这是用户在 2025-6-26 11:25 为 https://pubs.acs.org/doi/full/10.1021/jacs.3c10868 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis of Ultrathin High-Entropy Oxides with Phase Controllability
  • Subscribed
Communication  通信

Synthesis of Ultrathin High-Entropy Oxides with Phase Controllability
具有相位可控性的超薄高熵氧化物的合成
Click to copy article link
点击复制文章链接
Article link copied!

  • Jingjing Liang  梁晶晶
    Jingjing Liang
    The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
  • Junlin Liu  刘俊林
    Junlin Liu
    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
    More by Junlin Liu
  • Huiliu Wang  王慧琉
    Huiliu Wang
    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
    More by Huiliu Wang
  • Zeyuan Li  李泽元
    Zeyuan Li
    School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
    School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
    More by Zeyuan Li
  • Guanghui Cao  曹光辉
    Guanghui Cao  曹光辉
    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
    武汉大学化学与分子科学学院, 湖北 430072
    More by Guanghui Cao
    更多 Guanghui Cao 的产品
  • Ziyue Zeng  曾子悦
    Ziyue Zeng
    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
    More by Ziyue Zeng
  • Sheng Liu  刘胜
    Sheng Liu
    School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
    More by Sheng Liu
  • Yuzheng Guo  郭玉正
    Yuzheng Guo
    School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
    More by Yuzheng Guo
  • Mengqi Zeng*  曾梦琪*
    Mengqi Zeng
    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
    *Email: zengmq_lan@whu.edu.cn
    More by Mengqi Zeng
  • Lei Fu*  她是*
    Lei Fu
    The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
    *Email: leifu@whu.edu.cn
    More by Lei Fu
Open PDF  打开 PDFSupporting Information (1)
支持信息 (1)
OpenURL FUDAN UNIV

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2024, 146, 11, 7118–7123
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.3c10868
Published March 4, 2024
Copyright © 2024 American Chemical Society

Article Views

10k

Altmetric

11

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Abstract  抽象

Click to copy section link
单击以复制部分链接
Section link copied!

High-entropy oxides (HEOs) with an ultrathin geometric structure are especially expected to exhibit extraordinary performance in different fields. The phase structure is deemed as a key factor in determining the properties of HEOs, rendering their phase control synthesis tempting. However, the disparity in intrinsic phase structures and physicochemical properties of multiple components makes it challenging to form single-phase HEOs with the target phase. Herein, we proposed a self-lattice framework-guided strategy to realize the synthesis of ultrathin HEOs with desired phase structures, including rock-salt, spinel, perovskite, and fluorite phases. The participation of the Ga assistor was conducive to the formation of the high-entropy mixing state by decreasing the formation energy. The as-prepared ultrathin spinel HEOs were demonstrated to be an excellent catalyst with high activity and stability for the oxygen evolution reaction in water electrolysis. Our work injects new vitality into the synthesis of HEOs for advanced applications and undoubtedly expedites their phase engineering.
具有超薄几何结构的高熵氧化物 (HEO) 尤其有望在不同领域表现出非凡的性能。相结构被认为是决定 HEO 性质的关键因素,使其相控合成具有诱人性。然而,多种组分的本征相结构和物理化学性质的差异使得与目标相形成单相 HEO 具有挑战性。在此,我们提出了一种自晶格框架引导策略,以实现具有所需相结构的超薄 HEO 的合成,包括岩盐、尖晶石、钙钛矿和萤石相。Ga 辅助体的参与有利于通过降低形成能来形成高熵混合态。所制备的超薄尖晶石 HEO 已被证明是一种优异的催化剂,具有高活性和稳定性,可用于水电解中的析氧反应。我们的工作为用于高级应用的 HEO 综合注入了新的活力,无疑加快了它们的阶段工程。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据 机构认购。 请求重用权限。

Copyright © 2024 American Chemical Society
版权所有 © 2024 美国化学会

Benefited from nearly limitless elemental combination, high stability, and synergistic interaction between each component, (1) high-entropy oxides (HEOs) with excellent properties have been attracting extensive attention in various fields, including catalysis, (2−4) supercapacitor, (5) battery, (6,7) magnetism, (8) and so on. The functionality and performance of oxides are closely related to their phase structure, which can significantly influence the electronic configuration and ion diffusion. (9−12) Therefore, the synthesis of HEOs with the desired phase is highly pursued, which undoubtedly provides promising access to promote material design, performance optimization, and advanced applications.
得益于近乎无限的元素组合、高稳定性和各组分之间的协同作用,(1) 具有优异性能的高熵氧化物 (HEO) 在各个领域引起了广泛关注,包括催化、(2-4) 超级电容器、(5) 电池、(6,7) 磁性、(8) 等等。氧化物的功能和性能与其相结构密切相关,这会显着影响电子构型和离子扩散。(9−12) 因此,具有所需相的 HEO 的合成受到高度追求,这无疑为促进材料设计、性能优化和高级应用提供了有前途的途径。

The type of the incorporated metal cation correlates with the category of attainable phase structure of the metal oxide. (13) The cation radius and valence state play a crucial role in the coordination and bonding of metal cations and oxygen anions, thus affecting the natural tendency of phase formation of metal oxide. This means the single phase control in the HEOs is a huge challenge due to the intrinsic complexities between metal elements (e.g., differences in ionic radius, oxidation potential, and bonding force with oxygen) easily lead to phase separation.
掺入的金属阳离子的类型与金属氧化物可达到的相结构类别相关。(13) 阳离子半径和价态在金属阳离子和氧阴离子的配位和键合中起着至关重要的作用,从而影响金属氧化物成相的自然趋势。这意味着 HEO 中的单相控制是一个巨大的挑战,因为金属元素之间的内在复杂性(例如,离子半径、氧化电位和与氧的结合力的差异)很容易导致相分离。

The decrease of energy thermodynamically is beneficial to overcoming elemental immiscibility to form a high-entropy state. (2,14−17) Recently, we reported that utilizing Ga with relatively negative mixing enthalpy to reduce Gibbs free energy can realize uniform elemental mixing in high-entropy alloys under relatively mild reaction conditions. (14) Therefore, it provides an idea to construct a high-entropy mixing state in oxides. Although several studies have been reported to realize the preparation of HEOs, (2,18−21) the universal phase-controlled synthesis of HEOs is still rare, let alone further accessibility in ultrathin geometry morphology.
热力学能量的减少有利于克服元素不混溶性以形成高熵状态。(2,14−17) 最近,我们报道了利用具有相对负混合焓的 Ga 来降低吉布斯自由能,可以在相对温和的反应条件下实现高熵合金中的元素均匀混合。(14) 因此,它提供了一种在氧化物中构建高熵混合态的想法。尽管已经有几项研究实现了 HEO 的制备,(2,18−21) HEO 的通用相位控制合成仍然很少见,更不用说在超薄几何形态学中进一步可及了。

Herein, the self-lattice framework with a mixing assistor guided strategy was proposed for phase control synthesis of ultrathin HEOs (Figure 1), including rock-salt, spinel, perovskite, and fluorite phase structures. In a representative synthesis protocol, metal salts, glucose, and glycine were uniformly premixed and then annealed under an air atmosphere to produce HEO nanosheets (Figure S1), where glucose and glycine are utilized to generate the carbon template for guiding the formation of nanosheets. As for the phase structure, the intrinsic property of the element is in favor of forming specific coordination polyhedrons to construct related phase structures, which is something like utilizing the natural mixing features among different elements to diminish casting segregation in the field of high-entropy alloys. (22)
在此,提出了具有混合辅助器引导策略的自晶格框架,用于超薄 HEO 的相位控制合成( 图 1),包括岩盐、尖晶石、钙钛矿和萤石相结构。在代表性合成方案中,金属盐、葡萄糖和甘氨酸均匀预混合,然后在空气气氛下退火以产生 HEO 纳米片( 图 S1),其中葡萄糖和甘氨酸用于生成碳模板以指导纳米片的形成。至于相结构,元素的本征性质有利于形成特定的配位多面体来构建相关的相结构,这就像在高熵合金领域利用不同元素之间的自然混合特性来减少铸件偏析。(22)

Figure 1  图 1

Figure 1. Schematic illustration of a self-lattice-framework with Ga mixing assistor for HEO synthesis.
图 1.用于 HEO 合成的带有 Ga 混合辅助器的自晶格框架的示意图。

As a result, oriented by the target phase structure, elements with suitable intrinsic properties (i.e., cation radii and valence state) are combined to generate the required ion arrangement, which could be figuratively regarded as the self-lattice framework. Such natural preference for bonding constitutes the structural basis of oxides, modulating the ions to arrange on the basis of the crystal structure. Meanwhile, the introduced Ga component could be regarded as an assistor, which was beneficial to the occupancy of various metal elements into the cation site under relatively mild conditions. The relatively low reaction temperature also ensured the functionality of the template for producing HEO ultrathin morphology, which can exhibit facile electron and ion transport behavior and high exposure of active sites. (23,24) Additionally, the ionic radius of Ga resembles that of the 3d transition metals, which would reduce the effect of lattice distortion on phase stability. (8) Therefore, the self-lattice framework with a Ga assistor can modulate the structure and mixing state of the system to form the HEO with the desired phase and high-entropy mixing state (Figure 1).
结果,在目标相结构的导向下,具有适当本征性质(即阳离子半径和价态)的元素被组合以产生所需的离子排列,这可以形象地视为自晶格框架。这种对键合的自然偏好构成了氧化物的结构基础,调节离子在晶体结构的基础上排列。同时,引入的 Ga 组分可以看作是一种辅助剂,有利于在相对温和的条件下各种金属元素进入阳离子位点。相对较低的反应温度还确保了模板用于生产 HEO 超薄形态的功能,其可以表现出简单的电子和离子传输行为以及活性位点的高暴露。(23,24) 此外,Ga 的离子半径类似于 3d 过渡金属的离子半径,这将减少晶格畸变对相稳定性的影响。(8) 因此,带有 Ga 辅助器的自晶格框架可以调制系统的结构和混合状态,以形成具有所需相位和高熵混合状态的 HEO( 图 1)。

The scanning electron microscopy and atomic force microscopy characterizations of the generated HEO (GaFeCoNiCr oxide) are shown in Figure S2, exhibiting curled and flexible nanosheets with micrometer-scale lateral size and ultrathin thickness characteristics. The Brunauer–Emmett–Teller and Barrett–Joyner–Halenda analyses demonstrated that the HEO nanosheets exhibited a surface area of 77.5 m2/g and contained the mesopore with a size of about 10 nm (Figure S3). The carbon–sulfur analyzer test indicated the content of carbon was about 0.6 wt %, indicating a very small quantity of carbon residues. Besides, both the increase in the reaction time and the decrease in the amount of glucose and glycine would lead to an increase in the thickness of the HEO nanosheets (Figures S4 and S5).
生成的 HEO(GaFeCoNiCr 氧化物)的扫描电子显微镜和原子力显微镜特性如图 S2 所示,展示了具有微米级横向尺寸和超薄厚度特性的卷曲和柔性纳米片。Brunauer-Emmett-Teller 和 Barrett-Joyner-Halenda 分析表明,HEO 纳米片的表面积为 77.5 m2/g,包含大小约为 10 nm 的中孔( 图 S3)。碳硫分析仪测试表明,碳含量约为 0.6 wt %,表明碳残留物的数量非常少。此外,反应时间的增加以及葡萄糖和甘氨酸量的减少都会导致 HEO 纳米片厚度的增加( 图 S4 和 S5)。

The strategy showed applicability to four types of oxide phase structures (Figures 2, S6, and S7). As a demonstration of the rock-salt structure, the HEO system containing Co, Mg, Ni, Cu, Zn, Li, and Ga elements was synthesized considering that most of them have the ability to form metal–oxygen octahedrons and have an oxidation state of +2. The X-ray diffraction (XRD) pattern revealed that the product belonged to the cubic rock-salt structure (Figure 2a). According to energy-dispersive spectroscopy (EDS) elemental mappings obtained by transmission electron microscopy (TEM), high-entropy mixing characteristics of the oxide were verified where all elements exhibited uniform distribution. Considering the Li element is too light to detect by the TEM-EDS technique, its existence was confirmed by X-ray photoelectron spectroscopy (XPS) (Figure S8). The selected-area electron diffraction (SAED) pattern displayed multiple diffraction rings (Figure S9a), matching the interplanar spacings of the rock-salt structure. It also indicated the polycrystalline characteristic structure of the HEO nanosheet.
该策略显示适用于四种类型的氧化物相结构( 图 2、S6 和 S7)。作为岩盐结构的示范,合成了含有 Co、Mg、Ni、Cu、Zn、Li 和 Ga 元素的 HEO 体系,考虑到它们中的大多数具有形成金属-氧八面体的能力并且具有 +2 的氧化态。X 射线衍射 (XRD) 图谱显示,该产物属于立方岩盐结构( 图 2a)。根据透射电子显微镜 (TEM) 获得的能量色散光谱 (EDS) 元素映射,验证了氧化物的高熵混合特性,其中所有元素均表现出均匀分布。考虑到 Li 元素太轻,无法通过 TEM-EDS 技术检测,其存在通过 X 射线光电子能谱 (XPS) 证实( 图 S8)。选定区域电子衍射 (SAED) 图样显示了多个衍射环( 图 S9a),与岩盐结构的面间距相匹配。它还表明了 HEO 纳米片的多晶特征结构。

Figure 2  图 2

Figure 2. Structural and elemental characterizations of HEO nanosheets with different crystal structures. (a–d) XRD profiles (left) and elemental mappings (right) of the rock-salt (a), spinel (b), perovskite (c), and fluorite (d) structures, respectively. The inset of the XRD profile is a crystal structure diagram. Scale bar: (a) 1 μm, (b) 1 μm, (c) 500 nm, and (d) 300 nm.
图 2.具有不同晶体结构的 HEO 纳米片的结构和元素表征。(一至四)岩盐 (a)、尖晶石 (b)、钙钛矿 (c) 和萤石 (d) 结构的 XRD 剖面(左)和元素映射(右)。XRD 剖面的插图是晶体结构图。比例尺:(a) 1 μm、(b) 1 μm、(c) 500 nm 和 (d) 300 nm。

When the system contains elements with valence states of +2 and +3, and metal–oxygen tetrahedron and octahedron, it would be inclined to form a spinel structure. The homogeneous elemental distribution, only one set of diffraction patterns in the XRD result, and the matched SAED pattern demonstrated the successful synthesis of spinel structure in the HEO system consisting of Mg, Zn, Ni, Co, Mn, and Ga elements (Figures 2b and S9b).
当系统包含价态为 +2 和 +3 的元素以及金属-氧四面体和八面体时,它会倾向于形成尖晶石结构。均匀的元素分布、XRD 结果中只有一组衍射图谱以及匹配的 SAED 图谱表明,尖晶石结构在由 Mg、Zn、Ni、Co、Mn 和 Ga 元素组成的 HEO 系统中成功合成( 图 2b 和 S9b)。

When the system contains elements with valence states of +3, 12-fold coordination of oxygen, and metal–oxygen octahedron, it would tend to form a perovskite structure. The perovskite-type HEO including La, Fe, Mn, Ni, Co, Cr, and Ga elements was prepared as shown in Figure 2c. The dispersion of each element was uniform. The XRD profile and diffraction rings in the SAED pattern (Figure S9c) could be indexed to the standard XRD pattern of the perovskite crystal structure.
当系统包含价态为 +3、氧的 12 倍配位和金属-氧八面体的元素时,它往往会形成钙钛矿结构。如图 2c 所示,制备了包括 La、Fe、Mn、Ni、Co、Cr 和 Ga 元素的钙钛矿型 HEO。各元素的分散度均匀。SAED 图谱( 图 S9c)中的 XRD 剖面和衍射环可以与钙钛矿晶体结构的标准 XRD 图谱进行索引。

As for the fluorite structure, the elements usually have an 8-fold coordination of oxygen and an oxidation state of four. Figures 2d and S9d indicated that Zr, Fe, Mn, Co, and Ga elements were homogeneously incorporated into the fluorite structure. Therefore, most likely, the Zr element with a stable oxidation state of +4 could be regarded as a host to stabilize the fluorite lattice for accepting the other elements, which is similar to the effect of Ce ion in the previous report. (25)
至于萤石结构,元素通常具有 8 倍氧配位和 4 氧化态。 图 2d 和 S9d 表明 Zr、Fe、Mn、Co 和 Ga 元素均匀地掺入萤石结构中。因此,最有可能的是,具有稳定氧化态 +4 的 Zr 元素可以被视为稳定萤石晶格以接受其他元素的主体,这与上一份报告中 Ce 离子的作用相似。(25)

The XPS analysis further corroborated that all elements of the four systems were in the oxidation state (Figures S8 and S10–S12). Some elements of the system exhibited multiple valence states to better self-adapting to the disorder of multiple cations, which was commonly observed in the ever-reported HEOs. (26,27) The specific chemical compositions of the HEOs are shown in Tables S1 and S2. In addition, the utilization of glucose and glycine would not affect the phase structure (Figure S13). Furthermore, HEO containing the noble metal was also synthesized (Figure S14).
XPS 分析进一步证实,四个系统的所有元素都处于氧化态( 图 S8 和 S10-S12)。该系统的一些元素表现出多种价态,以更好地自我适应多种阳离子的无序,这在不断报道的 HEO 中很常见。(26,27) HEO 的具体化学成分如表 S1 和 S2 所示。此外,葡萄糖和甘氨酸的利用不会影响相结构( 图 S13)。此外,还合成了含有贵金属的 HEO( 图 S14)。

To illustrate the effect of structure and mixing modulation for HEO synthesis, the oxide system the same as that of Figure 2a was synthesized without the Ga assistor addition. As shown in Figure 3a, the major diffraction peaks could be indexed to the standard patterns of the rock-salt phase. The existence of the main phase and its structural consistency with the HEO system containing Ga assistor (Figure 2a) indicated the elements could spontaneously form a specific lattice framework to modulate the structure of the system toward the target phase. However, there were some extra diffraction peaks and elemental aggregations in the product (Figure 3a,b). The formation energy of multicomponent oxides was calculated by density functional theory, indicating that the formation energy of the system with Ga assistor participation was lower than that of the assistor-free system (Figure 3c). Additionally, the multiple-component oxides still exhibited phase separation under the circumstance that they had the same element number as the HEO systems containing Ga (Figures S15 and S16). These results indicated that the presence of the Ga assistor would be beneficial to achieve high-entropy mixing by decreasing the formation energy. The absence of the assistor failed mixing modulation, leading to nucleation and growth of impurity phases (Figure 3d). Similar phenomena, that is, elemental aggregations and the coexistence of the main phase and impure phases, could also be observed in the other three HEO systems without assistor addition (Figures S17–19). Therefore, both the structure and mixing modulation are of great importance to the formation of single-phase HEO, where structure and mixing modulation are closely related to the attainable phase structure and high-entropy mixing state.
为了说明结构和混合调制对 HEO 合成的影响,合成了与图 2a 相同的氧化物体系,而没有添加 Ga 辅助器。如图 3a 所示,主要衍射峰可以与岩盐相的标准模式进行索引。主相的存在及其与含有 Ga 辅助子的 HEO 系统的结构一致性( 图 2a)表明这些元素可以自发形成特定的晶格框架,以将系统的结构调节到目标相。然而,产物中有一些额外的衍射峰和元素聚集体( 图 3a、b)。通过密度泛函理论计算多组分氧化物的形成能,表明有 Ga 助焊器参与的体系的形成能低于无助焊体系的形成能( 图 3c)。此外,多组分氧化物在与含有 Ga 的 HEO 系统具有相同的元素数的情况下仍然表现出相分离( 图 S15 和 S16)。这些结果表明,Ga 辅助子的存在有利于通过降低形成能来实现高熵混合。辅助子的缺失使混合调制失败,导致成核和杂质相生长( 图 3d)。类似的现象,即元素聚集以及主相和不纯相的共存,也可以在其他三个 HEO 系统中观察到,而无需添加辅助器( 图 S17-19)。 因此,结构和混频调制对于单相 HEO 的形成都非常重要,其中结构和混频调制与可实现的相结构和高熵混频态密切相关。

Figure 3  图 3

Figure 3. Effect of structural and mixing modulation on the formation of single-phase HEO. (a,b) XRD pattern and EDS mapping of the HEO without a Ga assistor. Scale bar: 500 nm. (c) Formation energy of single-phase HEO before and after introducing Ga assistor. (d) Schematic illustration of multiphase oxide formation without Ga assistor.
图 3.结构和混合调制对单相 HEO 形成的影响。(一、二)没有 Ga 辅助器的 HEO 的 XRD 图谱和 EDS 映射。比例尺:500 nm。(c) 引入 Ga 辅助器前后单相 HEO 的形成能量。(d) 无 Ga 助剂的多相氧化物形成示意图。

Metal oxides are one of the most excellent electrocatalysts for oxygen evolution reaction (OER). (21,28,29) Considering Fe, Co, and Ni are usually the active elements for the OER, (29,30) they were included in the chemical composition of HEOs. Herein, the quinary GaFeCoNiMo and GaFeCoNiCr, quaternary GaFeCoNi oxides, were synthesized and tested toward the OER, all of which exhibited the high-entropy mixing state and single-phase spinel structure (Figure S20).
金属氧化物是析氧反应 (OER) 最优异的电催化剂之一。(21,28,29) 考虑到 Fe、Co 和 Ni 通常是 OER 的活性元素,(29,30) 它们被包含在 HEO 的化学成分中。在此,合成了四元 GaFeCoNiMo 和 GaFeCoNiCr,并针对 OER 进行了测试,它们都表现出高熵混合态和单相尖晶石结构( 图 S20)。

In the polarization curves of Figure 4a, two quinary HEOs exhibited superior OER activity compared to the RuO2 catalyst and the quaternary oxide, indicating that entropy engineering could enhance the catalytic performance. As shown in Figure 4b,c, GaFeCoNiMo oxide exhibited the lowest value of both overpotential and Tafel slope, indicating that it possessed the highest catalytic activity and fastest OER reaction kinetics among the catalysts. The smaller value of charge-transfer resistances of GaFeCoNiMo oxide than other systems further verified the best electrocatalytic kineties (Figure S21), which accords with the result of Tafel slopes. Moreover, the double-layer capacitance analysis indicated the most electrochemically active sites for GaFeCoNiMo oxide (Figures S22 and S23). The high OER activity of GaFeCoNiMo oxide may be because the alloying of Mo with variable valence states and large ionic radius could modulate the electronic structure of the active site and induce strain to boost the activity. (31−33) Additionally, the XPS analysis indicated there were abundant oxygen vacancies (Figure S24), which has been demonstrated to promote the catalytic performance. (5,33,34) According to the chronopotentiometry curve (Figure 4d), the GaFeCoNiMo oxide catalyst exhibited no obvious deterioration after the 250 h test, reflecting excellent stability.
图 4a 的极化曲线中,与 RuO2 催化剂和季氧化物相比,两个五元 HEO 表现出优异的 OER 活性,表明熵工程可以提高催化性能。如图 4b,c 所示,GaFeCoNiMo 氧化物的过电位和塔菲尔斜率均表现出最低值,表明它在催化剂中具有最高的催化活性和最快的 OER 反应动力学。GaFeCoNiMo 氧化物的电荷转移电阻值小于其他系统,进一步验证了最佳的电催化基质( 图 S21),这与 Tafel 斜率的结果一致。此外,双层电容分析表明 GaFeCoNiMo 氧化物的电化学活性位点最强( 图 S22 和 S23)。GaFeCoNiMo 氧化物的高 OER 活性可能是因为具有可变价态和大离子半径的 Mo 合金化可以调节活性位点的电子结构并诱导应变以增强活性。(31−33) 此外,XPS 分析表明存在丰富的氧空位( 图 S24),这已被证明可以促进催化性能。(5,33,34) 根据计时电位曲线( 图 4d),GaFeCoNiMo 氧化物催化剂在 250 h 测试后没有表现出明显的劣化,反映了优异的稳定性。

Figure 4  图 4

Figure 4. Electrocatalytic performance of HEO nanosheets toward the OER. (a) Polarization curves. (b) Comparison of overpotential of different samples at 10 mA cm–2. (c) Tafel slopes. (d) Chronopotentiometric curve of the HEO (GaFeCoNiMo oxide) at 10 mA cm–2. The curves and columns with different colors in (a–d) represent different HEO systems. Red: GaFeCoNiMo oxide. Blue: GaFeCoNiCr oxide. Gray: GaFeCoNi oxide. Orange: RuO2.
图 4.HEO 纳米片对 OER 的电催化性能。(a) 极化曲线。(b) 不同样品在 10 mA cm–2 下的过电位比较。(c) 塔菲尔斜坡。(d) HEO(GaFeCoNiMo 氧化物)在 10 mA cm–2 下的计时电位曲线。(a–d) 中具有不同颜色的曲线和列表示不同的 HEO 系统。红色:GaFeCoNiMo 氧化物。蓝色:GaFeCoNiCr 氧化物。灰色:GaFeCoNi 氧化物。橙色:RuO2

In conclusion, we demonstrate the self-lattice framework with the mixing assistor for realizing the synthesis of ultrathin HEOs. With the assistance of Ga to decrease the formation energy, the self-lattice framework generated by the element bonding preference can accomplish the structure and mixing dual modulation in a high-entropy scenario, resulting in the formation of single-phase HEO. The maintenance of the main phase yet the appearance of the impurity phase and local element aggregation in the oxide systems without the assistor addition demonstrated the dual-modulation of our strategy. The approach showed broad applicability in the construction of rock-salt, spinel, perovskite, and fluorite high-entropy structures. The as-obtained HEO nanosheets exhibited great activity and stability for electrocatalytic OER. This strategy provides new insight into the controlled synthesis of high-entropy materials and provides a platform for developing advanced catalysts.
总之,我们展示了带有混合辅助器的自晶格框架,用于实现超薄 HEO 的合成。在 Ga 降低形成能的辅助下,元素键合偏好产生的自晶格框架可以在高熵情景下完成结构和混频双调制,从而形成单相 HEO。在没有添加辅助剂的情况下,氧化物系统中保持主相但出现杂质相和局部元素聚集,证明了我们策略的双重调制。该方法在构建岩盐、尖晶石、钙钛矿和萤石高熵结构方面显示出广泛的适用性。所获得的 HEO 纳米片对电催化 OER 表现出很好的活性和稳定性。该策略为高熵材料的受控合成提供了新的见解,并为开发高级催化剂提供了平台。

Supporting Information  支持信息

Click to copy section link
单击以复制部分链接
Section link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c10868.
支持信息可在 https://pubs.acs.org/doi/10.1021/jacs.3c10868 免费获取。

  • Experimental and characterization details; details of theoretical calculations; schematic diagram of the ultrathin HEO synthesis; morphology characterization and thickness regulation of the HEO nanosheet; OM, SEM, AFM, XPS, SAED, TEM-EDS, and ICP-OES characterizations of the HEOs with four type phase structures; structural and elemental analysis of the HEOs without glucose and glycine addition, multicomponent oxide systems without assistor addition, and the HEO containing the noble metal; TEM, XRD, and XPS characterizations of the HEO catalyst; impedance and double-layer capacitance measurement of all OER catalysts (PDF)
    实验和表征细节;理论计算的细节;超薄 HEO 合成示意图;HEO 纳米片的形貌表征和厚度调节;具有四种类型相结构的 HEO 的 OM、SEM、AFM、XPS、SAED、TEM-EDS 和 ICP-OES 表征;对不添加葡萄糖和甘氨酸的 HEO、不添加辅助剂的多组分氧化物系统以及含有贵金属的 HEO 进行结构和元素分析;HEO 催化剂的 TEM、XRD 和 XPS 表征;所有 OER 催化剂的阻抗和双电层电容测量 (PDF

Synthesis of Ultrathin High-Entropy Oxides with Phase Controllability

40 views

0 shares

0 downloads

S1
Synthesis of Ultrathin High-Entropy Oxides with Phase
具有相的超薄高熵氧化物的合成
Controllability  操纵
Jingjing Liang,  梁晶晶,
§,†,
Junlin Liu,
刘俊林,
§,‡
Huiliu Wang,
王慧柳,
Zeyuan Li,
李泽元,
††,‡‡
Guanghui Cao,
曹光辉,
Ziyue Zeng,
曾子悦,
Sheng Liu,
刘胜,
‡‡
Yuzheng Guo,  郭玉正,
††
Mengqi Zeng,*  曾梦琪*
,‡
and Lei Fu*  和傅磊*
,†,‡
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
武汉大学高等研究院, 中国 武汉 430072
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
武汉大学化学与分子科学学院, 湖北 430072
††
School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
武汉大学电气工程与自动化学院, 中国 武汉 430072
‡‡
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
武汉大学 动力与机械工程学院, 中国 武汉 430072
§
These authors contributed equally to this work.
这些作者对这项工作做出了同样的贡献。
*
To whom correspondence should be addressed: email: zengmq_lan@whu.edu.cn, leifu@whu.edu.cn
信件应寄给谁:电子邮件:zengmq_lan@whu.edu.cn、leifu@whu.edu.cn
S2
Experiments and characterizations
Chemical reagents
:
Cobalt nitrate hexahydrate, magnesium nitrate hexahydrate, nickel nitrate
hexahydrate, zinc nitrate hexahydrate, copper nitrate trihydrate, iron nitrate nonahydrate, chromium
nitrate nonahydrate, manganese nitrate 50% aqueous solution, potassium hydroxide, isopropanol,
glucose, and glycine were purchased from Sinopharm Chemical Reagent Co., Ltd. Lithium acetate
dihydrate, lanthanum acetylacetonate hydrate, gallium nitrate hydrate, ruthenium acetylacetonate,
and ruthenium dioxide were obtained from Aladdin. Macklin supplied these reagents: zirconium
acetylacetonate hydrate and molybdenum acetylacetonate hydrate. Nafion TM 117 (5 wt % in a
mixture of lower aliphatic alcohols and water) was received from Sigma-Aldrich. Carbon black
(XC72R) was purchased from Cabot. All reagents were used as received directly without any
purification process.
Synthesis of high-entropy oxide (HEO) nanosheets
: The metal salts, glucose, and glycine were
dissolved in 30 mL deionized water under magnetic stirring and then dried in a quartz crucible using
an oven with 80
°C
, forming the precursor. Afterward, the muffle furnace was heated to the target
temperature with a rate of 23
°C
min
−1
, and then the crucible with precursor was immediately put into
the furnace. The auto-combustion reaction between glycine and metal nitrate salts, and the Maillard
reaction between glucose and glycine consecutively proceed, resulting in producing a large amount
of gas to puff the polymer intermediate into ultrathin carbon nanosheets.
1,2
Meanwhile, the HEO
nanoparticles generated by the decomposition of salt precursor would self-link with each other to
evolve into oxide nanosheets with the assistance of a carbon nanosheet template.
3
Therefore, the HEO
nanosheets were obtained when the crucible was immediately taken out from the furnace after heating
for about
25−35
min under the ambient atmosphere.
In the synthesis of rock-salt HEO (CoMgNiCuZnLiGa oxide) nanosheets, 16.7 mmol glucose,
15.9 mmol glycine, 0.2 mmol cobalt nitrate hexahydrate, 0.2 mmol magnesium nitrate hexahydrate,
0.2 mmol nickel nitrate hexahydrate, 0.1 mmol zinc nitrate hexahydrate, 0.2 mmol copper nitrate
trihydrate, 0.1 mmol lithium acetate dihydrate, and 0.1 mmol of gallium nitrate hydrate were utilized
as the precursor, which was heated up to 993 K for 35 min to form the HEO nanosheet.
CoMgNiCuZnLi oxide was synthesized following a similar process except without using gallium
nitrate hydrate.
In the synthesis of spinel HEO (MnCoZnMgNiGa oxide) nanosheets, 10.6 mmol glucose, 10.1
mmol glycine, 0.2 mmol cobalt nitrate hexahydrate, 0.1 mmol magnesium nitrate hexahydrate, 0.1
mmol nickel nitrate hexahydrate, 0.1 mmol zinc nitrate hexahydrate, 25
μL
of manganese nitrate 50%
aqueous solution (containing 0.1 mmol Mn
2+
) and 0.1 mmol gallium nitrate hydrate were utilized as

Terms & Conditions   条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统(http://pubs.acs.org/page/copyright/permissions.html)请求,从 ACS 获得用于其他用途的许可。

Author Information  作者信息

Click to copy section link
单击以复制部分链接
Section link copied!

  • Corresponding Authors  通讯作者
  • Authors  作者
    • Jingjing Liang - The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
      Jingjing Liang - 武汉大学高等研究院,中国 武汉 430072
    • Junlin Liu - College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
      Junlin Liu - 武汉大学化学与分子科学学院,中国武汉 430072
    • Huiliu Wang - College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
      Huiliu Wang - 武汉大学化学与分子科学学院,中国 430072
    • Zeyuan Li - School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, ChinaSchool of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
      李泽元 - 武汉大学电气工程与自动化学院,中国 430072武汉大学 动力与机械工程学院, 湖北 430072
    • Guanghui Cao - College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
      曹光辉 - 武汉大学化学与分子科学学院,中国 武汉 430072
    • Ziyue Zeng - College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
      曾子悦 - 武汉大学化学与分子科学学院,中国 武汉 430072
    • Sheng Liu - School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
      Sheng Liu - 武汉大学动力与机械工程学院,中国 430072
    • Yuzheng Guo - School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, ChinaOrcidhttps://orcid.org/0000-0001-9224-3816
      郭玉峥 - 武汉大学电气工程与自动化学院,中国 430072 武汉;  Orcid https://orcid.org/0000-0001-9224-3816
  • Author Contributions  作者贡献

    J. Liang and J. Liu contributed equally to this work.
    J. Liang 和 J. Liu 对这项工作做出了同样的贡献。

  • Notes  笔记
    The authors declare no competing financial interest.
    作者声明没有竞争性的经济利益。

Acknowledgments  确认

Click to copy section link
单击以复制部分链接
Section link copied!

The research was supported by the Natural Science Foundation of China (22025303) and the National Key Research and Development Program of China (2022YFA1402501). The authors acknowledge the Center for Electron Microscopy at Wuhan University for their substantial support to TEM characterization. The authors thank the Core Facility of Wuhan University for the measurement of XPS, SEM, TEM, and BET analysis. The authors also thank the Core Research Facilities of the College of Chemistry and Molecular Sciences at Wuhan University for the SEM and XRD characterizations.
该研究得到了国家自然科学基金 (22025303) 和国家重点研发计划 (2022YFA1402501) 的支持。作者感谢武汉大学电子显微镜中心对 TEM 表征的大力支持。作者感谢武汉大学核心设施对 XPS、SEM、TEM 和 BET 分析的测量。作者还感谢武汉大学化学与分子科学学院的核心研究机构对 SEM 和 XRD 表征。

References  引用

Click to copy section link
单击以复制部分链接
Section link copied!

This article references 34 other publications.
本文引用了其他 34 种出版物。

  1. 1
    Sun, Y.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600  DOI: 10.1126/sciadv.abg1600
    1 孙 Y.;Dai, S.用于催化的高熵材料:新领域。科学 Adv.2021, 7, eabg1600 DOI: 10.1126/sciadv.abg1600
  2. 2
    Li, T.; Yao, Y.; Huang, Z.; Xie, P.; Liu, Z.; Yang, M.; Gao, J.; Zeng, K.; Brozena, A. H.; Pastel, G. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 2021, 4, 6270,  DOI: 10.1038/s41929-020-00554-1
    阿拉伯数字李 T.;姚 Y.;黄 Z.;谢 P.;刘 Z.;杨 M.;高 J.;曾 K.;布罗泽纳,AH;粉状 G.Denary 氧化物纳米颗粒作为高度稳定的甲烷燃烧催化剂。Nat. Catal.2021, 4, 62– 70,  DOI: 10.1038/s41929-020-00554-1
  3. 3
    Xu, H.; Zhang, Z.; Liu, J.; Do-Thanh, C.; Chen, H.; Xu, S.; Lin, Q.; Jiao, Y.; Wang, J.; Wang, Y. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908,  DOI: 10.1038/s41467-020-17738-9
    3 徐 H.;张 Z.;刘 J.;Do-Thanh, C.;陈 H.;徐 S.;林 Q.;焦 Y.;王 J.;Wang, Y.通过高熵萤石氧化物载体的熵稳定单原子 Pd 催化剂。Nat. Commun.2020, 11, 3908,  DOI: 10.1038/s41467-020-17738-9
  4. 4
    Li, Y.; Bai, X.; Yuan, D.; Yu, C.; San, X.; Guo, Y.; Zhang, L.; Ye, J. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat. Commun. 2023, 14, 3171,  DOI: 10.1038/s41467-023-38889-5
    4 李英;白,X.;袁 D.;于,C.;桑,X.;郭 Y.;张 L.;Ye, J.Cu 基高熵二维氧化物作为稳定且有效的光热催化剂。Nat. Commun.2023, 14, 3171,  DOI: 10.1038/s41467-023-38889-5
  5. 5
    Meng, Z.; Gong, X.; Xu, J.; Sun, X.; Zeng, F.; Du, Z.; Hao, Z.; Shi, W.; Yu, S.; Hu, X. A general strategy for preparing hollow spherical multilayer structures of oxygen-rich vacancy transition metal oxides, especially high entropy perovskite oxides. Chem. Eng. J. 2023, 457, 141242,  DOI: 10.1016/j.cej.2022.141242
    5 孟,Z.;龚 X.;徐 J.;Sun, X.;曾, F.;杜 Z.;郝,Z.;石 W.;俞 S.;胡, X.制备富氧空位过渡金属氧化物的空心球形多层结构的一般策略,特别是高熵钙钛矿氧化物。化学工程杂志 2023, 457, 141242,  DOI: 10.1016/j.cej.2022.141242
  6. 6
    Lun, Z.; Ouyang, B.; Kwon, D.; Ha, Y.; Foley, E. E.; Huang, T.; Cai, Z.; Kim, H.; Balasubramanian, M.; Sun, Y. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 214221,  DOI: 10.1038/s41563-020-00816-0
    6 伦,Z.;欧阳 B.;权,D.;哈,Y.;弗利,E. E.;黄 T.;蔡,Z.;金 H.;Balasubramanian, M.;Sun, Y.用于锂离子电池的阳离子无序岩盐型高熵阴极。Nat. Mater.2021, 20, 214– 221,  DOI: 10.1038/s41563-020-00816-0
  7. 7
    Zhao, C.; Ding, F.; Lu, Y.; Chen, L.; Hu, Y. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264269,  DOI: 10.1002/anie.201912171
    7 赵 C.;丁 F.;卢 Y.;陈,L.;胡, Y.钠离子电池用高熵层状氧化物阴极.安格。化学,国际版 2020,59,264– 269,DOI  : 10.1002/anie.201912171
  8. 8
    Johnstone, G. H. J.; Gonzalez-Rivas, M. U.; Taddei, K. M.; Sutarto, R.; Sawatzky, G. A.; Green, R. J.; Oudah, M.; Hallas, A. M. Entropy engineering and tunable magnetic order in the spinel high-entropy oxide. J. Am. Chem. Soc. 2022, 144, 2059020600,  DOI: 10.1021/jacs.2c06768
    8 约翰斯通,G. H. J.;冈萨雷斯-里瓦斯,M.U.;塔代,KM;苏塔托,R.;佐治亚州萨瓦茨基;格林,RJ;欧达,M.;Hallas, A. M. 尖晶石高熵氧化物中的熵工程和可调磁序。J. Am. Chem. Soc.2022, 144, 20590– 20600,  DOI: 10.1021/jacs.2c06768
  9. 9
    Joshi, A.; Chakrabarty, S.; Akella, S. H.; Saha, A.; Mukherjee, A.; Schmerling, B.; Ejgenberg, M.; Sharma, R.; Noked, M. High-entropy Co-free O3-type layered oxyfluoride: A promising air-stable cathode for sodium-ion batteries. Adv. Mater. 2023, 35, 2304440,  DOI: 10.1002/adma.202304440
    9 乔希,A.;查克拉巴蒂,S.;阿克拉,SH;萨哈,A.;穆克吉,A.;施默林,B.;埃根伯格,M.;夏尔马,R.;Noked, M.高熵无钴 O3 型层状氟氧化合物:一种很有前途的空气稳定阴极,用于钠离子电池。Adv. Mater.2023, 35, 2304440,  DOI: 10.1002/adma.202304440
  10. 10
    Zhao, B.; Du, Y.; Yan, Z.; Rao, L.; Chen, G.; Yuan, M.; Yang, L.; Zhang, J.; Che, R. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 2023, 33, 2209924,  DOI: 10.1002/adfm.202209924
    10 赵 B.;杜 Y.;严,Z.;饶,L.;陈 G.;袁 M.;杨 L.;张 J.;Che, R.相控高熵氧化物中的结构缺陷具有优异的微波吸收性能。Adv. Funct.Mater.2023, 33, 2209924,  DOI: 10.1002/adfm.202209924
  11. 11
    Li, Y.; Yu, Z.; Wang, L.; Weng, Y.; Tang, C.; Yin, X.; Han, K.; Wu, H.; Yu, X.; Wong, L. Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nat. Commun. 2019, 10, 3149,  DOI: 10.1038/s41467-019-11124-w
    11 李英;俞 Z.;王 L.;翁 Y.;唐 C.;尹 X.;韩,K.;吴 H.;于,X.;Wong, L.氧化物多晶型物中的电子重建增强析氢催化。Nat. Commun.2019, 10, 3149,  DOI: 10.1038/s41467-019-11124-w
  12. 12
    Li, Q.; Wu, J.; Wu, T.; Jin, H.; Zhang, N.; Li, J.; Liang, W.; Liu, M.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002,  DOI: 10.1002/adfm.202102002
    12 李 Q.;吴 J.;吴 T.;金 H.;张 N.;李 J.;梁 W.;刘 M.;黄 L.;周,J.用于高活性氧析出的原子薄钙钛矿氧化物的相工程。Adv. Funct.Mater.2021, 31, 2102002,  DOI: 10.1002/adfm.202102002
  13. 13
    Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782823,  DOI: 10.1039/D0TA09578H
    13 阿米里,A.;Shahbazian-Yassar, R.用于储能和转换的高熵材料的最新进展。J. 马特。化学 A2021, 9, 782– 823,  DOI: 10.1039/D0TA09578H
  14. 14
    Cao, G.; Liang, J.; Guo, Z.; Yang, K.; Wang, G.; Wang, H.; Wan, X.; Li, Z.; Bai, Y.; Zhang, Y. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 2023, 619, 7377,  DOI: 10.1038/s41586-023-06082-9
    14 曹 G.;梁 J.;郭 Z.;杨 K.;王 G.;王 H.;万,X.;李 Z.;白,Y.;Zhang, Y.用于高熵合金纳米颗粒合成的液态金属。自然 2023, 619, 73– 77,  DOI: 10.1038/s41586-023-06082-9
  15. 15
    Nie, S.; Wu, L.; Zhao, L.; Zhang, P. Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles. Nano Res. 2022, 15, 48674872,  DOI: 10.1007/s12274-021-3803-3
    15 聂,S.;吴 L.;赵 L.;Zhang, P.焓变驱动的高熵钙钛矿纳米粒子的合成。纳米研究 2022, 15, 4867– 4872,  DOI: 10.1007/s12274-021-3803-3
  16. 16
    Xie, H.; Qin, M.; Hong, M.; Rao, J.; Guo, M.; Luo, J.; Hu, L. Rapid liquid phase-assisted ultrahigh-temperature sintering of high-entropy ceramic composites. Sci. Adv. 2022, 8, eabn8241  DOI: 10.1126/sciadv.abn8241
    16 谢 H.;秦 M.;洪,M.;饶,J.;郭 M.;罗 J.;胡 L.快速液相辅助超高温烧结高熵陶瓷复合材料.科学 Adv.2022, 8, eabn8241 DOI: 10.1126/sciadv.abn8241
  17. 17
    Zheng, X.; Gao, X.; Vila, R. A.; Jiang, Y.; Wang, J. Y.; Xu, R.; Zhang, R.; Xiao, X.; Zhang, P.; Greenburg, L. C. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials. Nat. Nanotechnol. 2023, 18, 153159,  DOI: 10.1038/s41565-022-01272-4
    17 郑 X.;高 X.;维拉,RA;江 Y.;王,JY;徐 R.;张 R.;肖 X.;张 P.;Greenburg, LC 氢取代石墨二炔辅助的亚稳态纳米材料的超快火花合成。纳米技术.2023, 18, 153– 159,  DOI: 10.1038/s41565-022-01272-4
  18. 18
    Wu, H.; Lu, Q.; Li, Y.; Zhao, M.; Wang, J.; Li, Y.; Zhang, J.; Zheng, X.; Han, X.; Zhao, N. Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 2023, 145, 19241935,  DOI: 10.1021/jacs.2c12295
    18 吴 H.;卢 Q.;李英;赵 M.;王 J.;李英;张 J.;郑 X.;韩 X.;Zhao, N.用于高效能量催化的高熵化合物的结构框架引导通用设计。J. Am. Chem. Soc.2023, 145, 1924– 1935,  DOI: 10.1021/jacs.2c12295
  19. 19
    Wu, H.; Lu, Q.; Li, Y.; Wang, J.; Li, Y.; Jiang, R.; Zhang, J.; Zheng, X.; Han, X.; Zhao, N. Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 2022, 22, 64926500,  DOI: 10.1021/acs.nanolett.2c01147
    19 吴 H.;卢 Q.;李英;王 J.;李英;江 R.;张 J.;郑 X.;韩 X.;Zhao, N.用于制造高熵氧化物作为高效电催化剂的快速焦耳热合成。纳米 Lett.2022, 22, 6492– 6500,  DOI: 10.1021/acs.nanolett.2c01147
  20. 20
    Wei, J.; Rong, K.; Li, X.; Wang, Y.; Qiao, Z.; Fang, Y.; Dong, S. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 2022, 15, 27562763,  DOI: 10.1007/s12274-021-3860-7
    20 魏 J.;荣 K.;李 X.;王 Y.;乔 Z.;方 Y.;Dong, S.深度共熔溶剂辅助简单合成低维多级多孔高熵氧化物。纳米研究 2022, 15, 2756– 2763,  DOI: 10.1007/s12274-021-3860-7
  21. 21
    Liu, K.; Jin, H.; Huang, L.; Luo, Y.; Zhu, Z.; Dai, S.; Zhuang, X.; Wang, Z.; Huang, L.; Zhou, J. Puffing ultrathin oxides with nonlayered structures. Sci. Adv. 2022, 8, eabn2030  DOI: 10.1126/sciadv.abn2030
    21 刘 K.;金 H.;黄 L.;罗 Y.;朱 Z.;戴,S.;庄 X.;王 Z.;黄 L.;周, J.具有非层状结构的普芬超薄氧化物。Sci. Adv.2022, 8, eabn2030 DOI: 10.1126/sciadv.abn2030
  22. 22
    Wei, S.; Kim, S.; Kang, J.; Zhang, Y.; Zhang, Y.; Furuhara, T.; Park, E. S.; Tasan, C. C. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 2020, 19, 11751181,  DOI: 10.1038/s41563-020-0750-4
    22 魏 S.;金,S.;康 J.;张 Y.;张 Y.;古原,T.;公园,ES;Tasan, C. C.具有铸态拉伸延展性的难熔高熵合金的自然混合导向设计。Nat. Mater.2020, 19, 1175– 1181,  DOI: 10.1038/s41563-020-0750-4
  23. 23
    Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Intralayered Ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2017, 29, 1604765,  DOI: 10.1002/adma.201604765
    23 谢 J.;张 X.;张 H.;张 J.;李 S.;王 R.;潘,B.;Xie, Y.层内 Ostwald 成熟为具有强大析氧性能的超薄纳米网状催化剂。Adv. Mater.2017, 29, 1604765,  DOI: 10.1002/ADMA.201604765
  24. 24
    Wang, S.; Yang, L.; He, G.; Shi, B.; Li, Y.; Wu, H.; Zhang, R.; Nunes, S.; Jiang, Z. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 2020, 49, 10711089,  DOI: 10.1039/C9CS00751B
    24 王 S.;杨 L.;他,G.;石 B.;李英;吴 H.;张 R.;努内斯,S.;江, Z.用于分子和离子分离的二维纳米通道膜。Chem. Soc. Rev.2020, 49, 1071– 1089,  DOI: 10.1039/C9CS00751B
  25. 25
    Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V. S. K.; Kubel, C.; Bhattacharya, S. S.; Gandhi, A. S.; Hahn, H. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 2017, 5, 102109,  DOI: 10.1080/21663831.2016.1220433
    25 杰纳迪奇,R.;萨卡,A.;克莱门斯,O.;洛霍,C.;博特罗斯,M.;Chakravadhanula, VSK;库贝尔,C.;巴塔查里亚,SS;甘地,A. S.;Hahn, H.多组分双原子稀土氧化物。母公司。Res. Lett.2017, 5, 102– 109,  DOI: 10.1080/21663831.2016.1220433
  26. 26
    Gu, K.; Wang, D.; Xie, C.; Wang, T.; Huang, G.; Liu, Y.; Zou, Y.; Tao, L.; Wang, S. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 2025320258,  DOI: 10.1002/anie.202107390
    26 顾 K.;王 D.;谢 C.;王 T.;黄 G.;刘 Y.;邹 Y.;陶,L.;Wang, S.用于高效 5-羟甲基糠醛电氧化的富含缺陷的高熵氧化物纳米片。安格。化学, 国际版.2021, 60, 20253– 20258,  DOI: 10.1002/anie.202107390
  27. 27
    Zhao, J.; Bao, J.; Yang, S.; Niu, Q.; Xie, R.; Zhang, Q.; Chen, M.; Zhang, P.; Dai, S. Exsolution-dissolution of supported metals on high-entropy Co3MnNiCuZnOx: toward sintering-resistant catalysis. ACS Catal. 2021, 11, 1224712257,  DOI: 10.1021/acscatal.1c03228
    27 赵 J.;鲍 J.;杨 S.;牛,Q.;谢 R.;张 Q.;陈 M.;张 P.;Dai, S.高熵 Co3MnNiCuZnOx 上负载金属的溶解:走向耐烧结催化。ACS Catal.2021, 11, 12247– 12257,  DOI: 10.1021/acscatal.1c03228
  28. 28
    An, L.; Zhang, H.; Zhu, J.; Xi, S.; Huang, B.; Sun, M.; Peng, Y.; Xi, P.; Yan, C. Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202214600  DOI: 10.1002/anie.202214600
    28 安,L.;张 H.;朱 J.;习, S.;黄 B.;孙,M.;彭 Y.;习,P.;Yan, C.通过几何位点占据实现高效电催化析氧来平衡尖晶石钴氧化物的活性和稳定性。安格。Chem., Int. Ed.2023, 62, e202214600 DOI: 10.1002/anie.202214600
  29. 29
    Yu, M.; Budiyanto, E.; Tuysuz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824  DOI: 10.1002/anie.202103824
    29 余,M.;布迪扬托,E.;Tuysuz, H.水电解原理以及用于析氧反应的钴、镍和铁基氧化物的最新进展。安格。化学, 国际版.2022, 61, e202103824 DOI: 10.1002/anie.202103824
  30. 30
    Han, L.; Dong, S.; Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 92669291,  DOI: 10.1002/adma.201602270
    30 韩 L.;董,S.;Wang, E.用于水氧化反应的过渡金属(Co、Ni 和 Fe)基电催化剂。Adv. Mater.2016, 28, 9266– 9291,  DOI: 10.1002/ADMA.201602270
  31. 31
    Abdelhafiz, A.; Tanvir, A. N. M.; Zeng, M.; Wang, B.; Ren, Z.; Harutyunyan, A. R.; Zhang, Y.; Li, J. Pulsed light synthesis of high entropy nanocatalysts with enhanced catalytic activity and prolonged stability for oxygen evolution reaction. Adv. Sci. 2023, 10, 2300426,  DOI: 10.1002/advs.202300426
    31 阿卜杜勒哈菲兹,A.;坦维尔,ARM;曾 M.;王 B.;任,Z.;Harutyunyan, A. R.;张 Y.;Li, J.高熵纳米催化剂的脉冲光合成,具有增强的催化活性和延长的析氧反应稳定性。Adv. Sci.2023, 10, 2300426,  DOI: 10.1002/ADVS.202300426
  32. 32
    Hooch Antink, W.; Lee, S.; Lee, H. S.; Shin, H.; Yoo, T. Y.; Ko, W.; Shim, J.; Na, G.; Sung, Y.-E.; Hyeon, T. High-valence metal-driven electronic modulation for boosting oxygen evolution reaction in high-entropy spinel oxide. Adv. Funct. Mater. 2024, 34, 2309438,  DOI: 10.1002/adfm.202309438
    32 酒 安廷克,W.;李,S.;李,HS;辛,H.;Yoo, T. Y.;高,W.;沈 J.;娜,G.;Sung, Y.-E.;Hyeon, T.高价金属驱动的电子调制,用于促进高熵尖晶石氧化物中的析氧反应。Adv. Funct.Mater.2024, 34, 2309438,  DOI: 10.1002/adfm.202309438
  33. 33
    Huang, Y.; Li, M.; Pan, F.; Zhu, Z.; Sun, H.; Tang, Y.; Fu, G. Plasma-induced Mo-doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting. Carbon Energy 2023, 5, e279  DOI: 10.1002/cey2.279
    33 黄 Y.;李 M.;潘,F.;朱 Z.;孙,H.;唐 Y.;Fu, G.等离子体诱导的 Mo 掺杂 Co3O4 具有富氧空位,用于分解水中的电催化析氧。碳能源 2023, 5, e279 DOI: 10.1002/CEY2.279
  34. 34
    Feng, D.; Dong, Y.; Zhang, L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 1950319509,  DOI: 10.1002/anie.202004892
    34 冯 D.;董 Y.;张 L.;葛 X.;张 W.;戴,S.;Qiao, Z.Holey 层状高熵氧化物作为苯甲醇无溶剂有氧氧化的超高活性非均相催化剂。安格。化学,国际版 2020,59,19503– 19509,DOI  : 10.1002/anie.202004892

Cited By  施引文献

Click to copy section link
单击以复制部分链接
Section link copied!
Citation Statements  引文陈述
  • Supporting  配套
    Supporting0  支持 0
  • Mentioning  
    Mentioning12  提及 12
  • Contrasting  对比
    Contrasting0  对比 0
Explore this article's citation statements on scite.ai
浏览本文在 scite.ai 上的引文陈述

This article is cited by 37 publications.
本文被 37 篇出版物引用。

  1. Zhouyang Wang, Xiaonan Chen, Yiran Ding, Xiaofei Zhu, Zihang Sun, Haitao Zhou, Xiang Li, Wenxuan Yang, Junlin Liu, Runze He, Jingrui Luo, Ting Yu, Mengqi Zeng, Lei Fu. Synthesis of Two-Dimensional High-Entropy Transition Metal Dichalcogenide Single Crystals. Journal of the American Chemical Society 2025, 147 (2) , 1392-1398. https://doi.org/10.1021/jacs.4c11363
    王周洋, 陈晓楠, 丁怡然, 朱晓飞, 孙子航, 周海涛, 李翔, 杨文轩, 刘俊林, 何润泽, 罗静瑞, 于婷, 曾梦琪, 付磊 . 二维高熵过渡金属二硫属化物单晶的合成。 美国化学会杂志 2025147 (2) , 1392-1398。https://doi.org/10.1021/jacs.4c11363
  2. Kevin M. Siniard, Meijia Li, Yandi Cai, Junyan Zhang, Felipe Polo-Garzon, Darren M. Driscoll, Alexander S. Ivanov, Xinhui Lu, Hao Chen, Yuanyuan Li, Zili Wu, Zhenzhen Yang, Sheng Dai. Precision Structure Engineering of High-Entropy Oxides under Ambient Conditions. ACS Catalysis 2024, 14 (19) , 14807-14818. https://doi.org/10.1021/acscatal.4c03349
    Kevin M. Siniard, Meijia Li, Yandi Cai, Junyan Zhang, Felipe Polo-Garzon, Darren M. Driscoll, Alexander S. Ivanov, Xinhui Lu, Hao Chen, Yuanyuan Li, Zili Wu, Zhenzhen Yang, Sheng Dai. 环境条件下高熵氧化物的精密结构工程。 ACS 催化 202414 (19) , 14807-14818。https://doi.org/10.1021/acscatal.4c03349
  3. Youcai Che, Xiuxiu Zhang, Shuowen Bo, Qizheng An, Jing Zhang, Baojie Li, Chenyu Yang, Wanlin Zhou, Weiren Cheng, Qinghua Liu. High-Entropy Ruthenium-Based Oxides with Rich Grain Boundaries for Efficient Oxygen Evolution. ACS Materials Letters 2024, 6 (9) , 4142-4148. https://doi.org/10.1021/acsmaterialslett.4c01333
    车友才, 张秀秀, 薄硕文, 安启正, 张静, 李宝杰, 杨晨宇, 周万林, 程伟仁, 刘庆华 . 高熵钌基氧化物,具有丰富的晶界,可实现高效的析氧。 ACS 材料快报 20246 (9) , 4142-4148。https://doi.org/10.1021/acsmaterialslett.4c01333
  4. Luo Huang, Lixia Ma, Jing Xu, Baoqiang Wei, Yanzhong Xue, Nan Zhang, Xiaojie Zhou, Jie Yang, Zong-Huai Liu, Ruibin Jiang. Strong Electronic Interaction in High-Entropy Oxide Enhances Oxygen Evolution Reaction. Inorganic Chemistry 2024, 63 (27) , 12433-12444. https://doi.org/10.1021/acs.inorgchem.4c00778
    黄罗, 马丽霞, 徐静, 魏宝强, 薛燕中, 张南, 周小杰, 杨杰, 刘宗怀, 江瑞斌 . 高熵氧化物中的强电子相互作用增强了析氧反应。 无机化学 202463 (27) , 12433-12444。https://doi.org/10.1021/acs.inorgchem.4c00778
  5. Junlin Liu, Yile Zhang, Yiran Ding, Mengqi Zeng, Lei Fu. Atomic Design of High-Entropy Alloys for Electrocatalysis. ACS Materials Letters 2024, 6 (7) , 2642-2659. https://doi.org/10.1021/acsmaterialslett.4c00248
    Junlin Liu , Yile Zhang, Yiran Ding, Mengqi Zeng, Lei Fu. 用于电催化的高熵合金的原子设计。 ACS 材料快报 20246 (7) , 2642-2659。https://doi.org/10.1021/acsmaterialslett.4c00248
  6. Zhili Xu, Zhiyuan Wang, Lei Jin, Hui Xu. Hydrogen spillover for electrocatalytic reduction reaction. Fuel 2025, 402 , 136014. https://doi.org/10.1016/j.fuel.2025.136014
    徐志丽 王志远 金磊 徐辉 . 电催化还原反应的氢溢出。 燃料 2025402 , 136014.https://doi.org/10.1016/j.fuel.2025.136014
  7. Zibo Zhai, Yan-Jie Wang, Dan Liu, Biao Wang, Baizeng Fang. High entropy nanomaterials for zero-emission energy systems: advanced structural design, catalytic performance and functional mechanisms. Journal of Energy Chemistry 2025, 107 , 512-532. https://doi.org/10.1016/j.jechem.2025.03.065
    渝淄博 王燕杰 刘丹 王彪 方百增 . 用于零排放能源系统的高熵纳米材料:先进的结构设计、催化性能和功能机制。 能源化学杂志 2025107 , 512-532。https://doi.org/10.1016/j.jechem.2025.03.065
  8. Shiyuan Wang, Gaigai Duan, Xiaoshuai Han, Qing Shi, Yong Huang, Chunmei Zhang, Shuijian He, Hongliang Zhao, Chunxin Ma, Shaohua Jiang. Advanced high-entropy alloys for nanoelectrocatalysts: Characterization, structure design, preparation and applications. Chemical Engineering Journal 2025, 516 , 164072. https://doi.org/10.1016/j.cej.2025.164072
    王诗媛 段改改, 韩小帅 史庆 黄勇 张春梅 何水建 赵洪亮 马春新 江少华 . 纳米电催化剂用先进高熵合金的表征、结构设计、制备和应用。 化学工程杂志 2025516 , 164072.https://doi.org/10.1016/j.cej.2025.164072
  9. Le Li, Donglei Yang, Meijun Han. High-entropy alloy nanowire for fine-tuned electrocatalytic reaction. Journal of Alloys and Compounds 2025, 1035 , 181482. https://doi.org/10.1016/j.jallcom.2025.181482
    李乐 杨东磊 韩美军 . 用于微调电催化反应的高熵合金纳米线。 合金与化合物杂志 20251035 , 181482.https://doi.org/10.1016/j.jallcom.2025.181482
  10. Zhengbo Gao, Chenxu Zhang, Belinda McFadzean. A Bibliometric Analysis of Fluorite Resource Utilization Technology: Global and Chinese Development in the Past 25 Years. Minerals 2025, 15 (7) , 679. https://doi.org/10.3390/min15070679
    Zhengbo GaoChenxu ZhangBelinda McFadzean. 萤石资源利用技术的文献计量分析:过去 25 年全球和中国的发展。 矿物 202515 (7) , 679.https://doi.org/10.3390/min15070679
  11. Zheng Luo, Xiao-Ping Zhou. Liquid metal–induced low-temperature synthesis of tunable high-entropy oxides. Science Advances 2025, 11 (23) https://doi.org/10.1126/sciadv.adw1461
    罗郑 周小平 . 液态金属诱导的可调谐高熵氧化物的低温合成。 科学进展 202511 (23) https://doi.org/10.1126/sciadv.adw1461
  12. Hao-Yu Xu, Rui Wang, Feng-Feng Dong, Zheng Yang, Dong-Yun Li, Yang Xu, Hong-Liang Ge, Ming-Jian Yuan, Qiao-Ling Kang. Structural engineering and high entropy effect toward improved mechano-electrochemical performance in lithium batteries. Rare Metals 2025, 4 https://doi.org/10.1007/s12598-024-03211-9
    Hao-Yu XuRui WangFeng-Feng Dong, Zheng YangDong-Yun LiYang XuHong-Liang GeMing-Jian YuanQiao-Ling Kang. 结构工程和高熵效应改善锂电池的机械电化学性能。 稀有金属 2025,4 https://doi.org/10.1007/s12598-024-03211-9
  13. Huimin Mao, Xinyue Qu, Hongsheng Ma, Jingqi Chi, Zhenyu Xiao, Yongming Chai, Zexing Wu, Xiaobin Liu, Lei Wang. The regulation of multiple 3d orbits triggers the self-equilibrium effect of high-entropy oxide in seawater electrolysis. Journal of Colloid and Interface Science 2025, 688 , 611-620. https://doi.org/10.1016/j.jcis.2025.02.141
    毛慧敏 曲欣悦 马洪生 池静琪 肖振宇 柴永明 吴泽兴 刘晓斌 王磊 . 多个 3d 轨道的调节触发了海水电解中高熵氧化物的自平衡效应。 胶体与界面科学杂志 2025688 , 611-620。https://doi.org/10.1016/j.jcis.2025.02.141
  14. Jie Zhang, Junhua You, Yao Zhao, Tong Liu. High-entropy oxides as promising electrocatalysts for oxygen evolution reaction: A review. Journal of Environmental Chemical Engineering 2025, 13 (3) , 116550. https://doi.org/10.1016/j.jece.2025.116550
    张杰 俞军华 赵瑶 刘彤 . 高熵氧化物作为有前途的析氧反应电催化剂:综述。 环境化学工程学报 202513 (3) , 116550.https://doi.org/10.1016/j.jece.2025.116550
  15. Wen Zhang, Xiyue Zhang, Yan Song, Fei Gao, Yangping Zhang. High-entropy layered double hydroxide with advanced structural regulation for electrochemical water splitting. Chemical Communications 2025, 61 (42) , 7532-7542. https://doi.org/10.1039/D5CC01284H
    张温 张曦跃 宋岩 高飞 张阳平 . 高熵层状双氢氧化物,具有先进的结构调节,用于电化学水分解。 化学通讯 202561 (42) , 7532-7542。https://doi.org/10.1039/D5CC01284H
  16. Qiao Chen, Zichao Xi, Ziyuan Xu, Minghui Ning, Huimin Yu, Yuanmiao Sun, Da-Wei Wang, Ali Sami Alnaser, Huanyu Jin, Hui-Ming Cheng. Rapid synthesis of metastable materials for electrocatalysis. Chemical Society Reviews 2025, 54 (9) , 4567-4616. https://doi.org/10.1039/D5CS00090D
    陈乔 习子超 徐子元 宁明辉 于慧敏, 孙元苗 王大伟 Ali Sami Alnaser 金焕玉 程慧明 . 快速合成用于电催化的介稳材料。 化学学会评论 202554 (9) , 4567-4616。https://doi.org/10.1039/D5CS00090D
  17. Bao-Feng Shan, Jian Yang, Xianglin Xiang, Zong-Yan Zhao. High-entropy compounds for photo(electro)catalysis: diverse materials and applications. Journal of Materials Chemistry A 2025, 13 (18) , 12808-12827. https://doi.org/10.1039/D4TA09220A
    单宝峰 杨健 向祥林 赵宗燕 . 用于光(电)催化的高熵化合物:多种材料和应用。 材料化学杂志 A 202513 (18) , 12808-12827.https://doi.org/10.1039/D4TA09220A
  18. Wei Li, Daman Cheng, Xu Yin, Qi Zhang, Siyuan Cao, Hongwei Zhu, Zhifeng Gao, Kajia Wei, Weiqing Han. Phase controllable fabrication of MOF-derived iron nickel sulfides as Fenton-like catalysts for peroxymonosulfate activation: The phase transition effect induced variations in the mechanism and performance. Applied Catalysis B: Environment and Energy 2025, 365 , 124988. https://doi.org/10.1016/j.apcatb.2024.124988
    李伟 程达曼 旭, 张琦 曹思源 朱宏伟 高志峰 魏嘉佳 韩伟青 . MOF 衍生的硫化铁镍作为过氧一硫酸盐活化的 Fenton 类催化剂的相控制备:相变效应诱导了机理和性能的变化。 应用催化 B:环境与能源 2025365, 124988.https://doi.org/10.1016/j.apcatb.2024.124988
  19. Cong Guo, Yu Cui, Wenqing Zhang, Xiaoyan Du, Xia Peng, Yue Yu, Jing Li, Yilin Wu, Yucheng Huang, Tingting Kong, Yujie Xiong. Light‐Driven Metal Exsolution‐Redissolution of High‐Entropy Oxide Enabling High‐Performance Dry Reforming of Methane. Advanced Materials 2025, 37 (21) https://doi.org/10.1002/adma.202500928
    郭聪 崔宇 张文青 杜晓燕 彭霞 俞悦 李静 吴一林 黄玉成 孔婷婷 熊玉杰 . 轻驱动金属溶解 - 高熵氧化物的再溶解,实现甲烷的高性能干重整。 先进材料 202537 (21) https://doi.org/10.1002/adma.202500928
  20. Xuan Zhang, Dequan Jiang, Shenghui Han, Wanli Yi, Jianwen Su, Song Gao, Yonggang Wang, Ruqiang Zou. High-entropy strategies afford transition metal perovskite oxides with enhanced low-temperature NO x removal efficiency. Chemical Communications 2025, 61 (32) , 5938-5941. https://doi.org/10.1039/D4CC06688J
    张轩 江德权 韩胜辉 易万里 苏建文 高松 王永刚 邹如强 . 高熵策略为过渡金属钙钛矿氧化物提供了增强的低温 NO x 去除效率。 化学通讯 202561 (32) , 5938-5941。https://doi.org/10.1039/D4CC06688J
  21. Fengfeng Dong, Qiaoling Kang, Rui Wang, Quan Zong, Lijing Yan, Xianhe Meng, Tingli Ma, Meiqiang Fan, Chengbin Jin. Hollow Multishelled High Entropy Oxide with Inert Aluminum Stabilizer for Boosted Electrochemical Lithium Storage. Advanced Functional Materials 2025, 81 https://doi.org/10.1002/adfm.202503977
    董凤峰 康巧玲 王瑞 宗权 闫丽静 孟宪河 马婷丽 范美强 金成斌 . 空心多壳高熵氧化物,带有惰性铝稳定剂,用于增强电化学锂存储。 先进功能材料 202581 https://doi.org/10.1002/adfm.202503977
  22. Shining Wu, Yuting Zhang, Guanwu Li, Yifeng Hou, Mengyang Cao, Chengyu Wei, Pengkun Yang, Lu Huang, Yingpeng Wu. Simple, fast, and energy saving: Room temperature synthesis of high-entropy alloy by liquid-metal-mediated mechanochemistry. Matter 2025, 8 (3) , 101986. https://doi.org/10.1016/j.matt.2025.101986
    Shining WuYuting ZhangGuanwu LiYifeng HouMengyang CaoChengyu WeiPengkun YangLu HuangYingpeng Wu. 简单、快速、节能:通过液态金属介导的机械化学在室温下合成高熵合金。 物质 20258 (3) , 101986.https://doi.org/10.1016/j.matt.2025.101986
  23. Shilong Fu, Yaowen Wang, Junzhi Li, Ming Ya, Guichen Gao, Xu Zhao, Chang Liu, liping Li, Guangshe Li. Enhancing the structural reconstruction of multicomponent spinel oxide for robust water oxidation. Journal of Alloys and Compounds 2025, 1015 , 178848. https://doi.org/10.1016/j.jallcom.2025.178848
    付世龙 王耀文 李俊志 雅明 高桂辰 赵旭 刘畅 李丽平 李光社 . 增强多组分尖晶石氧化物的结构重建,以实现强大的水氧化。 合金与化合物杂志 20251015 , 178848.https://doi.org/10.1016/j.jallcom.2025.178848
  24. Xiao‐Cheng Liu, Geng Wu, Xiao Han, Yang Wang, Bei Wu, Gongming Wang, Yang Mu, Xun Hong. High‐Entropy Metal Interstitials Activate TiO 2 for Robust Catalytic Oxidation. Advanced Materials 2025, 37 (7) https://doi.org/10.1002/adma.202416749
    刘小程 耿武 韩晓 王洋 吴北 , 王功明 杨木 洪迅 . 高熵金属间隙激活 TiO 2 以实现强大的催化氧化。 先进材料 202537 (7) https://doi.org/10.1002/adma.202416749
  25. Ying Gao, Xicai Tian, Qiang Niu, Pengfei Zhang. General Synthesis of High‐Entropy Oxides and Carbon‐Supported High‐Entropy Oxides by Mechanochemistry. ChemSusChem 2025, 18 (2) https://doi.org/10.1002/cssc.202401517
    高英 田西才 牛强 , 张鹏飞 . 通过机械化学合成高熵氧化物和碳负载的高熵氧化物。 化学化学 202518 (2) https://doi.org/10.1002/cssc.202401517
  26. Xiaozhen Zhang, Xuexue Wang, Xiaomeng Lv. Research Progress of High‐entropy Oxides for Electrocatalytic Oxygen Evolution Reaction. ChemSusChem 2025, 18 (2) https://doi.org/10.1002/cssc.202401663
    张小珍 王雪雪 吕小萌 用于电催化析氧反应的高熵氧化物的研究进展. 化学化学 202518 (2) https://doi.org/10.1002/cssc.202401663
  27. Yilin Dong, Lihua Zhang, Tong Wu, Yinbo Zhan, Bowei Zhou, Fei Wei, Dongliang Zhang, Xia Long. Multi‐Dimensional High‐Entropy Materials for Energy Conversion Reactions: Current State and Future Trends. ChemSusChem 2025, 18 (1) https://doi.org/10.1002/cssc.202401261
    董一林 张丽华 吴彤 詹银波 周博伟 魏飞 张东亮 霞龙 . 用于能量转换反应的多维高熵材料:现状和未来趋势。 化学化学 202518 (1) https://doi.org/10.1002/cssc.202401261
  28. Xiaomin Han, Ran Zhao, Jingjing Yang, Yahui Wang, Anqi Zhang, Zhifan Hu, Mengge Lv, Chuan Wu, Ying Bai. High-entropy materials for aqueous zinc metal batteries. Energy & Environmental Science 2025, 18 (1) , 97-129. https://doi.org/10.1039/D4EE04442H
    韩晓敏 赵然 杨晶晶 王亚辉 张安琪 胡志凡 吕梦哥 吴川 白英 . 用于水性锌金属电池的高熵材料。 能源与环境科学 202518 (1) , 97-129.https://doi.org/10.1039/D4EE04442H
  29. Kai Zhou, Shuanqiang Liu, Le Li. Recent advances of high-entropy materials as electrocatalysts for rechargeable Zn-air batteries. Journal of Alloys and Compounds 2025, 1011 , 178435. https://doi.org/10.1016/j.jallcom.2024.178435
    周凯 刘爽强 李乐 . 高熵材料作为可充电锌空气电池电催化剂的最新进展。 合金与化合物杂志 20251011 , 178435.https://doi.org/10.1016/j.jallcom.2024.178435
  30. Jiahui Feng, Tao Zhang, Zhen Yang, Kunyan Qian, Xin Wang, Wanqing Song, Panzhe Qiao, Jia Ding, Wenbin Hu. Sub-5 nm amorphous iridium oxide nanosheets with synergistic multi-element doping for enhanced acidic oxygen evolution electrocatalysis. Chemical Engineering Journal 2025, 503 , 158213. https://doi.org/10.1016/j.cej.2024.158213
    冯佳慧 张涛 杨振 钱坤燕 王欣 宋婉清 乔潘哲 丁佳 胡文斌 . 亚 5 nm 非晶态氧化铱纳米片,具有协同多元素掺杂,用于增强酸性析氧电催化。 化学工程杂志 2025503 , 158213.https://doi.org/10.1016/j.cej.2024.158213
  31. Hao Mei, Yuxuan Zhang, Panpan Zhang, Antonio Gaetano Ricciardulli, Paolo Samorì, Sheng Yang. Entropy Engineering of 2D Materials. Advanced Science 2024, 11 (46) https://doi.org/10.1002/advs.202409404
    Hao MeiYuxuan Zhang 张盼盼 Antonio Gaetano RicciardulliPaolo SamorìSheng Yang. 2D 材料的熵工程。 高级科学 202411 (46) https://doi.org/10.1002/advs.202409404
  32. Shaoyu Zhang, Shuanqiang Liu, Donglei Yang, Le Li. High-entropy catalysts for electrocatalytic reduction reaction. Journal of Alloys and Compounds 2024, 1009 , 176970. https://doi.org/10.1016/j.jallcom.2024.176970
    张绍宇 刘顺强 杨东磊 李乐 . 用于电催化还原反应的高熵催化剂。 合金与化合物杂志 20241009 , 176970。https://doi.org/10.1016/j.jallcom.2024.176970
  33. Yifan Sun, Sheng Dai. Synthesis of high-entropy materials. Nature Synthesis 2024, 3 (12) , 1457-1470. https://doi.org/10.1038/s44160-024-00690-7
    孙一帆 戴胜 . 高熵材料的合成。 自然综合 20243 (12) , 1457-1470。https://doi.org/10.1038/s44160-024-00690-7
  34. Zhong Yang, Xianglin Xiang, Jian Yang, Zong-Yan Zhao. High-entropy oxides as energy materials: from complexity to rational design. Materials Futures 2024, 3 (4) , 042103. https://doi.org/10.1088/2752-5724/ad8463
    Zhong YangXianglin Xiang, Jian YangZong-Yan Zhao. 高熵氧化物作为能源材料:从复杂性到合理设计。 材料期货 20243 (4) , 042103.https://doi.org/10.1088/2752-5724/ad8463
  35. Xinwei Li, Jeng‐Han Wang, Lufeng Yang, Tzu‐Yu Liu, Shengchi Huang, Betty Ho, Howard Hsueh, Jie Chen, Lunhua He, Zaiping Guo, Meilin Liu, Wenwu Li. Element Screening Engineering for High‐Entropy Alloy Anodes: Achieving Fast and Robust Li‐Storage With Optimal Working Potential. Advanced Materials 2024, 36 (48) https://doi.org/10.1002/adma.202409278
    李欣伟 王正汉 杨璐峰 刘子玉 黄胜驰 , 何蓓贤 Howard Hsueh 陈杰 何伦华 郭再平 刘美林 李文武 . 高熵合金负极的元素筛选工程:实现快速、稳健的储锂,具有最佳工作潜力。 先进材料 202436 (48) https://doi.org/10.1002/adma.202409278
  36. Zhi-Jie Zhang, Ning Yu, Yi-Lin Dong, Guanqun Han, Han Hu, Yong-Ming Chai, Bin Dong. High entropy catalysts in electrolytic water splitting: A review from properties to applications. Chemical Engineering Journal 2024, 498 , 155736. https://doi.org/10.1016/j.cej.2024.155736
    张志杰 于宁 董毅林 韩冠群 韩, 柴永明 董斌 . 电解水分解中的高熵催化剂:从性能到应用的综述。 化学工程学报 2024498 , 155736.https://doi.org/10.1016/j.cej.2024.155736
  37. Jingjing LIANG, Shurun CHEN, Mengqi ZENG, Lei FU. Synthesis of High-Entropy Alloy Arrays with Liquid Metal Nanoreactor. Wuhan University Journal of Natural Sciences 2024, 29 (4) , 295-296. https://doi.org/10.1051/wujns/2024294295
    梁晶晶 陈淑润 曾梦琪 傅磊 . 用液态金属纳米反应器合成高熵合金阵列。 武汉大学学报 202429 (4) , 295-296.https://doi.org/10.1051/wujns/2024294295

Journal of the American Chemical Society
美国化学会杂志

Cite this: J. Am. Chem. Soc. 2024, 146, 11, 7118–7123
引用此: J. Am. Chem. Soc.2024, 146, 11, 7118–7123
Click to copy citation  点击复制引文Citation copied!
https://doi.org/10.1021/jacs.3c10868
Published March 4, 2024
发布时间 2024 年 3 月 4 日
Copyright © 2024 American Chemical Society
版权所有 © 2024 美国化学会

Article Views  文章浏览量

10k  10 千米

Altmetric

11

Citations  引文

Learn about these metrics
了解这些指标

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract  抽象

    Figure 1  图 1

    Figure 1. Schematic illustration of a self-lattice-framework with Ga mixing assistor for HEO synthesis.
    图 1.用于 HEO 合成的带有 Ga 混合辅助器的自晶格框架的示意图。

    Figure 2  图 2

    Figure 2. Structural and elemental characterizations of HEO nanosheets with different crystal structures. (a–d) XRD profiles (left) and elemental mappings (right) of the rock-salt (a), spinel (b), perovskite (c), and fluorite (d) structures, respectively. The inset of the XRD profile is a crystal structure diagram. Scale bar: (a) 1 μm, (b) 1 μm, (c) 500 nm, and (d) 300 nm.

    Figure 3

    Figure 3. Effect of structural and mixing modulation on the formation of single-phase HEO. (a,b) XRD pattern and EDS mapping of the HEO without a Ga assistor. Scale bar: 500 nm. (c) Formation energy of single-phase HEO before and after introducing Ga assistor. (d) Schematic illustration of multiphase oxide formation without Ga assistor.

    Figure 4

    Figure 4. Electrocatalytic performance of HEO nanosheets toward the OER. (a) Polarization curves. (b) Comparison of overpotential of different samples at 10 mA cm–2. (c) Tafel slopes. (d) Chronopotentiometric curve of the HEO (GaFeCoNiMo oxide) at 10 mA cm–2. The curves and columns with different colors in (a–d) represent different HEO systems. Red: GaFeCoNiMo oxide. Blue: GaFeCoNiCr oxide. Gray: GaFeCoNi oxide. Orange: RuO2.

  • References


    This article references 34 other publications.

    1. 1
      Sun, Y.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600  DOI: 10.1126/sciadv.abg1600
    2. 2
      Li, T.; Yao, Y.; Huang, Z.; Xie, P.; Liu, Z.; Yang, M.; Gao, J.; Zeng, K.; Brozena, A. H.; Pastel, G. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 2021, 4, 6270,  DOI: 10.1038/s41929-020-00554-1
    3. 3
      Xu, H.; Zhang, Z.; Liu, J.; Do-Thanh, C.; Chen, H.; Xu, S.; Lin, Q.; Jiao, Y.; Wang, J.; Wang, Y. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908,  DOI: 10.1038/s41467-020-17738-9
    4. 4
      Li, Y.; Bai, X.; Yuan, D.; Yu, C.; San, X.; Guo, Y.; Zhang, L.; Ye, J. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat. Commun. 2023, 14, 3171,  DOI: 10.1038/s41467-023-38889-5
    5. 5
      Meng, Z.; Gong, X.; Xu, J.; Sun, X.; Zeng, F.; Du, Z.; Hao, Z.; Shi, W.; Yu, S.; Hu, X. A general strategy for preparing hollow spherical multilayer structures of oxygen-rich vacancy transition metal oxides, especially high entropy perovskite oxides. Chem. Eng. J. 2023, 457, 141242,  DOI: 10.1016/j.cej.2022.141242
    6. 6
      Lun, Z.; Ouyang, B.; Kwon, D.; Ha, Y.; Foley, E. E.; Huang, T.; Cai, Z.; Kim, H.; Balasubramanian, M.; Sun, Y. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 214221,  DOI: 10.1038/s41563-020-00816-0
    7. 7
      Zhao, C.; Ding, F.; Lu, Y.; Chen, L.; Hu, Y. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264269,  DOI: 10.1002/anie.201912171
    8. 8
      Johnstone, G. H. J.; Gonzalez-Rivas, M. U.; Taddei, K. M.; Sutarto, R.; Sawatzky, G. A.; Green, R. J.; Oudah, M.; Hallas, A. M. Entropy engineering and tunable magnetic order in the spinel high-entropy oxide. J. Am. Chem. Soc. 2022, 144, 2059020600,  DOI: 10.1021/jacs.2c06768
    9. 9
      Joshi, A.; Chakrabarty, S.; Akella, S. H.; Saha, A.; Mukherjee, A.; Schmerling, B.; Ejgenberg, M.; Sharma, R.; Noked, M. High-entropy Co-free O3-type layered oxyfluoride: A promising air-stable cathode for sodium-ion batteries. Adv. Mater. 2023, 35, 2304440,  DOI: 10.1002/adma.202304440
    10. 10
      Zhao, B.; Du, Y.; Yan, Z.; Rao, L.; Chen, G.; Yuan, M.; Yang, L.; Zhang, J.; Che, R. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 2023, 33, 2209924,  DOI: 10.1002/adfm.202209924
    11. 11
      Li, Y.; Yu, Z.; Wang, L.; Weng, Y.; Tang, C.; Yin, X.; Han, K.; Wu, H.; Yu, X.; Wong, L. Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nat. Commun. 2019, 10, 3149,  DOI: 10.1038/s41467-019-11124-w
    12. 12
      Li, Q.; Wu, J.; Wu, T.; Jin, H.; Zhang, N.; Li, J.; Liang, W.; Liu, M.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002,  DOI: 10.1002/adfm.202102002
    13. 13
      Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782823,  DOI: 10.1039/D0TA09578H
    14. 14
      Cao, G.; Liang, J.; Guo, Z.; Yang, K.; Wang, G.; Wang, H.; Wan, X.; Li, Z.; Bai, Y.; Zhang, Y. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 2023, 619, 7377,  DOI: 10.1038/s41586-023-06082-9
    15. 15
      Nie, S.; Wu, L.; Zhao, L.; Zhang, P. Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles. Nano Res. 2022, 15, 48674872,  DOI: 10.1007/s12274-021-3803-3
    16. 16
      Xie, H.; Qin, M.; Hong, M.; Rao, J.; Guo, M.; Luo, J.; Hu, L. Rapid liquid phase-assisted ultrahigh-temperature sintering of high-entropy ceramic composites. Sci. Adv. 2022, 8, eabn8241  DOI: 10.1126/sciadv.abn8241
    17. 17
      Zheng, X.; Gao, X.; Vila, R. A.; Jiang, Y.; Wang, J. Y.; Xu, R.; Zhang, R.; Xiao, X.; Zhang, P.; Greenburg, L. C. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials. Nat. Nanotechnol. 2023, 18, 153159,  DOI: 10.1038/s41565-022-01272-4
    18. 18
      Wu, H.; Lu, Q.; Li, Y.; Zhao, M.; Wang, J.; Li, Y.; Zhang, J.; Zheng, X.; Han, X.; Zhao, N. Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 2023, 145, 19241935,  DOI: 10.1021/jacs.2c12295
    19. 19
      Wu, H.; Lu, Q.; Li, Y.; Wang, J.; Li, Y.; Jiang, R.; Zhang, J.; Zheng, X.; Han, X.; Zhao, N. Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 2022, 22, 64926500,  DOI: 10.1021/acs.nanolett.2c01147
    20. 20
      Wei, J.; Rong, K.; Li, X.; Wang, Y.; Qiao, Z.; Fang, Y.; Dong, S. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 2022, 15, 27562763,  DOI: 10.1007/s12274-021-3860-7
    21. 21
      Liu, K.; Jin, H.; Huang, L.; Luo, Y.; Zhu, Z.; Dai, S.; Zhuang, X.; Wang, Z.; Huang, L.; Zhou, J. Puffing ultrathin oxides with nonlayered structures. Sci. Adv. 2022, 8, eabn2030  DOI: 10.1126/sciadv.abn2030
    22. 22
      Wei, S.; Kim, S.; Kang, J.; Zhang, Y.; Zhang, Y.; Furuhara, T.; Park, E. S.; Tasan, C. C. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 2020, 19, 11751181,  DOI: 10.1038/s41563-020-0750-4
    23. 23
      Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Intralayered Ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2017, 29, 1604765,  DOI: 10.1002/adma.201604765
    24. 24
      Wang, S.; Yang, L.; He, G.; Shi, B.; Li, Y.; Wu, H.; Zhang, R.; Nunes, S.; Jiang, Z. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 2020, 49, 10711089,  DOI: 10.1039/C9CS00751B
    25. 25
      Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V. S. K.; Kubel, C.; Bhattacharya, S. S.; Gandhi, A. S.; Hahn, H. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 2017, 5, 102109,  DOI: 10.1080/21663831.2016.1220433
    26. 26
      Gu, K.; Wang, D.; Xie, C.; Wang, T.; Huang, G.; Liu, Y.; Zou, Y.; Tao, L.; Wang, S. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 2025320258,  DOI: 10.1002/anie.202107390
    27. 27
      Zhao, J.; Bao, J.; Yang, S.; Niu, Q.; Xie, R.; Zhang, Q.; Chen, M.; Zhang, P.; Dai, S. Exsolution-dissolution of supported metals on high-entropy Co3MnNiCuZnOx: toward sintering-resistant catalysis. ACS Catal. 2021, 11, 1224712257,  DOI: 10.1021/acscatal.1c03228
    28. 28
      An, L.; Zhang, H.; Zhu, J.; Xi, S.; Huang, B.; Sun, M.; Peng, Y.; Xi, P.; Yan, C. Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202214600  DOI: 10.1002/anie.202214600
    29. 29
      Yu, M.; Budiyanto, E.; Tuysuz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824  DOI: 10.1002/anie.202103824
    30. 30
      Han, L.; Dong, S.; Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 92669291,  DOI: 10.1002/adma.201602270
    31. 31
      Abdelhafiz, A.; Tanvir, A. N. M.; Zeng, M.; Wang, B.; Ren, Z.; Harutyunyan, A. R.; Zhang, Y.; Li, J. Pulsed light synthesis of high entropy nanocatalysts with enhanced catalytic activity and prolonged stability for oxygen evolution reaction. Adv. Sci. 2023, 10, 2300426,  DOI: 10.1002/advs.202300426
    32. 32
      Hooch Antink, W.; Lee, S.; Lee, H. S.; Shin, H.; Yoo, T. Y.; Ko, W.; Shim, J.; Na, G.; Sung, Y.-E.; Hyeon, T. High-valence metal-driven electronic modulation for boosting oxygen evolution reaction in high-entropy spinel oxide. Adv. Funct. Mater. 2024, 34, 2309438,  DOI: 10.1002/adfm.202309438
    33. 33
      Huang, Y.; Li, M.; Pan, F.; Zhu, Z.; Sun, H.; Tang, Y.; Fu, G. Plasma-induced Mo-doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting. Carbon Energy 2023, 5, e279  DOI: 10.1002/cey2.279
    34. 34
      Feng, D.; Dong, Y.; Zhang, L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 1950319509,  DOI: 10.1002/anie.202004892
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c10868.

    • Experimental and characterization details; details of theoretical calculations; schematic diagram of the ultrathin HEO synthesis; morphology characterization and thickness regulation of the HEO nanosheet; OM, SEM, AFM, XPS, SAED, TEM-EDS, and ICP-OES characterizations of the HEOs with four type phase structures; structural and elemental analysis of the HEOs without glucose and glycine addition, multicomponent oxide systems without assistor addition, and the HEO containing the noble metal; TEM, XRD, and XPS characterizations of the HEO catalyst; impedance and double-layer capacitance measurement of all OER catalysts (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.