這是用戶在 2024-3-19 19:40 為 https://app.immersivetranslate.com/pdf-pro/7ec163e4-a6fd-41c2-ae26-0c7a29d7909d 保存的雙語快照頁面,由 沉浸式翻譯 提供雙語支持。了解如何保存?
2024_03_19_f65038948fff15e48882g
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/361248373
有關該出版物的討論、統計資料和作者簡介,請造訪: https://www.researchgate.net/publication/361248373

Methods to control harmful algal blooms: a review
控制有害藻華的方法:綜述

Article in Environmental Chemistry Letters June 2022
環境化學通訊》上的文章 2022 年 6 月
DOI: 10.1007/s10311-022-01457-2
CITATIONS 引文
49
7 authors, including: 7 位作者,包括
Balaji Prasath Barathan 巴拉吉-普拉薩特-巴拉坦
Bharathidasan University
巴拉蒂達桑大學
16 PUBLICATIONS 155 CITATIONS
16 篇著作 155 次引用
SEE PROFILE 查看簡介
Yong Zhang 張勇
College of Environmental Science and Engineering
環境科學與工程學院
33 PUBLICATIONS 352 CITATIONS
33 篇著作 352 次引用
SEE PROFILE 查看簡介

Methods to control harmful algal blooms: a review
控制有害藻華的方法:綜述

Barathan Balaji-Prasath Ying Wang Yu Ping Su - David P. Hamilton Hong Lin Luwei Zheng
巴拉坦-巴拉吉-普拉薩特 王穎蘇玉萍- David P. Hamilton林虹鄭路偉
Yong Zhang  張勇

Received: 3 February 2022 / Accepted: 27 April 2022
收到:2022 年 2 月 3 日 / 接受:2022 年 4 月 27 日收到:2022 年 2 月 3 日 / 接受:2022 年 4 月 27 日
(c) The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
(c) 作者獨家授權施普林格-自然瑞士股份公司 2022 年

Abstract 摘要

The recent rise of red tide harmful algal blooms has induced ecosystem degradation, economic losses, and aquaculture damage, yet little is known on prevention and mitigation of red tides. Actual control methods involve physical, chemical, and biological processes, with varying success. Here, we review physical, chemical, and biological control methods applicable to red tide species in marine and estuarine water bodies. We discuss mechanisms of algal blooms outbreak and their applications to prevent outbreaks.
近來赤潮有害藻類大量繁殖,導致生態系統退化、經濟損失和水產養殖業受損,但人們對赤潮的預防和緩解卻知之甚少。實際的控制方法涉及物理、化學和生物過程,但成功率各不相同。在此,我們回顧了適用於海洋和河口水體中赤潮物種的物理、化學和生物防治方法。我們將討論藻華爆發的機制及其在防止藻華爆發的應用。

Keywords Algae bloom Algicide Dinoflagellate Red tide
關鍵字 藻華 殺藻劑 {{1}甲藻 {{2}紅潮

Introduction 導言

Harmful algal blooms emerge as "red tides" of algal cells that change the color of surface water with their red or brown pigmentation. Proliferations of microalgae in marine or brackish waters can cause fish kills, contaminate seafood with toxins, and alter ecosystems in ways humans perceive as harmful. Harmful algal blooms also cause water quality to deteriorate, making it unsuitable for potable water use (e.g., via desalination), as well as industrial use (Panagopoulos 2021, 2022). A broad classification of harmful algal blooms distinguishes two groups of organisms: the toxin producers, which can contaminate seafood or kill fish, and the high-biomass producers, which can cause anoxia and indiscriminately kill marine life in dense concentrations. Some harmful algal blooms have characteristics of both
有害藻類的大量繁殖表現為藻類細胞的 "紅潮",它們的紅色或棕色色素改變了地表水的顏色。海洋或鹹水中的微藻類大量繁殖會導致魚類死亡,使海鮮受到毒素污染,並以人類認為有害的方式改變生態系統。有害藻類大量繁殖也會導致水質惡化,使其不適合飲用水(如透過海水淡化)和工業用水(Panagopoulos,2021 年,2022 年)。有害藻華的大致分類將生物分為兩類:一類是毒素生成者,它們會污染海鮮或殺死魚類;另一類是高生物量生成者,它們會導致缺氧,並在密集的情況下不加區分地殺死海洋生物。有些有害藻華同時具有以下兩種特徵
Yu Ping Su
1 College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, People's Republic of China
1 福建師範大學環境科學與工程學院,中華人民共和國福州 350007
2 Fujian Key Laboratory of Pollution Control and Resource Recycling, Fuzhou 350007, People's Republic of China
2 福建省污染控制與資源循環利用重點實驗室,中華人民共和國福州 350007
3 Fujian Key Laboratory of Special Marine Bio-Resources Sustainable Utilization-Fujian Normal University, Fujian, China
3 福建省特種海洋生物資源永續利用重點實驗室-福建師範大學,福建,中國
4 Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
4 澳洲格里菲斯大學澳洲河流研究所,澳洲昆士蘭州內森 4111

(Du et al. 2017; Hu et al. 2018; Zohdi and Abbaspour 2019; Hallegraeff et al. 2021). Although the best-known harmful algal blooms phenomenon is the so-called red tide, it is not the only harmful algal blooms type, and others have caused damage to fisheries, threatened the coastal environment, and even harmed human health (Inaba et al. 2017; Kouakou and Poder 2019; Belin et al. 2021).
(Du 等人,2017 年;Hu 等人,2018 年;Zohdi 和 Abbaspour,2019 年;Hallegraeff 等人,2021 年)。雖然最著名的有害藻華現像是所謂的赤潮,但它並不是唯一的有害藻華類型,其他類型的藻華也對漁業造成了破壞,威脅了沿海環境,甚至損害了人類健康(Inaba 等, 2017 年;Kouakou 與Poder,2019 年;Belin 等,2021 年)。
There are about 300 species of phytoplankton that cause harmful algal blooms, although it should be noted that only a quarter of these are deemed harmful. Approximately 50% of the algal blooms species are dinoflagellates, and many of the more toxic species have a complex life cycle (Huang et al. 2018). Over the past few decades, many studies have been conducted to classify the organisms that cause harmful algal blooms and consider the effects of the outbreaks (Liu et al. 2013; Suzuki 2016; Wang et al. 2016; Sakamoto et al. 2021; Zingone et al. 2020) and sea coloration changes vary depending on the species of phytoplankton involved, such as from, common algal blooms species such as Karenia mikimotoi, Prorocentrum minimum, Karlodinium veneficum, Levanderina fissa, Chattonella antiqua, Heterosigma akashiwo, and Alexandrium catenella (Isabel et al. 2018). These species are usually poisonous and are also known to kill farmed fish in large numbers. The blooms commonly occur in coastal ecosystems, but they can also occur in the open sea, brackish water, or freshwater ecosystems (Anderson et al. 2012; Sunesen et al. 2021).
造成有害藻華的浮游植物約有 300 種,但需要注意的是,其中只有四分之一被認為是有害的。約 50%的藻華物種是甲藻,許多毒性較強的物種具有複雜的生命週期(Huang 等,2018 年)。在過去幾十年中,許多研究對引起有害藻華的生物進行了分類,並考慮了藻華爆發的影響(Liu 等,2013 年;Suzuki,2016 年;Wang 等,2016 年;Sakamoto 等,2021年;Zingone 等,2020 年)。 2020),海水顏色的變化因涉及的浮游植物種類而異,如來自Karenia mikimotoi、Prorocentrum minimum、Karlodinium v​​eneficum、Levanderina fissa、Chattonella antiqua、Heterosigma akashiwo 和Alexandrium catenella 等常見,2018 年),2018 年) 。這些物種通常有毒,已知會導致大量養殖魚類死亡。藻華通常發生在沿海生態系中,但也可能發生在公海、鹹水或淡水生態系(Anderson 等,2012 年;Sunesen 等,2021 年)。
In recent decades, scientists have made a concerted effort to prevent harmful algal blooms and mitigate the damage
近幾十年來,科學家們齊心協力,努力防止有害藻華,減輕藻華造成的傷害。

by employing several methods to kill harmful species and suppress harmful algal blooms formation. Although trials of these methods suggest that harmful algal blooms are often preventable, algal blooms develop in areas that may cover many hundreds of square kilometers. Furthermore, there is potential for adverse secondary effects related to other components of the ecosystem, and for legacy pollution from persistent effects of algicides. This paper focuses on current harmful algal blooms control measures to limit their occurrence and remove toxins from the water column. Several studies concerning the development of strategies for controlling harmful algal blooms (Yang et al. 2015a, b; Yu et al. 2017) support these measures, which can be classified into three methods-physical (Lu et al. 2016; Tian et al. 2014; Zhang et al. 2018a, b), chemical (Baek et al. 2013, 2014; Wu et al. 2014; Yang et al. 2015a, b), and biological (Cai et al. 2016; Garces et al. 2013; Lee et al. 2015; Pokrzywinski et al. 2017; Sun et al. 2017, 2018; Wang et al. 2017; Zhang et al. 2018a, b; Shang et al. 2020; Zhang et al. 2020; BalajiPrasath et al. 2022).
採用多種方法殺死有害物種,抑制有害藻華的形成。儘管對這些方法的試驗表明,有害藻華通常是可以預防的,但藻華發生的區域可能覆蓋數百平方千米。此外,藻華也可能對生態系的其他組成部分產生不利的次要影響,以及殺藻劑的持久性影響造成的遺留污染。本文重點介紹目前的有害藻華控制措施,以限制其發生並清除水體中的毒素。有關有害藻華控制策略發展的多項研究(Yang 等,2015a,b;Yu 等,2017)支持這些措施,這些措施可分為三種方法--物理方法(Lu 等,2016;Tian 等,2014 ;Zhang 等,2018a,b)、化學方法(Baek 等,2013,2014;Wu 等,2018a,b)。 2013,2014;Wu 等人,2014;Yang 等人,2015a,b)和生物方法(Cai 等人,2016;Garces 等人,2013;Lee 等人,2015;Pokrzywinski 等人,2017;Sun 等人, 2017,2018;Wang 等人,2017;Zhang 等人,2018a,b;Shang 等人,2020;Zhang 等人,2020;BalajiPrasath 等人,2022)。
However, because of adverse ecological effects, high cost, or poor field operability, the application of most approaches is admittedly limited. As a result, few methods for dealing with harmful algal blooms damage can be administered on a large scale in the field; therefore, multiple measuresincluding physical, chemical, and biological methods-need to be considered. In the following systematic review, we propose that the current methodology for harmful algal blooms control needs further clarification through more thorough observation and prediction.
然而,由於不利的生態影響、高昂的成本或現場可操作性差,大多數方法的應用都受到了限制。因此,很少有處理有害藻華危害的方法可以在現場大規模實施;因此,需要考慮多種措施,包括物理、化學和生物方法。在以下的系統性綜述中,我們提出,目前控制有害藻華的方法需要透過更全面的觀察和預測來進一步明確。

Physical methods 物理方法

For classification purposes, methods such as air pumping, magnetic separation, centrifugal separation, and ultrasonic destruction will be considered physical processes. If the volume of algal blooms-affected water to treat is limited, physical treatment can offer some containment; however, it should be considered a preventative measure rather than a control measure. An example of physical treatment is pumping seawater through a centrifugal separator to remove Karenia mikimotoi, Gyrodinium sp. and Cochlodinium polykirkoides (Cearace 2007). The centrifugal separator has attracted much attention because it avoids chemical controls. A magnetic separation method uses mechanical power and a mixture of iron oxide and chloride powder to separate, an effective method for removing red tide plankton. It then pumps the seawater through a magnetic separator to remove harmful algal blooms plankton. This method has proven to be effective for removing Chattonella sp. from the seawater column and is effective for small harmful algal blooms.
就分類而言,氣泵、磁分離、離心分離和超音波破壞等方法將被視為物理過程。如果需要處理的受藻華影響的水量有限,物理處理可以提供一定的遏製作用;但應將其視為預防措施而非控制措施。物理處理的一個例子是用離心分離器抽取海水,以去除 Karenia mikimotoi、Gyrodinium sp.和 Cochlodinium polykirkoides(Cearace,2007 年)。離心分離器避免了化學控制,因此備受關注。磁力分離法利用機械動力和氧化鐵與氯化物粉末的混合物分離,是去除紅潮浮游生物的有效方法。然後將海水抽入磁性分離器,去除有害的藻華浮游生物。事實證明,這種方法能有效清除海水中的 Chattonella sp.

Another proposed algal blooms control method is to use ultraviolet radiation. Chattonella marina was killed with radiation for , while other harmful algal blooms species, such as . akashiwo, and K. mikimotoi, were killed at lower ultraviolet radiation dose (Cearace 2007). As found in a study by Li et al. (2018), UV irradiation can induce damage in microalgal cells on multiple levels, including adverse effects on nucleic acids, light harvesting through electron transfer, nitrogen fixation and assimilation, toxin synthesis, settle ability, oxidative pressure, antioxidative capacity, and overall cell integrity. An air extraction method introduces fine bubbles into harmful algal blooms so that microbubbles adhere to the algae and cause the plankton to float to the surface for removal. This physical control method allows the separation of fish and harmful algal blooms by providing oxygen in the form of fine bubbles to prevent fish hypoxia. However, its application may be limited where there are extensive harmful algal blooms that require very large mechanical bubblers. Dispersed air bubbles are formed when air is introduced into the system and vigorously agitated, or when airflow is continuously passed through certain porous materials. These air bubbles become highly buoyant when they interact with negatively charged microalgae cells and the cells can be readily collected at the water surface (Zhan et al. 2021).
另一種控制藻華的方法是使用紫外線輻射。在輻射 下, 的藻類被殺死,而 等其他有害藻類則被殺死。而其他有害藻華物種,如 .akashiwo 和 K. mikimotoi,在較低的紫外線輻射劑量下就會被殺死(Cearace,2007 年)。 Li 等人(2018 年)的研究發現,紫外線照射會對微藻細胞造成多層面的損傷,包括對核酸、透過電子傳遞的光收集、固氮和同化作用、毒素合成、沉降能力、氧化壓力、抗氧化能力和整體細胞完整性產生不利影響。空氣萃取法將細小氣泡引入有害藻類繁殖區,使微氣泡附著在藻類上,使浮游生物浮出水面,以便清除。這種物理控制方法透過以微小氣泡的形式提供氧氣,防止魚類缺氧,從而將魚類和有害藻華分離開來。不過,在有害藻類大量繁殖,需要使用大型機械氣泡器的地方,這種方法的應用可能會受到限制。將空氣引入系統並大力攪拌,或氣流持續通過某些多孔材料時,就會形成分散的氣泡。當這些氣泡與帶負電荷的微藻細胞相互作用時,就會產生很強的浮力,細胞很容易被收集到水面上(Zhan 等,2021 年)。
Ultrasonication is another method that applies sound waves to the water column to generate a cyclic expansion and compression phase leading to vibration that affects algae buoyancy and causes cells to sink to the bottom of the water column. The use of ultrasound is being promoted for harmful algal blooms control by some distributors of ultrasound equipment. Research and reviews have been carried out overseas on ultrasound (Lürling and Tolman 2014; Ohtani 2003). These devices are purported to produce collapse of gas vesicles and inhibit photosynthesis in harmful algal blooms, with lysis and damage of cells. The most authoritative and scientifically based research on ultrasound indicates, however, that it is highly unlikely to have any control effect on harmful algal blooms in natural systems unless extremely high-intensity ultrasound is applied within a very small body of water. Such high-intensity ultrasound has been found to kill zooplankton grazers (Ohtani 2003) and could potentially affect fish populations and behavior. Because they cannot photosynthesize, the algal blooms does not reform.
超音波是另一種方法,它將聲波應用於水體,產生循環膨脹和壓縮階段,從而產生振動,影響藻類浮力,使細胞沉入水體底部。一些超音波設備經銷商正在推廣使用超音波來控制有害藻華。國外對超音波進行了研究和評論(Lürling 和 Tolman,2014 年;Ohtani,2003 年)。據稱,這些設備能使有害藻華的氣泡崩潰並抑制光合作用,同時裂解和破壞細胞。不過,最權威、最有科學依據的超音波研究表明,除非在極小的水體中使用極高強度的超音波,否則超音波不太可能對自然系統中的有害藻華產生任何控制效果。研究發現,這種高強度的超音波會殺死浮游動物中的食草動物(Ohtani,2003 年),並可能影響魚類的數量和行為。由於它們無法進行光合作用,藻華也無法恢復。
In the future, the frequency, power, and exposure time used to control algal blooms of different initial densities in different types of water bodies should be examined. This effort could improve treatment efficiency and reduce energy consumption. At the same time, the impact of ultrasound on water quality, other aquatic organisms, and the release of algal toxins from bloom-forming algae should remain of concern (Park et al. 2017). Most physical methods are slow and expensive, so they are challenging to use for large
今後,應研究用於控制不同類型水體中不同初始密度藻華的頻率、功率和照射時間。這樣做可以提高處理效率,降低能耗。同時,超音波對水質、其他水生生物以及藻華形成藻類毒素釋放的影響仍應引起關注(Park 等,2017 年)。大多數物理方法既緩慢又昂貴,因此在大型水處理中使用這些方法具有挑戰性。

blooms. Moreover, physical methods are not always practical, so they are primarily used as algal blooms emergency measures rather than as a preventative strategy. Due to limited field experience with physical methods of harmful algal blooms mitigation, there is limited information about the cost and impact.
藻華。此外,物理方法並不總是切實可行,因此主要用作藻華應急措施,而不是預防策略。由於採用物理方法緩解有害藻華的實地經驗有限,有關其成本和影響的資訊也有限。

Chemical methods 化學方法

The well-established and most promising mitigation strategy against harmful algal blooms that is classified as a chemical method is coagulated flocculation. Most harmful algal blooms control research has focused on flocculation using different clays (Lu et al. 2015). Many studies have been conducted to explore the viability of using charged beach sand/ sediments (Li and Pan 2013; Pan et al. 2011), biopolymers, and other naturally occurring substances, such as chitosan, as flocculants (Burns et al. 2009). The bonding process induces flocculation and then uses the flocculant to precipitate biopolymers. This process creates larger harmful algal blooms plankton aggregates that are easier to separate. Process control is important to produce coagulated flocculation and sedimentation simultaneously, i.e., a physicochemical process.
混凝絮凝法是一種行之有效、最有前景的緩解有害藻華的化學方法。大多數有害藻華控制研究都專注於使用不同黏土進行絮凝(Lu 等人,2015 年)。許多研究都在探索使用帶電海灘沙/沉積物(Li 和Pan,2013 年;Pan 等人,2011 年)、生物聚合物和其他天然物質(如殼聚醣)作為絮凝劑的可行性(Burns 等人,2009 年)。黏合過程會誘發絮凝,然後利用絮凝劑沉澱生物聚合物。此過程可產生較大的有害藻華浮游生物聚集體,且較容易分離。製程控制對於同時產生混凝絮凝和沈澱(即物理化學過程)非常重要。
The consequences of chemical algaecides lingering in water environments and their effects on human health should also be considered. Due to the widespread application of chemical algaecides, some of those that enter the algae cells eventually remain in the water. To minimize potential harm to human health and aquatic environments, chemical algaecides should be selected with special consideration of their potential toxicity to other organisms and ability to release minimal residue into the environment. The chemical nature of the matrix also determines the adhesion process of the target harmful algal blooms species. For further reference, the Derjaguin-Landau-Verwey-Overbeek theory describes the forces between two charged surfaces in a liquid medium. In this theory, two main interactions, the Lifshitz-van der Waals (attractive) and the electrostatic (repulsive) interactions explain the overall interaction between a cell and a substrate (Nabweteme et al. 2015).
也應考慮化學除藻劑在水環境中的殘留後果及其對人類健康的影響。由於化學除藻劑的廣泛應用,一些進入藻類細胞的化學除藻劑最終會殘留在水中。為了盡量減少對人類健康和水生環境的潛在危害,在選擇化學除藻劑時應特別考慮其對其他生物的潛在毒性以及向環境中釋放最少殘留物的能力。基質的化學性質也決定了目標有害藻華物種的附著過程。作為進一步參考,Derjaguin-Landau-Verwey-Overbeek 理論描述了液體介質中兩個帶電錶面之間的作用力。在該理論中,兩種主要的相互作用,即Lifshitz-van der Waals(吸引力)和靜電(排斥力)相互作用,解釋了細胞與基質之間的整體相互作用(Nabweteme 等人,2015 年) 。

Flocculation 絮凝

Clay flocculation to mitigate harmful algal blooms has also been studied and applied to coastal waters. Flocculants are added to water to create a "floc," which removes particles by binding and condensing them together; the resulting floc then promotes the rapid sinking of the aggregate, including algal blooms species, to the seafloor (Shirota 1989; Yu et al. 1994). This technique is convenient for field applications (Park et al. 2013). On the other hand, natural clays have low coagulation efficiency and poor flexibility, which can result in large deposition loads on the sediments, which may cause risks to benthic marine life due to the size of clay particles, their zeta potential and potential for smothering (Padilla et al. 2010). Therefore, efforts to identify newer and more productive clay modifiers that produce less secondary pollution (Pan et al. 2011) are still needed. Cell surfaces may change over time, resulting in a decrease in flocculation efficiency. At present the only obvious and fully effective measure to control harmful algal blooms in the ocean is to use clay to induce flocculation (Shirota 1989).
人們也研究了黏土絮凝法,並將其應用於沿海水域,以減輕有害藻華。在水中添加絮凝劑可形成"絮凝體",透過將顆粒結合併凝結在一起來去除顆粒;由此產生的絮凝體可促進包括藻華物種在內的集合體快速沉入海底(Shirota,1989 年;Yu 等,1994 年)。這種技術便於實地應用(Park 等人,2013 年)。另一方面,天然黏土的凝結效率低、柔韌性差,可能會在沉積物上造成較大的沉積負荷,由於黏土顆粒的大小、zeta 電位和窒息潛能,可能會對底棲海洋生物造成傷害(Padilla等,2010 年)。因此,仍需努力尋找更新、更有效的黏土改質劑,以減少二次污染(Pan 等,2011 年)。細胞表面可能會隨時間變化,導致絮凝效率下降。目前,控制海洋中有害藻類大量繁殖的唯一明顯且完全有效的措施是使用黏土誘導絮凝(Shirota,1989 年)。

Modified clays 改性黏土

Many studies have shown that modified clay produces cationic hydrolysis products that suppress growth of algal blooms cells in two ways-through direct action from collisions inducing cell flocculation and through indirect mechanisms that remove soluble nutrients or lead to shading (Balaji-Prasath et al. 2021a). Modified clay technology has been widely used in Southeast Asia for over two decades because of its favorable characteristics, such as being nontoxic, inexpensive, and controlling harmful algal blooms et al. 2016; Yu et al. 2017). Notably, some researchers have found that this technique inhibits the germination of cysts (Wang et al. 2014). Cyst germination is a critical factor in the formation of harmful algal blooms, so modified clay may provide a means for prolonged reduction in harmful algal blooms and minimizing environmental impacts.
許多研究表明,改性粘土產生的陽離子水解產物可通過兩種方式抑制藻華細胞的生長--通過碰撞誘導細胞絮凝的直接作用和通過去除可溶性營養物質或導致遮光的間接機制(Balaji-Prasath 等,2021a)。二十多年來,改性黏土技術因其無毒、廉價、可控制有害藻類大量繁殖等優點在東南亞得到了廣泛應用 等人,2016;Yu等人,2017)。值得注意的是,一些研究人員發現這種技術會抑制包囊的發芽(Wang 等人,2014 年)。孢囊萌發是形成有害藻華的關鍵因素,因此改性黏土可能為長期減少有害藻華和最大限度地減少對環境的影響提供了一種手段。
Recent research has explored the viability of using sand, natural polymers, and other naturally occurring substances as flocculants. This newly developed strategy improves the harmful algal blooms removal efficiency and reduces the amount of clay used. Clay mixed with poly aluminum chloride, calcium hydroxide, and chitosan reduced the required clay loading by fivefold (Sengco et al. 2005; Song et al. 2010). As an additive for clay dispersion, cationic poly aluminum chloride, or chitosan, plays a role in bridging and promoting particle formation. Pan et al (2011) found that removing harmful algal blooms species using poly aluminum chloride/chitosan modified sand was significantly enhanced. However, the efficacy of sand/local soil is reduced in marine systems due to increased salinity in seawater. When soil particles are altered through a bi-component mechanism of surface charge and network bridge modification using biodegradable modifiers (e.g., Moringa oleifera and chitosan), a higher algal blooms removal rate can be achieved (Li and Pan 2013).
最近的研究探討了使用沙子、天然聚合物和其他天然物質作為絮凝劑的可行性。這種新開發的策略提高了去除有害藻華的效率,並減少了黏土的用量。與聚合氯化鋁、氫氧化鈣和殼聚醣混合的黏土可將所需的黏土用量減少五倍(Sengco 等人,2005 年;Song 等人,2010 年)。作為粘土分散的添加劑,陽離子聚合氯化鋁或殼聚醣在架橋和促進顆粒形成方面發揮作用。 Pan 等人(2011 年)發現,使用聚合氯化鋁/殼聚醣改質砂去除有害藻華物種的效果顯著增強。然而,在海洋系統中,由於海水鹽度增加,沙子/當地土壤的功效會降低。當使用生物可降解改質劑(如Moringa oleifera 和殼聚醣)透過表面電荷和網橋改性的雙組分機制改變土壤顆粒時,可實現更高的藻華去除率(Li 和Pan,2013年)。
Secondary metabolites of other natural substances from plants, such as glycoside, polyphenol, polysaccharide, terpene, flavone, and alkaloid, are ecologically safe and biodegradable; they could also be potential resources for new modifiers that make sand or clay more efficient for algal
來自植物的其他天然物質的次級代謝物,如苷類、多酚、多醣、萜烯、黃酮和生物鹼等,對生態安全且可生物降解;它們也可能成為新改質劑的潛在資源,使沙子或黏土對藻類更有效。

blooms mitigation (Nabweteme et al. 2015). Although few investigators have identified the source of algal blooms inhibitory effects from traditional Chinese herb-modified clay, this low-cost measure also has negligible environmental impacts (Tian et al. 2014). Different benign types of clay also provide options for controlling harmful algal blooms (Zhou et al. 2007). Table 1 summarizes different modified clays that have been developed to control red tide harmful algal blooms.
Nabweteme 等人,2015 年)。雖然很少有研究人員確定了傳統中草藥改質黏土抑制藻華的作用來源,但這種低成本措施對環境的影響也可以忽略不計(Tian 等,2014 年)。不同類型的良性黏土也為控制有害藻華提供了選擇(Zhou 等,2007 年)。表 1 總結了為控制赤潮有害藻華而開發的不同改質黏土。

Surfactants 界面活性劑

Surfactants are surface-active compounds that reduce the surface tension and interfacial tension between liquids, solids, and gases (Wang et al. 2017). Two types of surfactants have been tested as algicides: chemically synthesized (synthetic) and those produced by microorganisms (biosurfactants). Ideally, surfactants containing clay could act synergistically to improve algae removal efficiency. Cocamidopropyl betaine, a synthetic surfactant, has removal efficiency of A. tamarense, while Gemini surfactants (ethylene bis (dodecyl dimethyl ammonium bromide) exhibited the highest removal rate of Chattonella marina, with removal rate close to (Wang et al. 2017). According to Sun et al. (2004a, b), bio-surfactants are highly biodegradable in natural seawater. For example, sophorolipids and rhamnolipids are a group of glycolipids produced by microbes that have high biodegradability and ecological acceptability (Haba et al. 2000; Wang et al. 2005). Bi-component modification of sophorolipid-yellow clay mixture has removal efficiency on marine plankton (Liu 2016).
界面活性劑是一種界面活性化合物,可降低液體、固體和氣體之間的表面張力和界面張力(Wang 等人,2017 年)。有兩類界面活性劑曾經作為殺藻劑進行測試:化學合成的界面活性劑(合成界面活性劑)和微生物產生的界面活性劑(生物表面活性劑)。理想情況下,含有黏土的界面活性劑可發揮協同作用,提高除藻效率。合成界面活性劑椰油醯胺丙基甜菜鹼對塔瑪琳藻的去除率為 ,而Gemini 界面活性劑(乙烯雙(十二烷基二甲基溴化銨))對海洋水蚤的去除率最高,接近 。 (Wang 等人,2017 年)。根據 Sun 等人(2004a, b)的研究,生物界面活性劑在天然海水中具有很高的生物降解性。例如,sophorolipids 和 rhamnolipids 是一類由微生物產生的醣脂,具有很高的生物降解性和生態可接受性(Haba 等,2000 年;Wang 等,2005 年)。雙組分改質槐脂-黃色黏土混合物對海洋浮游生物具有 的去除效率(Liu,2016 年)。
The bio-surfactant affects the clay particles' chemical affinity, resulting in higher binding rates and improved cell removal ability. Bio-surfactants show promising algicidal effects and biodegradation efficiency. However, the modification of clays with surfactants (Gemini, Cocamidopropyl betaine, rhamnolipid, sophorolipid) or flocculants (poly aluminum chloride) can improve cell removal rate and reduce the required clay concentration by an order of magnitude or so (Lee et al. 2008; Wang et al. 2017; Wu et al. 2010).
生物界面活性劑會影響黏土顆粒的化學親和力,從而提高結合率和細胞去除能力。生物表面活性劑具有良好的殺藻效果和生物降解效率。然而,使用界面活性劑(Gemini、椰油酰胺丙基甜菜鹼、鼠李醣脂、槐脂)或絮凝劑(聚合氯化鋁)改性黏土可以提高細胞去除率,並將所需的黏土濃度降低一個數量級左右(Lee 等,2008 年;Wang 等,2017 年;Wu 等,2010 年)。

Cationic substances for algicidal efficacy
具有殺藻功效的陽離子物質

The cationic particles of biodegradable materials loaded with algicides may significantly enhance algicidal effect. Usually, the algal cell wall is made up of glycocalyx and a plasma membrane. However, most of the dinoflagellate cell wall consists of thick cellulosic thecal plates (Bogus et al. 2014), making identifying the algicidal agent difficult. However, plasma membranes have an amphipathic character and can interact electrically with the surface of cationic liposomes and peptides delivered through the cell wall. They combat algal blooms species through membrane penetration and affect the chloroplast membrane containing sulfoquinothiodiacyl glycerol and phosphatidyl glycerol (Gibbs 1981).
可生物降解材料的陽離子顆粒負載殺藻劑,可顯著增強殺藻效果。通常,藻細胞壁由糖萼和質膜組成。然而,大多數甲藻細胞壁都由厚厚的纖維素鈣板組成(Bogus 等人,2014 年),因此很難識別殺藻劑。不過,質膜具有兩親性,可與透過細胞壁輸送的陽離子脂質體和勝肽表面產生電相互作用。它們透過膜滲透對抗藻華物種,並影響含有磺基喹硫基甘油和磷脂酰甘油的葉綠體膜(Gibbs,1981 年)。
Additionally, cationic substances damage negatively charged lipids (Park et al. 2011). Thus, they represent a promising avenue of research for maximizing algicidal efficiency. Research has identified that cationic peptides HPA 3 and Helicobacter pylori-derived synthetic antimicrobial peptide work against . akashiwo and . marina by causing pore formation in the plasma membrane (Park et al. 2011). Harmful algal blooms cells motility destroys the plasma membrane and induces the outflow of intracellular components. Other studies show that a designer liposome delivery system for TD53 (1,2-dimyristoyl-sn-glycerol 3-phosphocholine) improves its delivery and efficacy against algal blooms species such as . marina, . akashiwo, and C. polykrikoides (Han et al. 2011).
此外,陽離子物質會破壞帶負電荷的脂質(Park 等人,2011 年)。因此,它們是最大限度提高殺藻效率的一個有前景的研究途徑。研究發現,陽離子勝肽HPA 3 和幽門螺旋桿菌衍生的合成抗菌肽對 .akashiwo 和 .akashiwo 和 marina 起作用,因為它們會在質膜上形成孔隙(Park 等人,2011 年)。有害藻華細胞的移動會破壞質膜,誘導細胞內成分外流。其他研究表明,為TD53 設計的脂質體遞送系統(1,2-二肉荳蔻基-sn-甘油-3-磷酸膽鹼)提高了其遞送能力和對藻華物種(如 ..marina、 .akashiwo 和C. polykrikoides(Han 等人,2011 年)。
Novel and natural cationic polymeric flocculants grafted from quaternary ammonium monomer -(3-chloro-2-hydroxypropyl) trimethylammonium chloride are also effective at removing A. tamarense. Studies show that cationic modified flocculants reduce the adverse effects of harmful algal blooms in seawater (Cho et al. 2016; Pang et al. 2013) have encapsulated cationic liposomes in a new algicide, dichlorophenyl)methyl] cyclohexylamine (DP92). Electrostatic interaction between the negatively charged cell walls of harmful algal blooms and DP92 facilitates electrostatic interaction. Four synthetic peptides such as Del, Hn-Mc-DRW, and Hn-Mc-DWR variants have a robust inhibitory effect on marine algae that may be suitable for marine ecosystems (Park et al. 2016).
由季銨鹽單體 -(3-氯-2-羥基丙基三甲基氯化銨)接枝而成的新型天然陽離子聚合物絮凝劑也能有效去除金龜子。 -(3-氯-2-羥基丙基)三甲基氯化銨也能有效去除金目藻。研究表明,陽離子改質絮凝劑可減少海水中有害藻類大量繁殖的不利影響(Cho 等人,2016 年;Pang 等人,2013 年)。有害藻類帶負電荷的細胞壁與 DP92 之間的靜電相互作用促進了靜電作用。四種合成勝肽,如 Del、Hn-Mc-DRW 和 Hn-Mc-DWR 變體對海洋藻類有很強的抑製作用,可能適用於海洋生態系(Park 等,2016 年)。
Modified clay algicides induce the lysis of harmful algal blooms in two ways. One is direct action through collisions and flocculation with target cells, followed by sedimentation and death (Saxena and Harish 2018). The second is through indirect mechanisms that remove soluble nutrients (e.g., phosphate), and reduces the light available for photosynthesis. Oxidative stress occurs via the overproduction of reactive oxygen species and significantly damages or alters the function and structure of target cells (Park et al. 2011). Modified clay effectiveness is enhanced with certain chemicals or biomolecules used for flocculation enhancement, such as cations, surfactants, coagulants, and biopolymers, which act as a bridge between cells. This bridging effect produces progressively larger flocs that increase the 'net' effect and sedimentation rate.
改質黏土殺藻劑透過兩種方式誘導有害藻類大量繁殖。一種是透過與目標細胞的碰撞和絮凝直接作用,然後沉澱和死亡(Saxena 和 Harish,2018 年)。第二種是透過間接機制去除可溶性營養物質(如磷酸鹽),並減少光合作用所需的光照。氧化壓力透過過度產生活性氧而發生,並嚴重損害或改變目標細胞的功能和結構(Park 等,2011 年)。使用某些用於增強絮凝效果的化學物質或生物分子(如陽離子、界面活性劑、凝結劑和生物聚合物)可增強改質黏土的效果,這些化學物質或生物分子在細胞之間起到橋樑作用。這種橋接效應可產生逐漸增大的絮團,從而提高 "淨 "效應和沈降速度。

Engineered nanoparticles
工程奈米粒子

Recent advances in engineered nanoparticles have led to the development a series of nanomaterials with algicidal properties. It is well known that engineered nanoparticles can
工程奈米粒子領域的最新進展促使人們開發出一系列具有殺藻特性的奈米材料。眾所周知,工程奈米粒子可以
Table 1 Modified clays used to remove red-tide harmful algal blooms
表 1 用於清除赤潮有害藻華的改質黏土
Tested algal bloom species
測試的藻華種類
Concentration/Cultivation
集中/培養
time 時間
Inhibition rate 抑制率 Modified clay 改性黏土 References 參考資料
Inorganic modified clays
無機改質黏土
Skeletonema costatum, and
Skeletonema costatum,以及
Olisthodiscus . Olisthodiscus ..
Acid-treated modified clay-
酸處理改質黏土
modified clay 改性黏土
Maruyama et al. (1987)
丸山等人(1987 年)
Phaeocystis globosa and 球囊藻和
Aureococcus anophagef-
ferens 渡鴉
44.6 and  44.6 和
Aluminum sulfate-modified
硫酸鋁改性
clay; 粘土;
Aluminum chloride-modified
氯化鋁改性
clay; 粘土;
Poly aluminum chloride-mod-
聚合氯化鋁
ified clay 倘泥
Liu (2016), Liu et al. (2016)
Liu(2016),Liu 等人(2016)
Heterosigma akashiwo and
Heterosigma akashiwo 和
Alexandrium tamarense 檉柳
Mixed Metal Layered Hydrox-
混合金屬層狀氫氧化物
ide Positive Electrosol-mod-
意識形態正電模式
ified clay; 粘土;
Polysilicate metal salt-modi-
多矽酸鹽金屬鹽模
fied clay 
Sun et al.  Sun et al.
costatum, H. akashiwo and
costatum、H. akashiwo和
A. tamarense
Poly aluminum chloride-mod-
聚合氯化鋁
ified clay 黏土
Yu et al. (2006)
Yu 等人(2006 年)
Prorocentrum minimum - -
Poly aluminum chloride- 聚合氯化鋁
modified clay 改性黏土
Yu et al. (1999)
Yu 等人(1999 年)
Organic modified clays 有機改質黏土
Prorocentrum donghaiense
and
H. akashiwo
Cetyltrimethylammonium 十六烷基三甲基銨
bromide-modified clay 溴改質粘土
Cao (2004), Cao et al. (2004)
Cao(2004),Cao 等人(2004)
P. donghaiense
Hexadecyltrimethyleamine
十六烷基三甲胺
bromide-modifiedclay 溴化改質粘土
Cao and  曹和
P. globosa
Dodecyl dimethyl benzyl 十二烷基二甲基芐基
ammonium bromide-modi- 溴化銨
fied clay; 粘土;
Cetyltrimethylammonium 十六烷基三甲基銨
bromide-modified clay 溴改質粘土
Amphidinium carterae, Amphidinium carterae、
Scrippsiella trochoidea, P.
donghaiense, H. akashiwo
90 to  90 到
Dialkyl polyoxyethylene 二烷基聚氧乙烯
triquat-modified clay; 三酸酯改性粘土;
Trialkyl polyoxyethylene
三烷基聚氧乙烯
triquat-modified clay; 三酸酯改性粘土;
C8 alkyl polyglycoside quater-
C8 烷基聚醣苷季化合物
nary ammonium salt-modi-
銨鹽模式
fied clay; 粘土;
C12 alkyl polyglycoside C12 烷基聚醣苷
quaternary ammonium salt-
季銨鹽
modified clay 改性黏土
Song et al. (2003)
宋等人(2003 年)
Composite modified clays
複合改質黏土
P. globosa
85 to  85 到
Polyacrylamide/polyaluminum
聚丙烯醯胺/聚鋁
chloride-modified clay; 氯化改質粘土;
Polydimethyldiallyl ammo-
聚二甲基二烯丙基胺
nium chloride/polyaluminum
氯化銨/聚鋁
chloride-modified clay; 氯化改質粘土;
Cetyltrimethylammonium 十六烷基三甲基銨
bromide/polyaluminum chlo-
溴/聚合氯化鋁
ride-modified clay; 改性粘土;
Dodecyl dimethyl benzyl 十二烷基二甲基芐基
ammonium bromide/polya- 溴化銨/聚亞安酯
luminum chloride-modified
氯化鋁改性
clay 黏土
Liu (2016)
S. trochoidea, A. carterae and  
Sodium salt/poly 鈉鹽/聚
aluminum salt-modified clay
鋁鹽改質黏土
Song et al. (2003)
宋等人(2003 年)
Synthetic Surfactant 合成界面活性劑
A. tamarense
Cocamidopropyl betaine- 椰油醯胺丙基甜菜鹼
modified clay 改性黏土
Liu et al. (2016)
Liu 等人(2016 年)
Table 1 (continued) 表 1(續)
Tested algal bloom species
測試的藻華種類
Concentration/Cultivation
集中/培養
time 時間
Inhibition rate 抑制率 Modified clay 改性黏土 References 參考資料
Chattonella marina 沼澤鱂
Ethylene bis (dodecyl dime-
乙烯雙(十二烷基二肟
thyl ammonium bromide)- 乙基溴化銨)-
modified clay 改性黏土
Wang et al. (2017)
王等人(2017)
Biosurfactant 生物表面活性劑
Cochlodinium polykrikoides
Sophorolipid-yellow-modified
黃色改質槐脂
clay 黏土
Lee et al. (2008)
李等人(2008 年)
The clays are considered in terms of harmful algal bloom species impacted, concentration and cultivation time (i.e., exposure to the clay), inhibition rate, the name of the modified clay, and relevant references
從影響的有害藻華種類、濃度和培養時間(即接觸粘土的時間)、抑制率、改性粘土的名稱以及相關參考文獻等方面對粘土進行了考量
induce cell stress through the formation of reactive oxygen species (ROS), causing damage to organelles, high rates of consumption of nutrients, and reduced rates of photosynthesis (Saxena and Harish 2018). Different nanomaterials have been used in titanium dioxide, zinc oxide, cerium oxide, coral-like structured barium titanate, yttrium oxide, and aluminum oxide; these have all proven to be effective algicides. The phytoplankton cell wall comprises protein, polysaccharide, and uric acid and has high adhesion to engineered nanoparticles. Functional groups present on the cell wall form a negatively charged surface, enhancing the electrostatic attraction with positively charged engineered nanoparticles (Chen et al. 2019). The enormous surface area of engineered nanoparticles improves cell entrapment while reducing nutrient uptake and photosynthesis of cells (Li et al. 2015a, b; Li et al. 2018).
透過形成活性氧(ROS)誘導細胞應激,導致細胞器受損、營養物質消耗率高以及光合作用速率降低(Saxena 和 Harish,2018 年)。不同的奈米材料已被用於二氧化鈦、氧化鋅、氧化鈰、珊瑚狀結構的鈦酸鋇、氧化釔和氧化鋁;這些都被證明是有效的殺藻劑。浮游植物細胞壁由蛋白質、多醣體和尿酸組成,對工程奈米粒子有很高的附著力。細胞壁上的官能基形成帶負電的表面,增強了與帶正電的工程奈米粒子的靜電吸引(Chen 等,2019 年)。工程奈米粒子巨大的表面積提高了細胞吸附能力,同時降低了細胞的營養吸收和光合作用(Li 等人,2015a, b;Li 等人,2018)。
Chiu et al. showed that marine phytoplankton responds to different engineered nanoparticles through the calcium signaling pathway (Chiu et al. 2017). Minor changes in intracellular levels in the presence of nanomaterialinduced toxicity causes phytoplankton mortality, but the mechanisms are not yet fully understood (Kadar et al. 2012). Different dinoflagellate species need to be studied further, especially those that produce the harmful algal blooms, and this requires detailed physiological responses for the mitigation of blooms in the field (Li et al. 2018). Although very few types of engineered nanoparticles have been developed and used in laboratory experiments, the results for algal blooms removal are encouraging (Table 2). Risk assessment studies are required to better understand the efficacy of engineered nanoparticles for mitigating harmful algal blooms.
Chiu等人的研究表明,海洋浮游植物透過鈣信號通路 對不同的工程奈米粒子做出反應(Chiu等人,2017)。 (Chiu等人,2017)。在奈米材料誘導的毒性作用下,細胞內 水平的微小變化會導致浮游植物死亡,但其機制尚未完全明了(Kadar等人,2012)。需要進一步研究不同的甲藻種類,尤其是那些產生有害藻華的甲藻,這需要詳細的生理反應,以便在現場緩解藻華(Li 等人,2018 年)。儘管已開發並在實驗室實驗中使用的工程奈米粒子種類很少,但用於清除藻華的結果令人鼓舞(表 2)。需要進行風險評估研究,以便更好地了解工程奈米粒子在緩解有害藻華的功效。

Algicidal chemicals 殺菌劑

Use of algicidal chemicals is a standard method for mitigation and control of harmful algal blooms, but limitations exist due to toxicity to other aquatic organisms (Grattan et al. 2016). Therefore, significant efforts have been made to identify new chemical compounds that are environmentally friendly and specifically target harmful algae (Anderson 2009). Chemical oxidants such as ozone, chlorine, permanganate, copper sulfate, sodium hypochlorite, and hydrogen peroxide are often used for the inactivation of harmful algal blooms (Ebenezer et al. 2014). Use of ozone has proven effective for the inactivation of different algal species such as K. brevis, Amphidinium sp. and C. polykrikoides (Oemcke and Hans van Leeuwen 2005; Schneider et al. 2003; Shin et al. 2017). Ozone has been shown to rapidly oxidize ten different algal blooms species through lipid peroxidation and cell membrane rupture (Ebenezer and Ki 2013) and disruption of gene structure. Ozone has been effective in the laboratory and was also recently recommended for treatments of ship ballast water.
使用殺藻化學物質是緩解和控制有害藻華的標準方法,但由於對其他水生生物具有毒性,因此存在局限性(Grattan 等人,2016 年)。因此,人們一直在努力尋找既環保又能專門針對有害藻類的新型化合物(Anderson,2009 年)。臭氧、氯、高錳酸鹽、硫酸銅、次氯酸鈉和過氧化氫等化學氧化劑經常被用於滅活有害藻類(Ebenezer 等,2014 年)。事實證明,臭氧可有效滅活不同種類的藻類,如 K. brevis、Amphidinium sp.和 C. polykrikoides(Oemcke 和 Hans van Leeuwen,2005 年;Schneider 等人,2003 年;Shin 等人,2017 年)。研究表明,臭氧可透過脂質過氧化、細胞膜破裂(Ebenezer 和 Ki,2013 年)和基因結構破壞,迅速氧化十種不同的藻華物種。臭氧在實驗室中效果顯著,最近也被推薦用於處理船舶壓艙水。
Moreover, recent studies have also demonstrated that when tiny ozone bubbles called "nanobubbles" burst in the water, they produce hydroxyl radicals and peroxides, so ozone levels must be carefully monitored for effects on marine life. Many of the results with ozone were delineated
此外,最近的研究還表明,當被稱為 "奈米氣泡 "的微小臭氧氣泡在水中破裂時,會產生羥基自由基和過氧化物,因此必須仔細監測臭氧濃度對海洋生物的影響。許多與臭氧有關的結果都被描述為
Table 2 Engineered nanoparticles used to remove red tide harmful algal blooms species
表 2 用於清除赤潮有害藻華的工程奈米顆粒 物種
Engineered nanoparticles
工程奈米粒子
Tested HAB cells 經測試的 HAB 細胞
Concentration/cultivation
濃縮/培養
time 時間
Inhibition rate 抑制率 References 參考資料
Titanium dioxide 二氧化鈦 Karenia brevis 卡倫氏菌 Li et al. (2015a, b)
李等人(2015a,b)
Titanium dioxide 二氧化鈦 A. tamarense - Li et al. (2018)
李等人(2018)
Silver nanoparticles 銀奈米粒子 P. minimum P. 最低限度 Butz et al. (2019)
布茨等人(2019)
Zinc oxide 氧化鋅 A. tamarense Castro-Bugallo et al. (2014)
Castro-Bugallo 等人(2014 年)
Yttrium(III) oxide 氧化釔(III) A. tamarense Castro-Bugallo et al. (2014)
Castro-Bugallo 等人(2014 年)
in regional reports but have not been recorded in international academic articles. The oxidative biocide chlorine produces a marked physiological and biochemical response in P. minimum (Ebenezer and Ki 2013) sodium hypochlorite and copper sulfate, when used as algicides, may significantly inhibit the growth, metabolism, and photosynthesis of algae, destroy the plasma membrane of cells, and produce reactive oxygen species. They are also highly effective in removing C. polykrikoides by promoting cell stress (Ebenezer et al. 2014).
但在國際學術文章中還沒有記錄。次氯酸鈉和硫酸銅用作殺藻劑時,可顯著抑制藻類的生長、新陳代謝和光合作用,破壞細胞質膜,並產生活性氧。它們還能透過促進細胞壓力反應來高效去除多殺藻類(Ebenezer 等人,2014 年)。
Copper sulfate is considered too expensive to control marine harmful algal blooms and is toxic to many marine organisms so is not considered further here. Kwon et al. found that 1,4 naphthoquinone with benzothiazole derivatives is a potent inhibitor of . akashiwo and . polykrikoides (Kwon et al. 2013) Thiazolidinediones, also called glitazones, have shown potent algicidal activity of species such as . circularisquama, C. marina, H. akashiwo, and C. polykrikoides (Baek et al. 2012, 2014). In photosynthetic organisms, the compound locks electron transfer in photosystem II though its exact mode of action is not fully clear (Kim et al. 2010). Because the compound is hydrophobic, it may damage the cell membrane, including the thylakoid membrane structure, resulting in photosynthetic damage and cell lysis (Baek et al. 2012, 2013, 2014; Kim et al. 2010, 2012).
硫酸銅被認為在控制海洋有害藻華方面過於昂貴,對許多海洋生物有毒,因此在此不再贅述。 Kwon 等人發現,含有苯並噻唑衍生物的 1,4-萘醌對 .akashiwo 和 ..polykrikoides(Kwon 等人,2013 年)。噻唑烷二酮類,又稱格列酮類,對 ..circularisquama、C. marina、H. akashiwo 和 C. polykrikoides(Baek 等人,2012 年,2014 年)。在光合生物中,該化合物可鎖定光合系統 II 中的電子傳遞,但其確切的作用模式尚不完全清楚(Kim 等,2010 年)。由於該化合物具有疏水性,它可能會破壞細胞膜,包括類木質膜結構,導致光合作用損傷和細胞溶解(Baek 等人,2012 年、2013 年、2014 年;Kim 等人,2010 年、2012 年) 。
Different chemical compounds have been developed and used in experiments involving the removal of various types of harmful algal blooms cells (Table 3). The mechanism by which chemical algicides induce the cell lysis. The algicide most probably ruptures or is transferred through the cell wall and cell membrane by specific transporters, and then enters the cytoplasm and encounters organelles, including chloroplasts, the endoplasmic reticulum, and mitochondria. This process stimulates the overproduction of reactive oxygen species (Ebenezer and Ki 2013). Strong oxidants like ozone increase levels reactive oxygen species within cells, interfering with cell function and resulting in cell lysis (Zhang et al. 2003). Hydroxyl radicals and hydrogen peroxide are reactive oxygen species that are by-products of photosynthesis and respiration. Hydroxyl radicals and oxygen can produce hydroxide, a highly damaging reactive oxygen species. The excess reactive oxygen species activities of antioxidant enzymes, such as superoxide dismutase, catalase, reduced glutathione, peroxidase, are responsible for scavenging reactive oxygen species.
在清除各類有害藻華細胞的實驗中,已經開發並使用了不同的化合物(表 3)。化學殺藻劑誘導細胞裂解的機制。殺藻劑很可能會破裂細胞壁和細胞膜,或透過特定的轉運體轉移到細胞壁和細胞膜上,然後進入細胞質並遇到細胞器,包括葉綠體、內質網和粒線體。這個過程會刺激活性氧的過度產生(Ebenezer 和 Ki,2013 年)。臭氧等強氧化劑會增加細胞內的活性氧水平,幹擾細胞功能並導致細胞溶解(Zhang 等人,2003 年)。羥自由基和過氧化氫是活性氧,是光合作用和呼吸作用的副產品。羥自由基和氧會產生氫氧化物,這是一種破壞性很強的活性氧。超氧化物歧化酶、過氧化氫酶、還原型穀胱甘肽、過氧化物酶等抗氧化酶具有清除過量活性氧的活性。
These enzymes are localized in different cell compartments and activated to various extents upon exposure to stress. The remaining reactive oxygen species initiate lipid peroxidation, leading to an increase in malondialdehyde content, often used as a biomarker of oxidative stress and loss of membrane integrity; the lack of intracellular malondialdehyde ultimately leads to cell death. In addition, the chloroplast membrane is damaged, and the grana lamellae of the thylakoid membranes are destroyed, creating interfering with photosynthetic system II and I (plastoquinone, plastocyanin, and ferredoxin activity), decreasing chlorophyll and protein content (cytochrome b6-f complex), eventually leading to photosynthesis being down-regulated upon. Excessive reactive oxygen species can also cause mitochondrial disfunction, which may affect cell metabolism and clump nuclear chromatin through binding nucleotides. The disruption of the metabolic process damages the DNA, affecting gene expression and cell reproductive (Shin et al. 2017; Zhang et al. 2003).
這些酵素定位於不同的細胞區,在受到壓力時會被不同程度地活化。剩餘的活性氧引發脂質過氧化,導致丙二醛含量增加,丙二醛通常被用作氧化壓力和膜完整性喪失的生物標記;細胞內丙二醛的缺乏最終導致細胞死亡。此外,葉綠體膜受損,類囊體膜的顆粒層被破壞,幹擾光合作用系統II 和I(質醌、質花青素和鐵氧還蛋白活性),降低葉綠素 和蛋白質含量(細胞色素b6-f 複合物),最終導致光合作用下調。過多的活性氧也會導致粒線體功能失調,進而影響細胞的新陳代謝,並透過結合核苷酸使核染色質凝集。代謝過程的破壞會損害 DNA,影響基因表現和細胞繁殖(Shin 等人,2017 年;Zhang 等人,2003 年)。

Biological methods 生物方法

Biological methods of algal blooms control are environmentally friendly and may provide a cost-effective alternative strategy to physical and chemical methods. Generally,
控制藻華的生物方法對環境友好,可以提供一種替代物理和化學方法的具有成本效益的策略。一般來說
Table 3 Chemical oxidants used to remove red tide harmful algal blooms
表 3 用於清除赤潮有害藻華的化學氧化劑
Oxidants 氧化劑
Concentration/cultiva- 集中/培養
tion time 時間
Inhibition rate 抑制率 Tested algal bloom species
測試的藻華種類
Reference 參考資料
Ozone 臭氧
H. akashiwo; Heterocapsa triquetra, .
polykrikoides; K. mikimotoi
Honjo et al. (2004)
本莊等人(2004 年)
Potassium permanganate 高錳酸鉀 Karlodinium micrum; P. minimum Deeds et al. (2002)
Deeds 等人(2002 年)
Ozone 臭氧 Gymnodinium breve 魴魚 Schneider et al. (2003)
施奈德等人(2003 年)
Hydrogen peroxide 過氧化氫 C. polykrikoides Ryu et al. (1998)
Ryu 等人(1998 年)
Ozone 臭氧 C. polykrikoides Schneider et al. (2003)
施奈德等人(2003 年)
Chlorine  P. globose Zhang et al. (2003)
張等人(2003 年)
Ozone 臭氧 A. tamarense; S. trochoidea Yang et al.  Yang et al.
Chlorine  C. polykrikoides Ryu et al. (1998)
Ryu 等人(1998 年)
Chlorine  - C. polykrikoides Ebenezer and Ki (2013)
埃比尼澤和基(2013 年)
The oxidants are considered in terms of the type of oxidant, concentration and cultivation time (i.e., exposure to the clay), inhibition rate, harmful algal bloom species impacted, and relevant references
氧化劑的考慮因素包括氧化劑的類型、濃度和培養時間(即接觸黏土的時間)、抑制率、受影響的有害藻華種類以及相關參考文獻。

biological algicides kill algae through direct or indirect contact. For example, various microorganisms are used, such as bacteria, viruses, actinomycetes, parasitic pathogens, grazers, plants, and animals, which produce other secondary metabolite chemicals (Xiao et al. 2019; Xu et al. 2019; Zhu et al. 2019). Several different organisms can theoretically act as biological controllers of harmful algal blooms. For algal bloom control, biological methods rely primarily on predator-prey methods that mostly rely on controls by zooplankton populations.
生物殺藻劑透過直接或間接接觸殺死藻類。例如,可使用各種微生物,如細菌、病毒、放線菌、寄生病原體、食草動物、植物和動物,它們會產生其他次級代謝物化學物質(Xiao 等,2019 年;Xu 等,2019 年;Zhu 等,2019 年)。理論上,幾種不同的生物都可以作為有害藻華的生物控制者。對於藻華控制,生物方法主要依靠捕食者-被捕食者方法,這種方法主要依靠浮游動物族群的控制。

Algicidal bacteria 殺藻細菌

Bacteria-algae-based approaches for algal blooms control represent a research hotspot. This method can lyse algae directly or indirectly, attacking cells (Zhang et al. 2018a, b). A direct attack mode requires that the algicidal bacteria contact and invade the algal cells' surface to inhibit the growth and cause cell lysis. Researchers have found that most cytophages, including Flavobacterium and Bacteroidetes, show algicidal activity through direct contact with algal cells. An indirect attack mode mainly comprises the competition between bacteria and algae or the secretion of extracellular metabolites leading to algal death (Meyer et al. 2017). For example, deinoxanthin produced by Deinococcus xianganeasis has a robust anti-algal effect on . tamarense (Li et al. 2015a, b). Prodigiosin produced by Hahella KA22 has produced high algicidal activity against H. akashiwo, Phaeocystis globosa, and Prorocentrum donghaiense (Zhao et al. 2014). Besides, -acetylhistamine, o-tyrosine, L-histidine, and urocanic acid produced by Bacillus sp. strain B1 can kill H. akashiwo, P. globosa, and . donghaiense (Zhao et al. 2014). These and other active microbial metabolites are highly effective algicides, but their ecological impact on other aquatic organisms has not been well tested, severely hindering development of this promising harmful algal blooms treatment.
基於細菌-藻類的藻華控制方法是一個研究熱點。此方法可以直接或間接裂解藻類,攻擊細胞(Zhang 等,2018a, b)。直接攻擊模式要求殺藻細菌接觸並侵入藻類細胞表面,抑制其生長並導致細胞裂解。研究人員發現,大多數的細胞噬菌體(包括黃桿菌和類桿菌)都是透過與藻類細胞直接接觸而表現出殺藻活性。間接攻擊模式主要包括細菌與藻類之間的競爭或分泌胞外代謝物導致藻類死亡(Meyer 等,2017 年)。例如,Deinococcus xianganeasis 產生的脫氧黃素對 ..tamarense(Li 等人,2015a, b)。 Hahella KA22 產生的原薯蕷皂苷對 H. akashiwo、Phaeocystis globosa 和 Prorocentrum donghaiense 具有很高的殺藻活性(Zhao 等,2014 年)。此外, -乙醯組胺-菌株B1 產生的-乙醯組胺、鄰酪胺酸、L-組胺酸和尿氨酸能殺死H. akashiwo、P. globosa 和{{3} } ..donghaiense(趙等人,2014 年)。這些和其他活性微生物代謝產物是高效的殺藻劑,但它們對其他水生生物的生態影響尚未得到很好的測試,嚴重阻礙了這種有前景的有害藻華處理方法的發展。
Bacteria have a complicated relationship with bloomforming species, and bacteria with algicide activity should be first isolated and identified (Li et al. 2015a, b). The algicide activity of bacteria can be divided into two categories: a single microorganism responsible for suppressing harmful algal blooms species or a multi-species community (Sun et al. 2018). Microbial aggregates are a multi-species community of algae that include microorganisms and macroorganisms growing on solid substrates. Multispecies communities comprise aggregates embedded in the mucus matrix of extracellular polymeric substances and have relatively high mechanical stability and cell density. These aggregates comprise phototrophic and heterotrophic biofilms (Sun et al. 2018). Heterotrophic biofilms control harmful algal blooms by producing anti-algae compounds. For example, the growth-inhibiting bacteria isolated from seagrass
細菌與形成藻華的物種關係複雜,應先分離鑑定具有殺藻活性的細菌(Li 等,2015a,b)。細菌的殺藻活性可分為兩類:一類是負責抑制有害藻華物種的單一微生物,另一類是多物種群落(Sun 等,2018 年)。微生物聚集體是一種多物種藻類群落,包括生長在固體基質上的微生物和大型生物。多物種群落由嵌入胞外聚合物物質黏液基質的聚集體組成,具有相對較高的機械穩定性和細胞密度。這些聚集體包括光養生物膜和異養生物膜(Sun 等,2018 年)。異養生物膜透過產生抗藻化合物來控制有害藻類的大量繁殖。例如,從海草中分離出的生長抑制細菌

(Zostera sp.) leaves show inhibitory activity against the toxic dinoflagellate A. tamarense (Onishi et al. 2014). Therefore, growth-inhibiting bacteria in the microbial aggregates provide an attractive possibility for biological control of toxic blooms.
(Zostera sp.)葉片對有毒甲藻 A. tamarense 具有抑制活性(Onishi 等人,2014 年)。因此,微生物聚集體中的生長抑制細菌為有毒水華的生物控制提供了一種極具吸引力的可能性。
In the past few decades, many studies have reported that algal inhibition by bacteria involves cell destruction, subcellular structure changes, photosynthesis inhibition, enzyme activity effects, and functional gene expression changes, showing that these may negatively affect algae and cause cell death (Cai et al. 2016; Lu et al. 2016; Zhang et al. 2018a, b; Zhang et al. 2016). Most algicide bacteria and their compounds are algae species-specific, making them an environmentally friendly method of harmful algal blooms control. The bacterial genera Cytophaga sp., Saprospira sp., Alteromonas sp., Pseudoalteromonas sp., Vibrio sp., Shewanella sp., Bacillus sp., Planomicrobium sp., and Micrococcus sp., target specific algal cells (Kim et al. 2015a, b; Meyer et al. 2017; Park et al. 2010; Pokrzywinski et al. 2012). Before considering the use of biological control for harmful algal blooms, the environmental impact of biological releases on ecosystems needs careful consideration.
在過去幾十年中,許多研究報告了細菌對藻類的抑製作用涉及細胞破壞、亞細胞結構變化、光合作用抑制、酶活性影響和功能基因表現變化,表明這些可能對藻類產生負面影響並導致細胞死亡(Cai 等,2016 年;Lu 等,2016 年;Zhang 等,2018a,b;Zhang 等,2016 年)。大多數殺藻細菌及其化合物對藻類物種具有特異性,因此是控制有害藻華的環境友善方法。細菌屬Cytophaga sp.、Saprospira sp.、Alteromonas sp.、Pseudoalteromonas sp.、Vibrio sp.、Shewanella sp.、Bacillus sp.、Planomicrobium sp.和Micrococcus sp.針對特定的藻類細胞(Kim 等,2015a,b; Meyer 等,2017;Park 等,2010;Pokrzywinski 等,2012)。在考慮使用生物控制有害藻華之前,需要仔細考慮生物釋放對生態系統的環境影響。

Actinomycetes as an algicide
作為殺藻劑的放線菌

There are relatively few studies on algicidal actinomycetes and their bioactive compounds (Bai et al. 2011; Zhang et al. 2014; Zheng et al. 2013). The first report is on Micrococcus sp., which killed the harmful dinoflagellate, C. polykrikoides (Kim et al. 2008). To the best of our knowledge, only four lysing actinomycetes have been described, including Brevibacterium sp., S. malaysiensis, S. alboflavus, and Micrococcus sp., which can kill the harmful dinoflagellates . polykrikoides, A. tamarense, P. globosa, and H. akashiwo (Bai et al. 2011; Yu et al. 2018; Zhang et al. 2015; Zheng et al. 2013). These actinomycetes exhibit high-strength algicidal activity through inhibition of electron flow in the PS II reaction center and interference with photosynthetic pigments. Any inhibition of physiological activity can induce reactive oxygen species production in algal cells that may ultimately lead to oxidative damage. As previously noted, secondary metabolites produced by actinomycetes, such as proteases, peptides, amino acids, and antibiotic, can also be strong algicidal compounds.
關於殺藻放線菌及其生物活性化合物的研究相對較少(Bai 等人,2011 年;Zhang 等人,2014 年;Zheng 等人,2013 年)。第一份報告是關於微球菌(Micrococcus sp.)的,它殺死了有害的甲藻 C. polykrikoides(Kim 等,2008 年)。據我們所知,目前只描述了四種裂解放線菌,包括Brevibacterium sp.、S. malaysiensis、S. alboflavus 和Micrococcus sp.,它們可以殺死有害甲藻 ..polykrikoides、A . tamarense、P. globosa 和H. akashiwo(Bai 等人,2011 年;Yu 等人,2018 年;Zhang 等人,2015 年;Zheng 等人,2013 年)。這些放線菌透過抑制 PS II 反應中心的電子流和乾擾光合色素,表現出高強度的殺藻活性。對生理活動的任何抑制都會誘導藻類細胞產生活性氧,最終導致氧化損傷。如前所述,放線菌產生的次級代謝物,如蛋白酶、勝肽、胺基酸和抗生素等,也可以成為強烈的殺藻化合物。

Algicidal parasitic pathogens
殺滅寄生病原體

The dynamics of algal parasites and their role in harmful algal blooms termination are not well understood. Parasites can proliferate in marine dinoflagellate hosts, causing death (Chen et al. 2018). For example, Amoebophrya ceratii infection spreads rapidly in dense dinoflagellate populations, reducing host reproduction rates. Parasitic infections provide
藻類寄生蟲的動態及其在有害藻華終止中的作用尚不十分清楚。寄生蟲可在海洋甲藻宿主體內增殖,導致死亡(Chen 等,2018 年)。例如,Amoebophrya ceratii 感染會在密集的甲藻族群中迅速擴散,降低宿主的繁殖率。寄生蟲感染提供了

opportunities for biological control of harmful algal blooms (Siano et al. 2011; Velo-Suarez et al. 2013) and ability to eliminate entire host populations in a few days potentially makes them more effective as control agents that zooplankton. The parasite identifies and attaches to the host's surface, penetrates the host cytoplasm and even the nucleoplasm, and then regulates host defense mechanisms, including host toxins (Padilla et al. 2010). Recent studies have found that galactolipid in the chloroplast membrane of A. tamarase can be infected by Amoebophrya sp (Leblond and Dahmen 2012). So far, two types of parasites-Amoebophrya ceratii and Parvilucifera infectans-are well-known intracellular parasites of free-living dinoflagellates that have received particular attention as a biological methods algal blooms species inhibition (Chambouvet et al. 2008; Li et al. 2014).
這些寄生蟲能夠在幾天內消滅整個宿主種群,這可能使它們成為更有效的浮游動物控製劑,從而為有害藻華的生物控制提供了機會(Siano 等,2011 年;Velo-Suarez 等,2013年)。寄生蟲會辨識並附著在宿主表面,穿透宿主細胞質甚至核質,然後調節宿主防禦機制,包括宿主毒素(Padilla 等,2010 年)。最近的研究發現,檉柳甲葉綠體膜中的半乳脂可被嗜水阿米巴蟲感染(Leblond 和 Dahmen,2012 年)。迄今為止,有兩類寄生蟲--Amoebophrya ceratii 和Parvilucifera infectans--是眾所周知的自由生活甲藻的胞內寄生蟲,作為抑制藻華物種的生物方法受到特別關注(Chambouvet 等,2008 年;Li 等,2014 年)。

Algicidal viruses 殺菌病毒

The use of algicidal viruses has great potential as a biological control method for harmful algal blooms. Over 40 viruses that can infect algae have been identified and isolated (Nagasaki and Tomaru 2009). Among these is cell lysis of the bloom-forming dinoflagellate, . circularisquama by HaRNAV, a single-stranded RNA virus, observed in Ago Bay (Mizumoto et al. 2008). Another study found the double-stranded RNA virus lysed . circularisquama (Tarutani et al. 2001). Hemolytic HaV 01 has been used to infect . akashiwo harmful algal blooms (Nagasaki et al. 1999), while HcDNAV, a large double-stranded DNA virus, lyses cells of the bloom-forming of . circularisquama (Takano et al. 2018). The most exciting aspects of this control method is the natural abundance and variety of viruses in marine systems, and their large capacity, easy replication, and high specificity to the host. Further work is required to understand the specificity of viruses to different genetic strains in their host species.
使用殺藻病毒作為生物控制有害藻華的方法具有巨大潛力。目前已發現並分離出 40 多種可感染藻類的病毒(Nagasaki 和 Tomaru,2009 年)。在這些病毒中, .circularisquama 被 HaRNAV(一種單股 RNA 病毒)溶解(Mizumoto 等人,2008 年)。另一項研究發現,雙股 RNA 病毒 能裂解 .circularisquama (Tarutani 等,2001 年)。溶血HaV 01 已被用於感染 .akashiwo 有害藻華(Nagasaki 等,1999 年),而大型雙股DNA 病毒HcDNAV 則能裂解 .circularisquama 的細胞(高野等人, 2018 年)。這種控制方法最令人興奮的地方在於海洋系統中病毒的天然豐富性和多樣性,以及它們的大容量、易複製性和對宿主的高度特異性。要了解病毒對宿主物種中不同基因株的特異性,還需要進一步的工作。

Protistan grazers 原生動物草食動物

Meta-zooplankton grazing may be a significant loss factor for harmful algal blooms, even resulting in their termination (Calbet et al. 2003). These grazing meta-zooplankton include copepods, cladocerans, larvae of invertebrates, and hydrozoans (Lee et al. 2014). An example includes the grazing ciliate Strombidinopsis jeokjo, which reduced a large population of . ploykrikoides to insignificant levels within a few days (Jeong et al. 2008). Mixotrophic dinoflagellates are potentially prolific grazers. For example, Alexandrium pohangense population lyse . polykrikoides cells (Lim et al. 2017), while P. lebourae feeds on Amphidinium sp., Thecadinium kofoidii, and Prorocentrum fukuyoi (Kim et al. 2015a, b). Experiments involving the removal of harmful algal blooms cells by protistan grazers in summarized in
捕食元浮游動物可能是有害藻華的重要損失因素,甚至會導致藻華終止(Calbet 等人,2003 年)。這些吃草的元浮游動物包括橈足類、櫛水母、無脊椎動物幼蟲和水螅(Lee 等,2014 年)。其中一個例子是食草纖毛蟲 Strombidinopsis jeokjo,它將大量 .ploykrikoides 在幾天內就減少到微不足道的水平(Jeong 等,2008 年)。混養甲藻是潛在的多產食草動物。例如,Alexandrium pohangense族群會裂解 .polykrikoides 細胞(Lim 等人,2017 年),而P. lebourae 則以Amphidinium sp.、Thecadinium kofoidii 和Prorocentrum fukuyoi 為食(Kim 等人,2015a, b) 。原生動物食肉動物清除有害藻華細胞的實驗摘要如下

Table 4. But while this biological method appears to be a safe and effective way of controlling harmful algal blooms populations, there are few ecosystem-scale applications.
表 4.不過,雖然這種生物方法似乎是一種安全有效的控制有害藻華數量的方法,但在生態系範圍內的應用卻很少。
Different biological agents have been developed and used in experiments involving the removal of various types of harmful algal blooms cells (Table 4). Biological agents, including bacteria (Pokrzywinski et al. 2017; Zhang et al. 2018a, b), actinomycete (Cai et al. 2016; Yu et al. 2018), viruses (Takano et al. 2018; Tarutani et al. 2001), parasitic pathogens and protistan grazers (Jeong et al. 2011; Kim et al. 2015a, b; Yoo et al. 2013a, b), should also be considered as potential inhibitors for controlling the outbreak of harmful algal blooms. However, logistics difficulties in the predator's application and scaling the culture to get enough zooplankton predators limit their potential use outside the laboratory.
在清除各類有害藻華細胞的實驗中,已經開發並使用了不同的生物製劑(表 4)。包括細菌(Pokrzywinski 等人,2017 年;Zhang 等人,2018a, b)、放線菌(Cai 等人,2016 年;Yu 等人,2018 年)、病毒(Takano 等人,2018 年;Tarutani 等人,2001 年)、寄生病原體和原生動物捕食者(Jeong 等人,2011 年;Kim 等人,2015a, b;Yoo 等人,2013a, b)在內的生物製劑也應被視為控制有害藻華爆發的潛在抑制劑。然而,捕食者應用的後勤困難以及擴大培養規模以獲得足夠的浮游動物捕食者限制了它們在實驗室外的潛在用途。

Micro- and macro-algae algicides
微藻和大型藻類殺藻劑

Many recent studies have focused on separating anti-algae active substances from micro-algae and macro-algae to inhibit harmful algal blooms species (Ben Gharbia et al. 2017; Calbet et al. 2003). Secondary metabolites from micro- and macro-algae play an important role in inhibiting growth of algal blooms species and stopping formation of harmful algal blooms and are generally non-toxic to other organisms (Jeong et al. 2008; Lee et al. 2014). Relationships between micro- and macro-algae and harmful algal blooms have been studied intensively over the last two decades (Jeong et al. 2011; Kim et al. 2015a, b; Lim et al. 2017), including examining terpenoids, glycerolipids, and various other secondary compounds (Ben Gharbia et al. 2017).
最近的許多研究著重於從微藻和大型藻類中分離抗藻活性物質,以抑制有害藻華物種(Ben Gharbia 等人,2017 年;Calbet 等人,2003 年)。微藻和大型藻類中的次級代謝物在抑制藻華物種的生長和阻止有害藻華的形成方面發揮著重要作用,而且一般對其他生物無毒(Jeong 等人,2008 年;Lee 等人, 2014 年)。在過去二十年中,人們對微藻和大型藻類與有害藻華之間的關係進行了深入研究(Jeong 等人,2011 年;Kim 等人,2015a, b;Lim 等人,2017 年),包括研究萜類、甘油脂類和其他各種次級化合物(Ben Gharbia 等人,2017 年)。
Several chemicals have been extracted from marine macro-algae (seaweed) which can inhibit many other microalgae, potentially even red tide dinoflagellates (Sahu et al. 2020; Wang et al. 2021). Previous reports have shown that these bioactive compounds directly attack the permeability of target cell membranes and affect photosynthetic activity by inhibiting the growth and survival of algae. These findings may contribute to novel ways to improve algicide substances for emergency control of algal blooms (Yoo et al. 2013a, b), for example, using extracts or bioactive compounds from micro- and macro-algae. Different metabolites from micro- and macro-algae have used in experiments involving the removal of various types of algal blooms cells, with encouraging results (Table 5).
從海洋大型藻類(海藻)中提取的一些化學物質可抑制許多其他微藻,甚至可能抑制赤潮甲藻(Sahu 等,2020 年;Wang 等,2021 年)。先前的報告顯示,這些生物活性化合物直接攻擊目標細胞膜的滲透性,並透過抑制藻類的生長和存活來影響光合作用活性。這些發現可能有助於以新穎的方式改進用於緊急控制藻華的殺藻物質(Yoo 等,2013a, b),例如,利用微藻和大型藻類的萃取物或生物活性化合物。在清除各種類型藻華細胞的實驗中,使用了來自微藻和大型藻類的不同代謝物,結果令人鼓舞(表 5)。

Inhibitory effects of allelochemicals
等位化學物的抑製作用

Allelopathy from harmful algal blooms involves biochemical compounds produced from secondary metabolism of plants and microorganisms, which influence growth and reproduction of algal blooms species (Chen et al. 2013; Xiao et al.
有害藻華產生的同化作用涉及植物和微生物二次代謝產生的生化化合物,這些化合物會影響藻華物種的生長和繁殖(Chen 等,2013 年;Xiao 等,2007 年)。
Table 4 Biological agents used to remove red tide harmful algal blooms
表 4 用於消除赤潮有害藻華的生物製劑
Algicide 殺藻劑 Mode of action 作用方式 Tested algal bloom species
測試的藻華種類
Reference 參考資料
Bacteria 細菌
Joostella sp. Indirect/Active compounds lytic
間接/活性化合物溶解
A. tamarense Yang et al.  楊等人
Bacillus sp. Indirect/Active compounds lytic
間接/活性化合物溶解
P. globose Li et al. (2014)
李等人(2014 年)
Paracoccus sp. Indirect/Active compounds lytic
間接/活性化合物溶解
P. donghaiense Zhang et al.  Zhang et al.
Mangrovimonas sp. Indirect/Algicidal effect
間接/殺藻作用
A. tamarense Li et al. (2014)
李等人(2014 年)
Pseudoalteromonas sp. 假交替單胞菌 Indirect/Algicidal effect
間接/殺藻作用
A. tamarense Su et al. (2007)
蘇等人(2007 年)
Tenacibaculum sp. Direct/Growth inhibition
直接/生長抑制
A. tamarense Li and Pan (2013)
李和潘(2013)
Cytophaga sp. Direct/Algicidal effect 直接/殺藻作用 G. breve Doucette et al. (1998)
杜塞特等人(1998 年)
Brachybacterium sp. Indirect/Algicidal effect
間接/殺藻作用
A. tamarense Kim et al.  Kim 等人 {{0}
Cytophaga sp. Indirect/Growth inhibition
間接/生長抑制
K. brevis Mayali and Doucette (2002)
Mayali 與 Doucette(2002 年)
Altererythrobacter sp. Indirect/Algicidal effect
間接/殺藻作用
A. tamarense Li et al. (2016)
李等人(2016)
Shewanella sp. Indirect/Algicidal exudate
間接: 藻類滲出物
P. minimum, Karlodinium veneficum; Gyrodinium
P. minimum, Karlodinium v​​eneficum; Gyrodinium
instriatum 引信
Pokrzywinski et al. (2017)
Pokrzywinski 等人(2017 年)
Deinococcus sp. Indirect/Algalytic substance
間接/藻類物質
A. tamarense Li et al.  李等人 {{0}
Alteromonas sp. Indirect/Active compounds lytic
間接/活性化合物溶解
tamarense; H. akashiwo Cho et al. (2016)
Cho 等人(2016 年)
Alteromonas sp. Indirect/Algicidal exudate
間接: 藻類滲出物
P. donghaiense Shi et al. (2018)
Shi 等人(2018)
Vibrio sp. 弧菌 Indirect/Growth inhibition
間接/生長抑制
A. tamarense Fu et al. (2011)
Fu 等人(2011 年)
Actinomycetes 放線菌
Brevibacterium sp. Indirect/Lysis 間接/溶解 A. tamarense Bai et al. (2011)
Bai 等人(2011 年)
malaysiensis 馬來西亞 Indirect/Algicidal effect
間接/殺藻作用
P. globosa Zheng et al. (2013)
鄭等人(2013)
S. alboflavus Indirect/Algicidal effect
間接/殺藻作用
P. globosa Zhang et al. (2014)
張等人(2014)
Streptomyces sp. JSO1 鏈黴菌 JSO1 Algicidal activity 殺藻活性 P. globosa Zhang et al. (2015)
張等人(2015)
S. alboflavus Indirect/Lysis 間接/溶解 P. globosa Cai et al. (2016)
蔡等人(2016)
Streptomyces sp. U3 鏈黴菌 U3 Indirect/Algicidal effect
間接/殺藻作用
H. akashiwo Yu et al. (2018)
Yu 等人(2018)
Parasites 寄生蟲
Amoebophrya sp. Direct/grazing 直接/放牧 A. tamarense 112
Parvilucifera infectans Direct/grazing 直接/放牧 A. minutum Cai et al. (2016)
蔡等人(2016)
Amoebophrya sp. Direct/grazing 直接/放牧 A. sanguinea Mazzillo et al. (2011)
Mazzillo 等人(2011 年)
Amoebophrya ceratii 陶瓷嗜阿米巴原蟲 Direct/grazing 直接/放牧 G. catenatum Nishitani et al. (1985)
Nishitani 等人(1985 年)
Viruses 病毒
HcDNAV Direct/Lysis infection 直接/溶解感染 Heterocapsa circularisquama Takano et al. (2018)
高野等人(2018)
Direct/Induction of cell lysis
直接/誘導細胞裂解
H. circularisquama Tarutani et al. (2001)
Tarutani 等人(2001 年)
HaNIV Direct/Lysis infection 直接/溶解感染 H. akashiwo Lawrence et al. (2001)
勞倫斯等人(2001 年)
HaV 01
Direct/Induction of cell
直接/誘導細胞
apoptosis 凋亡
H. akashiwo Nagasaki et al. (1999)
長崎等人(1999 年)
Protistan grazers 原生動物草食動物
Strombidinopsis sp. Direct/predation 直接/掠奪 Akashiwo sanguinea; C. polykrikoides; S. trochoidea Jeong et al. (1999)
Jeong 等人(1999 年)
Gyrodinium dominans Direct/grazing 直接/放牧 K. mikimotoi Yoo et al. (2010)
Yoo 等人(2010 年)
Gyrodinium moestrupii Direct/grazing 直接/放牧
tamarense; tamarense;
K.brevis; P.minimum
Yoo et al.  Yoo et al.
Polykrikos lebourae 雷鳥 Direct/grazing 直接/放牧 Pseudo-nitzschia fukuyoi; Amphidinium sp. Kim et al.  Kim 等人
Gyrodiniellum shiwhaense
石花菜
Direct/grazing 直接/放牧 Heterocapsa rotundata; A. carterae; P. minimum Jeong et al. (2001)
Jeong 等人(2001 年)
Polykrikos hartmannii 多肉植物 Direct/grazing 直接/放牧 G.catenatum; C. polykrikoides Lee et al. (2015)
李等人(2015 年)
Oxyrrhis marina  Direct/grazing 直接/放牧 A. carterae Jeong et al. (2001)
Jeong 等人(2001 年)
Pfiesteria piscicida Direct/grazing 直接/放牧 A. carterae Jeong et al. (2006)
Jeong 等人(2006 年)
Oxyrrhis marina  Direct/grazing 直接/放牧 P. minimum P. 最低限度 Lee and Park (1998)
李與樸(1998 年)
Polykrikos kofoidii 多重疣狀 Direct/grazing 直接/放牧 C. polykrikoides
Stoeckeria algicida 鱘魚 Direct/grazing 直接/放牧 H. akashiwo Jeong et al. (2005)
Jeong 等人(2005 年)
Protoperidinium bipes Direct/grazing 直接/放牧 S. costatum Jeong et al. (2004)
Jeong 等人(2004 年)
The algicide agents are grouped by bacteria, actinomycetes, parasites, viruses and protistan grazers, and considered in terms of their mode of action, algal blooms species tested and references
殺藻劑依細菌、放線菌、寄生蟲、病毒和原生動物食草動物分類,並依其作用方式、測試的藻華種類和參考文獻進行審議
Table 5 Micro- and macro-algae used to remove red tide harmful algal blooms, including the mode of action, concentration of the algae under test conditions, rate of inhibition, harmful algal bloom species impacted and references
表 5 用於清除赤潮有害藻華的微型和大型藻類,包括作用方式、試驗條件下的藻類濃度、抑制率、受影響的有害藻類種類和參考文獻
Algae 藻類 Mode of action 作用方式
Concentration of test 測試濃度
algae 藻類
Inhibition rate 抑制率
Harmful algal bloom 有害藻類大量繁殖
species impacted 受影響物種
Reference 參考資料
Microalgae 微藻
Cylindrotheca closte-
rium 
Co-culture /Algicidal 共培養/殺菌
exudate 滲出物
cells   細胞 P. donghaiense Yoo et al.  Yoo et al.
Prorocentrum minimum Co-culture 共同文化 cells   細胞 - S. costatum Tameishi et al. (2009)
Tameishi 等人(2009 年)
Phaeodactylum tricor-
nutum 果仁
Algicidal exudate 藻類滲出物 - P. donghaiense Xue et al. (2018)
薛等人(2018)
H. circularisquama Co-culture 共同文化 cells   細胞 - G. mikimotoi Uchida et al. (1999)
內田等人(1999 年)
P. complanatoides; P. complanatoides;
Navicula . 鳀魚 ..
Algicidal exudate 藻類滲出物 cells   細胞 92.5 and  92.5 和 Ostreopsis cf. ovata Mizumoto et al. (2008)
水本等人(2008 年)
Macro-algae 大型藻類
Caulerpa sp.; C. crassa
Cladophora sp.
Algicidal exudate 藻類滲出物 cells   細胞 -
Fibrocapsa japonica; 日本纖毛蟲
K. mikimotoi, .
K. mikimotoi, {{1}.
akashiwo
Alamsjah et al. (2005),
Alamsjah 等人(2005 年)、
Sun et al. (2016)
孫等人(2016)
U. pertusa Algicidal exudate 藻類滲出物 cells   細胞
A. tamarense; P. dong-
haiense 海鹽
Sun et al. (2015)
Sun 等人(2015 年)
intermedia; G. prolon-
gata 伽達
Indirect/Algicidal effect
間接/殺藻作用
- - C. polykrikoides Jeong et al. (2000)
Jeong 等人(2000 年)
H. musciformis Indirect/Algicidal effect
間接/殺藻作用
cells   細胞 C. marina C. 碼頭
Pramitha and Lipton 普拉米塔和利普頓
P. purpurea
Indirect/Algalytic 間接/藻類
substance 內容
cells   細胞 C. marina C. 碼頭 Tang et al. (2015)
唐等人(2015)
U. pertusa Indirect/Algicidal effect
間接/殺藻作用
- 82 and  82 和 A. carterae; P. globosa Calbet et al. (2003)
卡爾貝特等人(2003 年)
R. pseudopalmata Indirect/Lysis 間接/溶解 100 cells  100 個單元 - O. ovata 卵形 Jeong et al. (2008)
Jeong 等人(2008 年)
U. rigida Indirect/Algicidal effect
間接/殺藻作用
cells   細胞 62,47 and  62,47 和
C. monotis
O. ovata; Prorocentrum O. ovata; Prorocentrum
lima 利馬
Jeong et al. (2008)
Jeong 等人(2008 年)
Zonaria sp.
Indirect/algalytic sub- 間接/析出子
stance 姿態
-
Gambierdiscus pacifi-
cus
Umetsu et al. (2019)
Umetsu 等人(2019 年)
G. lemaneiformis Indirect/Lysis 間接/溶解 cells   細胞 K. mikimitoi Su et al. (2017)
蘇等人(2017)
U. linza Algicidal exudate 藻類滲出物 cells   細胞 - P. donghaiense
Jeong et al. (2000),
Jeong 等人(2000 年)、
Wang et al. (2007)
Wang 等人(2007 年)
E. clathrata Indirect/Lysis 間接/溶解 - G. breve Tian (2009) 田(2009)
E. kurome Indirect/Algicidal effect
間接/殺藻作用
20,000 cells  20,000 個細胞 K. mikimotoi Nagayama et al. (2003)
長山等人(2003 年)
I. sinicola
Indirect/algalytic sub- 間接/析出子
stance 姿態
- 61 and  61 和
A. catenella; K. miki-
motoi  發動機
Hirao et al. (2012)
平尾等人(2012 年)
S. latiuscula Algicidal exudate 藻類滲出物 cells   細胞
Phaeodactylum tricor-
nutum 果仁
Zhou et al. (2009)
Zhou 等人(2009 年)
U. prolifera Indirect effect 間接影響 cells   細胞 and  
A. tamarense; . A. tamarense; ..
mikimitoi
Sun et al. (2016)
孫等人(2016)
2019). In recent years, allelopathy has gained attention for its low-cost, low-toxicity, biodegradability, and environmentally friendly characteristics.
2019).近年來,等位基因因其低成本、低毒性、可生物降解和環境友好的特點而備受關注。
Studies of bacteria have shown that most bacteria inhibit or kill algae by secreting extracellular secondary compounds such as alkaloids, amino acids, polyketide, and benzoic acid; these are important in causing the lysis of algal cells (Pokrzywinski et al. 2012). Sophorolipids, 1 -acetyl- -carboline and diketopiperazine have been reported to have algicidal activity on harmful algal blooms species such as K. mikimotoi, P. globosa, and A. tamarense (Kim et al. 2015a, b; Lu et al. 2016; Tan et al. 2016; Zheng et al. 2013). Researchers anticipate that some algicidal compounds can be isolated to control harmful algal blooms. Destruction of cell integrity may be an important method for inhibition of red tide algae (Pokrzywinski et al. 2017). So far, identifying algicides derived from bacteria is still limited, making it more challenging to determine the algicide gene expression and regulation mechanisms (Chen et al. 2013; Lu et al. 2016). Aponin, a biochemical compound produced by Gomphosphaeria aponina, acted as a control agent for the algal blooms dinoflagellate G. breve. Natural flavonoids, such as baicalein and
對細菌的研究表明,大多數細菌會透過分泌胞外次生化合物(如生物鹼、胺基酸、多酮類化合物和苯甲酸)來抑製或殺死藻類;這些化合物對導致藻類細胞裂解非常重要(Pokrzywinski 等人,2012 年)。槐脂、1-乙醯基- -咔啉和二酮酸。 -咔啉和二酮哌嗪對K. mikimotoi、P. globosa 和A. tamarense 等有害藻華物種具有殺藻活性(Kim 等,2015a,b;Lu 等,2016;Tan 等,2016;Zheng 等, 2013)。研究人員預計,可以分離出一些殺藻化合物來控制有害藻華。破壞細胞完整性可能是抑制赤潮藻類的重要方法(Pokrzywinski 等人,2017 年)。迄今為止,鑑定來自細菌的殺藻物質仍然有限,這使得確定殺藻基因表現和調控機制更具挑戰性(Chen 等,2013 年;Lu 等,2016 年)。 Aponin 是由 Gomphosphaeria aponina 產生的生化化合物,可作為藻華甲藻的控製劑。天然黃酮類化合物,如黃芩素和

baicalin, worked against the inhibitory effect of harmful algal blooms species such as . marina and . mikimotoi et al. 2012). Urocanic acid, -acetylhistamine, -linolenic acid, linoleic acid, L-histidine, hexadeca-4,7,10,13-tetraenoic acid, octadeca-6,9,12,15-tetraenoic acid, eicosapentaenoic acid, and other biochemical compounds inhibit the growth of harmful algal blooms species such as . mikimotoi, . akashiwo, F. japonica, and C. antiqua significantly (Wang et al. 2012; Zhuang et al. 2018).
黃芩苷對 .marina 和 .mikimotoi 等人,2012 年)。尿囊酸、 .-乙醯組織胺、 .-亞麻油酸、亞麻油酸、L-組胺酸、十六碳-4,7,10,13-四烯酸、十八碳-6,9,12,15-四烯酸、二十碳五烯酸等生化化合物可抑制 ..mikimotoi、 ..akashiwo、F. japonica 和C. antiqua 等有害藻華物種的生長有明顯的抑製作用(Wang 等,2012 年;Zhuang 等,2018 年)。
Allelopathic substances from aquatic plants are of considerable research interest, but few studies have examined the inhibitory effects of natural plant chemicals on coastal harmful algal blooms species (Jeong et al. 2011). For example, two species of mangrove leaf aqueous extracts (from Bruguiera gymnorrhiza and Kandelia candel), norsesquiterpenes compounds and phenolic glycoside compounds, produced significant inhibition of P.globosa (Laabir et al. 2010; Sun et al. 2012). Aqueous biochemical compounds have also been extracted from aquatic plants and sea grasses, such as Zostera marina and . noltii, with allopathic effects related to reduced photosynthetic activity of . catenella. Laabir et al. (2010) reported that Luteolin-7-O-glucUro-nide biochemical compounds from the seagrass Enhalus acoroides could inhibit the growth of . globosa.
從水生植物中提取的別名物質頗受研究關注,但很少有研究探討天然植物化學物質對沿海有害藻華物種的抑製作用(Jeong 等,2011 年)。例如,兩种红樹葉水萃取物(來自 Bruguiera gymnorrhiza 和 Kandelia candel)、後萜化合物和酚苷化合物對球藻產生了顯著的抑製作用(Laabir 等,2010 年;Sun 等,2012 年)。也從水生植物和海草(如Zostera marina 和 ..noltii,其異化作用與 .catenella的光合作用減弱有關。catenella.Laabir 等人(2010 年)報道,海草Enhalus acoroides 中的木犀草素-7-O-葡萄糖內酯生化化合物可抑制 .globosa.
The coastal invasive plant Spartina alterniflora produces flavonoids that have intense anti-algal activity on . globosa and P. donghaiense (Xu et al. 2019). Secondary plant metabolites have antibacterial, antiviral, antifungal, anti-inflammatory, and antioxidant activities, but there is a need for studies to examine anti-algae activities of coastal plants. Synthetic chemicals can also be used as allelochemicals. For example, ethyl 2-methylacetoacetate and thiazolidinediones proved useful anti-algal substances against harmful algal blooms (Kim et al. 2010; Yang et al. 2011). Table 6 summarizes biochemical compounds that have been developed and in experiments show considerable promise for the removal of various types of harmful algal blooms. According to Tan et al. (2016), research results highlight, the mechanism of biochemical compounds affects the loss of cell membrane integrity, rapid cell rupture, induced reactive oxygen species production and lipid peroxidation, and inhibition of the photosystem II, eventually destroying subcellular structures and inhibiting the cell arrest (Tan et al. 2016).
沿海外來入侵植物互花莧(Spartina alterniflora)產生的黃酮類化合物對 ..globosa和P. donghaiense(Xu等人,2019年)。植物次級代謝物具有抗菌、抗病毒、抗真菌、抗發炎和抗氧化等活性,但仍需研究沿海植物的抗藻活性。合成化學物質也可用作等位化學物質。例如,2-甲基乙醯乙酸乙酯和噻唑烷二酮類被證明是有效的抗藻類物質,可防止有害藻類大量繁殖(Kim 等,2010 年;Yang 等,2011 年)。表 6 總結了已開發並在實驗中顯示出相當大的前景可用於清除各類有害藻華的生化化合物。根據Tan 等人(2016 年)的研究成果強調,生化化合物影響細胞膜完整性喪失、細胞快速破裂、誘導活性氧產生和脂質過氧化,並抑制光系統II,最終破壞亞細胞結構並抑制細胞停滯的機理(Tan 等人,2016 年)。
Allelochemicals represent a particularly effective mechanism to control harmful algal blooms. The mechanism by which the biological algicides induce harmful algal blooms cells' lysis may involve direct or indirect attack. A direct attack requires that the microorganism makes contact with the surface of the algal cells and invades the cells or directly predates on them to control algal blooms cell growth, ultimately leading to cell death. An "indirect attack" mainly refers to the competition between organisms such as plants, seaweed, or microalgae, for example, by secreting allelochemical metabolites. The secretion of extracellular metabolites ruptures or penetrates the cell wall and cell membrane,
殺藻劑是控制有害藻華的特別有效的機制。生物殺藻劑誘導有害藻華細胞裂解的機制可能是直接攻擊,也可能是間接攻擊。直接攻擊要求微生物與藻類細胞表面接觸,並侵入細胞或直接捕食細胞,以控制藻華細胞的生長,最終導致細胞死亡。間接攻擊 "主要指植物、海藻或微藻等生物之間透過分泌等位化學代謝產物進行競爭。細胞外代謝物的分泌會使細胞壁和細胞膜破裂或穿透、
Table 6 Biological algicides used to remove red tide harmful algal blooms
表 6 用於清除赤潮有害藻華的生物殺藻劑
Biological algicides 生物殺藻劑 Concentration/inhibition rate
濃度/抑制率
Cultivation time 栽培時間 Tested HAB cells 經測試的 HAB 細胞 References 參考資料
Aponin 阿波寧 K. brevis McCoy and Martin (1977)
麥考伊和馬丁(1977 年)
Sophorolipid 槐脂 A. tamarense Sun et al.  Sun et al.
NIG355 0.5 and  0.5 和 P. globosa; A. tamarense Zheng et al. (2013)
鄭等人(2013 年)
Urocanic acid 尿烷酸 globosa 球狀 Zhuang et al. (2018)
莊等人(2018)
Bacillamide 桿菌醯胺 G. catenatum Wang et al. (2017)
王等人(2017)
Luteolin-7-O-glucuronide
葉黃素-7-O-葡萄醣醛酸
P. globosa Zhu et al. (2019)
Zhu et al (2019)
-glucosidase  -葡萄糖苷酶 P. minimum P. 最低限度 Kim et al. (2009)
Kim 等人(2009 年)
-linolenic acid  -亞麻油酸 - donghaiense 東海 Wang et al. (2012)
王等人(2012 年)
Phlorotannins 綠色單寧
K. mikimotoi, K. mikimotoi、
C. polykrikoides
Nagayama et al. (2003)
長山等人(2003 年)
Diketopiperazine 雙酮哌嗪 P.globosa Tan et al. (2016)
Tan et al (2016)
Prodigiosin P.globosa Zhang et al. (2016)
張等人(2016)
1 -acetyl- -carboline
1 -乙醯基- -咔啉
A. tamarense Kim et al.  Kim 等人
Bacillamide 桿菌醯胺 C. polykrikoides Jeong et al. (2003)
Jeong 等人(2003 年)
Questiomycins 喹硫黴素 C.antiqua, C.antiqua、 Umetsu et al. (2019)
Umetsu et al (2019)
Thiotropocin 硫代托品 - H. akashiwo Kawano et al. (1997)
河野等人(1997 年)
Pigments 顏料 C. polykrikoides Kim et al. (2008)
Kim 等人(2008 年)
Hexadeca-4,7,10,13-tetraenoic acid
十六碳-4,7,10,13-四烯酸
H. akashiwo Alamsjah et al. (2005)
Alamsjah 等人(2005 年)
Linoleic acid 亞麻油酸 A. tamarense Alamsjah et al. (2008)
Alamsjah 等人(2008 年)
Glycerolipids (tetraenoic acid)
甘油脂類(四烯酸)
A. catenella Hirao et al. (2012)
平尾等人(2012 年)
affecting photosynthesis, mitochondria, and the DNA. The resulting buildup of reactive oxygen species leads to toxicity for living cells, causing, cell lysis.
影響光合作用、粒線體和 DNA。活性氧的累積會對活細胞產生毒性,導致細胞溶解。

Challenges and perspectives
挑戰與展望

At present, strategies for controlling algal blooms are based on assessing the advantages and disadvantages of various approaches. Studies have shown that chemical methods have a significant inhibitory effect on algal cells based largely on cell density and the time of application in relation to the stage of the bloom cycle i.e., most effective at the beginning of the bloom cycle (Gao et al. 2015). Due to the changing density of algae in water bodies over time, the best control method must consider the density of algae in the water as well as the stage of the bloom. To prevent and control algal blooms, scientific guidance is needed, including the effectiveness of different methods for different types of algae at various densities and treatment times. Whenever algal density is less than cells/ , methods for controlling algae blooms should focus on the inactivation of algae cells by using physical, chemical, biological, and ecological processes. While these methods are capable of inhibiting algae growth within a short period of time, most of their effectiveness does not exceed . When algal density is less than cells , rapid inactivation and slowing of growth is key to control (Zhan et al. 2021).
目前,控制藻華的策略以評估各種方法的優缺點為基礎。研究表明,化學方法對藻類細胞有明顯的抑製作用,這主要取決於細胞密度以及與藻華週期階段相關的施用時間,即在藻華週期初期最有效(Gao 等,2015 年)。由於水體中的藻類密度會隨著時間的推移而變化,因此最佳的控制方法必須考慮水體中藻類的密度以及藻華的階段。要預防和控制藻華,需要科學的指導,包括在不同密度和處理時間下不同方法對不同類型藻類的效果。每當藻類密度小於{{0}個細胞/ 時,控制藻華的方法就會變得非常重要。 }控制藻類繁殖的方法應著重於透過物理、化學、生物和生態過程來滅活藻類細胞。雖然這些方法能夠在短時間內抑制藻類生長,但其效果大多不超過 。 .當藻類密度小於 個細胞 時,快速滅活和減緩藻類生長的方法就顯得尤為重要。當藻類密度小於 個細胞 時,快速滅活和減緩生長是控制的關鍵(Zhan 等,2021 年)。
To ensure environmental safety, biological methods may be used to suppress the growth of algae cells, but these methods take more than 10 days to produce an inhibitory effect. Despite the ability to mitigate algae growth within a short period, chemical agents are capable of causing secondary pollution as well as ecological hazards to aquatic ecosystems (Humbert and Quiblier 2019). An application of both biological methods and flocculating materials can effectively remove the algae in a short period of time. In general, traditional control methods are less effective in controlling high-density algal blooms than in controlling low-density algal blooms. The development and germination of dinoflagellate cysts plays a significant role in the process of formation of harmful algal blooms. Cyst resuspension and subsequent excystment of these cysts may play an important role in bloom initiation, with encystment providing a reservoir in the sediments, and excystment acting as a seed community for harmful algal blooms (Jung et al. 2018).
為確保環境安全,可採用生物方法抑制藻類細胞的生長,但這些方法需要 10 天以上才能產生抑制效果。儘管化學製劑能在短時間內緩解藻類的生長,但仍會對水生生態系統造成二次污染和生態危害(Humbert 和 Quiblier,2019 年)。應用生物方法和絮凝材料可以在短時間內有效清除藻類。一般來說,傳統控制方法在控制高密度藻華的效果不如控制低密度藻華。甲藻胞囊的發育和發芽在有害藻華的形成過程中扮演重要角色。這些孢子囊的再懸浮和隨後的外囊化可能在藻華的形成過程中扮演著重要角色,外囊化在沉積物中提供了一個蓄水池,而內囊化則充當了有害藻華的種子群落(Jung 等,2018 年)。
Blooms are initiated when cysts are present and can germinate, conditions that can be affected by the environment, while bloom development and progression require a balance of adequate nutrients, suitable temperature, and a suitable food source for mixotrophic species (Hofmann et al. 2021). Methods for mitigating algal blooms cysts have been considered for many years, providing an opportunity to control algal blooms species as part of a multistage control approach to the life cycle. Most approaches, however, have not progressed beyond laboratory settings (Balaji-Prasath et al. 2021b). Germination rates of cysts have been shown to decrease with application of modified clays (Wang et al. 2014; Zhang et al. 2018a, b). The feasibility of using clay is encouraging, but there are limited field applications. Efficacy will vary due to harmful algal blooms size, environmental conditions and location that influences access and transportation costs (Anderson et al. 2001). Cyst removal from the water column occurs by sinking. Cyst mortality, resulting from processes such as bacterial degradation, has also been identified as a constant loss.
藻華開始於孢子囊存在並能發芽的時候,這些條件會受到環境的影響,而藻華的發展和進程則需要充足的養分、適宜的溫度以及適合混養物種的食物來源的平衡(Hofmann 等,2021 年)。多年來,人們一直在考慮減輕藻華孢囊的方法,這為控制藻華物種提供了機會,是生命週期多階段控制方法的一部分。然而,大多數方法都沒有超越實驗室環境(Balaji-Prasath 等,2021b)。研究表明,施用改性黏土會降低孢子囊的發芽率(Wang 等人,2014 年;Zhang 等人,2018a, b)。使用黏土的可行性令人鼓舞,但實地應用有限。由於有害藻類水華的規模、環境條件和位置會影響取得和運輸成本,因此功效也會有所不同(Anderson 等,2001 年)。孢子囊經由下沉從水體中清除。細菌降解等過程導致的囊腫死亡也被認為是一種持續損失。
Several scientific studies have focused on applying effective algicides. However, the application of algicides in coastal areas is not a preferred method because of potential environmental concerns. However, only relatively few biologically available substances from aquatic plants, algae and microorganisms have been studied to date. Furthermore, the processes involved are complicated and time-consuming, resulting in a relatively small number of allelopathic chemicals available. Here, some plausible options for future research merit further exploration. There is a unique opportunity to explore and develop new allelopathic substances that are abundant in organisms or synthetic organic materials that have strong harmful algal blooms suppression effects. Allelopathy for algal blooms control is still in the laboratory research stage and needs extension to mesocosm and field applications. More attention also needs to be focused on the physiological mechanisms of allelopathic chemicals on the target species and the molecular mechanisms, including gene expression, so that there is a sound theoretical basis for finding reliable, efficient, and environmentally safe biological compounds.
一些科學研究重點在於如何施用有效的殺藻劑。然而,由於潛在的環境問題,在沿海地區施用殺藻劑並非首選方法。然而,迄今為止,從水生植物、藻類和微生物中提取的生物可用物質相對較少。此外,由於所涉及的過程複雜且耗時,可用的等效化學物質相對較少。在此,一些未來研究的可行方案值得進一步探討。現在有一個難得的機會,可以探索和開發新的等效物質,這些物質在生物或合成有機材料中含量豐富,具有很強的抑制有害藻華的作用。控制藻華的等位異化作用仍處於實驗室研究階段,需要推廣到中觀世界和實地應用。還需要更多關注等位化學物質對目標物種的生理機制以及包括基因表現在內的分子機制,為尋找可靠、高效和環境安全的生物化合物奠定堅實的理論基礎。
Looking ahead, it is evident that there is great potential for biomaterials to be used in harmful algal blooms control and mitigation. Three steps are required to mitigative measures: First, to create a novel solution be applied to a control mitigation of harmful algal blooms cyst, and sustainably suppress harmful algal blooms formation. Second, an early warning system for harmful algal blooms would be extremely useful to enable algal blooms suppression at an early stage before ecosystem-scale toxicity effects and degradation occur. The regular monitoring of major algal bloom species can prevent economic losses by providing early warnings, and the identification of rarely reported algal bloom species may provide early signs of expanding range of these species (Gu et al. 2021).
展望未來,生物材料在控制和緩解有害藻華方面顯然大有可為。採取緩解措施需要三個步驟:首先,創造一種新的解決方案,用於控制和緩解有害藻華囊腫,並可持續地抑制有害藻華的形成。其次,有害藻華的早期預警系統將非常有用,可在生態系統毒性影響和退化發生之前及早抑制藻華。對主要藻華物種進行定期監測,可透過提供早期預警防止經濟損失,而對極少報道的藻華物種進行識別,可提供這些物種範圍擴大的早期跡象(Gu 等,2021 年)。
The integration of data from satellite remote sensing systems, molecular probes, and automatic monitoring buoys can
整合來自衛星遙感系統、分子探測器和自動監測浮標的數據可以

provide a basis for algal blooms early warning system. Third, there is a need to develop full cost-benefit analyses that evaluate and compare economic losses from harmful algal blooms against the costs of monitoring and successful control. Economic impacts of algal blooms arise because of their effects on human health and activities (Kouakou and Poder 2019). We hope this review of current practices will stimulate muchneeded research in this rapidly developing field.
為藻華預警系統提供依據。第三,有必要進行全面的成本效益分析,對有害藻華造成的經濟損失與監測和成功控制的成本進行評估和比較。藻華的經濟影響產生於其對人類健康和活動的影響(Kouakou 和 Poder,2019 年)。我們希望對當前實踐的回顧將促進這一快速發展領域亟需的研究。

Conclusions 結論

The research that we have assessed in this systematic review shows that secondary metabolites and other synthetic and chemically active substances initially affect cell membranes and then inhibit the growth of algae and leading to cell death. Over the past decade, algal blooms mitigation strategies have attracted considerable attention, and different methods have been tested at laboratory scale and in practice across the globe. Mitigation strategies involving physical, chemical, and biological methods have various advantages and disadvantages. Physical processes have no secondary pollution, but they have high costs and low efficiency, making it difficult to use them extensively. Chemical methods have fast results and lower costs but need continuous improvement due to secondary pollution. Biological processes provide a novel and promising approach for algicides and merit consideration because they use many easily accessed raw materials, have lower economic costs, and produce no secondary pollution. The application of allelopathy technology provides great promise for treating harmful algal blooms. When using these techniques, costs must be considered carefully, along with the efficiency of cell suppression, potential for cell migration, transformations of substances, and ecotoxicity in the aquatic environment.
我們在本系統綜述中評估的研究表明,次級代謝物和其他合成及化學活性物質最初會影響細胞膜,然後抑制藻類生長,導致細胞死亡。在過去十年中,藻華緩解策略引起了廣泛關注,全球各地已在實驗室和實踐中對不同方法進行了測試。涉及物理、化學和生物方法的緩解策略各有利弊。物理方法沒有二次污染,但成本高、效率低,難以廣泛使用。化學方法見效快、成本低,但由於有二次污染,需要不斷改進。生物工藝為殺藻劑提供了一種新穎而有前景的方法,值得考慮,因為它使用許多容易取得的原料,經濟成本較低,而且不會產生二次污染。等位基因技術的應用為處理有害藻華提供了巨大前景。在使用這些技術時,必須仔細考慮成本、細胞抑制效率、細胞遷移潛力、物質轉化以及在水生環境中的生態毒性。
Acknowledgements This study was supported by National Key Research & Development Plan "Strategic International Scientific and Technological Innovation Cooperation" (2016YFE0202100), Marine Red Tide Early Warning and Prevention in Pingtan coastal area (PT2021006), Fujian Provincial Water Conservancy Technology Project (SC-292, DH-1558, 21NB000922, MSK202202), and National Natural Science Foundation of China ().
致謝本研究得到了國家重點研發計劃"戰略性國際科技創新合作"(2016YFE0202100)、平潭沿海地區海洋赤潮預警與防治(PT2021006)、福建省水利科技項目(SC-292、DH-1558、21NB000922、 MSK202202)和國家自然科學基金()的支持。
Author's contribution BBP was involved in idea, literature search, funding acquisition, data analysis, and writing — original draft, review & editing, YW was involved in literature search and writing-original draft, YPS was involved in idea, funding acquisition, supervision, and review & editing, DPH was involved in writing - original draft, review & editing, HL was involved in writing-original draft, and were involved in writing — original draft, review & editing, and YZ was involved in writing — original draft, review & editing).
作者的貢獻BBP 參與了構思、文獻檢索、資金獲取、數據分析和寫作--原稿、審稿和編輯,YW 參與了文獻檢索和寫作--原稿,YPS 參與了構思、資金獲取、監督和審稿和編輯,DPH 參與了寫作--原稿、審稿和編輯,HL 參與了寫作--原稿, 參與了寫作--原稿、審稿和編輯,YZ 參與了寫作--原稿、審稿和編輯)。
Funding The authors have not disclosed any funding.
資金來源 作者未揭露任何資金來源。

Declarations 聲明

Conflict of interest All authors have mutually agreed to submit this manuscript to this Journal. All the authors declare that they have no conflict of interest.
利益衝突 所有作者同意向本刊投稿。所有作者聲明沒有利益衝突。

References 參考資料

Alamsjah MA, Hirao S, Ishibashi F, Fujita Y (2005) Isolation and structure determination of algicidal compounds from Ulva fasciata. Biosci Biotechnol Biochem 69:2186-2192. https://doi.org/ 10.1271/bbb.69.2186
Alamsjah MA, Hirao S, Ishibashi F, Fujita Y (2005) Isolation and structure determination of algicidal compounds from Ulva fasciata.Biosci Biotechnol Biochem 69:2186-2192. https://doi.org/ 10.12671/b.2671869.
Alamsjah MA, Hirao S, Ishibashi F, Oda T, Fujita Y (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and . pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J Appl Phycol 20:713-720. https://doi.org/10.1007/ s10811-007-9257-5
Alamsjah MA,Hirao S,Ishibashi F,Oda T,Fujita Y(2008 年)從 Ulva fasciata 和 .pertusa (Ulvaceae, Chlorophyta) 中提取的多元不飽和脂肪酸對浮游植物的殺藻活性。 J Appl Phycol 20:713-720. https://doi.org/10.1007/ s10811-007-9257-5
Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manage 52:342-347. https://doi.org/10.1016/j.ocecoaman.2009.04.006
Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs).Ocean Coast Manage 52:342-347. https://doi.org/10.1016/j.ocecoaman.2009.04.006
Anderson DM, Andersen P, Bricelj V, Cullen J, Rensel J (2001) Monitoring and management strategies for harmful algal blooms in coastal waters. Asia Pacific Economic Program, Singapore, and Intergovernmental Oceanographic Commission, Paris, p 268
Anderson DM, Andersen P, Bricelj V, Cullen J, Rensel J (2001) Monitoring and management strategies for harmful algal blooms in coastal waters.新加坡亞太經濟計畫與巴黎政府間海洋學委員會,第 268 頁。
Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143-176
Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shift and new technologies for research, monitoring, and management.Annu Rev Mar Sci 4:143-176
Baek SH, Shin HH, Jang MK, Kim SW, Son MH, Cho H et al (2012) Algicidal effects of a newly developed thiazolidinedione derivative, TD49, on dinoflagellate Akashiwo sanguinea. Ocean Polar Res 34:125-135. https://doi.org/10.4217/OPR.2012.34.2.125
Baek SH、Shin HH、Jang MK、Kim SW、Son MH、Cho H 等(2012 年)新開發的噻唑烷二酮衍生物 TD49 對甲藻 Akashiwo sanguinea 的殺藻作用。 Ocean Polar Res 34:125-135. https://doi.org/10.4217/OPR.2012.34.2.125
Baek SH, Son M, Bae SW, Shin K, Na DH, Cho H et al (2013) Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure. J Appl Phycol 25(5):1555-1565. https:// doi.org/10.1007/s10811-012-9953-7
Baek SH、Son M、Bae SW、Shin K、Na DH、Cho H 等(2013 年)噻唑烷二酮衍生物 TD49 在中觀環境中對有害甲藻 Heterocapsa circularisquama 的殺藻活性。 https:// doi.org/10.1007/s10811-012-9953-7
Baek SH, Son M, Jung SW, Na DH, Cho H, Yamaguchi M et al (2014) Enhanced species-specific chemical control of harmful and nonharmful algal bloom species by the thiazolidinedione derivative TD49. J Appl Phycol 26(1):311-321. https://doi.org/10.1007/ s10811-013-0046-z
Baek SH、Son M、Jung SW、Na DH、Cho H、Yamaguchi M 等(2014 年)噻唑烷二酮衍生物 TD49 增強了對有害和無害藻華物種的特異性化學控制。 J Appl Phycol 26(1):311-321. https://doi.org/10.1007/ s10811-013-0046-z
Bai S, Huang L, Su J, Tian Y, Zheng T (2011) Algicidal effects of a novel marine actinomycete on the toxic dinoflagellate Alexandrium tamarense. Curr Microbiol 62:1774-1781. https://doi.org/
Bai S, Huang L, Su J, Tian Y, Zheng T (2011) 新型海洋放線菌對有毒甲藻亞歷山大藻的殺藻作用。 Curr Microbiol 62:1774-1781. https://doi.org/
Balaji-Prasath B, Lin ZR, Su YP, She CX, Lin H, Zhang CW et al (2021a) Adsorption-release characteristics of phosphorus and the community of phosphorus accumulating organisms of sediments in a shallow lake. Sustainability 13:11501. https://doi.org/ su132011501
Balaji-Prasath B, Lin ZR, Su YP, She CX, Lin H, Zhang CW et al (2021a) 淺水湖泊沉積物磷的吸附釋放特徵與磷累積生物群落。 https://doi.org/ su132011501
Balaji-Prasath B, Wang Y, Su Y, Zheng W, Lin H, Yang H et al (2021b) Coagulant plus Bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic Red Tide dinoflagellate. J Mar Sci Eng 9:1-17
Balaji-Prasath B、Wang Y、Su Y、Zheng W、Lin H、Yang H 等(2021b)混凝劑加硝酸芽孢桿菌發酵液技術對有毒的赤潮甲藻具有快速殺藻效果。 J Mar Sci Eng 9:1-17
Balaji-Prasath B, Zahir M, Elsawah AM, Raza M, Lecong C, Chutian S et al (2022) Statistical approaches in modeling of the interaction between bacteria and diatom under a dual-species co-cultivation system. J King Saud Uni Sci 34:101743
Balaji-Prasath B, Zahir M, Elsawah AM, Raza M, Lecong C, Chutian S et al (2022) Statistical approaches in modeling of interaction between bacteria and diatom under a dual-species co-cultivation system.J King Saud Uni Sci 34 :101743
Belin C, Soudant D, Amzil Z (2021) Three decades of data on phytoplankton and phycotoxins on the French coast: lessons from REPHY and REPHYTOX. Harmful Algae 102:101733. https:// doi.org/10.1016/j.hal.2019.101733
Belin C, Soudant D, Amzil Z (2021) 三十年來法國沿海浮游植物和藻類毒素資料:REPHY 和 REPHYTOX 的經驗教訓。有害藻類 102:101733。 https:// doi.org/10.1016/j.hal.2019.101733
Ben Gharbia H, Yahia OK, Cecchi P, Masseret E, Amzil Z, Herve F et al (2017) New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates. PLoS ONE 12:187963. https://doi.org/10.1371/journal. pone. 0187963
Ben Gharbia H, Yahia OK, Cecchi P, Masseret E, Amzil Z, Herve F et al (2017) New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.PLoS ONE 12:187963.187 .org/10.1371/journal. pone.0187963
Bogus K, Mertens KN, Lauwaert J, Harding IC, Vrielinck H, Zonneveld KAF et al (2014) Differences in the chemical composition of organic-walled dinoflagellate resting cysts from phototrophic and heterotrophic dinoflagellates. J Phycol 50:254-266. https:// doi.org/10.1111/jpy. 12170
Bogus K, Mertens KN, Lauwaert J, Harding IC, Vrielinck H, Zonneveld KAF et al (2014) Differences in the chemical composition of organic-walled dinoflagellate resting cysts from phototrophic and heterotrophicdin lagellates jpy.12170
Burns JM, Hall S, Ferry JL (2009) The adsorption of saxitoxin to clays and sediments in fresh and saline waters. Water Res 43:18991904. https://doi.org/10.1016/j.watres.2009.02.004
Burns JM、Hall S、Ferry JL(2009 年)淡水和鹽水中粘土和沈積物對沙西毒素的吸附。 Water Res 43:18991904. https://doi.org/10.1016/j.watres.2009.02.004
Butz SV, Pinckney JL, Apte SC, Lead JR (2019) Uptake and impact of silver nanoparticles on the growth of an estuarine dinoflagellate, Prorocentrum Minimum. Nanoimpact 15:100181. https://doi.org/ 10.1016/j.impact.2019.100181
Butz SV, Pinckney JL, Apte SC, Lead JR (2019) 銀奈米顆粒對河口甲藻 Prorocentrum Minimum 生長的吸收與影響。 Nanoimpact 15:100181. https://doi.org/ 10.1016/j.impact.2019.100181
Cai G, Yang X, Lai Q, Yu X, Zhang H, Li Y et al (2016) Lysing bloomcausing alga Phaeocystis globosa with microbial algicide: an efficient process that decreases the toxicity of algal exudates. Sci Rep 6:20081. https://doi.org/10.1038/srep20081
Cai G, Yang X, Lai Q, Yu X, Zhang H, Li Y et al (2016) Lysing bloomcausing alga Phaeocystis globosa with microbial algicide: an efficient process that decreases the toxicity of algal exudates: an efficient process that decreases the toxicity of algal exudates. //doi.org/10.1038/srep20081
Calbet A, Vaque D, Felipe J, Vila M, Sala MM, Alcaraz M et al (2003) Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Mar Ecol Prog Ser 259:303-309. https://doi.org/10.3354/meps2 59303
Calbet A, Vaque D, Felipe J, Vila M, Sala MM, Alcaraz M et al (2003) Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum.Mar Ecol Pro303250930325 ://doi.org/10.3354/meps2 59303
Cao X, Yu Z (2003) Extinguishment of harmful algae by organo-clay. Ying Yong Sheng Tai Xue Bao 14:1169-1172
Cao X, Yu Z (2003)《有機黏土對有害藻類的滅殺作用》。 Ying Yong Sheng Tai Xue Bao 14:1169-1172
Cao XH, Song XX, Yu ZM (2004) Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms. Huan Jing Ke Xue 25:148-152
Cao XH, Song XX, Yu ZM (2004) 改良黏土對赤潮生物的去除率及其對養殖生物的影響。環經可研 25:148-152
Cao XH (2004). Studies on Mechanism and methodology of organoclay in removing red tide organisms (Doctor), Graduate School of Chinese Academy of Sciences (Institute of Oceanography), Available from Cnki
Cao XH (2004).有機黏土去除赤潮生物的機制與方法研究》(博士),中國科學院研究生院(海洋研究所),可從 Cnki 獲取
Castro-Bugallo A, Gonzalez-Fernandez A, Guisande C, Barreiro A (2014) Comparative responses to metal oxide nanoparticles in marine phytoplankton. Arch Environ Contam Toxicol 67:483493. https://doi.org/10.1007/s00244-014-0044-4
Castro-Bugallo A, Gonzalez-Fernandez A, Guisande C, Barreiro A (2014) 海洋浮游植物對金屬氧化物奈米顆粒的比較反應。 Arch Environ Contam Toxicol 67:483493. https://doi.org/10.1007/s00244-014-0044-4
Cearace N (ed) (2007) Booklet of countermeasures against Harmful Algal Blooms (HABs) in the NOWPAP Region. Toyama, Japan
Cearace N(編)(2007 年)《NOWPAP 地區藻類密集孳生為害對策手冊》。日本富山
Chambouvet A, Morin P, Marie D, Guillou L (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254-1257. https://doi.org/10.1126/science. 1164387
Chambouvet A, Morin P, Marie D, Guillou L (2008) Control of toxic marine dinoflagellate bloom by serial parasitic killers.Science 322:1254-1257. https://doi.org/10.1126/science.1254-1257. https://doi.org/10.1126/science.11​​64387111643
Chen CY, Bai MD, Chang JS (2013) Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochem Eng J 81:170-176. https://doi.org/ 10.1016/j.bej.2013.10.014
Chen CY, Bai MD, Chang JS (2013) 透過破壞性細菌預處理微藻細胞壁提高微藻集油效率。 https://doi.org/ 10.1016/j.bej.2013.10.014
Chen T, Liu Y, Song S, Li C (2018) Characterization of the parasitic dinoflagellate Amoebophrya sp. infecting Akashiwo sanguinea in coastal waters of China. J Eukaryot Microbiol 65:448-457. https://doi.org/10.1111/jeu. 12489
Chen T, Liu Y, Song S, Li C (2018)中國近岸海域赤潮褐藻寄生甲藻Amoebophrya sp.的特徵。 J Eukaryot Microbiol 65:448-457. https://doi.org/10.1111/jeu.12489
Chen F, Xiao Z, Yue L, Wang J, Feng Y, Zhu X et al (2019) Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environ Sci-Nano 6:1026-1042. https://doi.org/10.1039/c8en01368c
Chen F, Xiao Z, Yue L, Wang J, Feng Y, Zhu X et al (2019) Algae response to engineered nanoparticles: current understanding, mechanisms and implications.Environ Sci-Nano 6:1026-1042. https://doi .org/10.1039/c8en01368c
Chiu M-H, Khan ZA, Garcia SG, Le AD, Kagiri A, Ramos J et al (2017) Effect of engineered nanoparticles on exopolymeric substances release from marine phytoplankton. Nanoscale Res Lett 12:620. https://doi.org/10.1186/s11671-017-2397-x
Chiu M-H, Khan ZA, Garcia SG, Le AD, Kagiri A, Ramos J et al (2017) Effect of engineered nanoparticles on exopolymeric substances release from marine phytoplankton.Nanoscale Res Lett 12:620.://doiine phytoplankton.Nanoscale Res Lett 12:620.://doi. /s11671-017-2397-x
Cho Y, Cho KH, Cho H, Jee JP (2016) Development of cationic liposomes for enhanced algicidal efficacy of the novel algicidal agent DP92. B Korean Chem Soc 37:1086-1094. https://doi.org/ 10.1002/bkcs. 10829
Cho Y, Cho KH, Cho H, Jee JP (2016) 開發陽離子脂質體以增強新型殺藻劑 DP92 的殺藻功效。 B Korean Chem Soc 37:1086-1094. https://doi.org/ 10.1002/bkcs.10829
Deeds JR, Terlizzi DE, Adolf JE, Stoecker DK, Place AR (2002) Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae)-a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1:169-189. https://doi.org/10.1016/S1568-9883(02) 00027-6
Deeds JR, Terlizzi DE, Adolf JE, Stoecker DK, Place AR (2002) Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae)-a dinoflagellate associated with fish 199000 00000i 0000iated 2000iated 2000000000) 類 1999. -189。 https://doi.org/10.1016/S1568-9883(02) 00027-6
Doucette GJ, Kodama M, Franca S (1998) Bacterial interactions with harmful algal bloom species: bloom ecology, toxigenesis, and cytology. Nato Asi Ser G Ecol Sci 41:619-648
Doucette GJ, Kodama M, Franca S (1998) Bacterial interactions with harmful algal bloom species: bloom ecology, toxigenesis, and cytology.Nato Asi Ser G Ecol Sci 41:619-648
Du X, Shao F, Wu S, Sun R, Wang C (2017) Complex network modeling for mechanisms of red tide occurrence: a case study in Bohai Sea and North Yellow Sea of China. Ecol Model 361:41-48. https://doi.org/10.1016/j.ecolmodel.2017.07.025
Du X, Shao F, Wu S, Sun R, Wang C (2017) 紅潮發生機制的複雜網路建模:中國渤海和北黃海的案例研究。 Ecol Model 361:41-48. https://doi.org/10.1016/j.ecolmodel.2017.07.025
Ebenezer V, Ki JS (2013) Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotoxicol Environ Saf 92:129134. https://doi.org/10.1016/j.ecoenv.2013.03.014
Ebenezer V, Ki JS (2013) 海洋甲藻 Prorocentrum minimum 對氧化性生物殺滅劑氯的生理和生化反應。 Ecotoxicol Environ Saf 92:129134. https://doi.org/10.1016/j.ecoenv.2013.03.014
Ebenezer V, Lim WA, Ki JS (2014) Effects of the algicides CuSO4 and on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J Appl Phycol 26:2357-2365. https://doi.org/10.1007/s10811-014-0267-9
Ebenezer V, Lim WA, Ki JS(2014)殺藻劑CuSO4和 對有害甲藻Cochlodinium polykrikoides各種生理參數的影響。 J Appl Phycol 26:2357-2365. https://doi.org/10.1007/s10811-014-0267-9
Fu L, An X, Li D, Zhou L, Tian Y, Zheng T (2011) Isolation and alga-inhibiting characterization of Vibrio sp. BS02 against Alexandrium tamarense. World J Microbiol Biotechnol 27:2949-2956. https://doi.org/10.1007/s11274-011-0778-3
Fu L, An X, Li D, Zhou L, Tian Y, Zheng T (2011) Isolation and alga-inhibiting characterization of Vibrio sp.BS02 對亞歷山大藻的抑制特性。 World J Microbiol Biotechnol 27:2949-2956. https://doi.org/10.1007/s11274-011-0778-3
Gao L, Pan X, Zhang D, Mu S, Lee DJ, Halik U (2015) Extracellular polymeric substances buffer against the biocidal effect of on the bloom-forming cyanobacterium Microcystis aeruginosa. Water Res 69:51-58. https://doi.org/10.1016/j. watres.2014.10.060
Gao L, Pan X, Zhang D, Mu S, Lee DJ, Halik U (2015) 細胞外高分子物質可緩衝 對銅綠微囊藻華形成藍藻的殺菌作用。 Water Res 69:51-58. https://doi.org/10.1016/j. watres.2014.10.060
Garces E, Alacid E, Bravo I, Fraga S, Figueroa RI (2013) Parvilucifera sinerae (Alveolata, Myzozoa) is a generalist parasitoid of dinoflagellates. Protist 164:245-260. https://doi.org/10.1016/j. protis.2012.11.004
Garces E, Alacid E, Bravo I, Fraga S, Figueroa RI (2013) Parvilucifera sinerae (Alveolata, Myzozoa) is a generalist parasitoid of dinoflagellates.Protist 164:245-260. https://doi.org/oflagellates.Protist 164:245-260. https://doi.org/oflagellates.Protist 164:245-260. https://doi.org/oflagellates.106/jjjjj. protis.2012.11.004
Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193-208. https://doi.org/10.1111/j.1749-6632.1981. tb54365.x
Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae.Ann N Y Acad Sci 361:193-208. https://doi.org/10.1111/j.1749-632.
Grattan LM, Holobaugh S, Morris JG (2016) Harmful algal blooms and public health. Harmful Algae 57:2-8. https://doi.org/10. 1016/j.hal.2016.05.003
Grattan LM、Holobaugh S、Morris JG(2016 年)《有害藻華與公眾健康》。 Harmful Algae 57:2-8. https://doi.org/10.1016/j.hal.2016.05.003
Gu H, Wu Y, Lü S, Lu D, Tang YZ, Qi Y (2021) Emerging harmful algal bloom species over the last four decades in China. Harmful Algae 102059. https://doi.org/10.1016/j.hal.2021.102059
Gu H, Wu Y, Lü S, Lu D, Tang YZ, Qi Y (2021) Emerging harmful algal bloom species over the last four decades in China.有害藻類102059. https://doi.org/10.1016/j.hal .2021.102059
Haba E, Espuny MJ, Busquets M, Manresa AJ (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379387. https://doi.org/10.1046/j.1365-2672.2000.00961.x
Haba E、Espuny MJ、Busquets M、Manresa AJ(2000 年)《銅綠假單胞菌 47T2 NCIB 40044 從廢棄煎炸油中篩選和生產鼠李醣脂》。 J Appl Microbiol 88:379387. https://doi.org/10.1046/j.1365-2672.2000.00961.x
Hallegraeff G, Enevoldsen H, Zingone A (2021) Global harmful algal bloom status reporting. Harmful Algae 102:101992. https:// doi.org/10.1016/j.hal.2021.10199
Hallegraeff G, Enevoldsen H, Zingone A (2021) Global harmful algal bloom status reporting.Harmful Algae 102:101992. https:// doi.org/10.1016/j.hal.2021.10199
Han H, Kim Y, Lim S, Hong S, Jung S, Cho H et al (2011) Enhanced efficacy of TD53, a novel algicidal agent, against the harmful algae via the liposomal delivery system. Int J Pharm 405:137141. https://doi.org/10.1016/j.ijpharm.2010.12.008
Han H、Kim Y、Lim S、Hong S、Jung S、Cho H 等(2011 年)透過脂質體輸送系統提高新型殺藻劑 TD53 對有害藻類的功效。 Int J Pharm 405:137141. https://doi.org/10.1016/j.ijpharm.2010.12.008
Hirao S, Tara K, Kuwano K, Tanaka J, Ishibashi F (2012) Algicidal activity of glycerolipids from brown alga Ishige sinicola toward red tide microalgae. Biosci Biotechnol Biochem 76:372-374. https://doi.org/10.1271/bbb. 110645
Hirao S,Tara K,Kuwano K,Tanaka J,Ishibashi F(2012 年)褐藻 Ishige sinicola 的甘油脂對赤潮微藻的殺藻活性。 Biosci Biotechnol Biochem 76:372-374. https://doi.org/10.1271/bbb.110645
Hofmann EE, Klinck JM, Filippino KC, Egerton T, Mulholland MR (2021) Understanding controls on Margalefidinium polykrikoides blooms in the lower Chesapeake Bay. Harmful Algae 107:102064. https://doi.org/10.1016/j.hal.2021.102064
Hofmann EE, Klinck JM, Filippino KC, Egerton T, Mulholland MR (2021) Understanding controls on Margalefidinium polykrikoides blooms in the lower Chesapeake Bay.有害藻類 107:102064. https://doi.org/10.
Honjo T, Imada N, Anraku Y, Kim D, Muramatsu M, Soshima Y (eds) (2004) Removal of harmful red tide plankton by ozone treatment: Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.
Honjo T, Imada N, Anraku Y, Kim D, Muramatsu M, Soshima Y (eds) (2004) Removal of harmful red tide plankton by ozone treatment:佛羅裡達魚類和野生生物保護委員會、佛羅裡達海洋學研究所和聯合國教科文組織政府間海洋學委員會。
Hu Y, Ma Y, An J (2018) Research on high accuracy detection of red tide hyperspectral based on deep learning CNN. ISPRS J Photogramm XLII 3:573-577. https://doi.org/10.5194/isprsarchives-XLII-3-573-2018
Hu Y, Ma Y, An J (2018) 基於深度學習CNN的赤潮高光譜高精度檢測研究.ISPRS J Photogramm XLII 3:573-577. https://doi.org/10.5194/isprsarchives-XLII-3- 573-2018
Huang J, Liu H, Yin K (2018) Effects of meteorological factors on the temporal distribution of red tides in Tolo Harbour, Hong Kong. Mar Pollut Bull 126:419-427. https://doi.org/10.1016/j. marpolbul.2017.11.035
Huang J, Liu H, Yin K (2018) 氣象因子對香港吐露港赤潮時間分佈的影響。 Mar Pollut Bull 126:419-427. https://doi.org/10.1016/j. marpolbul.2017.11.035
Humbert JF, Quiblier C (2019) The suitability of chemical products and other short-term remedial methods for the control of cyanobacterial blooms in freshwater ecosystems. Front in Environ Sci 7:1-4. https://doi.org/10.3389/fenvs.2019.00176
Humbert JF, Quiblier C (2019) 化學產品及其他短期補救方法對淡水生態系中藍藻藻華控制的適用性。 Front in Environ Sci 7:1-4. https://doi.org/10.3389/fenvs.2019.00176
Inaba N, Trainer VL, Onishi Y, Ishii KI, Wyllie-Echeverria S, Imai I (2017) Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA. Harmful Algae 62:136-147. https://doi.org/10.1016/j.hal.2016.04.004
Inaba N, Trainer VL, Onishi Y, Ishii KI, Wyllie-Echeverria S, Imai I (2017) Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA.有害藻類-147.136662:136662:136662:136662:136662:136662:1366662:136662:1366662:136. https://doi.org/10.1016/j.hal.2016.04.004
Isabel Figueroa R, Estrada M, Garces E (2018) Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages. Harmful Algae 73:44-57. https://doi. org/10.1016/j.hal.2018.01.006
Isabel Figueroa R, Estrada M, Garces E (2018) 造成有害藻華的微藻物種的生活史:單倍體、二倍體和底棲階段的相關性。有害藻類 73:44-57. https://doi. org/10.1016/j.hal.2018.01.006
Jeong HJ, Shim JH, Lee CW, Kim JS, Koh SM (1999) Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellates. J Eukaryot Microbiol 46:69-76. https://doi.org/10.1111/j.1550-7408.1999.tb04586.x
Jeong HJ, Shim JH, Lee CW, Kim JS, Koh SM (1999) Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp.J Eukaryot Microbiol 46:69-76. https://doi.org/10.1111/j. 1550-7408.1999.tb04586.x
Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK (2000) Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J Appl Phycol 12:37-43. https://doi.org/10.1023/a:10081 39129057
Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK (2000) 珊瑚藻對赤潮微藻的殺藻活性。 J Appl Phycol 12:37-43. https://doi.org/10.1023/a:10081 39129057
Jeong HJ, Kang HJ, Shim JH, Kim JS, Song JY, Choi H (2001) Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. Mar Ecol Progr Ser 218:77-86. https:// doi.org/10.3354/meps218077
Jeong HJ, Kang HJ, Shim JH, Kim JS, Song JY, Choi H (2001) Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid cope:gr-anoid cope L . https:// doi.org/10.3354/meps218077
Jeong SY, Ishida K, Ito Y, Okada S, Murakami M (2003) Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium Polykrikoides. Tetrahedron Lett 44:8005-8007. https://doi.org/10.1016/j.tetlet. 2003.08.115
Jeong SY, Ishida K, Ito Y, Okada S, Murakami M (2003) Bacillamide, a novel algicide from the marine bacterium, Bacillus sp.Tetrahedron Lett 44:8005-8007. https://doi.org/10.1016/jjjjj tetlet.2003.08.115
Jeong HJ, Yoo YD, Kim ST, Kang NS (2004) Feeding by the heterotrophic dinoilagellate Protoperidinium bipes on the diatom Skeletonema costatum. Aquat Microb Ecol 36:171-179. https:// doi.org/10.3354/ame036171
Jeong HJ, Yoo YD, Kim ST, Kang NS (2004) 異養雙尾藻 Protoperidinium bipes 攝食矽藻 Skeletonema costatum。 https:// doi.org/10.3354/ame036171
Jeong Jh, Kim J, Kim JH, Kim ST, Seong K, Kim H et al (2005) Feeding and grazing impact of the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo. Mar Ecol pro Ser 295:69-78. https://doi.org/ 10.3354/meps295069
Jeong Jh, Kim J, Kim JH, Kim ST, Seong K, Kim H et al (2005) Feeding and grazing impact of the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo。 . https://doi.org/ 10.3354/meps295069
Jeong HJ, Ha JH, Park JY, Kim JH, Kang NS, Kim S et al (2006) Distribution of the heterotrophic dinoflagellate Pfiesteria piscicida in Korean waters and its consumption of mixotrophic dinoflagellates, raphidophytes and fish blood cells. Aquat Microb Ecol 44:263-278. https://doi.org/10.3354/ame044263
Jeong HJ, Ha JH, Park JY, Kim JH, Kang NS, Kim S et al (2006) Distribution of the heterotrophic dinoflagellate Pfiesteria piscicida in Korean waters and its consumption of mixotrophic dinoflagatesates, Micro lagood and its consumptes 4. 263-278. https://doi.org/10.3354/ame044263
Jeong HJ, Kim JS, Yoo YD, Kim ST, Song JY, Kim TH et al (2008) Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7:368-377. https://doi.org/10.1016/j.hal. 2007. 12.004
Jeong HJ, Kim JS, Yoo YD, Kim ST, Song JY, Kim TH et al (2008) Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures.有害藻類 7:3688-377。 https://doi.org/10.1016/j.hal.2007.12.004
Jeong HJ, Lee KH, Du Yoo Y, Kang NS, Lee K (2011) Feeding by the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense. J Eukaryot Microbiol 58:511-524. https://doi.org/10.1111/j.1550-7408.2011.00580.x
Jeong HJ、Lee KH、Du Yoo Y、Kang NS、Lee K(2011 年)新描述的含線胞的異養甲藻 Gyrodiniellum shiwhaense 的攝食。 J Eukaryot Microbiol 58:511-524. https://doi.org/10.1111/j.1550-7408.2011.00580.x
Jung SW, Kang D, Kim H-J, Shin HH, Park JS, Park SY et al (2018) Mapping distribution of cysts of recent dinoflagellate and Cochlodinium polykrikoides using next-generation sequencing and morphological approaches in South Sea. Korea Sci Rep 8:7011. https://doi.org/10.1038/s41598-018-25345-4
Jung SW, Kang D, Kim H-J, Shin HH, Park JS, Park SY et al (2018) Mapping distribution of cysts of recent dinoflagellate and Cochlodinium polykrikoides using next-generation sequencing and morphological approache in Southides using next-generation sequencing and morphological approaches in South. . https://doi.org/10.1038/s41598-018-25345-4

Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8-17. https://doi. org/10.1016/j.scitotenv.2012.09.010
Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures.https://doi. org/10.1016/j.scitotenv.2012.https://doi. org/10.1016/j.scitotenv.2012.
Kawano Y, Nagawa Y, Nakanishi H, Nakajima H, Matsuo M, Higashihara T (1997) Production of thiotropocin by a marine bacterium, Caulobacter sp. and its antimicroalgal activities. J Mar Biotechnol 5:225-229
Kawano Y, Nagawa Y, Nakanishi H, Nakajima H, Matsuo M, Higashihara T (1997) Production of thiotropocin by a marine bacterium, Caulobacter sp.J Mar Biotechnol 5:225-229
Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK (2008) Red to red-the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18(10):1621-1629
Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK (2008) Red to red-the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms.J Microbiol Biotechnol 18(10):16210): 1629
Kim JD, Kim JY, Park JK, Lee CG (2009) Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB008041. Mar Biotechnol 11:463-472. https://doi.org/10.1007/ s10126-008-9167-9
Kim JD, Kim JY, Park JK, Lee CG (2009) 新型藻類溶解菌 Pseudoalteromonas haloplanktis AFMB008041 對 Prorocentrum minimum 有害藻華的選擇性控制。 https://doi.org/10.1007/ s10126-008-9167-9
Kim YM, Wu Y, Duong TU, Ghodake G, Kim SW, Jin E et al (2010) Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl Biochem Biotechnol 162:22732283. https://doi.org/10.1007/s12010-010-9001-5
Kim YM, Wu Y, Duong TU, Ghodake G, Kim SW, Jin E et al (2010) Thiazolidinediones as a novel class of algicides against red tide harmful algal species.Appl Biochem Biotechnol 162:22732283. /10.1007/s12010-010-9001-5
Kim YM, Wu Y, Duong TU, Jung S-G, Kim SW, Cho H et al (2012) Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar Biotechnol 14:312-322. https://doi.org/10.1007/s10126-011-9412-5
Kim YM、Wu Y、Duong TU、Jung S-G、Kim SW、Cho H 等(2012 年)噻唑烷二酮衍生物對有害藻華物種的殺藻活性。 Mar Biotechnol 14:312-322. https://doi.org/10.1007/s10126-011-9412-5
Kim S, Yoon J, Park MG (2015a) Obligate mixotrophy of the pigmented dinoflagellate Polykrikos lebourae (Dinophyceae, Dinoflagellata). Algae 30:35-47. https://doi.org/10.4490/algae. 2015.30.1.035
Kim S, Yoon J, Park MG (2015a) Obligate mixotrophy of the pigmented dinoflagellate Polykrikos lebourae (Dinophyceae, Dinoflagellata).Algae 30:35-47. https://doi.org/10.4490/algae.
Kim YS, Son HJ, Jeong SY (2015b) Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. J Microbiol 53:511-517. https://doi.org/10.1007/ s12275-015-5303-1
Kim YS, Son HJ, Jeong SY (2015b) Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species.J Microellate Alexandrium catenella and other harmful algal bloom species.J Microbiol-53:51111. /10.1007/ s12275-015-5303-1
Kim JS (2004) Grazing impact of protozooplankton on red tide organisms in the southern and western coastal waters of Korea. Kunsan National University
Kim JS (2004) Grazing impact of protozooplankton on red tide organisms in the southern and western coastal waters of Korea.國立崑山大學
Kouakou CRC, Poder TG (2019) Economic impact of harmful algal blooms on human health: a systematic review. J Water Health 17:499-516. https://doi.org/10.2166/wh.2019.064
Kouakou CRC, Poder TG (2019)《有害藻華對人類健康的經濟影響:系統綜述》。 J Water Health 17:499-516. https://doi.org/10.2166/wh.2019.064
Kwon HL, Kim JH, Na DH, Byeun DH, Wu Y, Kim SW et al (2013) Combination of 1,4-naphthoquinone with benzothiazoles had selective algicidal effects against harmful algae. Biotechnol Bioprocess Eng 18:932-941. https://doi.org/10.1007/ s12257-013-0284-6
Kwon HL, Kim JH, Na DH, Byeun DH, Wu Y, Kim SW 等人(2013)1,4-萘醌與苯並噻唑類化合物的組合對有害藻類具有選擇性殺藻作用。 https://doi.org/10.1007/ s12257-013-0284-6
Laabir M, Grignon-Dubois M, Cecchi P, Rezzonico B, Rouquette M, and Masseret E (2010) Allelopathic Effects of Zostera Spp. on the Growth and Photosynthetic Activity of the Toxic Dinoflagellate Alexandrium Catenella. Paper presented at the 4th Mediterranean Symposium on Marine Vegetation, Regional Activity Center for Specially Protected Areas, Yasmine-Hammamet.
Laabir M, Grignon-Dubois M, Cecchi P, Rezzonico B, Rouquette M, and Masseret E (2010) Allelopathic Effects of Zostera Spp. on the Growth and Photosynthetic Activity of the Toxic Dinoflagellate Alexandrium Catenella.在第四屆地中海植被研討會上提交的論文,特別保護區區域活動中心,Yasmine-Hammamet。
Lawrence JE, Chan AM, Suttle CA (2001) A novel virus (HaNIV) causes lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae). J Phycol 37:216-222. https:// doi.org/10.1046/j.1529-8817.2001.037002216.x
Lawrence JE, Chan AM, Suttle CA (2001) A novel virus (HaNIV) causes lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae).https:// doi.org/10.1046/j.1529-8817. x
Leblond JD, Dahmen JL (2012) Mono- and digalactosyldiacylglycerol composition of dinoflagellates. V. The galactolipid profile of Alexandrium tamarense (Dinophyceae) during the course of infection by the parasitic syndinian dinoflagellate Amoebophrya sp. Eur J Phycol 47:490-497. https://doi.org/10.1080/ 09670262.2012.742140
Leblond JD, Dahmen JL (2012) 甲藻的單半乳糖和二半乳糖二乙醯甘油組成。 V. Alexandrium tamarense(雙子葉植物)在被寄生銀團雙鞭毛藻 Amoebophrya sp. Eur J Phycol 47:490-497. https://doi.org/10.1080/ 09670262.2012.742140
Lee WJ, Park YT (1998) Isolation of marine bacteria killing red tide microalgae II. Isolation and algicidal properties of Pseudomonas sp. LG-2 possessing killing activity for dinoflagellate. Prorocentrum Micans J Korean Astron Soc 31:852-858
Lee WJ, Park YT (1998) Isolation of marine bacteria killing red tide microalgae II.LG-2 的分離與殺藻特性。 Prorocentrum Micans J Korean Astron Soc 31:852-858
Lee YJ, Choi JK, Kim EK, Youn SH, Yang EJ (2008) Field experiments on mitigation of harmful algal blooms using a Sophorolipid-Yellow clay mixture and effects on marine plankton. Harmful Algae 7:154-162. https://doi.org/10.1016/j.hal. 2007.06.004
Lee YJ, Choi JK, Kim EK, Youn SH, Yang EJ (2008) Field experiments on mitigation of harmful algal blooms using a Sophorolipid-Yellow clay mixture and effects on marine plankton.有害藻類7:154-162. doi.org/10.1016/j.hal.2007.06.004
Lee KH, Jeong HJ, Young Yoon E, Jang SH, Kim HS, Yih W (2014) Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
Lee KH, Jeong HJ, Young Yoon E, Jang SH, Kim HS, Yih W (2014) 普通異養甲藻和一種纖毛蟲對赤潮纖毛蟲 Mesodinium rubrum 的取食。 Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
Lee MJ, Jeong HJ, Lee KH, Jang SH, Kim JH, Kim KY (2015) Mixotrophy in the nematocyst-taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmannii. Harmful Algae 49:124-134. https://doi.org/10.1016/j.hal.2015.08.006
Lee MJ, Jeong HJ, Lee KH, Jang SH, Kim JH, Kim KY (2015) Mixotrophy in the nematocyst-taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmannii.有害藻類49:124-134. https://doi.org/ 10.1016/j.hal.2015.08.006
Li L, Pan G (2013) A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ Sci Technol 47(9):4555-4562. https://doi.org/10.1021/ es305234d
Li L, Pan G (2013) 一種利用改性砂絮凝海水和淡水中有害藻華的通用方法。 Environ Sci Technol 47(9):4555-4562. https://doi.org/10.1021/ es305234d
Li Y-H, Wu T, Yang W-D, Li H-Y, Liu J-S (2012) Inhibitory effects of ten flavonoids against two harmful algae. J Jinan Univ (Natural Science & Medicine Edition) 33(01):72-75
Li Y-H, Wu T, Yang W-D, Li H-Y, Liu J-S (2012) 十種黃酮類化合物對兩種有害藻類的抑製作用。暨南大學學報(自然科學版)33(01):72-75
Li C, Song S, Liu Y, Chen T (2014) Occurrence of Amoebophrya spp. infection in planktonic dinoflagellates in Changjiang (Yangtze River) Estuary. China Harmful Algae 37:117-124. https://doi.org/10.1016/j.hal.2014.05.009
Li C, Song S, Liu Y, Chen T (2014)長江口浮游甲藻中阿米巴藻屬感染的發生。 https://doi.org/10.1016/j.hal.2014.05.009
Li F, Liang Z, Zheng X, Zhao W, Wu M, Wang Z (2015a) Toxicity of nano- on algae and the site of reactive oxygen species production. Aquat Toxicol 158:1-13. https://doi.org/10.1016/j. aquatox.2014.10.014
Li F, Liang Z, Zheng X, Zhao W, Wu M, Wang Z (2015a) Toxicity of nano- on algae and the site of reactive oxygen species production.Aquat Toxicol 158:1-13. https: //doi.org/10.1016/j. aquatox.2014.10.014
Li Y, Zhu H, Lei X, Zhang H, Guan C, Chen Z et al (2015b) The first evidence of deinoxanthin from Deinococcus sp Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. J Hazard Mater 290:87-95. https://doi.org/10. 1016/j.jhazmat.2015.02.070
Li Y, Zhu H, Lei X, Zhang H, Guan C, Chen Z et al (2015b) The first evidence of deinoxanthin from Deinococcus sp Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense.J Hazard Mater 2957-295 . https://doi.org/10.1016/j.jhazmat.2015.02.070
Li Y, Liu L, Xu YT, Guan CW, Lei XQ, Zheng W et al (2016) First evidence of Altererythrobacter sp. LY02 with indirect algicidal activity on the toxic dinoflagellate, Alexandrium Tamarense. Curr Microbiol 73:550-560. https://doi.org/10.1007/ s00284-016-1093-x
Li Y, Liu L, Xu YT, Guan CW, Lei XQ, Zheng W et al (2016) First evidence of Altererythrobacter sp. LY02 with indirect algicidal activity on the toxic dinoflagellate, Alexandrium Tamarense.Curr Microbiol 750. ://doi.org/10.1007/ s00284-016-1093-x
Li M, Chen D, Liu Y, Chuang CY, Kong F, Harrison PJ et al (2018) Exposure of engineered nanoparticles to Alexandrium tamarense (Dinophyceae): Healthy impacts of nanoparticles via toxin-producing dinoflagellate. Sci Total Environ 610:356366. https://doi.org/10.1016/j.scitotenv.2017.05.170
Li M, Chen D, Liu Y, Chuang CY, Kong F, Harrison PJ et al (2018) Exposure of engineered nanoparticles to Alexandrium tamarense (Dinophyceae): Healthy impacts of nanoparticles via toxin-producing dincilagellate.SS636. https://doi.org/10.1016/j.scitotenv.2017.05.170
Lim AS, Jeong HJ, Seong KA, Lee MJ, Kang NS, Jang SH et al (2017) Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms. Algae 32:199-222. https://doi.org/10.4490/algae.2017.32.8.25
Lim AS、Jeong HJ、Seong KA、Lee MJ、Kang NS、Jang SH 等(2017 年)2014 年韓國南海近海魚毒鈷蛭紅潮:II.異養原生生物及其對赤潮生物的放牧影響。藻類 32:199-222. https://doi.org/10.4490/algae.2017.32.8.25
Liu L, Zhou J, Zheng B, Cai W, Lin K, Tang J (2013) Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China. Mar Pollut Bull 72:213-221. https://doi.org/10.1016/j.marpolbul.2013.04.002
Liu L, Zhou J, Zheng B, Cai W, Lin K, Tang J (2013) 中國長江口及鄰近水域赤潮爆發的時空分佈。 Mar Pollut Bull 72:213-221. https://doi.org/10.1016/j.marpolbul.2013.04.002
Liu Y, Cao X, Yu Z, Song X, Qiu L (2016) Flocculation of harmful algal cells using modified clay: effects of the properties of the clay suspension. J Appl Phycol 28:1623-1633. https://doi.org/ 10.1007/s10811-015-0735-x
Liu Y, Cao X, Yu Z, Song X, Qiu L (2016) 利用改質黏土絮凝有害藻細胞:黏土懸浮液性質的影響。 J Appl Phycol 28:1623-1633. https://doi.org/ 10.1007/s10811-015-0735-x
Liu Y (2016). Mechanisms and methods to increase the algae removal efficiency of modified clays. PhD thesis, Institute of Oceanology, Chinese Academy of Sciences, Retrieved from http://ir.qdio.ac.cn/handle/337002/116964. Available from Cnki
Liu Y (2016).提高改質黏土除藻效率的機制與方法。中國科學院海洋研究所博士論文,可檢索 http://ir.qdio.ac.cn/handle/337002/116964。可參閱 Cnki
Lu G, Song X, Yu Z, Cao X, Yuan Y (2015) Environmental effects of modified clay flocculation on Alexandrium tamarense and paralytic shellfish poisoning toxins (PSTs). Chemosphere 127:188194. https://doi.org/10.1016/j.chemosphere.2015.01.039
Lu G, Song X, Yu Z, Cao X, Yuan Y (2015) 改質黏土絮凝對亞歷山大藻和麻痺性貝類中毒毒素(PSTs)的環境影響。 Chemosphere 127:188194. https://doi.org/10.1016/j.chemosphere.2015.01.039

Lu X, Zhou B, Xu L, Liu L, Wang G, Liu X et al (2016) A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi. Appl Microbiol Biotechnol 100:5131-5139. https://doi.org/10.1007/s00253-016-7352-8
Lu X, Zhou B, Xu L, Liu L, Wang G, Liu X et al (2016) A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi.Appl Microbiol Biotechnol 100:5131 https: //doi.org/10.1007/s00253-016-7352-8
Lürling M, Tolman Y (2014) Beating the blues: is there any music in fighting cyanobacteria with ultrasound. Water Res 66:361-373
Lürling M, Tolman Y (2014) Beating the blues: Is there any music in fighting cyanobacteria with ultrasound.水研究》66:361-373
Maruyama T, Yamada R, Usui K, Suzuki H, Yoshida T (1987) Removal of marine red tide planktons with acid treated clay. Nippon Suisan Gakk 53:1811-1819. https://doi.org/10.2331/suisan.53. 1811
Maruyama T, Yamada R, Usui K, Suzuki H, Yoshida T (1987) Removal of marine red tide planktons with acid treated clay.Nippon Suisan Gakk 53:1811-1819. https://doi.org/10.2331/suis.
Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1(3):277-293. https://doi.org/10.1016/s1568-9883(02)
Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae).有害藻類 1(3):277-293。 https://doi.org/10.1016/s1568-9883(02)
Mazzillo FFM, Ryan JP, Silver MW (2011) Parasitism as a biological control agent of dinoflagellate blooms in the California Current System. Harmful Algae 10:763-773. https://doi.org/10.1016/j. hal.2011.06.009
Mazzillo FFM, Ryan JP, Silver MW (2011) Parasitism as a biological control agent of dinoflagellate blooms in the California Current System.有害藻類10:763-773. https://doi.org/10.1016/j. hal.2011. 009
McCoy LF Jr, Martin DF (1977) The influence of Gomphosphaeria aponina on the growth of Gymnodinium breve and the effect of aponin on the ichthyotoxicity of Gymnodinium breve. Chem Biol Interact 17:17-24. https://doi.org/10.1016/0009-2797(77) 90068-0
McCoy LF Jr, Martin DF (1977) Gomphosphaeria aponina 對鯛魚生長的影響以及 aponin 對鯛魚魚毒的影響。 Chem Biol Interact 17:17-24. https://doi.org/10.1016/0009-2797(77) 90068-0
Meyer N, Bigalke A, Kaulfuss A, Pohnert G (2017) Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev 41:880-899. https://doi.org/10.1093/femsre/fux029
Meyer N、Bigalke A、Kaulfuss A、Pohnert G(2017)殺藻細菌的策略與生態作用。 FEMS Microbiol Rev 41:880-899. https://doi.org/10.1093/femsre/fux029
Mizumoto H, Tomaru Y, Takao Y, Shirai Y, and Nagasaki K (2008) Diverse responses of the bivalve-kiving dinoflagellate Heterocapsa circularisquama to infection by a single-stranded RNA virus. Appl Environ Microbiol 74:3105-3111. https://doi.org/ 10.1128/aem.02190-07
Mizumoto H, Tomaru Y, Takao Y, Shirai Y, and Nagasaki K (2008) Diverse responses of the bivalve-kiving dinoflagellate Heterocapsa circularisquama to infection by a single-stranded RNA virus.A Environ Microbiol 4:3110 3:31 /doi.org/ 10.1128/aem.02190-07
Nabweteme R, Yoo M, Kwon H-S, Kim YJ, Hwang G, Lee CH et al (2015) Application of the extended DLVO approach to mechanistically study the algal flocculation. J Ind Eng Chem 30:289-294. https://doi.org/10.1016/j.jiec.2015.05.035
Nabweteme R, Yoo M, Kwon H-S, Kim YJ, Hwang G, Lee CH et al (2015) Application of the extended DLVO approach to mechanistically study the algal flocculation.J Ind Eng Chem 30:289-294 https://doi .org/10.1016/j.jiec.2015.05.035
Nagasaki K, Tomaru Y (2009) Recent progress in protist virologymolecular ecology, taxomony, molecular evolution. Uirusu 59:31-36. https://doi.org/10.2222/jsv.59.31
Nagasaki K, Tomaru Y (2009) Recent progress in protist virologymolecular ecology, taxomony, molecular evolution.Uirusu 59:31-36. https://doi.org/10.2222/jsv.59.31
Nagasaki K, Tarutani K, Yamaguchi M (1999) Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for Red Tide control. Appl Environ Microbiol 65(3):898-902
Nagasaki K, Tarutani K, Yamaguchi M (1999) Heterosigma akashiwo virus 的生長特性及其作為赤潮控制微生物製劑的可能用途。 Appl Environ Microbiol 65(3):898-902
Nagayama K, Shibata T, Fujimoto K, Honjo T, Nakamura T (2003) Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 218:0-611.
Nagayama K, Shibata T, Fujimoto K, Honjo T, Nakamura T (2003) 褐藻 Ecklonia kurome 中的綠單寧對赤潮微藻的殺藻作用。水產養殖 218:0-611。
Nishitani L, Erickson G, Chew KK (1985) Role of the parasitic dinoflagellate Amoebophrya ceratii in control of Gonyaulax catenella populations. In: Dinoflagellates T (ed) Anderson DM, White, AW, & Baden, DG. Elsevier Science Publishers, New York, pp 225-230
Nishitani L, Erickson G, Chew KK (1985) 寄生甲藻 Amoebophrya ceratii 在控制 Gonyaulax catenella 族群中的作用。在:Dinoflagellates T (ed) Anderson DM, White, AW, & Baden, DG.愛思唯爾科學出版社,紐約,第 225-230 頁
Oemcke DJ, Hans van Leeuwen J (2005) Ozonation of the marine dinoflagellate alga Amphidinium sp. implications for ballast water disinfection. Water Res 39:5119-5125. https://doi.org/ 10.1016/j.watres.2005.09.024
Oemcke DJ, Hans van Leeuwen J (2005) Ozonation of the marine dinoflagellate alga Amphidinium sp. implications for ballast water disinfection.Water Res 39:5119-5125. https://doi.org/ 10.Water Res 39:5119-5125. https://doi.org/ 10.1016/j.
Ohtani M (2003) Effect of the admixture of commercially available corticosteroid ointments and/or creams on their efficacy and side effects. Iryo Yakugaku 29:1-10
Ohtani M (2003) 市售皮質類固醇軟膏和/或乳霜劑的混合劑對其療效和副作用的影響。 Iryo Yakugaku 29:1-10
Onishi Y, Mohri Y, Tuji A, Ohgi K, Yamaguchi A, Imai I (2014) The seagrass Zostera marina harbors growth-inhibiting bacteria against the toxic dinoflagellate Alexandrium tamarense. Fish Sci 80:353-362. https://doi.org/10.1007/s12562-013-0688-4
Onishi Y、Mohri Y、Tuji A、Ohgi K、Yamaguchi A、Imai I(2014 年)海草 Zostera marina 中含有抑制有毒甲藻 Alexandrium tamarense 生長的細菌。 Fish Sci 80:353-362. https://doi.org/10.1007/s12562-013-0688-4
Padilla LV, Lourdes San Diego-McGlone M, Azanza RV (2010) Exploring the potential of clay in mitigating Pyrodinium bahamense var. compressum and other harmful algal species
Padilla LV, Lourdes San Diego-McGlone M, Azanza RV (2010) Exploring potential of clay in mitigating Pyrodinium bahamense var.

in the Philippines. J Appl Phycol 22:761-768. https://doi.org/ 10.1007/s10811-010-9517-7
菲律賓。 J Appl Phycol 22:761-768. https://doi.org/ 10.1007/s10811-010-9517-7
Pan G, Chen J, Anderson DM (2011) Modified local sands for the mitigation of harmful algal blooms. Harmful Algae 10:381387. https://doi.org/10.1016/j.hal.2011.01.003
Pan G、Chen J、Anderson DM(2011 年)《減緩有害藻華的改良本地沙》。有害藻類 10:381387. https://doi.org/10.1016/j.hal.2011.01.003
Panagopoulos A (2021) Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach - a techno-economic evaluation. J Environ Eng 9:105338
Panagopoulos A (2021) Beneficiation of saline effluents from seawater desalination plants:促進零液體排放(ZLD)方法--技術經濟評估。 J Environ Eng 9:105338
Panagopoulos A (2022) Techno-economic assessment of zero liquid discharge (ZLD) systems for sustainable treatment, minimization and valorization of seawater brine. J Environ Manage 306:114488
Panagopoulos A (2022) 用於海水鹽水永續處理、最小化和價值化的零液體排放(ZLD)系統的技術經濟評估。 J Environ Manage 306:114488
Pang Y, Ding Y, Sun B (2013) Removal of red tide organism by a novel cationic polymeric flocculant. In: Quan X (ed) 2013 International Symposium on Environmental Science and Technology, vol 18, pp 602-609.
Pang Y, Ding Y, Sun B (2013) 新型陽離子聚合物絮凝劑去除紅潮生物。在:Quan X(編)2013 環境科學與技術國際研討會,第 18 卷,第 602-609 頁。
Park JH, Yoshinaga I, Nishikawa T, Imai I (2010) Algicidal bacteria in particle-associated form and in free-living form during a diatom bloom in the Seto Inland Sea, Japan. Aquat Microb Ecol 60:151-161. https://doi.org/10.3354/ame01416
Park JH,Yoshinaga I,Nishikawa T,Imai I(2010 年)日本瀨戶內海矽藻藻華期間以顆粒相關形式和自由生活形式存在的殺藻細菌。 Aquat Microb Ecol 60:151-161. https://doi.org/10.3354/ame01416
Park SC, Lee JK, Kim SW, Park Y (2011) Selective algicidal action of peptides against harmful algal bloom species. PLoS ONE 6:26733. https://doi.org/10.1371/journal.pone. 0026733
Park SC、Lee JK、Kim SW、Park Y(2011 年)多肽對有害藻華物種的選擇性殺藻作用。 PLoS ONE 6:26733. https://doi.org/10.1371/journal.pone.0026733
Park MG, Kim S, Shin EY, Yih W, Coats DW (2013) Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae 30:62-S74. https://doi.org/10.1016/j.hal.2013.10.007
Park MG、Kim S、Shin EY、Yih W、Coats DW(2013 年)韓國沿海水域有害甲藻的寄生現象。有害藻類 30:62-S74. https://doi.org/10.1016/j.hal.2013.10.007
Park SC, Moon JC, Kim NH, Kim EJ, Jeong JE, Nelson A et al (2016) Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms. Biotechnol Lett 38:847-854. https://doi. org/10.1007/s10529-016-2052-0
Park SC, Moon JC, Kim NH, Kim EJ, Jeong JE, Nelson A et al (2016) Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms.Biotechnol Lett 38:847-854. https://doi. org /10.1007/s10529-016-2052-0
Park J, Church J, Son Y, Kim KT, Lee WH (2017) Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs). Ultrason Sonochem 38:326-334. https://doi.org/10.1016/j.ultsonch.2017.03.003
Park J, Church J, Son Y, Kim KT, Lee WH (2017) Recent advances in ultrasonic treatment:控制有害藻華(HABs)的挑戰與現場應用。 Ultrason Sonochem 38:326-334. https://doi.org/10.1016/j.ultsonch.2017.03.003
Pokrzywinski KL, Place AR, Warner ME, Coyne KJ (2012) Investigation of the algicidal exudate produced by Shewanella sp IRI160 and its effect on dinoflagellates. Harmful Algae 19:23-29. https://doi.org/10.1016/j.hal.2012.05.002
Pokrzywinski KL、Place AR、Warner ME、Coyne KJ(2012 年)《研究謝瓦納菌 IRI160 產生的殺藻滲出液及其對甲藻的影響》。有害藻類 19:23-29. https://doi.org/10.1016/j.hal.2012.05.002
Pokrzywinski KL, Tilney CL, Modla S, Caplan JL, Ross J, Warner ME et al (2017) Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates. Harmful Algae 62:127-135. https://doi.org/10.1016/j.hal.2016.12.004
Pokrzywinski KL、Tilney CL、Modla S、Caplan JL、Ross J、Warner ME 等(2017 年)殺菌滅藻劑 IRI-160AA 對有害甲藻細胞形態的影響。有害藻類 62:127-135. https://doi.org/10.1016/j.hal.2016.12.004
Ryu HY, Shim JM, Bang JD, Lee C (1998) Experimental chemical treatments for the control of dinoflagellate, Cochlodinium polykrikoides in the land-based culture of olive flounder Paralichthys olivaceus. Kerean J Aquac 11:285-294
Ryu HY, Shim JM, Bang JD, Lee C (1998) Experimental chemical treatments for the control of dinoflagellate, Cochlodinium polykrikoides in the land-based culture of olive flounder Paralichthys olivaceus.Kerean J Aquac 1422
Sahu SK, Mantri VA, Zheng P, Yao N (2020) Algae biotechnology. Encyclopedia of Marine Biotechnology, pp 1-31. https://doi.org/ 10.1002/9781119143802.ch1
Sahu SK、Mantri VA、Zheng P、Yao N (2020)《藻類生物技術》。海洋生物技術百科全書》,第 1-31 頁。 https://doi.org/ 10.1002/9781119143802.ch1
Sakamoto S, Lim WA, Lu D, Dai X, Orlova T, Iwataki M (2021) Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan. Korea and Russia Harmful Algae 102:101787. https://doi.org/10.1016/j.hal. 2020. 101787
Sakamoto S, Lim WA, Lu D, Dai X, Orlova T, Iwataki M (2021) Harmful algal blooms and associated fisheries damage in East Asia: Current status and trends in China, Japan.韓國和俄羅斯有害藻類 102:101787。 https://doi.org/10.1016/j.hal.2020.101787
Saxena P, Harish (2018) Nanoecotoxicological reports of engineered metal oxide nanoparticles on algae. Curr Pollut Rep 4:128-142. https://doi.org/10.1007/s40726-018-0088-6
Saxena P, Harish (2018) 工程金屬氧化物奈米顆粒對藻類的奈米生態毒理學報告。 Curr Pollut Rep 4:128-142. https://doi.org/10.1007/s40726-018-0088-6
Schneider KR, Pierce RH, Rodrick GE (2003) The degradation of Karenia brevis toxins utilizing ozonated seawater. Harmful Algae 2:101-107. https://doi.org/10.1016/s1568-9883(03)00020-9
Schneider KR, Pierce RH, Rodrick GE (2003) The degradation of Karenia brevis toxins utilizing ozonated seawater.https://doi.org/10.1016/s1568-9883(03)00020-9
Sengco MR, Hagström JA, Granéli E, Anderson DM (2005) Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae 4:261-274. https://doi.org/10.1016/j. hal.2004.05.001
Sengco MR, Hagström JA, Granéli E, Anderson DM (2005) Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals.有害藻類4:261-274. https://doi.org/10.10inerals.有害藻類4:261-274. https://doi.org/10.1016/j. hal. 2004.05.001

Sengco MR (2001) The aggregation of clay minerals and marine microalgal cells: physicochemical theory and implications for controlling harmful algal blooms. Massachusetts Institute of Technology.
Sengco MR (2001) The aggregation of clay minerals and marine microalgal cells: Physicochemical theory and implications for controlling harmful algal bloom.麻省理工學院。
Shang LA, Yi T, Xin-Min Z, Guo-Hua D, Hong-Ying H (2020) UV-C irradiation for harmful algal blooms control: a literature review on effectiveness, mechanisms, influencing factors and facilities. Sci Total Environ 723:137986. https://doi.org/10.1016/j.scito tenv. 2020.137
Shang LA, Yi T, Xin-Min Z, Guo-Hua D, Hong-Ying H (2020) UV-C 照射控制有害藻華:關於效果、機制、影響因素和設施的文獻綜述。 https://doi.org/10.1016/j.scito tenv.2020.137
Shi XG, Liu LM, Li Y, Xiao YC, Ding GM, Lin SJ et al (2018) Isolation of an algicidal bacterium and its effects against the harmfulalgal-bloom dinoflagellate Prorocentrum donghaiense (Dinophyceae). Harmful Algae 80:72-79. https://doi.org/10.1016/j. hal.2018.09.003
Shi XG, Liu LM, Li Y, Xiao YC, Ding GM, Lin SJ et al (2018) Isolation of an algicidal bacterium and its effects against the harmfulalgal-bloom dinoflagellate Prorocentrum donghaiense (Dinophyceaee. https://doi.org/10.1016/j. hal.2018.09.003
Shin M, Lee HJ, Kim MS, Park NB, Lee C (2017) Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater. Water Res 109:237-244. https://doi.org/10.1016/j.watres. 2016.11.050
Shin M, Lee HJ, Kim MS, Park NB, Lee C (2017) 海水中的臭氧對赤潮甲藻(Cochlodinium polykrikoides)的控制。 Water Res 109:237-244. https://doi.org/10.1016/j.watres.2016.11.050
Shirota A (1989) Red tide problem and countermeasures (2). Int J Aquac Fish Technol 1:195-293
Shirota A (1989) Red tide problem and countermeasures (2).Int J Aquac Fish Technol 1:195-293
Siano R, Alves-de-Souza C, Foulon E, Bendif EM, Simon N, Guillou L et al (2011) Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences 8:267-278. https://doi.org/10.5194/ bg-8-267-2011
Siano R, Alves-de-Souza C, Foulon E, Bendif EM, Simon N, Guillou L et al (2011) Amoebophryidae 寄生蟲在地中海寡營養水域的分佈和宿主多樣性。 https://doi.org/10.5194/ bg-8-267-2011
Song YC, Sivakumar S, Woo JH, Ko SJ, Hwang EJ, Jo Q (2010) Removal of Cochlodinium polykrikoides by dredged sediment: A field study. Harmful Algae 9:227-232. https://doi.org/10.1016/j. hal.2009.10.005
Song YC、Sivakumar S、Woo JH、Ko SJ、Hwang EJ、Jo Q(2010 年)疏浚沉積物對 Cochlodinium polykrikoides 的去除作用:實地研究。有害藻類 9:227-232. https://doi.org/10.1016/j. hal.2009.10.005
Song X-X, Yu Z-X, and Gao Y-H (2003) Removal of different species of red tide organisms with an effective clay-complex system. J Appl Ecol 4:1165-1168. https://doi.org/10.13287/j.1001-9332. 2003.0260
Song X-X、Yu Z-X、Gao Y-H(2003):利用有效的黏土-複合物系統去除不同種類的紅潮生物。 J Appl Ecol 4:1165-1168. https://doi.org/10.13287/j.1001-9332.2003.0260
Su RQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ et al (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6:799-810. https://doi.org/10.1016/j.hal.2007.04.004
Su RQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ et al (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense.有害藻類6:79-8doi10. .org/10.1016/j.hal.2007.04.004
Sun XX, Choi JK, Kim EK (2004a) A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment. J Exp Mar Biol Ecol 304:35-49. https://doi.org/10. 1016/j.jembe.2003.11.020
Sun XX, Choi JK, Kim EK (2004a) A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment.J Exp Mar Biol Ecol 304:35-49. https://doi.org/10.1 Exp Mar Biol Ecol 304:35-49. https://doi.org/10.1001 .jembe.2003.11.020
Sun XX, Han KN, Choi JK, Kim EK (2004b) Screening of surfactants for harmful algal blooms mitigation. Mar Pollut Bull 48:937945. https://doi.org/10.1016/j.marpolbul.2003.11.021
Sun XX, Han KN, Choi JK, Kim EK (2004b) Screening of surfactants for harmful algal blooms mitigation.Mar Pollut Bull 48:937945. https://doi.org/10.1016/j.marpolbul.2003.11.
Sun Z, Tian F, Duan L, An M, Duan S (2012) Allelopathic effects of mangrove plant Bruguiera gymnorrhiza on microalgae. Allelopathy J 30:291-298
Sun Z, Tian F, Duan L, An M, Duan S (2012) Allelopathic effects of mangrove plant Bruguiera gymnorrhiza on microalgae.Allelopathy J 30:291-298
Sun YY, Wang H, Guo GL, Pu YF, Yan BL, Wang C-H (2015) Green alga Ulva pertusa-a new source of bioactive compounds with antialgal activity. Environ Sci Pollut Res Int 22:10351-10359. https://doi.org/10.1007/s11356-015-4244-x
Sun YY, Wang H, Guo GL, Pu YF, Yan BL, Wang C-H (2015) Green alga Ulva pertusa-a new source of bioactive compounds with antialgal activity.Environ Sci Pollut Res Int 22:10351-10359.Environ Sci Pollut Res Int 22:10351-10359. https:// doi.org/10.1007/s11356-015-4244-x
Sun YY, Wang H, Guo GL, Pu YF, Yan BL, Wang CH (2016) Isolation, purification, and identification of antialgal substances in green alga Ulva prolifera for antialgal activity against the common harmful red tide microalgae. Environ Sci Pollut Res Int 23:1449-1459. https://doi.org/10.1007/s11356-015-5377-7
Sun YY, Wang H, Guo GL, Pu YF, Yan BL, Wang CH (2016) Isolation, purification, and identification of antialgal substances in green alga Ulva prolifera for antialgal activity against the common harmful red tide microalgaeantialgal activity against the common harmful red tide microalgae.Environ. 23:1449-1459. https://doi.org/10.1007/s11356-015-5377-7
Sun YY, Meng K, Su ZX, Guo GL, Pu YF, Wang C-H (2017) Isolation and purification of antialgal compounds from the red alga Gracilaria lemaneiformis for activity against common harmful red tide microalgae. Environ Sci Pollut Res Int 24:4964-4972. https://doi.org/10.1007/s11356-016-8256-y
Sun YY, Meng K, Su ZX, Guo GL, Pu YF, Wang C-H (2017) Isolation and purification of antialgal compounds from the red alga Gracilaria lemaneiformis for activity against common harmful red tide microalgae.Environ. 4972. https://doi.org/10.1007/s11356-016-8256-y
Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y (2018) Microorganisms-based methods for harmful algal blooms control: A review. Bioresour Technol 248:12-20. https://doi.org/10.1016/j. biortech.2017.07.175
Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y (2018) 基於微生物的有害藻華控制方法:A review.Bioresour Technol 248:12-20. https://doi.org/10.1016/j . biortech.2017.07.175
Sunesen I, Méndez S, Mancera-Pineda JE, Bottein M, Enevoldsen H (2021) The Latin America and Caribbean HAB status report based on OBIS and HAEDAT maps and databases. Harmful Algae 102:101920. https://doi.org/10.1016/j.hal.2020.10192
Sunesen I, Méndez S, Mancera-Pineda JE, Bottein M, Enevoldsen H (2021) The Latin America and Caribbean HAB status report based on OBIS and HAEDAT maps and databases.有害藻類 102:101920。 https://doi.org/10.1016/j.hal.2020.10192
Suzuki C (2016) Assessing change of environmental dynamics by legislation in Japan, using red tide occurrence in Ise Bay as an indicator. Mar Pollut Bull 102:283-288. https://doi.org/10.1016/j. marpolbul.2015.08.010
Suzuki C (2016) Assessing change of environmental dynamics by legislation in Japan, using red tide occurrence in Ise Bay as an indicator.Mar Pollut Bull 102:283-288. https://doi.org/10.1016 102:283-288. https://doi.org/10.1016/j. .010
Takano Y, Tomaru Y, Nagasaki K (2018) Visualization of a dinoflagellate-infecting virus HcDNAV and its infection process. VirusesBasel 10(10). https://doi.org/10.3390/v10100554
Takano Y, Tomaru Y, Nagasaki K (2018) 甲藻感染病毒 HcDNAV 及其感染過程的可視化。 VirusesBasel 10(10). https://doi.org/10.3390/v10100554
Tameishi M, Yamasaki Y, Nagasoe S, Shimasaki Y, Oshima Y, Honjo T (2009) Allelopathic effects of the dinophyte Prorocentrum minimum on the growth of the bacillariophyte Skeletonema costatum. Harmful Algae 8:421-429. https://doi.org/10.1016/j.hal. 2008.09.002
Tameishi M,Yamasaki Y,Nagasoe S,Shimasaki Y,Oshima Y,Honjo T(2009 年)雙子葉植物 Prorocentrum minimum 對雙子葉植物 Skeletonema costatum 的生長的別位效應。有害藻類 8:421-429. https://doi.org/10.1016/j.hal.2008.09.002
Tan S, Hu X, Yin P, Zhao L (2016) Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism. J Microbiol 54:364-375. https://doi.org/10.1007/ s12275-016-6012-0
Tan S, Hu X, Yin P, Zhao L (2016)從殺藻細菌代謝產物中分離出的一種二酮哌嗪對有毒球孢藻造成的光合抑制和氧化壓力。 J Microbiol 54:364-375. https://doi.org/10.1007/ s12275-016-6012-0
Tang YZ, Kang Y, Berry D, Gobler CJ (2015) The ability of the red macroalga, Porphyra purpurea (Rhodophyceae) to inhibit the proliferation of seven common harmful microalgae. J Appl Phycol 27:531-544. https://doi.org/10.1007/s10811-014-0338-y
Tang YZ, Kang Y, Berry D, Gobler CJ (2015) 紅色大型藻類紫卟啉(紅藻)抑制七種常見有害微藻增殖的能力。 J Appl Phycol 27:531-544. https://doi.org/10.1007/s10811-014-0338-y
Tarutani K, Nagasaki K, Itakura S, Yamaguchi M (2001) Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat Micro Ecol 23:103-111. https:// doi.org/10.3354/ame023103
Tarutani K, Nagasaki K, Itakura S, Yamaguchi M (2001) Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama.Aquat Micro Ecol 23:103-111. https:// doi.org/0.
Tian F, Zhou J, Sun Z, Cai Z, Xu N, An M et al (2014) Inhibitory effects of Chinese traditional herbs and herb-modified clays on the growth of harmful algae, Phaeocystis globosa and Prorocentrum donghaiense. Harmful Algae 37:153-159. https://doi.org/ 10.1016/j.hal.2014.05.015
Tian F, Zhou J, Sun Z, Cai Z, Xu N, An M et al (2014) Inhibitory effects of Chinese traditional herbal and herb-modified clays on the growth of harmful algae, Phaeocystis globosa and Prorocentrum dongense. 153-159. https://doi.org/ 10.1016/j.hal.2014.05.015
Tian ZJ (2009) Inhibition Effect of allelochemicals from large seaweeds on Gymnodinium breve. Msc Thesis, Ocean University of China, Available from Cnki.
Tian ZJ (2009) Inhibition Effect of allelochemicals from large seaweeds on Gymnodinium breve.中國海洋大學碩士論文,可從 Cnki 取得。
Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T (1999) Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J Exp Mar Biol Ecol 241:285-299. https://doi.org/ 10.1016/S0022-0981(99)00088-X
Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T (1999) 實驗室培養的赤潮甲藻 Heterocapsa circularisquama 和 Gymnodinium mikimotoi 之間的相互作用。 https://doi.org/ 10.1016/S0022-0981(99)00088-X
Umetsu S, Kanda M, Imai I, Sakai R, Fujita MJ (2019) Questiomycins, Algicidal compounds produced by the marine bacterium Alteromonas sp. D and Their Production Cue Molecules 24:4255. https://doi.org/10.3390/molecules24244522
Umetsu S, Kanda M, Imai I, Sakai R, Fujita MJ (2019) Questiomycins, Alteromonas sp. D 海洋細菌產生的殺菌化合物及其生產 Cue Molecules 24:4255. https://doi.org/10.3390/molecules24244522
Velo-Suarez L, Brosnahan ML, Anderson DM, McGillicuddy DJ Jr (2013) A Quantitative Assessment of the Role of the Parasite Amoebophrya in the Termination of Alexandrium fundyense Blooms within a Small Coastal Embayment. PLoS ONE 8:1150. https://doi.org/10.1371/journal.pone. 0081150
Velo-Suarez L, Brosnahan ML, Anderson DM, McGillicuddy DJ Jr (2013) A Quantitative Assessment of the Role of the Parasite Amoebophrya in the Termination of Alexandrium fundyense Blooms within a Small Coastal Embayment.PLoS ONE 8:1150. doi.org/10.1371/journal.pone.0081150
Pramitha Vs, Lipton A (2011) Growth responses of microalgae, Chlorella salina and Isochrysis galbana exposed to extracts of the macroalga, Hypnea musciformis. Indian J Fish 58:95-99
Pramitha Vs, Lipton A (2011) 微藻鹽湖小球藻和galbana藻暴露於大型藻類Hypnea musciformis萃取物的生長反應。印度魚類學報》58:95-99
Wang XL, Gong LY, Liang SK, Han XR, Zhu CJ, Li YB (2005) Algicidal activity of rhamnolipid biosurfactants produced by domonas aeruginosa. Harmful Algae 4:433-443. https://doi.org/ 10.1016/j.hal.2004.06.001
Wang XL, Gong LY, Liang SK, Han XR, Zhu CJ, Li YB (2005) Algicidal activity of rhamnolipid biosurfactants produced by domonas aeruginosa.有害藻類4:433-443. https://doi.orgonas aeruginosa.有害藻類4:433-443. https://doi.orgonas / 10.1016/j.hal.2004.06.001
Wang R-J, Xiao H, Wang Y, Zhou W, Tang X-X (2007) Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions. J Sea Res 58:189-197. https://doi. org/10.1016/j.seares.2007.03.002
Wang R-J, Xiao H, Wang Y, Zhou W, Tang X-X (2007) Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thaibergii (Phaeophyta) on the growthugs表 d laboratory conditions.J Sea Res 58:189-197. https://doi. org/10.1016/j.seares.2007.03.002
Wang R, Wang Y, Tang X (2012) Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae.
Wang R, Wang Y, Tang X (2012) 鑑定馬尾藻對紅潮微藻產生的有毒化合物。

Chin J Oceanol Limnol 30:778-785. https://doi.org/10.1007/ s00343-012-1294-5
Wang Z, Yu Z, Song X, Cao X, Han X (2014) Effects of modified clay on cysts of Scrippsiella trochoidea for harmful algal bloom control. Chin J Oceanol Limnol 32:1373-1382. https://doi.org/
Wang Z, Yu Z, Song X, Cao X, Han X (2014) Effects of modified clay on cysts of Scrippsiella trochoidea for harmful algal bloom control.Chin J Oceanol Limnol 32:1373-1382. control.Chin J Oceanol Limnol 32:1373-1382. https://doi.org/
Wang C, Wang Z, Wang P, Zhang S (2016) Multiple Effects of environmental factors on algal growth and nutrient thresholds for harmful algal blooms: application of response surface methodology. Environ Model Assess 21:247-259. https://doi.org/10.1007/ s10666-015-9481-3
Wang C, Wang Z, Wang P, Zhang S (2016) 環境因素對藻類生長和有害藻華營養閾值的多重影響:響應曲面方法學的應用。 https://doi.org/10.1007/ s10666-015-9481-3
Wang WW, Yan XY, Li YH, Yu DR, Li HY, Yang WD et al (2017) Removal efficiency of different gemini surfactants and related modified clay to Chattonella marina. Water Environ Res 89:1981-1987. https://doi.org/10.2175/106143017x1505498892 6389
Wang WW, Yan XY, Li YH, Yu DR, Li HY, Yang WD et al (2017) Removal efficiency of different gemini surfactants and related modified clay to Chattonella marina.Water Environ Res 89:1981-1987.://doi .org/10.2175/106143017x1505498892 6389
Wang M, Chen L, Zhang Z (2021) Potential applications of alginate oligosaccharides for biomedicine-a mini review. Carbohyd Polym 271:118408. https://doi.org/10.1016/j.carbpol.2021.11840
Wang M, Chen L, Zhang Z (2021) 海藻酸寡糖在生物醫學中的潛在應用--微型綜述。 Carbohyd Polym 271:118408. https://doi.org/10.1016/j.carbpol.2021.11840
Wu T, Yan XY, Cai XA, Tan SZ, Li HY, Liu JS et al (2010) Removal of Chattonella marina with clay minerals modified with a gemini surfactant. Appl Clay Sci 50:604-607. https://doi.org/10.1016/j. clay.2010.10.005
Wu T, Yan XY, Cai XA, Tan SZ, Li HY, Liu JS et al (2010) Removal of Chattonella marina with clay minerals modified with a gemini surfactant.Appl Clay Sci 50:604-607. https://doimini. org/10.1016/j. clay.2010.10.005
Wu Y, Lee Y, Jung SG, Kim M, Eom CY, Kim SW et al (2014) A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control. World J Microbiol Biotechnol 30:1603-1614. https://doi.org/10.1007/s11274-013-1584-x
Wu Y, Lee Y, Jung SG, Kim M, Eom CY, Kim SW et al (2014) A new thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control.World J Microbiol Biotechnol 30:160-1614.3-16120 doi.org/10.1007/s11274-013-1584-x
Wu P (2005) Study on red tide organism's mitigation with clay modified by new types of surfactant. PhD thesis, Ocean University of China, Available from Cnki
Wu P (2005) 新型界面活性劑改質黏土對赤潮生物緩解作用的研究。中國海洋大學博士論文,可從 Cnki 取得
Xiao X, Li C, Huang H, Lee YP (2019) Inhibition effect of natural flavonoids on red tide alga Phaeocystis globosa and its quantitative structure-activity relationship. Environ Sci Pollut Res Int 26:23763-23776. https://doi.org/10.1007/s11356-019-05482-7
Xiao X, Li C, Huang H, Lee YP (2019)天然黃酮類化合物對赤潮藻球藻的抑製作用及其定量結構-活性關係。 Environ Sci Pollut Res Int 26:23763-23776. https://doi.org/10.1007/s11356-019-05482-7
Xu W, Wang J, Tan L, Guo X, Xue Q (2019) Variation in allelopathy of extracellular compounds produced by Cylindrotheca closterium against the harmful-algal-bloom dinoflagellate Prorocentrum donghaiense. Mar Environ Res 148:19-25. https://doi.org/10. 1016/j.marenvres.2019.05.005
Xu W, Wang J, Tan L, Guo X, Xue Q (2019) Cylindrotheca closterium產生的胞外化合物對有害藻華甲藻Prorocentrum donghaiense的等位異化作用差異。 Mar Environ Res 148:19-25. https://doi.org/10.1016/j.marenvres.2019.05.005
Xue Q, Wang R, Xu W, Wang J, Tan L (2018) The stresses of allelochemicals isolated from culture solution of diatom Phaeodactylum tricornutum Bohlin on growth and physiology of two marine algae. Aquat Toxicol 205:51-57. https://doi.org/10.1016/j.aquat ox.2018.10.004
Xue Q, Wang R, Xu W, Wang J, Tan L (2018) 從矽藻Phaeodactylum tricornutum Bohlin培養液中分離的等位化學物質對兩種海洋藻類生長和生理的脅迫。 Aquat Toxicol 205:51-57. https://doi.org/10.1016/j.aquat ox.2018.10.004
Yang C-Y, Liu S-J, Zhou S-W, Wu H-F, Yu J-B, Xia C-H (2011) Allelochemical ethyl 2-methyl acetoacetate (EMA) induces oxidative damage and antioxidant responses in Phaeodactylum tricornutum. Pestic Biochem Physiol 100:93-103. https://doi.org/10. 1016/j.pestbp.2011.02.014
Yang C-Y, Liu S-J, Zhou S-W, Wu H-F, Yu J-B, Xia C-H (2011) Allelochemical ethyl 2-methyl acetoacetate (EMA) induces oxidative damage and antioxidant responses in Phtricjum Phys. //doi.org/10.1016/j.pestbp.2011.02.014
Yang Y, Liu Q, Chai Z, Tang Y (2015a) Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta). J Appl Phycol 27:2341-2352. https://doi.org/10.1007/s10811-014-0486-0
Yang Y, Liu Q, Chai Z, Tang Y (2015a) Inhibition of marine coastal bloom-forming phytoplankton by commcially cultivated Gracilaria lemaneiformis (Rhodophyta).J Appl Phycol 27:2341-235. s10811-014-0486-0
Yang Z, Jiang W, Zhang Y, Lim TM (2015b) Inactivation of dinoflagellate Scripsiella trochoidea in synthetic ballast water by advanced oxidation processes. Environ Technol 36:750-759. https://doi. org/10.1080/09593330.2014.960478
Yang Z, Jiang W, Zhang Y, Lim TM (2015b) Advanced Oxidation processes inactivation of dinoflagellate Scripsiella trochoidea in synthetic ballast water.Environ Technol 36:750-759. https://doi.org/10.
Yoo YD, Jeong HJ, Kang NS, Kim JS, Kim TH, Yoon EY (2010) Ecology of Gymnodinium aureolum. II. Predation by common heterotrophic dinoflagellates and a ciliate. Aquat Microb Ecol 59:257-272. https://doi.org/10.3354/ame01401
Yoo YD、Jeong HJ、Kang NS、Kim JS、Kim TH、Yoon EY(2010 年)Gymnodinium aureolum 的生態學。 II.常見異養甲藻和一種纖毛蟲的捕食。 Aquat Microb Ecol 59:257-272. https://doi.org/10.3354/ame01401
Yoo YD, Jeong HJ, Kim JS, Kim TH, Kim JH, Seong KA et al (2013a) Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30:S89-S101. https://doi.org/10.1016/j.hal.2013.10.009
Yoo YD、Jeong HJ、Kim JS、Kim TH、Kim JH、Seong KA 等(2013a)2004-2005 年韓國馬山灣的赤潮:II.異養原生生物豐度的日變化及其對赤潮生物的放牧影響。有害藻類 30:S89-S101. https://doi.org/10.1016/j.hal.2013.10.009
Yoo YD, Yoon EY, Jeong HJ, Lee KH, Hwang YJ, Seong KA et al (2013b) The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dinoflagellates. J Eukaryot Microbiol 60:13-24. https://doi.org/10. 1111/jeu. 12002
Yoo YD, Yoon EY, Jeong HJ, Lee KH, Hwang YJ, Seong KA et al (2013b) The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dingrazer of toxic httpsJ3/dell. /doi.org/10.1111/jeu.12002
Yu ZM, Zou JZ, Ma XN (1994) A new method to improve the capability of clays for removing red tide organisms. Oceanologia Et Limnologia Sinica 25:226-232
Yu ZM, Zou JZ, Ma XN (1994) A new method to improve the capability of clays for removing red tide organisms.Oceanologia Et Limnologia Sinica 25:226-232
Yu Z-M, Sun X-X, Song X-X, Zhang B (1999) Clay surface modification and its coagulation of red tide organisms. Chin Sci Bull 44:617-620. https://doi.org/10.1007/BF03182721
Yu Z-M, Sun X-X, Song X-X, Zhang B (1999) Clay surface modification and its coagulation of red tide organisms.Chin Sci Bull 44:617-620. https://doi.org/10.1007/BF03182721
Yu J, Wang D, Ge X, Yan M, Min Y (2006) Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures. Colloids Surf Physicochem Eng Aspects 290:288-294
Yu J, Wang D, Ge X, Yan M, Min Y (2006) 兩種典型聚電解質對高嶺土顆粒的絮凝作用:動力學和絮凝體結構的比較研究。 Colloids Surf Physicochem Eng Aspects 290:288-294
Yu Z, Song X, Cao X, Liu Y (2017) Mitigation of harmful algal blooms using modified clays: theory, mechanisms, and applications. Harmful Algae 69:48-64. https://doi.org/10.1016/j.hal.2017. 09.004
Yu Z, Song X, Cao X, Liu Y (2017) Mitigation of harmful algal blooms using modified clays: theory, mechanisms, and applications.有害藻類69:48-64. https://doi.org/10.1016/j. hal.2017.09.004
Yu X, Cai G, Wang H, Hu Z, Zheng W, Lei X et al (2018) Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls. J Hazard Mater 341:138-149. https://doi.org/10. 1016/j.jhazmat.2017.06.046
Yu X, Cai G, Wang H, Hu Z, Zheng W, Lei X et al (2018) Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls.J Hazard Mater 341:138-149. https: //doi.org/10.1016/j.jhazmat.2017.06.046
Zhan MM, Liu PR, Liu X, Hong Y, Xie X (2021) Inactivation and removal technologies for algal-bloom control: advances and challenges. Curr Pollut Rep 7:392-406. https://doi.org/10.1007/ s40726-021-00190-8
Zhan MM,Liu PR,Liu X,Hong Y,Xie X(2021 年)《藻類水華控制的滅活和去除技術:進展與挑戰》。 https://doi.org/10.1007/ s40726-021-00190-8
Zhang H, Yang W, Gao J, Liu J (2003) Inhibition and elimination of chlorine dioxide on Phaeocystis globose (in Chinese). Ying Yong Sheng Tai Xue Bao 14:1173-1176
Zhang H, Yang W, Gao J, Liu J (2003) Inhibition and elimination of chlorine dioxide on Phaeocystis globose (in Chinese).Ying Yong Sheng Tai Xue Bao 14:1173-1176
Zhang B, Chen S, He X, Liu W, Zhao Q, Zhao L et al (2014) Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet Plateau. PLoS ONE 9. https:// doi.org/10.1371/journal.pone. 0103859
Zhang B, Chen S, He X, Liu W, Zhao Q, Zhao L et al (2014) 青藏高原高寒草地土壤微生物群落對實驗暖化的反應。 https:// doi.org/10.1371/journal.pone.0103859
Zhang H, Zhang S, Peng Y, Li Y, Cai G, Chen Z et al (2015) Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp JS01 on a harmful alga Phaeocystis globosa. Appl Microbiol Biotechnol 99:4807-4814. https://doi.org/10.1007/ s00253-014-6349-4
Zhang H, Zhang S, Peng Y, Li Y, Cai G, Chen Z et al (2015) 新型分離放線菌Streptomyces sp JS01對有害藻類Phaeocystis globosa的有效性與毒性。 Appl Microbiol Biotechnol 99:4807-4814. https://doi.org/10.1007/ s00253-014-6349-4
Zhang H, Peng Y, Zhang S, Cai G, Li Y, Yang X et al (2016) Algicidal effects of prodigiosin on the harmful algae Phaeocystis globosa. Front Microbiol 7:602. https://doi.org/10.3389/fmicb. 2016.00602
Zhang H, Peng Y, Zhang S, Cai G, Li Y, Yang X et al (2016) prodigiosin 對有害藻類球藻的殺藻作用。 Front Microbiol 7:602. https://doi.org/10.3389/fmicb.2016.00602
Zhang Y, Yu Z, Song X, Yuan Y, Cao X (2018b) Effects of modified clay used for the control of harmful algal blooms on Alexandrium pacificum cysts. Harmful Algae 72:36-45. https://doi.org/ 10.1016/j.hal.2017.12.001
Zhang Y, Yu Z, Song X, Yuan Y, Cao X (2018b) 用於控制有害藻華的改質黏土對亞歷山大孢子囊的影響。有害藻類 72:36-45. https://doi.org/ 10.1016/j.hal.2017.12.001
Zhang Y, Su JZ, Su YP, Lin H, Xu YC, Barathan BP, Zheng WN, Schulz KG (2020) Spatial distribution of phytoplankton community composition and their correlations with environmental drivers in Taiwan Strait of Southeast China. Diversity 12:433. https://doi.org/10.3390/d12110433
Zhang Y, Su JZ, Su YP, Lin H, Xu YC, Barathan BP, Zheng WN, Schulz KG (2020) Spatial distribution of phytoplankton community composition and their correlations with environmental drivers in Taihttps. .org/10.3390/d12110433
Zhang F, Ye Q, Chen Q, Yang K, Zhang D, Chen Z et al (2018a) Algicidal Activity of Novel Marine Bacterium Paracoccus sp. Strain Y42 against a harmful algal-bloom-causing dinoflagellate, Prorocentrum donghaiense. Appl Environ Microbiol 84:101518. https://doi.org/10.1128/aem.01015-18
Zhang F, Ye Q, Chen Q, Yang K, Zhang D, Chen Z et al (2018a) Novel Marine Bacterium Paracoccus sp. Strain Y42 against a harmful algal-bloom-causing dinoflagellate, Prorocentrum donghaiense.A Environ Microbiol 84:10184: https://doi.org/10.1128/aem.01015-18
Zhao L, Chen L, Yin P (2014) Algicidal metabolites produced by Bacillus sp strain B1 against Phaeocystis globosa. J Ind Microbiol Biotechnol 41:593-599. https://doi.org/10.1007/ s10295-013-1393-0
Zhao L, Chen L, Yin P (2014) Bacillus sp strain B1所產生的殺藻代謝物對球藻的作用。 https://doi.org/10.1007/ s10295-013-1393-0
Zheng X, Zhang B, Zhang J, Huang L, Lin J, Li X et al (2013) A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol 97:9207-9215. https://doi.org/10.1007/ s00253-012-4617-8
Zheng X, Zhang B, Zhang J, Huang L, Lin J, Li X et al (2013) A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis. //doi.org/10.1007/ s00253-012-4617-8
Zhou LH, Zheng TL, Wang X, Ye JL, Tian Y, Hong HS (2007) Effect of five chinese traditional medicines on the biological activity of a red-tide causing alga Alexandrium tamarense. Harmful Algae 6:354-360. https://doi.org/10.1016/j.hal.2006.10.002
Zhou LH, Zheng TL, Wang X, Ye JL, Tian Y, Hong HS (2007) Effect of five Chinese traditional medicines on biological activity of a red-tide causing alga Alexandrium tamarense.有害藻類6:354-360. /doi.org/10.1016/j.hal.2006.10.002
Zhou S-W, Liu S-J, Yang C-Y, Xia C-H (2009) Inhibitory effect of water extracts from Sargassumthunbergii and Symphyocladia latiuscula on Phaeodactylum tricornutum. [Inhibitory effect of water extracts from Sargassum thunbergii and Symphyocladia latiuscula on Phaeodactylum tricornutum]. Ecol Environ 18(06):2027-2032.
Zhou S-W, Liu S-J, Yang C-Y, Xia C-H (2009) Inhibitory effect of water extracts from Sargassumthunbergii and Symphyocladia latiuscula on Phaeodactylum tricornutum.[Sargassum ttricbergii 和 Symphyaorn latelatin 對水萃取物的作用。 Ecol Environ 18(06):2027-2032.
Zhu J, Xiao H, Chen Q, Zhao M, Sun D, Duan S (2019) Growth Inhibition of Phaeocystis Globosa Induced by Luteolin-7-O-glucuronide from Seagrass Enhalus acoroides. Int J Env Res Public Health 16:2615. https://doi.org/10.3390/ijerph16142615
Zhu J, Xiao H, Chen Q, Zhao M, Sun D, Duan S (2019)海草Enhalus acoroides中的木犀草素-7-O-葡萄醣醛酸苷對球囊藻生長的抑製作用。 Int J Env Res Public Health 16:2615. https://doi.org/10.3390/ijerph16142615
Zhuang L, Zhao L, Yin P (2018) Combined algicidal effect of urocanic acid, -acetylhistamine and 1-histidine to harmful alga Phaeocystis globosa. RSC Adv 8:12760-12766. https://doi.org/10.1039/ c8ra00749g
Zhuang L, Zhao L, Yin P (2018) 尿囊酸、 -乙醯組織胺和1-組胺酸對有害藻類球藻的聯合殺藻作用。 -乙醯組織胺和1-組胺酸對有害藻類球藻的聯合殺藻作用。 RSC Adv 8:12760-12766. https://doi.org/10.1039/ c8ra00749g
Zingone A, Escalera L, Aligizaki K, Fernández TM, Totti C (2020) Toxic marine microalgae and noxious blooms in the Mediterranean Sea: A contribution to the Global HAB Status Report. Harmful Algae 102:101843. https://doi.org/10.1016/j.hal. 2020. 101843
Zingone A, Escalera L, Aligizaki K, Fernández TM, Totti C (2020) Toxic marine microalgae and noxious blooms in the Mediterranean Sea:對全球有害藻華現況報告的貢獻。有害藻類 102:101843。 https://doi.org/10.1016/j.hal。 2020.101843
Zohdi E, Abbaspour M (2019) Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. Int J Environ Sci Te 16:1789-1806. https://doi.org/
Zohdi E, Abbaspour M (2019) 有害藻華(赤潮):原因、影響及監測和預測方法綜述。 Int J Environ Sci Te 16:1789-1806. https://doi.org/
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
出版商註釋 施普林格-自然對出版地圖中的管轄權主張和機構隸屬關係保持中立。