Abstract 抽象的
Using first-principles
使用第一性原理
- Received 9 October 2022 2022 年 10 月 9 日收到
- Accepted 23 May 2023 2023 年 5 月 23 日接受
DOI:https://doi.org/10.1103/PhysRevB.107.235119
©2023 American Physical Society
©2023 美国物理学会
Physics Subject Headings (PhySH)
物理主题词 (PhySH)
凝聚态、材料与应用物理
Article Text 文章正文
An exciton is a composite boson consisting of a correlated electron-hole (e-h) pair bound by screened Coulomb interaction. The attractive Coulomb interaction between electrons and holes creates low-lying excitons with energy
激子是一种复合玻色子,由通过屏蔽库仑相互作用结合的相关电子-空穴(eh ) 对组成。电子和空穴之间有吸引力的库仑相互作用产生具有能量的低位激子
Well-known examples of materials with strong excitonic effects include low-dimensional materials [18–21], molecular crystals [22,23], and alkaline halides [24,25]. The latter two are bulk materials that can host strongly bound Frenkel or charge-transfer excitons. On the other hand, Wannier-Mott excitons in most inorganic bulk semiconductors with moderate band gaps (
具有强激子效应的材料的著名例子包括低维材料[18-21] 、分子晶体[22, 23]和碱性卤化物[24, 25] 。后两种是可以承载强束缚弗兰克尔或电荷转移激子的块状材料。另一方面,大多数具有中等带隙的无机体半导体中的万尼尔-莫特激子(
Owing to the rich choices of chemical composition, tunable optical band gap, nontoxicity, and earth abundance, the vacancy-ordered double perovskites (VODPs) have been proposed as promising materials for photovoltaic applications [37–39]. In this paper, using density functional theory (DFT) [40] and many-body perturbation theory [41,42], we investigate the quasiparticle and excitonic properties of a group of VODPs, including
由于化学成分丰富、光学带隙可调、无毒性和地球丰度,空位有序双钙钛矿(VODP)被认为是光伏应用的有前景的材料[37-39] 。在本文中,利用密度泛函理论(DFT) [40]和多体微扰理论[41, 42] ,我们研究了一组VODP的准粒子和激子性质,包括
The crystal structure of
晶体结构
(a) Crystal structures of
(a) 晶体结构
In order to facilitate later discussion and to better illustrate the roles of
为了方便后面的讨论以及更好的说明其作用
The QP band structure of
QP 能带结构
TABLE I. 表一
Quasiparticle, excitonic, and dielectric properties of four VODPs. Energy gaps are in eV.
四种 VODP 的准粒子、激子和介电特性。能隙的单位是 eV。
A comparison of the band structures calculated with and without spin-orbit coupling (SOC) (Fig. S1 of Supplemental Material [50]) reveals strong relativistic effects on the top valence bands, and the gap at the
对使用和不使用自旋轨道耦合 (SOC) 计算的能带结构进行比较(补充材料[50]的图 S1)揭示了顶部价带和顶部价带处的带隙具有很强的相对论效应。
Figure 2(a) shows the imaginary part of the frequency-dependent dielectric constant of
图2(a)显示了随频率变化的介电常数的虚部
(a) The imaginary part of the dielectric function of
(a) 介电函数的虚部
The strong SOC effects on the calculated band structure, especially on the top valence states as shown in Fig. 1(c), result in significant changes in the calculated excitonic structure and optical absorption. To uncover the effects of SOC on the low-energy excitons, we compare the excitonic structures calculated with and without the SOC effects. When the SOC effects are neglected, an excitonic state can be either spin-0 (singlet) or spin-1 (triplet). The triplet excitons are always dark since spin is conserved in optical dipole transitions if the SOC effects are neglected. The excitation energies of the singlet and triplet excitons for
SOC对计算的能带结构的强烈影响,特别是如图1(c)所示的顶价态,导致计算的激子结构和光吸收的显着变化。为了揭示 SOC 对低能激子的影响,我们比较了有和没有 SOC 影响时计算的激子结构。当忽略 SOC 效应时,激子态可以是自旋 0(单线态)或自旋 1(三线态)。如果忽略 SOC 效应,三线态激子总是暗的,因为自旋在光学偶极跃迁中是守恒的。单线态和三线态激子的激发能
When the SOC effects are considered, the excitonic states are a mixture of spin singlets and spin triplets [45]. The lowest-energy exciton, which is mainly derived from the low-energy spin-triplet states, is dark, as shown in Fig. 2(c). Moreover, the SOC effects cause a significant redshift (from 1.34 to 1.04 eV) of the absorption edge, bringing theory in better agreement with experiment [49]. The exciton binding energy of
当考虑 SOC 效应时,激子态是自旋单线态和自旋三线态的混合态[45] 。最低能量的激子主要源自低能自旋三重态,是暗色的,如图2(c)所示。此外,SOC效应导致吸收边发生显着的红移(从1.34到1.04 eV),使理论与实验更加一致[49] 。激子结合能
The calculated energies of the lowest-energy bright excitons for the other three VODPs (
计算出其他三个 VODP 的最低能量亮激子的能量(
The abnormally large exciton binding energies in these moderate-gap VODPs deserve closer scrutiny. To gain a deeper insight into the low-energy excitons, we examine their wave functions in both the reciprocal and real spaces. Within the Tamm-Dancoff approximation [45,68], the exciton wave functions can be expanded as a linear combination of products of the electron and hole wave functions
这些中等能隙 VODP 中异常大的激子结合能值得更仔细的研究。为了更深入地了解低能激子,我们研究了它们在倒易空间和实空间中的波函数。在 Tamm-Dancoff 近似[45, 68]中,激子波函数可以展开为电子和空穴波函数乘积的线性组合
where
在哪里
(a) Reciprocal-space distribution of exciton wave functions of
(a) 激子波函数的倒易空间分布
The localization of excitons can also be directly visualized in real space. To this end, we fix the hole position at an iodine atom, and plot the electron distribution of the lowest-energy dark and bright excitons for
激子的局域化也可以在真实空间中直接可视化。为此,我们固定了碘原子上的空穴位置,并绘制了最低能量暗激子和亮激子的电子分布:
Finally, we would like to address possible exciton-phonon coupling effects on the calculated exciton binding energy. As recently shown by Filip et al. [76], exciton-phonon coupling can considerably renormalize the exciton binding energies in ionic materials. We estimate the correction (
最后,我们想解决激子-声子耦合对计算的激子结合能的可能影响。正如 Filip等人最近所表明的。 [76] ,激子-声子耦合可以显着重整离子材料中的激子结合能。我们估计修正值(
where
在哪里
In summary, we have predicted giant exciton binding energies ranging from 0.95 to 1.65 eV (after correction for the electron-phonon renormalization effects) in moderate-gap bulk VODP materials
总之,我们预测中等能隙体 VODP 材料中的巨激子结合能范围为 0.95 至 1.65 eV(校正电子声子重正化效应后)
Note added. Recently, we became aware of computational studies by Kavanagh et al. [79] and Cucco et al. [80], which also show the large exciton binding energies in several vacancy-ordered double perovskites.
添加注释。最近,我们注意到 Kavanagh等人的计算研究。 [79]和库科等人。 [80] ,这也显示了几种空位有序双钙钛矿中的大激子结合能。
This work is supported by the National Natural Science Foundation of China (Grants No. 12104080 and No. 91961204), the Fundamental Research Funds for the Central Universities (Grants No. DUT22LK04, and DUT22ZD103) and XingLiaoYingCai Project of Liaoning province, China (Grant No. XLYC1905014). Work at State University of New York at Buffalo (SUNYB) is supported by NSF Grant No. DMREF-1626967. The authors acknowledge the computer resources provided by the Supercomputing Center of Dalian University of Technology and the Center for Computational Research, SUNYB.
该工作得到了国家自然科学基金(批准号:12104080和91961204)、中央高校基本科研业务费专项资金(批准号:DUT22LK04和DUT22ZD103)和辽宁省杏辽英才项目(批准号)的资助。编号 XLYC1905014)。纽约州立大学布法罗分校 (SUNYB) 的工作得到 NSF 拨款号 DMREF-1626967 的支持。作者感谢大连理工大学超级计算中心和纽约州立大学计算研究中心提供的计算机资源。
Supplemental Material 补充材料
References 参考
- X. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen, T. J. H. Hele, R. H. Friend, and F. Li, Efficient radical-based light-emitting diodes with doublet emission, Nature (London) 563, 536 (2018).
X.Ai、EW Evans、S.Dong、AJ Gillett、H.Guo、Y.Chen、TJH Hele、RH Friend 和 F.Li,具有双态发射的高效自由基发光二极管,自然(伦敦) 563 ,536(2018) 。 - K. Takanabe, Photocatalytic water splitting: quantitative approaches toward photocatalyst by design, ACS Catal. 7, 8006 (2017).
K. Takanabe,光催化水分解:通过设计实现光催化剂的定量方法, ACS Catal。 7、8006 (2017) 。 - N. S. Ginsberg and W. A. Tisdale, Spatially resolved photogenerated exciton and charge transport in emerging semiconductors, Annu. Rev. Phys. Chem. 71, 1 (2020).
NS Ginsberg 和 WA Tisdale,空间解析新兴半导体中的光生激子和电荷传输, Annu。物理博士。化学。 71、1 (2020) 。 - L. M. Herz, How lattice dynamics moderate the electronic properties of metal-halide perovskites, J. Phys. Chem. Lett. 9, 6853 (2018).
LM Herz,晶格动力学如何调节金属卤化物钙钛矿的电子特性, J. Phys。化学。莱特。 9、6853 (2018) 。 - M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13, 1091 (2014).
MM Ugeda,AJ Bradley,S.-F。 Shi,FH da Jornada,Y.Zhang,DY Qiu,W.Ruan,S.-K。莫,Z.侯赛因,Z.-X。 Shen、F. Wang、SG Louie 和 MF Crommie,单层过渡金属二硫族化物半导体中的巨带隙重正化和激子效应, Nat。马特。 13、1091 (2014) 。 - H.-P. Komsa and A. V. Krasheninnikov, Effects of confinement and environment on the electronic structure and exciton binding energy of
from first principles, Phys. Rev. B 86, 241201(R) (2012).M o S 2
H.-P。 Komsa 和 AV Krasheninnikov,限制和环境对电子结构和激子结合能的影响 从第一原理,物理学。修订版 B 86 , 241201(R) (2012) 。M o S 2 - A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86, 115409 (2012).
A. Ramasubramaniam,单层钼和钨二硫化物中的大激子效应,物理学。修订版 B 86 , 115409 (2012) 。 - J. Feng, X. Qian, C.-W. Huang, and J. Li, Strain-engineered artificial atom as a broad-spectrum solar energy funnel, Nat. Photonics 6, 866 (2012).
J.冯,X.钱,C.-W。 Huang 和 J. Li,应变工程人造原子作为广谱太阳能漏斗, Nat。光子学6 , 866 (2012) 。 - J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor, ACS Nano 9, 647 (2015).
J. Shang、X. Shen、C. Cong、N. Peimyoo、B. Cao、M. Eginligil 和 T. Yu,二维过渡金属二硫化物半导体中激子精细结构的观察, ACS Nano 9 , 647 (2015 ) 。 - Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Observation of biexcitons in monolayer
, Nat. Phys. 11, 477 (2015).W S e 2
Y. 你,X.-X。张,TC Berkelbach,MS Hybertsen,DR Reichman 和 TF Heinz,单层双激子的观察 ,纳特。物理。 11、477 (2015) 。W S e 2 - K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer
, Nat. Mater. 12, 207 (2013).M o S 2
KF Mak、K. He、C. Lee、GH Lee、J. Hone、TF Heinz 和 J. Shan,单层中紧密结合的三重体 ,纳特。马特。 12、207 (2013) 。M o S 2 - J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun. 4, 1474 (2013).
JS Ross、S. Wu、H. Yu、NJ Ghimire、AM Jones、G. Aivazian、J. Yan、DG Mandrus、D. Xiao、W. Yao 和 X. Xu,中性和带电激子的电控制单层半导体,自然。交流。 4、1474 (2013) 。 - S. Kéna-Cohen and S. R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics 4, 371 (2010).
S. Kéna-Cohen 和 SR Forrest,有机单晶微腔中的室温极化子激射, Nat。光子学4 , 371 (2010) 。 - J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer, Nat. Mater. 13, 247 (2014).
JD Plumhof、T. Stöferle、L. Mai、U. Scherf 和 RF Mahrt,聚合物中空腔激子极化激元的室温玻色-爱因斯坦凝聚, Nat。马特。 13、247 (2014) 。 - J. Even, L. Pedesseau, and C. Katan, Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites, Chem. Phys. Chem. 15, 3733 (2014).
J. Even、L. Pedesseau 和 C. Katan,了解层状 2D 杂化钙钛矿中载流子的量子限制, Chem。物理。化学。 15、3733 (2014) 。 - B. Traore, L. Pedesseau, L. Assam, X. Che, J.-C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, M. G. Kanatzidis, S. Tretiak, A. D. Mohite, J. Even, M. Kepenekian, and C. Katan, Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment, ACS Nano 12, 3321 (2018).
B.特拉奥雷、L.佩德索、L.阿萨姆、X.车、J.-C。 Blancon、H. Tsai、W. Nie、CC Stoumpos、MG Kanatzidis、S. Tretiak、AD Mohite、J. Even、M. Kepenekian 和 C. Katan,层状杂化钙钛矿的复合性质:量子和介电限制的评估和带对齐, ACS Nano 12,3321 (2018) 。 - D. B. Straus and C. R. Kagan, Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties, J. Phys. Chem. Lett. 9, 1434 (2018).
DB Straus 和 CR Kagan,二维杂化钙钛矿中的电子、激子和声子:连接结构、光学和电子特性, J. Phys。化学。莱特。 9、1434 (2018) 。 - J.-H. Choi, P. Cui, H. Lan, and Z. Zhang, Linear Scaling of the Exciton Binding Energy Versus the Band Gap of Two-Dimensional Materials, Phys. Rev. Lett. 115, 066403 (2015).
J.-H。 Choi、P.Cui、H.Lan 和 Z.Zhang,激子结合能与二维材料带隙的线性缩放,物理学。莱特牧师。 115、066403 (2015) 。 - L. Wirtz, A. Marini, and A. Rubio, Excitons in Boron Nitride Nanotubes: Dimensionality Effects, Phys. Rev. Lett. 96, 126104 (2006).
L. Wirtz、A. Marini 和 A. Rubio,氮化硼纳米管中的激子:维度效应,物理学。莱特牧师。 96、126104 (2006) 。 - C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 92, 077402 (2004).
CD Spataru、S. Ismail-Beigi、LX Benedict 和 SG Louie,单壁碳纳米管的激子效应和光谱,物理学。莱特牧师。 92、077402 (2004) 。 - D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical Spectrum of MoS: Many-Body Effects and Diversity of Exciton States, Phys. Rev. Lett. 111, 216805 (2013).
DY Qiu、FH da Jornada 和 SG Louie, MoS2 的光谱:多体效应和激子态的多样性,物理学。莱特牧师。 111、216805 (2013) 。 - E. L. Shirley, L. X. Benedict, and S. G. Louie, Excitons in solid
, Phys. Rev. B 54, 10970 (1996).C 6 0 - J. C. Grossman, M. Rohlfing, L. Mitas, S. G. Louie, and M. L. Cohen, High Accuracy Many-Body Calculational Approaches for Excitations in Molecules, Phys. Rev. Lett. 86, 472 (2001).
JC Grossman、M. Rohlfing、L. Mitas、SG Louie 和 ML Cohen,分子激发的高精度多体计算方法,物理学。莱特牧师。 86、472 (2001) 。 - Y. Onodera and Y. Toyozawa, Excitons in alkali halides, J. Phys. Soc. Jpn. 22, 833 (1967).
Y. Onodera 和 Y. Toyozawa,碱金属卤化物中的激子, J. Phys。苏克。日本。 22、833 (1967) 。 - R. T. Williams and K. S. Song, The self-trapped exciton, J. Phys. Chem. Solids 51, 679 (1990).
RT Williams 和 KS Song,自陷激子, J. Phys。化学。固体51 , 679 (1990) 。 - A. Trichet, F. Médard, J. Zúñiga-Pérez, B. Alloing, and M. Richard, From strong to weak coupling regime in a single GaN microwire up to room temperature, New J. Phys. 14, 073004 (2012).
A. Trichet、F. Médard、J. Zúñiga-Pérez、B. Alloing 和 M. Richard,从单个 GaN 微线到室温的强耦合到弱耦合状态, New J. Phys。 14、073004 (2012) 。 - S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Room-Temperature Polariton Lasing in Semiconductor Microcavities, Phys. Rev. Lett. 98, 126405 (2007).
S. Christopoulos、GBH von Högersthal、AJD Grundy、PG Lagoudakis、AV Kavokin、JJ Baumberg、G. Christmann、R. Butté、E. Feltin、J.-F。 Carlin 和 N. Grandjean,半导体微腔中的室温极化子激光,物理学。莱特牧师。 98、126405 (2007) 。 - T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity, Opt. Express 20, 5530 (2012).
T.-C。卢,Y.-Y。赖,Y.-P。兰,S.-W。黄,J.-R。陈,Y.-C。吴,W.-F。 Hsieh 和 H. Deng, ZnO 基混合微腔中的室温极化子激光与光子激光,选项。快报20,5530 (2012) 。 - D. Snoke and G. M. Kavoulakis, Bose-Einstein condensation of excitons in
: Progress over 30 years, Rep. Prog. Phys. 77, 116501 (2014).C u 2 O - T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Giant Rydberg excitons in the copper oxide
, Nature (London) 514, 343 (2014).C u 2 O - K. Saito, M. Hasuo, T. Hatano, and N. Nagasawa, Band gap energy and binding energies of Z3-excitions in CuCl, Solid State Commun. 94, 33 (1995).
K. Saito、M. Hasuo、T. Hatano 和 N. Nagasawa, CuCl 中 Z3 激发的带隙能和结合能,固态通讯。 94、33 (1995) 。 - R. Laskowski, N. E. Christensen, P. Blaha, and B. Palanivel, Strong excitonic effects in
delafossite transparent conductive oxides, Phys. Rev. B 79, 165209 (2009).C u A l O 2 - H. Hiraga, T. Makino, T. Fukumura, A. Ohtomo, and M. Kawasaki, Excitonic characteristics in direct wide-band-gap
epitaxial thin films, Appl. Phys. Lett. 95, 211908 (2009).C u S c O 2 - B. Cai, X. Li, Y. Gu, M. Harb, J. Li, M. Xie, F. Cao, J. Song, S. Zhang, L. Cavallo, and H. Zeng, Quantum confinement effect of two-dimensional all-inorganic halide perovskites, Sci. China Mater. 60, 811 (2017).
- Y.-F. Ding, Q.-Q. Zhao, Z.-L. Yu, Y.-Q. Zhao, B. Liu, P.-B. He, H. Zhou, K. Li, S.-F. Yin, and M.-Q. Cai, Strong thickness-dependent quantum confinement in all-inorganic perovskite
with a Ruddlesden-Popper structure, J. Mater. Chem. C 7, 7433 (2019).C s 2 P b I 4 - Z. Yang, M. Wang, H. Qiu, X. Yao, X. Lao, S. Xu, Z. Lin, L. Sun, and J. Shao, Engineering the exciton dissociation in quantum-confined 2D
nanosheet films, Adv. Funct. Mater. 28, 1705908 (2018). - B. Cucco, G. Bouder, L. Pedesseau, C. Katan, J. Even, M. Kepenekian, and G. Volonakis, Electronic structure and stability of
and ( vacancy ordered double perovskites, Appl. Phys. Lett. 119, 181903 (2021). - A. E. Maughan, A. M. Ganose, D. O. Scanlon, and J. R. Neilson, Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors, Chem. Mater. 31, 1184 (2019).
- R. Sa, Q. Zhang, B. Luo, and D. Liu, Exploring the electronic and optical properties of vacancy-ordered double perovskites
( , J. Solid State Chem. 304, 122602 (2021). - W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
- M. Giantomassi, M. Stankovski, R. Shaltaf, M. Grüning, F. Bruneval, P. Rinke, and G.-M. Rignanese, Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications, Phys. Status Solidi 248, 275 (2011).
- G. Onida, L. Reining, and A. Rubio, Electronic excitations: Density-functional versus many-body Green's-function approaches, Rev. Mod. Phys. 74, 601 (2002).
- M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986).
- M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 4927 (2000).
- J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, Comput. Phys. Commun. 183, 1269 (2012).
- S. Lebègue, B. Arnaud, M. Alouani, and P. E. Bloechl, Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH, Phys. Rev. B 67, 155208 (2003).
- J. Deslippe, G. Samsonidze, M. Jain, M. L. Cohen, and S. G. Louie, Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: A modified static remainder approach, Phys. Rev. B 87, 165124 (2013).
- M. Rohlfing and S. G. Louie, Electron-Hole Excitations in Semiconductors and Insulators, Phys. Rev. Lett. 81, 2312 (1998).
- M.-G. Ju, M. Chen, Y. Zhou, H. F. Garces, J. Dai, L. Ma, N. P. Padture, and X. C. Zeng, Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett. 3, 297 (2018).
- See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.107.235119 for the computation methods; convergence behavior of the calculated excitonic properties; the optical absorption and excitonic structure of Cs2TiBr6, Cs2ZrI6, and Cs2ZrBr6; real-space distribution of electrons of Cs2TiI6 for the lowest-energy dark excitons with different hole positions; comparison of the electronic dielectric constants; phonon calculations; and the calculated absorption spectra of Cs2TiI6.
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, quantum espresso: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009).
- D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013).
- M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018).
- W. Gao, X. Gao, T. A. Abtew, Y.-Y. Sun, S. Zhang, and P. Zhang, Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects, Phys. Rev. B 93, 085202 (2016).
- P. Jena and Q. Sun, Super atomic clusters: Design rules and potential for building blocks of materials, Chem. Rev. 118, 5755 (2018).
- M. Stankovski, G. Antonius, D. Waroquiers, A. Miglio, H. Dixit, K. Sankaran, M. Giantomassi, X. Gonze, M. Côté, and G.-M. Rignanese,
band gap of ZnO: Effects of plasmon-pole models, Phys. Rev. B 84, 241201(R) (2011). - C. Friedrich, M. C. Müller, and S. Blügel, Band convergence and linearization error correction of all-electron GW calculations: the extreme case of zinc oxide, Phys. Rev. B 83, 081101(R) (2011).
- W. Gao, W. Xia, X. Gao, and P. Zhang, Speeding up GW calculations to meet the challenge of large scale quasiparticle predictions, Sci. Rep. 6, 36849 (2016).
- B.-C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, Quasiparticle Band Gap of ZnO: High Accuracy from the Conventional
Approach, Phys. Rev. Lett. 105, 146401 (2010). - M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Applications of Group Theory to the Physics of Solids (Springer, New York, 2008).
- D. Kammerlander, S. Botti, M. A. L. Marques, A. Marini, and C. Attaccalite, Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation, Phys. Rev. B 86, 125203 (2012).
- Z. Yang and C. A. Ullrich, Direct calculation of exciton binding energies with time-dependent density-functional theory, Phys. Rev. B 87, 195204 (2013).
- K. A. Velizhanin and A. Saxena, Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach, Phys. Rev. B 92, 195305 (2015).
- Z. Qiu, M. Trushin, H. Fang, I. Verzhbitskiy, S. Gao, E. Laksono, M. Yang, P. Lyu, J. Li, J. Su, M. Telychko, K. Watanabe, T. Taniguchi, J. Wu, A. H. C. Neto, L. Yang, G. Eda, S. Adam, and J. Lu, Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor, Sci. Adv. 5, eaaw2347 (2022).
- A. C. Riis-Jensen, T. Deilmann, T. Olsen, and K. S. Thygesen, Classifying the electronic and optical properties of janus monolayers, ACS Nano 13, 13354 (2019).
- S. M. Liga and G. Konstantatos, Colloidal synthesis of lead-free
perovskite nanocrystals, J. Mater. Chem. C 9, 11098 (2021). - A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Courier, New York, 2012).
- J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite, ACS Nano 10, 6363 (2016).
- L. Huang and W. R. L. Lambrecht, Electronic band structure, phonons, and exciton binding energies of halide perovskites
, and , Phys. Rev. B 88, 165203 (2013). - J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Lett. 14, 2584 (2014).
- G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52, 191 (1937).
- R. J. Elliott, Intensity of optical absorption by excitons, Phys. Rev. 108, 1384 (1957).
- P. Cudazzo, F. Sottile, A. Rubio, and M. Gatti, Exciton dispersion in molecular solids, J. Phys. Condens. Matter 27, 113204 (2015).
- M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors, Vol. 619 (Springer, New York, 2005); M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Vol. 56 (Oxford University Press, Oxford, 1999); T. Suthan, N. P. Rajesh, P. V. Dhanaraj, and C. K. Mahadevan, Growth and characterization of naphthalene single crystals grown by modified vertical Bridgman method, Spectrochim. Acta, Part A 75, 69 (2010).
- M. R. Filip, J. B. Haber, and J. B. Neaton, Phonon Screening of Excitons in Semiconductors: Halide Perovskites and Beyond, Phys. Rev. Lett. 127, 067401 (2021).
- S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001).
- A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015).
- S. R. Kavanagh, C. N. Savory, S. M. Liga, G. Konstantatos, A. Walsh, and D. O. Scanlon, Frenkel excitons in vacancy-ordered titanium halide perovskites (
), J. Phys. Chem. Lett. 13, 10965 (2022). - B. Cucco, C. Katan, J. Even, M. Kepenekian, and G. Volonakis, Fine structure of excitons in vacancy-ordered halide double perovskites, ACS Mater. Lett. 5, 52 (2023).