这是用户在 2024-4-2 20:59 为 https://webvpn.cpu.edu.cn/https/77726476706e69737468656265737421e0e2438f69316b4330079bab/doi/10.1021... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Discovery of 3,5-Dimethyl-4-Sulfonyl-1H-Pyrrole-Based Myeloid Cell Leukemia 1 Inhibitors with High Affinity, Selectivity, and Oral Bioavailability
发现具有高亲和性、选择性和口服生物利用度的 3,5-二甲基-4-磺酰基-1H-吡咯髓系细胞白血病 1 抑制剂
 我的活动出版物
CONTENT TYPES
RETURN TO ISSUEPREVArticleNEXT
返回发行页上一页下一页

Discovery of 3,5-Dimethyl-4-Sulfonyl-1H-Pyrrole-Based Myeloid Cell Leukemia 1 Inhibitors with High Affinity, Selectivity, and Oral Bioavailability
发现具有高亲和性、选择性和口服生物利用度的 3,5-二甲基-4-磺酰基-1H-吡咯髓系细胞白血病 1 抑制剂

  • Peng-Ju Zhu
    Peng-Ju Zhu
    State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Peng-Ju Zhu
  • Ze-Zhou Yu 余泽洲
    Ze-Zhou Yu
    State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Ze-Zhou Yu
  • Yi-Fei Lv 吕一飞
    Yi-Fei Lv
    State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    More by Yi-Fei Lv
  • Jing-Long Zhao 赵京龙
    Jing-Long Zhao
    State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
  • Yuan-Yuan Tong 童媛媛
    Yuan-Yuan Tong 童媛媛
    State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
    中国药科大学天然药物国家重点实验室、江 苏药物设计与优化重点实验室,南京,210009
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    中国药科大学药学院药物化学系,南京 210009
    More by Yuan-Yuan Tong 汤媛媛的更多作品
  • Qi-Dong You* 尤启东*
    Qi-Dong You 游启东
    State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
    中国药科大学天然药物国家重点实验室、江 苏药物设计与优化重点实验室,南京,210009
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    中国药科大学药学院药物化学系,南京 210009
    *Email: youqd@163.com
    More by Qi-Dong You 尤启东的更多作品
  • , and  
  • Zheng-Yu Jiang* 蒋正宇*
    Zheng-Yu Jiang
    State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
    Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    *Email: jiangzhengyucpu@163.com
Cite this: J. Med. Chem. 2021, 64, 15, 11330–11353
引用此文:J. Med.Chem.2021, 64, 15, 11330-11353
Publication Date (Web):August 3, 2021
出版日期 :2021 年 8 月 3 日
https://doi.org/10.1021/acs.jmedchem.1c00682
Copyright © 2021 American Chemical Society
版权所有 © 2021 美国化学学会
  • Subscribed

Article Views 文章观点

1838

Altmetric

3

Citations 引文

LEARN ABOUT THESE METRICS
了解这些指标
PDF (7 MB)
Supporting Info (3)» 辅助信息 (3)"
SUBJECTS: 主题:

Abstract 摘要

Myeloid cell leukemia 1 (Mcl-1) protein is a key negative regulator of apoptosis, and developing Mcl-1 inhibitors has been an attractive strategy for cancer therapy. Herein, we describe the rational design, synthesis, and structure–activity relationship study of 3,5-dimethyl-4-sulfonyl-1H-pyrrole-based compounds as Mcl-1 inhibitors. Stepwise optimizations of hit compound 11 with primary Mcl-1 inhibition (52%@30 μM) led to the discovery of the most potent compound 40 with high affinity (Kd = 0.23 nM) and superior selectivity over other Bcl-2 family proteins (>40,000 folds). Mechanistic studies revealed that 40 could activate the apoptosis signal pathway in an Mcl-1-dependent manner. 40 exhibited favorable physicochemical properties and pharmacokinetic profiles (F% = 41.3%). Furthermore, oral administration of 40 was well tolerated to effectively inhibit tumor growth (T/C = 37.3%) in MV4-11 xenograft models. Collectively, these findings implicate that compound 40 is a promising antitumor agent that deserves further preclinical evaluations.
髓系细胞白血病 1(Mcl-1)蛋白是细胞凋亡的一个关键负调控因子,开发 Mcl-1 抑制剂一直是一种极具吸引力的癌症治疗策略。在此,我们介绍了作为 Mcl-1 抑制剂的 3,5-二甲基-4-磺酰基-1H-吡咯基化合物的合理设计、合成和结构-活性关系研究。通过对具有主要 Mcl-1 抑制作用(52%@30 μM)的命中化合物 11 的逐步优化,我们发现了最有效的化合物 40,该化合物具有高亲和力(K d = 0.23 nM)和优于其他 Bcl-2 家族蛋白的选择性(>40,000 倍)。机理研究表明,40 能以 Mcl-1 依赖性方式激活细胞凋亡信号通路。40 具有良好的理化特性和药代动力学特征(F% = 41.3%)。此外,口服 40 的耐受性良好,能有效抑制 MV4-11 异种移植模型中的肿瘤生长(T/C = 37.3%)。总之,这些发现表明化合物 40 是一种很有前景的抗肿瘤药物,值得进一步进行临床前评估。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。申请重用许可。

Note Added After ASAP Publication
ASAP 出版后添加的注释

ARTICLE SECTIONS
Jump To
 条款章节跳转到

The version of this paper that was published ASAP August 3, 2021, contained an error in the structure in the TOC and abstract graphic. The corrected version was reposted August 12, 2021.
本文于 2021 年 8 月 3 日在 ASAP 上发布的版本中,TOC 和摘要图的结构存在错误。更正后的版本已于 2021 年 8 月 12 日重新发布。

Introduction 导言

ARTICLE SECTIONS
Jump To
 条款章节跳转到

The evasion of apoptosis is one of the main reasons that results in cancer. (1) B-cell lymphoma-2 (Bcl-2) family proteins, composed of pro-apoptotic proteins (Bax and Bak), anti-apoptotic proteins (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, and A1), and BH3-only proteins (Bid, Noxa, and Puma), (2) have long been identified as pivotal apoptosis regulators. (3) In apoptosis signaling, dimerization of pro-apoptotic members Bax and Bak can form oligomers to depolarize the outer mitochondrial membrane (OMM), (4) which can release mitochondrial proteins to induce apoptosis. (5) Mcl-1 was first found by analyzing gene expression of the ML-1 human myeloid leukemia cell line. (6) Like other anti-apoptotic members, Mcl-1 contains a binding groove comprising Bcl-2 homology (BH) 1-3 domains. (7) Such a groove can bind to the BH3 domains of pro-apoptotic members, (8) which disturbs the formation of Bax/Bak homo/heterodimers and further inhibits apoptosis. (9,10) Mcl-1 is important for the survival and development of normal cells, such as embryogenesis, (11) maintenance of hepatocytes, (12) B and T-cells, (13) and neuron development. (14) However, overexpression of Mcl-1 has been widely observed in cancers, such as chronic myeloid leukemia (CML), (15) multiple myeloma (MM), (16) non-small cell lung cancer (NSCLC), (17) and colon cancer. (18) There is also evidence showing that Mcl-1 is closely associated with cancer relapse, (19) immortalization, (20) and drug resistance. (21) Therefore, targeting Mcl-1 is an attractive strategy for cancer therapy. In 2016, venetoclax (Bcl-2 selective inhibitor) reported by AbbVie (22) was approved by the FDA for the treatment of 17p gene deficiency chronic lymphocytic leukemia (CLL), and targeting Bcl-2 family proteins proves to be a practical strategy for cancer therapy.
逃避细胞凋亡是导致癌症的主要原因之一。(1) B细胞淋巴瘤-2(Bcl-2)家族蛋白由促凋亡蛋白(Bax和Bak)、抗凋亡蛋白(Bcl-2、Bcl-X L 、Bcl-w、Mcl-1和A1)和纯BH3蛋白(Bid、Noxa和Puma)组成,(2) 早已被确认为关键的凋亡调节因子。(3)在细胞凋亡信号传导过程中,促凋亡成员 Bax 和 Bak 的二聚体可形成寡聚体,使线粒体外膜(OMM)去极化,(4)从而释放线粒体蛋白,诱导细胞凋亡。(5) Mcl-1 最早是通过分析 ML-1 人类髓性白血病细胞系的基因表达发现的。(6) 与其他抗凋亡成员一样,Mcl-1 包含一个由 Bcl-2 同源(BH)1-3 结构域组成的结合槽。(7) 这种沟槽可与促凋亡成员的 BH3 结构域结合,(8) 从而干扰 Bax/Bak 同源/异源二聚体的形成,进一步抑制细胞凋亡。(9,10)Mcl-1 对正常细胞的生存和发育非常重要,如胚胎发育、(11)肝细胞的维持、(12)B 细胞和 T 细胞、(13)神经元的发育。(14)然而,在慢性髓性白血病(CML)、(15)多发性骨髓瘤(MM)、(16)非小细胞肺癌(NSCLC)、(17)和结肠癌等癌症中已广泛观察到 Mcl-1 的过表达。(18)还有证据表明,Mcl-1 与癌症复发、(19)永生化(20)和耐药性密切相关。(21)因此,靶向 Mcl-1 是一种有吸引力的癌症治疗策略。2016 年,艾伯维公司(AbbVie)报道的 Venetoclax(Bcl-2 选择性抑制剂)(22)被 FDA 批准用于治疗 17p 基因缺失的慢性淋巴细胞白血病(CLL),靶向 Bcl-2 家族蛋白被证明是一种切实可行的癌症治疗策略。
Mcl-1 has been identified as the largest member with 350 amino acid residues among anti-apoptotic proteins. (14) Of note, Mcl-1 also differs from other anti-apoptotic members in that it possesses four PEST domains composed of proline (P), glutamate (E), serine (S), and threonine (T) residues. (23) Such domains are targets of E3 ubiquitin-ligases, which promote the degradation of Mcl-1. (24) The binding groove of Mcl-1 is composed of P1–P4 pockets. In the binding mode of Mcl-1 and Bim, four conserved hydrophobic residues h1–h4 (Ile58, Leu62, Ile65, and Phe69) of the Bim BH3 domain protrude into four hydrophobic pockets (P1–P4) of the Mcl-1 (Figure 1) binding groove, respectively. (25) Additionally, there is a salt-bridge interaction between Asp67 of the Bim BH3 domain and Arg263 of Mcl-1. (26) Small molecules that mimic the hot spots of BH3-only proteins can occupy the BH3 binding groove of Mcl-1, which relieves pro-apoptotic proteins to induce tumor cell apoptosis. (27) Therefore, developing BH3 mimetic Mcl-1 inhibitors is a promising strategy for cancer therapy. (28−30)
在抗凋亡蛋白中,Mcl-1 是最大的成员,有 350 个氨基酸残基。(14)值得注意的是,Mcl-1 与其他抗凋亡成员的不同之处还在于,它拥有四个由脯氨酸(P)、谷氨酸(E)、丝氨酸(S)和苏氨酸(T)残基组成的 PEST 结构域。(23)这些结构域是 E3 泛素连接酶的靶标,可促进 Mcl-1 的降解。(24) Mcl-1 的结合槽由 P1-P4 口袋组成。在 Mcl-1 和 Bim 的结合模式中,Bim BH3 结构域的四个保守疏水残基 h1-h4(Ile58、Leu62、Ile65 和 Phe69)分别突入 Mcl-1(图 1)结合沟的四个疏水口袋(P1-P4)。(25)此外,Bim BH3 结构域的 Asp67 与 Mcl-1 的 Arg263 之间存在盐桥相互作用。(26)模仿纯 BH3 蛋白热点的小分子可以占据 Mcl-1 的 BH3 结合沟,从而解除促凋亡蛋白的作用,诱导肿瘤细胞凋亡。(27)因此,开发 BH3 拟态 Mcl-1 抑制剂是一种很有前景的癌症治疗策略。(28-30)

Figure 1 图 1

Figure 1. Binding mode of Mcl-1 and Bim BH3 (PDB 2NL9).
图 1.Mcl-1 与 Bim BH3 的结合模式(PDB 2NL9)。

The large and shallow binding groove makes Mcl-1 intrinsically difficult to be targeted. (31) Several groups have developed peptide Mcl-1 inhibitors. (32−35) However, during the last decade, medicinal chemists have contributed more to developing Mcl-1 small molecule inhibitors. (36−38) As shown in Figure 2, Zhang’s team has reported a series of phenalene-based Mcl-1 inhibitors, (39−41) of which the most potent 1 showed a Ki of 5 nM. (42) Indole-based Mcl-1 inhibitors have also been investigated in depth. In 2008, Abbott’s work pioneered the discovery of indole Mcl-1 inhibitors. (43,44) In 2013, Fesik’s team discovered an indole-based Mcl-1 inhibitor 2 by using the fragment merging method. (45) Further modifications (46−48) led to VU661013 (3) (49) with an ideal in vivo antitumor efficacy. (50) In 2015, AbbVie identified A1210477 (4) as an indole-based Mcl-1 inhibitor, (51,52) which is widely used as an in vitro chemical tool. (27,53) Based on A1210477, some other Mcl-1 inhibitors with an indole core were developed. (54,55) Recently, the macrocyclization strategy has been widely used in the discovery of Mcl-1 inhibitors. (56) In 2018, AstraZeneca reported the macrocyclic clinical candidate AZD5991 (5) (57) (NCT03218683) with excellent antitumor efficacy. (58,59) In 2018, Amgen (60) discovered the first orally efficacious Mcl-1 inhibitor AMG176 (6) with a macrocyclic structure. AMG176 has also been promoted into the clinical trial (NCT02675452). Apart from that, compounds with other skeletons have also been identified as potent Mcl-1 inhibitors. (61−66) Geneste’s group developed thieno[2,3-d]pyrimidine-based Mcl-1 inhibitors S63845 (7) (67) and MIK665 (8) (68) with excellent in vivo potency. To date, the phase I clinical trial of MIK665 has been completed (NCT02979366).
Mcl-1 的结合沟槽大而浅,因此很难成为靶向药物。(31)一些研究小组开发了多肽 Mcl-1 抑制剂。(32-35)然而,在过去十年中,药物化学家在开发 Mcl-1 小分子抑制剂方面做出了更多贡献。(36-38)如图 2 所示,Zhang 团队报告了一系列苯亚甲基 Mcl-1 抑制剂,(39-41)其中最有效的 1 种抑制剂的 K 值为 5 nM。2008 年,Abbott 的研究率先发现了吲哚类 Mcl-1 抑制剂。(43,44)2013 年,Fesik 团队利用片段合并法发现了一种基于吲哚的 Mcl-1 抑制剂 2。(45) 进一步修饰(46-48)后,VU661013 (3) (49)具有理想的体内抗肿瘤疗效。(50)2015 年,艾伯维公司发现 A1210477(4)是一种基于吲哚的 Mcl-1 抑制剂,(51,52)被广泛用作体外化学工具。(27,53)在 A1210477 的基础上,又开发出了其他一些以吲哚为核心的 Mcl-1 抑制剂。(54,55)最近,大环化策略被广泛应用于 Mcl-1 抑制剂的发现。(56)2018年,阿斯利康公司报道了大环化临床候选药物AZD5991(5)(57)(NCT03218683),具有极佳的抗肿瘤疗效。(58,59)2018年,安进公司(60)发现了首个具有口服疗效的大环结构Mcl-1抑制剂AMG176(6)。AMG176 也已被推进临床试验(NCT02675452)。除此之外,具有其他骨架的化合物也被确认为强效的 Mcl-1 抑制剂。(61-66)Geneste 小组开发的基于噻吩并[2,3-d]嘧啶的 Mcl-1 抑制剂 S63845 (7) (67) 和 MIK665 (8) (68)具有极佳的体内效力。迄今为止,MIK665 的 I 期临床试验已经完成(NCT02979366)。

Figure 2 图 2

Figure 2. Representative Mcl-1 inhibitors.
图 2.具有代表性的 Mcl-1 抑制剂。

However, most Mcl-1 inhibitors suffer druggability issues like poor membrane permeability, (47) low oral bioavailability, (38) and big molecular weight. Such problems hinder potent Mcl-1 inhibitors from coming into clinical trials and further from being approved for cancer therapy. As pan Bcl-2 inhibition leads to undesired side effects, (69) selectivity against Mcl-1 is another issue that deserves consideration. Herein, we describe the design, synthesis, and structure–activity relationships (SARs) of a series of pyrrole-based Mcl-1 inhibitors. Replacing the indole core of 2 with a pyrrole ring yielded hit compound 11 with primary Mcl-1 inhibitory potency (52%@30 μM). Further optimization of 11 led to the discovery of the most potent compound 40 (Mcl-1, Ki = 20 nM). 40 possessed high Mcl-1 binding affinity (Kd = 0.23 nM) and remarkable selectivity over other Bcl-2 family members (Bcl-2, Bcl2A1, Bcl-xL, and Bcl-w, Kd > 10,000 nM). In addition, 40 exhibited ideal cellular activity and oral bioavailability (F% = 41.3%). In balb/c nude mice loaded with MV4-11 xenografts, 40 showed desired antitumor effects through oral administration (T/C = 37.3%).
然而,大多数 Mcl-1 抑制剂都存在可药性问题,如膜渗透性差、(47)口服生物利用度低、(38)分子量大。这些问题阻碍了强效 Mcl-1 抑制剂进入临床试验,更阻碍了它们被批准用于癌症治疗。由于泛用 Bcl-2 抑制会导致不良副作用,(69)针对 Mcl-1 的选择性是另一个值得考虑的问题。在此,我们介绍了一系列基于吡咯的 Mcl-1 抑制剂的设计、合成和结构-活性关系 (SAR)。用吡咯环取代 2 的吲哚核心,得到了具有主要 Mcl-1 抑制效力(52%@30 μM)的热门化合物 11。进一步优化 11 后,发现了最有效的化合物 40(Mcl-1,K = 20 nM)。40 具有很高的 Mcl-1 结合亲和力(K d = 0.23 nM),并对其他 Bcl-2 家族成员(Bcl-2、Bcl2A1、Bcl-xL 和 Bcl-w,K d > 10,000 nM)具有显著的选择性。此外,40 表现出理想的细胞活性和口服生物利用度(F% = 41.3%)。在装有 MV4-11 异种移植物的 balb/c 裸鼠体内,40 通过口服显示出理想的抗肿瘤效果(T/C = 37.3%)。

Results and Discussion 结果与讨论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

Discovery of Initial Hit 11 as an Mcl-1 Inhibitor
发现作为 Mcl-1 抑制剂的首发药物 11

In 2013, through the fragment-based drug design, Fesik’s team (45) reported a series of indole-based Mcl-1 inhibitors, of which the most potent compound 2 showed nanomolar Mcl-1 inhibitory potency (Ki = 55 nM) and proper selectivity over Bcl-2 (Ki = 870 nM) and Bcl-xL (Ki > 15,000 nM). The deep P2 pocket and polar Arg263 differ the binding groove of Mcl-1 from that of other Bcl-2 family members. (45,70) As shown in Figure 3A, the complex of 2/Mcl-1 (PDB 4HW2) shows that the 4-atom linker of 2 protrudes into the P2 pocket and the indole-2-carboxyl acid group forms key polar interaction with Arg263. In their SAR study, tethering a 4-atom linker to the NH of the indole core (9b) retained the Mcl-1 inhibitory activity of the corresponding 3-substituted indole compound (9a) (Figure 3B). Compound 10 was reported to bind to Mcl-1 with high affinity. (51) The binding mode of 10 (PDB 6B4U) demonstrates that the morpholine ring is solvent-exposed and the phenyl ring is kept out of the P2 pocket due to the rigid indole core. Combining these findings, in our design, the pyrrole-2-carboxylic acid group was kept for maintaining the key polar interaction with Agr263. The 3,5-dimethyl-4-chlorine phenyl-linked 4-atom linker has been fully reported to be suitable for P2 pocket binding. (47,49) Consequently, this moiety was kept and attached to the NH group of the pyrrole core to occupy the P2 pocket. For locating the solvent-exposed phenyl ring of 10 in the P2 pocket, a flexible methylene linker was introduced between the 4-methyl phenyl group and the pyrrole core. Compound 11 was then designed and prepared with a moderate Mcl-1 inhibition ratio (52%@30 μM) determined by a fluorescence polarization (FP)-based assay (Figure 3C).
2013年,Fesik团队(45)通过基于片段的药物设计,报道了一系列基于吲哚的Mcl-1抑制剂,其中最有效的化合物2显示出纳摩尔级的Mcl-1抑制效力(K = 55 nM),并对Bcl-2(K = 870 nM)和Bcl-xL(K > 15,000 nM)具有适当的选择性。深 P2 袋和极性 Arg263 使 Mcl-1 的结合槽与其他 Bcl-2 家族成员的结合槽不同。(45,70) 如图 3A 所示,2/Mcl-1 的复合物(PDB 4HW2)显示,2 的 4 原子连接体突入 P2 口袋,吲哚-2-羧酸基团与 Arg263 形成关键的极性相互作用。在他们的 SAR 研究中,将 4 原子连接体拴在吲哚核心的 NH 上(9b)保留了相应的 3 取代吲哚化合物(9a)的 Mcl-1 抑制活性(图 3B)。据报道,化合物 10 与 Mcl-1 具有高亲和力。(51) 10 的结合模式(PDB 6B4U)表明吗啉环是溶剂外露的,而苯基环由于吲哚核心的刚性而被挡在 P2 口袋之外。结合这些发现,我们在设计中保留了吡咯-2-羧酸基团,以保持与 Agr263 的关键极性相互作用。据充分报道,3,5-二甲基-4-氯苯基连接的 4 原子连接体适用于 P2 口袋结合。(47,49) 因此,我们保留了这一分子,并将其连接到吡咯核心的 NH 基团上,以占据 P2 口袋。为了将 10 的暴露于溶剂的苯基环置于 P2 口袋中,在 4-甲基苯基和吡咯核心之间引入了柔性亚甲基连接体。随后设计并制备了化合物 11,通过基于荧光偏振(FP)的检测方法测定,其对 Mcl-1 的抑制率适中(52%@30 μM)(图 3C)。

Figure 3 图 3

Figure 3. Design of lead compound 11. (A) Binding mode of compound 2 (PDB 4HW2). (B) SAR study of the linker substitution position. (C) Binding mode of 10 (PDB 6B4U) and design of 11.
图 3:先导化合物 11 的设计。先导化合物 11 的设计。 (A) 化合物 2 的结合模式(PDB 4HW2)。(B) 连接子取代位置的 SAR 研究。(C) 10 (PDB 6B4U) 的结合模式和 11 的设计。

Optimizations of the Linker between the 4-Methyl Phenyl Group and the Pyrrole Core
优化 4-甲基苯基和吡咯核心之间的连接物

According to our design, the linker between the 4-methyl phenyl group and the pyrrole core was vital for locating the phenyl group into the P2 pocket. To explore a preferable linker for potency, 12–15 with various linkers were prepared. The FP assay was used to evaluate the Mcl-1 inhibitory activities of our compounds. AZD5991 and A1210477 were selected as positive controls. As shown in Table 1, the introduction of the rigid carbonyl linker (12) and the sulfone linker (13) improved Mcl-1 inhibitory activity. However, two-atom linkers (14, 15) showed abolished potency. The primary SAR results indicated that the conformation and length of the sulfone linker were the most favorable. As a result, compound 13 with a sulfone linker was selected for further modifications.
根据我们的设计,4-甲基苯基和吡咯核心之间的连接体对于将苯基定位到 P2 口袋中至关重要。为了探索更合适的连接体以提高药效,我们制备了 12-15 种具有不同连接体的化合物。FP 试验用于评估我们化合物的 Mcl-1 抑制活性。AZD5991 和 A1210477 被选为阳性对照。如表 1 所示,刚性羰基连接体(12)和砜连接体(13)的引入提高了 Mcl-1 抑制活性。然而,双原子连接体(14、15)的效力被削弱。主要的 SAR 结果表明,砜连接体的构象和长度是最有利的。因此,带有砜连接体的化合物 13 被选中作进一步修饰。
Table 1. Effects of Linkers on Mcl-1 Inhibition
表 1.连接体对 Mcl-1 抑制作用的影响
Then, we investigated the binding mode of 13 with Mcl-1 by molecular docking. As shown in Figure 4, as expected, the pyrrole-2-carboxyl group formed a hydrogen bond with Arg263. The 3,5-dimethyl-4-chlorine phenyl-linked 4-atom linker protruded into the P2 pocket. The docking study of 13 also gave the reason for the advantage of the sulfone linker for potency: the sulfone linker located the phenyl ring into the P2 pocket. Consequently, the phenyl ring could form additional hydrophobic interactions with Ala227 and Met231.
然后,我们通过分子对接研究了 13 与 Mcl-1 的结合模式。如图 4 所示,正如预期的那样,吡咯-2-羧基与 Arg263 形成了氢键。3,5-二甲基-4-氯苯基连接的 4 个原子连接体突出到 P2 口袋中。对 13 的对接研究也揭示了砜基连接体在药效方面具有优势的原因:砜基连接体将苯环置于 P2 口袋中。因此,苯基环可以与 Ala227 和 Met231 形成额外的疏水相互作用。

Figure 4 图 4

Figure 4. Proposed binding mode of compound 13 with Mcl-1 using molecular docking. The docking site was derived from the position of the small-molecular ligand cocrystallized in the binding site of Mcl-1 (PDB 4HW2). The ligand is represented as sticks. The hydrogen bonds are represented by green dashed lines, and the π–σ and π–alkyl interactions are represented by pink dashed lines. The carbon atoms of small molecules and Mcl-1 residues are colored cyan and green, respectively.
图 4.利用分子对接法推测的化合物 13 与 Mcl-1 的结合模式。对接位点是根据小分子配体在 Mcl-1 结合位点(PDB 4HW2)中的共晶体位置推导出来的。配体用棍棒表示。氢键用绿色虚线表示,π-σ 和 π-烷基相互作用用粉色虚线表示。小分子和 Mcl-1 残基的碳原子分别用青色和绿色表示。

Reinspection of the binding mode of 13 gave an idea that substitution at the 5-position of the pyrrole core could form more interactions in the P2 pocket (Figure 4). 3,5-Dimethyl pyrrole-based compound 16 was then prepared. As shown in Table 2, 16 showed better performance compared to 13. However, 3,5-diethyl pyrrole-based compound 17 was not preferred. Only replacement of the 5-methyl group of 16 with an ethyl group (18) impaired potency. In contrast, replacement of the 3-methyl group of 16 with an ethyl group (19) retained comparable activity with 16. Both removal of 5-methyl substitution at the pyrrole core (20) and further extension at the 5-position (21) were unfavorable. These results demonstrated that the appropriate size of 5-substitution was important for Mcl-1 inhibition and the methyl substituent was optimal. Further extension at the 3-position of 19 (22) retained potency. To further confirm the advantage of the sulfone linker for activity, analogues 23 with a flexible sulfide linker and 24 with a 2-atom length linker were prepared. As shown in Table 2, the sulfide linker (23) showed a minor decreased potency compared to the sulfone linker (16). Introduction of a 2-atom linker (24) remarkably impaired Mcl-1 inhibition.
对 13 的结合模式进行重新检查后发现,在吡咯核心的 5 位进行取代可以在 P2 口袋中形成更多的相互作用(图 4)。于是制备了基于 3,5-二甲基吡咯的化合物 16。如表 2 所示,与 13 相比,16 表现出更好的性能。然而,3,5-二乙基吡咯基化合物 17 并不理想。只有将 16 的 5-甲基基团替换为乙基基团(18)才会降低药效。相反,用乙基取代 16 的 3-甲基(19),其活性与 16 相当。去除吡咯核心的 5-甲基取代基(20)和进一步扩展 5-位(21)都是不利的。这些结果表明,5-取代基的适当大小对抑制 Mcl-1 非常重要,而甲基取代基是最佳选择。19 的 3 位进一步延伸(22)保留了药效。为了进一步证实砜连接体在活性方面的优势,我们制备了具有柔性硫化物连接体的类似物 23 和具有 2 个原子长度连接体的类似物 24。如表 2 所示,与砜连接物(16)相比,硫化物连接物(23)的药效略有下降。引入 2 个原子的连接体(24)明显削弱了对 Mcl-1 的抑制作用。
Table 2. Effects of Pyrrole Substituents on Mcl-1 Inhibition
表 2.吡咯取代基对 Mcl-1 抑制作用的影响
Then, the binding mode of 16 was elucidated by the docking study. As shown in Figure 5, The 5-methyl of the pyrrole core inserted into a narrow cavity and formed additional hydrophobic interactions with Phe228, Met231, and Phe270 in the P2 pocket, which led to an improvement in activity.
然后,通过对接研究阐明了 16 的结合模式。如图 5 所示,吡咯核心的 5-甲基插入到一个狭窄的空腔中,并与 P2 口袋中的 Phe228、Met231 和 Phe270 形成额外的疏水相互作用,从而提高了活性。

Figure 5 图 5

Figure 5. Proposed binding mode of 16 with Mcl-1 using molecular docking. The docking site was derived from the position of the small-molecular ligand cocrystallized in the binding site of Mcl-1 (PDB 4HW2). The ligand is represented as sticks. The hydrogen bonds are represented by green dashed lines, and the π–σ and π–alkyl interactions are represented by pink dashed lines. The carbon atoms of small molecules and Mcl-1 residues are colored cyan and green, respectively.
图 5.利用分子对接法推测的 16 与 Mcl-1 的结合模式。对接位点是根据小分子配体在 Mcl-1 结合位点(PDB 4HW2)中的共晶体位置推导出来的。配体用棍棒表示。氢键用绿色虚线表示,π-σ 和 π-烷基相互作用用粉色虚线表示。小分子和 Mcl-1 残基的碳原子分别用青色和绿色表示。

Effects of Ring Transformation at the Sulfone Linker on Mcl-1 Inhibition
砜连接体上的环转变对 Mcl-1 抑制作用的影响

Then, we evaluated the effects of various rings at the sulfone linker on Mcl-1 inhibitory activity. Replacing the phenyl ring with more polar pyridyl rings (25, 26) exhibited a more than 10-fold decreased potency. The thienyl ring (27) showed improved activity, while the bicyclic naphthyl ring (28) showed weaker activity compared to 16. The cycloalkane analogs are inactive (29, 30), which suggested that the π-system of the rings attached to the sulfone linker was necessary for Mcl-1 inhibition (Table 3).
然后,我们评估了砜连接环上的各种环对 Mcl-1 抑制活性的影响。用极性更强的吡啶环取代苯基环(25、26)后,其效力降低了 10 倍以上。噻吩环(27)的活性有所提高,而双环萘环(28)的活性则比 16 弱。环烷类似物没有活性(29、30),这表明连接到砜连接体上的环的π-系统是抑制 Mcl-1 的必要条件(表 3)。
Table 3. SAR Study Focused on Rings on the Sulfone Linker
表 3.以砜基连接体上的环为重点的 SAR 研究
In addition to Mcl-1 inhibition activity, we also predicted drug-like properties of all compounds by ADMET 10.0 software for avoiding potential druggability issues (Supporting Information, Table S1). Most compounds possessed proper predicated solubility, absorption property, and CYP inhibition profiles. Thus, the detailed SAR study of the substituted phenyl ring was carried out to enhance the activity.
除了 Mcl-1 抑制活性外,我们还通过 ADMET 10.0 软件预测了所有化合物的类药物特性,以避免潜在的可药性问题(佐证资料,表 S1)。大多数化合物都具有适当的预测溶解度、吸收特性和 CYP 抑制特征。因此,我们对取代的苯基环进行了详细的 SAR 研究,以提高其活性。

Modifications on the Substituents of the Phenyl Ring
对苯环取代基的修改

First, we compared the substituent position effects of the phenyl ring. A library of compounds (31–43) with different substitution patterns on the phenyl ring was prepared. As shown in Table 4, 31 with a non-substituted phenyl ring possessed similar potency to 4-methyl-substituted 16. Substitutions at the 2-position and 3-position (32–37 and 39) yielded similar or decreased potency compared to 31 except for 38 with 3-Br substitution exhibiting improved inhibitory activity. Potency was improved by substitutions at the 4-position, as exemplified by compounds 40–43. The most potent compounds, 40 with 4-acetyl substitution and 43 with 4-OH substitution, showed about 10-fold improved potency.
首先,我们比较了苯基环上取代基位置的影响。我们制备了一个苯环上具有不同取代模式的化合物库(31-43)。如表 4 所示,未取代苯环的 31 与 4-甲基取代的 16 具有相似的效力。2 位和 3 位取代(32-37 和 39)产生的效力与 31 相似或有所降低,只有 3-Br 取代的 38 的抑制活性有所提高。在 4 位进行取代后,化合物 40-43 的效力有所提高。效力最强的化合物是 4-乙酰取代的 40 和 4-OH 取代的 43,其效力提高了约 10 倍。
Table 4. SAR Study Focused on Substitution on the Phenyl Ring
表 4.以苯环取代为重点的 SAR 研究
cpdRKi ± SE (μM)cpdRKi ± SE (μM)
164-CH30.17 ± 0.04454-isopropyl 4-异丙基0.17 ± 0.03
31H0.19 ± 0.03464-tert-butyl 4-叔丁基0.34 ± 0.09
322-COCH30.50 ± 0.13474-OEt0.14 ± 0.03
332-OCH30.43 ± 0.12484-Ph 4 相0.13 ± 0.03
342-Br 2 卧室>10494-COPh0.38 ± 0.05
352-OH0.15 ± 0.02504-OPh0.20 ± 0.03
363-COCH30.55 ± 0.16514-F0.26 ± 0.10
373-OCH30.20 ± 0.05524-Cl0.18 ± 0.03
383-Br 3 卧室0.060 ± 0.013534-NO2 4-无 {{0}0.42 ± 0.08
393-OH0.15 ± 0.04544-COOH0.42 ± 0.07
404-COCH30.020 ± 0.001554-NH2 4-NH {{0}0.34 ± 0.06
414-OCH30.070 ± 0.010562,6-diMe 2,6-二甲基甲酰胺>10
424-Br0.040 ± 0.005573,5-diMe 3,5-二甲基甲酰胺>10
434-OH0.018 ± 0.002AZD5991 <0.001 <0.001
444-ethyl 4-乙基0.070 ± 0.020 0.070 ± 0.020A1210477 0.006 ± 0.001 0.006 ± 0.001
Compounds with various groups at the 4-position were then prepared (44–55). Generally, as shown in Table 4, the phenyl ring can tolerate a variety of substituents at the 4-position. 44 with 4-ethyl substitution exhibited a minor increased potency over 31. Meanwhile, disubstitution on the phenyl ring led to compounds 5657 with abolished activity.
然后制备出了在 4 位上带有各种基团的化合物(44-55)。一般来说,如表 4 所示,苯基环可以容忍 4 位上的各种取代基。44 与 31 相比,4-乙基取代物的效力略有提高。同时,苯基环上的二取代导致 56-57 号化合物的活性降低。
The most potent compounds of this set, 40 and 43, possessed suitable predicated ADME properties, except the poor predicated membrane permeability of 43 (Supporting Information, Table S1).
这组化合物中最强效的 40 和 43 具有合适的预示 ADME 特性,但 43 的预示膜渗透性较差(佐证资料,表 S1)。
The binding modes of 40 and 43 were investigated by docking. As depicted in Figure 6, compared with 16, 40 and 43 possessed similar binding modes. In addition, the 4-acetyl group of 40 formed a hydrogen bond with Lys234 and the 4-OH of 43 formed a hydrogen bond with Ala227. The hydrogen bonds may contribute to the 10-fold improved Ki of both compounds.
通过对接研究了 40 和 43 的结合模式。如图 6 所示,与 16 相比,40 和 43 具有相似的结合模式。此外,40 的 4-乙酰基与 Lys234 形成了氢键,43 的 4-OH 与 Ala227 形成了氢键。氢键可能是这两种化合物的 K 值提高 10 倍的原因。

Figure 6 图 6

Figure 6. Purposed binding modes of 40 (A) and 43 (B) with Mcl-1 using molecular docking. The docking site was derived from the position of the small-molecular ligand cocrystallized in the binding site of Mcl-1 (PDB 4HW2). The ligand is represented as sticks. Hydrogen bonds are represented by green dashed lines, and π–σ and π–alkyl interactions are represented by pink dashed lines. The carbon atoms of small molecules and Mcl-1 residues are colored purple and green, respectively.
图 6.利用分子对接法推测的 40(A)和 43(B)与 Mcl-1 的结合模式。对接位点来自 Mcl-1 结合位点(PDB 4HW2)中共晶体化的小分子配体的位置。配体用棍棒表示。氢键用绿色虚线表示,π-σ 和 π-烷基相互作用用粉色虚线表示。小分子和 Mcl-1 残基的碳原子分别用紫色和绿色表示。

In Vitro Selectivity Evaluation
体外选择性评估

Representative compounds 27, 40, 41, 42, 43, and 44 were selected for testing their selectivity over other Bcl-2 family members (Bcl-2, Bcl-xL, and Bfl-1) by an FP-based assay or time-resolved fluorescence resonance energy transfer (TR-FRET) based assay. The results implicated that all compounds showed promising selectivity as no significant inhibition against other Bcl-2 family members was observed at a concentration of 10 μM (Table 5). 40 was selected for the binding selectivity assay by DiscoverX’s Bcl-2scan technology. (71) As shown in Figure 7, 40 possessed high Mcl-1 binding affinity with a Kd of 0.23 nM, whereas no binding was observed against Bcl-2, Bcl-xL, Bcl-w, and Bcl2A1 (Kd ≥ 10,000 nM). 40 exhibited hugely improved selectivity (>40,000 folds) over Bcl-2 compared to compound 2 (Mcl-1, Ki = 55 nM; Bcl-2, Ki = 870 nM). The remarkably improved selectivity of 40 could be illustrated by the overlay of 40 and 2 (Figure 8A). The sulfone linker constrained the angle between the phenyl group and the pyrrole core. As a result, the 4-(phenylsulfonyl)-1H-pyrrole core of 40 occupied the entire upper part of the P2 pocket. Also, the proper angle forced the 4-atom linker of 40 to insert into the lower part of Mcl-1’s P2 pocket deeper than that of 2. The P2 pocket of Bcl-2 was narrower and shallower than that of Mcl-1 (Figure 8B). Consequently, the P2 pocket of Bcl-2 could hardly accommodate 40, which led to the high selectivity of 40.
通过基于 FP 的检测或基于时间分辨荧光共振能量转移(TR-FRET)的检测,选出了具有代表性的化合物 27、40、41、42、43 和 44,以测试它们对其他 Bcl-2 家族成员(Bcl-2、Bcl-xL 和 Bfl-1)的选择性。结果表明,所有化合物都显示出良好的选择性,因为在 10 μM 的浓度下,没有观察到对其他 Bcl-2 家族成员的明显抑制作用(表 5)。通过 DiscoverX 的 Bcl-2scan 技术,40 被选中进行结合选择性检测。(71)如图 7 所示,40 与 Mcl-1 的结合亲和力很高,K d 为 0.23 nM,而与 Bcl-2、Bcl-xL、Bcl-w 和 Bcl2A1 的结合亲和力不高(K d ≥ 10,000 nM)。与化合物 2 相比,40 对 Bcl-2 的选择性大大提高(>40,000 倍)(Mcl-1,K = 55 nM;Bcl-2,K = 870 nM)。40 和 2 的重叠图(图 8A)可以说明 40 的选择性显著提高。砜连接物限制了苯基和吡咯核心之间的角度。因此,40 的 4-(苯磺酰基)-1H-吡咯核心占据了 P2 口袋的整个上部。此外,由于角度适当,40 的 4 原子连接体插入 Mcl-1 P2 袋下部的深度比 2 的深。Bcl-2 的 P2 袋比 Mcl-1 的窄而浅(图 8B)。因此,Bcl-2 的 P2 袋很难容纳 40,这就导致了 40 的高选择性。

Figure 7 图 7

Figure 7. Binding affinities of 40 to Mcl-1 and other Bcl-2 family members.
图 7.40 与 Mcl-1 及其他 Bcl-2 家族成员的结合亲和力。

Figure 8 图 8

Figure 8. Bcl-2 could not accommodate 40 due to the shallow and narrow P2 pocket. (A) Overlay of compound 2 (green) and 40 (purple). (B) Comparison of P2 pockets of Mcl-1 and Bcl-2.
图 8.由于 P2 袋又浅又窄,Bcl-2 无法容纳 40。(A)化合物 2(绿色)和 40(紫色)的叠加。(B)Mcl-1 和 Bcl-2 P2 袋的比较。

Table 5. In Vitro Selectivity Evaluation
表 5.体外选择性评估
cpdMcl-1 (Ki ± SE, μM)Bcl-2aBcl-xLbBfl-1a
270.080 ± 0.0207.5437NA
400.020 ± 0.00110.00NA1.57
410.070 ± 0.01014.16271.82
420.040 ± 0.00511.64134.14
430.018 ± 0.002NANANA
440.070 ± 0.020 0.070 ± 0.02012.14368.77
a

FP, inhibition@10 μM (%).


a FP, inhibition@10 μM (%).
b

TR-FRET, inhibition@10 μM (%).


b TR-FRET, inhibition@10 μM (%).

In Vitro Anticancer Effects
体外抗癌效果

After confirming the Mcl-1-targeting ability in vitro, 27, 40, 41, 42, 43, and 44 were then tested for their antiproliferative activities against the tumor cell lines sensitive to Mcl-1 inhibitors (H929, MV4-11, SK-BR-3, and NCI-H23) (53,67,72) and the insensitive K562 cell line (49,53) through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colourimetric (MTT) assay. A1210477 and AZD5991 were selected as positive controls. As shown in Table 6, all compounds showed submicromolar activities against the MM cell line H929. 27, 40, 41, 42, and 44 showed better in vitro antitumor efficacy compared to the known Mcl-1 inhibitor A1210477. In spite of the high Mcl-1 inhibitory activity, 43 did not perform that potency against cancer cell lines in vitro. The result may attribute to its poor permeability resulted by 4-OH. In the acute myeloid leukemia (AML) cell line MV4-11, all compounds showed decreased activities while 40 retained the submicromolar potency. Decreased potencies were observed in breast cancer cell line SK-BR-3 and NSCLC cell line NCI-H23 of all compounds, which was in line with other Mcl-1 inhibitors’ performance in solid cancer cell lines. (67,68)40, 41, 42, and 44 showed ideal selectivity against CML cell line K562 (IC50 > 30 μM).
在体外确认了 Mcl-1 靶向能力后,27、40、41、42、43 和 44 对 Mcl-1 抑制剂敏感的肿瘤细胞系(H929、MV4-11、SK-BR-3 和 NCI-H23)(53、67、72)和不敏感的 K562 细胞系(49、53)进行了抗增殖活性测试、MV4-11、SK-BR-3 和 NCI-H23)(53,67,72)和对 Mcl-1 抑制剂不敏感的 K562 细胞系(49,53)的抗增殖活性进行了 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑比色法(MTT)试验。A1210477 和 AZD5991 被选为阳性对照。如表 6 所示,所有化合物对 MM 细胞株 H929 都显示出亚摩尔活性。与已知的 Mcl-1 抑制剂 A1210477 相比,27、40、41、42 和 44 显示出更好的体外抗肿瘤功效。尽管 43 具有很高的 Mcl-1 抑制活性,但其体外抗癌细胞株的效力并不明显。这可能是因为 4-OH 导致其渗透性较差。在急性髓性白血病(AML)细胞系 MV4-11 中,所有化合物的活性都有所下降,而 40 仍保持亚摩尔效力。在乳腺癌细胞株 SK-BR-3 和 NSCLC 细胞株 NCI-H23 中,所有化合物的效力都有所下降,这与其他 Mcl-1 抑制剂在实体癌细胞株中的表现一致。(67,68)40、41、42 和 44 对 CML 细胞株 K562 表现出理想的选择性(IC 50 > 30 μM)。
Table 6. Antiproliferative Activities against Different Cell Linesa
表 6.对不同细胞株的抗增殖活性 a
cpdH929MV4-11SK-BR-3NCI-H23K562
270.70 ± 0.122.30 ± 0.455.13 ± 0.663.10 ± 1.7311.3 ± 1.76
400.36 ± 0.090.70 ± 0.072.84 ± 0.663.02 ± 1.35>30
410.39 ± 0.091.56 ± 0.246.27 ± 1.899.72 ± 2.33>30
420.48 ± 0.171.70 ± 0.635.60 ± 1.213.84 ± 1.24>30
431.39 ± 0.312.02 ± 0.287.02 ± 1.072.16 ± 0.7514.8 ± 3.07 14.8 ± 3.07
440.49 ± 0.052.59 ± 0.313.92 ± 1.655.41 ± 1.26>30
A12104770.90 ± 0.291.55 ± 0.474.31 ± 1.29 4.31 ± 1.2913.5 ± 2.81>30
AZD59910.036 ± 0.008 0.036 ± 0.0080.024 ± 0.006 0.024 ± 0.006>300.19 ± 0.04 0.19 ± 0.0429.6 ± 5.3
a

Values shown are the mean IC50 ± SD (μM, n = 3).


a 所示数值为平均 IC 50 ± SD(μM)(n = 3)。± SD(μM,n = 3)。

40 Effectively Induced Apoptosis in an Mcl-1-Dependent Manner
40 以 Mcl-1 依赖性方式有效诱导细胞凋亡

As 40 showed ideal target affinity and antiproliferative activities, it was selected for further biological evaluation. A coimmunoprecipitation (Co-ip) experiment was performed to evaluate the on-target Mcl-1 inhibition of 40 in living cells. H929 cells were treated with increasing concentrations of 40 or positive control AZD5991 (0.05 μM), respectively. The Mcl-1-Bak complex was monitored by western blot (WB) analysis. The results (Figure 9A) demonstrated that 40 could displace Bak protein from Mcl-1 in a concentration-dependent manner. To verify if compound 40 could induce apoptosis in cells, an annexin-V and propidium iodide (PI) double staining assay was applied in H929 cells at concentrations of 1 and 5 μM. As shown in Figure 9B–G, 40 and positive control A1210477 significantly induced apoptosis in a concentration-dependent manner. Apoptosis ratio analysis demonstrated that 40 was more potent in inducing apoptosis than A1210477. To further prove that 40 could activate apoptosis signaling, effects of 40 on the poly ADP-ribose polymerase (PARP) cleavage and caspase activation were evaluated in H929 cells and also in K562 cells to assess off-target effects. Both cell lines were incubated with 40 and A1210477 at concentrations of 0, 0.1, 0.5, 1, and 5 μM. The amount of cleaved PARP (cPARP) was evaluated by the WB assay. As shown in Figure 9H,I, 40 and A1210477 remarkably upregulated PARP cleavage in H929 cells in a concentration-dependent manner. However, the same treatment in K562 cells did not induce comparable PARP cleavage. In caspase activation assay, K562 cells and H929 cells were exposed to 40 and A1210477 at indicated concentrations for 4 h and the caspase activation folds were determined by caspase assay kits. As shown in Figure 9J,K, 40 concentration-dependently activated caspase 3/7 in H929 cells, which is more potent than A1210477. However, caspase activation was not observed in K562 cells after the same treatment of 40 and A1210477. Collectively, these results showed that 40 activated the apoptosis in an Mcl-1-dependent manner.
由于 40 表现出理想的靶向亲和力和抗增殖活性,因此被选中进行进一步的生物学评估。为了评估 40 在活细胞中对 Mcl-1 的靶向抑制作用,我们进行了共免疫沉淀(Co-ip)实验。分别用浓度递增的 40 或阳性对照 AZD5991(0.05 μM)处理 H929 细胞。通过免疫印迹(WB)分析监测 Mcl-1-Bak 复合物。结果(图 9A)表明,40 能以浓度依赖的方式将 Bak 蛋白从 Mcl-1 中置换出来。为了验证化合物 40 能否诱导细胞凋亡,在浓度为 1 μM 和 5 μM 的 H929 细胞中进行了附件素-V 和碘化丙啶(PI)双重染色试验。如图 9B-G 所示,40 和阳性对照 A1210477 以浓度依赖性方式显著诱导细胞凋亡。凋亡比率分析表明,40 比 A1210477 更能诱导细胞凋亡。为了进一步证明 40 能激活细胞凋亡信号,我们在 H929 细胞和 K562 细胞中评估了 40 对多聚 ADP 核糖聚合酶(PARP)裂解和 caspase 激活的影响,以评估其脱靶效应。这两种细胞株均与浓度为 0、0.1、0.5、1 和 5 μM 的 40 和 A1210477 一起培养。裂解 PARP(cPARP)的量通过 WB 检测法进行评估。如图 9H,I 所示,40 和 A1210477 显著上调了 H929 细胞中 PARP 的裂解,且呈浓度依赖性。然而,同样的处理在 K562 细胞中并没有诱导类似的 PARP 分裂。在caspase活化试验中,K562细胞和H929细胞暴露于40和A1210477(指定浓度)4小时,用caspase检测试剂盒测定caspase活化倍数。如图 9J、K 所示,40 浓度依赖性地激活了 H929 细胞中的 caspase 3/7,其作用比 A1210477 更强。然而,在 K562 细胞中,同样处理 40 和 A1210477 后,未观察到 caspase 激活。总之,这些结果表明 40 能以 Mcl-1 依赖性方式激活细胞凋亡。

Figure 9 图 9

Figure 9. 40 induced apoptosis in an Mcl-1-dependent manner. (A) Co-ip experiment of 40 and AZD5991 in H929 cells. (B–G) Flow cytometry assay of 40 and A1210477 in H929 cells at concentrations of 1 μM and 5 μM. (H,I) WB assay of 40 and A1210477 in H929 cells and K562 cells at concentrations of 0, 0.1, 0.5, 1, and 5 μM. (J,K) Caspase activation abilities of 40 and A1210477 in H929 cells and K562 cells at concentrations of 0, 0.1, 0.5, 1, and 5 μM. The values shown are the means ± SEM (n = 3 independent observations), ns = no significant, ***p < 0.001, ****p < 0.0001 one-way ANOVA with Tukey–Kramer posttest.
图 9.40 以 Mcl-1 依赖性方式诱导细胞凋亡。(A)40 和 AZD5991 在 H929 细胞中的 Co-ip 实验。(B-G)40 和 A1210477 在 1 μM 和 5 μM 浓度下对 H929 细胞的流式细胞术检测。(H,I) 40 和 A1210477 在浓度为 0、0.1、0.5、1 和 5 μM 的 H929 细胞和 K562 细胞中的 WB 检测。(J,K)浓度为 0、0.1、0.5、1 和 5 μM 的 40 和 A1210477 在 H929 细胞和 K562 细胞中的 Caspase 活化能力。所示数值为平均值 ± SEM(n = 3 个独立观察值),ns = 无显著性,***p < 0.001,****p < 0.0001 单因素方差分析,Tukey-Kramer 后验。

Drug-Like Properties Evaluation of 40
40 种药物的类药物特性评估

After confirming that 40 possessed desired cellular activity, drug-like properties evaluations were carried out. As shown in Table 7, 40 showed favorable water solubility and permeability in the parallel artificial membrane permeability assay (PAMPA). CYP inhibition determination showed that 40 had no pronounced inhibition against five major isozymes at a concentration of 10 μM (Table 7). In further evaluations, 40 exhibited acceptable stability in simulated intestinal fluid (SIF), simulated gastric fluid (SGF), mouse and human plasma, and rat and human liver microsomes (RLM and HLM) (Table 8). In the Caco-2 cell model, 40 showed moderate permeability and no significant efflux was observed. In addition, 40 displayed no hERG channel inhibition (Table 8 and Supporting Information, Figure S1). In vivo pharmacokinetic (PK) profiles of 40 were evaluated in SD rats. Intravenous (iv) administration of 40 at a dose of 3 mg/kg showed an acceptable half-life of 2.3 h. Of note, 40 showed favorable bioavailability (F% = 41.3%) by oral (po) administration (Figure 10). Taken together, 40 exhibited good druglike properties.
在确认 40 具有所需的细胞活性后,进行了类药物特性评估。如表 7 所示,在平行人工膜渗透性试验(PAMPA)中,40 表现出良好的水溶性和渗透性。CYP 抑制测定显示,在 10 μM 浓度下,40 对五种主要同工酶没有明显的抑制作用(表 7)。在进一步的评估中,40 在模拟肠液(SIF)、模拟胃液(SGF)、小鼠和人血浆以及大鼠和人肝微粒体(RLM 和 HLM)中表现出可接受的稳定性(表 8)。在 Caco-2 细胞模型中,40 表现出中等渗透性,未观察到明显的外流。此外,40 对 hERG 通道没有抑制作用(表 8 和证明资料,图 S1)。在 SD 大鼠体内评估了 40 的体内药代动力学(PK)特征。以 3 毫克/千克的剂量静脉注射(iv)40,半衰期为 2.3 小时,可以接受。值得注意的是,口服(po)40 表现出良好的生物利用度(F% = 41.3%)(图 10)。综上所述,40 表现出良好的类药物特性。

Figure 10 图 10

Figure 10. In vivo PK parameters of 40. The values shown are the means. Bars represent SEM.
图 10.40 的体内 PK 参数。所示数值为平均值。条形图代表 SEM。

Table 7. PAMPA Permeability Dataa, Solubility, and CYP450 Isozyme Inhibition Assayb of 40
表 7.PAMPA 渗透性数据 a 40 的 PAMPA 渗透性数据a 、溶解度和 CYP450 同工酶抑制试验 b
parameters40
PAMPA permeability PAMPA 渗透率52.6 ± 1.10 52.6 ± 1.10
solubility (μg/mL) 溶解度(微克/毫升)32.3
CYP450 isozymes: 1A2, 2C9, 2C19, 2D6, 3A4
CYP450 同工酶:1A2、2C9、2C19、2D6、3A4
Inhibition rates (%): 19.30, 26.04, 2.85, 9.13, 29.36
抑制率(%):19.30, 26.04, 2.85, 9.13, 29.36
a

Average of two runs ± standard deviation (SD). PAMPA permeability values were determined at pH 7.4 (10–6 cm/s).


a 两次运行的平均值 ± 标准偏差 (SD)。PAMPA 渗透率值是在 pH 值为 7.4(10 –6 cm/s )时测定的。
b

Inhibitory rates (%) against the CYP450 enzymes at a concentration of 10 μM. 7-ethoxycoumarin, sulfaphenazole, omeprazole, promethazine, and fluconazole were positive controls for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively


b 浓度为 10 μM 时对 CYP450 酶的抑制率(%)。7-乙氧基香豆素、磺胺苯环唑、奥美拉唑、异丙嗪和氟康唑分别是 CYP1A2、CYP2C9、CYP2C19、CYP2D6 和 CYP3A4 的阳性对照药
Table 8. Stability in SIFa, SGFa, Mouse, and Human Plasmab, in Vitro Metabolic Stability in RLM and HLM, Caco-2 Data, and hERG Channel Inhibitory Activity of 40
表 8.SIF a 中的稳定性、SGF a 、小鼠和人血浆中的稳定性 b 、RLM 和 HLM 中的体外代谢稳定性、Caco-2 数据以及 hERG 数据。在 RLM 和 HLM 中的体外代谢稳定性、Caco-2 数据和 40 的 hERG 通道抑制活性
parameters40
SIF85.19
SGF84.50
mouse plasma 小鼠血浆100.00
human plasma 人血浆96.50
RLM T1/2 (hr) RLM T 1/2 (小时)0.75
RLM Clint (μL/min/mg) RLM Cl int (微升/分钟/毫克)31.40
RLM 30 min remaining (%)
RLM 30 分钟剩余量(%)
58.11
HLM T1/2 (hr) HLM T 1/2 (小时)0.83
HLM Clint (μL/min/mg) HLM Cl int (微升/分钟/毫克)67.50
HLM 30 min remaining (%)
HLM 30 分钟剩余时间 (%)
64.00
Caco-2 permeability (nm/s) (A → B)
Caco-2 渗透率(纳米/秒)(A → B)
36.2
efflux ratio 流出比0.1
hERG (IC50, μM)
hERG(IC 50 ,μM)
> 30 > 30
a

Remaining (%) after 6 h of incubation.


a 培养 6 小时后的剩余量(%)。
b

Remaining (%) after 2 h of incubation.


b 培养 2 小时后的剩余量(%)。

In Vivo Antitumor Efficacy of 40
40 种抗肿瘤药物的体内抗肿瘤功效

Then, in vivo antitumor efficacy evaluation of 40 was carried out on balb/c nude female mice loaded with MV4-11 xenograft. The clinical candidate AZD5991 was selected as a positive control. After po administration of 40 (n = 6, 60 mpk) and intraperitoneal (ip) administration of 40 (n = 6, 20 mpk) and AZD5991 (n = 6, 10 mpk) every two days for 14 days, as shown in Figure 11A and Figure S2, po administration of 40 showed desired in vivo tumor growth inhibition activity (T/C = 37.30%) and ip administration of 40 shared equal antitumor activity (T/C = 5.52%) with positive control AZD5991 (T/C = 5.18%). Moreover, the administration of 40 did not induce significant changes in body weight and organ weight (Figure 11B,C). Hematoxylin–eosin (H&E) staining revealed that 40 could induce necrosis of MV4-11 tumor tissues but showed no effect on hearts, livers, or kidneys (Figure 11D). To ascertain the apoptosis pathway activation of 40in vivo, the WB assay was used to evaluate PARP cleavage in tumor biopsies of each group. As shown in Figure 11E, compared with the vehicle group, administration of 40 and AZD5991 could activate cleavage of PARP. Consistent with antitumor efficacy and WB results, increased TUNEL staining was observed in isolated tumors of treated groups (Figure 11F and Supporting Information, Figure S3). These results demonstrated that 40 was well tolerated and orally efficacious in the MV4-11 xenograft model.
然后,在装有 MV4-11 xenograft 的 balb/c 裸露雌性小鼠身上对 40 进行了体内抗肿瘤疗效评估。临床候选药物 AZD5991 被选为阳性对照。如图 11A 和图 S2 所示,腹腔注射 40(n = 6,60 mpk)和腹腔注射 40(n = 6,20 mpk)和 AZD5991(n = 6,10 mpk)14 天后,40 表现出理想的体内肿瘤生长抑制活性(T/C = 37.30%),ip给药40与阳性对照AZD5991(T/C = 5.18%)具有相同的抗肿瘤活性(T/C = 5.52%)。此外,服用 40 不会引起体重和器官重量的显著变化(图 11B,C)。血红素-伊红(H&E)染色显示,40能诱导MV4-11肿瘤组织坏死,但对心脏、肝脏或肾脏没有影响(图11D)。为了确定 40 在体内激活凋亡途径的情况,我们用 WB 检测法评估了各组肿瘤活检组织中 PARP 的裂解情况。如图 11E 所示,与给药组相比,服用 40 和 AZD5991 可激活 PARP 的裂解。与抗肿瘤疗效和 WB 结果一致的是,在治疗组的离体肿瘤中观察到 TUNEL 染色增加(图 11F 和证明资料,图 S3)。这些结果表明,40 在 MV4-11 异种移植模型中具有良好的耐受性和口服疗效。

Figure 11 图 11

Figure 11. Antitumor efficacy of compound 40 in nude mice loaded with MV4-11 xenografts. (A) Tumor volume change. The values shown are the means ± SEM **p < 0.01, and ****p < 0.0001, one-way ANOVA with the Tukey–Kramer posttest. (B) Body weight change. (C) Organ weight change. The values shown are the means. Bars represent SEM. (D) Representative HE staining images of tumor tissues and organ tissues. Scale bar 200 μM. (E) WB assay of tumor tissues. (n = 2 for each group). (F) Representative images of tunel assay of tumor tissues. Scale bar 200 μM.
图 11.化合物 40 在装有 MV4-11 异种移植物的裸鼠中的抗肿瘤效果。(A)肿瘤体积变化。所示数值为平均值 ± SEM **p < 0.01,****p < 0.0001,单因素方差分析,Tukey-Kramer 后验。(B) 体重变化。(C) 器官重量变化。所示数值为平均值。条代表 SEM。(D) 肿瘤组织和器官组织的代表性 HE 染色图像。标尺条 200 μM。(E)肿瘤组织的 WB 检测。(每组 n = 2)。(F)肿瘤组织 Tunel 检测的代表性图像。缩放条 200 μM。

Chemistry 化学

Target compounds 11 and 12 were synthesized according to Scheme 1. In the presence of K2CO3, the reaction of commercially available 4-chloro-3,5-dimethylphenol (58) with 1,3-dibromopropane by nucleophilic substitution yielded intermediate 59. With AlCl3 as the Lewis acid, the Friedel–Crafts acylation reaction of starting material methyl 1H-pyrrole-2-carboxylate 60 and 4-methylbenzoyl chloride in DCM gave intermediate 61. Carbonyl reduction of 61 by triethylsilane in THF under nitrogen yielded intermediate 62. In the presence of Cs2CO3, 61 and 62 reacted with 59 to obtain 64 and 63 in DMF. Final hydrolysis of 63 and 64 by NaOH in THF/MeOH gave target compounds 11 and 12.
目标化合物 11 和 12 是根据方案 1 合成的。在 K 2 的存在下CO 3 的条件下的条件下,市售的 4-氯-3,5-二甲基苯酚(58)与 1,3-二溴丙烷发生亲核取代反应,生成中间体 59。以 AlCl 3 作为路易斯酸,1H-吡咯-2-羧酸甲酯 60 和 4-甲基苯甲酰氯在 DCM 中进行弗里德尔-卡夫斯酰化反应,得到中间体 61。在氮气条件下,在 THF 中用三乙基硅烷对 61 进行羰基还原,得到中间体 62。在 Cs 2 的存在下CO 3 61 和 62 与 59 反应,在 DMF 中得到 64 和 63。最后,63 和 64 在 THF/MeOH 中被 NaOH 水解,得到目标化合物 11 和 12。

Scheme 1 方案 1

Scheme 1. Synthesis of Target Compounds 11 and 12a
方案 1.目标化合物 11 和 12 的合成 a

aReagents and conditions: (a) 1,3-dibromopropane, K2CO3, CH3CN, 90 °C, 3 h, 75%. (b) 4-methylbenzoyl chloride, AlCl3, DCM, N2, 0 °C–r.t. 2 h, 68%. (c) triethylsilane, THF, N2, r.t. 2 h, 65%. (d) 59, Cs2CO3, DMF, 60 °C, 1 h, 84–89%. (e) NaOH (2 M), THF/MeOH = 1:1, 50 °C, overnight, 78–95%.
a 试剂和条件: (a) 1,3-二溴丙烷,K 2 CO 3 CH 3 CNCN,90 °C,3 小时,75%。(b) 4-甲基苯甲酰氯,AlCl 3 ,DCM,N 2 。(b) 4-甲基苯甲酰氯,AlCl {{4} ,DCM,N 2 。,0℃-r.t. 2 小时,68%。(c) 三乙基硅烷,四氢呋喃,N 2 ,2 小时,68%。2 小时,65%。(d) 59,Cs 2 CO 3 ,DMF,60℃,1 小时,84-89%。(e) NaOH(2 M),THF/MeOH = 1:1,50℃,过夜,78-95%。

Target compound 13 and analogue 20 were synthesized according to Scheme 2 from commercially available 65a-b. With Ag2CO3 as the catalyst, in the presence of methyl isocyanate, silver-catalyzed isocyanide-alkyne cycloaddition of 65a-b yielded 66a-b in 1,4-dioxane. (73) Subsequently, in the presence of NaH, the electrophilic substitution reaction of 66a-b and 59 gave 67a-b. Methyl ester groups of 67a-b were hydrolyzed by NaOH (2 M) in MeOH/THF to yield target compounds 13 and 20.
目标化合物 13 和类似物 20 是根据方案 2 从市售 65a-b 合成的。以 Ag 2 CO 3 为催化剂,在异氰酸甲酯存在的情况下,银催化CO 3 作为催化剂,在异氰酸甲酯存在下,银催化 65a-b 的异氰酸-炔环加成反应在 1,4- 二氧六环中生成了 66a-b。(73) 随后,在 NaH 的存在下,66a-b 和 59 发生亲电取代反应,生成 67a-b。67a-b 的甲酯基团在 MeOH/THF 中被 NaOH(2 M)水解,得到目标化合物 13 和 20。

Scheme 2 方案 2

Scheme 2. Synthesis of Target Compound 13 and 20a
方案 2.目标化合物 13 和 20 的合成 a

aReagents and conditions: (a) methyl isocyanate, Ag2CO3, 1,4-dioxane, 80 °C, 30 min, 18–25%. (b) 59, NaH, DMF, 0 °C–r.t. 0.5 h, 35–42%. (c) NaOH (2 M), THF/MeOH = 1:1, 50 °C, overnight, 62–72%.
a 试剂和条件: (a) 异氰酸甲酯、Ag 2 CO 3 ,1,4-二氧六环,80℃,30 分钟,18-25%。(b) 59,NaH,DMF,0℃-r.t. 0.5 小时,35-42%。(c) NaOH(2 M),THF/MeOH = 1:1,50℃,过夜,62-72%。

Target compounds 14 and 15 were synthesized according to Scheme 3. In the presence of Cs2CO3, starting material ethyl 4-nitro-1H-pyrrole-2-carboxylate 68 reacted with 59 to give 69. The nitro group of 69 was reduced to amino group by tin(II) dichloride dehydrate (SnCl2·2H2O) in EtOH and subsequent sulfonylation with TosCl gave intermediate 70. Hydrolysis of 70 by NaOH (2 M) in MeOH/THF gave target compound 14. Nitro reduction of 69 by SnCl2 and subsequent tert-butyloxycarbonyl (Boc) protection of the amino group gave compound 71. In the presence of NaH, the electrophilic substitution reaction of 71 and 4-methylbenzyl bromide yielded 72. Subsequent deprotection of the Boc group by CF3COOH gave 73 and hydrolysis of 73 yielded target compound 15.
目标化合物 14 和 15 是根据方案 3 合成的。在 Cs 2 的存在下CO 3 的条件下起始原料 4-硝基-1H-吡咯-2-羧酸乙酯 68 与 59 反应生成 69。在 EtOH 中,69 的硝基被脱水二氯化锡(SnCl 2 -2H 2 O)还原成氨基,然后用 TosCl 进行磺化反应,得到中间体 70。在 MeOH/THF 中用 NaOH(2 M)水解 70,得到目标化合物 14。用 SnCl 2 对 69 进行硝基还原,然后对氨基进行叔丁氧羰基(Boc)保护,得到化合物 71。在 NaH 存在下,71 与 4-甲基溴化苄发生亲电取代反应,得到 72。随后用 CF 3 COOH 对 Boc 基团进行脱保护,得到 73。COOH 对 Boc 基团进行脱保护,得到 73,73 的水解反应得到目标化合物 15。

Scheme 3 方案 3

Scheme 3. Synthesis of Target Compound 14 and 15a
方案 3.目标化合物 14 和 15 的合成 a

aReagents and conditions: (a) 59, Cs2CO3, DMF, 60 °C, 1 h, 75%. (b) SnCl2·2H2O, N2, EtOH, 60 °C, 4 h. (c) Pyridine, TosCl, r.t. 1 h, 38%. (d) NaOH (2 M), THF/MeOH = 1:1, 50 °C, overnight, 43–64%. (e) (Boc)2O, EtOH, r.t. 1 h, 46%. (f) 4-Methylbenzyl bromide, NaH, r.t. 0.5 h, 73%. (g) CF3COOH, r.t. 1.5 h, 95%.
a 试剂和条件: (a) 59, Cs 2 CO 3 ,DMF,60 °C,1 小时,75%。(b) SnCl 2 -2H 2 -2H 2 O, N 2 (c) 吡啶,TosCl,反应 1 小时,38%。(d) NaOH(2 M),THF/MeOH = 1:1,50℃,过夜,43-64%。(e) (Boc) 2 O, EtOH, r t.O,EtOH,回流 1 小时,46%。(f) 4-甲基溴化苄,NaH,回流 0.5 小时,73%。(g) CF 3 COOH, r.t. 1.5 h, 95%。

Target compounds 16, 2326, 2931, 33 and 34, 37 and 38, 41 and 42, 44–47, 51–53, and 55–57 were synthesized according to Scheme 4. Commercially available mercaptans 74av were first activated by SO2Cl2 in DCM and then reacted with ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate to give intermediates 75av. 75av further coupled with 59 to yield 76av. Hydrolysis of 76a by NaOH (2 M) in THF/EtOH yielded target compound 23. Oxidation of thio bonds of 76av by 3-chloroperbenzoic acid (m-CPBA) yielded compounds 77av. Hydrolysis of 77a-v by NaOH (2 M) in EtOH/THF yielded target compounds 16, 2426, 2931, 3334, 37 and 38, 41 and 42, 44–47, 51–53, and 56–57. Reduction of 53 by Pd/C under hydrogen in EtOAc yielded target compound 55.
根据方案 4 合成了目标化合物 16、23-26、29-31、33 和 34、37 和 38、41 和 42、44-47、51-53 和 55-57。市售硫醇 74a-v 首先在二甲基二硅氧烷中被 SO 2 活化。Cl 2 在二氯甲烷中活化,然后与 3,5-二甲基-1H-吡咯-2-羧酸乙酯反应,得到中间产物 75a-v。3-氯过苯甲酸 (m-CPBA) 氧化 76a-v 的硫键,得到 77a-v 化合物。NaOH(2 M)在 EtOH/THF 中水解 77a-v 得到目标化合物 16、24-26、29-31、33-34、37 和 38、41 和 42、44-47、51-53 和 56-57。在氢气作用下,Pd/C 在 EtOAc 中还原 53,得到目标化合物 55。

Scheme 4 方案 4

Scheme 4. Synthesis of Target Compounds 16, 2326, 2931, 33 and 34, 37 and 38, 41 and 42, 4447, 5153, and 5557a
方案 4.目标化合物 16、23-26、29-31、33 和 34、37 和 38、41 和 42、44-47、51-53 和 55-57 的合成 a

aReagents and conditions: (a) ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, SO2Cl2, Et3N, DCM, r.t. 45 min, 56–85%; (b) 59, Cs2CO3, DMF, 50 °C, 1 h, 78–85%; (c) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 63–85%. (d) m-CPBA, DCM, r.t. 0.5 h, 55–70%; (e) Pd/C, H2, EA, 50 °C, 3 h, 95%.
a 试剂和条件: (a) 3,5-二甲基-1H-吡咯-2-羧酸乙酯,SO 2 Cl 2 N, DCM, r. t.N, DCM, r.t. 45 min, 56-85%; (b) 59, Cs 2 CO 3 ,DMF,50 °C,1 小时,78-85%;(c)NaOH(2 M),C 2 H 5 H 5 OH/THF=1:1,50℃,过夜,63-85%。(d) m-CPBA, DCM, r.t. 0.5 h, 55-70%; (e) Pd/C, H 2 H 2 OH/THF = 1:1, 50 °C, 过夜,63-85%。,EA,50℃,3 小时,95%。

Target compounds 17–19 and 21–22 were synthesized according to Scheme 5. Starting material diethyl malonate 78 was first converted to diethyl oximinomalonate (79) through a reported method, (74) and then in the presence of Zn, 79 reacted with diethyl oxalate 80a to give intermediate 81a. The reaction of 79 and 80b or 80c yielded 81b-c or 81d-e. Further reaction with p-toluenethiol, nucleophilic substitution with 59, oxidation by m-CPBA, and hydrolysis were as depicted in Scheme 4, which gave target compounds 17–19 and 21 and 22.
目标化合物 17-19 和 21-22 是根据方案 5 合成的。起始原料丙二酸二乙酯 78 首先通过已报道的方法(74)转化为草酰丙二酸二乙酯(79),然后在锌存在下,79 与草酸二乙酯 80a 反应得到中间体 81a。79 与 80b 或 80c 反应生成 81b-c 或 81d-e。如方案 4 所示,进一步与对甲苯硫酚反应,与 59 发生亲核取代反应,被 m-CPBA 氧化,水解,得到目标化合物 17-19、21 和 22。

Scheme 5 方案 5

Scheme 5. Synthesis of Target Compounds 1719 and 21 and 22a
方案 5.目标化合物 17-19 和 21 及 22 的合成 a

aReagents and conditions: (a) AcOH, NaNO2, 0 °C–r.t. overnight; (b) AcONa, AcOH, Zn, r.t.–80 °C, 3 h, 36–43%. (c) p-Toluenethiol, SO2Cl2, Et3N, DCM, r.t. 45 min, 45–62%; (d) 59, Cs2CO3, DMF, 50 °C, 1 h, 57–72%; (e) m-CPBA, DCM, r.t. 0.5 h, 45–56%; (f) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 74–86%.
a 试剂和条件:(a) AcOH,NaNO {{1} ,0℃-r.t 过夜;(b) AcONa,AcOH,Zn,r.t.-80℃,3 小时,36-43%。0℃-r.t.过夜;(b) AcONa,AcOH,Zn,r.t.-80℃,3 小时,36-43%。(c) 对甲苯硫酚,SO 2 Cl 2 ,Et 3 N, DCM, r.t. 45 分钟,45-62%; (d) 59, Cs 2 CO 3 CO 3 DMF, 50 °C, 1 h, 57-72%; (e) m-CPBA, DCM, r.t. 0.5 h, 45-56%; (f) NaOH (2 M), C 2 H 5 .H 5 OH/THF = 1:1,50 °C,过夜,74-86%。

Target compounds 27 and 28 were synthesized according to Scheme 6. With AlCl3 as the Lewis acid, Friedel–Crafts acylation of the starting material ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate and 2-thiophenesulfonyl chloride (85a) or 1-naphthalenesulfonyl chloride (85b) in PhCl gave intermediates 86a-b. Further nucleophilic substitution with 59 and hydrolysis of 87a-b were the same as depicted in Scheme 4, which yielded target compounds 27 and 28.
目标化合物 27 和 28 是根据方案 6 合成的。以 AlCl 3 为路易斯酸,起始原料 3,5-二甲基-1H-吡咯-2-甲酸乙酯和 2-噻吩磺酰氯(85a)或 1-萘磺酰氯(85b)在 PhCl 中进行弗里德尔-卡夫酰化反应,得到中间体 86a-b。进一步与 59 发生亲核取代反应以及 87a-b 的水解过程与方案 4 中描述的相同,从而得到目标化合物 27 和 28。

Scheme 6 方案 6

Scheme 6. Synthesis of Target Compounds 27 and 28a
方案 6.目标化合物 27 和 28 的合成 a

aReagents and conditions: (a) ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, N2, AlCl3, PhCl, 90 °C, 2 h, 59–68%; (b) 59, Cs2CO3, DMF, 50 °C, 1 h, 63–75%; (c) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 54–63%.
a 试剂和条件: (a) 3,5-二甲基-1H-吡咯-2-羧酸乙酯,N 2 ,氯化铝 {{2}N {{1} ,AlCl 3 ,PhClPhCl, 90 °C, 2 h, 59-68%; (b) 59, Cs 2 .CO 3 ,DMF,50 °C,1 小时,63-75%;(c)NaOH(2 M),C 2 H 5 H 5 OH/THF = 1:1,50 °C,过夜,54-63%。

The target compounds 32, 35, 36, 39, 40, 43, 48–50, and 54 were synthesized according to Scheme 7. With CuSO4·5H2O as a catalyst, aryl iodides 88aj reacted with ethanedithiol to give aryl thiols 89aj in the presence of Cs2CO3 in DMSO under nitrogen. Further coupling with 59, sulfide oxidation, and hydrolysis were the same as depicted in Scheme 4, which yielded target compounds 32, 36, 40, 48–50, and 54 and intermediates 93hj. Deprotection of the benzyl group of 93hj by Pd/C and hydrogen in EtOAc yielded target compounds 35, 39, and 43.
目标化合物 32、35、36、39、40、43、48-50 和 54 是根据方案 7 合成的。用 CuSO 4 -5H 2 O 作为催化剂,在 Cs 2 CO 3 的存在下,芳基碘化物 88a-j 与乙二硫醇反应生成芳基硫醇 89a-j。CO 3 在二甲基亚砜(DMSO)中,在氮气条件下反应生成芳基硫醇 89a-j。与 59 的进一步偶联、硫化物氧化和水解过程与方案 4 中描述的相同,得到了目标化合物 32、36、40、48-50 和 54 以及中间体 93h-j。在 EtOAc 中用 Pd/C 和氢气对 93h-j 的苄基进行脱保护,得到目标化合物 35、39 和 43。

Scheme 7 方案 7

Scheme 7. Synthesis of Target Compounds 32, 35, 36, 39, 40, 43, 4850, and 54a
方案 7.目标化合物 32、35、36、39、40、43、48-50 和 54 的合成 a

aReagents and conditions: (a) ethanedithiol, CuSO4·5H2O, Cs2CO3, DMSO, N2, 90 °C, 4 h, 76–85%; (b) ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, SO2Cl2, Et3N, DCM, r.t. 45 min, 54–75%; (c) 59, Cs2CO3, DMF, 50 °C, 1 h, 75–85%; (d) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 42–80%; (e) m-CPBA, DCM, r.t. 0.5 h, 63–84%; (f) Pd/C, H2, EA, 50 °C, 3 h, 63–67%.
a 试剂和条件: (a) 乙二硫醇、CuSO 4 -5H 2 O、Cs 2 CO 3 dmso, n 2 90 °C,4 小时,76%-85%;(b)3,5-二甲基-1H-吡咯-2-羧酸乙酯,SO 2 Cl 2 。Cl 2N, DCM, r. t.N, DCM, r.t. 45 分钟,54-75%;(c)59, Cs 2 CO 3 CO 3 ,DMF,50 °C,1 小时,75-85%;(d)NaOH(2 M),C 2 H 5 H 5 OH/THF = 1:1,50 °C,过夜,42-80%;(e)m-CPBA,DCM,0.5 小时后,63-84%;(f)Pd/C,H 2 ,EA,50℃,3 小时,63-67%。

Conclusions 结论

ARTICLE SECTIONS
Jump To
 条款章节跳转到

In this paper, we described the discovery of a series of Mcl-1 inhibitors with 3,5-dimethyl-4-sulfonyl-1H-pyrrole core. The sulfone linker and the 5-methyl group of the pyrrole core furnished inhibitors with improved Mcl-1 inhibition. Further modifications on the phenyl ring yielded 40 with high Mcl-1 binding affinity. The sulfone linker constrained the structure to a proper conformation, which led to the remarkable selectivity over other Bcl-2 family members. The in vitro antitumor assay demonstrated that 40 inhibited the growth of H929 and MV4-11 cells with appropriate potency. 40 was then validated to induce apoptosis in the H929 cell line in an Mcl-1-dependent manner. Further studies showed that 40 also possessed good druglike properties, including appropriate PK profiles and no inhibition toward hERG and CYPs. In MV4-11 xenografts, oral administration of 40 was well tolerated to significantly inhibit tumor growth. We hope our work is useful for developing more potent Mcl-1 inhibitors and promote cancer therapy targeting Mcl-1.
本文介绍了一系列以 3,5-二甲基-4-磺酰基-1H-吡咯为核心的 Mcl-1 抑制剂的发现。砜连接物和吡咯核心的 5-甲基基团使抑制剂具有更好的 Mcl-1 抑制作用。对苯基环的进一步修饰产生了具有高 Mcl-1 结合亲和力的 40。砜连接物将结构限制在一个适当的构象中,从而使其对其他 Bcl-2 家族成员具有显著的选择性。体外抗肿瘤试验表明,40 能以适当的效力抑制 H929 和 MV4-11 细胞的生长。随后又验证了 40 能以 Mcl-1 依赖性方式诱导 H929 细胞系凋亡。进一步的研究表明,40 还具有良好的类药物特性,包括适当的 PK 曲线以及对 hERG 和 CYPs 无抑制作用。在 MV4-11 异种移植中,口服 40 的耐受性良好,能显著抑制肿瘤生长。我们希望我们的工作有助于开发更有效的 Mcl-1 抑制剂,并促进以 Mcl-1 为靶点的癌症治疗。

Experimental Section 实验部分

ARTICLE SECTIONS
Jump To
 条款章节跳转到

General Procedures 一般程序

The synthesis of target compounds is shown in Schemes 17. Reactions were monitored by thin-layer chromatography (TLC) on 0.25 mm silica gel plates (GF254) and visualized under UV light. Melting points were determined with a Melt-Temp II apparatus. The 1H NMR and 13C NMR spectra were measured on a Bruker AV-300 instrument using deuterated solvents with tetramethylsilane as the internal standard. ESI-mass and high-resolution mass spectra (HRMS) were recorded on a Water Q-Tof micro mass spectrometer. The purity (≥95%) of the compounds was verified by HPLC performed on a Shimadzu C18 (4.6 mm × 150 mm, 3.5 μm) column using a mixture of 90:10 or 80:20 solvent methanol/water with 1‰ TFA at a flow rate of 0.5 mL/min and peak detection at 254 nm.
目标化合物的合成过程见图 1-7。在 0.25 毫米硅胶板(GF254)上用薄层色谱法(TLC)监测反应,并在紫外光下观察。熔点用 Melt-Temp II 仪器测定。 1 H核磁共振和{{1H NMR 和 13 C NMR 光谱是在布鲁克 AV-300 仪器上测量的,使用氚代溶剂,以四甲基硅烷为内标。ESI 质谱和高分辨率质谱(HRMS)在 Water Q-Tof 微型质谱仪上记录。化合物的纯度(≥95%)由高效液相色谱(HPLC)验证,该色谱采用岛津 C18(4.6 mm × 150 mm,3.5 μm)色谱柱,使用 90:10 或 80:20 混合溶剂甲醇/水和 1‰反式脂肪酸,流速为 0.5 mL/min,色谱峰检测波长为 254 nm。

5-(3-Bromopropoxy)-2-chloro-1,3-dimethylbenzene (59)
5-(3-溴丙氧基)-2-氯-1,3-二甲基苯 (59)

To a mixture of K2CO3 (8.3 g, 60 mmol, 2 equiv), 1,3-dibromopropane (6 mL, 60 mmol, 2 equiv), and CH3CN (40 mL), 58 (4.7 g, 30 mmol, 1 equiv) was added and the mixture was stirred for 5 h at 90 °C. After cooling to room temperature, the reaction mixture was diluted with water (100 mL) and extracted with EtOAc (3 times). The combined organic layer was then washed with brine and dried over Na2SO4. Removal of solvent in vacuo yielded a crude product. Further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 500:1 to 300:1 v/v) gave 59. Colorless liqiud, 6.2 g, yield: 75%. 1H NMR (300 MHz, Chloroform-d) δ 6.68 (s, 2H), 4.11 (t, J = 7.1 Hz, 2H), 3.56 (t, J = 7.1 Hz, 2H), 2.32 (s, 6H), 2.19 (p, J = 7.1 Hz, 2H). ESI-MS m/z: 277.0 [M + 1]+.
加入 K 2 的混合物中CO 3 (8.3 克,60 毫摩尔,2 等分)、1,3-二溴丙烷(6 毫升,60 毫摩尔,2 等分)和 CH 3 CN(40 毫升)的混合物中,加入 58(4.7 克,30 毫摩尔,1 等分CN (40 mL),加入 58 (4.7 g, 30 mmol, 1 equiv),混合物在 90 °C 下搅拌 5 小时。冷却至室温后,用水(100 mL)稀释反应混合物,并用 EtOAc 进行萃取(3 次)。然后用盐水洗涤合并的有机层,并用 Na 2 SO 4 干燥。SO 4 干燥。.在真空中去除溶剂,得到粗产品。通过硅胶柱色谱法(石油醚/乙酸乙酯 = 500:1 至 300:1 v/v)进一步提纯,得到 59.无色液体,6.2 克,收率:75%。 1 H NMR(300 MHz,氯仿-d)δ 6.68(s,2H),4.11(t,J=7.1 Hz,2H),3.56(t,J=7.1 Hz,2H),2.32(s,6H),2.19(p,J=7.1 Hz,2H)。ESI-MS m/z: 277.0 [M + 1] + ..

Methyl-4-(4-methylbenzoyl)-1H-pyrrole-2-carboxylate (61)
4-(4-甲基苯甲酰基)-1H-吡咯-2-甲酸甲酯 (61)

At 0 °C, to a solution of 4-methylbenzoyl chloride (5 g, 32 mmol) and DCM (40 mL), AlCl3 (4.4 g, 32 mmol) was added under nitrogen. The mixture was stirred for 10 min, and 60 (2 g, 16 mmol) was added. The reaction was then allowed to stir at room temperature for 2 h under nitrogen. After the completion of the reaction, 100 mL of water was carefully added to the mixture. DCM (80 mL) was added to the mixture and stirred for 15 min. After filtration, the organic layer was isolated and the inorganic layer was extracted with DCM (2 times). The combined organic layer was then washed with brine and dried with Na2SO4. Removal of solvent under reduced pressure yielded the crude product. Further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 30:1 to 15:1 v/v) gave 61. White powder, 2.6 g, yield: 68%, 1H NMR (300 MHz, Chloroform-d) δ 10.37 (s, 1H), 7.80 (d, J = 7.9 Hz, 2H), 7.60 (s, 1H), 7.40 (s, 1H), 7.31 (d, J = 7.6 Hz, 2H), 3.92 (s, 3H), 2.46 (s, 3H). ESI-MS m/z: 244.1 [M + 1]+.
0 °C 时,向 4-甲基苯甲酰氯(5 克,32 毫摩尔)和 DCM(40 毫升)的溶液中,在氮气下加入 AlCl 3 (4.4 克,32 毫摩尔)。(4.4 克,32 毫摩尔)。混合物搅拌 10 分钟,然后加入 60(2 克,16 毫摩尔)。然后在氮气环境下于室温搅拌 2 小时。反应完成后,小心地向混合物中加入 100 mL 水。向混合物中加入 DCM(80 mL)并搅拌 15 分钟。过滤后,分离出有机层,无机层用二氯甲烷萃取(2 次)。然后用盐水洗涤合并的有机层,并用 Na 2 SO 4 干燥。SO 4 干燥。.减压去除溶剂后得到粗产品。通过硅胶柱色谱法(石油醚/乙酸乙酯 = 30:1 至 15:1 v/v)进一步纯化,得到 61.白色粉末,2.6 克,收率:68%, 1 。H NMR(300 MHz,氯仿-d)δ 10.37(s,1H),7.80(d,J = 7.9 Hz,2H),7.60(s,1H),7.40(s,1H),7.31(d,J = 7.6 Hz,2H),3.92(s,3H),2.46(s,3H)。ESI-MS m/z: 244.1 [M + 1] + ..

Methyl-4-(4-methylbenzyl)-1H-pyrrole-2-carboxylate (62)
4-(4-甲基苄基)-1H-吡咯-2-甲酸甲酯 (62)

To a solution of 61 (1 g, 4.1 mmol) and THF (30 mL), triethylsilane (0.93 g, 8.2 mmol) was added under nitrogen. The solution was then allowed to stir for 2 h at room temperature under nitrogen. Further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 80:1 to 40:1 v/v) gave 62, white powder, 0.61 g, yield: 65% 1H NMR (300 MHz, Chloroform-d) δ 9.13 (s, 1H), 7.14 (s, 4H), 6.76 (d, J = 5.6 Hz, 2H), 3.86 (s, 3H), 3.82 (s, 2H), 2.36 (s, 3H). ESI-MS m/z: 247.1 [M + NH4]+.
在氮气环境下,向 61(1 克,4.1 毫摩尔)和 THF(30 毫升)的溶液中加入三乙基硅烷(0.93 克,8.2 毫摩尔)。然后让溶液在室温氮气下搅拌 2 小时。通过硅胶柱色谱法(石油醚/乙酸乙酯 = 80:1 至 40:1 v/v)进一步纯化,得到 62,白色粉末,0.61 克,收率:65% 1 。H NMR(300 MHz,氯仿-d)δ 9.13(s,1H),7.14(s,4H),6.76(d,J = 5.6 Hz,2H),3.86(s,3H),3.82(s,2H),2.36(s,3H)。ESI-MS m/z: 247.1 [M + NH 4 ] + ..

Methyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-4-(4-methylbenzyl)-1H-pyrrole-2-carboxylate (63)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-(4-甲基苄基)-1H-吡咯-2-甲酸甲酯 (63)

To a solution of 62 (1 g, 4.4 mmol) and DMF (20 mL), Cs2CO3 (2.5 g, 8 mmol) was added. The mixture was stirred for 10 min at 60 °C and subsequently, 59 (2.2 g, 8 mmol) was added. The mixture was allowed to stir for another 1 h. After cooling to room temperature, the reaction mixture was then diluted in 60 mL of water. The mixture was extracted with EtOAc (3 times). The combined organic layer was then washed with brine and dried with Na2SO4. Removal of solvent under reduced pressure yielded a crude product. Further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 80:1 to 30:1 v/v) gave 63, white powder, yield: 89%. 1H NMR (300 MHz, Chloroform-d) δ 7.11 (s, 4H), 6.86 (s, 1H), 6.73 (s, 1H), 6.68 (s, 2H), 4.50 (t, J = 6.6 Hz, 2H), 3.88 (t, J = 5.5 Hz, 2H), 3.85 (s, 3H), 3.76 (s, 2H), 2.42 (s, 6H), 2.38 (s, 3H), 2.27 (p, J = 6.0 Hz, 2H). ESI-MS m/z: 464.1 [M + K]+.
向 62(1 克,4.4 毫摩尔)和 DMF(20 毫升)的溶液中加入 Cs 2 CO 3 (2.5 克,8 毫摩尔)。混合物在 60 °C 下搅拌 10 分钟,随后加入 59(2.2 克,8 毫摩尔)。冷却至室温后,用 60 mL 水稀释反应混合物。混合物用乙酸乙酯萃取(3 次)。然后用盐水洗涤合并的有机层,并用 Na 2 SO 4 干燥。SO 4 干燥。.减压去除溶剂后得到粗产品。通过硅胶柱色谱法(石油醚/乙酸乙酯=80:1 至 30:1 v/v)进一步提纯,得到白色粉末 63,收率:89%。 1 H NMR(300 MHz,氯仿-d)δ 7.11(s,4H),6.86(s,1H),6.73(s,1H),6.68(s,2H),4.50(t,J = 6.6 Hz,2H),3.88(t,J = 5.5 Hz,2H),3.85(s,3H),3.76(s,2H),2.42(s,6H),2.38(s,3H),2.27(p,J = 6.0 Hz,2H)。ESI-MS m/z: 464.1 [M + K] + ..

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-(4-methylbenzyl)-1H-pyrrole-2-carboxylic Acid (11)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-(4-甲基苄基)-1H-吡咯-2-羧酸 (11)

To a solution of 63 (500 mg, 1.2 mmol) in MeOH/THF (5 mL/5 mL) was added 1 mL of NaOH (2 M). The solution was stirred overnight at 50 °C. After completion of the reaction, the mixture was quenched with 1 M hydrochloric acid to pH 2 and then extracted with ethyl acetate (3 times). The organic layer was washed with brine and dried with Na2SO4. Removal of the solvent and recrystallization from ethyl acetate/n-hexane gave title compound 11 as a white solid, yield: 78%; mp: 201–203 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.10 (s, 1H), 7.04 (s, 4H), 6.82 (d, J = 1.6 Hz, 1H), 6.77 (s, 2H), 6.64 (d, J = 1.9 Hz, 1H), 4.38 (t, J = 6.6 Hz, 2H), 3.82 (t, J = 6.0 Hz, 2H), 3.64 (s, 2H), 2.31 (s, 6H), 2.26 (s, 3H), 2.10 (p, J = 6.3 Hz, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.24, 156.94, 138.94, 136.94, 134.99, 129.25, 128.68, 128.06, 125.53, 122.60, 121.89, 118.27, 115.11, 64.97, 45.46, 32.35, 30.87, 20.91. HRMS (ESI): calcd for C24H26ClNO3 [M-H] 410.1523, found 410.1525. HPLC (90:10 methanol:water with 1‰ TFA): tR = 8.51 min, 98.5%.
向 63(500 毫克,1.2 毫摩尔)在 MeOH/THF (5 毫升/5 毫升)中的溶液中加入 1 毫升 NaOH(2 兆)。该溶液在 50 °C 下搅拌过夜。反应完成后,用 1 M 盐酸淬灭混合物至 pH 2,然后用乙酸乙酯萃取(3 次)。有机层用盐水洗涤,并用 Na 2 SO { 4 干燥。SO {{1} 干燥。}.除去溶剂,从乙酸乙酯/正己烷中重结晶,得到标题化合物 11,为白色固体,产率:78%;熔点:201-203 °C:201-203 °C. 1 H NMR(300 MHz,DMSO-d 6 )δ 12.10(s,1H),7.04(s,4H),6.82(d,J = 1.6 Hz,1H),6.77(s,2H),6.64(d,J = 1.9Hz,1H)、4.38(t,J = 6.6Hz,2H)、3.82(t,J = 6.0Hz,2H)、3.64(s,2H)、2.31(s,6H)、2.26(s,3H)、2.10(p,J = 6.3Hz,2H)。 13 C NMR(75 MHz,DMSO-d 6 )δ 162.24,156.94,138.94,136.94,134.99,129.25,128.68,128.06,125.53,122.60,121.89,118.27,115.11,64.97,45.46,32.35,30.87,20.91。HRMS (ESI):煅烧为 C 24 H { 26 H 26 ClNO 3 [M-H] {{9}410.1523,发现值 410.1525。HPLC(90:10 甲醇:水,含 1‰反式脂肪酸):t R = 8.51 分钟,98.5%。

Methyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-4-(4-methylbenzoyl)-1H-pyrrole-2-carboxylate (64)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-(4-甲基苯甲酰基)-1H-吡咯-2-甲酸甲酯 (64)

64 was synthesized according to the procedure of 63, white solid, yield 84%; 1H NMR (300 MHz, Chloroform-d) 7.64 (d, J = 7.2 Hz, 2H), 7.47 (s, 1H), 7.38 (s, 1H), 7.14 (d, J = 7.5 Hz, 2H), 6.64 (s, 2H), 4.58 (t, J = 6.4 Hz, 2H), 3.87 (d, J = 7.6 Hz, 5H), 2.42 (s, 3H), 2.36 (s, 6H), 2.33–2.21 (m, 2H). ESI-MS m/z: 462.2 [M + Na]+.
64 按照 63 的步骤合成,白色固体,收率 84%; 1 H NMR(300 MHz,氯仿-dH NMR(300 MHz,氯仿-d)7.64(d,J = 7.2 Hz,2H),7.47(s,1H),7.38(s,1H),7.14(d,J = 7.5 Hz,2H),6.64(s,2H),4.58(t,J = 6.4 Hz,2H),3.87(d,J = 7.6 Hz,5H),2.42(s,3H),2.36(s,6H),2.33-2.21(m,2H)。ESI-MS m/z:462.2 [M + Na] + ..

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-(4-methylbenzoyl)-1H-pyrrole-2-carboxylic Acid (12)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-(4-甲基苯甲酰基)-1H-吡咯-2-羧酸 (12)

12 was synthesized from 64 according to the procedure of 9, white powder, yield: 95%. mp: 174–175 °C, 1H NMR (300 MHz, Chloroform-d) δ 7.68 (d, J = 8.2 Hz, 2H), 7.66 (s, 1H), 7.48 (s, 1H), 7.17 (d, J = 7.8 Hz, 2H), 6.67 (s, 2H), 4.62 (t, J = 5.7 Hz, 2H), 3.92 (t, J = 4.8 Hz, 2H), 2.46 (s, 3H), 2.38 (s, 6H), 2.34 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 188.74, 162.00, 156.85, 142.42, 136.97, 136.48, 134.95, 129.37, 129.10, 125.57, 124.12, 122.39, 119.05, 115.08, 64.85, 46.57, 30.33, 21.53, 20.90. HRMS (ESI): calcd for C24H24ClNO4 [M + Na]+ 448.1292, found 448.1293. HPLC (90:10 methanol:water with 1‰ TFA): tR = 6.97 min, 98.5%.
12 由 64 按照 9 的步骤合成,白色粉末,收率:95%:174-175 °C, 1 H NMR(300 MHz,氯仿-d)δ 7.68(d,J = 8.2 Hz,2H),7.66(s,1H),7.48(s,1H),7.17(d,J = 7.8 Hz,2H),6.67(s,2H),4.62(t,J = 5.7 Hz,2H),3.92(t,J = 4.8 Hz,2H),2.46(s,3H),2.38(s,6H),2.34(s,2H)。 13 C NMR(75 MHz,DMSO-d 6 )δ 188.74,162.00,156.85,142.42,136.97,136.48,134.95,129.37,129.10,125.57,124.12,122.39,119.05,115.08,64.85,46.57,30.33,21.53,20.90。HRMS (ESI):煅烧为 C 24 H { 24 H 24 ClNO 4 [M + Na] + 448.1292,发现 448.1293。HPLC(90:10 甲醇:水,含 1‰反式脂肪酸):t R = 6.97 分钟,98.5%。

Methyl-4-tosyl-1H-pyrrole-2-carboxylate (66a)
4-对甲苯磺酰基-1H-吡咯-2-羧酸甲酯(66a)

A mixture of 65a (500 mg, 3 mmol), Ag2CO3 (0.08 g, 0.3 mmol), and dioxane (20 mL) was charged with methyl isocyanate (1 equiv). The mixture was heated to 80 °C and stirred for 1 h. Then, the mixture was cooled to room temperature, charged with 60 mL water, and extracted with EtOAc (3 times). The combined organic layer was then washed with brine and dried with Na2SO4. Removal of solvent under reduced pressure yielded a crude product. Further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1 to 5:1 v/v) gave 66a. Yellow oil, 150 mg, yield: 18%. 1H NMR (300 MHz, DMSO-d6) δ 12.87 (s, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.64 (s, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.03 (s, 1H), 3.77 (s, 3H), 2.35 (s, 3H). ESI-MS m/z: 280.1 [M + 1]+.
65a (500 毫克,3 毫摩尔)、Ag 2 和 CO 3 的混合物。CO 3(0.08 克,0.3 毫摩尔)和二噁烷(20 毫升)的混合物中加入异氰酸甲酯(1 等分)。然后,将混合物冷却至室温,加入 60 mL 水,并用 EtOAc 进行萃取(3 次)。然后用盐水洗涤合并的有机层,并用 Na 2 SO 4 干燥。SO 4 干燥。.减压去除溶剂后得到粗产品。通过硅胶柱色谱法(石油醚/乙酸乙酯 = 20:1 至 5:1 v/v)进一步纯化,得到 66a。黄色油状物,150 毫克,收率:18%。 1 H NMR(300 MHz,DMSO-d 6 )δ 12.87(s,1H),7.80(d,J = 8.3 Hz,2H),7.64(s,1H),7.37(d,J = 8.0 Hz,2H),7.03(s,1H),3.77(s,3H),2.35(s,3H)。ESI-MS m/z: 280.1 [M + 1] + ..

Methyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-4-tosyl-1H-pyrrole-2-carboxylate (67a)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-对甲苯磺酰基-1H-吡咯-2-羧酸甲酯 (67a)

At 0 °C, to a solution of 66a (0.150 g, 0.5 mmol) and distilled DMF (15 mL), NaH (0.04 g, 1 mmol) was added in portions. After the effervescence of the mixture, 59 (0.3 g, 1 mmol) was added and the reaction was stirred at room temperature for 0.5 h. After the consumption of 66a monitored by TLC, 45 mL water was carefully added to the mixture and the mixture was extracted with EtOAc (3 times). The combined organic layer was then washed with brine and dried over Na2SO4. Removal of solvent under reduced pressure yielded a crude product. Further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 70:1 to 20:1 v/v) gave 67a. Yellow oil, 0.1 mg, yield: 42%. 1H NMR (300 MHz, Chloroform-d) δ 7.75 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 1.5 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 1.5 Hz, 1H), 6.69 (s, 2H), 4.15 (t, J = 7.1 Hz, 2H), 4.06 (t, J = 7.1 Hz, 2H), 3.90 (s, 3H), 2.40 (s, 3H), 2.32 (s, 6H), 2.08 (p, J = 7.1 Hz, 2H). ESI-MS m/z: 476.1 [M + 1]+.
0 °C 时,向 66a(0.150 克,0.5 毫摩尔)和蒸馏 DMF(15 毫升)的溶液中分次加入 NaH(0.04 克,1 毫摩尔)。TLC 监测到 66a 消耗后,小心地向混合物中加入 45 mL 水,然后用 EtOAc(3 次)萃取混合物。然后用盐水洗涤合并的有机层,并用 Na 2 SO { 4 干燥。SO 4 干燥。.减压去除溶剂后得到粗产品。通过硅胶柱色谱法(石油醚/乙酸乙酯 = 70:1 至 20:1 v/v)进一步纯化,得到 67a。黄色油状物,0.1 毫克,收率:42%。 1 H NMR(300 MHz,氯仿-d)δ 7.75(d,J = 7.6 Hz,2H),7.69(d,J = 1.5 Hz,1H),7.28(d,J = 8.0 Hz,2H),6.95(d,J = 1.5 Hz,1H),6.69(s,2H),4.15(t,J = 7.1 Hz,2H),4.06(t,J = 7.1 Hz,2H),3.90(s,3H),2.40(s,3H),2.32(s,6H),2.08(p,J = 7.1 Hz,2H)。ESI-MS m/z:476.1 [M + 1] + ..

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3-methyl-4-tosyl-1H-pyrrole-2-carboxylic Acid (13)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-3-甲基-4-对甲苯磺酰基-1H-吡咯-2-羧酸 (13)

13 was synthesized from 67a according to the hydrolysis procedure of 11. White powder, yield: 68%; mp: 194–196 °C. 1H NMR (300 MHz, Chloroform-d) δ 12.89 (s, 1H), 7.81 (s, 1H), 7.72 (d, J = 6.8 Hz, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.05 (s, 1H), 6.71 (s, 2H), 4.46 (t, J = 5.1 Hz, 2H), 3.83 (t, J = 6.2 Hz, 2H), 2.35 (s, 3H), 2.28 (s, 6H), 2.17–2.08 (m, 2H). HRMS (ESI): calcd for C23H24ClNO5S [M + NH4]+ 479.1407, found 479.1402. HPLC (80:20 methanol:water with 1‰ TFA): tR = 8.14 min, 99.8%.
白色粉末,收率:68%;熔点:194-196°C:194-196 °C. 1 H NMR(300 MHz,氯仿-d)δ 12.89(s,1H),7.81(s,1H),7.72(d,J = 6.8 Hz,2H),7.34(d,J = 7.9 Hz,2H),7.05(s,1H),6.71(s,2H),4.46(t,J = 5.1 Hz,2H),3.83(t,J = 6.2 Hz,2H),2.35(s,3H),2.28(s,6H),2.17-2.08(m,2H)。HRMS (ESI):煅烧为 C 23 H { 24 H 24 ClNO 5 S [M + NH 4 ] + 479.1407,发现值 479.1402。HPLC(80:20 甲醇:水,含 1‰反式脂肪酸):t R = 8.14 分钟,99.8%。

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3-methyl-4-tosyl-1H-pyrrole-2-carboxylic Acid (20)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-3-甲基-4-对甲苯磺酰基-1H-吡咯-2-羧酸 (20)

Starting from 67b, 20 was synthesized according to the procedure of 11. White powder, yield: 10%; mp: 194–196 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.71 (d, J = 8.2 Hz, 2H), 7.54 (s, 1H), 7.26 (d, J = 8.2 Hz, 2H), 6.64 (s, 2H), 4.54 (t, J = 6.5 Hz, 2H), 3.83 (t, J = 5.5 Hz, 2H), 2.48 (s, 3H), 2.44 (s, 3H), 2.38 (s, 6H), 2.25 (p, J = 6.1 Hz, 2H). HRMS (ESI): calcd for C24H26ClNO5S [M + Na]+ 498.1118, found 498.1116. HPLC (80:20 methanol:water with 1‰ TFA): tR = 9.08 min, 98.8%.
白色粉末,收率:10%;熔点:194-196°C:194-196 °C. 1 H NMR(300 MHz,氯仿-d)δ 7.71(d,J = 8.2 Hz,2H),7.54(s,1H),7.26(d,J = 8.2 Hz,2H),6.64(s,2H),4.54(t,J = 6.5 Hz,2H),3.83(t,J = 5.5 Hz,2H),2.48(s,3H),2.44(s,3H),2.38(s,6H),2.25(p,J = 6.1 Hz,2H)。HRMS (ESI):煅烧为 C 24 H { 26 H 26 ClNO 5 S [M + Na] + 498.1118,发现值为 498.1116。HPLC(80:20 甲醇:水,含 1‰反式脂肪酸):t R = 9.08 分钟,98.8%。

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-4-nitro-1H-pyrrole-2-carboxylate (69)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-硝基-1H-吡咯-2-甲酸乙酯 (69)

69 was synthesized from 68 according to the procedure of 63, yield 75%; 1H NMR (300 MHz, Chloroform-d) δ 7.67 (d, J = 2.0 Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H), 6.65 (s, 2H), 4.61 (t, J = 6.8 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.95 (t, J = 5.6 Hz, 2H), 2.38 (s, 6H), 2.31 (p, J = 6.5 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 381.1 [M + H]+.
69 由 68 按照 63 的步骤合成,收率为 75%; 1 H NMR(300 MHz,氯仿-dH NMR(300 MHz,氯仿-d)δ 7.67(d,J = 2.0 Hz,1H),7.49(d,J = 2.0 Hz,1H),6.65(s,2H),4.61(t,J = 6.8 Hz,2H),4.34(q,J = 7.1 Hz,2H),3.95(t,J = 5.6 Hz,2H),2.38(s,6H),2.31(p,J = 6.5 Hz,2H),1.40(t,J = 7.1 Hz,3H)。ESI-MS m/z: 381.1 [M + H] + ..

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-4-((4-methylphenyl)sulfonamido)-1H-pyrrole-2-carboxylate (70)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-((4-甲基苯基)磺酰胺基)-1H-吡咯-2-甲酸乙酯 (70)

To a solution of 69 (1.5 g, 4.1 mmol) and EtOH (50 mL), SnCl2·2H2O (4.6 g, 20 mmol) was added under nitrogen. The mixture was then allowed to stir at 60 °C for 4 h under nitrogen. Upon the consumption of 69, the solution was cooled to room temperature and quenched with aqueous NaOH (2 M) to pH 9. DCM (70 mL) was added, and the mixture was stirred for 15 min. The organic layer was isolated after the undissolved white solid was filtered. The aqueous phase was then extracted with DCM (2 times). The combined organic layer was then washed with brine and dried with Na2SO4. Removal of solvent under reduced pressure yielded a crude product as a deep brown oil without further purification. 0.6 g (1.7 mmol) of the crude product was dissolved in pyridine (15 mL), and p-toluenesulfonyl chloride (0.65 g, 3.4 mmol) was added. The solution was stirred at room temperature for 1 h. Upon completion of the reaction, the solution was concentrated under reduced pressure, and the crude product 70 was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 60:1 to 20:1 v/v) as yellow oil, 0.63 g, yield: 38%, 1H NMR (300 MHz, Chloroform-d) δ 7.62 (s, 1H), 7.32 (d, J = 7.5 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.92 (s, 1H), 6.68 (s, 2H), 4.29 (q, J = 8.0 Hz, 2H), 4.14 (t, J = 7.1 Hz, 2H), 4.05 (t, J = 7.1 Hz, 2H), 2.34 (s, 3H), 2.33 (s, 6H), 2.08 (p, J = 7.2 Hz, 2H), 1.35 (t, J = 8.0 Hz, 3H). ESI-MS m/z: 505.1 [M + H]+.
向 69(1.5 克,4.1 毫摩尔)和 EtOH(50 毫升)溶液中加入 SnCl 2 -2H 2 O(4.6 克,20 毫摩尔)。然后在氮气环境下将混合物在 60 °C 下搅拌 4 小时。69 消耗后,将溶液冷却至室温,并用 NaOH 水溶液(2 M)淬火至 pH 9。过滤未溶解的白色固体,分离出有机层。然后用二氯甲烷萃取水相(2 次)。然后用盐水洗涤合并的有机层,并用 Na 2 SO 4 干燥。SO 4 干燥。.减压去除溶剂后,得到深棕色油状粗品,无需进一步提纯。将 0.6 克(1.7 毫摩尔)粗产物溶于吡啶(15 毫升)中,然后加入对甲苯磺酰氯(0.65 克,3.4 毫摩尔)。反应完成后,减压浓缩溶液,粗产物 70 经硅胶柱层析(石油醚/乙酸乙酯 = 60:1 至 20:1 v/v)纯化,为黄色油状物,0.63 克,收率:38%, 1 。H NMR(300 MHz,氯仿-d)δ 7.62(s,1H),7.32(d,J = 7.5 Hz,2H),7.15(d,J = 8.0 Hz,2H),6.92(s,1H),6.68(s,2H),4.29(q,J = 8.0Hz,2H),4.14(t,J = 7.1Hz,2H),4.05(t,J = 7.1Hz,2H),2.34(s,3H),2.33(s,6H),2.08(p,J = 7.2Hz,2H),1.35(t,J = 8.0Hz,3H)。ESI-MS m/z: 505.1 [M + H] + ..

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-methylphenyl)sulfonamido)-1H-pyrrole-2-carboxylic Acid (14)
1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-4-((4-甲基苯基)磺酰胺基)-1H-吡咯-2-羧酸 (14)

14 was synthesized from 70 according to the hydrolysis procedure of 9. Pale yellow solid, yield: 64%; mp: 179–181 °C. 1H NMR (300 MHz, DMSO-d6) δ 9.76 (s, 1H), 7.58 (d, J = 7.6 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 6.89 (s, 1H), 6.75 (s, 2H), 6.48 (s, 1H), 4.45–4.29 (m, 2H), 3.78 (s, 2H), 2.31 (s, 9H), 2.03 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 160.64, 156.81, 143.24, 137.14, 136.96, 129.86, 129.73, 127.16, 125.56, 121.39, 119.44, 115.20, 111.92, 67.50, 51.48, 25.60, 21.35, 20.91. HRMS (ESI): calcd for C23H25ClN2O5S [M-H] 475.1094, found 475.1093. HPLC (90:10 methanol:water with 1‰ TFA): tR = 6.85 min, 98.1%.
淡黄色固体,收率:64%;熔点:179-181 °C:179-181 °C. 1 H NMR(300 MHz,DMSO-d 6 )δ 9.76(s,1H),7.58(d,J = 7.6 Hz,2H),7.29(d,J = 7.6 Hz,2H),6.89(s,1H),6.75(s,2H),6.48(s,1H),4.45-4.29(m,2H),3.78(s,2H),2.31(s,9H),2.03(s,2H)。 13 C NMR(75 MHz,DMSO-d 6 )δ 160.64,156.81,143.24,137.14,136.96,129.86,129.73,127.16,125.56,121.39,119.44,115.20,111.92,67.50,51.48,25.60,21.35,20.91。HRMS (ESI):煅烧为 C 23 H { 25 H 25 ClN 2 O 5 S [M-H] 475.1094,发现值 475.1093。HPLC(90:10 甲醇:水,含 1‰反式脂肪酸):t R = 6.85 分钟,98.1%。

Ethyl-4-((tert-butoxycarbonyl)amino)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-1H-pyrrole-2-carboxylate (71)
4-((叔丁氧羰基)氨基)-1-(3-(4-氯-3,5-二甲基苯氧基)丙基)-1H-吡咯-2-甲酸乙酯 (71)

Reduction of 69 was depicted in the synthesis of 70, and the crude product was used in the next step directly. 0.6 g (1.7 mmol) of the crude product was dissolved in EtOH (20 mL), and (Boc)2O (0.65 g, 3.4 mmol) was added. The solution was stirred at room temperature for 1 h. Upon completion of the reaction, the solution was concentrated under reduced pressure and purification by silica gel column chromatography (petroleum ether/ethyl acetate = 80:1 to 20:1 v/v), which gave 71 as a yellow oil, 0.42 g, yield: 46%, 1H NMR (300 MHz, Chloroform-d) δ 7.72 (d, J = 1.5 Hz, 1H), 6.70 (s, 1H), 6.67 (d, J = 1.5 Hz, 1H), 6.61 (s, 2H), 4.34 (t, J = 7.7 Hz, 2H), 4.28 (q, J = 8.0 Hz, 2H), 4.22 (t, J = 7.5 Hz, 2H), 2.31 (s, 6H), 1.98 (p, J = 7.6 Hz, 2H), 1.50 (s, 9H), 1.36 (t, J = 8.1 Hz, 3H). ESI-MS m/z: 451.2 [M + H]+.

Ethyl-4-((tert-butoxycarbonyl)(4-methylbenzyl)amino)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-1H-pyrrole-2-carboxylate (72)

To a solution of 71 (0.4 g, 0.9 mmol) and DMF (15 mL), NaH (0.08 g, 2 mmol) was added in portions. After the effervescence of the mixture, 4-methylbenzyl bromide (0.36 g, 2 mmol) was added and the reaction was stirred at room temperature for 0.5 h. After the consumption of 71 monitored by TLC, 45 mL of water was carefully added to the mixture and then the mixture was extracted with EtOAc (3 times). The combined organic layer was then washed with brine and dried over Na2SO4. The combined organic layer was concentrated under reduced pressure and further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 100:1 to 40:1 v/v) gave 72. Light yellow oil, 0.4 g, yield: 73%. 1H NMR (300 MHz, Chloroform-d) 1H NMR (300 MHz, Chloroform-d) δ 7.26 (d, J = 1.5 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 7.11 (d, J = 7.5 Hz, 2H), 6.85 (d, J = 1.5 Hz, 1H), 6.69 (s, 2H), 5.24 (s, 2H), 4.28 (q, J = 7.5 Hz, 2H), 4.04 (dt, J = 10.0, 7.1 Hz, 4H), 2.33 (s, 3H), 2.32 (s, 6H), 2.11 (p, J = 7.1 Hz, 2H), 1.47 (s, 9H), 1.34 (t, J = 8.0 Hz, 3H). ESI-MS m/z: 555.2 [M + H]+.

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-4-((4-methylbenzyl)amino)-1H-pyrrole-2-carboxylate (73)

72 (0.3 g, 0.56 mmol) was dissolved in CF3COOH (5 mL) and the solution was stirred for 1.5 h at room temperature. Upon the consumption of 72, saturated aqueous NaHCO3 was added carefully in portions to pH 8. The mixture was extracted with EtOAc (3 times). The combined organic layer was then washed with saturated aqueous NaHCO3 and brine and then dried with Na2SO4. Removal of solvent under reduced pressure gave 73 as light purple oil, 0.23 g, Yield: 95%, 1H NMR (300 MHz, Chloroform-d) δ 7.34 (d, J = 1.5 Hz, 1H), 7.23 (d, J = 1.5 Hz, 1H), 7.18 (d, J = 6.6 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 6.68 (s, 2H), 4.52 (s, 2H), 4.26 (q, J = 8.0 Hz, 2H), 4.12–4.02 (m, 4H), 2.34 (s, 3H), 2.32 (s, 6H), 2.10 (p, J = 7.1 Hz, 2H), 1.35 (t, J = 8.0 Hz, 3H). ESI-MS m/z: 455.2 [M + H]+.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-methylbenzyl)amino)-1H-pyrrole-2-carboxylic Acid (15)

15 was synthesized from 73 according to the hydrolysis procedure of 11. Brown powder, yield: 43%. mp: 157–158 °C. 1H NMR (300 MHz, DMSO-d6) δ 7.20 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 6.77 (s, 2H), 6.37 (d, J = 2.1 Hz, 1H), 6.28 (d, J = 2.1 Hz, 1H), 4.29 (t, J = 6.5 Hz, 2H), 3.94 (s, 2H), 3.83 (t, J = 6.0 Hz, 2H), 2.31 (s, 6H), 2.27 (s, 3H), 2.06 (p, J = 6.2, 2H). 3C NMR (75 MHz, DMSO) δ 162.20, 156.96, 138.08, 136.94, 135.86, 135.66, 129.09, 127.78, 125.48, 119.55, 115.18, 114.39, 106.25, 65.02, 49.99, 45.05, 30.96, 21.12, 20.92. HRMS (ESI): calcd for C24H27ClN2O3 [M + H]+ 427.1788, found 427.1781. HPLC (90:10 methanol:water with 1‰ TFA): tR = 7.25 min, 98.2%.

Ethyl-3,5-dimethyl-4-(p-tolylthio)-1H-pyrrole-2-carboxylate (75a)

At 0 °C, to a solution of p-toluenethiol (74a, 1.5 g, 12 mmol), Et3N (5 drops), and distilled DCM (20 mL), SO2Cl2 (1.6 g, 12 mmol) was carefully added in portions. The solution was allowed to stir for 10 min at room temperature. Ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate (1.1 g, 6 mmol) was then added, and the solution was stirred for another 45 min. Upon the consumption of ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, the reaction solution was concentrated under reduced pressure and purification by silica gel column chromatography (petroleum ether/ethyl acetate = 70:1 to 20:1 v/v) gave 75a, white solid, 73%, 1H NMR (300 MHz, Chloroform-d) δ 9.23 (s, 1H), 7.06 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.3 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 288.1 [M-H].

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(p-tolylthio)-1H-pyrrole-2-carboxylate (76a)

76a was synthesized from 75a according to the procedure of 63, colorless oil, yield: 75%; 1H NMR (300 MHz, Chloroform-d) δ 7.03 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.2 Hz, 2H), 6.65 (s, 2H), 4.54 (t, J = 5.6 Hz, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.93 (t, J = 5.7 Hz, 2H), 2.40 (s, 6H), 2.38 (s, 3H), 2.37 (s, 3H), 2.35 (s, 3H), 2.24 (p, J = 6.2 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 486.2 [M + 1]+.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(p-tolylthio)-1H-pyrrole-2-carboxylic Acid (23)

To a solution of 76a (380 mg, 0.78 mmol) in EtOH/THF (10 mL/10 mL), NaOH (2 M, 3 mL) was added. The mixture was stirred overnight at 50 °C. After the completion of the reaction, the mixture was then acidified with 1 M HCl and extracted with ethyl acetate. The organic layer was washed with brine and dried with Na2SO4. Removal of solution and further recrystallization from EtOH/n-hexane gave title compound 23. Yellow solid, Yield: 85%; mp: 125–127 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.40 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 6.1 Hz, 2H), 6.63 (s, 2H), 4.49 (t, J = 6.7 Hz, 2H), 3.88 (t, J = 5.3 Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H), 2.36 (s, 9H), 2.18 (m, J = 12.3, 6.4 Hz, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.72 , 156.75 , 141.18 , 136.95 , 135.52 , 134.31 , 132.79 , 130.05 , 125.54 , 125.27 , 119.64 , 114.97 , 107.66 , 64.90 , 43.21 , 30.57 , 20.88 , 20.80 , 12.74 , 10.91. HRMS (ESI): calcd for C25H28ClNO3S [M–H] 456.1400, found 456.1399. HPLC (80:20 methanol: water with 1‰ TFA): tR = 14.8 min, 98.6%.

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-tosyl-1H-pyrrole-2-carboxylate (77a)

At 0 °C, to a solution of 77a (0.8 g, 1 mmol) and distilled DCM (20 mL), 3-chloroperbenzoic acid (m-CPBA, 85%, 0.4 g, 2 mmol) was added. The solution was allowed to stir at room temperature for 0.5 h and then quenched with 20 mL of saturated aqueous NaHCO3. The organic layer was isolated and the aqueous phase was extracted with DCM (2 times). The combined organic layer was concentrated under reduced pressure and further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1 to 4:1 v/v) gave 77a. Light yellow oil, yield: 56%. 1H NMR (300 MHz, Chloroform-d) δ 7.77 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 6.70 (s, 2H), 4.32 (q, J = 7.1 Hz, 2H), 4.11 (t, J = 5.8 Hz, 2H), 3.64 (t, J = 6.4 Hz, 2H), 2.44 (s, 3H), 2.39 (s, 12H), 2.37–2.30 (m, 2H), 1.38 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 540.2 [M + Na]+.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-tosyl-1H-pyrrole-2-carboxylic Acid (16)

16 was synthesized from 77a according to the hydrolysis procedure of 23. White powder, 172 mg, Yield: 57%, mp: 183–184 °C 1H NMR (300 MHz, chloroform-d) δ 12.87 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 7.7 Hz, 2H), 6.73 (s, 2H), 4.41 (t, J = 6.8 Hz, 2H), 3.87 (t, J = 4.8 Hz, 2H), 2.54 (s, 3H), 2.36 (s, 6H), 2.28 (s, 6H), 2.03 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.57, 156.70, 143.59, 141.31, 139.07, 136.94, 130.22, 127.93, 126.26, 125.55, 121.07, 119.06, 115.01, 65.16, 42.82, 30.22, 21.36, 20.86, 11.96, 11.02. HRMS (ESI): calcd for C25H28ClNO5S [M + Na]+ 512.1274, found 512.1269. HPLC (80:20 methanol:water with 1‰ TFA): tR = 11.93 min, 99.6%.
Starting from corresponding thiol compounds 74b–v, target compounds 2426, 2931, 3334, 37 and 38, 41 and 42, 44–47, 51–53, and 56–57 were synthesized analogously according to 16.

4-(Benzylsulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (24)

Light yellow solid. Yield: 22%; mp: 144–146 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.32 (s, 3H), 7.12 (d, J = 6.7 Hz, 2H), 6.65 (s, 2H), 4.45 (s, 2H), 4.29 (s, 2H), 3.93 (s, 2H), 2.59 (s, 3H), 2.39 (s, 6H), 2.10 (s, 2H), 2.02 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 162.69, 156.65, 140.35, 136.93, 131.40, 129.91, 129.17, 128.53, 128.37, 125.55, 120.54, 115.81, 115.08, 65.05, 62.79, 42.54, 30.32, 20.86, 11.71, 10.17. HRMS (ESI): calcd for C25H28ClNO5S [M + Na]+ 512.1274, found 512.1266. HPLC (80:20 methanol:water with 1‰ TFA): tR = 9.79 min, 97.9%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(pyridin-2-ylsulfonyl)-1H-pyrrole-2-carboxylic Acid (25)

Pink solid, Yield: 15%; mp: 183–185 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.74 (s, 1H), 8.64 (d, J = 3.7 Hz, 1H), 8.08 (s, 2H), 7.63 (s, 1H), 6.73 (s, 2H), 4.42 (s, 2H), 3.87 (s, 2H), 2.53 (s, 3H), 2.39 (s, 3H), 2.28 (s, 6H), 2.03 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 168.07, 164.81, 164.27, 158.54, 141.08, 138.73, 131.16, 131.03, 129.70, 127.39, 123.16, 120.38, 118.86, 118.56, 116.93, 67.15, 44.69, 32.05, 22.56, 13.62, 12.84. HRMS (ESI): calcd for C23H25ClN2O5S [M + H]+ 477.1251, found 477.1242. HPLC (80:20 methanol:water with 1‰ TFA): tR = 6.49 min, 98.1%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(pyridin-4-ylsulfonyl)-1H-pyrrole-2-carboxylic Acid (26)

Purple solid, Yield: 13%; mp: 179–181 °C. 1H NMR (300 MHz, Chloroform-d) δ 8.74 (d, J = 2.7 Hz, 2H), 7.50 (d, J = 5.2 Hz, 2H), 6.62 (s, 2H), 4.52 (t, J = 6.8 Hz, 2H), 3.90 (t, J = 5.3 Hz, 2H), 2.41 (s, 3H), 2.36 (s, 6H), 2.32 (s, 3H), 2.21 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.53, 156.72, 155.92, 151.80, 150.45, 139.61, 137.00, 128.69, 121.17, 119.74, 119.53, 115.04, 65.12, 42.84, 30.33, 20.90, 11.60, 10.58. HRMS (ESI): calcd for C23H25ClN2O5S [M + Na]+ 499.1070, found 499.1094. HPLC (90:10 methanol:water with 1‰ TFA): tR = 6.07 min, 97.0%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-(cyclohexylsulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (29)

White solid, yield: 27%; mp: 159–161 °C. 1H NMR (300 MHz, Chloroform-d) δ 6.61 (s, 2H), 4.53 (s, 2H), 3.87 (s, 2H), 3.40 (s, 1H), 2.61 (d, J = 13.0 Hz, 6H), 2.34 (s, 6H), 2.18 (s, 2H), 2.07–1.52 (m, 10H). HRMS (ESI): calcd for C24H32ClNO5S [M + Na]+ 504.1587, found 504.1580. HPLC (80:20 methanol:water with 1‰ TFA): tR = 9.16 min, 96.5%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-(cyclopentylsulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (30)

White solid, yield: 13%; mp: 164–166 °C. 1H NMR (300 MHz, Chloroform-d) δ 6.61 (s, 2H), 4.53 (s, 2H), 3.87 (s, 2H), 3.40 (s, 1H), 2.61 (d, J = 13.0 Hz, 6H), 2.34 (s, 6H), 2.18 (s, 2H), 2.01–1.60 (m, 8H). HRMS (ESI): calcd for C23H30ClNO5S [M + NH4]+ 485.1877, found 485.1877. HPLC (90:10 methanol:water with 1‰ TFA): tR = 9.10 min, 99.4%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(phenylsulfonyl)-1H-pyrrole-2-carboxylic Acid (31)

White solid, yield: 28%; mp: 186–188 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.94–7.86 (m, 2H), 7.61–7.49 (m, 3H), 6.63 (s, 2H), 4.53 (s, 2H), 3.89 (s, 2H), 2.68 (s, 3H), 2.60 (s, 3H), 2.36 (s, 6H), 2.18 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.56, 156.68, 144.04, 139.30, 136.93, 133.21, 129.82, 128.03, 126.20, 125.56, 121.16, 118.67, 114.99, 65.12, 42.87, 30.21, 42.87, 30.21, 20.88, 11.96, 11.04. HRMS (ESI): calcd for C24H26ClNO5S [M + Na]+ 498.1118, found 498.1114. HPLC (80:20 methanol:water with 1‰ TFA): tR = 12.11 min, 99.2%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((2-methoxyphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (33)

White solid, yield: 28%; mp: 198–200 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.76 (s, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.67–7.55 (m, 1H), 7.13 (d, J = 5.1 Hz, 2H), 6.73 (s, 2H), 4.44 (s, 2H), 3.90 (s, 2H), 3.72 (s, 3H), 2.52 (s, 3H), 2.26 (d, J = 8.3 Hz, 9H), 2.04 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.67, 157.09, 156.64, 140.36, 136.93, 135.46, 130.52, 128.76, 128.43, 125.53, 120.34, 118.45, 115.03, 113.52, 65.08, 56.29, 42.61, 30.27, 20.83, 11.81, 10.93. HRMS (ESI): calcd for C25H28ClNO6S [M + NH4]+ 523.1670, found 523.1667. HPLC (90:10 methanol:water with 1‰ TFA): tR = 7.37 min, 99.5%.

4-((2-Bromophenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (34)

White solid, Yield: 25%; mp: 171–173 °C. 1H NMR (300 MHz, Chloroform-d) δ 8.24 (d, J = 7.7 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 6.60 (s, 2H), 4.57–4.40 (m, 2H), 3.80 (t, J = 5.1 Hz, 2H), 2.42 (s, 3H), 2.37 (s, 6H), 2.35 (s, 3H), 2.23–2.11 (m, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.58, 156.57, 142.66, 139.86, 136.92, 133.83, 132.36, 128.91, 127.96, 125.55, 120.60, 119.09, 118.48, 114.93, 64.61, 42.44, 30.25, 20.88, 11.49, 10.85. HRMS (ESI): calcd for C24H25BrClNO5S [M + Na]+ 578.0203, found 578.0195. HPLC (90:10 methanol:water with 1‰ TFA): tR = 9.49 min, 97.3%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((3-methoxyphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (37)

White solid, yield: 22%; mp: 159–161 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.91 (s, 1H), 7.55–7.45 (m, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.31–7.16 (m, 2H), 6.77 (s, 2H), 4.42 (s, 2H), 3.90 (d, J = 11.5 Hz, 2H), 3.80 (s, 3H), 2.55 (s, 3H), 2.39 (s, 3H), 2.28 (s, 6H), 2.04 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.53, 159.84, 156.64, 145.30, 139.33, 136.90, 131.15, 128.02, 125.53, 121.16, 118.80, 118.56, 118.25, 114.94, 111.08, 65.12, 55.92, 42.85, 30.17, 20.82, 11.95, 11.01. HRMS (ESI): calcd for C25H28ClNO6S [M + NH4]+ 523.1670, found 523.1663. HPLC (80:20 methanol:water with 1‰ TFA): tR = 8.25 min, 96.1%.

4-((3-Bromophenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (38)

White solid, yield: 28%; mp: 181–183 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.75 (s, 1H), 7.73–7.64 (m, 2H), 7.51–7.37 (m, 2H), 6.77 (s, 2H), 4.43 (s, 2H), 3.89 (s, 2H), 2.37 (s, 3H), 2.31 (s, 6H), 2.12 (s, 3H), 2.06 (d, J = 7.0 Hz, 2H). HRMS (ESI): calcd for C24H25BrClNO5S [M + Na]+ 578.0203, found 578.0195. HPLC (90:10 methanol:water with 1‰ TFA): tR = 9.93 min, 96.5%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-methoxyphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (41)

White solid, yield: 16%; mp: 180–182 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.79 (s, 1H), 7.72 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 8.6 Hz, 2H), 6.73 (s, 2H), 4.45–4.35 (m, 2H), 3.87 (t, J = 4.3 Hz, 2H), 3.81 (s, 3H), 2.53 (s, 3H), 2.36 (s, 3H), 2.28 (s, 6H), 2.02 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.84, 162.59, 156.72, 138.83, 136.97, 135.89, 128.49, 127.77, 125.56, 120.99, 119.55, 115.06, 114.96, 65.20, 56.11, 42.82, 30.26, 20.88, 11.95, 11.03. HRMS (ESI): calcd for C25H28ClNO6S [M + Na]+ 528.1224, found 528.1218. HPLC (80:20 methanol:water with 1‰ TFA): tR = 9.52 min, 99.6%.

4-((4-Bromophenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (42)

White solid, yield: 17%; mp: 174–176 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.83 (s, 1H), 7.65 (dd, J = 16.7, 8.6 Hz, 4H), 6.63 (s, 2H), 4.32 (t, J = 5.6 Hz, 2H), 3.78 (t, J = 5.0 Hz, 2H), 2.43 (s, 3H), 2.27 (s, 3H), 2.18 (s, 6H), 1.94 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.52, 156.71, 143.29, 139.57, 136.97, 132.96, 128.30, 127.98, 127.18, 125.57, 121.34, 118.10, 115.05, 65.20, 60.21, 42.94, 30.18, 20.90, 11.94, 11.09. HRMS (ESI): calcd for C24H25BrClNO5S [M + Na]+ 578.0203, found 578.0198. HPLC (80:20 methanol:water with 1‰ TFA): tR = 8.64 min, 98.5%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-ethylphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (44)

White solid, yield: 12%; mp: 181–183 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.79 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 6.63 (s, 2H), 4.52 (t, J = 7.0 Hz, 2H), 3.90 (t, J = 5.5 Hz, 2H), 2.81–2.70 (m, 2H), 2.68 (s, 3H), 2.59 (s, 3H), 2.36 (s, 6H), 2.17 (t, J = 6.3 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 162.56, 156.77, 149.58, 141.66, 139.10, 136.96, 129.10, 127.97, 126.36, 125.61, 121.19, 119.14, 115.13, 65.31, 42.87, 30.29, 28.43, 20.84, 15.41, 11.95, 11.07. HRMS (ESI): calcd for C26H30ClNO5S [M + Na]+ 526.1431, found 526.1424. HPLC (80:20 methanol:water with 1‰ TFA): tR = 15.28 min, 98.9%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-isopropylphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (45)

White solid, Yield: 23%; mp: 178–180 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.88 (s, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 6.72 (s, 2H), 4.39 (t, J = 6.8 Hz, 2H), 3.86 (t, J = 5.4 Hz, 2H), 2.92 (dt, J = 13.5, 7.0 Hz, 1H), 2.54 (s, 3H), 2.35 (s, 3H), 2.26 (s, 6H), 2.08–1.97 (m, 2H), 1.16 (d, J = 6.9 Hz, 6H). HRMS (ESI): calcd for C27H32ClNO5S [M + Na]+ 540.1587, found 540.1577. HPLC (80:20 methanol:water with 1‰ TFA): tR = 20.33 min, 99.6%.

4-((4-(tert-Butyl)phenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (46)

White solid, yield: 31%; mp: 187–189 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.79 (s, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 6.65 (s, 2H), 4.31 (s, 2H), 3.79 (s, 2H), 2.47 (s, 3H), 2.28 (s, 3H), 2.18 (s, 6H), 1.94 (s, 2H), 1.17 (s, 9H). 13C NMR (75 MHz, DMSO-d6) δ 162.58, 156.74, 156.29, 141.34, 139.17, 136.98, 127.90, 126.73, 126.12, 125.56, 121.15, 119.01, 115.10, 65.24, 42.87, 35.29, 31.17, 30.24, 20.92, 12.03, 11.10. HRMS (ESI): calcd for C28H34ClNO5S [M + Na]+ 554.1744, found 554.1736. HPLC (80:20 methanol:water with 1‰ TFA): tR = 25.54 min, 99.5%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-ethoxyphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (47)

White solid, yield: 8%; mp: 183–185 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.87 (s, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 6.73 (s, 2H), 4.48–4.34 (m, 2H), 4.08 (q, J = 7.3, 6.7 Hz, 2H), 3.87 (t, J = 5.6 Hz, 2H), 2.54 (s, 3H), 2.36 (s, 3H), 2.28 (s, 6H), 2.02 (s, 2H), 1.33 (t, J = 6.9 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 162.60, 162.17, 156.77, 138.78, 136.97, 135.83, 128.47, 127.83, 125.61, 121.09, 119.67, 115.29, 115.12, 65.31, 64.20, 42.82, 30.33, 20.83, 14.81, 11.93, 11.04. HRMS (ESI): calcd for C26H30ClNO6S [M + Na]+ 542.1380, found 542.1373. HPLC (80:20 methanol:water with 1‰ TFA): tR = 12.22 min, 99.5%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-fluorophenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (51)

White solid, yield: 21%; mp: 158–160 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.83 (s, 1H), 7.76 (d, J = 5.3 Hz, 1H), 7.65 (dd, J = 16.2, 8.5 Hz, 2H), 7.29 (t, J = 8.8 Hz, 1H), 6.63 (s, 2H), 4.32 (t, J = 6.9 Hz, 2H), 3.77 (t, J = 4.9 Hz, 2H), 2.44 (s, 3H), 2.27 (s, 3H), 2.18 (s, 6H), 1.94 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 161.78, 156.80, 143.26, 137.09, 136.94, 129.85, 127.10, 125.52, 122.31, 120.78, 120.50, 115.18, 112.03, 64.87, 45.50, 30.72, 21.34, 20.91. HRMS (ESI): calcd for C24H25ClFNO5S [M + Na]+ 516.1024, found 516.1021. HPLC (80:20 methanol:water with 1‰ TFA): tR = 10.37 min, 95.5%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-chlorophenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (52)

White solid, Yield: 14%; mp: 165–167 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.93 (s, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 8.7 Hz, 2H), 6.73 (s, 2H), 4.42 (t, J = 8.1 Hz, 2H), 3.87 (t, J = 4.7 Hz, 2H), 2.54 (s, 3H), 2.36 (s, 3H), 2.28 (s, 6H), 2.04 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.55, 156.69, 142.87, 139.52, 138.19, 136.94, 129.97, 128.22, 128.02, 125.58, 121.34, 118.18, 115.00, 65.17, 42.94, 30.20, 20.87, 11.95, 11.08. HRMS (ESI): calcd for C24H25Cl2NO5S [M + Na]+ 532.0728, found 532.0726. HPLC (80:20 methanol:water with 1‰ TFA): tR = 15.25 min, 99.9%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-((4-nitrophenyl)sulfonyl)-1H-pyrrole-2-carboxylic Acid (53)

Yellow solid, yield: 13%; mp: 196–198 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.89 (s, 1H), 8.25 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 8.7 Hz, 2H), 6.63 (s, 2H), 4.33 (t, J = 6.8 Hz, 2H), 3.78 (t, J = 5.2 Hz, 2H), 2.47 (s, 3H), 2.29 (s, 3H), 2.18 (s, 6H), 1.95 (s, 2H). HRMS (ESI): calcd for C24H25ClN2O7S [M - H] 519.0993, found 519.0990. HPLC (80:20 methanol:water with 1‰ TFA): tR = 10.45 min, 99.5%.

4-((4-Aminophenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (55)

To a solution of 53 (0.2 g, 0.34 mmol) and EtOAc (10 mL), 5% Pd/C (0.05 equiv) was added. The mixture was stirred at 50 °C for 3 h. Upon the consumption of 53, the raction mixture was cooled to room temperature and Pd/C was then filtered. The solvent was evaporated under reduced pressure to give 55 as a gray solid, yield: 15%; mp: 156–158 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.77 (s, 1H), 7.42 (d, J = 8.7 Hz, 2H), 6.75 (s, 2H), 6.58 (d, J = 8.7 Hz, 2H), 6.03 (s, 2H), 4.39 (t, J = 6.9 Hz, 2H), 3.87 (t, J = 5.7 Hz, 2H), 2.51 (s, 3H), 2.35 (s, 3H), 2.28 (s, 6H), 2.01 (dd, J = 8.6, 5.5 Hz, 2H). HRMS (ESI): calcd for C24H27ClN2O5S [M + Na]+ 513.1227, found 513.1225. HPLC (80:20 methanol:water with 1‰ TFA): tR = 5.13 min, 99.2%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((2,6-dimethylphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (56)

White solid, yield: 25%; mp: 179–181 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.32 (t, J = 8.5 Hz, 1H), 7.12 (d, J = 7.6 Hz, 2H), 6.61 (s, 2H), 4.54 (t, J = 6.9 Hz, 2H), 3.89 (t, J = 5.4 Hz, 2H), 2.60 (s, 6H), 2.57 (s, 3H), 2.36 (s, 6H), 2.30 (s, 3H), 2.23–2.14 (m, 2H). 13C NMR (75 MHz, DMSO) δ 164.31, 158.51, 141.62, 140.36, 140.07, 139.99, 138.71, 134.35, 133.57, 127.41, 123.09, 122.47, 116.90, 67.00, 44.31, 32.12, 23.61, 22.57, 12.82, 12.64. HRMS (ESI): calcd for C26H30ClNO5S [M + Na]+ 526.1431, found 526.1423. HPLC (80:20 methanol:water with 1‰ TFA): tR = 15.33 min, 99.8%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((3,5-dimethylphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (57)

White solid. Yield: 18%; mp: 184–186 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.49 (s, 2H), 7.20 (s, 1H), 6.63 (s, 2H), 4.53 (t, J = 7.0 Hz, 2H), 3.91 (t, J = 5.5 Hz, 2H), 2.68 (s, 3H), 2.61 (s, 3H), 2.39 (s, 6H), 2.36 (s, 6H), 2.23–2.13 (m, 2H). HRMS (ESI): calcd for C26H30ClNO5S [M + Na]+ 526.1431, found 526.1425. HPLC (80:20 methanol:water with 1‰ TFA): tR = 15.59 min, 96.1%.

Ethyl-3,5-diethyl-1H-pyrrole-2-carboxylate (81a)

78 (8 g; 50 mmol) was first added to an aqueous solution of NaNO2 (10.3 g in 25 mL, 150 mmol). After stirring for 24 h at 0 °C, the solution was allowed to reach room temperature. After extracting the aqueous layer several times with DCM, the combined organic layers were dried over MgSO4 and then evaporated to dryness. The resulting crude product was dissolved in acetic acid (50 mL) and added dropwise to a stirred solution of 80a (4.4 g, 44 mmol) in acetic acid (50 mL). A mixture of Zn (10 g; 156 mmol) and AcONa (12.7 g; 156 mmol) was added alternatively. The mixture was then stirred at 80 °C for 2 h, poured into water (300 mL), and extracted with DCM (3 times) The combined organic layer was concentrated under reduced pressure and purification by silica gel column chromatography (petroleum ether/ethyl acetate = 50:1 to 20:1 v/v) gave 81a, light yellow powder, yield: 43%. 1H NMR (300 MHz, Chloroform-d) δ 8.82 (s, 1H), 5.99–5.89 (m, 1H), 4.35 (q, J = 7.1 Hz, 2H), 2.82 (q, J = 7.5 Hz, 2H), 2.66 (q, J = 7.6 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.6 Hz, 3H), 1.24 (t, J = 7.7 Hz, 3H). ESI-MS m/z: 194.1 [M-1].

Ethyl-3,5-diethyl-4-(p-tolylthio)-1H-pyrrole-2-carboxylate (82a)

81a was synthesized according to the procedure of 75a, yellow powder, yield: 62%. 1H NMR (300 MHz, Chloroform-d) δ 9.30 (s, 1H), 7.04 (d, J = 7.8 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 2.82 (q, J = 7.3 Hz, 2H), 2.75 (q, J = 7.5, 6.0 Hz, 2H), 2.31 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H), 1.09 (t, J = 7.3 Hz, 3H). ESI-MS m/z: 318.3 [M + 1]+.

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-diethyl-4-(p-tolylthio)-1H-pyrrole-2-carboxylate (83a)

83a was synthesized according to the procedure of 63, colorless oil, yield: 72%. 1H NMR (300 MHz, Chloroform-d) δ 7.01 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.2 Hz, 2H), 6.66 (s, 2H), 4.60–4.51 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.96 (t, J = 5.7 Hz, 2H), 2.81 (dq, J = 15.1, 7.4 Hz, 4H), 2.38 (s, 6H), 2.30 (s, 3H), 2.24 (dd, J = 13.0, 6.9 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H), 1.14–1.04 (m, 6H). ESI-MS m/z: 514.2 [M + 1]+.

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-diethyl-4-tosyl-1H-pyrrole-2-carboxylate (84a)

84a was synthesized according to the procedure of 77a, colorless oil, yield: 56%. 1H NMR (300 MHz, Chloroform-d) δ 7.75 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 6.65 (s, 2H), 4.56–4.45 (m, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.95 (t, J = 5.6 Hz, 2H), 3.12 (q, J = 7.4 Hz, 2H), 2.97 (q, J = 7.3 Hz, 2H), 2.44 (s, 3H), 2.39 (s, 6H), 2.19 (p, J = 5.8 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.4 Hz, 3H), 1.06 (t, J = 7.3 Hz, 3H). ESI-MS m/z: 568.2 [M + Na]+.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-diethyl-4-tosyl-1H-pyrrole-2-carboxylic Acid (17)

White powder, yield: 74%; mp: 180–182 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.76 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 6.64 (s, 2H), 4.53 (t, J = 7.1 Hz, 2H), 3.93 (t, J = 5.4 Hz, 2H), 3.15 (q, J = 7.4 Hz, 2H), 3.06 (q, J = 7.3 Hz, 2H), 2.45 (s, 3H), 2.37 (s, 6H), 2.21 (p, J = 5.9 Hz, 2H), 1.27 (t, J = 7.4 Hz, 3H), 1.09 (t, J = 7.3 Hz, 3H). HRMS (ESI): calcd for C27H32ClNO5S [M + Na]+ 540.1587, found 540.1582. HPLC (80:20 methanol:water with 1‰ TFA): tR = 15.84 min, 99.2%.
81b–e were synthesized from the cyclization reaction of 79 and 80b-c according to the procedure of 81a. Starting from the corresponding 81b–e, 18 and 19 and 21 and 22 were synthesized according to the procedure of 17.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-5-ethyl-3-methyl-4-tosyl-1H-pyrrole-2 carboxylic Acid (18)

White powder, yield: 77%; mp: 186–188 °C. 1H NMR (300 MHz, DMSO-d6) δ 7.64 (d, J = 8.9 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 6.63 (s, 2H), 4.29 (t, J = 6.7 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H), 3.79 (t, J = 5.6 Hz, 2H), 2.46 (s, 3H), 2.26 (s, 3H), 2.18 (s, 6H), 1.93 (s, 2H), 1.14 (t, J = 7.1 Hz, 3H). HRMS (ESI): calcd for C26H30ClNO5S [M + Na]+ 526.1431, found 526.1425. HPLC (80:20 methanol:water with 1‰ TFA): tR = 14.70 min, 97.7%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3-ethyl-5-methyl-4-tosyl-1H-pyrrole-2-carboxylic Acid (19)

White solid, yield: 83%; mp: 178–180 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.84 (s, 1H), 7.66 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 6.73 (s, 2H), 4.42 (t, J = 6.2, 2H), 3.88 (t, J = 5.0 Hz, 2H), 2.87 (q, J = 7.3 Hz, 2H), 2.54 (s, 3H), 2.35 (s, 3H), 2.28 (s, 6H), 2.04 (dt, J = 10.9, 5.4 Hz, 2H), 0.94 (t, J = 6.8 Hz, 3H). 13C NMR (75 MHz, DMSO) δ 162.39, 156.73, 143.61, 141.54, 139.11, 136.96, 134.67, 130.25, 126.29, 125.54, 120.57, 118.28, 115.05, 65.24, 42.92, 30.20, 21.41, 20.90, 18.83, 16.35, 11.17. HRMS (ESI): calcd for C26H30ClNO5S [M + Na]+ 526.1431, found 526.1426. HPLC (80:20 methanol:water with 1‰ TFA): tR = 12.78 min, 98.1%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-5-isobutyl-3-methyl-4-tosyl-1H-pyrrole-2-carboxylic Acid (21)

White solid, yield: 79%; mp: 162–164 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.94 (s, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.71 (s, 2H), 4.42 (t J = 6.7 Hz, 2H), 3.79 (t, J = 5.6 Hz, 2H), 2.88 (d, J = 7.3 Hz, 2H), 2.33 (s, 3H), 2.26 (s, 6H), 2.24 (s, 3H), 2.00–1.88 (m, 3H), 0.87 (d, J = 6.4 Hz, 6H). HRMS (ESI): calcd for C28H34ClNO5S [M + NH4]+ 549.2187, found 549.2185. HPLC (90:10 methanol:water with 1‰ TFA): tR = 12.2 min, 99.4%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3-isobutyl-5-methyl-4-tosyl-1H-pyrrole-2-carboxylic Acid (22)

White solid, yield: 86%; mp: 149–151 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.89 (s, 1H), 7.59 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.7 Hz, 2H), 6.70 (s, 2H), 4.51–4.33 (m, 2H), 3.81 (t, J = 5.1 Hz, 2H), 2.82 (d, J = 6.9 Hz, 2H), 2.46 (s, 3H), 2.32 (s, 3H), 2.25 (s, 6H), 2.07–1.96 (m, 2H), 1.83–1.73 (m, 1H), 0.76 (d, J = 6.3 Hz, 6H). 13C NMR (75 MHz, DMSO-d6) δ 166.33, 156.20, 143.26, 141.29, 140.55, 137.19, 136.92, 129.55, 126.56, 126.23, 120.24, 119.11, 114.26, 64.48, 43.10, 33.24, 30.81, 30.38, 22.28, 21.53, 20.96, 11.47. HRMS (ESI): calcd for C28H34ClNO5S [M + NH4]+ 549.2187, found 549.2180. HPLC (80:20 methanol:water with 1‰ TFA): tR = 16.92 min, 99.3%.

Ethyl-3,5-dimethyl-4-(thiophen-2-ylsulfonyl)-1H-pyrrole-2-carboxylate (86a)

To a solution of 85a (2 g, 11 mmol) and PhCl (40 mL), AlCl3 (1.5 g, 11 mmol) was added under nitrogen at 0 °C. The mixture was srirred for 10 min and ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate (1 g, 6 mmol) was added. The mixture was then allowed to stir at 90 °C for 2 h under nitrogen. After completing the reaction monitored by TLC, 100 mL of water was carefully added to the mixture. The mixture was added 40 mL DCM and stirred for 15 min. After filtration, the organic layer was isolated and the aqueous phase was extracted with DCM (2 times). The combined organic layer was then washed with brine and dried with Na2SO4. Removal of solvent under reduced pressure yielded crude product. Further purification by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1 to 10:1 v/v) gave 86a, yellow powder, 2.6 g, yield: 68%. 1H NMR (300 MHz, Chloroform-d) δ 9.42 (s, 1H), 7.68 (dd, J = 3.7, 1.3 Hz, 1H), 7.60 (dd, J = 5.0, 1.3 Hz, 1H), 7.09 (dd, J = 4.9, 3.8 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 2.64 (s, 3H), 2.58 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 312.0 [M - 1].

Ethyl-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(thiophen-2-ylsulfonyl)-1H-pyrrole-2-carboxylate (87a)

87a was synthesized according to the procedure of 63, yellow powder, yield: 63%. 1H NMR (300 MHz, Chloroform-d) δ 7.63 (dd, J = 3.7, 1.3 Hz, 1H), 7.57 (dd, J = 5.0, 1.3 Hz, 1H), 7.07 (dd, J = 5.0, 3.8 Hz, 1H), 6.63 (s, 2H), 4.51 (t, J = 7.1 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.90 (t, J = 5.6 Hz, 2H), 2.65 (s, 3H), 2.59 (s, 3H), 2.38 (s, 6H), 2.17 (p, J = 6.0 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 510.1 [M + 1]+.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(thiophen-2-ylsulfonyl)-1H-pyrrole-2-carboxylic Acid (27)

Starting from 87a, 27 was synthesized through the hydrolysis procedure of 23. Brown solid, yield: 54%; mp: 178–180 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.91 (s, 1H), 7.95 (s, 1H), 7.65 (s, 1H), 7.15 (s, 1H), 6.73 (s, 2H), 4.42 (s, 2H), 3.87 (s, 2H), 2.54 (s, 3H), 2.44 (s, 3H), 2.28 (s, 6H), 2.03 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.56, 156.72, 146.06, 139.14, 136.98, 133.85, 131.75, 128.43, 127.90, 125.58, 121.24, 119.64, 115.08, 65.19, 42.94, 30.22, 20.90, 11.99, 11.15. HRMS (ESI): calcd for C22H24ClNO5S2 [M + Na]+ 504.0682, found 504.0686. HPLC (80:20 methanol:water with 1‰ TFA): tR = 16.32 min, 97.9%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-(naphthalen-1-ylsulfonyl)-1H-pyrrole-2-carboxylic Acid (28)

Starting from 85b, 28 was synthesized according to the procedure of 27, white solid, yield: 63%; mp: 184–186 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.88 (s, 1H), 8.43–8.33 (m, 1H), 8.24 (d, J = 8.2 Hz, 1H), 8.16 (d, J = 7.2 Hz, 1H), 8.11–8.01 (m, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.60 (dd, J = 6.3, 3.3 Hz, 2H), 6.70 (s, 2H), 4.44 (t, J = 6.7 Hz, 2H), 3.84 (t, J = 5.5 Hz, 2H), 2.61 (s, 3H), 2.27 (s, 6H), 2.24 (s, 3H), 2.10–1.99 (m, 2H). HRMS (ESI): calcd for C28H28ClNO5S [M + Na]+ 548.1274, found 548.1266. HPLC (80:20 methanol:water with 1‰ TFA): tR = 13.96 min, 99.6%.

1-(4-Mercaptophenyl)ethan-1-one (89a)

To a mixture of 4-iodoacetophenone (88a, 5 g, 20 mmol), CuSO4·5H2O (0.25 g, 1 mmol), Cs2CO3 (32.4 g, 100 mmol), and DMSO (70 mL), 1,2-ethanedithiol (3.7 g, 40 mmol) was added under nitrogen at room temperature. The mixture was stirred in the preheated oil bath at 90 °C for 4 h. After being cooled to room temperature, the reaction mixture was carefully quenched by aqueous HCl (1 N) to pH 2. EtOAc (80 mL) was added, and the mixture was stirred for another 10 min. The organic layer was separated and washed with brine, dried over MgSO4, and concentrated under vacuum. The crude product was further purified by column chromatography (petroleum ether/ethyl acetate = 50:1 to 10:1 v/v) to provide 89a as a light yellow powder, yield: 76%. 1H NMR (300 MHz, Chloroform-d) δ 7.93 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 2.60 (s, 3H). ESI-MS m/z: 150.9 [M-1].

Ethyl-4-((4-acetylphenyl)thio)-3,5-dimethyl-1H-pyrrole-2-carboxylate (90a)

90a was synthesized according to the procedure of 75a, yellow solid. Yield: 54%. 1H NMR (300 MHz, Chloroform-d) δ 9.60 (s, 1H), 7.84 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 2.59 (s, 3H), 2.36 (s, 3H), 2.32 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 316.2 [M–1].

Ethyl-4-((4-acetylphenyl)thio)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (91a)

91a was synthesized according to the procedure of 63, yellow oil, yield: 75%. 1H NMR (300 MHz, Chloroform-d) δ 7.79 (d, J = 8.5 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.64 (s, 2H), 4.58 (t, J = 6.9 Hz, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.93 (t, J = 5.6 Hz, 2H), 2.56 (s, 3H), 2.36 (s, 6H), 2.32 (s, 6H), 2.25 (p, J = 6.5 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 536.1 [M + Na]+.

Ethyl-4-((4-acetylphenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (92a)

92a was synthesized according to the procedure of 75a, yellow solid, yield: 65%. 1H NMR (300 MHz, Chloroform-d) δ 8.06 (d, J = 7.0 Hz, 2H), 7.96 (d, J = 7.0 Hz, 2H), 6.64 (s, 2H), 4.51 (t, J = 6.8 Hz, 2H), 4.37–4.25 (m, 2H), 3.92 (t, J = 5.0 Hz, 2H), 2.67 (s, 6H), 2.51 (s, 3H), 2.38 (s, 6H), 2.17 (p, J = 5.5 Hz, 2H), 1.38 (t, J = 7.7 Hz, 3H). ESI-MS m/z: 546.2 [M + H]+.

4-((4-Acetylphenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (40)

40 was synthesized from 92a according to the hydrolysis procedure of 16, yellow powder, Yield: 42%, mp: 215–216 °C, 1H NMR (300 MHz, DMSO-d6) δ 12.93 (s, 1H), 8.07 (d, J = 8.3 Hz, 2H), 7.90 (d, J = 8.3 Hz, 2H), 6.71 (s, 2H), 4.40 (t, J = 6.7 Hz, 2H), 3.85 (t, J = 5.9 Hz, 2H), 2.59 (s, 3H), 2.54 (s, 3H), 2.35 (s, 3H), 2.25 (s, 6H), 2.01 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 197.73, 162.57, 156.74, 150.93, 139.28, 137.99, 137.00, 129.13, 128.67, 125.59, 125.09, 121.06, 120.48, 115.06, 65.13, 42.77, 30.37, 27.29, 20.89, 11.57, 10.56. HRMS (ESI): calcd for C26H28ClNO6S [M + Na]+ 540.1224, found 540.1217. HPLC (90:10 methanol:water with 1‰ TFA): tR = 7.50 min, 99.8%.
Starting from corresponding iodobenzenes 88bg, 32, 36, 48–50, and 54 were synthesized according to the procedure of 40.

4-((2-Acetylphenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (32)

Yellow solid, yield: 9%; mp: 180–182 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.95 (s, 1H), 7.67 (dd, J = 47.1, 19.2 Hz, 4H), 6.77 (s, 2H), 4.44 (s, 2H), 3.92 (s, 2H), 2.45 (s, 6H), 2.25 (d, J = 15.6 Hz, 9H), 2.06 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 202.53, 162.59, 156.77, 141.23, 140.23, 139.75, 137.00, 133.48, 130.35, 128.40, 127.21, 125.59, 121.12, 118.14, 115.14, 65.13, 42.76, 32.18, 30.36, 20.93, 11.83, 11.09. HRMS (ESI): calcd for C26H28ClNO6S [M + NH4]+ 535.1664, found 535.1661. HPLC (90:10 methanol:water with 1‰ TFA): tR = 23.10 min, 97.2%.

4-((3-Acetylphenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (36)

Pale yellow solid, yield: 14%; mp: 172–174 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.98 (s, 1H), 8.25 (d, J = 12.4 Hz, 2H), 8.05 (d, J = 7.8 Hz, 1H), 7.76 (t, J = 7.7 Hz, 1H), 6.75 (s, 2H), 4.45 (t, J = 6.2 Hz, 2H), 3.90 (t, J = 4.5 Hz, 2H), 2.65 (s, 3H), 2.59 (s, 3H), 2.42 (s, 3H), 2.30 (s, 6H), 2.07 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 197.13, 162.53, 156.68, 144.68, 139.61, 137.88, 136.94, 133.04, 130.75, 130.41, 128.03, 125.57, 124.96, 121.38, 118.11, 114.99, 65.14, 42.96, 30.21, 27.21, 20.87, 11.98, 11.10. HRMS (ESI): calcd for C26H28ClNO6S [M + NH4]+ 535.1664, found 535.1660. HPLC (80:20 methanol:water with 1‰ TFA): tR = 7.76 min, 99.6%.

4-([1,1′-Biphenyl]-4-ylsulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (48)

White solid, Yield: 35%; mp: 158–160 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.93 (s, 1H), 7.93–7.37 (m, 9H), 6.74 (s, 2H), 4.42 (s, 2H), 3.88 (s, 2H), 2.59 (s, 3H), 2.41 (s, 3H), 2.26 (s, 6H), 2.05 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.58, 156.76, 144.82, 142.91, 139.33, 138.88, 136.97, 129.53, 128.98, 128.06, 127.50, 126.92, 125.63, 121.34, 118.86, 115.11, 65.30, 42.93, 30.30, 20.84, 12.02, 11.15. HRMS (ESI): calcd for C30H30ClNO5S [M + H]+ 552.1611, found 552.1603. HPLC (90:10 methanol:water with 1‰ TFA): tR = 17.4 min, 98.2%.

4-((4-Benzoylphenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (49)

Light yellow solid, yield: 16%; mp: 146–148 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.99 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.85–7.79 (m, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 6.63 (s, 2H), 4.55 (t, J = 6.9 Hz, 2H), 3.91 (t, J = 5.4 Hz, 2H), 2.71 (s, 3H), 2.61 (s, 3H), 2.35 (s, 6H), 2.19 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 195.13, 162.54, 156.75, 147.06, 140.99, 139.80, 136.97, 136.63, 133.67, 130.88, 130.22, 129.12, 128.21, 126.47, 125.63, 121.58, 117.99, 115.11, 65.31, 43.01, 30.26, 20.83, 11.99, 11.16. HRMS (ESI): calcd for C31H30ClNO6S [M + NH4]+ 597.1821, found 597.1815. HPLC (90:10 methanol:water with 1‰ TFA): tR = 15.33 min, 99.9%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-4-((4-phenoxyphenyl)sulfonyl)-1H-pyrrole-2-carboxylic Acid (50)

White solid, yield: 15%; mp: 164–166 °C. 1H NMR (300 MHz, Chloroform-d) δ 7.82 (d, J = 8.6 Hz, 2H), 7.44 (t, J = 7.8 Hz, 2H), 7.26 (t, J = 7.3 Hz, 1H), 7.06 (dd, J = 15.6, 8.3 Hz, 4H), 6.63 (s, 2H), 4.53 (t, J = 6.6 Hz, 2H), 3.91 (t, J = 5.0 Hz, 2H), 2.68 (s, 3H), 2.59 (s, 3H), 2.36 (s, 6H), 2.24–2.12 (m, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.58, 161.19, 156.77, 155.20, 139.07, 138.20, 136.98, 130.80, 128.84, 127.94, 125.63, 125.40, 121.23, 120.56, 119.20, 118.10, 115.12, 65.32, 42.89, 30.31, 20.85, 11.96, 11.09. HRMS (ESI): calcd for C30H30ClNO6S [M + NH4]+ 585.1826, found 585.1819. HPLC (80:20 methanol:water with 1‰ TFA): tR = 22.46 min, 99.2%.

4-((4-Carboxyphenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (54)

Light purple solid, yield: 15%; mp: 183–185 °C. 1H NMR (300 MHz, DMSO-d6) δ 13.34 (s, 1H), 8.11 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.3 Hz, 2H), 6.76 (s, 2H), 4.45 (s, 2H), 3.89 (s, 2H), 2.58 (s, 3H), 2.40 (s, 3H), 2.30 (s, 6H), 2.07 (s, 2H). 13C NMR (75 MHz, DMSO) δ 166.48, 162.48, 156.73, 147.55, 139.73, 136.96, 135.00, 130.74, 128.16, 126.50, 125.63, 121.50, 117.99, 115.09, 65.31, 42.98, 30.23, 20.82, 11.90, 11.12. HRMS (ESI): calcd for C25H26ClNO7S [M + NH4]+ 537.1462, found 537.1461. HPLC (80:20 methanol:water with 1‰ TFA): tR = 6.63 min, 97.7%.

4-(Benzyloxy)benzenethiol (89h)

89h was synthesized from 1-(benzyloxy)-4-iodobenzene (88h) according to the procedure of 89a, white solid. Yield: 68%. 1H NMR (300 MHz, Chloroform-d) δ 7.45–7.41 (m, 2H), 7.39–7.34 (m, 3H), 7.33 (d, J = 7.4 Hz, 2H), 6.81 (d, J = 7.5 Hz, 2H), 5.03 (s, 2H), 3.73 (s, 1H). ESI-MS m/z: 215.1 [M-H].

Ethyl-4-((4-(benzyloxy)phenyl)thio)-3,5-dimethyl-1H-pyrrole-2-carboxylate (90h)

90h was synthesized from 4-(benzyloxy)benzenethiol according to the procedure of 75a, yellow solid. Yield: 73%. 1H NMR (300 MHz, Chloroform-d) δ 9.27 (s, 1H), 7.51–7.35 (m, 5H), 7.01 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.05 (s, 2H), 4.38 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 2.36 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 380.1 [M–H].

Ethyl-4-((4-(benzyloxy)phenyl)thio)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (91h)

91h was synthesized according to the procedure of 63, colorless oil, yield: 81%. 1H NMR (300 MHz, Chloroform-d) δ 7.45–7.35 (m, 5H), 6.95 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 6.64 (s, 2H), 5.03 (s, 2H), 4.55 (t, J = 7.0 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.92 (t, J = 5.6 Hz, 2H), 2.37 (s, 6H), 2.37 (s, 3H), 2.36 (s, 3H), 2.23 (p, J = 6.2 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 578.2 [M + H]+.

Ethyl-4-((4-(benzyloxy)phenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (92h)

92h was synthesized according to the procedure of 77a, white powder, yield: 63%. 1H NMR (300 MHz, Chloroform-d) δ 7.81 (d, J = 8.9 Hz, 2H), 7.44 (d, J = 4.2 Hz, 5H), 7.04 (d, J = 8.9 Hz, 2H), 6.64 (s, 2H), 5.14 (s, 2H), 4.49 (t, J = 7.1 Hz, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.92 (t, J = 5.5 Hz, 2H), 2.66 (s, 3H), 2.51 (s, 3H), 2.38 (s, 6H), 2.17 (p, J = 6.0 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ESI-MS m/z: 610.2 [M + H]+.

4-((4-(Benzyloxy)phenyl)sulfonyl)-1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (93h)

To a solution of 92h (380 mg, 0.62 mmol) in EtOH/THF (10 mL/10 mL) was added NaOH (2 M, 3 mL). The mixture was stirred overnight at 50 °C. After completion of the reaction, the mixture was then acidified with 1 M HCl and extracted with ethyl acetate. The organic layer was washed with brine and dried with Na2SO4. Removal of solution and further recrystallization from EtOH/nhexane gave title compound 93h. White powder, yield: 80%. 1H NMR (300 MHz, Chloroform-d) δ 7.83 (d, J = 8.6 Hz, 2H), 7.46–7.39 (m, 5H), 7.06 (d, J = 8.6 Hz, 2H), 6.64 (s, 2H), 5.15 (s, 2H), 4.53 (t, J = 6.8 Hz, 2H), 3.92 (t, J = 5.2 Hz, 2H) 2.68 (s, 3H), 2.60 (s, 3H), 2.37 (s, 6H), 2.19 (p, J = 6.7 Hz, 2H). ESI-MS m/z: 604.1 [M + Na]+.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((4-hydroxyphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (43)

To a solution of 93h (0.2 g, 0.34 mmol) and EtOAc (10 mL), 5% Pd/C (0.05 equiv) was added. The mixture was stirred at 50 °C for 3 h. Upon the consumption of 91h, the reaction mixture was cooled to room temperature and Pd/C was then filtered. The solvent was evaporated under reduced pressure to give 43 as a gray solid, yield: 96%; mp: 177–179 °C. 1H NMR (300 MHz, DMSO-d6) δ 7.65 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 6.77 (s, 2H), 4.43 (t, J = 6.7 Hz, 2H), 3.89 (t, J = 5.5 Hz, 2H), 2.55 (s, 3H), 2.39 (s, 3H), 2.31 (s, 6H), 2.05 (dt, J = 13.0, 6.6 Hz, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.64, 161.74, 156.74, 138.59, 136.98, 134.22, 128.69, 127.70, 125.56, 120.94, 119.94, 116.16, 115.07, 65.23, 42.76, 30.29, 20.89, 11.96, 11.02. HRMS (ESI): calcd for C24H26ClNO6S [M + Na]+ 514.1067, found 514.1061. HPLC (80:20 methanol:water with 1‰ TFA): tR = 6.33 min, 99.2%.
Starting from 1-(benzyloxy)-2-iodobenzene (88j) and 1-(benzyloxy)-3-iodobenzene (88i), 35 and 39 were obtained through the procedure of 43.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((2-hydroxyphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (35)

White solid, yield: 10%; mp: 175–177 °C. 1H NMR (300 MHz, Chloroform-d) δ 9.44 (s, 1H), 7.44 (d, J = 7.7 Hz, 2H), 7.03 (d, J = 8.2 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.63 (s, 2H), 4.55 (t, J = 7.0 Hz, 2H), 3.90 (t, J = 5.4 Hz, 2H), 2.68 (s, 3H), 2.57 (s, 3H), 2.37 (s, 6H), 2.20 (dt, J = 12.1, 5.9 Hz, 2H). 13C NMR (75 MHz, DMSO-d6) δ 162.73, 158.73, 156.73, 156.22, 140.24, 139.05, 136.98, 135.05, 129.23, 128.71, 125.55, 120.18, 118.89, 117.80, 115.12, 112.59, 65.17, 42.58, 21.50, 20.91, 11.91, 11.26. HRMS (ESI): calcd for C24H26ClNO6S [M + NH4]+ 509.1513, found 509.1505. HPLC (80:20 methanol:water with 1‰ TFA): tR = 14.95 min, 99.3%.

1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-4-((3-hydroxyphenyl)sulfonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic Acid (39)

Gray solid, yield: 12%; mp: 173–175 °C. 1H NMR (300 MHz, DMSO-d6) δ 12.91 (s, 1H), 10.18 (s, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 9.9 Hz, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.76 (s, 2H), 4.44 (s, 2H), 3.91 (s, 2H), 2.56 (s, 3H), 2.41 (s, 3H), 2.31 (s, 6H), 2.05 (dd, J = 12.3, 6.3 Hz, 2H). HRMS (ESI): calcd for C24H26ClNO6S [M + NH4]+ 509.1513, found 509.1507. HPLC (80:20 methanol:water with 1‰ TFA): tR = 6.47 min, 97.1%.

Protein Purification

GST-tagged proteins Mcl-1 (residues 171–327), Bcl-2 (residues 1–205) and A1/Bfl-1 (residues1–151) were expressed from the pGEX-4 T-1 vector in E. coli BL21 (DE3) cells. Protein expression was induced by 1.0 mM IPTG at 11 °C for 8 h. Cells were lysed by an ultrasonic cracker in 25 mM Tris pH 8.0 buffer containing 300 mM NaCl, 0.1% Tween 20, and 0.1% mercaptoethanol. Proteins were further purified on a GSTtrap column (5 cm) in 50 mM Tris pH 8.0 buffer, with 200 mM NaCl, 10 mM reduced glutathione, and 1 mM DTT. Lastly, 10% SDS-PAGE was used for confirming the molecular weight of the purified proteins.

FP-Based Competition Assay

An FP competition assay was used to evaluate the inhibitory activities of the compounds against Mcl-1, (75) Bcl-2, (68) and Bfl-1. (76) Different concentrations of compounds were prepared by serial dilution in assay buffer (Mcl-1: 20 mM Tris, 150 mM NaCl, 3 mM DTT, pH = 7.5; Bfl-1 and Bcl-2: 55 mM Hepes, 274 mM NaCl, 1.48 mM Na2HPO4, pH = 7.0). FITC-Bak-BH3 was chosen as a probe for Mcl-1 (10 nM final). Fam-Bid was chosen as probes for Bcl-2 and Bfl-1, and the final probe concentrations were 0.66 and 0.33 nM, respectively. The protein final concentrations for Mcl-1, Bfl-1, and Bcl-2 were 20, 13.3, and 20 nM, respectively. The experiments were conducted in 384-well black flat-bottomed polystyrene plates (Corning #3575). For each assay, equal volumes of the diluted compounds (20 μL), proteins (20 μL), and probes (20 μL) were added to the wells in an orderly fashion. Plates were rocked for 30 min at room temperature in the dark, and then the FP values were detected using a SpectraMax multimode microplate reader (Molecular Devices) with excitation and emission wavelengths at 485 and 535 nm, respectively. For each assay, the FP values of blank controls (probes only) were recorded as Pmin; the FP values of negative controls (probes and proteins) were recorded as Pmax, and the FP values of test wells (compounds, probes, and protein) were recorded as Ptest. The inhibition rates of the compounds at each concentration point were calculated using the equation as follows: inhibition rate (%) = [1 – (PtestPmin)/(PmaxPmin)] × 100%, and the IC50 values were calculated using Graphpad Prism 6.0 software. Ki was calculated as previously reported. (47,77)

TR-FRET Based Assay

The Bcl-xL inhibitory ratio was assessed by time-resolved fluorescence resonance energy transfer (TR-FRET) technology (48) using a recombinant Bcl-xL and a peptide-ligand substrate. All of the reactions were conducted at room temperature. The 20 μL reaction mixture in buffer contains Bcl-xL, the indicated amount of the inhibitor (10 μM final), ligand, and the reaction dyes. The reaction mixture was incubated for 120 min before reading the TR-FRET signal. For the background, the ligand was replaced with assay buffer. Fluorescence signals for both the donor and acceptor dyes were measured using a Tecan Infinite M1000 plate reader. TR-FRET was recorded as the ratio of the fluorescence of the acceptor and the donor dyes (acceptor/donor).

Molecular Docking

Compounds 13, 16, 40, and 43 were imported to Discovery Studio (DS) 4.0, and the 3D conformation was generated by the “Prepare Ligands” protocol at pH 7.0. Then, the compound was energy minimized in a CHARMm force field for docking. The Mcl-1-ligand complex (PDB ID: 4HW2) downloaded from the Protein Data Bank was chosen for docking studies. Protein residues around the original ligand (radius = 8.0 Å) completely covered the BH3 binding cavity. Libdock was used to dock 13, 16, 40, and 43 into the BH3 binding groove. The top 10 of 100 poses generated were selected for analyzing binding interactions.

BCL2scan Binding Assays

Kd values against Mcl-1, Bcl-2, Bcl-xL, Bcl-w, and Bcl2A1 of 40 were determined by Discovery X’s BCL2scan technology. Compounds interacting with the Bcl-2 family proteins prevented binding of these proteins to an immobilized known peptide ligand and reduced the amount of target protein captured on the solid support. Dissociation constants (Kds) for test compound-Bcl-2 family protein interactions were calculated by measuring the amount of target protein captured on the solid support. Assay conditions were optimized for the measurement of true thermodynamic test compound Kd values.

MTT Assay

Antiproliferative activities of the compounds against different cancer cell lines were determined using MTT assays. Cells were seeded into 96-well plates at 5000 cells per well and incubated for 24 h. Then, the cells were treated with either serial dilutions of the compounds or DMSO for 72 h. MTT solution (5 mg/mL) was added, and the plates were incubated at 37 °C for another 4 h. After removing the solution in the wells of the plates, 150 μL of DMSO was added to dissolve the MTT formazan crystals. The absorbance values (OD values) were determined using the Elx800 absorbance microplate reader (BioTek, Vermont, USA) at 570 nm. Cell viability inhibition rates of the compounds at each concentration point were calculated using the equation as follows: inhibition rate (%) = [1 – (ODtest – ODblank)/(ODcontrol – ODblank)] × 100%. The IC50 values were calculated using Graphpad Prism 6.0 software.

Co-ip Experiment

H929 cells were administered with different concentrations of 40, DMSO or AZD5991 (Biochempartner, BCP23513, China) for 4 h. Next, the cells were shaken in RIPA buffer (Thermo Fisher Scientific, 78501, US) for 45 min on ice. The supernatant was obtained from centrifugation at 12,000 rpm for 20 min. Then, 5 μL of the Mcl-1 antibody (Cell Signaling Technology, D35A5, US) was added into 1 mL of the supernatant. The mixture was shaken at 4 °C overnight. Then, Protein A/G PLUS-Agarose (Santa Cruz Biotechnology, sc-2003, US) was used to precipitate the Mcl-1 complex after incubation for 4 h. The beads were centrifuged and washed with RIPA buffer four times and subjected to SDS-PAGE following with WB analysis. The primary antibodies used in WB analysis were the Mcl-1 antibody (Cell Signaling Technology, D35A5, US) and Bak antibody (Abcam, Y164, UK).

Apoptosis Assay by Annexin V/Propidium Iodide Staining

H929 cells were seeded in a 6-well plate and incubated with 40 and A1210477 (TOPSCIENCE, T2632, China) of indicated concentrations for 48 h. After incubation, cells were collected and washed with PBS buffer. Cells were then dispersed with 500 μL of binding buffer per tube and then 5 μL of Annexin V-FITC and 5 μL of propidium iodide were added. After incubation for 15 min at 20 °C in the dark, apoptosis was analyzed by flow cytometry in a flow cytometer (Becton-Dickinson , FACS Calibur, US).

WB Analysis

PARP cleavage induction of the compounds was determined by the WB assay. After treatment with serially diluted 40 and A1210477 (TOPSCIENCE, T2632, China) , the H929 cells or K562 cells were washed with PBS and lysed in RIPA lysis buffer. The lysates were centrifuged at 12,000 rpm for 15 min at 4 °C, and the supernatants were collected. The protein concentration was determined using the BCA protein assay kit (KeyGen BioTech, KGA902, China). Equal amounts of the total protein extracts were subjected to SDS-PAGE and then transferred onto NC membranes (PALL, 66485, USA). After blocking the nonspecific binding sites with 5% nonfat milk for 1 h, membranes were incubated at 4 °C overnight with the primary antibody anti-cPARP (Abcam, ab32064, UK). After washing with TBST for 10 min three times, the membranes were treated with an IgG-HRP secondary antibody (Abcam, ab6721, UK) at 37 °C for 1–2 h and scanned using the Odyssey infrared imaging system (SYNGENE, G:BOXChemiXR5, UK).

Caspase 3/7 Activation Assay

Caspase 3/7 activation was analyzed according to the previous report. (78) H929 or K562 Cells were dispensed in a 96-well plate and incubated with 40 and A1210477 (TOPSCIENCE, T2632, China) at indicated concentrations for 4 h. After removal of compounds, cells were rinsed by culture medium and 1 μL/mL Caspase 3/7 assay buffer (KeyGen BioTech, KGA S037–50, China) was added. The mixture was incubated at room temperature in the dark for 30 min. Luminescence was measured using a multifunctional microplate reader (Molecular Devices, Spectramax M3, USA).

PAMPA Evaluation

Membrane permeability coefficients were evaluated via double-sink PAMPA on a PAMPA Explorer instrument (pION). The detailed experimental procedures have been reported previously. (79) Briefly, the test compound was diluted with donor buffer at pH 7.4 and placed in the donor side. The test compound was allowed to permeate to the acceptor side through the artificial membrane over 4 h incubation at 25 °C. After incubation, the “sandwich” plate was separated. The donor and acceptor solutions were then measured with a UV plate reader, and the permeability value was calculated by pION software.

CYP450 Inhibition Assay

The CYP450 inhibition activities of 40 on the five major isozymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) were evaluated. The assay was conducted in phosphate buffer (100 mM, pH 7.4). For each assay, equal volumes (25 μL) of diluted microsomes (0.2 mg/mL final), tested compounds or positive control inhibitors (10 μM final, DMSO as the negative control), and specific substrates of the isozymes (10 μM final) were preincubated at 37 °C for 5 min. Then, 25 μL of NADPH (1 mM, final) was added to initiate the reaction. After 20 min of incubation, 100 μL of cold acetonitrile was added to terminate the reaction. The samples were centrifuged, and the supernatants were analyzed by LC–MS/MS to determine the metabolites. The inhibition rate was calculated using the following equation: inhibition rate (%) = [1 – (formation of the metabolite in the presence of tested compound)/(formation of the metabolite of negative control)] × 100%.

HLM and RLM Stability

Compound 40 was preincubated with human liver microsomes (0.2 mg/mL) or rat liver microsomes (0.5 mg/mL) for 5 min at 37 °C in phosphate buffer (100 mM, pH 7.4). Then, 1 mM NADPH was added to initiate the reaction. After incubation for different times (0, 15, 30, 60, and 120 min) at 37 °C, cold acetonitrile was added to precipitate the protein. Then, the samples were centrifuged, and the supernatants were analyzed by LC–MS/MS.

Human and Mouse Plasma Stability

40 was dissolved in DMSO at 10 mM and 4 μL of compound solution was then incubated with 996 μL of prewarmed mouse or human plasma in 37 °C. 5-fold volumes of cold acetonitrile were added to stop the reaction at 0, 0.5, 1, and 2 h. The samples were centrifuged, the supernatant was transferred to a new 96-well plate, and the samples were mixed with purity water (v:v = 1:2). The compound concentration was measured by LC–MS–MS.

Caco-2 Permeability

Caco-2 cells purchased from ATCC were seeded onto polyethylene membranes (PET) in 24-well Corning transwell plates at 1 × 105 cells/cm2, and the medium was refreshed every other day until the 21st day for confluent cell monolayer formation. The standard transport buffer in the study was HBSS at pH 7.4. Before and after the transport studies, the monolayer integrity was evaluated by measuring transepithelial electrical resistance (TEER). The pre-transport and post-transport TEER were required to be no less than 200 Ω·cm2. The standard transport buffer in the study was HBSS at pH 7.4. 40 was diluted with transport buffer from a 10 mM stock solution to a concentration of 2 or 10 μM. The bidirectional permeability of the 40 was investigated by adding the compound solution either in the apical chamber or the basolateral chamber. The efflux ratio was used to identify whether 40 was the Pgp substrate or not. 40 and the reference compound were quantified by LC–MS/MS analysis.

In Vivo Pharmacokinetics Study

All animal experiments were performed in accordance with the protocols approved by the Institutional Animal Care and Use Committee of China Pharmaceutical University. The pharmacokinetics study of 40 was conducted in SD rats (200-250 g), which were purchased from Jinan Pengyue Laboratory Animal Breeding Co. Ltd. The rats were randomly divided into two groups (n = 6 for each group). The two groups were administered compound 40 intravenously at 3 mg/kg and orally at 10 mg/kg. Blood samples (150 μL) were collected into heparinized Eppendorf tubes at predetermined time points (0, 0.016, 0.083, 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, and 24 h) and centrifuged immediately at 4 °C and 8000 rpm for 5 min. The plasma samples were analyzed by LC–MS/MS.

In Vivo Antitumor Efficacy Evaluation

All animal experiments were performed in accordance with the protocols approved by the Institutional Animal Care and Use Committee of China Pharmaceutical University. The female balb/c nude mice (7 weeks) were purchased from GemPharmatech Co. Ltd. The mice were maintained in standard conditions (12/12 h light/dark cycle, 22 ± 3 °C, relative humidity of 40%) for 3 days and fed with a standard laboratory rodent diet and water. The mice were then injected subcutaneously with MV4–11 cells (5 × 106) in the right flank. When the average tumor volume reached approximately 200 mm3, the mice were randomized into four groups (n = 6 per group). Administration groups were intraperitoneally or orally treated every 2 days for 14 days. Tumor growth and body weight were monitored at the same interval. The mice were given free access to diet and water during the course of experiments. The tumor volume was calculated using the formula (smaller diameter)2 × (larger diameter)/2, and the RTV was calculated accordingly as RTV = Vt/V0, where Vt is the tumor volume measured at each time point after treatment and V0 is the tumor volume at the beginning of treatment. The drug efficacy was assessed by calculating the T/C values on the final day of the study using the formula T/C = (mean RTVTreated/mean RTVControl) × 100%.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c00682.

  • Molecular formula strings and SAR data (CSV)

  • Predicated binding modes of 13, 16, 40, and 43 (ZIP)

  • Predicated drug-like properties, hERG channel inhibition assay, hematoxylin and eosin (H&E) staining, TUNEL analysis, statistical analysis and 1H NMR, 13C NMR, HRMS and HPLC spectra for representative target compounds (PDF)

Discovery of 3,5-Dimethyl-4-Sulfonyl‑1H‑Pyrrole-Based Myeloid Cell Leukemia 1 Inhibitors with High Affinity, Selectivity, and Oral Bioavailability

3 views

0 shares

0 downloads

ABC
1Compound_IDSMILESKi¡À SE£¨¦ÌM£©
211OC(C1=CC(CC2=CC=C(C)C=C2)=CN1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O> 5
312OC(C1=CC(C(C2=CC=C(C)C=C2)=O)=CN1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.70 ¡À 0.13
413OC(C1=CC(S(C2=CC=C(C)C=C2)(=O)=O)=CN1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.47 ¡À 0.10
514OC(C1=CC(NS(C2=CC=C(C)C=C2)(=O)=O)=CN1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O> 5
615OC(C1=CC(NCC2=CC=C(C)C=C2)=CN1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O> 5
716OC(C1=C(C)C(S(C2=CC=C(C)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.17 ¡À 0.04
817OC(C1=C(CC)C(S(C2=CC=C(C)C=C2)(=O)=O)=C(CC)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O1.93 ¡À 0.70
918OC(C1=C(C)C(S(C2=CC=C(C)C=C2)(=O)=O)=C(CC)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O2.49 ¡À 0.65
1019OC(C1=C(CC)C(S(C2=CC=C(C)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.12 ¡À 0.02
1120OC(C1=C(C)C(S(C2=CC=C(C)C=C2)(=O)=O)=CN1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.81 ¡À 0.13
1221OC(C1=C(C)C(S(C2=CC=C(C)C=C2)(=O)=O)=C(CC(C)C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O1.60 ¡À 0.25
1322OC(C1=C(CC(C)C)C(S(C2=CC=C(C)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.24 ¡À 0.04
1423OC(C1=C(C)C(SC2=CC=C(C)C=C2)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.68 ¡À 0.06
1524OC(C1=C(C)C(S(CC2=CC=CC=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O2.0 ¡À 0.6
1625OC(C1=C(C)C(S(C2=CC=CC=N2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O1.90 ¡À 0.46
1726OC(C1=C(C)C(S(C2=CC=NC=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.90 ¡À 0.16
1827OC(C1=C(C)C(S(C2=CC=CS2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.080 ¡À 0.020
1928OC(C1=C(C)C(S(C2=CC=CC3=C2C=CC=C3)(=O)=O)=C(C)N1CCCOC4=CC(C)=C(Cl)C(C)=C4)=O0.36 ¡À 0.04
2029OC(C1=C(C)C(S(C2CCCCC2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O> 5
2130OC(C1=C(C)C(S(C2CCCC2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O> 5
2231OC(C1=C(C)C(S(C2=CC=CC=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.19 ¡À 0.03
2332OC(C1=C(C)C(S(C2=CC=CC=C2C(C)=O)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.50 ¡À 0.13
2433OC(C1=C(C)C(S(C2=CC=CC=C2OC)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.43 ¡À 0.12
2534OC(C1=C(C)C(S(C2=CC=CC=C2Br)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O>5
2635OC(C1=C(C)C(S(C2=CC=CC=C2O)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.15 ¡À 0.02
2736OC(C1=C(C)C(S(C2=CC=CC(C(C)=O)=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.55 ¡À 0.16
2837OC(C1=C(C)C(S(C2=CC=CC(OC)=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.20 ¡À 0.05
2938OC(C1=C(C)C(S(C2=CC=CC(Br)=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.060 ¡À 0.013
3039OC(C1=C(C)C(S(C2=CC=CC(O)=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.15 ¡À 0.04
3140OC(C1=C(C)C(S(C2=CC=C(C(C)=O)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.020 ¡À 0.001
3241OC(C1=C(C)C(S(C2=CC=C(OC)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.070 ¡À 0.010
3342OC(C1=C(C)C(S(C2=CC=C(Br)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.040 ¡À 0.005
3443OC(C1=C(C)C(S(C2=CC=C(O)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.018 ¡À 0.002
3544OC(C1=C(C)C(S(C2=CC=C(CC)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.070 ¡À 0.020
3645OC(C1=C(C)C(S(C2=CC=C(C(C)C)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.17 ¡À 0.03
3746OC(C1=C(C)C(S(C2=CC=C(C(C)(C)C)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.34 ¡À 0.09
3847OC(C1=C(C)C(S(C2=CC=C(OCC)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.14 ¡À 0.03
3948OC(C1=C(C)C(S(C2=CC=C(C3=CC=CC=C3)C=C2)(=O)=O)=C(C)N1CCCOC4=CC(C)=C(Cl)C(C)=C4)=O0.13 ¡À 0.03
4049OC(C1=C(C)C(S(C2=CC=C(C(C3=CC=CC=C3)=O)C=C2)(=O)=O)=C(C)N1CCCOC4=CC(C)=C(Cl)C(C)=C4)=O0.38 ¡À 0.05
4150OC(C1=C(C)C(S(C2=CC=C(OC3=CC=CC=C3)C=C2)(=O)=O)=C(C)N1CCCOC4=CC(C)=C(Cl)C(C)=C4)=O0.20 ¡À 0.03
4251OC(C1=C(C)C(S(C2=CC=C(F)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.26 ¡À 0.10
4352OC(C1=C(C)C(S(C2=CC=C(Cl)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.18 ¡À 0.03
4453OC(C1=C(C)C(S(C2=CC=C([N+]([O-])=O)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.42 ¡À 0.08
4554OC(C1=C(C)C(S(C2=CC=C(C(O)=O)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.42 ¡À 0.07
4655OC(C1=C(C)C(S(C2=CC=C(N)C=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O0.34 ¡À 0.06
4756OC(C1=C(C)C(S(C2=C(C)C=CC=C2C)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O> 5
4857OC(C1=C(C)C(S(C2=CC(C)=CC(C)=C2)(=O)=O)=C(C)N1CCCOC3=CC(C)=C(Cl)C(C)=C3)=O> 5
49A1210477OC(C1=C(CCCOC2=C(C=CC=C3)C3=CC=C2)C4=CC=CC(C5=C(COC6=CC=C(N7CCN(S(N(C)C)(=O)=O)CC7)C=C6)N(C)N=C5C)=C4N1CCN8CCOCC8)=O0.006 ¡À 0.001
50AZD5991CN(C(C)=C1C2=C(Cl)C=CC3=C2N(C)C(C(O)=O)=C3CCCOC4=C(C=CC=C5)C5=CC6=C4)N=C1CSCC7=NN(C)C(CS6)=C7< 0.001

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Qi-Dong You - State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, ChinaOrcidhttps://orcid.org/0000-0002-8587-0122 Email: youqd@163.com
    • Zheng-Yu Jiang - State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, ChinaOrcidhttps://orcid.org/0000-0002-1671-1582 Email: jiangzhengyucpu@163.com
  • Authors
    • Peng-Ju Zhu - State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Ze-Zhou Yu - State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Yi-Fei Lv - State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Jing-Long Zhao - State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
    • Yuan-Yuan Tong - State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, ChinaDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
  • Author Contributions

    The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This study was supported by Projects 81930100, 81773581, and 81773639 of the National Natural Science Foundation of China, the Priority Academic Program Development of Jiangsu Higher Education Institutions, CPU2018GY02 of Double First Class Innovation Team of China Pharmaceutical University, the Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (No. SKLNMZZ202003); the “Qing Lan” Project of Jiangsu Province, and the Young Elite Scientists Sponsorship Program by CAST (No.YESS20180146).

ABBREVIATIONS

ARTICLE SECTIONS
Jump To

A1/Bfl1

Bcl-2-related protein A1

Bak

Bcl-2 homologous antagonist-killer protein

Bax

Bcl-2-associated X protein

Bcl-2

B-cell lymphoma 2

Bcl-xl

B-cell lymphoma x long isoform

Bcl-w

Bcl-2-like-2

CML

chronic myeloid leukemia

CYP

cytochrome P450

Co-ip

coimmunoprecipitation

FP

fluorescence polarization

hERG

human Ether-a-go-go-Related Gene

H&E

hematoxylin and eosin

HLM

human liver microsome

Mcl-1

myeloid cell leukemia 1

MM

multiple myeloma

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PAMPA

parallel artificial membrane permeability assay

PARP

poly ADP-ribose polymerase

PPIs

protein–protein interactions

RLM

rat liver microsome

SAR

structure–activity relationships

SGF

simulated gastric fluid

SIF

simulated intestinal fluid

TR-FRET

time-resolved fluorescence resonance energy transfer

TUNEL

terminal deoxynucleotidyl transferase dutp nick end labeling

WB

western blot

This article references 79 other publications.

  1. 1
    Green, D. R.; Reed, J. C. Mitochondria and apoptosis. Science 1998, 281, 13091312,  DOI: 10.1126/science.281.5381.1309
  2. 2
    Adams, J. M.; Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281, 13221326,  DOI: 10.1126/science.281.5381.1322
  3. 3
    Lutz, R. J. Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and Bcl-2-related proteins. Biochem. Soc. Trans. 2000, 28, 5156,  DOI: 10.1042/bst0280051
  4. 4
    Ren, D.; Tu, H.-C.; Kim, H.; Wang, G. X.; Bean, G. R.; Takeuchi, O.; Jeffers, J. R.; Zambetti, G. P.; Hsieh, J. J.-D.; Cheng, E. H.-Y. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 2010, 330, 13901393,  DOI: 10.1126/science.1190217
  5. 5
    Kluck, R. M.; Bossy-Wetzel, E.; Green, D. R.; Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997, 275, 11321136,  DOI: 10.1126/science.275.5303.1132
  6. 6
    Kozopas, K. M.; Yang, T.; Buchan, H. L.; Zhou, P.; Craig, R. W. Mcl-1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl-2. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 35163520,  DOI: 10.1073/pnas.90.8.3516
  7. 7
    Herrant, M.; Jacquel, A.; Marchetti, S.; Belhacène, N.; Colosetti, P.; Luciano, F.; Auberger, P. Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 2004, 23, 78637873,  DOI: 10.1038/sj.onc.1208069
  8. 8
    Adams, J. M.; Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 2001, 26, 6166,  DOI: 10.1016/S0968-0004(00)01740-0
  9. 9
    Gomez-Bougie, P.; Wuillème-Toumi, S.; Ménoret, E.; Trichet, V.; Robillard, N.; Philippe, M.; Bataille, R.; Amiot, M. Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res. 2007, 67, 54185424,  DOI: 10.1158/0008-5472.CAN-06-4322
  10. 10
    Pierson, W.; Cauwe, B.; Policheni, A.; Schlenner, S. M.; Franckaert, D.; Berges, J.; Humblet-Baron, S.; Schönefeldt, S.; Herold, M. J.; Hildeman, D.; Strasser, A.; Bouillet, P.; Lu, L.-F.; Matthys, P.; Freitas, A. A.; Luther, R. J.; Weaver, C. T.; Dooley, J.; Gray, D. H.; Liston, A. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nat. Immunol. 2013, 14, 959965,  DOI: 10.1038/ni.2649
  11. 11
    Renjini, A. P.; Titus, S.; Narayan, P.; Murali, M.; Jha, R. K.; Laloraya, M. STAT3 and MCL-1 associate to cause a mesenchymal epithelial transition. J. Cell Sci. 2014, 127, 17381750,  DOI: 10.1242/jcs.138214
  12. 12
    Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Li, W.; Miyagi, T.; Hosui, A.; Ishida, H.; Ohkawa, K.; Kanto, T.; Hiramatsu, N.; Yin, X. M.; Hennighausen, L.; Tatsumi, T.; Hayashi, N. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology 2009, 50, 12171226,  DOI: 10.1002/hep.23126
  13. 13
    Opferman, J. T.; Letai, A.; Beard, C.; Sorcinelli, M. D.; Ong, C. C.; Korsmeyer, S. J. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003, 426, 671676,  DOI: 10.1038/nature02067
  14. 14
    Thomas, L. W.; Lam, C.; Edwards, S. W. Mcl-1: the molecular regulation of protein function. FEBS Lett. 2010, 584, 29812989,  DOI: 10.1016/j.febslet.2010.05.061
  15. 15
    Aichberger, K. J.; Mayerhofer, M.; Krauth, M. T.; Skvara, H.; Florian, S.; Sonneck, K.; Akgul, C.; Derdak, S.; Pickl, W. F.; Wacheck, V.; Selzer, E.; Monia, B. P.; Moriggl, R.; Valent, P.; Sillaber, C. Identification of Mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 2005, 105, 33033311,  DOI: 10.1182/blood-2004-02-0749
  16. 16
    Steven, L. G.; Klaus, P.; Jean-Luc, H.; Anderson, K. C. Mcl-1 regulation and its role in multiple myeloma. Cell Cycle 2004, 3, 12591262,  DOI: 10.4161/cc.3.10.1196
  17. 17
    Song, L.; Coppola, D.; Livingston, S.; Cress, W. D.; Haura, E. B. Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol. Ther. 2005, 4, 267276,  DOI: 10.4161/cbt.4.3.1496
  18. 18
    Tong, J.; Wang, P.; Tan, S.; Chen, D.; Nikolovska-Coleska, Z.; Zou, F.; Yu, J.; Zhang, L. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res. 2017, 77, 25122521,  DOI: 10.1158/0008-5472.CAN-16-3242
  19. 19
    Pepper, C.; Lin, T. T.; Pratt, G.; Hewamana, S.; Brennan, P.; Hiller, L.; Hills, R.; Ward, R.; Starczynski, J.; Austen, B.; Hooper, L.; Stankovic, T.; Fegan, C. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008, 112, 38073817,  DOI: 10.1182/blood-2008-05-157131
  20. 20
    Zhou, P.; Qian, L.; Bieszczad, C. K.; Noelle, R.; Binder, M.; Levy, N. B.; Craig, R. W. Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood 1998, 92, 32263239,  DOI: 10.1182/blood.V92.9.3226
  21. 21
    Touzeau, C.; Maciag, P.; Amiot, M.; Moreau, P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia 2018, 32, 18991907,  DOI: 10.1038/s41375-018-0223-9
  22. 22
    Souers, A. J.; Leverson, J. D.; Boghaert, E. R.; Ackler, S. L.; Catron, N. D.; Chen, J.; Dayton, B. D.; Ding, H.; Enschede, S. H.; Fairbrother, W. J.; Huang, D. C. S.; Hymowitz, S. G.; Jin, S.; Khaw, S. L.; Kovar, P. J.; Lam, L. T.; Lee, J.; Maecker, H. L.; Marsh, K. C.; Mason, K. D.; Mitten, M. J.; Nimmer, P. M.; Oleksijew, A.; Park, C.-H.; Park, C. M.; Phillips, D. C.; Roberts, A. W.; Sampath, D.; Seymour, J. F.; Smith, M. L.; Sullivan, G. M.; Tahir, S. K.; Tse, C.; Wendt, M. D.; Xiao, Y.; Xue, J. C.; Zhang, H.; Humerickhouse, R. A.; Rosenberg, S. H.; Elmore, S. W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202208,  DOI: 10.1038/nm.3048
  23. 23
    Quinn, B. A.; Dash, R.; Azab, B.; Sarkar, S.; Das, S. K.; Kumar, S.; Oyesanya, R. A.; Dasgupta, S.; Dent, P.; Grant, S.; Rahmani, M.; Curiel, D. T.; Dmitriev, I.; Hedvat, M.; Wei, J.; Wu, B.; Stebbins, J. L.; Reed, J. C.; Pellecchia, M.; Sarkar, D.; Fisher, P. B. Targeting Mcl-1 for the therapy of cancer. Expert Opin. Invest. Drugs 2011, 20, 13971411,  DOI: 10.1517/13543784.2011.609167
  24. 24
    Akgul, C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell. Mol. Life Sci. 2009, 66, 13261336,  DOI: 10.1007/s00018-008-8637-6
  25. 25
    Lessene, G.; Czabotar, P. E.; Colman, P. M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug. Discov. 2008, 7, 9891000,  DOI: 10.1038/nrd2658
  26. 26
    Fire, E.; Gullá, S. V.; Grant, R. A.; Keating, A. E. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Protein Sci. 2010, 19, 507519,  DOI: 10.1002/pro.329
  27. 27
    Gomez-Bougie, P.; Maiga, S.; Tessoulin, B.; Bourcier, J.; Bonnet, A.; Rodriguez, M. S.; Le Gouill, S.; Touzeau, C.; Moreau, P.; Pellat-Deceunynck, C.; Amiot, M. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment. Blood 2018, 132, 26562669,  DOI: 10.1182/blood-2018-03-836718
  28. 28
    Zhang, Z.; Song, T.; Li, X.; Wu, Z.; Feng, Y.; Xie, F.; Liu, C.; Qin, J.; Chen, H. Novel soluble myeloid cell leukemia sequence 1 (Mcl-1) inhibitor (E,E)-2-(benzylaminocarbonyl)-3-styrylacrylonitrile (4g) developed using a fragment-based approach. Eur. J. Med. Chem. 2013, 59, 141149,  DOI: 10.1016/j.ejmech.2012.10.050
  29. 29
    Zhang, Z.; Liu, C.; Li, X.; Song, T.; Wu, Z.; Liang, X.; Zhao, Y.; Shen, X.; Chen, H. Fragment-based design, synthesis, and biological evaluation of N-substituted-5-(4-isopropylthiophenol)-2-hydroxynicotinamide derivatives as novel Mcl-1 inhibitors. Eur. J. Med. Chem. 2013, 60, 410420,  DOI: 10.1016/j.ejmech.2012.12.016
  30. 30
    Liu, L.; Liu, R.; Yang, X.; Hou, X.; Fang, H. Design, synthesis and biological evaluation of tyrosine derivatives as Mcl-1 inhibitors. Eur. J. Med. Chem. 2020, 191, 112142,  DOI: 10.1016/j.ejmech.2020.112142
  31. 31
    Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug. Discov. 2004, 3, 301317,  DOI: 10.1038/nrd1343
  32. 32
    Horne, W. S.; Boersma, M. D.; Windsor, M. A.; Gellman, S. H. Sequence-based design of alpha/beta-peptide foldamers that mimic BH3 domains. Angew. Chem., Int. Ed. Engl. 2008, 47, 28532856,  DOI: 10.1002/anie.200705315
  33. 33
    de Araujo, A. D.; Lim, J.; Wu, K.-C.; Xiang, Y.; Good, A. C.; Skerlj, R.; Fairlie, D. P. Bicyclic helical peptides as dual inhibitors selective for Bcl2A1 and Mcl-1 proteins. J. Med. Chem. 2018, 61, 29622972,  DOI: 10.1021/acs.jmedchem.8b00010
  34. 34
    Muppidi, A.; Doi, K.; Edwardraja, S.; Drake, E. J.; Gulick, A. M.; Wang, H. G.; Lin, Q. Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J. Am. Chem. Soc. 2012, 134, 1473414737,  DOI: 10.1021/ja306864v
  35. 35
    Stewart, M. L.; Fire, E.; Keating, A. E.; Walensky, L. D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol. 2010, 6, 595601,  DOI: 10.1038/nchembio.391
  36. 36
    Doi, K.; Li, R.; Sung, S. S.; Wu, H.; Liu, Y.; Manieri, W.; Krishnegowda, G.; Awwad, A.; Dewey, A.; Liu, X.; Amin, S.; Cheng, C.; Qin, Y.; Schonbrunn, E.; Daughdrill, G.; Loughran, T. P., Jr.; Sebti, S.; Wang, H. G. Discovery of marinopyrrole A (maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasomal degradation. J. Biol. Chem. 2012, 287, 1022410235,  DOI: 10.1074/jbc.M111.334532
  37. 37
    Lanning, M. E.; Yu, W.; Yap, J. L.; Chauhan, J.; Chen, L.; Whiting, E.; Pidugu, L. S.; Atkinson, T.; Bailey, H.; Li, W.; Roth, B. M.; Hynicka, L.; Chesko, K.; Toth, E. A.; Shapiro, P.; MacKerell, A. D., Jr.; Wilder, P. T.; Fletcher, S. Structure-based design of N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoates as selective inhibitors of the Mcl-1 oncoprotein. Eur. J. Med. Chem. 2016, 113, 273292,  DOI: 10.1016/j.ejmech.2016.02.006
  38. 38
    Rescourio, G.; Gonzalez, A. Z.; Jabri, S.; Belmontes, B.; Moody, G.; Whittington, D.; Huang, X.; Caenepeel, S.; Cardozo, M.; Cheng, A. C.; Chow, D.; Dou, H.; Jones, A.; Kelly, R. C.; Li, Y.; Lizarzaburu, M.; Lo, M. C.; Mallari, R.; Meleza, C.; Rew, Y.; Simonovich, S.; Sun, D.; Turcotte, S.; Yan, X.; Wong, S. G.; Yanez, E.; Zancanella, M.; Houze, J.; Medina, J. C.; Hughes, P. E.; Brown, S. P. Discovery and in vivo evaluation of macrocyclic Mcl-1 inhibitors featuring an α-hydroxy phenylacetic acid pharmacophore or bioisostere. J. Med. Chem. 2019, 62, 1025810271,  DOI: 10.1021/acs.jmedchem.9b01310
  39. 39
    Song, T.; Wang, Z.; Ji, F.; Feng, Y.; Fan, Y.; Chai, G.; Li, X.; Li, Z.; Zhang, Z. Deactivation of Mcl-1 by dual-function small-molecule inhibitors targeting the bcl-2 homology 3 domain and facilitating mcl-1 ubiquitination. Angew. Chem., Int. Ed. Engl. 2016, 55, 1425014256,  DOI: 10.1002/anie.201606543
  40. 40
    Wang, Z.; He, N.; Guo, Z.; Niu, C.; Song, T.; Guo, Y.; Cao, K.; Wang, A.; Zhu, J.; Zhang, X.; Zhang, Z. Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J. Med. Chem. 2019, 62, 81528163,  DOI: 10.1021/acs.jmedchem.9b00919
  41. 41
    Wang, Z.; Guo, Z.; Song, T.; Zhang, X.; He, N.; Liu, P.; Wang, P.; Zhang, Z. Proteome-wide identification of on- and off-targets of Bcl-2 inhibitors in native biological systems by using affinity-based probes (afbps). ChemBioChem 2018, 19, 23122320,  DOI: 10.1002/cbic.201800380
  42. 42
    Zhang, Z.; Wu, G.; Xie, F.; Song, T.; Chang, X. 3-Thiomorpholin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J. Med. Chem. 2011, 54, 11011105,  DOI: 10.1021/jm101181u
  43. 43
    Bruncko, M.; Song, X.; Tao, Z.; Kunzer, A. R. 7-nonsubstituted Indole Mcl-1 Inhibitors. WO2008130970Al, 2008.
  44. 44
    Elmore, S. W.; Souers, A. J.; Bruncko, M.; Song, X.; Wang, X.; Hasvold, L. A.; Wang, L.; Kunzer, A. R.; Park, C.; Wendt, M. D.; Tao, Z. 7-sonsubstituted Indole Mcl-1 Inhibitors. WO2008131000A2, 2008.
  45. 45
    Friberg, A.; Vigil, D.; Zhao, B.; Daniels, R. N.; Burke, J. P.; Garcia-Barrantes, P. M.; Camper, D.; Chauder, B. A.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J. Med. Chem. 2013, 56, 1530,  DOI: 10.1021/jm301448p
  46. 46
    Burke, J. P.; Bian, Z.; Shaw, S.; Zhao, B.; Goodwin, C. M.; Belmar, J.; Browning, C. F.; Vigil, D.; Friberg, A.; Camper, D. V.; Rossanese, O. W.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J. Med. Chem. 2015, 58, 37943805,  DOI: 10.1021/jm501984f
  47. 47
    Pelz, N. F.; Bian, Z.; Zhao, B.; Shaw, S.; Tarr, J. C.; Belmar, J.; Gregg, C.; Camper, D. V.; Goodwin, C. M.; Arnold, A. L.; Sensintaffar, J. L.; Friberg, A.; Rossanese, O. W.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Discovery of 2-indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods. J. Med. Chem. 2016, 59, 20542066,  DOI: 10.1021/acs.jmedchem.5b01660
  48. 48
    Shaw, S.; Bian, Z.; Zhao, B.; Tarr, J. C.; Veerasamy, N.; Jeon, K. O.; Belmar, J.; Arnold, A. L.; Fogarty, S. A.; Perry, E.; Sensintaffar, J. L.; Camper, D. V.; Rossanese, O. W.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Optimization of potent and selective tricyclic indole diazepinone myeloid cell leukemia-1 inhibitors using structure-based design. J. Med. Chem. 2018, 61, 24102421,  DOI: 10.1021/acs.jmedchem.7b01155
  49. 49
    Lee, T.; Christov, P. P.; Shaw, S.; Tarr, J. C.; Zhao, B.; Veerasamy, N.; Jeon, K. O.; Mills, J. J.; Bian, Z.; Sensintaffar, J. L.; Arnold, A. L.; Fogarty, S. A.; Perry, E.; Ramsey, H. E.; Cook, R. S.; Hollingshead, M.; Davis Millin, M.; Lee, K. M.; Koss, B.; Budhraja, A.; Opferman, J. T.; Kim, K.; Arteaga, C. L.; Moore, W. J.; Olejniczak, E. T.; Savona, M. R.; Fesik, S. W. Discovery of potent myeloid cell leukemia-1 (Mcl-1) inhibitors that demonstrate in vivo activity in mouse xenograft models of human cancer. J. Med. Chem. 2019, 62, 39713988,  DOI: 10.1021/acs.jmedchem.8b01991
  50. 50
    Ramsey, H. E.; Fischer, M. A.; Lee, T.; Gorska, A. E.; Arrate, M. P.; Fuller, L.; Boyd, K. L.; Strickland, S. A.; Sensintaffar, J.; Hogdal, L. J.; Ayers, G. D.; Olejniczak, E. T.; Fesik, S. W.; Savona, M. R. A novel Mcl-1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer. Discov. 2018, 8, 15661581,  DOI: 10.1158/2159-8290.CD-18-0140
  51. 51
    Bruncko, M.; Wang, L.; Sheppard, G. S.; Phillips, D. C.; Tahir, S. K.; Xue, J.; Erickson, S.; Fidanze, S.; Fry, E.; Hasvold, L.; Jenkins, G. J.; Jin, S.; Judge, R. A.; Kovar, P. J.; Madar, D.; Nimmer, P.; Park, C.; Petros, A. M.; Rosenberg, S. H.; Smith, M. L.; Song, X.; Sun, C.; Tao, Z. F.; Wang, X.; Xiao, Y.; Zhang, H.; Tse, C.; Leverson, J. D.; Elmore, S. W.; Souers, A. J. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J. Med. Chem. 2015, 58, 21802194,  DOI: 10.1021/jm501258m
  52. 52
    Leverson, J. D.; Zhang, H.; Chen, J.; Tahir, S. K.; Phillips, D. C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G. S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D. J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M. J. C.; Sampath, D.; Fairbrother, W. J.; Wertz, I.; Rosenberg, S. H.; Tse, C.; Elmore, S. W.; Souers, A. J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell. Death. Dis. 2015, 6, e1590  DOI: 10.1038/cddis.2014.561
  53. 53
    Xiao, Y.; Nimmer, P.; Sheppard, G. S.; Bruncko, M.; Hessler, P.; Lu, X.; Roberts-Rapp, L.; Pappano, W. N.; Elmore, S. W.; Souers, A. J.; Leverson, J. D.; Phillips, D. C. Mcl-1 is a key determinant of breast cancer cell survival: validation of Mcl-1 dependency utilizing a highly selective small molecule inhibitor. Mol. Cancer Ther. 2015, 14, 18371847,  DOI: 10.1158/1535-7163.MCT-14-0928
  54. 54
    Akçay, G.; Belmonte, M. A.; Aquila, B.; Chuaqui, C.; Hird, A. W.; Lamb, M. L.; Rawlins, P. B.; Su, N.; Tentarelli, S.; Grimster, N. P.; Su, Q. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat. Chem. Biol. 2016, 12, 931936,  DOI: 10.1038/nchembio.2174
  55. 55
    Papatzimas, J. W.; Gorobets, E.; Maity, R.; Muniyat, M. I.; MacCallum, J. L.; Neri, P.; Bahlis, N. J.; Derksen, D. J. From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1). J. Med. Chem. 2019, 62, 55225540,  DOI: 10.1021/acs.jmedchem.9b00455
  56. 56
    Johannes, J. W.; Bates, S.; Beigie, C.; Belmonte, M. A.; Breen, J.; Cao, S.; Centrella, P. A.; Clark, M. A.; Cuozzo, J. W.; Dumelin, C. E.; Ferguson, A. D.; Habeshian, S.; Hargreaves, D.; Joubran, C.; Kazmirski, S.; Keefe, A. D.; Lamb, M. L.; Lan, H.; Li, Y.; Ma, H.; Mlynarski, S.; Packer, M. J.; Rawlins, P. B.; Robbins, D. W.; Shen, H.; Sigel, E. A.; Soutter, H. H.; Su, N.; Troast, D. M.; Wang, H.; Wickson, K. F.; Wu, C.; Zhang, Y.; Zhao, Q.; Zheng, X.; Hird, A. W. Structure based design of non-natural peptidic macrocyclic Mcl-1 inhibitors. ACS Med. Chem. Lett. 2017, 8, 239244,  DOI: 10.1021/acsmedchemlett.6b00464
  57. 57
    Tron, A. E.; Belmonte, M. A.; Adam, A.; Aquila, B. M.; Boise, L. H.; Chiarparin, E.; Cidado, J.; Embrey, K. J.; Gangl, E.; Gibbons, F. D.; Gregory, G. P.; Hargreaves, D.; Hendricks, J. A.; Johannes, J. W.; Johnstone, R. W.; Kazmirski, S. L.; Kettle, J. G.; Lamb, M. L.; Matulis, S. M.; Nooka, A. K.; Packer, M. J.; Peng, B.; Rawlins, P. B.; Robbins, D. W.; Schuller, A. G.; Su, N.; Yang, W.; Ye, Q.; Zheng, X.; Secrist, J. P.; Clark, E. A.; Wilson, D. M.; Fawell, S. E.; Hird, A. W. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 2018, 9, 5341,  DOI: 10.1038/s41467-018-07551-w
  58. 58
    Sale, M. J.; Minihane, E.; Monks, N. R.; Gilley, R.; Richards, F. M.; Schifferli, K. P.; Andersen, C. L.; Davies, E. J.; Vicente, M. A.; Ozono, E.; Markovets, A.; Dry, J. R.; Drew, L.; Flemington, V.; Proia, T.; Jodrell, D. I.; Smith, P. D.; Cook, S. J. Targeting melanoma’s MCL1 bias unleashes the apoptotic potential of BRAF and ERK1/2 pathway inhibitors. Nat. Commun. 2019, 10, 5167,  DOI: 10.1038/s41467-019-12409-w
  59. 59
    Zhang, H.; Nakauchi, Y.; Köhnke, T.; Stafford, M.; Bottomly, D.; Thomas, R.; Wilmot, B.; McWeeney, S. K.; Majeti, R.; Tyner, J. W. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat. Cancer. 2020, 1, 826839,  DOI: 10.1038/s43018-020-0103-x
  60. 60
    Caenepeel, S.; Brown, S. P.; Belmontes, B.; Moody, G.; Keegan, K. S.; Chui, D.; Whittington, D. A.; Huang, X.; Poppe, L.; Cheng, A. C.; Cardozo, M.; Houze, J.; Li, Y.; Lucas, B.; Paras, N. A.; Wang, X.; Taygerly, J. P.; Vimolratana, M.; Zancanella, M.; Zhu, L.; Cajulis, E.; Osgood, T.; Sun, J.; Damon, L.; Egan, R. K.; Greninger, P.; McClanaghan, J. D.; Gong, J.; Moujalled, D.; Pomilio, G.; Beltran, P.; Benes, C. H.; Roberts, A. W.; Huang, D. C.; Wei, A.; Canon, J.; Coxon, A.; Hughes, P. E. AMG 176, a selective Mcl-1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer. Discov. 2018, 8, 15821597,  DOI: 10.1158/2159-8290.CD-18-0387
  61. 61
    Lu, X.; Liu, Y. C.; Orvig, C.; Liang, H.; Chen, Z. F. Discovery of a Copper-Based Mcl-1 Inhibitor as an Effective Antitumor Agent. J. Med. Chem. 2020, 63, 91549167,  DOI: 10.1021/acs.jmedchem.9b02047
  62. 62
    Abulwerdi, F.; Liao, C.; Liu, M.; Azmi, A. S.; Aboukameel, A.; Mady, A. S.; Gulappa, T.; Cierpicki, T.; Owens, S.; Zhang, T.; Sun, D.; Stuckey, J. A.; Mohammad, R. M.; Nikolovska-Coleska, Z. A novel small-molecule inhibitor of Mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol. Cancer Ther. 2014, 13, 565575,  DOI: 10.1158/1535-7163.MCT-12-0767
  63. 63
    Lee, T.; Bian, Z.; Zhao, B.; Hogdal, L. J.; Sensintaffar, J. L.; Goodwin, C. M.; Belmar, J.; Shaw, S.; Tarr, J. C.; Veerasamy, N.; Matulis, S. M.; Koss, B.; Fischer, M. A.; Arnold, A. L.; Camper, D. V.; Browning, C. F.; Rossanese, O. W.; Budhraja, A.; Opferman, J.; Boise, L. H.; Savona, M. R.; Letai, A.; Olejniczak, E. T.; Fesik, S. W. Discovery and biological characterization of potent myeloid cell leukemia-1 inhibitors. FEBS Lett. 2017, 591, 240251,  DOI: 10.1002/1873-3468.12497
  64. 64
    Lu, X.; Liu, Y. C.; Orvig, C.; Liang, H.; Chen, Z. F. Discovery of β-carboline copper(II) complexes as Mcl-1 inhibitor and in vitro and in vivo activity in cancer models. Eur. J. Med. Chem. 2019, 181, 111567,  DOI: 10.1016/j.ejmech.2019.111567
  65. 65
    Richard, D. J.; Lena, R.; Bannister, T.; Blake, N.; Pierceall, W. E.; Carlson, N. E.; Keller, C. E.; Koenig, M.; He, Y.; Minond, D.; Mishra, J.; Cameron, M.; Spicer, T.; Hodder, P.; Cardone, M. H. Hydroxyquinoline-derived compounds and analoguing of selective Mcl-1 inhibitors using a functional biomarker. Bioorg. Med. Chem. 2013, 21, 66426649,  DOI: 10.1016/j.bmc.2013.08.017
  66. 66
    Petros, A. M.; Swann, S. L.; Song, D.; Swinger, K.; Park, C.; Zhang, H.; Wendt, M. D.; Kunzer, A. R.; Souers, A. J.; Sun, C. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg. Med. Chem. Lett. 2014, 24, 14841488,  DOI: 10.1016/j.bmcl.2014.02.010
  67. 67
    Kotschy, A.; Szlavik, Z.; Murray, J.; Davidson, J.; Maragno, A. L.; Le Toumelin-Braizat, G.; Chanrion, M.; Kelly, G. L.; Gong, J. N.; Moujalled, D. M.; Bruno, A.; Csekei, M.; Paczal, A.; Szabo, Z. B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Ondi, L.; Blasko, G.; Robertson, A.; Surgenor, A.; Dokurno, P.; Chen, I.; Matassova, N.; Smith, J.; Pedder, C.; Graham, C.; Studeny, A.; Lysiak-Auvity, G.; Girard, A. M.; Grave, F.; Segal, D.; Riffkin, C. D.; Pomilio, G.; Galbraith, L. C.; Aubrey, B. J.; Brennan, M. S.; Herold, M. J.; Chang, C.; Guasconi, G.; Cauquil, N.; Melchiore, F.; Guigal-Stephan, N.; Lockhart, B.; Colland, F.; Hickman, J. A.; Roberts, A. W.; Huang, D. C.; Wei, A. H.; Strasser, A.; Lessene, G.; Geneste, O. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 2016, 538, 477482,  DOI: 10.1038/nature19830
  68. 68
    Szlavik, Z.; Csekei, M.; Paczal, A.; Szabo, Z. B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Murray, J.; Davidson, J.; Chen, I.; Dokurno, P.; Surgenor, A. E.; Daniels, Z. M.; Hubbard, R. E.; Le Toumelin-Braizat, G.; Claperon, A.; Lysiak-Auvity, G.; Girard, A. M.; Bruno, A.; Chanrion, M.; Colland, F.; Maragno, A. L.; Demarles, D.; Geneste, O.; Kotschy, A. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J. Med. Chem. 2020, 63, 1376213795,  DOI: 10.1021/acs.jmedchem.0c01234
  69. 69
    Zhu, P. J.; Yu, Z. Z.; You, Q. D.; Jiang, Z. Y. Myeloid cell leukemin-1 inhibitors: a growing arsenal for cancer therapy. Drug Discovery Today 2020, 25, 18731882,  DOI: 10.1016/j.drudis.2020.07.021
  70. 70
    Li, X.; Dou, J.; You, Q.; Jiang, Z. Inhibitors of BCL2A1/Bfl-1 protein: Potential stock in cancer therapy. Eur. J. Med. Chem. 2021, 220, 113539,  DOI: 10.1016/j.ejmech.2021.113539
  71. 71
    Chang, J.; Wang, Y.; Shao, L.; Laberge, R. M.; Demaria, M.; Campisi, J.; Janakiraman, K.; Sharpless, N. E.; Ding, S.; Feng, W.; Luo, Y.; Wang, X.; Aykin-Burns, N.; Krager, K.; Ponnappan, U.; Hauer-Jensen, M.; Meng, A.; Zhou, D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 2016, 22, 7883,  DOI: 10.1038/nm.4010
  72. 72
    Munkhbaatar, E.; Dietzen, M.; Agrawal, D.; Anton, M.; Jesinghaus, M.; Boxberg, M.; Pfarr, N.; Bidola, P.; Uhrig, S.; Höckendorf, U.; Meinhardt, A. L.; Wahida, A.; Heid, I.; Braren, R.; Mishra, R.; Warth, A.; Muley, T.; Poh, P. S. P.; Wang, X.; Fröhling, S.; Steiger, K.; Slotta-Huspenina, J.; van Griensven, M.; Pfeiffer, F.; Lange, S.; Rad, R.; Spella, M.; Stathopoulos, G. T.; Ruland, J.; Bassermann, F.; Weichert, W.; Strasser, A.; Branca, C.; Heikenwalder, M.; Swanton, C.; McGranahan, N.; Jost, P. J. MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically. Nat. Commun. 2020, 11, 4527,  DOI: 10.1038/s41467-020-18372-1
  73. 73
    Liu, J.; Fang, Z.; Zhang, Q.; Liu, Q.; Bi, X. Silver-catalyzed isocyanide-alkyne cycloaddition: a general and practical method to oligosubstituted pyrroles. Angew. Chem. Int. Ed. Engl. 2013, 52, 69536957,  DOI: 10.1002/anie.201302024
  74. 74
    Kattamuri, P. V.; Yin, J.; Siriwongsup, S.; Kwon, D. H.; Ess, D. H.; Li, Q.; Li, G.; Yousufuddin, M.; Richardson, P. F.; Sutton, S. C.; Kürti, L. Practical singly and doubly electrophilic aminating agents: a new, more sustainable platform for carbon-nitrogen bond formation. J. Am. Chem. Soc. 2017, 139, 1118411196,  DOI: 10.1021/jacs.7b05279
  75. 75
    Cohen, N. A.; Stewart, M. L.; Gavathiotis, E.; Tepper, J. L.; Bruekner, S. R.; Koss, B.; Opferman, J. T.; Walensky, L. D. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem. Biol. 2012, 19, 11751186,  DOI: 10.1016/j.chembiol.2012.07.018
  76. 76
    Kump, K. J.; Miao, L.; Mady, A. S. A.; Ansari, N. H.; Shrestha, U. K.; Yang, Y.; Pal, M.; Liao, C.; Perdih, A.; Abulwerdi, F. A.; Chinnaswamy, K.; Meagher, J. L.; Carlson, J. M.; Khanna, M.; Stuckey, J. A.; Nikolovska-Coleska, Z. Discovery and characterization of 2,5-substituted benzoic acid dual inhibitors of the anti-apoptotic Mcl-1 and Bfl-1 proteins. J. Med. Chem. 2020, 63, 24892510,  DOI: 10.1021/acs.jmedchem.9b01442
  77. 77
    Bernardo, P. H.; Sivaraman, T.; Wan, K.-F.; Xu, J.; Krishnamoorthy, J.; Song, C. M.; Tian, L.; Chin, J. S. F.; Lim, D. S. W.; Mok, H. Y. K.; Yu, V. C.; Tong, J. C.; Chai, C. L. Structural insights into the design of small molecule inhibitors that selectively antagonize Mcl-1. J. Med. Chem. 2010, 53, 23142318,  DOI: 10.1021/jm901469p
  78. 78
    Szlavik, Z.; Ondi, L.; Csekei, M.; Paczal, A.; Szabo, Z. B.; Radics, G.; Murray, J.; Davidson, J.; Chen, I.; Davis, B.; Hubbard, R. E.; Pedder, C.; Dokurno, P.; Surgenor, A.; Smith, J.; Robertson, A.; LeToumelin-Braizat, G.; Cauquil, N.; Zarka, M.; Demarles, D.; Perron-Sierra, F.; Claperon, A.; Colland, F.; Geneste, O.; Kotschy, A. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J. Med. Chem. 2019, 62, 69136924,  DOI: 10.1021/acs.jmedchem.9b00134
  79. 79
    Wu, Y.; Jiang, Z.; Li, Z.; Gu, J.; You, Q.; Zhang, X. Click chemistry-based discovery of [3-hydroxy-5-(1h-1,2,3-triazol-4-yl)picolinoyl]glycines as orally active hypoxia-inducing factor prolyl hydroxylase inhibitors with favorable safety profiles for the treatment of anemia. J. Med. Chem. 2018, 61, 53325349,  DOI: 10.1021/acs.jmedchem.8b00549

Cited By

ARTICLE SECTIONS
Jump To
Citation Statements
  • Supporting
    Supporting0
  • Mentioning
    Mentioning3
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 3 publications.

  1. Xuetao Chen, Danyan Cao, Chihong Liu, Fanying Meng, Zijian Zhang, Rujun Xu, Yuanyuan Tong, Yabing Xin, Weikun Zhang, Wenjing Kang, Qichao Bao, Jingkang Shen, Bing Xiong, Qidong You, Zhengyu Jiang. Discovery of 1H-Imidazo[4,5-b]pyridine Derivatives as Potent and Selective BET Inhibitors for the Management of Neuropathic Pain. Journal of Medicinal Chemistry 2023, 66 (13) , 8725-8744. https://doi.org/10.1021/acs.jmedchem.3c00372
  2. Fu Peng, Minru Liao, Rui Qin, Shiou Zhu, Cheng Peng, Leilei Fu, Yi Chen, Bo Han. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduction and Targeted Therapy 2022, 7 (1) https://doi.org/10.1038/s41392-022-01110-y
  3. Hongguang Deng, Min Huang, Hui Liu, Hong Zhang, Liang Liu, Bensheng Gao, Xianlu Li, Jinbo Li, Qun Niu, Zhenwei Zhang, Shenglin Luan, Jingyi Zhang, Yongkui Jing, Dan Liu, Linxiang Zhao. Development of a series of novel Mcl-1 inhibitors bearing an indole carboxylic acid moiety. Bioorganic Chemistry 2022, 127 , 106018. https://doi.org/10.1016/j.bioorg.2022.106018
  • Abstract 摘要

    Figure 1 图 1

    Figure 1. Binding mode of Mcl-1 and Bim BH3 (PDB 2NL9).

    Figure 2

    Figure 2. Representative Mcl-1 inhibitors.

    Figure 3

    Figure 3. Design of lead compound 11. (A) Binding mode of compound 2 (PDB 4HW2). (B) SAR study of the linker substitution position. (C) Binding mode of 10 (PDB 6B4U) and design of 11.

    Figure 4

    Figure 4. Proposed binding mode of compound 13 with Mcl-1 using molecular docking. The docking site was derived from the position of the small-molecular ligand cocrystallized in the binding site of Mcl-1 (PDB 4HW2). The ligand is represented as sticks. The hydrogen bonds are represented by green dashed lines, and the π–σ and π–alkyl interactions are represented by pink dashed lines. The carbon atoms of small molecules and Mcl-1 residues are colored cyan and green, respectively.

    Figure 5

    Figure 5. Proposed binding mode of 16 with Mcl-1 using molecular docking. The docking site was derived from the position of the small-molecular ligand cocrystallized in the binding site of Mcl-1 (PDB 4HW2). The ligand is represented as sticks. The hydrogen bonds are represented by green dashed lines, and the π–σ and π–alkyl interactions are represented by pink dashed lines. The carbon atoms of small molecules and Mcl-1 residues are colored cyan and green, respectively.

    Figure 6

    Figure 6. Purposed binding modes of 40 (A) and 43 (B) with Mcl-1 using molecular docking. The docking site was derived from the position of the small-molecular ligand cocrystallized in the binding site of Mcl-1 (PDB 4HW2). The ligand is represented as sticks. Hydrogen bonds are represented by green dashed lines, and π–σ and π–alkyl interactions are represented by pink dashed lines. The carbon atoms of small molecules and Mcl-1 residues are colored purple and green, respectively.

    Figure 7

    Figure 7. Binding affinities of 40 to Mcl-1 and other Bcl-2 family members.

    Figure 8

    Figure 8. Bcl-2 could not accommodate 40 due to the shallow and narrow P2 pocket. (A) Overlay of compound 2 (green) and 40 (purple). (B) Comparison of P2 pockets of Mcl-1 and Bcl-2.

    Figure 9

    Figure 9. 40 induced apoptosis in an Mcl-1-dependent manner. (A) Co-ip experiment of 40 and AZD5991 in H929 cells. (B–G) Flow cytometry assay of 40 and A1210477 in H929 cells at concentrations of 1 μM and 5 μM. (H,I) WB assay of 40 and A1210477 in H929 cells and K562 cells at concentrations of 0, 0.1, 0.5, 1, and 5 μM. (J,K) Caspase activation abilities of 40 and A1210477 in H929 cells and K562 cells at concentrations of 0, 0.1, 0.5, 1, and 5 μM. The values shown are the means ± SEM (n = 3 independent observations), ns = no significant, ***p < 0.001, ****p < 0.0001 one-way ANOVA with Tukey–Kramer posttest.

    Figure 10

    Figure 10. In vivo PK parameters of 40. The values shown are the means. Bars represent SEM.

    Figure 11

    Figure 11. Antitumor efficacy of compound 40 in nude mice loaded with MV4-11 xenografts. (A) Tumor volume change. The values shown are the means ± SEM **p < 0.01, and ****p < 0.0001, one-way ANOVA with the Tukey–Kramer posttest. (B) Body weight change. (C) Organ weight change. The values shown are the means. Bars represent SEM. (D) Representative HE staining images of tumor tissues and organ tissues. Scale bar 200 μM. (E) WB assay of tumor tissues. (n = 2 for each group). (F) Representative images of tunel assay of tumor tissues. Scale bar 200 μM.

    Scheme 1

    Scheme 1. Synthesis of Target Compounds 11 and 12a

    aReagents and conditions: (a) 1,3-dibromopropane, K2CO3, CH3CN, 90 °C, 3 h, 75%. (b) 4-methylbenzoyl chloride, AlCl3, DCM, N2, 0 °C–r.t. 2 h, 68%. (c) triethylsilane, THF, N2, r.t. 2 h, 65%. (d) 59, Cs2CO3, DMF, 60 °C, 1 h, 84–89%. (e) NaOH (2 M), THF/MeOH = 1:1, 50 °C, overnight, 78–95%.

    Scheme 2

    Scheme 2. Synthesis of Target Compound 13 and 20a

    aReagents and conditions: (a) methyl isocyanate, Ag2CO3, 1,4-dioxane, 80 °C, 30 min, 18–25%. (b) 59, NaH, DMF, 0 °C–r.t. 0.5 h, 35–42%. (c) NaOH (2 M), THF/MeOH = 1:1, 50 °C, overnight, 62–72%.

    Scheme 3

    Scheme 3. Synthesis of Target Compound 14 and 15a

    aReagents and conditions: (a) 59, Cs2CO3, DMF, 60 °C, 1 h, 75%. (b) SnCl2·2H2O, N2, EtOH, 60 °C, 4 h. (c) Pyridine, TosCl, r.t. 1 h, 38%. (d) NaOH (2 M), THF/MeOH = 1:1, 50 °C, overnight, 43–64%. (e) (Boc)2O, EtOH, r.t. 1 h, 46%. (f) 4-Methylbenzyl bromide, NaH, r.t. 0.5 h, 73%. (g) CF3COOH, r.t. 1.5 h, 95%.

    Scheme 4

    Scheme 4. Synthesis of Target Compounds 16, 2326, 2931, 33 and 34, 37 and 38, 41 and 42, 4447, 5153, and 5557a

    aReagents and conditions: (a) ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, SO2Cl2, Et3N, DCM, r.t. 45 min, 56–85%; (b) 59, Cs2CO3, DMF, 50 °C, 1 h, 78–85%; (c) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 63–85%. (d) m-CPBA, DCM, r.t. 0.5 h, 55–70%; (e) Pd/C, H2, EA, 50 °C, 3 h, 95%.

    Scheme 5

    Scheme 5. Synthesis of Target Compounds 1719 and 21 and 22a

    aReagents and conditions: (a) AcOH, NaNO2, 0 °C–r.t. overnight; (b) AcONa, AcOH, Zn, r.t.–80 °C, 3 h, 36–43%. (c) p-Toluenethiol, SO2Cl2, Et3N, DCM, r.t. 45 min, 45–62%; (d) 59, Cs2CO3, DMF, 50 °C, 1 h, 57–72%; (e) m-CPBA, DCM, r.t. 0.5 h, 45–56%; (f) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 74–86%.

    Scheme 6

    Scheme 6. Synthesis of Target Compounds 27 and 28a

    aReagents and conditions: (a) ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, N2, AlCl3, PhCl, 90 °C, 2 h, 59–68%; (b) 59, Cs2CO3, DMF, 50 °C, 1 h, 63–75%; (c) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 54–63%.

    Scheme 7

    Scheme 7. Synthesis of Target Compounds 32, 35, 36, 39, 40, 43, 4850, and 54a

    aReagents and conditions: (a) ethanedithiol, CuSO4·5H2O, Cs2CO3, DMSO, N2, 90 °C, 4 h, 76–85%; (b) ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, SO2Cl2, Et3N, DCM, r.t. 45 min, 54–75%; (c) 59, Cs2CO3, DMF, 50 °C, 1 h, 75–85%; (d) NaOH (2 M), C2H5OH/THF = 1:1, 50 °C, overnight, 42–80%; (e) m-CPBA, DCM, r.t. 0.5 h, 63–84%; (f) Pd/C, H2, EA, 50 °C, 3 h, 63–67%.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 79 other publications.

    1. 1
      Green, D. R.; Reed, J. C. Mitochondria and apoptosis. Science 1998, 281, 13091312,  DOI: 10.1126/science.281.5381.1309
    2. 2
      Adams, J. M.; Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281, 13221326,  DOI: 10.1126/science.281.5381.1322
    3. 3
      Lutz, R. J. Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and Bcl-2-related proteins. Biochem. Soc. Trans. 2000, 28, 5156,  DOI: 10.1042/bst0280051
    4. 4
      Ren, D.; Tu, H.-C.; Kim, H.; Wang, G. X.; Bean, G. R.; Takeuchi, O.; Jeffers, J. R.; Zambetti, G. P.; Hsieh, J. J.-D.; Cheng, E. H.-Y. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 2010, 330, 13901393,  DOI: 10.1126/science.1190217
    5. 5
      Kluck, R. M.; Bossy-Wetzel, E.; Green, D. R.; Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997, 275, 11321136,  DOI: 10.1126/science.275.5303.1132
    6. 6
      Kozopas, K. M.; Yang, T.; Buchan, H. L.; Zhou, P.; Craig, R. W. Mcl-1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl-2. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 35163520,  DOI: 10.1073/pnas.90.8.3516
    7. 7
      Herrant, M.; Jacquel, A.; Marchetti, S.; Belhacène, N.; Colosetti, P.; Luciano, F.; Auberger, P. Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 2004, 23, 78637873,  DOI: 10.1038/sj.onc.1208069
    8. 8
      Adams, J. M.; Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 2001, 26, 6166,  DOI: 10.1016/S0968-0004(00)01740-0
    9. 9
      Gomez-Bougie, P.; Wuillème-Toumi, S.; Ménoret, E.; Trichet, V.; Robillard, N.; Philippe, M.; Bataille, R.; Amiot, M. Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res. 2007, 67, 54185424,  DOI: 10.1158/0008-5472.CAN-06-4322
    10. 10
      Pierson, W.; Cauwe, B.; Policheni, A.; Schlenner, S. M.; Franckaert, D.; Berges, J.; Humblet-Baron, S.; Schönefeldt, S.; Herold, M. J.; Hildeman, D.; Strasser, A.; Bouillet, P.; Lu, L.-F.; Matthys, P.; Freitas, A. A.; Luther, R. J.; Weaver, C. T.; Dooley, J.; Gray, D. H.; Liston, A. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nat. Immunol. 2013, 14, 959965,  DOI: 10.1038/ni.2649
    11. 11
      Renjini, A. P.; Titus, S.; Narayan, P.; Murali, M.; Jha, R. K.; Laloraya, M. STAT3 and MCL-1 associate to cause a mesenchymal epithelial transition. J. Cell Sci. 2014, 127, 17381750,  DOI: 10.1242/jcs.138214
    12. 12
      Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Li, W.; Miyagi, T.; Hosui, A.; Ishida, H.; Ohkawa, K.; Kanto, T.; Hiramatsu, N.; Yin, X. M.; Hennighausen, L.; Tatsumi, T.; Hayashi, N. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology 2009, 50, 12171226,  DOI: 10.1002/hep.23126
    13. 13
      Opferman, J. T.; Letai, A.; Beard, C.; Sorcinelli, M. D.; Ong, C. C.; Korsmeyer, S. J. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003, 426, 671676,  DOI: 10.1038/nature02067
    14. 14
      Thomas, L. W.; Lam, C.; Edwards, S. W. Mcl-1: the molecular regulation of protein function. FEBS Lett. 2010, 584, 29812989,  DOI: 10.1016/j.febslet.2010.05.061
    15. 15
      Aichberger, K. J.; Mayerhofer, M.; Krauth, M. T.; Skvara, H.; Florian, S.; Sonneck, K.; Akgul, C.; Derdak, S.; Pickl, W. F.; Wacheck, V.; Selzer, E.; Monia, B. P.; Moriggl, R.; Valent, P.; Sillaber, C. Identification of Mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 2005, 105, 33033311,  DOI: 10.1182/blood-2004-02-0749
    16. 16
      Steven, L. G.; Klaus, P.; Jean-Luc, H.; Anderson, K. C. Mcl-1 regulation and its role in multiple myeloma. Cell Cycle 2004, 3, 12591262,  DOI: 10.4161/cc.3.10.1196
    17. 17
      Song, L.; Coppola, D.; Livingston, S.; Cress, W. D.; Haura, E. B. Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol. Ther. 2005, 4, 267276,  DOI: 10.4161/cbt.4.3.1496
    18. 18
      Tong, J.; Wang, P.; Tan, S.; Chen, D.; Nikolovska-Coleska, Z.; Zou, F.; Yu, J.; Zhang, L. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res. 2017, 77, 25122521,  DOI: 10.1158/0008-5472.CAN-16-3242
    19. 19
      Pepper, C.; Lin, T. T.; Pratt, G.; Hewamana, S.; Brennan, P.; Hiller, L.; Hills, R.; Ward, R.; Starczynski, J.; Austen, B.; Hooper, L.; Stankovic, T.; Fegan, C. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008, 112, 38073817,  DOI: 10.1182/blood-2008-05-157131
    20. 20
      Zhou, P.; Qian, L.; Bieszczad, C. K.; Noelle, R.; Binder, M.; Levy, N. B.; Craig, R. W. Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood 1998, 92, 32263239,  DOI: 10.1182/blood.V92.9.3226
    21. 21
      Touzeau, C.; Maciag, P.; Amiot, M.; Moreau, P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia 2018, 32, 18991907,  DOI: 10.1038/s41375-018-0223-9
    22. 22
      Souers, A. J.; Leverson, J. D.; Boghaert, E. R.; Ackler, S. L.; Catron, N. D.; Chen, J.; Dayton, B. D.; Ding, H.; Enschede, S. H.; Fairbrother, W. J.; Huang, D. C. S.; Hymowitz, S. G.; Jin, S.; Khaw, S. L.; Kovar, P. J.; Lam, L. T.; Lee, J.; Maecker, H. L.; Marsh, K. C.; Mason, K. D.; Mitten, M. J.; Nimmer, P. M.; Oleksijew, A.; Park, C.-H.; Park, C. M.; Phillips, D. C.; Roberts, A. W.; Sampath, D.; Seymour, J. F.; Smith, M. L.; Sullivan, G. M.; Tahir, S. K.; Tse, C.; Wendt, M. D.; Xiao, Y.; Xue, J. C.; Zhang, H.; Humerickhouse, R. A.; Rosenberg, S. H.; Elmore, S. W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202208,  DOI: 10.1038/nm.3048
    23. 23
      Quinn, B. A.; Dash, R.; Azab, B.; Sarkar, S.; Das, S. K.; Kumar, S.; Oyesanya, R. A.; Dasgupta, S.; Dent, P.; Grant, S.; Rahmani, M.; Curiel, D. T.; Dmitriev, I.; Hedvat, M.; Wei, J.; Wu, B.; Stebbins, J. L.; Reed, J. C.; Pellecchia, M.; Sarkar, D.; Fisher, P. B. Targeting Mcl-1 for the therapy of cancer. Expert Opin. Invest. Drugs 2011, 20, 13971411,  DOI: 10.1517/13543784.2011.609167
    24. 24
      Akgul, C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell. Mol. Life Sci. 2009, 66, 13261336,  DOI: 10.1007/s00018-008-8637-6
    25. 25
      Lessene, G.; Czabotar, P. E.; Colman, P. M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug. Discov. 2008, 7, 9891000,  DOI: 10.1038/nrd2658
    26. 26
      Fire, E.; Gullá, S. V.; Grant, R. A.; Keating, A. E. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Protein Sci. 2010, 19, 507519,  DOI: 10.1002/pro.329
    27. 27
      Gomez-Bougie, P.; Maiga, S.; Tessoulin, B.; Bourcier, J.; Bonnet, A.; Rodriguez, M. S.; Le Gouill, S.; Touzeau, C.; Moreau, P.; Pellat-Deceunynck, C.; Amiot, M. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment. Blood 2018, 132, 26562669,  DOI: 10.1182/blood-2018-03-836718
    28. 28
      Zhang, Z.; Song, T.; Li, X.; Wu, Z.; Feng, Y.; Xie, F.; Liu, C.; Qin, J.; Chen, H. Novel soluble myeloid cell leukemia sequence 1 (Mcl-1) inhibitor (E,E)-2-(benzylaminocarbonyl)-3-styrylacrylonitrile (4g) developed using a fragment-based approach. Eur. J. Med. Chem. 2013, 59, 141149,  DOI: 10.1016/j.ejmech.2012.10.050
    29. 29
      Zhang, Z.; Liu, C.; Li, X.; Song, T.; Wu, Z.; Liang, X.; Zhao, Y.; Shen, X.; Chen, H. Fragment-based design, synthesis, and biological evaluation of N-substituted-5-(4-isopropylthiophenol)-2-hydroxynicotinamide derivatives as novel Mcl-1 inhibitors. Eur. J. Med. Chem. 2013, 60, 410420,  DOI: 10.1016/j.ejmech.2012.12.016
    30. 30
      Liu, L.; Liu, R.; Yang, X.; Hou, X.; Fang, H. Design, synthesis and biological evaluation of tyrosine derivatives as Mcl-1 inhibitors. Eur. J. Med. Chem. 2020, 191, 112142,  DOI: 10.1016/j.ejmech.2020.112142
    31. 31
      Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug. Discov. 2004, 3, 301317,  DOI: 10.1038/nrd1343
    32. 32
      Horne, W. S.; Boersma, M. D.; Windsor, M. A.; Gellman, S. H. Sequence-based design of alpha/beta-peptide foldamers that mimic BH3 domains. Angew. Chem., Int. Ed. Engl. 2008, 47, 28532856,  DOI: 10.1002/anie.200705315
    33. 33
      de Araujo, A. D.; Lim, J.; Wu, K.-C.; Xiang, Y.; Good, A. C.; Skerlj, R.; Fairlie, D. P. Bicyclic helical peptides as dual inhibitors selective for Bcl2A1 and Mcl-1 proteins. J. Med. Chem. 2018, 61, 29622972,  DOI: 10.1021/acs.jmedchem.8b00010
    34. 34
      Muppidi, A.; Doi, K.; Edwardraja, S.; Drake, E. J.; Gulick, A. M.; Wang, H. G.; Lin, Q. Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J. Am. Chem. Soc. 2012, 134, 1473414737,  DOI: 10.1021/ja306864v
    35. 35
      Stewart, M. L.; Fire, E.; Keating, A. E.; Walensky, L. D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol. 2010, 6, 595601,  DOI: 10.1038/nchembio.391
    36. 36
      Doi, K.; Li, R.; Sung, S. S.; Wu, H.; Liu, Y.; Manieri, W.; Krishnegowda, G.; Awwad, A.; Dewey, A.; Liu, X.; Amin, S.; Cheng, C.; Qin, Y.; Schonbrunn, E.; Daughdrill, G.; Loughran, T. P., Jr.; Sebti, S.; Wang, H. G. Discovery of marinopyrrole A (maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasomal degradation. J. Biol. Chem. 2012, 287, 1022410235,  DOI: 10.1074/jbc.M111.334532
    37. 37
      Lanning, M. E.; Yu, W.; Yap, J. L.; Chauhan, J.; Chen, L.; Whiting, E.; Pidugu, L. S.; Atkinson, T.; Bailey, H.; Li, W.; Roth, B. M.; Hynicka, L.; Chesko, K.; Toth, E. A.; Shapiro, P.; MacKerell, A. D., Jr.; Wilder, P. T.; Fletcher, S. Structure-based design of N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoates as selective inhibitors of the Mcl-1 oncoprotein. Eur. J. Med. Chem. 2016, 113, 273292,  DOI: 10.1016/j.ejmech.2016.02.006
    38. 38
      Rescourio, G.; Gonzalez, A. Z.; Jabri, S.; Belmontes, B.; Moody, G.; Whittington, D.; Huang, X.; Caenepeel, S.; Cardozo, M.; Cheng, A. C.; Chow, D.; Dou, H.; Jones, A.; Kelly, R. C.; Li, Y.; Lizarzaburu, M.; Lo, M. C.; Mallari, R.; Meleza, C.; Rew, Y.; Simonovich, S.; Sun, D.; Turcotte, S.; Yan, X.; Wong, S. G.; Yanez, E.; Zancanella, M.; Houze, J.; Medina, J. C.; Hughes, P. E.; Brown, S. P. Discovery and in vivo evaluation of macrocyclic Mcl-1 inhibitors featuring an α-hydroxy phenylacetic acid pharmacophore or bioisostere. J. Med. Chem. 2019, 62, 1025810271,  DOI: 10.1021/acs.jmedchem.9b01310
    39. 39
      Song, T.; Wang, Z.; Ji, F.; Feng, Y.; Fan, Y.; Chai, G.; Li, X.; Li, Z.; Zhang, Z. Deactivation of Mcl-1 by dual-function small-molecule inhibitors targeting the bcl-2 homology 3 domain and facilitating mcl-1 ubiquitination. Angew. Chem., Int. Ed. Engl. 2016, 55, 1425014256,  DOI: 10.1002/anie.201606543
    40. 40
      Wang, Z.; He, N.; Guo, Z.; Niu, C.; Song, T.; Guo, Y.; Cao, K.; Wang, A.; Zhu, J.; Zhang, X.; Zhang, Z. Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J. Med. Chem. 2019, 62, 81528163,  DOI: 10.1021/acs.jmedchem.9b00919
    41. 41
      Wang, Z.; Guo, Z.; Song, T.; Zhang, X.; He, N.; Liu, P.; Wang, P.; Zhang, Z. Proteome-wide identification of on- and off-targets of Bcl-2 inhibitors in native biological systems by using affinity-based probes (afbps). ChemBioChem 2018, 19, 23122320,  DOI: 10.1002/cbic.201800380
    42. 42
      Zhang, Z.; Wu, G.; Xie, F.; Song, T.; Chang, X. 3-Thiomorpholin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J. Med. Chem. 2011, 54, 11011105,  DOI: 10.1021/jm101181u
    43. 43
      Bruncko, M.; Song, X.; Tao, Z.; Kunzer, A. R. 7-nonsubstituted Indole Mcl-1 Inhibitors. WO2008130970Al, 2008.
    44. 44
      Elmore, S. W.; Souers, A. J.; Bruncko, M.; Song, X.; Wang, X.; Hasvold, L. A.; Wang, L.; Kunzer, A. R.; Park, C.; Wendt, M. D.; Tao, Z. 7-sonsubstituted Indole Mcl-1 Inhibitors. WO2008131000A2, 2008.
    45. 45
      Friberg, A.; Vigil, D.; Zhao, B.; Daniels, R. N.; Burke, J. P.; Garcia-Barrantes, P. M.; Camper, D.; Chauder, B. A.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J. Med. Chem. 2013, 56, 1530,  DOI: 10.1021/jm301448p
    46. 46
      Burke, J. P.; Bian, Z.; Shaw, S.; Zhao, B.; Goodwin, C. M.; Belmar, J.; Browning, C. F.; Vigil, D.; Friberg, A.; Camper, D. V.; Rossanese, O. W.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J. Med. Chem. 2015, 58, 37943805,  DOI: 10.1021/jm501984f
    47. 47
      Pelz, N. F.; Bian, Z.; Zhao, B.; Shaw, S.; Tarr, J. C.; Belmar, J.; Gregg, C.; Camper, D. V.; Goodwin, C. M.; Arnold, A. L.; Sensintaffar, J. L.; Friberg, A.; Rossanese, O. W.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Discovery of 2-indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods. J. Med. Chem. 2016, 59, 20542066,  DOI: 10.1021/acs.jmedchem.5b01660
    48. 48
      Shaw, S.; Bian, Z.; Zhao, B.; Tarr, J. C.; Veerasamy, N.; Jeon, K. O.; Belmar, J.; Arnold, A. L.; Fogarty, S. A.; Perry, E.; Sensintaffar, J. L.; Camper, D. V.; Rossanese, O. W.; Lee, T.; Olejniczak, E. T.; Fesik, S. W. Optimization of potent and selective tricyclic indole diazepinone myeloid cell leukemia-1 inhibitors using structure-based design. J. Med. Chem. 2018, 61, 24102421,  DOI: 10.1021/acs.jmedchem.7b01155
    49. 49
      Lee, T.; Christov, P. P.; Shaw, S.; Tarr, J. C.; Zhao, B.; Veerasamy, N.; Jeon, K. O.; Mills, J. J.; Bian, Z.; Sensintaffar, J. L.; Arnold, A. L.; Fogarty, S. A.; Perry, E.; Ramsey, H. E.; Cook, R. S.; Hollingshead, M.; Davis Millin, M.; Lee, K. M.; Koss, B.; Budhraja, A.; Opferman, J. T.; Kim, K.; Arteaga, C. L.; Moore, W. J.; Olejniczak, E. T.; Savona, M. R.; Fesik, S. W. Discovery of potent myeloid cell leukemia-1 (Mcl-1) inhibitors that demonstrate in vivo activity in mouse xenograft models of human cancer. J. Med. Chem. 2019, 62, 39713988,  DOI: 10.1021/acs.jmedchem.8b01991
    50. 50
      Ramsey, H. E.; Fischer, M. A.; Lee, T.; Gorska, A. E.; Arrate, M. P.; Fuller, L.; Boyd, K. L.; Strickland, S. A.; Sensintaffar, J.; Hogdal, L. J.; Ayers, G. D.; Olejniczak, E. T.; Fesik, S. W.; Savona, M. R. A novel Mcl-1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer. Discov. 2018, 8, 15661581,  DOI: 10.1158/2159-8290.CD-18-0140
    51. 51
      Bruncko, M.; Wang, L.; Sheppard, G. S.; Phillips, D. C.; Tahir, S. K.; Xue, J.; Erickson, S.; Fidanze, S.; Fry, E.; Hasvold, L.; Jenkins, G. J.; Jin, S.; Judge, R. A.; Kovar, P. J.; Madar, D.; Nimmer, P.; Park, C.; Petros, A. M.; Rosenberg, S. H.; Smith, M. L.; Song, X.; Sun, C.; Tao, Z. F.; Wang, X.; Xiao, Y.; Zhang, H.; Tse, C.; Leverson, J. D.; Elmore, S. W.; Souers, A. J. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J. Med. Chem. 2015, 58, 21802194,  DOI: 10.1021/jm501258m
    52. 52
      Leverson, J. D.; Zhang, H.; Chen, J.; Tahir, S. K.; Phillips, D. C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G. S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D. J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M. J. C.; Sampath, D.; Fairbrother, W. J.; Wertz, I.; Rosenberg, S. H.; Tse, C.; Elmore, S. W.; Souers, A. J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell. Death. Dis. 2015, 6, e1590  DOI: 10.1038/cddis.2014.561
    53. 53
      Xiao, Y.; Nimmer, P.; Sheppard, G. S.; Bruncko, M.; Hessler, P.; Lu, X.; Roberts-Rapp, L.; Pappano, W. N.; Elmore, S. W.; Souers, A. J.; Leverson, J. D.; Phillips, D. C. Mcl-1 is a key determinant of breast cancer cell survival: validation of Mcl-1 dependency utilizing a highly selective small molecule inhibitor. Mol. Cancer Ther. 2015, 14, 18371847,  DOI: 10.1158/1535-7163.MCT-14-0928
    54. 54
      Akçay, G.; Belmonte, M. A.; Aquila, B.; Chuaqui, C.; Hird, A. W.; Lamb, M. L.; Rawlins, P. B.; Su, N.; Tentarelli, S.; Grimster, N. P.; Su, Q. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat. Chem. Biol. 2016, 12, 931936,  DOI: 10.1038/nchembio.2174
    55. 55
      Papatzimas, J. W.; Gorobets, E.; Maity, R.; Muniyat, M. I.; MacCallum, J. L.; Neri, P.; Bahlis, N. J.; Derksen, D. J. From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1). J. Med. Chem. 2019, 62, 55225540,  DOI: 10.1021/acs.jmedchem.9b00455
    56. 56
      Johannes, J. W.; Bates, S.; Beigie, C.; Belmonte, M. A.; Breen, J.; Cao, S.; Centrella, P. A.; Clark, M. A.; Cuozzo, J. W.; Dumelin, C. E.; Ferguson, A. D.; Habeshian, S.; Hargreaves, D.; Joubran, C.; Kazmirski, S.; Keefe, A. D.; Lamb, M. L.; Lan, H.; Li, Y.; Ma, H.; Mlynarski, S.; Packer, M. J.; Rawlins, P. B.; Robbins, D. W.; Shen, H.; Sigel, E. A.; Soutter, H. H.; Su, N.; Troast, D. M.; Wang, H.; Wickson, K. F.; Wu, C.; Zhang, Y.; Zhao, Q.; Zheng, X.; Hird, A. W. Structure based design of non-natural peptidic macrocyclic Mcl-1 inhibitors. ACS Med. Chem. Lett. 2017, 8, 239244,  DOI: 10.1021/acsmedchemlett.6b00464
    57. 57
      Tron, A. E.; Belmonte, M. A.; Adam, A.; Aquila, B. M.; Boise, L. H.; Chiarparin, E.; Cidado, J.; Embrey, K. J.; Gangl, E.; Gibbons, F. D.; Gregory, G. P.; Hargreaves, D.; Hendricks, J. A.; Johannes, J. W.; Johnstone, R. W.; Kazmirski, S. L.; Kettle, J. G.; Lamb, M. L.; Matulis, S. M.; Nooka, A. K.; Packer, M. J.; Peng, B.; Rawlins, P. B.; Robbins, D. W.; Schuller, A. G.; Su, N.; Yang, W.; Ye, Q.; Zheng, X.; Secrist, J. P.; Clark, E. A.; Wilson, D. M.; Fawell, S. E.; Hird, A. W. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 2018, 9, 5341,  DOI: 10.1038/s41467-018-07551-w
    58. 58
      Sale, M. J.; Minihane, E.; Monks, N. R.; Gilley, R.; Richards, F. M.; Schifferli, K. P.; Andersen, C. L.; Davies, E. J.; Vicente, M. A.; Ozono, E.; Markovets, A.; Dry, J. R.; Drew, L.; Flemington, V.; Proia, T.; Jodrell, D. I.; Smith, P. D.; Cook, S. J. Targeting melanoma’s MCL1 bias unleashes the apoptotic potential of BRAF and ERK1/2 pathway inhibitors. Nat. Commun. 2019, 10, 5167,  DOI: 10.1038/s41467-019-12409-w
    59. 59
      Zhang, H.; Nakauchi, Y.; Köhnke, T.; Stafford, M.; Bottomly, D.; Thomas, R.; Wilmot, B.; McWeeney, S. K.; Majeti, R.; Tyner, J. W. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat. Cancer. 2020, 1, 826839,  DOI: 10.1038/s43018-020-0103-x
    60. 60
      Caenepeel, S.; Brown, S. P.; Belmontes, B.; Moody, G.; Keegan, K. S.; Chui, D.; Whittington, D. A.; Huang, X.; Poppe, L.; Cheng, A. C.; Cardozo, M.; Houze, J.; Li, Y.; Lucas, B.; Paras, N. A.; Wang, X.; Taygerly, J. P.; Vimolratana, M.; Zancanella, M.; Zhu, L.; Cajulis, E.; Osgood, T.; Sun, J.; Damon, L.; Egan, R. K.; Greninger, P.; McClanaghan, J. D.; Gong, J.; Moujalled, D.; Pomilio, G.; Beltran, P.; Benes, C. H.; Roberts, A. W.; Huang, D. C.; Wei, A.; Canon, J.; Coxon, A.; Hughes, P. E. AMG 176, a selective Mcl-1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer. Discov. 2018, 8, 15821597,  DOI: 10.1158/2159-8290.CD-18-0387
    61. 61
      Lu, X.; Liu, Y. C.; Orvig, C.; Liang, H.; Chen, Z. F. Discovery of a Copper-Based Mcl-1 Inhibitor as an Effective Antitumor Agent. J. Med. Chem. 2020, 63, 91549167,  DOI: 10.1021/acs.jmedchem.9b02047
    62. 62
      Abulwerdi, F.; Liao, C.; Liu, M.; Azmi, A. S.; Aboukameel, A.; Mady, A. S.; Gulappa, T.; Cierpicki, T.; Owens, S.; Zhang, T.; Sun, D.; Stuckey, J. A.; Mohammad, R. M.; Nikolovska-Coleska, Z. A novel small-molecule inhibitor of Mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol. Cancer Ther. 2014, 13, 565575,  DOI: 10.1158/1535-7163.MCT-12-0767
    63. 63
      Lee, T.; Bian, Z.; Zhao, B.; Hogdal, L. J.; Sensintaffar, J. L.; Goodwin, C. M.; Belmar, J.; Shaw, S.; Tarr, J. C.; Veerasamy, N.; Matulis, S. M.; Koss, B.; Fischer, M. A.; Arnold, A. L.; Camper, D. V.; Browning, C. F.; Rossanese, O. W.; Budhraja, A.; Opferman, J.; Boise, L. H.; Savona, M. R.; Letai, A.; Olejniczak, E. T.; Fesik, S. W. Discovery and biological characterization of potent myeloid cell leukemia-1 inhibitors. FEBS Lett. 2017, 591, 240251,  DOI: 10.1002/1873-3468.12497
    64. 64
      Lu, X.; Liu, Y. C.; Orvig, C.; Liang, H.; Chen, Z. F. Discovery of β-carboline copper(II) complexes as Mcl-1 inhibitor and in vitro and in vivo activity in cancer models. Eur. J. Med. Chem. 2019, 181, 111567,  DOI: 10.1016/j.ejmech.2019.111567
    65. 65
      Richard, D. J.; Lena, R.; Bannister, T.; Blake, N.; Pierceall, W. E.; Carlson, N. E.; Keller, C. E.; Koenig, M.; He, Y.; Minond, D.; Mishra, J.; Cameron, M.; Spicer, T.; Hodder, P.; Cardone, M. H. Hydroxyquinoline-derived compounds and analoguing of selective Mcl-1 inhibitors using a functional biomarker. Bioorg. Med. Chem. 2013, 21, 66426649,  DOI: 10.1016/j.bmc.2013.08.017
    66. 66
      Petros, A. M.; Swann, S. L.; Song, D.; Swinger, K.; Park, C.; Zhang, H.; Wendt, M. D.; Kunzer, A. R.; Souers, A. J.; Sun, C. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg. Med. Chem. Lett. 2014, 24, 14841488,  DOI: 10.1016/j.bmcl.2014.02.010
    67. 67
      Kotschy, A.; Szlavik, Z.; Murray, J.; Davidson, J.; Maragno, A. L.; Le Toumelin-Braizat, G.; Chanrion, M.; Kelly, G. L.; Gong, J. N.; Moujalled, D. M.; Bruno, A.; Csekei, M.; Paczal, A.; Szabo, Z. B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Ondi, L.; Blasko, G.; Robertson, A.; Surgenor, A.; Dokurno, P.; Chen, I.; Matassova, N.; Smith, J.; Pedder, C.; Graham, C.; Studeny, A.; Lysiak-Auvity, G.; Girard, A. M.; Grave, F.; Segal, D.; Riffkin, C. D.; Pomilio, G.; Galbraith, L. C.; Aubrey, B. J.; Brennan, M. S.; Herold, M. J.; Chang, C.; Guasconi, G.; Cauquil, N.; Melchiore, F.; Guigal-Stephan, N.; Lockhart, B.; Colland, F.; Hickman, J. A.; Roberts, A. W.; Huang, D. C.; Wei, A. H.; Strasser, A.; Lessene, G.; Geneste, O. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 2016, 538, 477482,  DOI: 10.1038/nature19830
    68. 68
      Szlavik, Z.; Csekei, M.; Paczal, A.; Szabo, Z. B.; Sipos, S.; Radics, G.; Proszenyak, A.; Balint, B.; Murray, J.; Davidson, J.; Chen, I.; Dokurno, P.; Surgenor, A. E.; Daniels, Z. M.; Hubbard, R. E.; Le Toumelin-Braizat, G.; Claperon, A.; Lysiak-Auvity, G.; Girard, A. M.; Bruno, A.; Chanrion, M.; Colland, F.; Maragno, A. L.; Demarles, D.; Geneste, O.; Kotschy, A. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J. Med. Chem. 2020, 63, 1376213795,  DOI: 10.1021/acs.jmedchem.0c01234
    69. 69
      Zhu, P. J.; Yu, Z. Z.; You, Q. D.; Jiang, Z. Y. Myeloid cell leukemin-1 inhibitors: a growing arsenal for cancer therapy. Drug Discovery Today 2020, 25, 18731882,  DOI: 10.1016/j.drudis.2020.07.021
    70. 70
      Li, X.; Dou, J.; You, Q.; Jiang, Z. Inhibitors of BCL2A1/Bfl-1 protein: Potential stock in cancer therapy. Eur. J. Med. Chem. 2021, 220, 113539,  DOI: 10.1016/j.ejmech.2021.113539
    71. 71
      Chang, J.; Wang, Y.; Shao, L.; Laberge, R. M.; Demaria, M.; Campisi, J.; Janakiraman, K.; Sharpless, N. E.; Ding, S.; Feng, W.; Luo, Y.; Wang, X.; Aykin-Burns, N.; Krager, K.; Ponnappan, U.; Hauer-Jensen, M.; Meng, A.; Zhou, D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 2016, 22, 7883,  DOI: 10.1038/nm.4010
    72. 72
      Munkhbaatar, E.; Dietzen, M.; Agrawal, D.; Anton, M.; Jesinghaus, M.; Boxberg, M.; Pfarr, N.; Bidola, P.; Uhrig, S.; Höckendorf, U.; Meinhardt, A. L.; Wahida, A.; Heid, I.; Braren, R.; Mishra, R.; Warth, A.; Muley, T.; Poh, P. S. P.; Wang, X.; Fröhling, S.; Steiger, K.; Slotta-Huspenina, J.; van Griensven, M.; Pfeiffer, F.; Lange, S.; Rad, R.; Spella, M.; Stathopoulos, G. T.; Ruland, J.; Bassermann, F.; Weichert, W.; Strasser, A.; Branca, C.; Heikenwalder, M.; Swanton, C.; McGranahan, N.; Jost, P. J. MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically. Nat. Commun. 2020, 11, 4527,  DOI: 10.1038/s41467-020-18372-1
    73. 73
      Liu, J.; Fang, Z.; Zhang, Q.; Liu, Q.; Bi, X. Silver-catalyzed isocyanide-alkyne cycloaddition: a general and practical method to oligosubstituted pyrroles. Angew. Chem. Int. Ed. Engl. 2013, 52, 69536957,  DOI: 10.1002/anie.201302024
    74. 74
      Kattamuri, P. V.; Yin, J.; Siriwongsup, S.; Kwon, D. H.; Ess, D. H.; Li, Q.; Li, G.; Yousufuddin, M.; Richardson, P. F.; Sutton, S. C.; Kürti, L. Practical singly and doubly electrophilic aminating agents: a new, more sustainable platform for carbon-nitrogen bond formation. J. Am. Chem. Soc. 2017, 139, 1118411196,  DOI: 10.1021/jacs.7b05279
    75. 75
      Cohen, N. A.; Stewart, M. L.; Gavathiotis, E.; Tepper, J. L.; Bruekner, S. R.; Koss, B.; Opferman, J. T.; Walensky, L. D. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem. Biol. 2012, 19, 11751186,  DOI: 10.1016/j.chembiol.2012.07.018
    76. 76
      Kump, K. J.; Miao, L.; Mady, A. S. A.; Ansari, N. H.; Shrestha, U. K.; Yang, Y.; Pal, M.; Liao, C.; Perdih, A.; Abulwerdi, F. A.; Chinnaswamy, K.; Meagher, J. L.; Carlson, J. M.; Khanna, M.; Stuckey, J. A.; Nikolovska-Coleska, Z. Discovery and characterization of 2,5-substituted benzoic acid dual inhibitors of the anti-apoptotic Mcl-1 and Bfl-1 proteins. J. Med. Chem. 2020, 63, 24892510,  DOI: 10.1021/acs.jmedchem.9b01442
    77. 77
      Bernardo, P. H.; Sivaraman, T.; Wan, K.-F.; Xu, J.; Krishnamoorthy, J.; Song, C. M.; Tian, L.; Chin, J. S. F.; Lim, D. S. W.; Mok, H. Y. K.; Yu, V. C.; Tong, J. C.; Chai, C. L. Structural insights into the design of small molecule inhibitors that selectively antagonize Mcl-1. J. Med. Chem. 2010, 53, 23142318,  DOI: 10.1021/jm901469p
    78. 78
      Szlavik, Z.; Ondi, L.; Csekei, M.; Paczal, A.; Szabo, Z. B.; Radics, G.; Murray, J.; Davidson, J.; Chen, I.; Davis, B.; Hubbard, R. E.; Pedder, C.; Dokurno, P.; Surgenor, A.; Smith, J.; Robertson, A.; LeToumelin-Braizat, G.; Cauquil, N.; Zarka, M.; Demarles, D.; Perron-Sierra, F.; Claperon, A.; Colland, F.; Geneste, O.; Kotschy, A. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity. J. Med. Chem. 2019, 62, 69136924,  DOI: 10.1021/acs.jmedchem.9b00134
    79. 79
      Wu, Y.; Jiang, Z.; Li, Z.; Gu, J.; You, Q.; Zhang, X. Click chemistry-based discovery of [3-hydroxy-5-(1h-1,2,3-triazol-4-yl)picolinoyl]glycines as orally active hypoxia-inducing factor prolyl hydroxylase inhibitors with favorable safety profiles for the treatment of anemia. J. Med. Chem. 2018, 61, 53325349,  DOI: 10.1021/acs.jmedchem.8b00549
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c00682.

    • Molecular formula strings and SAR data (CSV)

    • Predicated binding modes of 13, 16, 40, and 43 (ZIP)

    • Predicated drug-like properties, hERG channel inhibition assay, hematoxylin and eosin (H&E) staining, TUNEL analysis, statistical analysis and 1H NMR, 13C NMR, HRMS and HPLC spectra for representative target compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
您正在使用VPN