这是用户在 2025-3-4 16:49 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Full-color Circularly Polarized luminescence multiplexing in Cholesteric Liquid Crystal
胆固醇液晶中的全彩圆偏振发光多路复

Lulu Li, Jiaxin Luo, Xueyan Zhang, Kun Yao, Yixiang Cheng and Yang Li*
李璐璐、罗佳欣张雪燕姚坤逸翔杨丽*

Abstract
A小区

Wavelength and polarization multiplexing, which involves modulating multiple wavelengths through different polarization modes, hold great promise to enable optical encryption and anti-counterfeiting. In this study, we demonstrate successful circularly polarized luminescence (CPL) multiplexing in cholesteric liquid crystals (CLCs) using full-color dichroic dyes. The negative full-color dichroic dyes (B2, G2, and R2) were derived from ESIPT luminophores by adding mesogenic units oriented perpendicular to the transition dipole moment (TDM) vectors of the luminophores. When combined with traditional positive dichroic dyes (B3, G3, and R3), this setup enabled full-color CPL modulation with controllable circular polarizations across any wavelength within a single CLC. This technique offers a pathway for creating CPL multiplexing devices suitable for high-density data encryption and full-color polarization anti-counterfeiting system.
波长和偏振多路复用涉及通过不同的偏振模式调制多个波长,在实现光学加密nti 伪造方面具有很大的前景。在这项研究中,我们展示了 使用全色二向色染料在胆固醇液晶 (CLC) 中成功逆光发光 (CPL 多路复用。阴性全色二向色染料(B2、G2 和 R2)是通过添加垂直于发光团的过渡偶极矩 (TDM) 矢量的介生单位从 ESIPT 发光团衍生而来的。当与传统的正二向色染料(B3、G3 和 R3)结合使用时,该设置可实现全色 CPL 调制,并在单个 CLC 内的任何波长上实现可控的圆偏振。该技术为创建适用于高密度数据加密和全彩极化 CPL 多路复用设备(一种 nti 伪造系统)提供了一条途径

Introduction

Circularly polarized (CP) light holds significant potential for applications in quantum computing, optical displays, networking, and information encryption due to its spin angular momentum properties.[1-4] To enhance the encryption capacity and density of CP light, it is crucial to develop devices capable of supporting multiple information channels. Wavelength and polarization multiplexing, which modulates multiple wavelengths with different polarization modes, is a well-established technique for increasing the capacity of optical encryption systems.[5-10] Such devices, which enable independent control of polarization and wavelength, are also widely used in areas like advanced optical anti-counterfeiting, information encryption, planar lightwave circuits, dual-channel displays for AR/VR, and optical storage.[11-15] However, polarization multiplexing is often achieved using metasurfaces, which involve complex nanostructure designs. The fabrication processes for these metasurfaces are typically intricate, time-consuming, and expensive, limiting their scalability and practical application.[9,16-21]
圆偏振 (CP) 光由于其自旋角动量特性,在量子计算、光学显示、网络和信息加密等领域具有巨大的应用潜力[1-4] 为了提高 CP light 的加密能力和密度,开发能够支持多个信息通道的设备至关重要。波长和偏振多路复用,以不同的偏振模式调制多个波长,是一种提高光学加密系统容量的成熟技术[5-10] 这种能够独立控制偏振波长的设备被广泛用于高级光学防伪、信息加密、平面光波电路、AR/VR 双通道显示器和光存储等领域。[11-15] 然而,极化多路复用通常是使用超表面实现的,这涉及复杂的纳米结构设计。这些超表面的制造过程通常复杂、耗时且昂贵,限制了它们的可扩展性和实际应用。[9,16-21]

Circularly polarized luminescence (CPL) materials, which directly emit CP light, have garnered increasing attention recently.[22-25] For practical use in encryption and anti-counterfeiting, significant efforts have been directed at controlling and tuning the polarization, intensity, and color of CPL emission, alongside continuous improvements in luminescent quantum yield and the dissymmetry factor (glum).[26-30] Chiral supramolecular assembly systems are considered promising CPL-active materials due to their tunable emission and large glum values.[25,31-33] Among these, cholesteric liquid crystals (CLCs), as a key class of chiral supramolecular systems, can effectively amplify CPL signals through intermolecular chirality transfer and ordered chiral alignment.[34-37] However, CPL multiplexing, which need independent regulation of CPL polarization and wavelength remains a challenge in chiral assembly systems. The Zous group reported a simple and cost-effective method to fabricate flexible CP multiplex color display polymeric films by aligning two anisotropic polydiacetylene (PDA) layers in a twisted fashion.[38] Sagawa reported a luminescence-based CP converter that leverages the spectral conversion properties of linear polarized light (LPL) films, allowing for the multiplexing of optical information by simply laminating LPL films.[39] In our previous research, we demonstrated that the polarization in the same CLC helix superstructure could be independently controlled using different dichroic dyes.[40,41] This finding inspired us to explore the possibility of controlling the CPL polarizations of different wavebands in the same CLC by using dual dichroic dyes.
直接发射 CP 光的圆偏振发光 (CPL) 材料近年来受到了越来越多的关注。[22-25] 为了在加密和防中的实际应用,人们已经做出了重大努力来控制和调整 CPL 发射的偏振、强度和颜色,同时不断改进发光量子产率和不对称因子 (glum)。[26-30] 手性超分子组装系统被认为是有前途的 CPL 活性材料,因为它们具有可调谐的发射和较大的 glum 值。[25,31-33] 其中,胆固醇液晶 (CLC) 作为一类关键的手性超分子系统,可以通过分子间手性转移和有序手性对齐有效地放大 CPL 信号。[34-37] 然而,需要独立调节 CPL 偏振和波长CPL 多路复用仍然是手性组装系统中的一个挑战Zou 的小组报道了一种简单且经济高效的方法,通过扭曲方式对齐两个各向异性聚二乙炔 (PDA) 层来制造柔性 CP 多路彩色显示聚合物薄膜。[38] Sagawa 报道了一种基于发光的 CP 转换器,它利用线性偏振光 (LPL) 薄膜的光谱转换特性,允许通过简单地层压 LPL 薄膜来复用光学信息。[39] 在我们之前的研究中,我们证明了可以使用不同的二向色染料独立控制同一 CLC 螺旋超结构中的极化。[40,41] 这一发现激发了我们探索 通过使用双二向色染料控制同一 CLC 中不同波段的 CPL 极化的可能性。

In this study, we successfully achieved CPL multiplexing in CLCs by utilizing full-color dichroic dyes, enabling multiple information encryption in different channels (Scheme 1a). Firstly, we developed full-color negative dichroic dyes by attaching mesogenic units perpendicular to the transition dipole moment (TDM) vectors of excited state intramolecular proton transfer (ESIPT) luminophores (Scheme 1b and 1c). The dichroic dye can regulate the polarization and intensity of CPL despite the fixed helix direction of the CLC. By combining these with traditional positive dichroic dyes (Scheme 1b), wavelength and polarization multiplexing (modulating the polarization state and wavelength independently) can be easily achieved in a single CLC by adjusting the doping ratio of the dyes. This approach demonstrated the feasibility of multiple encrypted channels with low correlation from a single CLC pixel, potentially enhancing the information density of CPL encryption and image anti-counterfeiting.
在这项研究中,我们利用全色二向色染料成功地在 CLC 中实现了 CPL 多路复用,从而在不同通道中实现了多重信息加密(方案 1a)。首先,我们通过连接垂直于激发态分子内质子转移 ESIPT 发光团的过渡偶极矩 (TDM) 载体的介生单元(方案 1b 和 1c)来开发全色负二向色染料尽管 CLC 的螺旋方向固定,但二向色染料可以调节 CPL 的极化和强度。通过将它们与传统的正二向色染料(方案 1b)相结合,通过调整染料的掺杂比,可以在单个 CLC 中轻松实现波长和偏振多路复用(独立调制偏振态和波长)。这种方法证明了来自单个 CLC 像素低相关性的多个加密通道 的可行性有可能提高 CPL 加密的信息密度成像nti 伪造

Scheme 1. (a) Scheme of wavelength and polarization multiplexing in CLCs. (b) Dichroic dyes used in this study. (c) Molecule design principal of negative dichroic ESIPT dyes and positive dichroic dyes.
方案 1.(a) CLC 中的波长和偏振多路复用方案。(b) 本研究中使用的二向色染料。(c) 负二向色 ESIPT 染料和正二向色染料的分子设计原理。

Results and Discussion
结果 D讨论

In dichroic dyes, negative dichroism can be exhibited when the TDM vector is perpendicular to the molecular main axis.[42-45] In 2023, we designed an achiral negative dichroic dye by modifying perylene diimide with an α-cyanostyrene chain placed perpendicular to the TDM vector.[41] A key challenge in designing negative Donor-Acceptor type dichroic dyes is the large group volume of the donor and acceptor group, which can cause the dye to exhibit positive dichroism due to the elongated Donor-Acceptor molecular structure (Scheme 1c).[46] Minimizing the volume of the donor or acceptor group is beneficial for achieving negative dichroism. Due to the special keto form in the excited state of ESIPT dyes, the acceptor can be minimized to a carbonyl group.[47-49] Additionally, the emission of ESIPT dyes can be easily tuned to cover the full visible spectrum.[50,51] When the aryl group at the 2-position is an o-phenol derivative, the dye can exist as either an enol or keto tautomer (Scheme 1d) through proton transfer from the phenolic group to the unsubstituted nitrogen of the imidazole ring. In the ground state, these dyes exist in the enol form. Upon excitation, proton transfer occurs, producing the excited state keto form that induces a large apparent Stokes shift, which varies depending on the molecular structure of the phenol. For instance, an unsubstituted phenol emits blue light, adding a methoxy group shifts the emission to green, and a naphthol group shifts it further to red.[52,53]
在二向色染料中,当 TDM 向量垂直于分子主轴时,可以表现出负二色性[42-45] 2023 年,我们设计了一种非手性负二向色染料,方法是使用 垂直于 TDM 载体放置的 α-氰基苯乙烯链修饰苝二亚胺。[41] 设计负供体-受体型二向色染料的一个关键挑战是供体和受体基团的组体积大,由于拉长供体-受体分子结构(方案 1c),这可能导致染料表现出正二色性[46] 最小化供体或受体组的体积有利于实现负二色谱。由于 ESIPT 染料在激发态下的特殊酮形式,受体可以最小化为羰基。[47-49] 此外,可以很容易地调整 ESIPT 染料的发射以覆盖整个可见光谱。[50,51] 当 2 位的芳基是邻苯酚衍生物时,染料可以通过质子从酚基转移到咪唑环的未取代氮,以烯醇或酮互变异构体 (Scheme 1d) 的形式存在。在基态下,这些染料以烯醇形式存在。激发后,质子转移发生,产生激发态酮形式,诱导大的表观斯托克斯位移,该位移根据苯酚的分子结构而变化。 例如,未取代的苯酚发出蓝光,添加甲氧基会使发射变为绿色,而萘酚基团会进一步将其变为红色。[52,53]

Thanks to the previous work by Shu Sekis group, the ESIPT dye C5Ph-HBT exhibited positive dichroism in liquid crystals[54,55]. This suggests that the TDM vector of the luminophores is oriented from the thiazole ring to the phenol group. For designing negative dichroic dyes, the TDM vector should be perpendicular to the molecule's main optical axis (Scheme 1c). Therefore, negative dichroic dyes could be designed by elongating the structure in a vertical direction. Based on the analyses, we first performed density functional theory (DFT) calculations using the B3LYP/6-31G method via Gaussian 09 program for the ESIPT chromophores. The results, shown in Figure 1a-1c, indicated that the TDM vectors for all full-color ESIPT dyes extend from the imidazole group to the carbonyl group, consistent with our predictions.
得益于 Shu Seki 小组之前的工作,ESIPT 染料 C5Ph-HBT 在液晶中表现出正二色性[54,55]。这表明发光团的 TDM 矢量从噻唑环定向到苯酚基团。为了设计负性二向色染料,TDM 矢量应垂直于分子的主光轴(方案 1c)。因此,可以通过在垂直方向上拉长结构来设计负二向色染料。基于分析,我们首先通过 Gaussian 09 程序使用 B3LYP/6-31G 方法对 ESIPT 发色团进行了 density functional theory (DFT) 计算。如图 1a-1 c 所示的结果表明,所有全色 ESIPT 染料的 TDM 载体都从咪唑基团延伸到羰基,这与我们的预测一致。

As a control, the dyes B1, G1, and R1 without mesogenic unit decoration were synthesized, while B2, G2, and R2 were constructed by decorating B1-R1 with mesogenic units at the vertical direction of the TDM vector to enhance the negative dichroism of the ESIPT dyes (Scheme S1). Due to the more rigid structure of the naphthalene for red emitting dye, the mesogenic unite was chosen to be n-octoxy in R2. The detailed synthesis procedures and characterizations are provided in the Supporting Information.
作为对照,合成了没有介生单元修饰的染料 B1 、 G1 和 R1 ,而 B2 、 G2 和 R2 是通过在 TDM 载体的垂直方向上用介源单元装饰 B1-R1 来构建的,以增强 ESIPT 染料的负二色性 (方案 S1)。 由于的结构更坚硬 ,用于红色发光染料,中生联合物被选为 R2 中的 n-o ctoxy支持信息中提供了详细的合成程序和表征。

Next, the photophysical properties were studied in THF solutions at a concentration of 10-5 mol/L (Figures S1 and S2). Both series of imidazole molecules, series 1 (B1, G1, and R1) and series 2 (B2, G2, and R2), fluoresce in the three primary RGB colors (402 nm, 507 nm, and 563 nm) in THF, respectively (Figure S2). Notably, these RGB imidazole derivatives exhibited a large Stokes shift in emission between 440 nm and 630 nm, originating from their respective keto tautomers, while their absorption spectra were localized within the UV region (Figure S1), resulting in almost no spectral overlap between their absorption and emission bands.[56]
接下来,在 10-5 mol/L 浓度的 THF 溶液中研究光物理性质(图 S1 和 S2)。咪唑分子系列,系列 1(B1、G1 和 R1)和系列 2(B2、G2 和 R2)在 THF 中分别以三种原色 RGB 颜色(402 nm、507 nm 和 563 nm)发出荧光(图 S2)。值得注意的是,这些 RGB 咪唑衍生物在 440 nm 和 630 nm 之间的发射中表现出较大的斯托克斯位移,这源于它们各自的酮互变异构体,而它们的吸收光谱位于紫外区域内(图 S1),导致它们的吸收带和发射带之间几乎没有光谱重叠。[56]

The dichroism of these dyes, quantified by the order parameter (SF), was measured using the polarization fluorescence (FL) spectra of the achiral dyes in a liquid crystal medium.[57,58] Emissive nematic liquid crystals (NLCs) named NLC-B1, NLC-G1, NLC-R1, NLC-B2, NLC-G2, and NLC-R2 were prepared by doping 1 wt% of B1, G1, R1, B2, G2, and R2, respectively, into commercial NLC E7. After injecting the NLCs into oriented liquid crystal cells, the F and F spectra were measured, as shown in Figure 1d-1f. Due to the large size of the imidazoline quinone, the NLC-1 series exhibited very weak dichroism (Figure S3). Specifically, R1 showed a slightly positive dichroism (SFR1 = +0.05), while B1 and G1 were weakly negative dichroic dyes (SFB1 = -0.12, SFG1 = -0.21). As expected, the stronger F emission intensity of B2, G2, and R2 indicated their negative dichroic properties, with higher SF values (SFB2 = -0.19, SFG2 = -0.30, and SFR2 = -0.31).
这些染料的二向色性,由阶次参数 (SF) 量化,使用液晶介质中非手性染料的偏振荧光 (FL) 光谱进行测量。[57,58] 通过将 1 wt% 的 B1、G1、R1、B2、G2 和 R2 分别掺杂到商业 NLC E7 中,制备了名为 NLC-B1、NLC-G1、NLC-R1、NLC-B2、NLC-G2 和 NLC-R2 的发射向列液晶 (NLC)。将 NLC 注入定向液晶单元后,测量 F 和 F 光谱,如图 1d-1f 所示。由于咪唑啉醌的尺寸较大,NLC-1 系列表现出非常弱的二色性(图 S3)。具体来说,R1 显示出轻微正二向色性 (SFR1 = +0.05),而 B1 和 G1 是弱负二向色染料 (SFB1 = -0.12,SFG1 = -0.21)。正如预期的那样,B2、G2 和 R2 的较强 F⊥ 发射强度表明其负二向色特性,具有更高的 SF 值(SFB2 = -0.19、SFG2 = -0.30 和 SFR2 = -0.31)。

Figure 1. a-c) TDM vectors (red arrow) of imidazole derivatives by DFT calculations. d-f) Polarized fluorescence spectra of NLC-B2, G2 and R2 in the parallelly aligned LC cells.
图 1. a-c) 通过 DFT 计算的咪唑衍生物的 TDM 向量(红色箭头)。d-f) 平行排列的 LC 池中 NLC-B2 、 G2 和 R2 的偏振荧光光谱。

To examine the chiroptical properties of ESIPT dichroic dyes in CLCs, we constructed emissive CLC systems by doping the dyes and chiral inducer (R/S-811) into the E7 host. The optimal doping concentrations of the chiral inducer and achiral dye were determined using S-811 and G2 as examples, as depicted in Figure S4. As a result, R/S-CLC-B2, R/S-CLC-G2, and R/S-CLC-R2 were synthesized by doping the E7 host with 1.5 wt% of R/S-811 and 1 wt% of B2, G2, and R2, respectively. The chiroptical properties of these CLCs were then measured by injecting them into 15 μm thick quartz cells, as shown in Figure 2. The circular dichroism (CD) spectra revealed that these CLCs displayed distinct mirror-image patterns and strong Cotton effects ranging from 280 to 400 nm. These pronounced CD signals likely result from the efficient chiral transfer from the CLC host to the achiral dyes during the co-assembly process.[59,60] The band at 300 nm is attributed to the chiral co-assembly between the CLC and R/S-811, while the strong absorption from 350 to 400 nm aligns well with the ESIPT dye's absorption, as illustrated in Figure S1a. The inversion observed at 380 nm for the ESIPT dyes can be ascribed to their inherent negative dichroic properties. The possibility of linear dichroism or linear birefringence was eliminated by confirming that the CD spectrum remained unchanged after flipping the sample, whether observed from the front or back sides of the flat cells (Figure S5).[61] As a control, the R/S-CLC-B1, R/S-CLC-G1, and R/S-CLC-R1 were prepared by doping 1 wt% of corresponding dye into the E7 host, along with 1.5 wt% of R/S-811. The CD signals of CLCs-B1, G1, and R1 (Figure S6) exhibited the same orientation as those of the CLCs-2 series in the 300 nm range, indicating an identical helical superstructure of the CLC host. At 380 nm for CLCs of dyes series 1, the CD signals did not show any noticeable inversion due to the weak dichroism of the series 1 dyes. The observed CD signals were a combination of the CD of the CLC host and the weak CD signal from the series 1 dyes.[46] These results confirmed that the negative dichroism controlled the altered handedness of the CD spectra.
为了检查 CLC 中 ESIPT 二向色染料的手性特性,我们通过将染料和手性诱导剂 R/S-811) 掺杂到 E7 宿主中来构建发射 CLC 系统。以 S-811 和 G2 为例确定手性诱导剂和非手性染料的最佳掺杂浓度,如图 S4 所示。结果,通过分别用 1.5wt% 的 R/S-811 和 1 wt% 的 B2、G2 和 R2 掺杂 E7 宿主合成了 R/S-CLC-B2、R/S-CLC-G2 和 R/S-CLC-R2。然后通过将这些 CLC 注入 15 μm 厚的石英池中来测量它们的手性特性,如图 2 所示圆二色谱 (CD) 光谱显示,这些 CLC 表现出明显的镜像模式和 280 至 400 nm 的强烈棉花效应。这些明显的 CD 信号可能是由于共组装过程中从 CLC 宿主到非手性染料的高效手性转移造成的。[59,60] 300 nm 处的条带归因于 CLC 和 R/S-811 之间的手性共组装,而 350 至 400 nm 的强吸收与 ESIPT 染料的吸收非常一致,如图 S1a 所示。 在 380 nm 处观察到的 ESIPT 染料的反转可归因于其固有的负二向色特性。通过确认翻转样品后 CD 光谱保持不变,无论是从扁平细胞的正面还是背面观察,都消除了线性二色性或线性双折射的可能性(图 S5)。[61]作为对照,通过将 1 wt% 的相应染料1.5wt% 的 R/S-811 一起掺杂到 E7 宿主中来制备 R/S-CLC-B1、R/S-CLC-G1 和 R/S-CLC-R1。CLCs-B1 、 G1 和 R1 的 CD 信号 (图 S6) 在 300 nm 范围内表现出与 CLCs-2 系列相同的方向,表明 CLC 宿主具有相同的螺旋超结构。对于系列 1 染料的 CLC,在 380 nm 处,由于系列 1 染料的二色性较弱,CD 信号没有显示出任何明显的反转。观察到的 CD 信号是 CLC 宿主的 CD 和来自 1 系列染料的弱 CD 信号的组合。[46] 这些结果证实,负二色性控制 CD 光谱的改变。

Next, the CPL spectra of the CLCs were measured (Figure 2d-f). The R/S-CLCs-B2 exhibited strong CPL signals (glum = -0.11/0.18) at 420 nm (Figure S7), which corresponded well to the emission of B2. Similarly, the R/S-CLCs-G2 and R2 showed strong CPL signals at 530 nm (glum = -0.39/0.51) and 620 nm (glum = -0.42/0.41), respectively, matching the emission of G2 and R2 well (Figure S8). The fluorescence intensities of the CLCs showed clear distinctions under left- and right-handed circular polarization filters (L/R-CPFs) to the naked eye, confirming the large glum values of the CLCs (Figure 2g).[62] The CPL spectra of the CLCs of dyes series 1 were much weaker (glum = 0.02/-0.02 at 480 nm for B1, -0.08/0.09 at 530 nm for G1, and 0.016/-0.019 at 620 nm for R1) than those of the series 2 CLCs (Figure S9 and S10). The unexpected CPL signal inversion of CLCs-B1 may be due to the overlap of the opposite emission dichroism of the CLC-E7 (prepared by doping 1.5 wt% R/S-811 into E7, glum = 0.48/-0.37 at 400 nm, Figure S10 and S11) and B1. The FL spectra of the series 1 CLCs matched well with those of the series 2 CLCs due to the same ESIPT skeleton (Figure S8).
接下来,测量 CLC 的 CPL 光谱(图 2d-f)。R/S-CLCs-B2 在 420 nm 处表现出较强的 CPL 信号 (glum = -0.11/0.18) (图 S7),这与 B2 的发射非常吻合。同样,R/S-CLCs-G2 和 R2 分别在 530 nm (glum = -0.39/0.51) 和 620 nm (glum = -0.42/0.41) 处显示出强 CPL 信号,与 G2 和 R2 的发射相匹配(图 S8)。在左手和右手圆偏振滤光片 (L/R-CPF) 下,CLC 的荧光强度在肉眼下显示出明显的区别,证实了 CLC 的大阴沉值(图 2g)。[62]染料系列 1 的 CLC 的 CPL 光谱比系列 2 CLC 的 CPL 光谱弱得多(B1 在 480 nm 处的钝口 = 0.02/-0.02,G1 在 530 nm 处为 -0.08/0.09,R1 在 620 nm 处为 0.016/-0.019)(图 S9 和 S10)。CLC-B1 的意外 CPL 信号倒置可能是由于 CLC-E7(通过将 1.5 wt% R/S-811 掺杂到 E7 中制备,在 400 nm 处 glum = 0.48/-0.37,图 S10 和 S11)和 B1 的相反发射二色性重叠。由于相同的 ESIPT 骨架,系列 1 CLC 的 FL 光谱与系列 2 CLC 的 FL 光谱匹配良好(图 S8)。

To demonstrate the concept of independent CPL signals in CLCs, positive dichroic full-color dyes were chosen as follows. B3 was synthesized as the literature,[63] and G3 and R3 were selected from our previous work.[46] The positive dichroism of G3 and R3 was previously confirmed, and the positive dichroism of B3 was verified by polarized FL spectra (Figure S13, SF = 0.14). The UV-vis and FL spectra of series 3 (B3, G3, and R3) are shown in Figure S14, indicating the same three primary RGB colors. When the series 3 dyes were doped with 1.5 wt% R/S-811 into the E7 host, the resulting R/S-CLCs-B3, G3, and R3 also exhibited the three primary RGB colors (Figure S15). The CD and CPL spectra of R/S-CLCs-B3, G3, and R3 were recorded (Figure S16 and S18). The CLCs displayed good mirror-image and strong Cotton effects from 280 to 600 nm. The band at 300 nm showed the same handedness as the previously mentioned CLCs, attributed to the chiral co-assembly between the CLC and R/S-811. The same handedness at 300 nm indicated the same helical superstructure of all the CLCs. The strong CD signals from 400 to 600 nm are likely due to the effective chiral transfer from the CLC host to the series 3 achiral dyes during the co-assembly process. The same handedness and no inversion were observed, differing from the CLCs-2 series, thus confirming the positive nature of the series 3 dyes. We also ruled out the possibility of linear dichroism or birefringence by verifying that the CD spectrum showed no variation after flipping the sample, regardless of whether it was viewed from the front or back of the flat cells (Figure S17). The glum values of the CLCs were 0.48/-0.55 at 445 nm for B3, 0.41/-0.43 at 550 nm for G3, and 0.50/-0.48 at 650 nm for R3 (Figure S19).
为了证明 CLC 中独立 CPL 信号的概念,选择正二向色全色染料如下。B3 作为文献被合成,[63] G3 和 R3 是从我们以前的工作中选出的。[46] G3 和 R3 的正二色性先前已得到证实,B3 的正二色性通过极化 FL 光谱验证(图 S1 3,SF = 0.14)。系列 3(B3、G3 和 R3)的紫外-可见分光光度计和 FL 光谱如图 S14 所示,表示相同的三种原色 RGB 颜色。当系列 3 染料用 1.5 wt% 的 R/S-811 掺杂到 E7 宿主中时,得到的 R/S-CLCs-B3、G3 和 R3 也表现出三种原色 RGB(图 S15)。记录 R/S-CLCs-B3 、 G3 和 R3 的 CD 和 CPL 谱 (图 S16 和 S18)。CLC 在 280 至 600 nm 范围内表现出良好的镜像和强烈的 Cotton 效应。300 nm 处的条带显示出 与前面提到的 CLC 相同的旋性,这归因于 CLC 和 R/S-811 之间的手性共组装。在 300 nm 处的相同旋向表明所有 CLC 具有相同的螺旋超结构。400 至 600 nm 的强 CD 信号可能是由于在共组装过程中从 CLC 宿主到系列 3 非手性染料的有效手性转移。观察到相同的旋向和无倒置,与 CLCs-2 系列不同,从而证实了系列 3 染料的积极性质。 我们还 通过验证翻转样品后 CD 光谱没有显示变化,无论它是从平面细胞的正面还是背面观察,都排除了线性二色性或双折射的可能性(图 S17)。B3 在 445 nm 处 CLCs 的 g lum 值为 0.48/-0.55,G3 在 550 nm 处为 0.41/-0.43,R3 在 650 nm 处为 0.50/-0.48(图 S19)。

Figure 2. CD spectra of a) R/S-CLC-B2, b) R/S-CLC-G2 and c) R/S-CLC-R2. CPL spectra of d) R/S-CLC-B2, e) R/S-CLC-G2 and f) R/S-CLC-R2. g) Images of R-CLC-B2, R-CLC-G2 and R-CLC-R2 under R-CPF and L-CPF with 365 nm UV light.
2. a) 的 CD 谱R/S-CLC-B2,b) R/S-CLC-G2 和 c) R/S-CLC-R2。d) R/S-CLC-B2, e) R/S-CLC-G2 和 f) R/S-CLC-R2 的 CPL 谱图。g) R-CLC-B2、R-CLC-G2 和 R-CLC-R2 365 nm 紫外光R-CPF 和 L-CPF 的图像。

Additionally, either negative dichroic dyes B2 and R2 or positive dichroic dyes B3 and G3 were selectively incorporated into a single CLC according to the requirements. By simultaneously incorporating B2 and R2 into the CLC, R/S-CLC-M was prepared. When the series 2 dyes were replaced with the corresponding series 3 dyes, R/S-CLC-M1 (mixture of B3, G2 and R2), R/S-CLC-M2 (mixture of B2, G3 and R2), and R/S-CLC-M3 (mixture of B2, G2 and R3) were prepared. The doping ratios were optimized to ensure that each CPL spectral band was not overlapped by others. Detailed doping ratios (Table S1) and preparation procedures are provided in the Supporting Information.
此外,根据要求,将阴性二向色染料 B2 和 R2 或阳性二向色染料 B3 和 G3 选择性掺入单个 CLC 中。通过将 B2 和 R2 同时掺入 CLC 中,制备了 R/S-CLC-M。当系列2染料被相应的系列3染料取代时,制备了R/S-CLC-M1(B3、G2和R2的混合物)、R/S-CLC-M2(B2、G3和R2的混合物)和R/S-CLC-M3(B2、G2和R3的混合物)。掺杂比经过优化,以确保每个 CPL 光谱波段不会与其他波段重叠。详细的掺杂比(表 S1)和制备程序在 S支持 I信息中提供

The CD spectra of these mixture R/S-CLCs at 300 nm showed almost no difference compared to the single-component CLCs, due to their identical chiral structures. The CD bands between 380-400 nm resembled the spectra of CLCs-B2, G2, and R2. The wide Cotton effect at longer wavelengths (e.g., R/S-CLC-M3) was identical to that of R/S-CLC-R3, indicating effective chiral transfer in the mixed system (Figures 3a-3d). Subsequently, the CPL spectra of R/S-CLC-M, R/S-CLC-M1, R/S-CLC-M2, and R/S-CLC-M3 were measured (Figures 3e-3h). R/S-CLC-M emitted CPL wtih the same polarization at multiple wavelengths (glum = -0.09/+0.14 at 420 nm, -0.29/+0.34 at 530 nm, and -0.34/+0.41 at 620 nm), corresponding well with the CPL spectra in Figure 2. Conversely, when B3 was combined with G2 and R2 as dopants in the CLC, R/S-CLC-M1 emitted green and red CPL with the same polarization (glum = -0.10/+0.09 at 530 nm, -0.32/+0.30 at 620 nm), while blue CPL was emitted with the opposite polarization (glum = +0.34/-0.29 at 420 nm) (Figure S20). Similarly, in R/S-CLC-M2 (a combination of G3, B2, and R2), blue and red CPL were emitted with the same polarization (glum = -0.14/+0.10 at 420 nm, -0.04/+0.03 at 620 nm), whereas green CPL was emitted with the opposite polarization (glum = +0.20/-0.18 at 530 nm). Additionally, in R/S-CLC-M3 (a combination of R3, B2, and G2), blue and green CPL were emitted with the same polarization (glum = -0.17/+0.19 at 420 nm, -0.42/+0.48 at 530 nm), while red CPL was emitted with the opposite polarization (glum = +0.35/-0.36 at 650 nm). Under naked-eye observation, the fluorescence wavelengths of CLCs under R-CPF and L-CPF conditions showed significant differences, confirming the differences in CPL polarization across various wavelength bands (Figure 3i). This series of CLCs with mixed dopants demonstrated independent control over CPL polarization and wavelength bands. The polarization of CPL emission can be regulated by the dichroism of achiral dyes independently within one CLC host. This dichroism-based CPL regulation strategy provides an effective method for independently controlling the polarization of different wavelength CPLs within a single CLC matrix and could be applied for polarization and wavelength multiplexing.
由于这些混合物手性结构相同,因此这些混合物 R/S-CLCs 在 300 nm 处的 CD 光谱与单组分 CLC 相比几乎没有差异。380-400 nm 之间的 CD 条带类似于 CLCs-B2、G2 和 R2 的光谱。较长波长(例如 R/S-CLC-M3)的宽棉花效应与 R/S-CLC-R3 的宽棉花效应相同,表明混合系统中的有效手性转移(图 3a-3 d)。随后,测量了 R/S-CLC-M 、 R/S-CLC-M1 、 R/S-CLC-M2 和 R/S-CLC-M3 的 CPL 谱 (图 3e-3 h)。R/S-CLC-M 在多个波长下发射具有相同偏振的 CPL(glum = -0.09/+0.14 在 420 nm,在 530 nm 处为 -0.29/+0.34,在 620 nm 处为 -0.34/+0.41),与图 2 中的 CPL 光谱非常对应。相反,当 B3 与 G2 和 R2 作为 CLC 中的掺杂剂结合时,R/S-CLC-M1 发射具有相同偏振的绿色和红色 CPL(530 nm 处 g lum = -0.10/+0.09,620 nm 处为 -0.32/+0.30),而蓝色 CPL 以 相反的偏振发射(420 nm 处 g lum = +0.34/-0.29)(图 S20)。 同样,在 R/S-CLC-M2(G3、B2 和 R2 的组合)中,蓝色和红色 CPL 相同的偏振发射(glum = -0.14/+0.10,620 nm 时为 -0.04/+0.03),而绿色 CPL 以 相反的偏振发射 (glum= +0.20/-0.18 在 530 nm 处)。此外,在 R/S-CLC-M3(R3、B2 和 G2 的组合)中,蓝色和绿色 CPL 相同的偏振发射(glum = -0.17/+0.19 在 420 nm,-0.42/+0.48 在 530 nm 处),而红色 CPL 以 相反的偏振发射 (glum= +0.35/-0.36 在 650 nm 处)。在肉眼观察下,R-CPF 和 L-CPF 条件下 CLC 的荧光波长显示出显着差异,证实了不同波段 CPL 偏振的差异(图 3i)。 该系列混合掺杂剂的 CLC 表现出对 CPL 偏振和波段的独立控制。 CPL 发射极化可以通过一个 CLC 宿主内独立地由非手性染料的二色性调节。这种基于二色性的 CPL 调节策略提供了一种有效的方法,可以独立控制单个 CLC 矩阵中不同波长 CPL 的偏振,并可应用于偏振和波长多路复用

Figure 3. CD spectra of a) R/S-CLC-M, b) R/S-CLC-M1, c) R/S-CLC-M2 and d) R/S-CLC-M3. CPL spectra of a) R/S-CLC-M, b) R/S-CLC-M1, c) R/S-CLC-M2 and d) R/S-CLC-M3. i) Images of R-CLC-M, R-CLC-M1, R-CLC-M2 and R-CLC-M3 under R-CPF and L-CPF with 365 nm UV light.
3.a) R/S-CLC-M,b) R/S-CLC-M1,c) R/S-CLC-M2 和 d ) R/S-CLC-M3 的 CD 光谱。a) R/S-CLC-M,b) R/S-CLC-M1,c) R/S-CLC-M2 和d) R/S-CLC-M3 的 CPL 谱图。i 365 nm 紫外光R-CPF 和 L-CPFR-CLC-M、R-CLC-M1、R-CLC-M2 和 R-CLC-M3 的图像

To investigate the superstructure in detail, the POM images of the CLCs were examined. Fingerprint textures were observed in all CLCs (Figure 4a-4c, Figures S21 and S24), indicating the formation of a highly ordered helical superstructure through the co-assembly process.[64] By comparing with natural CLCs such as left-handed cholesteryl oleyl carbonate,[65] the helix direction was confirmed to be consistent. As shown in Figures 4d-4i, S22, S23, and S25, the schlieren texture in the contact zones of all R-CLCs and cholesteryl oleyl carbonate demonstrated a right-handed structure. Similarly, all S-CLCs exhibited a left-handed helix with a continuous pattern. These results indicated that the superstructure of the CLCs was determined by the configuration of the chiral inducer and was not influenced by the achiral dyes. This finding confirmed that the CPL handedness of CLCs could be controlled by the dichroism of achiral dyes despite having the same helical structure.
为了详细研究超结构,检查了 CLCs 的 POM 图像。在所有 CLC 中观察到指纹纹理(图 4a-4c、图 S21 和 S24),表明通过共组装过程形成了高度有序的螺旋上部结构。[64] 通过与左旋胆固醇油酯碳酸酯等天然 CLC 进行比较,[65] 证实螺旋方向是一致的。如图 4d-4i、S22S23 和 S25 所示,所有 R-CLCs 和胆固醇油酰碳酸酯接触区的纹影纹理均表现出右旋结构。同样,所有 S-CLCs 都表现出具有连续模式的左旋螺旋。这些结果表明,CLCs 的超结构是由手性诱导剂的构型决定的,不受非手性染料的影响。这一发现证实,尽管具有相同的螺旋结构,但 CLCs 的 CPL 旋性可以受到非手性染料二向色性的控制。

Figure 4. POM images of a) R-CLC-B2, b) R-CLC-G2, c) R-CLC-R2. Miscibility test of d) R-CLC-B2, e) R-CLC-G2, f) R-CLC-R2, g) S-CLC-B2, h) S-CLC-G2 and i) S-CLC-R2 with a cholesteryl oleyl carbonate
4.a) R-CLC-B2,b) R-CLC-G2,c) R-CLC-R2 的 POM 图像。d) R-CLC-B2,e) R-CLC-G2,f) R-CLC-R2,g) S-CLC-B2,h) S-CLC-G2 和 i) S-CLC-R2 与胆固醇油基碳酸酯的混溶性试验

By utilizing multiple CPL CLCs with independent polarizations, we propose a multiplexing device for information encryption,[66,67] as illustrated in Figure 5a. These R/S-CLCs-M series were employed as inks. Initially, various pieces of information were encoded using binary representations of standard 8-bit ASCII characters. Subsequently, the three CLC inks were injected into an 8 × 3 pixel array following a predefined pattern. When exposed to UV light, the message O^_ became visible in FL mode. We classified cells with L-CPL emission as outputting the number 1 and other cells as outputting the number 0. When analyzed with blue light at 420 nm, the information NJU could be successfully retrieved. When the array was scanned with green light at 550 nm, the message CPL was revealed. Similarly, scanning with red light disclosed the information CLC. By following the predetermined decryption rules, such as selecting the first letter from the blue channel, the second from the green channel, and the third from the red channel, the actual message NPC can be retrieved. This model can store significantly more encryption information than traditional FL and CPL encryption devices due to its CPL multiplexing capability, as different data can be accessed through distinct channels. And more complex encryption mode could be easily designed through recombination of the information.
通过利用具有独立极化多个 CPL CLC,我们提出了一种用于信息加密的多路复用设备[66,67] 如图 5a 所示。这些 R/S-CLCs-M 系列被用作油墨。最初,各种信息是使用标准 8 位 ASCII 字符的二进制表示进行编码的。随后,将三种 CLC 油墨按照预定义的图案注入 8 × 3 像素阵列中。当暴露在紫外线下时,消息O^_在 FL 模式下变得可见。我们将具有 L-CPL 发射的细胞分类为输出数字 1,其他细胞分类为输出数字 0”。当用 420 nm 的蓝光分析时,可以成功检索到信息“NJU”。当用 550 nm 绿光扫描阵列时,显示信息“CPL”。同样,用红灯扫描会显示 CLC 信息按照预先确定的解密规则,例如从蓝色通道中选择第一个字母,从绿色通道中选择第二个字母,从红色通道中选择第三个字母, 可以检索到实际的消息NPC”。由于其 CPL 多路复用功能,该模型可以存储传统 FL 和 CPL 加密设备更多的加密信息,因为可以通过不同的渠道访问不同的数据。 并且可以很容易地设计更复杂的加密模式重新组合信息。

Additionally, another LC array[68] was designed to demonstrate the potential of CPL multiplexing in image anti-counterfeiting (Figure 5b). In this setup, the LC array could display 123 patterns in the L-CPL window, while 488 patterns could be only identified in the R-CPL window. Both the L-CPL and R-CPL windows contained RGB elements, allowing two distinct dual-color images to be extracted from a single matrix without any cross-talk. Moreover, with the introduction of a polarizer, the picture color could change significantly with the rotation of the optical axis. The FL image, along with the multi-color polarization multiplexing encryption, enables the double encryption of colorful images. Importantly, this was achieved using a limited number of pixels, showcasing the potential for image anti-counterfeiting.
此外,还设计了另一种 LC 阵列[68]来证明 CPL 多路复用在图像中的潜力(图 5b)。在此设置中,LC 阵列可以在 L-CPL 窗口中显示“123模式,而488模式只能在 R-CPL 窗口中识别。L-CPL 和 R-CPL 窗口都包含 RGB 元素,允许从单个矩阵中提取两个不同的双色图像,而不会产生任何串扰。此外,随着偏振器的引入,图像颜色随着光轴的旋转而发生显着变化 FL 图像与多色偏振多路复用加密一起,可实现彩色图像的双重加密。 重要的是,这是使用有限数量的像素实现的,展示了图像防伪的潜力

Figure 5. a) The schematic diagram of the multiplexing device for information storage, b) The schematic diagram of dual-channel full-color CPL display.
5.a) 用于信息存储的多路复用器件的示意图,b) 双通道全彩 CPL 显示示意图

In summary, multiple CPL with independent polarizations in a single CLC can be achieved by co-assembling achiral dyes with different dichroism in CLCs. Traditionally, dyes exhibit positive dichroism, meaning that CLCs doped with different positive dyes can only emit multiple CPL with the same polarization. The intensities of these CPL signals are determined by the dichroism of the dyes. However, by altering the dichroism of the dyes, CLCs can simultaneously emit multiple CPL with opposite polarizations. By controlling the dichroism, any CPL band of the emissive CLC can be made negative, positive, or zero. This polarization degree represents a dimension of the multiplexing technology. Further enhancements, such as precisely controlling the dichroism, reducing the full width at half maximum (FWHM) and incorporating more dyes with different colors, are expected to increase the information capacity of the CPL multiplexing encryption device. The fabricated CPL multiplexing material is anticipated to foster new approaches for next-generation encryption and anti-counterfeiting devices.
综上所述, 通过在 CLC 中共组装具有不同二向色性的非手性染料,可以在单个 CLC 中实现具有独立极化的多个 CPL。传统上,染料表现出正二色性,这意味着掺杂不同正染料的 CLC 只能发射具有相同 极化 的多个 CPL.这些 CPL 信号的强度由染料的二向色性决定。然而,通过改变染料的二向色性,CLC 可以同时发射具有相反极化多个 CPL。通过控制二向色性,自发光 CLC 的任何 CPL 频段都可以变为负、正或零。该极化度代表了多路复用技术的一个维度。进一步的增强,例如精确控制二向色性、降低半峰全宽 (FWHM) 和加入更多不同颜色的染料,有望增加 CPL 多路复用加密设备的信息容量。制造的 CPL 多路复用材料有望为下一代加密防伪设备提供新方法。

[1]Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P., Chiral quantum optics. Nature 2017, 541 (7638), 473-480.
[1] 洛达尔,P.;马哈穆迪安,S.;斯托布,S.;Rauschenbeutel, A.;施尼维斯,P.;沃尔兹,J.;皮希勒,H.;Zoller, P.,手性量子光学。自然 2017,541 (7638),473-480。

[2]Bliokh, K. Y.; Rodríguez-Fortuño, F. J.; Nori, F.; Zayats, A. V., Spinorbit interactions of light. Nat. Photonics 2015, 9 (12), 796-808.
[2] 布利奥赫,KY;罗德里格斯-福图尼奥,FJ;诺里,F.;Zayats, AV,光的自旋-轨道相互作用。 自然光子学 2015,9 (12), 796-808。

[3]Kim, Y.-H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M.; Beard, M. C., Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371 (6534), 1129.
[3] Kim, Y.-H.;翟 Y.;卢,H.;潘,X.;肖 C.;高尔丁,EA;哈维,SP;贝里,JJ;瓦尔德尼,Z. V.;路德,JM;Beard, M. C.,手性诱导的自旋选择性使室温自旋发光二极管成为可能。科学 2021,371 (6534),1129。

[4]Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G.; Chang, W. S.; Chang, S. J.; Chuvilin, A.; Melnikau, D.; Rogach, A. L.; Zhang, P.; Link, S.; Kral, P.; Kotov, N. A., Chiral templating of self-assembling nanostructures by circularly polarized light. Nat Mater 2015, 14 (1), 66-72.
[4] Yeom, J.;廉姆,B.;陈,H.;史密斯,KW;多明格斯-梅迪纳,S.;Bahng, JH;赵 G.;张,WS;张,SJ;丘维林,A.;梅尔尼考,D.;罗加奇,AL;张 P.;林克,S.;克拉尔,P.;Kotov, NA,圆偏振光对自组装纳米结构的手性模板。国家材料 2015,14 (1), 66-72.

[5]Wan, W.; Gao, J.; Yang, X., Full-Color Plasmonic Metasurface Holograms. ACS Nano 2016, 10 (12), 10671-10680.
[5] 万,W.;高 J.;Yang, X.,全彩等离子体超表面全息图。ACS 纳米 2016,10 (12), 10671-10680.

[6]Gou, Y.; Ma, H. F.; Wu, L. W.; Sun, S.; Wang, Z. X.; Cui, T. J., Non-Interleaved Polarization-Frequency Multiplexing Metasurface for Multichannel Holography. Adv. Opt. Mater. 2022, 10 (22), 2201142.
[6] 苟英;马,H.F.;吴,LW;Sun, S.;王 Z. X.;Cui, TJ , 用于多通道全息术的非交错偏振频率多路复用超表面。Adv. Opt. Mater. 2022,10 (22), 2201142.

[7]Jia, W.; Lin, D.; Menon, R.; Sensale-Rodriguez, B., Multifocal multilevel diffractive lens by wavelength multiplexing. Appl. Opt. 2023, 62 (26), 6931-6938.
[7] 贾伟;林 D.;梅农,R.;Sensale-Rodriguez, B.,通过波长多路复用的多焦点多能级衍射透镜Appl. Opt. 2023,62 (26), 6931-6938.

[8]Zhang, Y.; Zhang, X.; Shan, M.; Zhong, Z.; Liu, B.; Yu, L.; Liu, L., Asymmetric double-image encryption via wavelength multiplexing. Appl. Opt. 2022, 61 (5), 1248-1253.
[8] 张彦彦;张 X.;单,M.;钟,Z.;刘 B.;余 L.;Liu, L.,通过波长多路复用进行非对称双图像加密。Appl. Opt. 2022,61 (5), 1248-1253.

[9]Zhang, R.; Guo, Y.; Zhang, F.; Pu, M.; Fan, Y.; Zhang, Q.; Li, X.; Xu, M.; Xu, J.; Luo, X., Dual-Layer Metasurface Enhanced Capacity of Polarization Multiplexing. Laser Photonics Rev. n/a (n/a), 2400126.
[9] 张 R.;郭 Y.;张 F.;蒲 M.;范 Y.;张 Q.;李 X.;徐 M.;徐 J.;Luo, X.,双层超表面增强的偏振多路复用能力。激光光子学修订版 n/a (n/a), 2400126.

[10]Liu, T.; Li, W.; Meng, Y.; Tang, W.; Ma, H.; Li, X.; Zhu, R.; Liu, C.; Zhang, H.; Wang, J.; Qu, S., High-fidelity multiplexing meta-hologram for information display, storage and encryption. Mater. Des. 2022, 224, 111353.
[10] 刘 T.;李伟;孟 Y.;唐 W.;马,H.;李 X.;朱 R.;刘 C.;张 H.;王 J.;Qu, S.,用于信息显示、存储和加密的高保真多路复用元全息图。Mater. Des. 2022,224,111353

[11]Deng, L.; Deng, J.; Guan, Z.; Tao, J.; Chen, Y.; Yang, Y.; Zhang, D.; Tang, J.; Li, Z.; Li, Z.; Yu, S.; Zheng, G.; Xu, H.; Qiu, C.-W.; Zhang, S., Malus-metasurface-assisted polarization multiplexing. Light Sci. Appl. 2020, 9 (1), 101.
[11] 邓;邓,J.;关 Z.;陶 J.;陈 Y.;杨 Y.;张 D.;唐 J.;李 Z.;李 Z.;俞 S.;郑 G.;徐 H.;邱,C.-W.;Zhang, S.,Malus 超表面辅助极化多路复用。轻科学应用 2020,9 (1), 101.

[12]Stylogiannis, A.; Prade, L.; Glasl, S.; Mustafa, Q.; Zakian, C.; Ntziachristos, V., Frequency wavelength multiplexed optoacoustic tomography. Nat. Commun. 2022, 13 (1), 4448.
[12] Stylogiannis, A.;普拉德,L.;格拉塞尔,S.;穆斯塔法,Q.;扎基安,C.;Ntziachristos, V.,频率波长多路复用光声断层扫描。Nat. Commun. 2022,13 (1), 4448.

[13]Liu, L.; Wang, H.; Han, Y.; Lu, X.; Lv, H.; Teng, S., Color polarization multiplexing metalens based on cross nanoholes. Opt. Commun. 2019, 442, 27-30.
[13] 刘 L.;王 H.;韩 Y.;卢 X.;吕,H.;Teng, S.,基于交叉纳米空穴的彩色偏振多路复用超透镜。选项 Commun。 2019,442,27-30

[14]Fan, Z.; Jia, Y.; Chen, H.; Qian, C., Spatial multiplexing encryption with cascaded metasurfaces. J. Opt. 2023, 25 (12), 125105.
[14] 范 Z.;贾 Y.;陈 H.;Qian, C.,使用级联超表面的空间多路复用加密。J. 选项 2023,25 (12), 125105.

[15]Lv, J.; Han, J. H.; Han, G.; An, S.; Kim, S. J.; Kim, R. M.; Ryu, J. E.; Oh, R.; Choi, H.; Ha, I. H.; Lee, Y. H.; Kim, M.; Park, G.-S.; Jang, H. W.; Doh, J.; Choi, J.; Nam, K. T., Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption. Nat. Commun. 2024, 15 (1), 8257.
[15] 吕俊杰;韩,JH;韩,G.;安,S.;金,SJ;金,RM;柳,JE;哦,R.;崔,H.;哈,IH;李,YH;金,M.;帕克,GS;张,HW;Doh, J.;崔,J.;Nam, K. T.,用于多路复用光学加密的时空调制全偏振光发射。Nat. Commun. 2024,15(1),8257。

[16]Zhao, K.; Li, Z.; Zhong, Y.; Dai, Q., Photothermal metasurface with polarization and wavelength multiplexing. Opt. Express 2024, 32 (3), 3551-3560.
[16] 赵 K.;李 Z.;钟 Y.;Dai, Q.,具有偏振和波长多路复用的光热超表面。Opt. Express 2024,32 (3), 3551-3560。

[17]Guo, W.; Tan, P.; Wang, J.; Li, L.; Li, S.; Wang, G.; Zhou, Z.; Tian, H., Multifunctional transmission polarization conversion metasurface based on dislocation-induced anisotropy at the terahertz frequency. Opt. Express 2023, 31 (2), 2029-2038.
[17] 郭文伟;谭,P.;王 J.;李,L.;李 S.;王 G.;周,Z.;Tian, H.,基于太赫兹频率位错诱导各向异性的多功能传输极化转换超表面。Opt. Express 2023,31 (2), 2029-2038.

[18]Yang, H.; He, P.; Ou, K.; Hu, Y.; Jiang, Y.; Ou, X.; Jia, H.; Xie, Z.; Yuan, X.; Duan, H., Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci. Appl. 2023, 12 (1), 79.
[18] 杨 H.;他,P.;欧,K.;胡 Y.;江 Y.;欧 X.;贾,H.;谢 Z.;袁 X.;Duan, H.,通过极简超表面进行光学嵌套加密的角动量全息术。轻科学应用 2023,12 (1), 79.

[19]Zahra, S.; Ma, L.; Wang, W.; Li, J.; Chen, D.; Liu, Y.; Zhou, Y.; Li, N.; Huang, Y.; Wen, G., Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review. Front. Phys. 2021, 8
[19] 扎赫拉,S.;马,L.;王 W.;李 J.;陈 D.;刘 Y.;周, Y.;李 N.;黄 Y.;温,G.,电磁超表面和可重构超表面:综述。前面。物理学 2021, 8
.

[20]Vaskin, A.; Kolkowski, R.; Koenderink, A. F.; Staude, I., Light-emitting metasurfaces. Nanophotonics 2019, 8 (7), 1151-1198.
[20] 瓦斯金,A.;科尔科夫斯基,R.;科恩德林克,AF;Staude, I.,发光超表面。纳米光子学 2019,8 (7), 1151-1198.

[21]Wang, L.; Shadrivov, I., Electro-optic metasurfaces. Opt. Express 2022, 30 (20), 35361-35368.
[21] 王 L.;Shadrivov, I.,电光超表面。Opt. Express 2022,30 (20), 35361-35368.

[22]Furlan, F.; Moreno-Naranjo, J. M.; Gasparini, N.; Feldmann, S.; Wade, J.; Fuchter, M. J., Chiral materials and mechanisms for circularly polarized light-emitting diodes. Nat. Photonics 2024, 18 (7), 658-668.
[22] 弗兰,F.;莫雷诺-纳兰霍,JM;加斯帕里尼,N.;费尔德曼,S.;韦德,J.;Fuchter, MJ,圆偏振发光二极管的手性材料和机制。Nat. Photonics 2024,18 (7), 658-668。

[23]Yang, X.; Gao, X.; Zheng, Y.-X.; Kuang, H.; Chen, C.-F.; Liu, M.; Duan, P.; Tang, Z., Recent Progress of Circularly Polarized Luminescence Materials from Chinese Perspectives. CCS Chem. 2023, 5 (12), 2760-2789.
[23] 杨 X.;高 X.;郑 Y.-X.;匡 H.;陈,C.-F.;刘 M.;段 P.;Tang, Z.,中国视角下圆偏振发光材料的最新进展.CCS 化学。 2023,5 (12), 2760-2789.

[24]Liu, J.; Song, Z.-P.; Sun, L.-Y.; Li, B.-X.; Lu, Y.-Q.; Li, Q., Circularly polarized luminescence in chiral orientationally ordered soft matter systems. Responsive Materials 2023, 1 (1), e20230005.
[24] 刘 J.;宋,Z.-P.;Sun, L.-Y.;李,B.-X.;卢,Y.-Q.;Li, Q.,手性取向有序软物质系统中的圆偏振发光。响应材料 2023,1(1), e20230005。

[25]Zhang, X.; Xu, Y.; Valenzuela, C.; Zhang, X.; Wang, L.; Feng, W.; Li, Q., Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. Light Sci. Appl. 2022, 11 (1), 223.
[25] 张晓明;徐 Y.;瓦伦苏埃拉,C.;张 X.;王 L.;冯 W.;Li, Q.,液晶模板手性纳米材料:从手性等离子体到圆偏振发光。轻科学应用 2022,11 (1), 223.

[26]Zhou, Y.; Wang, Y.; Song, Y.; Zhao, S.; Zhang, M.; Li, G.; Guo, Q.; Tong, Z.; Li, Z.; Jin, S.; Yao, H.-B.; Zhu, M.; Zhuang, T., Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence. Nat. Commun. 2024, 15 (1), 251.
[26] 周 Y.;王 Y.;宋 Y.;赵 S.;张 M.;李 G.;郭 Q.;佟,Z.;李 Z.;金,S.;姚, H.-B.;朱 M.;Zhuang, T.,螺旋笼可实现单发射的大型非对称全色圆偏振发光。Nat. Commun. 2024,15 (1), 251.

[27]Liu, Y.; Gao, X.; Zhao, B.; Deng, J., Circularly polarized luminescence in quantum dot-based materials. Nanoscale 2024, 16 (14), 6853-6875.
[27] 刘英;高 X.;赵 B.;邓,J.,基于量子点的材料中的圆偏振发光。纳米级 2024,16 (14), 6853-6875。

[28]Lu, X.; Zhang, K.; Niu, X.; Ren, D.-D.; Zhou, Z.; Dang, L.-L.; Fu, H.-R.; Tan, C.; Ma, L.; Zang, S.-Q., Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem. Soc. Rev. 2024, 53 (13), 6694-6734.
[28] 卢旭;张 K.;牛 X.;任,D.-D.;周,Z.;邓,LL;Fu, H.-R.;谭,C.;马,L.;Zang, S.-Q.,用于延迟发光和圆偏振发光的多孔晶体框架的封装工程。化学社会修订版 2024,53 (13), 6694-6734。

[29]Song, S.; Shi, Y.; Zhu, L.; Yue, B., Regulation and application of supramolecular gel with circularly polarized luminescence. Sci. China Chem. 2024, 67 (6), 1865-1880.
[29] 宋,S.;石 Y.;朱 L.;Yue, B.,圆偏振发光超分子凝胶的调节和应用。中国化学 2024,67 (6), 1865-1880.

[30]Zhong, H.; Gao, X.; Zhao, B.; Deng, J., “Matching Rule” for Generation, Modulation and Amplification of Circularly Polarized Luminescence. Acc. Chem. Res. 2024, 57 (8), 1188-1201.
[30] 钟 H.;高 X.;赵 B.;邓,J.,圆偏振发光的产生、调制和放大的“匹配规则”。Acc. Chem. Res. 2024,57 (8), 1188-1201。

[31]Zhang, Y.; Yu, W.; Li, H.; Zheng, W.; Cheng, Y., Induced CPL-Active Materials Based on Chiral Supramolecular Co-Assemblies. Chem. Eur. J. 2023, 29 (22), e202204039.
[31] 张倩;俞 W.;李 H.;郑 W.;Cheng, Y.,基于手性超分子共组装的诱导 CPL 活性材料。Chem. Eur. J. 2023,29 (22), e202204039.

[32]Bisoyi, H. K.; Li, Q., Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chem. Rev. 2022, 122 (5), 4887-4926.
[32] Bisoyi, H. K.;Li, Q.,液晶:多功能自组织智能软材料。化学修订版 2022,122 (5), 4887-4926。

[33]He, Y.; Lin, S.; Guo, J.; Li, Q., Circularly polarized luminescent self-organized helical superstructures: From materials and stimulus-responsiveness to applications. Aggregate 2021, 2 (6), e141.
[33] 他,Y.;林 S.;郭 J.;Li, Q., 圆极化发光自组织螺旋超结构:从材料和刺激响应性到应用。聚合 2021,2 (6), e141。

[34]Luo, J.; Li, Y.; Li, H.; Li, Q.; Cheng, Y., Ultrastrong Circularly Polarized Luminescence Triggered by the Synergistic Effect of Chiral Coassembly and Selective Reflective Cholesteric Liquid Crystal Film. ACS Mater. Lett. 2024, 6 (7), 2957-2963.
[34] 罗 J.;李英;李 H.;李 Q.;Cheng, Y.,由手性共组装和选择性反射胆固醇液晶膜的协同效应触发的超强圆偏振发光。ACS Mater. Lett. 2024,6 (7), 2957-2963。

[35]Li, Y.; Chen, Y.; Luo, J.; Li, Q.; Quan, Y.; Cheng, Y., Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chin. Chem. Lett. 2024, 109864.
[35] 李彦彦;陈 Y.;罗 J.;李 Q.;全 Y.;Cheng, Y.,胆固醇液晶中 F8BT 的非手性二向色低聚物促进的增强圆偏振发光发射。Chin. Chem. Lett. 2024 年,109864。

[36]Li, Q. H.; Zou, G.; Li, D.; Liu, C.; Gao, W. T.; Li, Y.; Cheng, Y. X., Strong Circularly Polarized Phosphorescence of Achiral Pt(II) Metallomesogen Induced by Using a Chiral Co-Assembly Strategy. Adv. Opt. Mater. 2024, n/a (n/a), 2303185.
[36] 李Q. H.;邹, G.;李 D.;刘 C.;高,WT;李英;Cheng, Y. X.,使用手性共组装策略诱导的手性 Pt(II) 金属原的强圆极化磷光。Adv. Opt. Mater. 2024,n/a (n/a), 2303185.

[37]Lin, S.; Tang, Y.; Kang, W.; Bisoyi, H. K.; Guo, J.; Li, Q., Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption. Nat. Commun. 2023, 14 (1), 3005.
[37] 林 S.;唐 Y.;康,W.;Bisoyi, HK;郭 J.;Li, Q.,基于光子胶囊的光触发全彩圆偏振发光,用于多级信息加密。Nat. Commun. 2023,14 (1), 3005.

[38]Xie, Y.; Yang, P.; Deng, L.; Feng, Z.; Li, J.; Zhang, C.; Tang, X.; Li, C.; Li, J.; Xu, L.; Zhang, D.; Chen, X.; Zou, G., Flexible, Programmable, Chiroptical Polymer Films of Twisted Stacking Layers for Circular Polarization-Based Multiplex Color Display. Adv. Opt. Mater. 2022, 10 (5), 2102197.
[38] 谢 Y.;杨 P.;邓,L.;冯 Z.;李 J.;张 C.;唐 X.;李 C.;李 J.;徐 L.;张 D.;陈 X.;Zou, G.,用于基于圆偏振的多路彩色显示器的扭曲堆叠层的柔性、可编程、手性聚合物薄膜。Adv. Opt. Mater. 2022,10 (5), 2102197.

[39]Okazaki, Y.; Kimura, M.; Hachiya, K.; Sagawa, T., Luminescence-based circular polarization convertors: polarization conversion of linearly polarized photoluminescence from one-dimensionally aligned quantum rods using retardation films. J. Mater. Chem. C 2023, 11 (3), 935-942.
[39] 冈崎,Y.;木村,M.;八谷,K.;Sagawa, T.,基于发光的圆偏振转换器:使用延迟膜从一维对准量子棒进行线性偏振光致发光的偏振转换。化学 C 2023,11 (3), 935-942。

[40]Chen, Y.; Zhang, Y.; Li, H.; Li, Y.; Zheng, W.; Quan, Y.; Cheng, Y., Dynamic Circularly Polarized Luminescence with Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium. Adv. Mater. 2022, 34 (28), 2202309.
[40] 陈咏彦;张 Y.;李 H.;李英;郑 W.;全 Y.;Cheng, Y.,胆固醇液晶介质中,非手性二向色染料实现的具有可调旋向和强度的动态圆偏振发光。 Adv. Mater. 2022,34 (28), 2202309.

[41]Li, Y.; Chen, Y. H.; Luo, J. X.; Quan, Y. W.; Cheng, Y. X., Light-Driven Sign Inversion of Circularly Polarized Luminescence Enabled by Dichroism Modulation in Cholesteric Liquid Crystals. Adv. Mater. 2024, n/a (n/a), 2312331.
[41] 李勇;陈 YH;罗,JX;全,YW;Cheng, Y. X.,胆固醇液晶中二色性调制实现的圆偏振发光的光驱动符号反转。Adv. Mater. 2024,n/a (n/a), 2312331.

[42]Ivashchenko, A. V.; Petrova, O. S.; Titov, V. V., Heteroaromatic Azo Dyes Exhibiting Negative Dichroism in Liquid Crystals. Mol. Cryst. Liq. Cryst. 1984, 108 (1-2), 51-60.
[42] 伊瓦申科,A. V.;彼得洛娃,俄亥俄州;Titov, V. V.,在液晶中表现出负二向色性的杂芳族偶氮染料。Mol. Cryst. Liq. Cryst. 1984,108 (1-2),51-60。

[43]Rumyantsev, V. G.; Ivashchenko, A. V.; Muratov, V. M.; Lazareva, V. T.; Prudnikova, E. K.; Blinov, L. M., Dyes witth Negative Dichorism for Liquid Crystal Displays Based on the Guest-Host Effect. Mol. Cryst. Liq. Cryst. 1983, 94 (1-2), 205-212.
[43] 鲁缅采夫,V. G.;伊瓦申科,AV;穆拉托夫,V. M.;拉扎雷娃,VT;普鲁德尼科娃,EK;Blinov, LM,基于客体-宿主效应的液晶显示器的负二向染色。Mol. Cryst. Liq. Cryst. 1983,94 (1-2),205-212。

[44]Debije, M. G.; Menelaou, C.; Herz, L. M.; Schenning, A. P. H. J., Combining Positive and Negative Dichroic Fluorophores for Advanced Light Management in Luminescent Solar Concentrators. Adv. Opt. Mater. 2014, 2 (7), 687-693.
[44] 德比耶,M. G.;梅内劳,C.;赫兹,LM;Schenning, A. P. H. J.,结合正负二向色荧光团,在发光太阳能聚光器中实现高级光管理。Adv. Opt. Mater. 2014,2 (7), 687-693.

[45]Kim, D.-Y.; Kang, D.-G.; Lee, M.-H.; Kim, J.-S.; Lee, C.-R.; Jeong, K.-U., A photo-responsive metallomesogen for an optically and electrically tunable polarized light modulator. Chem. Commun. 2016, 52 (87), 12821-12824.
[45] 金,D.-Y.;康,D.-G.;李,MH;金,JS;李,CR;Jeong, K.-U.,用于光学和电可调偏振光调制器的光响应金属原。化学公报。 2016,52 (87), 12821-12824.

[46]Li, Y.; Chen, Y.; Li, H.; Liu, C.; Li, L.; Quan, Y.; Cheng, Y., Achiral Dichroic Dyes-mediated Circularly Polarized Emission Regulated by Orientational Order Parameter through Cholesteric Liquid Crystals. Angew. Chem. Int. Ed. 2023, 62 (46), e202312159.
[46] 李英;陈 Y.;李 H.;刘 C.;李,L.;全 Y.;Cheng, Y.,非手性二向色染料介导的圆极化发射,由胆固醇液晶的取向顺序参数调节。Angew. Chem. Int. Ed. 2023,62 (46), e202312159.

[47]Kim, Y.; Kim, H.; Son, J. B.; Filatov, M.; Choi, C. H.; Lee, N. K.; Lee, D., Single-Benzene Dual-Emitters Harness Excited-State Antiaromaticity for White Light Generation and Fluorescence Imaging. Angew. Chem. Int. Ed. 2023, 62 (20), e202302107.
[47] 金 Y.;金 H.;儿子,JB;菲拉托夫,M.;Choi, CH;李,NK;Lee, D.,单苯双发射器利用激发态反芳香性产生白光和荧光成像。Angew. Chem. Int. Ed. 2023,62 (20), e202302107.

[48]Han, X.; Meng, X.; Wang, X.; Leng, S.; Liu, Q.; Zhang, L.; Li, P.; Zhang, Q.; Hu, H.-Y., Analyte-Triggered Excited-State Intramolecular Proton Transfer- Delayed Fluorescence: A General Approach for Time-Resolved Turn-On Fluorescence Imaging. Anal. Chem. 2023, 95 (19), 7715-7722.
[48] 韩 X.;孟 X.;王 X.;Leng, S.;刘 Q.;张 L.;李 P.;张 Q.;胡,H.-Y.,分析物触发的激发态分子内质子转移-延迟荧光:时间分辨开启荧光成像的通用方法。Anal. 化学。 2023,95 (19), 7715-7722.

[49]Sun, H.; Jiang, Y.; Nie, J.; Wei, J.; Miao, B.; Zhao, Y.; Zhang, L.; Ni, Z., Multifunctional AIE-ESIPT dual mechanism tetraphenylethene-based Schiff base for inkless rewritable paper and a colorimetric/fluorescent dual-channel Zn2+ sensor. Mater. Chem. Front. 2021
[49] 孙,H.;江 Y.;聂 J.;魏 J.;苗,B.;赵 Y.;张 L.;Ni, Z.,用于无墨可擦写纸的多功能 AIE-ESIPT 双机制基于四苯基乙基的希夫基座和比色/荧光双通道 Zn2+ 传感器。母公司。化学前线。2021
.

[50]Kwon, J. E.; Park, S.; Park, S. Y., Realizing molecular pixel system for full-color fluorescence reproduction: RGB-emitting molecular mixture free from energy transfer crosstalk. J. Am. Chem. Soc. 2013, 135 (30), 11239-46.
[50] 权,J. E.;帕克,S.;Park, S. Y.,实现用于全彩荧光再现的分子像素系统:无能量转移串扰的 RGB 发射分子混合物。J. Am. Chem. Soc. 2013,135 (30), 11239-46.

[51]Newsome, W. J.; Ayad, S.; Cordova, J.; Reinheimer, E. W.; Campiglia, A. D.; Harper, J. K.; Hanson, K.; Uribe-Romo, F. J., Solid State Multicolor Emission in Substitutional Solid Solutions of Metal-Organic Frameworks. J. Am. Chem. Soc. 2019, 141 (28), 11298-11303.
[51] 纽瑟姆,W. J.;阿亚德,S.;科尔多瓦,J.;Reinheimer, E. W.;坎皮利亚,公元;哈珀,JK;汉森,K.;Uribe-Romo, FJ,金属有机框架取代固溶体中的固态多色发射。J. Am. Chem. Soc. 2019,141 (28), 11298-11303.

[52]Kim, D.; Jeong, K.; Kwon, J. E.; Park, H.; Lee, S.; Kim, S.; Park, S. Y., Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy. Nat. Commun. 2019, 10 (1), 3089.
[52] 金 D.;郑 K.;权,JE;帕克,H.;李,S.;金,S.;Park, S. Y.,双色荧光纳米颗粒,为生物成像和超分辨率显微镜显示完美的颜色特异性光开关。Nat. Commun. 2019,10 (1), 3089.

[53]Hwang, S.-H.; Kim, H.; Ryu, H.; Serdiuk, I. E.; Lee, D.; Choi, T.-L., Powerful Direct C–H Amidation Polymerization Affords Single-Fluorophore-Based White-Light-Emitting Polysulfonamides by Fine-Tuning Hydrogen Bonds. J. Am. Chem. Soc. 2022, 144 (4), 1778-1785.
[53] 黄,S.-H.;金 H.;柳,H.;塞尔迪克,I.E.;李,D.;Choi, T.-L.,强大的直接 C-H 酰胺化聚合通过微调氢键获得基于单荧光团的白光发光聚磺酰胺。J. Am. Chem. Soc. 2022,144 (4), 1778-1785.

[54]Zhang, W.; Suzuki, S.; Sakurai, T.; Yoshida, H.; Tsutsui, Y.; Ozaki, M.; Seki, S., Extended conjugation of ESIPT-type dopants in nematic liquid crystalline phase for enhancing fluorescence efficiency and anisotropy. Phys. Chem. Chem. Phys. 2020, 22 (48), 28393-28400.
[54] 张伟;铃木,S.;樱井,T.;吉田,H.;筒井,Y.;尾崎,M.;Seki, S.,ESIPT 型掺杂剂在向列液晶相中的扩展共轭以提高荧光效率和各向异性。Phys. Chem. 化学 Phys. 2020,22 (48), 28393-28400.

[55]Tsutsui, Y.; Zhang, W. Y.; Ghosh, S.; Sakurai, T.; Yoshida, H.; Ozaki, M.; Akutagawa, T.; Seki, S., Electrically Switchable Amplified Spontaneous Emission from Liquid Crystalline Phase of an AIEE-Active ESIPT Molecule. Adv. Opt. Mater. 2020, 8 (14), 1902158.
[55] 筒井 Y.;张 W. Y.;高希,S.;樱井,T.;吉田,H.;尾崎,M.;芥川,T.;Seki, S.,AIEE 活性 ESIPT 分子液晶相的电切换放大自发发射。Adv. Opt. Mater. 2020,8 (14), 1902158.

[56]Gomez, E.; Alarcos, N.; Monterde, C.; Sánchez, F.; Moreno, M.; Douhal, A., Experimental and theoretical insights into the influence of electronic density on proton-transfer reactions. Phys. Chem. Chem. Phys. 2018, 20 (42), 27149-27161.
[56] 戈麦斯,E.;阿拉尔科斯,N.;蒙特德,C.;桑切斯,F.;莫雷诺,M.;Douhal, A.,电子密度对质子转移反应影响的实验和理论见解。Phys. Chem. 化学 Phys. 2018,20 (42), 27149-27161.

[57]Sims, M. T.; Abbott, L. C.; Mandle, R. J.; Goodby, J. W.; Moore, J. N., Dyes for guest–host liquid crystal applications: a general approach to the rapid computational assessment of useful molecular designs. Phys. Chem. Chem. Phys. 2023, 25 (15), 10367-10383.
[57] 西姆斯,M. T.;雅培,LC;曼德尔,RJ;古德比,JW;Moore, J. N.,用于客体-宿主液晶应用的染料:有用分子设计的快速计算评估的通用方法。Phys. Chem. 化学 Phys. 2023,25 (15), 10367-10383.

[58]Sims, M. T.; Abbott, L. C.; Cowling, S. J.; Goodby, J. W.; Moore, J. N., Principal molecular axis and transition dipole moment orientations in liquid crystal systems: an assessment based on studies of guest anthraquinone dyes in a nematic host. Phys. Chem. Chem. Phys. 2017, 19 (1), 813-827.
[58] 西姆斯,M. T.;雅培,LC;考林,SJ;古德比,JW;Moore, JN,液晶系统中的主分子轴和过渡偶极矩取向:基于对向列宿主中客体蒽醌染料研究的评估。Phys. Chem. 化学 Phys. 2017,19 (1), 813-827.

[59]Yao, K.; Shen, Y.; Li, Y.; Li, X.; Quan, Y.; Cheng, Y., Ultrastrong Red Circularly Polarized Luminescence Promoted from Chiral Transfer and Intermolecular Förster Resonance Energy Transfer in Ternary Chiral Emissive Nematic Liquid Crystals. J. Phys. Chem. Lett. 2021, 12 (1), 598-603.
[59] 姚 K.;沈 Y.;李英;李 X.;全 Y.;Cheng, Y.,三元手性发射向列液晶中手性转移和分子间 Förster 共振能量转移促进的超强红色圆极化发光。J. Phys. Chem. Lett. 2021,12 (1), 598-603.

[60]Li, Y.; Yao, K.; Chen, Y.; Quan, Y.; Cheng, Y., Full-Color and White Circularly Polarized Luminescence Promoted by Liquid Crystal Self-Assembly Containing Chiral Naphthalimide Dyes. Adv. Opt. Mater. 2021, 9 (20), 2100961.
[60] 李英;姚 K.;陈 Y.;全 Y.;Cheng, Y.,由含有手性萘酰亚胺染料的液晶自组装促进的全彩和白色圆偏振发光。Adv. Opt. Mater. 2021,9 (20), 2100961.

[61]Albano, G.; Pescitelli, G.; Di Bari, L., Chiroptical Properties in Thin Films of pi-Conjugated Systems. Chem. Rev. 2020, 120 (18), 10145-10243.
[61] 阿尔巴诺,G.;佩西特利,G.;Di Bari, L.,π 共轭系统薄膜中的手性特性。化学修订版 2020,120 (18), 10145-10243。

[62]Shi, Y.; Han, J.; Li, C.; Zhao, T.; Jin, X.; Duan, P., Recyclable soft photonic crystal film with overall improved circularly polarized luminescence. Nat. Commun. 2023, 14 (1), 6123.
[62] 石英;韩,J.;李 C.;赵 T.;金 X.;Duan, P.,可回收的软光子晶体薄膜,整体改善了圆偏振发光。Nat. Commun. 2023,14 (1), 6123.

[63]König, N. F.; Mutruc, D.; Hecht, S., Accelerated Discovery of α-Cyanodiarylethene Photoswitches. J. Am. Chem. Soc. 2021, 143 (24), 9162-9168.
[63] 科尼希,N. F.;穆特鲁克,D.;Hecht, S.,加速发现 α-氰二芳基光开关。J. Am. Chem. Soc. 2021,143 (24), 9162-9168.

[64]San Jose, B. A.; Matsushita, S.; Akagi, K., Lyotropic chiral nematic liquid crystalline aliphatic conjugated polymers based on disubstituted polyacetylene derivatives that exhibit high dissymmetry factors in circularly polarized luminescence. J. Am. Chem. Soc. 2012, 134 (48), 19795-807.
[64] 圣何塞,文学学士;松下,S.;Akagi, K.,基于二取代聚乙炔衍生物的溶出手性液晶向列脂肪族共轭聚合物,在圆极化发光中表现出高不对称因子。J. Am. Chem. Soc. 2012,134 (48), 19795-807.

[65]Yan, J. L.; Ota, F.; San Jose, B. A.; Akagi, K., Chiroptical Resolution and Thermal Switching of Chirality in Conjugated Polymer Luminescence via Selective Reflection using a Double-Layered Cell of Chiral Nematic Liquid Crystal. Adv. Funct. Mater. 2017, 27 (2), 1604529.
[65] 严, J. L.;太田,F.;圣何塞,文学学士;Akagi, K.,使用双层手性向列液晶单元通过选择性反射在共轭聚合物发光中手性分辨率和热切换。Adv. Funct.母公司。2017,27 (2), 1604529.

[66]Li, S.; Tang, Y.; Fan, Q.; Li, Z.; Zhang, X.; Wang, J.; Guo, J.; Li, Q., When quantum dots meet blue phase liquid crystal elastomers: visualized full-color and mechanically-switchable circularly polarized luminescence. Light Sci. Appl. 2024, 13 (1), 140.
[66] 李 S.;唐 Y.;范,Q.;李 Z.;张 X.;王 J.;郭 J.;Li, Q.,当量子点遇到蓝相液晶弹性体时:可视化的全彩和机械可切换的圆偏振发光。轻科学应用 2024,13(1),140。

[67]Li, S.; Wang, J.; Tian, M.; Meng, X.; Wang, J.; Guo, J., A Halogen‐Bonded Fluorescent Molecular Photoswitch: Transition from 3D Cubic Lattice to 1D Helical Superstructure for Polarization Inversion of Circularly Polarized Luminescence. Angew. Chem. Int. Ed. 2024, n/a (n/a), e202405615.
[67] 李 S.;王 J.;田 M.;孟 X.;王 J.;Guo, J.,卤素键合荧光分子光开关:圆偏振发光偏振反转的 3D 立方晶格到 1D 螺旋超结构的转变。Angew. Chem. Int. Ed. 2024,n/a (n/a),e202405615。

[68]Hu, Y.; Huang, Z.; Willner, I.; Ma, X., Multicolor Circularly Polarized Luminescence of a Single-Component System Revealing Multiple Information Encryption. CCS Chem. 2024, 6 (2), 518-527.
[68] 胡 Y.;黄 Z.;威尔纳,I.;马,X.,单组分系统的多色圆偏振发光,揭示了多重信息加密。CCS 化学。 2024,62),518-527。