和行业分辨率汇总以构建表格,从而使用户能够根据其研究问题定义包含在 MRIO 表格中的区域和行业。 这一 IELab 灵活性导致了多种案例研究,例如,生物燃料生产的“三重底线”评估(Malik 等,2015,2016),废物流量的 IOA(Reynolds 等,2014,2015a;Fry 等,2016),小岛评估(Malik,2016),食品生产的环境影响(Reynolds 等,2015b),城市碳足迹(Chen 等,2016a;Wiedmann 等,2016),可再生能源发电(Wolfram 等,2016),以及建筑材料和建成环境的评估(Teh 等,2015)。

In addition to providing the flexibility to construct customized IOTs (Geschke and Hadjikakou 2017), the IELab provides features for using the IOTs for footprint assessments or for quantifying uncertainty in MRIO data. Wiedmann (2017) reviewed 30 case studies provided by experts using the IELab platform. He surveyed these users to determine the potential of the lab in enabling I-O research. The author concluded that two thirds of the studies were made possible by the IELab and an additional six would have required substantial input of time and resources without it. While the current make-up of the IELab has restricted its update by nonexpert users (Wiedmann 2017), it is nevertheless a powerful tool for undertaking timely and policy-relevant applications, as demonstrated by Lenzen and colleagues (2017a). In addition to uses in IE, sustainability assessment, and economic modeling (Wiedmann 2017), Lenzen and colleagues (submitted) used the IELab for disaster modeling. Within 2 months of Cyclone Debbie hitting Queensland, Australia, in March 2017, Lenzen and colleagues (submitted) were able to assess the employment and value-added supply-chain effects of the disaster; the analysis was made possible by timely data provision and representation of regional detail in cyclone-hit areas.
除了提供构建定制化 IOTs(Geschke 和 Hadjikakou 2017)的灵活性外,IELab 还提供了使用 IOTs 进行足迹评估或量化 MRIO 数据不确定性的功能。Wiedmann(2017)回顾了由专家使用 IELab 平台提供的 30 个案例研究。他调查了这些用户,以确定实验室在促进 I-O 研究方面的潜力。作者得出结论,三分之二的研究得益于 IELab,另外六个研究如果没有它将需要大量时间和资源。尽管 IELab 的当前构成限制了非专家用户的更新(Wiedmann 2017),但它仍然是一个强大的工具,可以用于及时和与政策相关的研究应用,正如 Lenzen 及其同事(2017a)所展示的。除了在 IE、可持续性评估和经济建模(Wiedmann 2017)中的应用外,Lenzen 及其同事(提交)还使用 IELab 进行灾害建模。 在 2017 年 3 月 Cyclone Debbie 袭击澳大利亚昆士兰州两个月内,Lenzen 及其同事(提交)能够评估灾害的就业和增值供应链效应;分析得以实现得益于及时的数据提供和对受飓风影响地区的区域细节的呈现。

The IELab has recently been extended to bring together some of the aforementioned global MRIO databases, such as WIOD and EXIOBASE, on one platform (see Rahman et al. 2017; Reyes et al. 2017). This has helped establish the means for regularly updating global MRIO frameworks, fostering collaboration among researchers around the world, and facilitating global cross-disciplinary research (Lenzen et al. 2017b).
IELab 最近得到了扩展,将一些上述全球 MRIO 数据库,如 WIOD 和 EXIOBASE,整合到一个平台上(参见 Rahman 等人 2017 年;Reyes 等人 2017 年)。这有助于建立定期更新全球 MRIO 框架的手段,促进全球研究人员之间的合作,并促进全球跨学科研究(Lenzen 等人 2017b)。

We recognize that the virtual laboratory infrastructure is relatively new and its use as yet is mostly based in Australia. However, we believe that virtual laboratories have the potential to facilitate timely research of topical issues of political importance (such as disasters). It would therefore be interesting to apply this capability to a wide range of applications undertaken by research groups around the world.
我们认识到虚拟实验室基础设施相对较新,其使用目前主要在澳大利亚。然而,我们认为虚拟实验室有潜力促进对政治重要议题(如灾害)的及时研究。因此,将这一能力应用于世界各地研究小组的广泛应用将是有趣的。

Indicator Development  指标开发

I-O frameworks have increasingly been coupled with noneconomic, physical data to improve resolution or introduce additional capability for connecting economic and physical accounts. Ewing and colleagues (2012), for example, created a detailed account of the mass flow of agricultural, livestock, fishery, and forestry products alongside the monetary use account in an MRIO framework. The benefit of such an account is that additional, product-specific attributes, such as water-use data, can be contained in the mass-unit account while maintaining transparency and integrity in the less detailed monetary data set. Such MRIO modeling has been applied in several studies to evaluate different types of consumption footprints for the EU and individual countries (Steen-Olsen et al. 2012; Weinzettel et al. 2013, 2014). Similarly, noneconomic social data have been used to extend the capability of economic accounts. The analytical capacity gained is ever more important since the UN published their 17 SDGs and 169 targets to be met by year 2030 (UN 2015a). Xiao and colleagues (2017) provide an example of the analytical capability provided by a combination of data sets. These researchers coupled an MRIO model with the Social Hotspots Database (Xiao et al. 2017) to analyze the consumer risk footprint of nations for five SDGs using four social indicators. Attempts are underway to develop a comprehensive set of indicators for assessing the performance of world nations in meeting the SDG goals and targets (FAO 2017b; Sachs et al. 2017).
I-O 框架越来越多地与非物质、物理数据相结合,以提高分辨率或为连接经济和物理账户引入额外的功能。例如,Ewing 及其同事(2012 年)在 MRIO 框架中,对农业、畜牧业、渔业和林业产品的质量流量以及货币使用账户进行了详细的描述。这种账户的好处是,可以在质量单位账户中包含额外的、产品特定的属性,如用水数据,同时在较不详细的货币数据集中保持透明度和完整性。这种 MRIO 建模已在多项研究中应用,以评估欧盟和个别国家的不同类型的消费足迹(Steen-Olsen 等人,2012 年;Weinzettel 等人,2013 年,2014 年)。同样,非经济社会数据已被用于扩展经济账户的功能。自联合国发布其 17 个可持续发展目标和到 2030 年要实现的 169 个目标以来,获得的分析能力越来越重要(联合国,2015a)。Xiao 及其同事(2017 年)提供了一个数据集组合提供分析能力的例子。 这些研究人员将 MRIO 模型与《社会热点数据库》(Xiao 等,2017 年)相结合,利用四个社会指标分析了五个可持续发展目标(SDG)的国家消费者风险足迹。目前正在努力开发一套全面的指标体系,以评估世界各国在实现 SDG 目标和指标方面的表现(FAO 2017b;Sachs 等,2017 年)。

Environmentally Extended Multiregional Input-Output Analysis
环境扩展的多区域投入产出分析

When considering environmental impacts, Hertwich (2011) found that there had been few applications of IOA to consumption impact studies beyond energy use and GHG emissions. In his analysis of the use of MRIO analysis for CBA, Wiedmann (2009) also found a strong focus on GHG emissions, in particular CO2. While energy and GHG emissions are still common consumption impacts studied using IOA, the field has broadened considerably. Environmental footprinting has gone through several cycles, from providing a single number of integrated environmental impacts to a more detailed accounting of a single type of impact (Hoekstra and Wiedmann 2014; Lifset 2014). In general, an environmental footprint summarizes the total pressure exerted on the environment by the use of resources or the generation of wastes or emissions by a consumption activity. Increasingly, there are attempts to express these pressures as actual environmental impacts as defined in LCA, for example, global warming for GHG emissions (ISO 2013), water scarcity or pollution for water use (ISO 2014), or resource depletion for material extraction (Fang and Heijungs 2014). Undoubtedly, footprinting remains a popular application of IOA to evaluate the impacts of consumption. This includes carbon footprints,5 water footprints,6 material footprints,7 biodiversity footprints,8 and other environmental pressures.9 Note that the references listed in footnotes 5 through 9 are examples of a range of footprinting studies.
在考虑环境影响时,Hertwich(2011)发现,除了能源使用和温室气体排放外,投入产出分析(IOA)在消费影响研究中的应用很少。在他的关于 MRIO 分析在成本效益分析(CBA)中应用的分析中,Wiedmann(2009)也发现对温室气体排放,特别是 CO 2 的关注很强。虽然能源和温室气体排放仍然是使用 IOA 研究的常见消费影响,但该领域已经大大拓宽。环境足迹分析已经经历了几个周期,从提供单一的综合环境影响数值到对单一类型影响的更详细核算(Hoekstra 和 Wiedmann 2014;Lifset 2014)。总的来说,环境足迹总结了由资源使用或消费活动产生的废物或排放对环境施加的总压力。越来越多人试图将这些压力表达为生命周期评估(LCA)中定义的实际环境影响,例如,对于温室气体排放是全球变暖(ISO 2013),对于水资源使用是水资源短缺或污染(ISO 2014),对于材料提取是资源耗竭(Fang 和 Heijungs 2014)。 毫无疑问,足迹分析仍然是 IOA 在评估消费影响方面的一种流行应用。这包括碳足迹、5 水足迹、6 物质足迹、7 生物多样性足迹、8 以及其他环境压力。9 请注意,脚注 5 至 9 中列出的参考文献是足迹分析研究范围的一个例子。

When calculating footprints using MRIO analysis, it is crucial to understand the influence of aggregation or disaggregation of I-O sectors or physical accounts data on calculating impacts. This is particularly true for environmentally extended assessments. Several authors have analyzed the effect of sector aggregation in yielding uncertain results or what is called aggregation bias for material (de Koning et al. 2015; Piñero et al. 2015; Majeau-Bettez et al. 2016) and carbon flows (Su et al. 2010; Steen-Olsen et al. 2014). Aggregation bias is particularly true for assessments where the IOTs feature an aggregation of all agricultural commodities into one sector called Agriculture. Lenzen (2011) pointed out that this can lead to significant errors and concludes that disaggregation of I-O data or environmental data yields more superior results than aggregation of these data.
在利用投入产出分析计算足迹时,理解 I-O 部门或实物账户数据的汇总或细化对计算影响的影响至关重要。这对于环境扩展评估尤其如此。几位作者分析了部门汇总对产生不确定结果或称为材料汇总偏差的影响(de Koning 等,2015;Piñero 等,2015;Majeau-Bettez 等,2016)以及碳流(Su 等,2010;Steen-Olsen 等,2014)。汇总偏差对于 IOTs 将所有农产品汇总为一个称为农业的部门进行评估的评估尤其如此。Lenzen(2011)指出,这可能导致重大错误,并得出结论,I-O 数据或环境数据的细化比汇总这些数据产生更优越的结果。

While carbon and energy footprints have been the focus of many studies, water footprinting has seen an increase in recent years. A number of special issues have been published focusing on water-related research, such as on “Input-output and Water” (Duarte and Yang 2011), “Water Footprints and Sustainable Water Allocation” (Hoekstra et al. 2015), and “Water Footprint Assessment” (Hoekstra et al. 2017). Similar to the developments in carbon footprint accounting, there is also debate about the respective strengths and weaknesses of bottom-up and top-down approaches to water footprinting. Daniels and colleagues (2011) argue that environmentally extended MRIO (EE-MRIO) is well suited to complement process-based approaches to water footprinting by expanding the supply-chain coverage and by establishing the geography of embodied water. Another innovation in water footprinting is the inclusion of scarcity. In calculating physical flow, it is not appropriate simply to add together supply-chain contributions of water from Ireland and water from Uzbekistan, the latter being much scarcer (Lenzen et al. 2013b)—also see Sachs and colleagues (2017) for discussion of this issue in relation to SDG 6 that aims to achieve universal access to clean water and sanitation for all by year 2030. Similar assessments were undertaken for the EU (Serrano et al. 2016). Recent focus of research into water footprinting is to measure progress toward SDG 6 (Hoekstra et al. 2017).
碳足迹和能源足迹一直是许多研究的焦点,但近年来水足迹研究有所增加。已出版了一些特别问题,重点关注与水相关的研究,如“投入产出与水”(杜阿尔特和杨,2011 年)、“水足迹与可持续水资源分配”(霍克斯特拉等人,2015 年)和“水足迹评估”(霍克斯特拉等人,2017 年)。与碳足迹核算的发展相似,关于自下而上和自上而下方法在水足迹研究中的相对优缺点也存在争议。丹尼尔斯及其同事(2011 年)认为,环境扩展多区域投入产出模型(EE-MRIO)非常适合通过扩大供应链覆盖范围和建立体现水地理分布来补充基于过程的水足迹研究方法。水足迹研究中的另一项创新是纳入稀缺性。在计算物理流量时,仅仅将爱尔兰的水供应链贡献和乌兹别克斯坦的水供应链贡献相加是不合适的,因为后者更为稀缺(伦岑等人)。 2013b)—亦参见 Sachs 及其同事(2017)关于此问题与 SDG 6 的讨论,SDG 6 旨在到 2030 年实现所有人都能获得清洁水和卫生设施。对欧盟也进行了类似的评估(Serrano 等人,2016)。近年来,关于水足迹的研究重点在于衡量实现 SDG 6 的进展(Hoekstra 等人,2017)。

In addition to calculating a range of footprints separately (see footnotes 5 through 8), scholars now acknowledge the overlapping nature of footprint indicators (Simas et al. 2017). The first comprehensive and consistent inclusion of carbon, water, and ecological footprint indicators in an EE-MRIO framework was described by Galli and colleagues (2012). The authors concluded that combining these overlapping, interacting, and complementing indicators in a Footprint Family and one modeling framework is of benefit for decision making. More specifically, footprint indicators have been combined with an EE-MRIO model (Weinzettel et al. 2011) in the project One Planet Economy Network Europe (OPEN:EU) funded by the European Commission (EC). A user-friendly analysis and scenario tool was developed from the model. The EUREAPA tool10 allows the user to quantitatively unravel global supply chains using a carbon, ecological, and water footprint indicator (Roelich et al. 2014). The links between the consumption of a product type in one country and its production impacts elsewhere are identified and the top ten sources of greatest impact are displayed. It is worth mentioning that researchers have explored the distinction between pressure- and impact-type indicators. Traditional footprints report on environmental pressures; Verones and colleagues (2017) followed the DPSIR (drivers, pressure, state, impact, and response) framework to link pressures to consequences of consumption. The authors highlight the need for assessing impact footprints for effective policy making.
除了分别计算一系列足迹(见脚注 5 至 8)之外,学者们现在承认足迹指标的重叠性质(Simas 等人,2017 年)。Galli 及其同事(2012 年)描述了在 EE-MRIO 框架中首次全面且一致地纳入碳、水和生态足迹指标。作者得出结论,将这些重叠、相互作用和互补的指标结合在足迹家族和一个建模框架中,对决策有益。更具体地说,足迹指标已被与 EE-MRIO 模型(Weinzettel 等人,2011 年)结合,在由欧洲委员会(EC)资助的项目“一个地球经济网络欧洲”(OPEN:EU)中。从该模型开发了一个用户友好的分析和情景工具。EUREAPA 工具 10 允许用户使用碳、生态和水足迹指标定量解开全球供应链。确定了某一国家产品类型的消费与其在别处的生产影响之间的联系,并显示了影响最大的前十大来源。 值得注意的是,研究人员探讨了压力型和冲击型指标之间的区别。传统的足迹报告关注环境压力;Verones 及其同事(2017 年)遵循 DPSIR(驱动力、压力、状态、影响和响应)框架,将压力与消费后果联系起来。作者强调了评估影响足迹对于有效政策制定的重要性。

Social Footprints and Socially Extended Input-Output Analysis
社会足迹与社会扩展投入产出分析

One of the applications of IOA not well considered prior to 2010 is the use of socially extended I-O matrices to study social ecology and social impacts. Although post–World War II there had been a focus on using I-O to assess social progress, the field stagnated in the following decades at the expense of the development of environmentally extended IOA (McBain and Alsamawi 2014). A recent special issue on social LCA (Gloria et al. 2017) clearly demonstrates advancements in this growing field. The United Nations Environment Program (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) guidelines on social LCA, currently being updated (Ekener 2017), and the accompanying methodological sheets (Benoit-Norris et al. 2011) have contributed to the understanding of consumption through the use of IOA-assisted LCA. The use of socially extended MRIO is particularly useful for considering the human impacts of consumption from global supply chains. Examples include consideration of the human toll of supplying tantalum to the global marketplace from a conflict zone (Moran et al. 2015) and the impact of commodities produced for U.S. domestic consumption on global inequalities (Prell et al. 2014). MRIO analysis is now being used for enumerating social footprints, for example, employment (Alsamawi et al. 2014a), labor (Simas et al. 2014, 2015), inequality (Alsamawi et al. 2014b), and other social indicators (Hardadi and Pizzol 2017).
2010 年之前,IOA 的一个未充分考虑的应用是使用社会扩展的 I-O 矩阵来研究社会生态和社会影响。尽管二战后人们曾关注使用 I-O 来评估社会进步,但在此后的几十年里,该领域因环境扩展的 IOA(McBain 和 Alsamawi 2014)的发展而停滞。最近的一期关于社会 LCA 的特刊(Gloria 等人,2017 年)清楚地展示了这一增长领域的进展。联合国环境规划署(UNEP)/环境毒理学与化学学会(SETAC)关于社会 LCA 的指南,目前正在更新中(Ekener 2017),以及相关的方法论表格(Benoit-Norris 等人,2011 年),通过使用 IOA 辅助的 LCA,有助于理解消费。社会扩展的 MRIO 的使用特别有助于考虑全球供应链对人类消费的影响。例如,包括从冲突区向全球市场供应钽的代价(Moran 等人,2015 年)以及为美国生产的商品的影响。 国内消费与全球不平等(Prell 等人,2014 年)。现在,MRIO 分析被用于列举社会足迹,例如就业(Alsamawi 等人,2014a),劳动力(Simas 等人,2014,2015),不平等(Alsamawi 等人,2014b),以及其他社会指标(Hardadi 和 Pizzol,2017 年)。

One of the challenges to conceptualization of social footprint work is that of causality. Environmental footprints establish a causal link between trade and, say, emissions or water use. We could say that: “production of this good caused these emissions.” In the case of social footprints, there is no such clear-cut relationship between product, consumer, and social indicator. For example, we cannot say that production of this good caused this amount of corruption (or inequality or ill-health, etc.). Social footprint researchers have addressed this issue by saying that consumers who knowingly purchase goods embodying high levels of, for example, hazardous employment, are implicated in the continuation of such employment. By purchasing contaminated goods, the consumer could be said to tacitly endorse dangerous employment conditions. Purchase of such goods can be characterized as a missed opportunity to pressure governments and global brands to improve conditions (Xiao et al. 2017). At the same time, researchers have been at pains to emphasize that simply not purchasing a contaminated good is no solution to improving worker conditions; any temporary suspension of purchase needs to be accompanied by pressure on suppliers for improvements.
社会足迹概念化所面临的挑战之一是因果关系。环境足迹在贸易与排放或用水等方面建立了因果关系。我们可以这样说:“这种商品的生产导致了这些排放。”在社会足迹的情况下,产品、消费者和社会指标之间没有如此明确的关系。例如,我们无法说这种商品的生产导致了这么多的腐败(或不平等或健康问题等)。社会足迹研究人员通过指出,明知商品具有高风险就业等特征而购买这些商品的消费者,参与了这种就业的持续。通过购买受污染的商品,消费者可能被视为默许危险的工作条件。购买此类商品可以被视为错失了向政府和全球品牌施压以改善条件的良机(Xiao 等人,2017)。 同时,研究人员一直努力强调,仅仅不购买受污染的商品并不能改善工人条件;任何购买暂停都需要伴随对供应商进行改进的压力。

Another issue is that of data additivity. Data in an I-O framework must be able to be added. However, much available social data cannot fulfill this basic requirement. For example, data might be provided in percentages such as percentage of workers affected by corruption or by means of, say, a five-point scale of social risk (Benoit-Norris et al. 2017). To accommodate such cases in an I-O framework requires trade-offs. In the case of a five-point scale, such as that used by the Social Hotspots Database (2017), risk levels can be allocated a weighting to allow additivity. In the case of corruption, national indices can be converted into an additive quantity, such as corruption-affected jobs per sector, by applying a country's percentage corruption value to the number of workers in each sector of the economy. The county's overall corruption risk is applied to each sector, and since the number of workers in each sector is known, the percentage of workers affected by corruption can be translated into a number of workers. One obvious outcome of this method is that more workers means more corruption (Xiao et al. 2018), which may or may not be the case.
另一个问题是数据可加性问题。在投入产出框架中的数据必须能够相加。然而,许多可用的社会数据无法满足这一基本要求。例如,数据可能以百分比的形式提供,例如受腐败影响的工人百分比,或者通过例如社会风险五点量表(Benoit-Norris 等人,2017 年)。为了在投入产出框架中适应此类情况,需要权衡。在五点量表的情况下,例如社会热点数据库(2017 年)所使用的,可以将风险水平分配权重以允许可加性。在腐败的情况下,可以通过将一个国家的腐败百分比应用于经济每个部门的工人数量,将国家指数转换为可加的数量,例如每个部门的受腐败影响的就业岗位数。该国的总体腐败风险应用于每个部门,由于每个部门的工人数量是已知的,因此受腐败影响的工人百分比可以转换为工人数量。这种方法的一个明显结果是工人数量越多,腐败越多(Xiao 等人,2018 年),但这可能或不一定成立。

These are imperfect measures; however, if such calculations prove useful, for example, in tracking progress toward the SDGs, there will be incentive to improve or adjust data collection methods and format. Meanwhile, researchers continue to provide detailed description of their methods and document their assumptions. Given how useful satellite accounts are for analyzing consumption activities in supply chains using MRIO analysis, a consistent approach to the generation of data is required. To this end, the UN System of Environmental-Economic Accounting–Central Framework (UN 2014) provides a framework for the development of environmental satellite accounts in a consistent manner; there have been calls for the development of a similar system with respect to social accounts (McBain and Alsamawi 2014).
这些是不完美的衡量标准;然而,如果此类计算证明有用,例如在追踪实现可持续发展目标(SDGs)的进展时,将会有动力改进或调整数据收集方法和格式。同时,研究人员继续详细描述他们的方法并记录他们的假设。鉴于卫星账户在利用 MRIO 分析分析供应链中的消费活动方面是多么有用,需要一种一致的方法来生成数据。为此,联合国环境经济核算体系——中央框架(UN 2014)提供了一个以一致方式发展环境卫星账户的框架;有人呼吁开发一个类似的社会账户体系(McBain 和 Alsamawi 2014)。

A third challenge to social IOA is how I-O frameworks cope with big differences in regional and sectoral detail. Some data, for example, that provided by the International Labor Organization (ILOSTAT 2017), are highly aggregated while others, for example, survey data dealing with local issues in a factory or town, are highly detailed and specific. In the latter case, if the only I-O model available is at the national level, then all detail will be lost, rendering any calculation futile. Solving the problem of marrying big and small data without loss of information was one of the tasks identified as important by the Australian IELab team. The work described in Geschke (2017) represents a technical breakthrough in this field. However, applications are thin on the ground and much work needs to be done to operationalize the potential. The challenge should progressively be addressed as the IELab platform expands to become a global IELab, and researchers from around the world begin to make use of this capability to address specific issues or track progress toward the SDGs.
第三项社会 IOA 的挑战是 I-O 框架如何应对区域和行业细节的巨大差异。例如,一些数据,如国际劳工组织(ILOSTAT 2017)提供的数据,高度汇总,而其他数据,例如处理工厂或城镇当地问题的调查数据,则高度详细和具体。在后一种情况下,如果唯一的 I-O 模型仅在国家层面,那么所有细节都将丢失,使任何计算都变得徒劳。解决合并大数据和小数据而不损失信息的问题被澳大利亚 IELab 团队确定为重要任务之一。Geschke(2017)所描述的工作代表了该领域的技术突破。然而,应用较少,需要做大量工作来实现其潜力。随着 IELab 平台扩展成为全球 IELab,以及世界各地的研究人员开始利用这一能力来解决具体问题或跟踪实现可持续发展目标(SDGs)的进展,这一挑战应逐步得到解决。

Example Application of Global Consumption-Based Accounting: Cities
全球基于消费的会计应用示例:城市

There have been several applications in specific research areas related to consumption. Here, we briefly present some of the literature on the consumption impacts of cities.
在消费相关的研究领域已有多个应用。在此,我们简要介绍一些关于城市消费影响的相关文献。

IOA is increasingly being applied to calculate the environmental footprint from urban consumption. Wright and colleagues (2011) and Baynes and Wiedmann (2012) summarized the literature on CBA at the city scale up to 2011–2012. Since then, I-O–based carbon footprints and related environmental indicators have been estimated, for example, for: Aveiro, Portugal (Dias et al. 2014); Helsinki, Finland (Ala-Mantila et al. 2013); four Chinese megacities (Feng et al. 2014); Glasgow (Hermannsson and McIntyre 2014); 434 municipalities in the UK (Minx et al. 2013); Beijing (Liu and Zhang 2012; Wang et al. 2013); and the Beijing-Tianjin agglomeration and other regions in China (Yao et al. 2013), among others. Such studies provide new insights into the relationship between urban consumption and lifestyles and teleconnected environmental impacts elsewhere.
IOA 越来越多地被应用于计算城市消费的环境足迹。Wright 及其同事(2011 年)以及 Baynes 和 Wiedmann(2012 年)总结了截至 2011-2012 年城市规模下的 CBA 文献。从那时起,基于 I-O 的碳足迹和相关环境指标已经得到估算,例如:葡萄牙阿威罗(Dias 等人,2014 年);芬兰赫尔辛基(Ala-Mantila 等人,2013 年);四个中国特大城市(Feng 等人,2014 年);格拉斯哥(Hermannsson 和 McIntyre,2014 年);英国 434 个地方政府(Minx 等人,2013 年);北京(刘和张,2012 年;王等人,2013 年);以及中国北京-天津城市群和其他地区(姚等人,2013 年)等。这些研究为城市消费与生活方式以及远程连接的环境影响之间的关系提供了新的见解。

Increasingly, subnational MRIO tables (Yao et al. 2013; Feng et al. 2014) and even city-level IOTs (Wang et al. 2013) are used for calculating impacts of cities. A typical finding for large cities was presented by Feng and colleagues (2014), who calculated that more than 70% of CO2 emissions related to the consumption of goods in Beijing, Shanghai, and Tianjin occur outside of the city boundary. More recently, Wiedmann and colleagues (2016) introduced the concept of a city carbon map, exploiting the spatial detail of subnational MRIO data in the IELab for a case study of Melbourne, Australia. The authors claim that carbon maps show “local, regional, national, and global origins and destinations of flows of embodied emissions,” (2016, 676) thus allowing the enumeration of both the direct and indirect emissions from a city. The carbon map concept has since been applied to other Australian and Chinese cities and the embodied carbon networks between them (Chen et al. 2016a, 2016b, 2017).
随着越来越多的次国家层面 MRIO 表(姚等,2013;冯等,2014)甚至城市层面的 IOTs(王等,2013)被用于计算城市的影响。大型城市的一个典型发现是由冯及其同事(2014)提出的,他们计算出与北京、上海和天津商品消费相关的超过 70%的 CO 2 排放发生在城市边界之外。最近,魏德曼及其同事(2016)引入了城市碳图的概念,利用 IELab 中次国家层面 MRIO 数据的空间细节对澳大利亚墨尔本进行了案例研究。作者声称,碳图显示了“体现排放的本地、区域、国家和全球来源和目的地”(2016,676),从而可以计算城市的直接和间接排放。碳图概念随后被应用于其他澳大利亚和中国城市及其之间的体现碳网络(陈等,2016a,2016b,2017)。

Conclusions and Future Directions
结论与未来方向

We present an overview of research advancements in the development of MRIO models, virtual laboratories, and indicators for CBA. Using MRIO models, consumers and producers can develop a better understanding of the impacts, with a view toward modeling improved sustainable outcomes for the future. In addition to traditional assessments on carbon- and energy-based accounting, we present an overview of the surge in applications in water footprint assessments. One of the applications that had not been well considered prior to 2010 is the extension of MRIO models with social indicators to analyze supply-chain effects for employment, inequality, poverty, occupational health and safety, labor, and gender equity. MRIO models can also be coupled with data from external databases, such as the Social Hotspots Database, which harbor information on detailed social indicators. However, due to a lack of detailed social data for sectors and regions, coupling of such data with an MRIO table comes with its challenges. For example, for the case of corruption, Xiao and colleagues (2018) applied an assumption that the higher the number of people employed by a sector, the higher the corruption in that sector. In the absence of detailed data, this might be satisfactory as a first cut exercise; however, for informing policy making, further deliberation of data for informing such an analysis is crucial.
我们概述了 MRIO 模型、虚拟实验室和 CBA 指标研究进展。利用 MRIO 模型,消费者和生产者可以更好地理解影响,并着眼于模拟未来可持续性的改善结果。除了对基于碳和能源的会计的传统评估外,我们还概述了水足迹评估应用激增的情况。在 2010 年之前未得到充分考虑的应用之一是将社会指标扩展到 MRIO 模型,以分析供应链对就业、不平等、贫困、职业健康与安全、劳动和性别平等的影响。MRIO 模型还可以与外部数据库(如社会热点数据库)中的数据相结合,这些数据库包含详细的社会指标信息。然而,由于缺乏行业和地区的详细社会数据,将这些数据与 MRIO 表结合存在挑战。 例如,对于腐败案例,肖及其同事(2018 年)提出了一种假设,即一个部门雇佣的人数越多,该部门的腐败程度就越高。在没有详细数据的情况下,这可能作为初步尝试是令人满意的;然而,为了制定政策,对用于此类分析的数据进行进一步审议至关重要。

Future of Multiregional Input-Output Development
多区域投入产出发展的未来

We have made considerable progress since the conception of IOA by Wassily Leontief; however, there is still potential for enhancing its capability as a tool for informing policy making at a local, national, and global level. In the area of MRIO development, the future could include construction of nested IOTs. While this has been done for China (Wang and colleagues 2015), a country with a vast geographical area and complexity, nested tables for other countries of the world would pave way for assessing linkages between cities in two different countries. The use of such tables is particularly important for undertaking CBA of cities that rely on imports. Chen and colleagues (2017) carried out CBA of two large cities of Australia—Melbourne and Sydney—and found that the source of a large chunk of imported emissions for these cities lies outside of Australia: 55% for Melbourne and 71% for Sydney. In a separate study, by linking subnational MRIO tables of China and Australia, Chen and colleagues (2016a) were able to identify trade links between different Australian and Chinese cities. The roadmap from national IOTs to global MRIO tables to nested MRIO tables does not come without challenges. At the time of construction of nested MRIO tables linking the subnational MRIO table of China with the global MRIO table, Wang and colleagues (2015) were faced with computational challenges, requiring the authors to adopt a two-step procedure, focusing first on the construction of an MRIO table of China and later integrating that into the global table in a second step. It is worth mentioning that while we have made significant advancements in computational power for constructing and processing MRIO data sets, the construction of a large inter-regional and inter-country data set harboring subnational data for every country of the world is far from being realized.
自瓦西里·列昂季耶夫提出 IOA 概念以来,我们在 IOA 方面取得了相当大的进展;然而,仍有潜力提高其在地方、国家和全球层面为政策制定提供信息的能力。在 MRIO 发展领域,未来可能包括构建嵌套 IOTs。虽然这已经在拥有广阔地理面积和复杂性的中国(王及其同事 2015 年)实现了,但为世界其他国家的其他嵌套表格将有助于评估两个不同国家城市之间的联系。使用此类表格对于进行依赖进口的城市 CBA 尤为重要。陈及其同事(2017 年)对澳大利亚的两个大城市——墨尔本和悉尼进行了 CBA,发现这些城市大量进口排放的来源不在澳大利亚:墨尔本为 55%,悉尼为 71%。在另一项研究中,通过连接中国和澳大利亚的次国家 MRIO 表格,陈及其同事(2016a)能够识别不同澳大利亚和中国城市之间的贸易联系。 国家 IOTs 到全球 MRIO 表再到嵌套 MRIO 表的路线图并非没有挑战。在构建将中国地方 MRIO 表与全球 MRIO 表连接的嵌套 MRIO 表时,王及其同事(2015 年)面临了计算挑战,需要作者采用两步程序,首先构建中国的 MRIO 表,然后在第二步将其整合到全球表中。值得一提的是,尽管我们在构建和处理 MRIO 数据集的计算能力方面取得了重大进展,但构建包含世界上每个国家地方数据的庞大跨区域和跨国数据集仍远未实现。

Future of Indicator Development
指标发展未来

The future for the development of new, unique, and harmonized indicators for inclusion into an MRIO database needs to be informed by UN goals and targets on sustainable development. The UN SDGs are a prime example of where MRIO data sets could be used for assessing a country's progress, at the same time benchmarking the performance in comparison with other world nations. Xiao and colleagues (2017) demonstrate that MRIO analysis can be used for informing progress toward SDGs; however, there is a pressing need to develop indicators that can inform all 17 goals set by the UN and the accompanying 169 targets. As an example, Goal 2 aims to end hunger by 2030 (UN 2015a). At the time of writing, there was no published research investigating the contribution of international trade in causing hunger. The contribution of international trade in promoting or eradicating hunger is unclear. It has been suggested that international trade opens avenues for developing countries’ access to large global markets allowing them to specialize in production and exploit economies of scale. There is, however, another school of thought that challenges this argument on the basis of unfair trading rules (FAO 2017a; OXFAM 2017). A potential integration of a data set such as the Global Hunger Index (GHI) (IFPRI 2017) with a global trade database, coupled with additional data for harmonizing the GHI data set with the trade model, could yield useful insights into the implications of international trade on hunger in developing and underdeveloped nations. It is important to note that while for environmental indicators such as carbon emissions and energy use, we can enumerate the amount of emissions embodied in the consumption of a particular good or service, such a link is not clear cut for social issues such as hunger. These intrinsically complex issues require exploration of potential indicators that could be coupled with the global database for undertaking a supply-chain assessment. The future of indicator development relies on coupling big data with small data at a local and regional level. The report on the success of the Millennium Development Goals calls for “…a data revolution to improve the availability, quality, timeliness and disaggregation of data” to track progress toward SDGs (UN 2015b, 10). Integration of big and small data is crucial for understanding and quantifying the environmental issues faced by world nations, particularly low (-middle)-income countries, that often lack the resources and expertise in this area. This is definitely an area of research that is open for development: production of comprehensive, detailed, and complete small data for integration into big data sets for informing policy making. The World Bank is leading the way in initiatives for collecting data for low (-middle)-income countries, as indicated by Kaushik Basu, Chief Economist of the World Bank: “Data gives representation to people who may otherwise be marginalized and forgotten, hence our decision to greatly step up efforts to collect more and better quality data in developing countries” (The World Bank 2015). The I-O research community has a crucial role to play in informing such efforts and for developing metrics and methods for integrating small data with big data.
未来开发新的、独特的、协调一致的指标并将其纳入 MRIO 数据库的发展,需要参考联合国关于可持续发展的目标和目标。联合国可持续发展目标(SDGs)是 MRIO 数据集可用于评估一个国家进步、同时与世界其他国家绩效进行基准比较的典型案例。Xiao 及其同事(2017 年)证明,MRIO 分析可用于了解 SDGs 的进展;然而,迫切需要开发能够了解联合国设定的 17 个目标和 169 个相关目标的指标。例如,目标 2 旨在到 2030 年结束饥饿(联合国 2015a)。在撰写本文时,没有发表的研究探讨国际贸易在导致饥饿方面的贡献。国际贸易在促进或消除饥饿方面的作用尚不清楚。有人提出,国际贸易为发展中国家进入大型全球市场开辟了途径,使他们能够专注于生产和利用规模经济。 然而,存在另一种观点,该观点基于不公平的贸易规则(FAO 2017a;OXFAM 2017)对此论点提出质疑。将全球饥饿指数(GHI)(IFPRI 2017)等数据集与全球贸易数据库的潜在整合,以及与贸易模型协调的额外数据,可能有助于深入了解国际贸易对发展中国家和欠发达国家的饥饿问题的影响。值得注意的是,对于环境指标,如碳排放和能源消耗,我们可以列举出特定商品或服务的消费中所包含的排放量,但对于饥饿等社会问题,这种联系并不明确。这些本质上复杂的问题需要探索可能被结合到全球数据库中以进行供应链评估的潜在指标。指标发展的未来依赖于在地方和区域层面将大数据与小数据相结合。 报告呼吁“……一场数据革命,以提高数据的可获得性、质量、及时性和细化程度”,以跟踪实现可持续发展目标(SDGs)的进展(联合国 2015b,10)。整合大数据和小数据对于理解和量化世界各国,尤其是资源和技术往往不足的低(中)收入国家面临的环境问题至关重要。这无疑是一个有待发展的研究领域:生产全面、详细和完整的小数据,以便将其整合到大数据集中,为政策制定提供信息。世界银行在为低(中)收入国家收集数据方面走在前列,如世界银行首席经济学家考希克·巴苏所言:“数据为那些可能被边缘化和遗忘的人们提供了代表,因此我们决定在发展中国家加大收集更多和更高质量数据的努力”(世界银行 2015)。I-O 研究界在提供此类努力的信息和开发将小数据与大数据整合的指标和方法方面发挥着关键作用。

Acknowledgments  致谢

The authors thank the reviewers for their insightful comments that have strengthened this article.
作者感谢审稿人提出的宝贵意见,这些意见增强了本文。

    Notes  注释

  1. 1 Citation taken from www.adamsmith.org/quotes referring to The Wealth Of Nations, Book IV Chapter VIII, v. ii, p. 660, para. 49; first published in 1776.
    1 引文来自 www.adamsmith.org/quotes,引用《国富论》第四卷第八章,第 ii 节,第 660 页,第 49 段;首次出版于 1776 年。
  2. 2 The term footprint is used for holistically capturing the impacts of human consumption on the environment, explained further in section: Environmentally Extended Multiregional Input-Output Analysis.
    2 “足迹”一词用于全面捕捉人类消费对环境的影响,具体解释见章节:环境扩展的多区域投入产出分析。
  3. 3 CREEA: Compiling and Refining of Economic and Environmental Accounts.
    3 CREEA:经济和环境账户的编译与精炼。
  4. 4 DESIRE: Development of a System of Indicators for a Resource efficient Europe.
    4 欧洲资源高效利用指标体系开发(DESIRE)
  5. 5 (Berners-Lee et al. 2011; Davis et al. 2011; Larsen and Hertwich 2011; Larsen et al. 2012; Ala-Mantila et al. 2013; Bastianoni et al. 2014; Caro et al. 2014; Zhang et al. 2014; Anderson et al. 2015; Caro et al. 2015; Kagawa et al. 2015; Zhang et al. 2016; Brizga et al. 2017; Caro et al. 2017; Li et al. 2017; Moran et al. 2017; Wood et al. 2017).
    5 (伯纳斯-李等,2011;戴维斯等,2011;拉尔森和赫特维希,2011;拉尔森等,2012;阿拉-曼蒂拉等,2013;巴斯蒂亚诺尼等,2014;卡罗等,2014;张等,2014;安德森等,2015;卡罗等,2015;川口等,2015;张等,2016;布里兹加等,2017;卡罗等,2017;李等,2017;莫兰等,2017;伍德等,2017)。
  6. 6 (Feng et al. 2011; Xiao et al. 2011; Zhang et al. 2011a, 2011b; Feng et al. 2012; Lin et al. 2012; Dong et al. 2013; Shao and Chen 2013; Cohen and Ramaswami 2014; Huang et al. 2014; Wang et al. 2014; Han et al. 2015; Zhuo et al. 2016; Liu et al. 2017; Ali et al. 2018).
    6 (冯等,2011;肖等,2011;张等,2011a,2011b;冯等,2012;林等,2012;董等,2013;邵和陈,2013;科恩和拉马苏米,2014;黄等,2014;王等,2014;韩等,2015;卓等,2016;刘等,2017;阿里等,2018)。
  7. 7 (Bruckner et al. 2012; Schoer et al. 2012; Wiebe et al. 2012; Giljum et al. 2015; Wiedmann et al. 2015a, 2015b; Giljum et al. 2016; Lutter et al. 2016; López et al. 2017).
    7 (布鲁克纳等,2012;舍尔等,2012;韦贝等,2012;吉尔胡姆等,2015;维德曼等,2015a,2015b;吉尔胡姆等,2016;卢特等,2016;洛佩斯等,2017)。
  8. 8 (Lenzen et al. 2012; Moran et al. 2016; Kitzes et al. 2017; Moran and Kanemoto 2017; Wilting et al. 2017; Wilting and van Oorschot 2017).
    8(Lenzen 等人,2012;Moran 等人,2016;Kitzes 等人,2017;Moran 和 Kanemoto,2017;Wilting 等人,2017;Wilting 和 van Oorschot,2017)。
  9. 9 (Zhou and Imura 2011; Duarte and Yang 2011; Ewing et al. 2012; Galli et al. 2012; Moran et al. 2013; Chen and Chen 2015; Li et al. 2015; Nansai et al. 2015; Shigetomi et al. 2017; Owen et al. 2018).
    9 (周和今室 2011;杜亚特和杨 2011;尤因等 2012;加利亚等 2012;莫兰等 2013;陈和陈 2015;李等 2015;南斎等 2015;重本等 2017;欧文等 2018)。
  10. 10 https://eureapa.net.
    • The full text of this article hosted at iucr.org is unavailable due to technical difficulties.

      image icon