这是用户在 2025-1-23 9:47 为 https://app.immersivetranslate.com/pdf-pro/435d48ea-5331-44e9-bcd2-f03c930d16b0 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
reconstructed surface has a distinct structure and composition compared to the pristine bulk host. Thus, the electronic descriptors extracted from bulk materials may no longer be competent to guide the reaction mechanism. Actually, researchers have also discovered that lattice oxygen redox chemistry only triggers the formation of reactive sites through surface reconstruction, but does not dominate the consequent OER pathway. 66 66 ^(66){ }^{66} In this case, the electronic states of the newly formed surface structure are of vital importance but can hardly be observed owing to dynamic structural evolution during the reaction process. To surmount this dilemma, operando/in situ structural characterization is highly demanded, especially under OER conditions. Another concern arising from surface reconstruction is the sacrifice of catalyst stability. Notwithstanding that the reformed surface favors activity enhancement, the endless reconstruction accompanied by the OER process eventually leads to unfavorable surface amorphization and metal dissolution to deactivate the electrocatalysts themselves. The balance between activity and stability in the LOM pathway is also an imperative task for developing advanced electrocatalysts in the future.
与原始的 bulk host 相比,重建表面具有独特的结构和成分。因此,从散装材料中提取的电子描述符可能不再能够指导反应机制。实际上,研究人员还发现,晶格氧氧化还原化学仅通过表面重构触发反应位点的形成,而并不主导随后的 OER 途径。 66 66 ^(66){ }^{66} 在这种情况下,新形成的表面结构的电子状态至关重要,但由于反应过程中的动态结构演变,几乎无法观察到。为了克服这一困境,高度要求原位/原位结构表征,尤其是在 OER 条件下。表面重构引起的另一个问题是催化剂稳定性的牺牲。尽管重整后的表面有利于活性增强,但伴随着 OER 过程的无休止的重建最终导致不利的表面非晶化和金属溶解,从而使电催化剂本身失活。LOM 途径中活性和稳定性之间的平衡也是未来开发先进电催化剂的当务之急。

(3) Employing operando/in situ XAS characterization. Currently, in situ Raman spectroscopy and DEMS combined with 18 O 18 O ^(18)O{ }^{18} \mathrm{O} labelled experiments have been used to resolve the lattice oxygen redox chemistry during the OER process, as concluded in Section 6.1. The related observations provide straightforward evidence to support the argument of lattice oxygen oxidation and exchange. Nevertheless, given the dynamic reconstruction of the catalyst surface, the ultimately catalytic center is likely screened during the OER process, different from pristine states. The capture and resolution of veritably catalytic sites via operando/in situ characterization techniques is a prerequisite to establish more accurate descriptors for understanding the structure-activity relationships. Therefore, other advanced spectroscopic techniques with atomic structure resolution and sensitivity are still urgently needed. As a pioneer, synchrotron radiation-based XAS spectroscopy is specifically expected as a powerful tool to identity the local coordination and electronic structure of the catalyst center with an in situ electrochemical cell. 156 , 157 156 , 157 ^(156,157){ }^{156,157} Although this advanced in situ technique has greatly contributed to mechanism investigations of the conventional AEM pathway for OER, 154 , 155 154 , 155 ^(154,155){ }^{154,155} there are still few reports on lattice oxygen redox and the related LOM pathway. Hence, here we firmly anticipate that it can also play a critical role in understanding the fundamentals of the LOM pathway for OER. For hard-XAS, X-ray absorption near edge structure (XANES) spectra are highly sensitive to the electronic states near E F E F E_(F)E_{\mathrm{F}} to provide the details about oxidation states, local orbital hybridization and chemical bonding, whilst extended X-ray absorption fine structure (EXAFS) spectra can embody the information of the interatomic distance and coordination number from neighboring scattering atoms through Fourier/wavelet transformed analysis. Technologically, operando/in situ hard-XAS experiments can be easily carried out as the required X-ray energies are a few thousands eV or even higher, which can ignore the interference from external environments (atmosphere, electrolyte and
(3) 采用原位/原位 XAS 表征。目前,原位拉曼光谱和 DEMS 与 18 O 18 O ^(18)O{ }^{18} \mathrm{O} 标记实验相结合已被用于解析 OER 过程中的晶格氧氧化还原化学,如第 6.1 节所述。相关观察结果为支持晶格氧氧化和交换的论点提供了直接的证据。然而,鉴于催化剂表面的动态重建,最终的催化中心可能在 OER 过程中被筛选,这与原始状态不同。通过原位/原位表征技术捕获和解析真正的催化位点是建立更准确描述符以了解结构-活性关系的先决条件。因此,仍然迫切需要其他具有原子结构分辨率和灵敏度的先进光谱技术。作为先驱,基于同步辐射的 XAS 光谱被特别期望作为一种强大的工具来识别具有原位电化学池的催化剂中心的局部配位和电子结构。 156 , 157 156 , 157 ^(156,157){ }^{156,157} 尽管这种先进的原位技术极大地促进了 OER 的常规 AEM 途径的机制研究,但 154 , 155 154 , 155 ^(154,155){ }^{154,155} 关于晶格氧氧化还原和相关 LOM 途径的报道仍然很少。因此,我们坚信,它也可以在理解 OER 的 LOM 途径的基本原理方面发挥关键作用。 对于硬 XAS,X 射线吸收近边缘结构 (XANES) 光谱对附近的 E F E F E_(F)E_{\mathrm{F}} 电子态高度敏感,以提供有关氧化态、局部轨道杂化和化学键合的详细信息,而扩展 X 射线吸收精细结构 (EXAFS) 光谱可以通过傅里叶/小波变换分析体现来自相邻散射原子的原子间距离和配位数信息。从技术上讲,原位/原位硬 XAS 实验可以很容易地进行,因为所需的 X 射线能量为几千 eV 甚至更高,可以忽略来自外部环境(大气、电解质和

electrochemical cell). Compared to hard-XAS with a deep probe depth, soft-XAS with absorption energy, which can gain electronic information from unoccupied orbitals near E F E F E_(F)E_{\mathrm{F}}, is surface sensitive. Soft-XAS can provide a more visual picture of TM n n nn d orbitals. Taking 3d TMs as an example, K-edge hard-XAS probes the electron transitions from 1s to 4 p orbitals, which can hardly observe the electronic information of 3d orbitals owing to the 1 s to 3 d transition forbidden. To be different, L-edge soft-XAS, observed from dipole-allowed 2p rarr\rightarrow 3d optical transitions, directly provides electronic information of catalytically active 3d orbitals (such as occupancy, splitting, spin state, and hybridization), suggesting a more suitable means to resolve the electronic details of the reconstructed surface. Besides, the O K-edge absorption is located at 530 eV 530 eV ∼530eV\sim 530 \mathrm{eV}, which is also a soft-XAS region. 143 143 ^(143){ }^{143} However, electrochemical operando/in situ soft XAS measurements are highly challenging due to the serious external disruptions. Recently, the Sargent research group developed an in situ electrochemical flow cell with an ultrathin Si 3 N 4 Si 3 N 4 Si_(3)N_(4)\mathrm{Si}_{3} \mathrm{~N}_{4} membrane window to separate the electrolyte inside the cell from the high-vacuum chamber for softXAS tests, 158 158 ^(158){ }^{158} probably offering an open sesame for the electrochemical operando/in situ soft-XAS technique.
电化学池)。与具有较深探针深度的硬 XAS 相比,具有吸收能量的软 XAS 可以从附近的 E F E F E_(F)E_{\mathrm{F}} 未占用轨道获得电子信息,对表面敏感。Soft-XAS 可以提供更直观的 TM n n nn d 轨道图片。以 3d TMs 为例,K-edge hard-XAS 探测电子从 1s 到 4 p 轨道的跃迁,由于 1 s 到 3 d 跃迁被禁止,几乎无法观察到 3d 轨道的电子信息。不同的是,从偶极子允许的 2p rarr\rightarrow 3d 光学跃迁中观察到的 L 边软 XAS 直接提供了催化活性 3d 轨道的电子信息(例如占位、分裂、自旋态和杂化),提出了一种更合适的方法来解析重建表面的电子细节。此外,O K 边缘吸收位于 530 eV 530 eV ∼530eV\sim 530 \mathrm{eV} ,这也是一个软 XAS 区域。 143 143 ^(143){ }^{143} 然而,由于严重的外部干扰,电化学操作/原位软 XAS 测量极具挑战性。最近,Sargent 研究小组开发了一种具有超薄膜 Si 3 N 4 Si 3 N 4 Si_(3)N_(4)\mathrm{Si}_{3} \mathrm{~N}_{4} 窗口的原位电化学流通池,用于将电池内的电解质与高真空室分离以进行 softXAS 测试, 158 158 ^(158){ }^{158} 可能为电化学操作/原位 soft-XAS 技术提供了开麻。

(4) Developing theoretical studies and predictions. The mechanism investigations through computationally guided simulations have been maturely developed for heterogeneous catalysis, including the electronic states of catalyst hosts and predication of reaction intermediates and pathway. This advance has also provided vital insights into the OER electrocatalyst design. In spite of the glorious achievements, existing theoretical studies usually utilize the simplified models to interpret the complicated reaction process, only giving the researchers a qualitative picture to match the experimental observations. With the increasing development of operando/ in situ characterization of the catalytic center, one focus of theoretical studies in the future is to simulate the veritable catalyst’s structure and chemical reaction with more precise models at the (semi)quantitative level. For instance, regarding the OER that we discuss here, a structural model of the reconstructed surface rather than the pristine catalyst host should be established for electronic state investigation, and the influence of solvent molecules on free energies of different reaction routes should also be taken into full consideration. Besides, owing to the rapid development of computer science, new computational methodologies are anticipated to guide the electrocatalyst design more efficiently. 159 , 160 159 , 160 ^(159,160){ }^{159,160} For instance, a machine-learning model combined with DFT calculations was adapted to successfully screen highly active Cu Al Cu Al Cu-Al\mathrm{Cu}-\mathrm{Al} alloy electrocatalysts for CO 2 CO 2 CO_(2)\mathrm{CO}_{2} conversion by enumerating a large number of surfaces and absorption sites on different Cu-containing intermetallic crystals. 161 161 ^(161){ }^{161} We believe that the interdisciplinary study with computer science can substantially expedite the advances of OER electrocatalysis development.
(4) 开展理论研究和预测。通过计算引导模拟进行的机理研究已经为多相催化成熟,包括催化剂宿主的电子状态以及反应中间体和途径的预测。这一进步还为 OER 电催化剂设计提供了重要的见解。尽管取得了辉煌的成就,但现有的理论研究通常使用简化模型来解释复杂的反应过程,只为研究人员提供与实验观察相匹配的定性图片。随着催化中心原位/原位表征的不断发展,未来理论研究的重点之一是在(半)定量水平上使用更精确的模型模拟名副其实的催化剂的结构和化学反应。例如,关于我们在这里讨论的 OER,应该建立重建表面的结构模型,而不是原始催化剂宿主的结构模型来研究电子状态,并且还应该充分考虑溶剂分子对不同反应路线的自由能的影响。此外,由于计算机科学的快速发展,新的计算方法有望更有效地指导电催化剂的设计。 159 , 160 159 , 160 ^(159,160){ }^{159,160} 例如,机器学习模型与 DFT 计算相结合,通过列举不同含铜金属间化合物晶体上的大量表面和吸收位点,成功筛选出用于 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 转化的高活性 Cu Al Cu Al Cu-Al\mathrm{Cu}-\mathrm{Al} 合金电催化剂。 161 161 ^(161){ }^{161} 我们相信,计算机科学的跨学科研究可以大大加快 OER 电催化的发展。
Overall, the lattice oxygen redox chemistry provides an appealing fundamental to rationalize the remarkable OER activity in the highly covalent solid-state TM oxide and (oxy)hydroxide electrocatalysts. The proposed LOM pathway exhibits significant advances towards accelerating reaction kinetics and
总体而言,晶格氧氧化还原化学为合理化高共价固态 TM 氧化物和(氧)氢氧化物电催化剂中卓越的 OER 活性提供了一个有吸引力的基础。所提出的 LOM 途径在加速反应动力学和

Fig. 16 A schematic perspective for exploiting advanced solid-state OER electrocatalysts at the intersection of synthetic methodologies, operando/ in situ characterization techniques and theoretical simulations under the guideline of electronic descriptors.
图 16 在电子描述符指导下,在合成方法、原位/原位表征技术和理论模拟的交叉点上开发先进的固态 OER 电催化剂的示意图。

lower overpotential of OER. Based on the tremendous achievements in this research area, we provide a comprehensive summary of its physicochemical fundamentals and recent progress in this review, which is anticipated to help the researchers gain in-depth understanding and arouse broad interest of other scientific communities. By integrating novel synthetic methodologies for catalyst hosts and advanced operando/in situ characterization techniques with newly developed theoretical simulation methods (Fig. 16), we also offer the perspectives that continued research for exploring efficient OER electrocatalyst candidates under the guideline of electronic descriptors for lattice oxygen redox chemistry is greatly promising in the field of electrolysis industries towards sustainable energy storage and conversion.
降低 OER 的过电位。基于该研究领域的巨大成就,本文对其理化基础和最新进展进行了全面总结,以期帮助研究人员深入了解并引起其他科学界的广泛兴趣。通过将催化剂主体的新型合成方法和先进的原位/原位表征技术与新开发的理论模拟方法(图 16)相结合,我们还提供了这样的观点,即在晶格氧氧化还原化学的电子描述符指导下继续研究探索高效的 OER 电催化剂候选者在电解工业领域具有很大的前景可持续能源存储和转换。

Conflicts of interest  利益冲突

There are no conflicts to declare.
没有需要声明的冲突。

Acknowledgements  确认

This work was supported by the Research Grant Council of Hong Kong (Grant No. N_PolyU540/17), the Hong Kong Polytechnic University (Grant No. 1-W144), and Science, Technology, and Innovation Commission of Shenzhen (Grant No. JCYJ20180507183424383).
这项工作得到了香港研究资助局(批准号 N_PolyU540/17)、香港理工大学(批准号 1-W144)和深圳市科学技术和创新委员会(批准号。JCYJ20180507183424383)。

References  引用

1 M. S. Dresselhaus and I. L. Thomas, Nature, 2001, 414, 332-337.
1 M. S. Dresselhaus 和 I. L. Thomas,《自然》,2001 年,414,332-337。
2 B. Dunn, H. Kamath and J.-M. Tarascon, Science, 2011, 334, 928-935.
2 B. Dunn、H. Kamath 和 J.-M.塔拉斯孔,科学,2011,334,928-935。

3 S. Chu and A. Majumdar, Nature, 2012, 488, 294-303.
3 S. Chu 和 A. Majumdar,自然,2012,488,294-303。

4 J. Kibsgaard and I. Chorkendorff, Nat. Energy, 2019, 4, 430-433.
4 J. Kibsgaard 和 I. Chorkendorff,《国家能源》,2019 年,4,430-433。

5 I. Roger, M. A. Shipman and M. D. Symes, Nat. Rev. Chem., 2017, 1, 0003.
5 I. Roger, MA Shipman 和 MD Symes, Nat. Rev. Chem., 2017, 1, 0003.

6 Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo and M. T. M. Koper, Nat. Energy, 2019, 4, 732-745.
6 YY Birdja、E. Pérez-Gallent、MC Figueiredo、AJ Göttle、F. Calle-Vallejo 和 M. T. M. Koper,国家能源,2019,4,732-745。

7 B. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov and D. R. MacFarlane, Nat. Catal., 2019, 2, 290-296.
7 BHR 苏里安托,HLDu, D. Wang, J. Chen, A. N. Simonov 和 D. R. MacFarlane, 自然加泰罗尼亚, 2019, 2, 290-296.

8 J. A. Turner, Science, 2004, 305, 972-974.
8 J. A. Turner,科学,2004,305,972-974。

9 A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin and M. Fontecave, Science, 2009, 326, 1384-1387.
9 A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin 和 M. Fontecave, 科学, 2009, 326, 1384-1387.

10 B. M. Hunter, H. B. Gray and A. M. Müller, Chem. Rev., 2016, 116, 14120-14136.
10 BM Hunter、HB Gray 和 AM Müller,化学修订版,2016,116,14120-14136。

11 C. Hu, L. Zhang and J. Gong, Energy Environ. Sci., 2019, 12, 2620-2645.
11 C. 胡, L. Zhang 和 J. Gong, 能源环境.科学, 2019, 12, 2620-2645.

12 J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang and Z. J. Xu, Chem. Soc. Rev., 2020, 49, 2196-2214.
12 J. Song, C. Wei, Z.-F.Huang, C. Liu, L. Zeng, X. Wang 和 Z. J. Xu, Chem. Soc. Rev., 2020, 49, 2196-2214.
13 F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet and X. Hu, J. Am. Chem. Soc., 2018, 140, 7748-7759.
13 F. Song, L. Bai, A. Moysiadou, S. Lee, C. 胡, L. Liardet 和 X. 胡, J. Am. Chem. Soc., 2018, 140, 7748-7759.
14 N. T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu and H. M. Chen, Chem. Soc. Rev., 2017, 46, 337-365.
14 N. T. 孙,SF洪 Q. Quan, N. Zhang, Y.-J.Xu 和 H. M. Chen,化学社会修订版,2017,46,337-365。
15 Q. Shi, C. Zhu, D. Du and Y. Lin, Chem. Soc. Rev., 2019, 48, 3181-3192.
15 Q. Shi, C. Zhu, D. Du 和 Y. Lin, Chem. Soc. Rev., 2019, 48, 3181-3192.

16 L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov and T. F. Jaramillo, Science, 2016, 353, 1011-1014.
16 LC Seitz、CF Dickens、K. Nishio、Y. Hikita、J. Montoya、A. Doyle、C. Kirk、A. Vojvodic、H. Y. Hwang、JK Norskov 和 TF Jaramillo,科学,2016,353,1011-1014。

17 Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C.-R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W.-X. Li, P. Strasser, Y. Wu and Y. Li, Nat. Catal., 2019, 2, 304-313.
17 姚彦, 胡淑娴, 陈伟文, Z.-Q.黄伟伟, 姚涛, 刘锐, 臧国强, 王晓明, 吴国, 袁伟, 袁德良, 朱斌, 刘文伟, 李志强, 何志强, 薛志强, 王耀, 郑晓明, 董建强Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W.-X.Li, P. Strasser, Y. Wu 和 Y. Li, 自然加泰罗尼亚, 2019, 2, 304-313.
18 J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu and Y. Shao-Horn, Science, 2017, 358, 751-756.
18 J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu 和 Y. Shao-Horn, 科学, 2017, 358, 751-756.
19 Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov and T. F. Jaramillo, Science, 2017, 355, eaad4998.
19 Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov 和 T. F. Jaramillo, 科学, 2017, 355, eaad4998.

20 J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo and J. K. Nørskov, Nat. Mater., 2017, 16, 70-81.
20 JH Montoya, LC Seitz, P. Chakthranont, A. Vojvodic, TF Jaramillo 和 JK Nørskov, Nat. Mater., 2017, 16, 70-81.

21 H. Jiang, Q. He, Y. Zhang and L. Song, Acc. Chem. Res., 2018, 51, 2968-2977.
21 H. 江, Q. He, Y. Zhang 和 L. Song, Acc. Chem. Res., 2018, 51, 2968-2977.

22 N. C. S. Selvam, L. Du, B. Y. Xia, P. J. Yoo and B. You, Adv. Funct. Mater., 2021, 31, 2008190.
22 NCS Selvam, L. Du, B. Y. Xia, PJ Yoo 和 B. You, Adv. Funct.材料, 2021, 31, 2008190.

23 J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai, A. M. Kolpak, K. P. Johnston and K. J. Stevenson, Nat. Commun., 2016, 7, 11053.
23 JT Mefford, X. Rong, AM Abakumov, W. G. Hardin, S. Dai, AM Kolpak, KP Johnston 和 KJ Stevenson, Nat. Commun., 2016, 7, 11053.

24 A. Grimaud, W. T. Hong, Y. Shao-Horn and J. M. Tarascon, Nat. Mater., 2016, 15, 121.
24 A. Grimaud, W. T. Hong, Y. Shao-Horn 和 J. M. Tarascon, Nat. Mater., 2016, 15, 121.

25 A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper and Y. Shao-Horn, Nat. Chem., 2017, 9, 457-465.
25 A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y.-L.Lee, L. Giordano, KA Stoerzinger, MTM Koper 和 Y. Shao-Horn, 自然化学, 2017, 9, 457-465.
26 E. Fabbri and T. J. Schmidt, ACS Catal., 2018, 8, 9765-9774.
26 E. Fabbri 和 TJ Schmidt,ACS Catal.,2018,8,9765-9774。

27 Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu and X. Wang, Nat. Energy, 2019, 4, 329-338.
27 Z.-F.黄俊杰, 宋建军, 杜宇, 曦淑习, 窦淑骊, J. M. V. Nsanzimana, C. Wang, Z. J. Xu 和 X. Wang, 自然能源, 2019, 4, 329-338.
28 N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai, B. Qiu, R. Long, Y. Xiong, Y. Lu and Y. Chai, Nat. Commun., 2020, 11, 4066.
28 张北, 冯晓峰, 饶大军, 邓晓波, 蔡立军, 邱斌, 龙仁, 熊宇, 卢宇和柴宇, 国家公报, 2020, 11, 4066.
29 C. Doornkamp and V. Ponec, J. Mol. Catal. A: Chem., 2000, 162, 19-32.
29 C. Doornkamp 和 V. Ponec, J. Mol. Catal.A: 化学, 2000, 162, 19-32.

30 L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye and Y. Wang, Science, 2017, 358, 1419-1423.
30 L. Nie, D. Mei, H. Xiong, B. Peng, Z. 任, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye 和 Y. Wang, 科学, 2017, 358, 1419-1423.
31 G. Assat and J.-M. Tarascon, Nat. Energy, 2018, 3, 373-386.
31 G. Assat 和 J.-M.塔拉斯孔,国家能源, 2018, 3, 373-386.

32 D.-H. Seo, J. Lee, A. Urban, R. Malik, S. Kang and G. Ceder, Nat. Chem., 2016, 8, 692-697.
32 D.-H.Seo, J. Lee, A. Urban, R. Malik, S. Kang 和 G. Ceder, 自然化学, 2016, 8, 692-697.

33 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-17892.
33 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard 和 H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-17892.

34 J. Rossmeisl, A. Logadottir and J. K. Nørskov, Chem. Phys., 2005, 319, 178-184.
34 J. Rossmeisl、A. Logadottir 和 J. K. Nørskov,化学物理学,2005,319,178-184。

35 I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov and J. Rossmeisl, ChemCatChem, 2011, 3, 1159-1165.
35 I. C. 曼,H.-Y.Su, F. Calle-Vallejo, HA Hansen, JI Martínez, N. G. Inoglu, J. Kitchin, TF Jaramillo, JK Nørskov 和 J. Rossmeisl, ChemCatChem, 2011, 3, 1159-1165.

36 J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and Y. Shao-Horn, Science, 2011, 334, 1383-1385.
36 J. Suntivich、KJ May、HA Gasteiger、JB Goodenough 和 Y. Shao-Horn,科学,2011 年,334,1383-1385。

37 C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn and Z. J. Xu, Adv. Mater., 2017, 29, 1606800.
37 C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn 和 Z. J. Xu, Adv. Mater., 2017, 29, 1606800.
38 S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu, Z. Hu, J. Zhao, L. Shi and J. Zeng, Nat. Commun., 2016, 7, 11510.
38 周淑娴, 苗晓, 赵晓, 马斌, 邱毅, 胡志强, 赵建, 石伦 曾俊, 国家公报, 2016, 7, 11510.
39 S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama and S. Mori, Nat. Commun., 2015, 6, 8249.
39 S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama 和 S. Mori, Nat. Commun., 2015, 6, 8249.
40 Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen, Y. Du, A. C. Fisher, F. Cheng, X. Wang, H. Zhang and Z. J. Xu, Adv. Mater., 2018, 30, 1802912.
40 Y. 周, S. Sun, J. Song, S. 习, B. Chen, Y. Du, A. C. Fisher, F. Cheng, X. Wang, H. Zhang and Z. J. Xu, Adv. Mater., 2018, 30, 1802912.

41 Y. Sun, H. Liao, J. Wang, B. Chen, S. Sun, S. J. H. Ong, S. Xi, C. Diao, Y. Du, J.-O. Wang, M. B. H. Breese, S. Li, H. Zhang and Z. J. Xu, Nat. Catal., 2020, 3, 554-563.
41 孙彦, 廖浩, 王建军, 陈斌, 孙淑娴, 王世军, 奚淑习, 刁建华, 杜宇, J.-O.Wang, M. B. H. Breese, S. Li, H. Zhang 和 Z. J. Xu, 自然加泰罗尼亚, 2020, 3, 554-563.

42 K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y.-L. Lee, A. Grimaud and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, 3264-3270.
42 KJ May, CE Carlton, KA Stoerzinger, M. Risch, J. Suntivich, Y.-L.Lee, A. Grimaud 和 Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, 3264-3270.
43 E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K. E. Ayers and T. J. Schmidt, Nat. Mater., 2017, 16, 925-931.
43 E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, BJ Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, KE Ayers 和 TJ Schmidt, Nat. Mater., 2017, 16, 925-931.
44 S. Cherevko, A. R. Zeradjanin, A. A. Topalov, N. Kulyk, I. Katsounaros and K. J. J. Mayrhofer, ChemCatChem, 2014, 6, 2219-2223.
44 S. Cherevko、A. R. Zeradjanin、A. A. Topalov、N. Kulyk、I. Katsounaros 和 K. J. J. Mayrhofer,ChemCatChem,2014,6,2219-2223。

45 C. W. Song, H. Suh, J. Bak, H. B. Bae and S.-Y. Chung, Chem, 2019, 5, 3243-3259.
45 C. W. Song, H. Suh, J. Bak, H. B. Bae 和 S.-Y.钟化学, 2019, 5, 3243-3259.

46 J. O. M. Bockris and T. Otagawa, J. Phys. Chem., 1983, 87, 2960-2971.
46 J. O. M. Bockris 和 T. Otagawa, J. Phys. Chem., 1983, 87, 2960-2971.

47 J. O. M. Bockris, J. Electrochem. Soc., 1984, 131, 290.
47 J. O. M. Bockris, J. 电化学。社会学,1984,131,290。

48 M. Wohlfahrt-Mehrens and J. Heitbaum, J. Electroanal. Chem. Interfacial Electrochem., 1987, 237, 251-260.
48 M. Wohlfahrt-Mehrens 和 J. Heitbaum,J. Electroanal。化学界面电化学, 1987, 237, 251-260.

49 S. Fierro, T. Nagel, H. Baltruschat and C. Comninellis, Electrochem. Commun., 2007, 9, 1969-1974.
49 S. Fierro、T. Nagel、H. Baltruschat 和 C. Comninellis,电化学。Commun., 2007, 9, 1969-1974.
50 Y. Surendranath, M. W. Kanan and D. G. Nocera, J. Am. Chem. Soc., 2010, 132, 16501-16509.
50 Y. Surendranath、MW Kanan 和 DG Nocera,J. Am. Chem. Soc.,2010,132,16501-16509。

51 K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S. Liu, K. Edström, J. Guo, A. V. Chadwick, L. C. Duda and P. G. Bruce, Nat. Chem., 2016, 8, 684-691.
51 K. Luo, MR Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S.Liu, K. Edström, J. Guo, AV Chadwick, LC Duda 和 PG Bruce, Nat. Chem., 2016, 8, 684-691.

52 B. Li and D. Xia, Adv. Mater., 2017, 29, 1701054.
52 B. Li 和 D. Xia,Adv. Mater.,2017,29,1701054。

53 B. Mortemard de Boisse, G. Liu, J. Ma, S.-i. Nishimura, S.C. Chung, H. Kiuchi, Y. Harada, J. Kikkawa, Y. Kobayashi, M. Okubo and A. Yamada, Nat. Commun., 2016, 7, 11397.
53 B. 莫特马尔·德·布瓦斯, G. Liu, J. 马, S.-i.Nishimura, SC Chung, H. Kiuchi, Y. Harada, J. Kikkawa, Y. Kobayashi, M. Okubo 和 A. Yamada, Nat. Commun., 2016, 7, 11397.
54 U. Maitra, R. A. House, J. W. Somerville, N. Tapia-Ruiz, J. G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M. A. Pérez-Osorio, F. Massel, D. M. Pickup, S. Ramos, X. Lu, D. E. McNally, A. V. Chadwick, F. Giustino, T. Schmitt, L. C. Duda, M. R. Roberts and P. G. Bruce, Nat. Chem., 2018, 10, 288-295.
54 U. Maitra, RA House, JW Somerville, N. Tapia-Ruiz, J. G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, MA Pérez-Osorio, F. Massel, DM Pickup, S. Ramos, X. Lu, D. E. McNally, AV Chadwick, F. Giustino, T. Schmitt, LC Duda, MR Roberts 和 PG Bruce, Nat. Chem., 2018, 10, 288-295.

55 W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston and K. J. Stevenson, J. Phys. Chem. Lett., 2013, 4, 1254-1259.
55 W. G. Hardin, DA Slanac, X. Wang, S. Dai, KP Johnston 和 KJ Stevenson, J. Phys. Chem. Lett., 2013, 4, 1254-1259.

56 W. G. Hardin, J. T. Mefford, D. A. Slanac, B. B. Patel, X. Wang, S. Dai, X. Zhao, R. S. Ruoff, K. P. Johnston and K. J. Stevenson, Chem. Mater., 2014, 26, 3368-3376.
56 W. G. Hardin, J. T. Mefford, D. A. Slanac, B. B. Patel, X. Wang, S. Dai, X. Zhao, R. S. Ruoff, K. P. Johnston 和 K. J. Stevenson, Chem. Mater., 2014, 26, 3368-3376.
57 X. Rong, J. Parolin and A. M. Kolpak, ACS Catal., 2016, 6, 1153-1158.
57 X. Rong、J. Parolin 和 A. M. Kolpak,ACS Catal.,2016,6,1153-1158。

58 J. S. Yoo, X. Rong, Y. Liu and A. M. Kolpak, ACS Catal., 2018, 8, 4628-4636.
58 J. S. Yoo, X. Rong, Y. Liu 和 A. M. Kolpak, ACS Catal., 2018, 8, 4628-4636.

59 J. S. Yoo, Y. Liu, X. Rong and A. M. Kolpak, J. Phys. Chem. Lett., 2018, 9, 1473-1479.
59 J. S. Yoo, Y. Liu, X. Rong 和 A. M. Kolpak, J. Phys. Chem. Lett., 2018, 9, 1473-1479.

60 A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L. Doublet and J.-M. Tarascon, Nat. Energy, 2016, 2, 16189.
60 A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp, M.-L.Doublet 和 J.-M.塔拉斯孔,国家能源,2016,2,16189。

61 H. N. Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok, T. H. T. Vu, D. Teschner, M. Heggen, V. Petkov, R. Schlögl, T. Jones and P. Strasser, Nat. Catal., 2018, 1, 841-851.
61 H. N. Nong, T. Reier, H.-S.Oh, M. Gliech, P. Paciok, T. H. T. Vu, D. Teschner, M. Heggen, V. Petkov, R. Schlögl, T. Jones 和 P. Strasser, Nat. Catal., 2018, 1, 841-851.

62 X. Li, H. Wang, Z. Cui, Y. Li, S. Xin, J. Zhou, Y. Long, C. Jin and J. B. Goodenough, Sci. Adv., 2019, 5, eaav6262.
62 X. Li, H. Wang, Z. Cui, Y. Li, S. Xin, J. 周, Y. Long, C. Jin 和 J. B. Goodenough, Sci. Adv., 2019, 5, eaav6262.

63 Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J.-P. M. Veder, D. Guan, R. O’Hayre, M. Li, G. Wang, H. Wang, W. Zhou and Z. Shao, Nat. Commun., 2020, 11, 2002.
63 Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J.-P.M. Veder, D. Guan, R. O'Hayre, M. Li, G. Wang, H. Wang, W. 周 和 Z. Shao, Nat. Commun., 2020, 11, 2002.

64 Y. Duan, S. Sun, Y. Sun, S. Xi, X. Chi, Q. Zhang, X. Ren, J. Wang, S. J. H. Ong, Y. Du, L. Gu, A. Grimaud and Z. J. Xu, Adv. Mater., 2019, 31, 1807898.
64 段彦、孙倪、孙彦、习、驰晓、张群、任、王建、王建军、王建军、杜宇、顾立军、A. Grimaud 和 Z. J. Xu,高级材料,2019,31,1807898。

65 S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du and Z. J. Xu, Angew. Chem., Int. Ed., 2019, 58, 6042-6047.
65 孙南、孙宇、周、习、任、黄斌、廖斌、王立平、杜宇和徐志军,安格。化学,国际教育版,2019,58,6042-6047。

66 T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud and Z. J. Xu, Nat. Catal., 2019, 2, 763-772.
66 T. Wu, S. Sun, J. Song, S. 习, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud 和 Z. J. Xu, Nat. Catal., 2019, 2, 763-772.

67 R. P. Forslund, W. G. Hardin, X. Rong, A. M. Abakumov, D. Filimonov, C. T. Alexander, J. T. Mefford, H. Iyer, A. M. Kolpak, K. P. Johnston and K. J. Stevenson, Nat. Соттип., 2018, 9, 3150.
67 RP Forslund, W. G. Hardin, X. Rong, AM Abakumov, D. Filimonov, C. T. Alexander, J. T. Mefford, H. Iyer, A. M. Kolpak, KP Johnston 和 KJ Stevenson, Nat. Соттип., 2018, 9, 3150.

68 S. Lee, K. Banjac, M. Lingenfelder and X. Hu, Angew. Chem., Int. Ed., 2019, 58, 10295-10299.
68 S. Lee, K. Banjac, M. Lingenfelder 和 X. 胡, Angew.化学,国际教育版,2019,58,10295-10299。

69 C. Roy, B. Sebok, S. B. Scott, E. M. Fiordaliso, J. E. Sørensen, A. Bodin, D. B. Trimarco, C. D. Damsgaard, P. C. K. Vesborg,
69 C. Roy, B. Sebok, SB Scott, EM Fiordaliso, JE Sørensen, A. Bodin, D. B. Trimarco, CD Damsgaard, P. C. K. Vesborg,