这是用户在 2024-10-23 14:57 为 https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.235119 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Giant excitonic effects in vacancy-ordered double perovskites
空位有序双钙钛矿中的巨大激子效应

EI检索SCI升级版 物理与天体物理2区SCI基础版 物理2区IF 3.2
Fan Zhang, Weiwei Gao, Greis J. Cruz, Yi-yang Sun, Peihong Zhang, and Jijun Zhao
张帆、高伟伟、Greis J. Cruz、孙一阳、张培宏、赵继军
Phys. Rev. B 107, 235119 – Published 9 June 2023
物理。修订版 B 107 , 235119 – 2023 年 6 月 9 日发布
PDFHTMLExport Citation
PDF HTML导出引文

Abstract  抽象的

Using first-principles 𝐺𝑊 plus Bethe-Salpeter equation calculations, we identify exceptionally strong excitonic effects in several vacancy-ordered double perovskites Cs2𝑀𝑋6 (𝑀 = Ti, Zr; 𝑋=I,Br). Giant exciton binding energies of about 1 eV are found in these moderate-gap, inorganic bulk semiconductors, pushing the limit of our understanding of the electron-hole interaction and exciton formation in solids. Not only are the exciton binding energies extremely large compared with any other moderate-gap bulk semiconductors, but they are also larger than typical two-dimensional semiconductors with comparable quasiparticle gaps. Our calculated lowest bright exciton energies agree well with the measured optical band gaps. The low-energy excitons closely resemble the Frenkel excitons in molecular crystals, as they are highly localized in a single [𝑀𝑋6]2 octahedron and extended in the reciprocal space. The weak dielectric screening effects and the nearly flat frontier electronic bands, which are derived from the weakly coupled [𝑀𝑋6]2 units, together explain the significant excitonic effects. Spin-orbit coupling effects play a crucial role in redshifting the lowest bright exciton by mixing up spin-singlet and spin-triplet excitons, while exciton-phonon coupling effects have minor impacts on the calculated exciton binding energies.
使用第一性原理 𝐺𝑊 加上 Bethe-Salpeter 方程计算,我们在几种空位有序双钙钛矿中发现了异常强的激子效应 Cs2𝑀𝑋6𝑀 = 钛、锆; 𝑋=I,Br )。在这些中等能隙的无机体半导体中发现了约 1 eV 的巨大激子结合能,突破了我们对固体中电子-空穴相互作用和激子形成的理解极限。与任何其他中等能隙块体半导体相比,激子结合能不仅极大,而且也比具有可比准粒子能隙的典型二维半导体大。我们计算的最低亮激子能量与测量的光学带隙非常吻合。低能激子与分子晶体中的弗兰克尔激子非常相似,因为它们高度局域于单个 [𝑀𝑋6]2 八面体并在倒易空间中延伸。弱介电屏蔽效应和近乎平坦的前沿电子能带,源自弱耦合 [𝑀𝑋6]2 单位,共同解释了显着的激子效应。自旋轨道耦合效应通过混合自旋单重态和自旋三重态激子在红移中发挥着至关重要的作用,而激子-声子耦合效应对计算的激子结合能影响较小。

  • Figure
  • Figure
  • Figure
  • Received 9 October 2022 2022 年 10 月 9 日收到
  • Accepted 23 May 2023 2023 年 5 月 23 日接受

DOI:https://doi.org/10.1103/PhysRevB.107.235119

©2023 American Physical Society
©2023 美国物理学会

Physics Subject Headings (PhySH)
物理主题词 (PhySH)

Condensed Matter, Materials & Applied Physics
凝聚态、材料与应用物理

Authors & Affiliations  作者及单位

Fan Zhang1, Weiwei Gao1,*, Greis J. Cruz2, Yi-yang Sun3, Peihong Zhang2,†, and Jijun Zhao1
张帆1高伟伟1,*Greis J. Cruz 2孙一阳3张培红2,†赵继军1

  • 1Key Laboratory of Material Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
    1大连理工大学激光离子电子束材料改性教育部重点实验室 大连 116024
  • 2Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260, USA
    2纽约州立大学布法罗分校物理系, 布法罗, 纽约 14260, 美国
  • 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
    3中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室, 上海 201899

  • *weiweigao@dlut.edu.cn
    * weiweigao@dlut.edu.cn
  • pzhang3@buffalo.edu
    pzhang3@buffalo.edu

Article Text  文章正文

I. INTRODUCTION 一、简介

An exciton is a composite boson consisting of a correlated electron-hole (e-h) pair bound by screened Coulomb interaction. The attractive Coulomb interaction between electrons and holes creates low-lying excitons with energy 𝐸ex below the quasiparticle (QP) band gap 𝐸QP𝑔. Systems with large exciton binding energies are important for exploring light-matter interactions as well as for developing exciton-based optoelectronic devices operating at room temperature [1–8]. They are also potential hosts for composite quasiparticles such as biexcitons [9,10], trions [11,12], and exciton polaritons [13,14], which have been extensively studied during the last decade. Excitonic effects also profoundly impact the performance of optoelectronic materials such as quasi-two-dimensional (2D) hybrid perovskites [15–17].
激子是一种复合玻色子,由通过屏蔽库仑相互作用结合的相关电子-空穴(eh ) 对组成。电子和空穴之间有吸引力的库仑相互作用产生具有能量的低位激子 𝐸ex 低于准粒子 (QP) 带隙 𝐸QP𝑔 。具有大激子结合能的系统对于探索光与物质相互作用以及开发在室温下运行的基于激子的光电器件非常重要[1-8] 。它们也是复合准粒子的潜在宿主,例如双激子[9, 10] 、三重子[11, 12]和激子极化激元[13, 14] ,这些在过去十年中已得到广泛研究。激子效应也深刻影响准二维(2D)杂化钙钛矿等光电材料的性能[15-17]

Well-known examples of materials with strong excitonic effects include low-dimensional materials [18–21], molecular crystals [22,23], and alkaline halides [24,25]. The latter two are bulk materials that can host strongly bound Frenkel or charge-transfer excitons. On the other hand, Wannier-Mott excitons in most inorganic bulk semiconductors with moderate band gaps ( 𝐸𝑔<4 eV) have small exciton binding energies ranging from a few meV to 100 meV [26–28]. Notably, cuprous chloride and cuprous oxide, which have been extensively studied for realizing Bose-Einstein condensation of excitons, possess large exciton binding energy of nearly 200 meV [29–31]. Other inorganic semiconductors with large exciton binding energies include delafossites ( 𝐸ex𝑏=0.30.5 eV) [32,33] and quasi-2D perovskites [34–36]; all of them have quasilayered structures.
具有强激子效应的材料的著名例子包括低维材料[18-21] 、分子晶体[22, 23]和碱性卤化物[24, 25] 。后两种是可以承载强束缚弗兰克尔或电荷转移激子的块状材料。另一方面,大多数具有中等带隙的无机体半导体中的万尼尔-莫特激子( 𝐸𝑔<4 eV)具有较小的激子结合能,范围从几 meV 到 100 meV [26–28] 。值得注意的是,氯化亚铜和氧化亚铜已被广泛研究以实现激子的玻色-爱因斯坦凝聚,它们具有近200 meV的大激子结合能[29-31] 。其他具有大激子结合能的无机半导体包括铜铁矿( 𝐸ex𝑏=0.30.5 eV) [32, 33]和准二维钙钛矿[34–36] ;它们都具有准层状结构。

Owing to the rich choices of chemical composition, tunable optical band gap, nontoxicity, and earth abundance, the vacancy-ordered double perovskites (VODPs) have been proposed as promising materials for photovoltaic applications [37–39]. In this paper, using density functional theory (DFT) [40] and many-body perturbation theory [41,42], we investigate the quasiparticle and excitonic properties of a group of VODPs, including Cs2Ti𝑋6 and Cs2Zr𝑋6 ( 𝑋 = I, Br). Our combined 𝐺𝑊 and Bethe-Salpeter equation (BSE) [43–48] calculations reveal an extremely strong excitonic effect with exciton binding energies (≈1 eV) far exceeding those in any other known moderate-gap bulk semiconductors. The discovery of three-dimensional (3D) all-inorganic semiconductors with moderate gaps and strong excitonic effects not only broadens our understanding of the e-h interaction in solids but may also guide the future search for bulk systems with large exciton binding energies. It should be mentioned that recent studies showed a surprisingly large discrepancy (over 1 eV) between the calculated fundamental band gaps of Cs2TiI6 and Cs2ZrI6 and the measured values [37,49]. The overestimation of fundamental band gaps was ascribed to improper treatment of localized Ti 3𝑑 orbitals within the 𝐺𝑊 approximation [37]. Our results clearly show that it is the surprisingly strong excitonic effects in these materials that are responsible for the large difference between quasiparticle and optical gaps.
由于化学成分丰富、光学带隙可调、无毒性和地球丰度,空位有序双钙钛矿(VODP)被认为是光伏应用的有前景的材料[37-39] 。在本文中,利用密度泛函理论(DFT) [40]和多体微扰理论[41, 42] ,我们研究了一组VODP的准粒子和激子性质,包括 Cs2Ti𝑋6Cs2Zr𝑋6𝑋 = I,Br)。我们的联合 𝐺𝑊 和 Bethe-Salpeter 方程 (BSE) [43-48]计算揭示了极强的激子效应,其激子结合能 (≈1 eV) 远远超过任何其他已知的中等能隙体半导体。具有中等能隙和强激子效应的三维(3D)全无机半导体的发现不仅拓宽了我们对固体中电子相互作用的理解,而且还可能指导未来寻找具有大激子结合能的体系统。应该提到的是,最近的研究表明,计算出的基本带隙之间存在令人惊讶的巨大差异(超过 1 eV) Cs2TiI6Cs2ZrI6 和测量值[37, 49] 。基本带隙的高估归因于局部 Ti 处理不当 3𝑑 内的轨道 𝐺𝑊 近似[37] 。我们的结果清楚地表明,正是这些材料中令人惊讶的强激子效应导致了准粒子和光学间隙之间的巨大差异。

II. RESULTS AND DISCUSSION
二.结果与讨论
A. Crystal structure and frontier electronic structure
A. 晶体结构和前沿电子结构

The crystal structure of Cs2𝑀𝑋6 ( 𝑀 = Ti, Zr; 𝑋=I,Br) VODP can be visualized by removing every other 𝑀-site cation from the Cs𝑀𝑋3 perovskite structure, thus the name of vacancy-ordered double perovskite [38,49], as shown in Fig. 1(a) in which the dotted red circles indicate the ordered vacancies. We mentioned that VODPs are a class of well-characterized, stable complex halides with the general composition 𝐴2𝑀𝑋6 ( 𝐴 = Cs) [37–39]. The [𝑀𝑋6]2 octahedral clusters in VODP Cs2𝑀𝑋6 do not form covalent bonds with one another because they are separated by the evenly distributed 𝑀-site vacancies. The band structures of these four VODPs are quite similar (Fig. S1 in Supplemental Material [50]), and replacing Ti (I) with Zr (Br) in Cs2𝑀𝑋6 increases the fundamental band gap [37]. Both Cs2Ti𝑋6 and Cs2Zr𝑋6 have an indirect band gap between the valence band maximum at Γ and the conduction band minimum at 𝑋. The low-energy conduction bands are mainly derived from the 𝑀-site 𝑑 states, whereas the highest valence bands are mostly contributed by the halogen element 𝑋. Under the influence of the octahedral crystal field, the 𝑑-derived conduction bands split into a doublet and a triplet group; the low-energy triplet bands are fairly flat with an extremely narrow band width (0.29, 0.25, 0.44, and 0.37 eV for Cs2TiI6, Cs2TiBr6, Cs2ZrI6, and Cs2ZrBr6, respectively). The top valence band is virtually dispersionless from Γ to 𝑋, and the direct gap of Cs2TiI6 at Γ is only 40 meV larger than the indirect gap between Γ and 𝑋.
晶体结构 Cs2𝑀𝑋6𝑀 = 钛、锆; 𝑋=I,Br ) VODP 可以通过删除所有其他内容来可视化 𝑀 -位点阳离子来自 Cs𝑀𝑋3 钙钛矿结构,因此被称为空位有序双钙钛矿[38, 49] ,如图1(a)所示,其中红色虚线圆圈表示有序空位。我们提到过 VODP 是一类特征良好、稳定的复杂卤化物,其一般组成为 𝐴2𝑀𝑋6𝐴 =铯) [37–39] 。这 [𝑀𝑋6]2 VODP 中的八面体簇 Cs2𝑀𝑋6 彼此不形成共价键,因为它们被均匀分布的 𝑀 - 网站空缺。这四种VODP的能带结构非常相似(补充材料[50]中的图S1),并且用Zr(Br)代替Ti(I) Cs2𝑀𝑋6 增加基本带隙[37] 。两个都 Cs2Ti𝑋6Cs2Zr𝑋6 在价带最大值之间有一个间接带隙 Γ 和导带最小值 𝑋 。低能导带主要来源于 𝑀 -地点 𝑑 态,而最高价带主要由卤素元素贡献 𝑋 。 在八面体晶体场的影响下, 𝑑 -衍生的导带分裂成双线态和三线态组;低能三重态能带相当平坦,带宽极窄(0.29、0.25、0.44 和 0.37 eV Cs2TiI6, Cs2TiBr6, Cs2ZrI6 , 和 Cs2ZrBr6 , 分别)。顶部价带实际上是无色散的 Γ𝑋 ,以及直接差距 Cs2TiI6Γ 仅比之间的间接间隙大40 meV Γ𝑋

FIG. 1. 如图。 1.

(a) Crystal structures of Cs2𝑀𝑋6 showing the weakly coupled [TiI6]2 octahedral units. The red dotted circles show M vacancies. (b) DFT-PBE band structures of Cs2TiI6 crystal (green solid curves), [TiI6]2 crystal (dashed black curve), and isolated [TiI6]2 molecule (red lines). The highest occupied states are shifted to zero. (c) Quasiparticle band structure of Cs2TiI6 including the SOC effects. (d) A schematic diagram showing the spin-orbit splitting and allowed optical transitions at the Γ and 𝑋 points of Cs2TiI6.
(a) 晶体结构 Cs2𝑀𝑋6 显示弱耦合 [TiI6]2 八面体单位。红色虚线圆圈表示 M 个空缺。 (b) DFT-PBE 能带结构 Cs2TiI6 水晶(绿色实线), [TiI6]2 晶体(黑色虚线)和隔离 [TiI6]2 分子(红线)。最高占用状态移至零。 (c) 的准粒子能带结构 Cs2TiI6 包括 SOC 效应。 (d) 显示自旋轨道分裂和允许的光学跃迁的示意图 Γ𝑋 点的 Cs2TiI6

In order to facilitate later discussion and to better illustrate the roles of Cs+ and [𝑀𝑋6]2 in defining the frontier states, we compare the DFT band structure of Cs2TiI6 with those of two fictitious systems, namely, a periodic system of [TiI6]2 without the Cs+ ions (with the same lattice constant as Cs2TiI6) and an isolated [TiI6]2 octahedron, as shown in Fig. 1(b). The DFT band structures are calculated using the Perdew-Burke-Ernzerhof (PBE) functional within the quantum espresso package (after Refs. [51–54]; for details of the calculations, see the Supplemental Material [50]). The nearly identical frontier band structures of Cs2TiI6 and [TiI6]2 suggest that Cs+ ions merely function as electron donors and spacers without significantly affecting the band dispersion of the system. The role of Cs+ here is similar to that of CH3NH+3 in CH3NH3PbI3 [55]. The highest-occupied molecular orbital (HOMO) of [TiI6]2 is mostly composed of the iodine 5𝑝 orbitals, while the titanium 3𝑑 orbitals dominate the lowest-unoccupied molecular orbital (LUMO). These [TiI6]2 derived LUMO and HOMO states interact to form the lowest conduction bands and highest valence bands of Cs2TiI6, respectively. The narrow widths of the frontier energy bands in Cs2TiI6 further suggest that [TiI6]2 behaves like a polyatomic superanion [56], which interacts weakly with itself. In this manner, Cs2TiI6 crystal can be understood as an assembly of [TiI6]2 units and Cs+ spacers. As we will discuss below, such a unique structure is responsible for extremely strong excitonic effects in VODPs.
为了方便后面的讨论以及更好的说明其作用 Cs+[𝑀𝑋6]2 在定义前沿态时,我们比较了 DFT 能带结构 Cs2TiI6 与两个虚构的系统,即周期系统 [TiI6]2 没有 Cs+ 离子(具有相同的晶格常数 Cs2TiI6 )和一个孤立的 [TiI6]2 八面体,如图1(b)所示。 DFT 能带结构是使用量子浓缩咖啡包中的 Perdew-Burke-Ernzerhof (PBE) 函数计算的(参考文献[51–54]之后;有关计算的详细信息,请参阅补充材料[50] )。几乎相同的前沿能带结构 Cs2TiI6[TiI6]2 建议 Cs+ 离子仅充当电子供体和间隔物,而不会显着影响系统的能带色散。的作用 Cs+ 这里类似于 CH3NH+3CH3NH3PbI3 [55] 。最高占据分子轨道(HOMO) [TiI6]2 主要由碘组成 5𝑝 轨道,而钛 3𝑑 轨道主导最低未占据分子轨道(LUMO)。这些 [TiI6]2 衍生的 LUMO 和 HOMO 态相互作用形成最低导带和最高价带 Cs2TiI6 , 分别。 前沿能带的宽度较窄 Cs2TiI6 进一步建议 [TiI6]2 其行为类似于多原子超阴离子[56] ,其自身相互作用较弱。以这种方式, Cs2TiI6 晶体可以理解为一个集合体 [TiI6]2 单位和 Cs+ 垫片。正如我们将在下面讨论的,这种独特的结构导致了 VODP 中极强的激子效应。

B. Quasiparticle and SOC effects
B. 准粒子和 SOC 效应

The QP band structure of Cs2TiI6 is calculated using the berkeleygw package [43–48] as shown in Fig. 1(c). The indirect QP band gap of Cs2TiI6 is 1.79 eV, which is slightly smaller than the direct band gap at Γ (1.83 eV). The calculated QP band gap within the 𝐺0𝑊0 approximation is significantly larger than the measured optical gap of 1.02 eV [49]. It is noteworthy that our calculated QP gap is smaller than that reported in a previous work [37] by 0.54 eV. This discrepancy mainly stems from the use of different cutoff parameters and treatment of the frequency-dependent dielectric function [57–60]. Indeed, a small cutoff of dielectric matrices used in 𝐺𝑊 calculations can lead to an overestimation of the quasiparticle band gap by as much as 0.5 eV (Fig. S2 in Supplemental Material [50]). We also compare the QP band gaps of all four VODPs in Table I and the DFT-PBE band structures in Fig. S1 of Supplemental Material [50].
QP 能带结构 Cs2TiI6 使用berkeleygw[43-48]计算,如图1(c)所示。间接 QP 带隙为 Cs2TiI6 为 1.79 eV,略小于 处的直接带隙 Γ (1.83 eV)。计算出的 QP 带隙在 𝐺0𝑊0 近似值明显大于测量的光学间隙 1.02 eV [49] 。值得注意的是,我们计算的 QP 间隙比之前的工作[37]中报告的小 0.54 eV。这种差异主要源于使用不同的截止参数和对频率相关介电函数的处理[57-60] 。事实上,介电矩阵的小截止用于 𝐺𝑊 计算可能导致准粒子带隙高估多达 0.5 eV(补充材料中的图 S2 [50] )。我们还比较了表中所有四种 VODP 的 QP 带隙和补充材料[50]图 S1 中的 DFT-PBE 能带结构。

TABLE I. 表一

Quasiparticle, excitonic, and dielectric properties of four VODPs. Energy gaps are in eV.
四种 VODP 的准粒子、激子和介电特性。能隙的单位是 eV。

Cs2TiI6 Cs2TiBr6 Cs2ZrI6 Cs2ZrBr6
QP gap (𝐺𝑊)
QP 差距 ( 𝐺𝑊
Γ-Γ 1.83 3.35 3.22 4.97
X-X 1.94 3.40 3.36 5.03
𝑋
𝑋
1.79 3.31 3.20 4.95
Opt. gap (exp) 选择。差距(经验值) 1.02 2.00 3.76
𝐸Brightex 1.04 2.03 2.33 3.59
𝐸Darkex 0.85 1.66 2.18 3.28
𝐸Bright𝑏 0.79 1.32 0.89 1.38
𝐸Dark𝑏 0.98 1.69 1.04 1.69
ɛ 4.46 3.26 3.68 2.97
ɛ0 11.27 8.59 11.89 8.90
𝜔LO (meV)
𝜔LO (毫伏)
27.91 34.50 24.40 30.14
Δ𝐸𝑏 (meV)
Δ𝐸𝑏 (毫伏)
–32.8 –42.0 –32.9 –39.5

A comparison of the band structures calculated with and without spin-orbit coupling (SOC) (Fig. S1 of Supplemental Material [50]) reveals strong relativistic effects on the top valence bands, and the gap at the Γ point of Cs2TiI6 is reduced by about 130 meV due to the SOC effects. Figure 1(d) highlights the impacts of the SOC effects on the frontier electronic states at the Γ and 𝑋 points of Cs2TiI6. If the SOC effects are neglected, the lowest-energy direct transitions at the Γ and 𝑋 points ( Γ15Γ25 and 𝑋4𝑋3) are dipole forbidden, while the second lowest-energy direct transition at the Γ point ( Γ15Γ25) is dipole allowed [61]. After the SOC effects are considered, the triply degenerate states split into a quadruplet and a doublet (including Kramer's degeneracy). The dipole-allowed optical transitions are indicated by green arrows in Fig. 1(d). Due to the SOC splitting, the energy of the dipole-allowed transition Γ8Γ+8 is smaller than that of Γ15Γ25 by about 0.31 eV. In the following, we show that this trend also holds when the excitonic effects are considered.
对使用和不使用自旋轨道耦合 (SOC) 计算的能带结构进行比较(补充材料[50]的图 S1)揭示了顶部价带和顶部价带处的带隙具有很强的相对论效应。 Γ 的点 Cs2TiI6 由于 SOC 效应,降低了约 130 meV。图1(d)突出显示了 SOC 效应对前沿电子态的影响 Γ𝑋 点的 Cs2TiI6 。如果忽略 SOC 效应,则最低能量直接跃迁 Γ𝑋 点( Γ15Γ25𝑋4𝑋3 )是偶极禁戒,而第二低能量的直接跃迁在 Γ 观点 ( Γ15Γ25 ) 是偶极子允许的[61] 。考虑 SOC 效应后,三重简并态分裂为四重态和二重态(包括克莱默简并态)。偶极子允许的光学跃迁由图1(d)中的绿色箭头表示。由于 SOC 分裂,偶极子允许跃迁的能量 Γ8Γ+8 小于 Γ15Γ25 约 0.31 eV。在下文中,我们表明,当考虑激子效应时,这种趋势也成立。

C. Optical absorption spectra
C. 光学吸收光谱

Figure 2(a) shows the imaginary part of the frequency-dependent dielectric constant of Cs2TiI6, calculated with and without including the e-h interaction. Our 𝐺𝑊+BSE calculations reveal several prominent excitonic absorption peaks far below the quasiparticle band gap. In fact, the lowest-energy exciton locates at 0.85 eV, indicating a giant binding energy of nearly 1 eV and the formation of Frenkel excitons. The lowest-energy exciton is a dark exciton with a negligible optical dipole moment, while the lowest-energy bright exciton locates at 1.04 eV, agreeing well with the measured optical gap of 1.02 eV [49]. We have carefully checked the convergence of the calculated exciton binding energies and absorption spectra and found that the results converge quickly with respect to the density of the 𝑘-point sampling (as shown in Table S1 and Fig. S3 of Supplementary Material [50]). In contrast, binding energies of Wannier excitons in bulk and 2D systems often require extremely dense 𝑘 grids to achieve proper convergence [62,63]. As we will show later, the e-h amplitudes of the low-energy excitons spread across a large part of the Brillouin zone (BZ), which explains the rapid convergence behavior of the calculated exciton binding energy.
2(a)显示了随频率变化的介电常数的虚部 Cs2TiI6 ,在包含和不包含eh交互作用的情况下进行计算。我们的 𝐺𝑊+BSE 计算揭示了远低于准粒子带隙的几个突出的激子吸收峰。事实上,最低能量的激子位于0.85 eV,表明具有接近1 eV的巨大结合能,并且形成了弗兰克尔激子。最低能量的激子是光学偶极矩可以忽略不计的暗激子,而最低能量的亮激子位于1.04 eV,与测量的1.02 eV光学间隙非常吻合[49] 。我们仔细检查了计算的激子结合能和吸收光谱的收敛性,发现结果相对于激子的密度很快收敛。 𝑘 点采样(如补充材料[50]的表S1和图S3所示)。相比之下,块体和二维系统中万尼尔激子的结合能通常需要极其致密的 𝑘 网格以实现适当的收敛[62, 63] 。正如我们稍后将展示的,低能激子的eh振幅分布在布里渊区 (BZ) 的大部分区域,这解释了计算的激子结合能的快速收敛行为。

FIG. 2. 如图。 2.

(a) The imaginary part of the dielectric function of Cs2TiI6, calculated without (black dashed line) and with (red solid line) e-h interactions. A Gaussian broaden of 0.05 eV is used in the calculations. The lowest-energy bright exciton and fundamental band gap are marked in orange and blue lines, respectively. (b) Energies of singlet and triplet excitons. (c) Energies of excitons calculated with the SOC effects.
(a) 介电函数的虚部 Cs2TiI6 ,在没有(黑色虚线)和(红色实线) eh相互作用的情况下计算。计算中使用 0.05 eV 的高斯展宽。最低能量的亮激子和基本带隙分别用橙色和蓝色线标记。 (b) 单线态和三线态激子的能量。 (c) 用 SOC 效应计算的激子能量。

The strong SOC effects on the calculated band structure, especially on the top valence states as shown in Fig. 1(c), result in significant changes in the calculated excitonic structure and optical absorption. To uncover the effects of SOC on the low-energy excitons, we compare the excitonic structures calculated with and without the SOC effects. When the SOC effects are neglected, an excitonic state can be either spin-0 (singlet) or spin-1 (triplet). The triplet excitons are always dark since spin is conserved in optical dipole transitions if the SOC effects are neglected. The excitation energies of the singlet and triplet excitons for Cs2TiI6 are shown in Fig. 2(b), in which each vertical line corresponds to an excitonic state; these lines are color coded according to their brightness, i.e., the square of the dipole matrix elements. The lowest-energy triplet exciton is about 0.1 eV lower than the lowest-energy singlet one, which is also a dark exciton due to the orbital symmetry as discussed earlier. The lowest-energy bright exciton is located at around 1.34 eV and can be attributed to the Γ15Γ25 transitions shown in Fig. 1(d).
SOC对计算的能带结构的强烈影响,特别是如图1(c)所示的顶价态,导致计算的激子结构和光吸收的显着变化。为了揭示 SOC 对低能激子的影响,我们比较了有和没有 SOC 影响时计算的激子结构。当忽略 SOC 效应时,激子态可以是自旋 0(单线态)或自旋 1(三线态)。如果忽略 SOC 效应,三线态激子总是暗的,因为自旋在光学偶极跃迁中是守恒的。单线态和三线态激子的激发能 Cs2TiI6 如图2(b)所示,其中每条垂直线对应于一个激子态;这些线根据其亮度(即偶极子矩阵元素的平方)进行颜色编码。最低能量的三线态激子比最低能量的单线态激子低约 0.1 eV,由于前面讨论的轨道对称性,单线态激子也是暗激子。最低能量的亮激子位于 1.34 eV 左右,可归因于 Γ15Γ25 转变如图1(d)所示。

When the SOC effects are considered, the excitonic states are a mixture of spin singlets and spin triplets [45]. The lowest-energy exciton, which is mainly derived from the low-energy spin-triplet states, is dark, as shown in Fig. 2(c). Moreover, the SOC effects cause a significant redshift (from 1.34 to 1.04 eV) of the absorption edge, bringing theory in better agreement with experiment [49]. The exciton binding energy of Cs2TiI6 ( 𝐸ex𝑏=0.98eV) is nearly twice that of monolayer 2H- MoSe2 ( 𝐸ex𝑏=0.55eV) [5], which has a comparable quasiparticle gap ( 𝐸𝑔= 2.1 eV). This finding is rather surprising, as it is well known that the excitonic effects in bulk semiconductors are often much weaker than those in 2D semiconductors [64–66] owing to the stronger screening effect in 3D solids.
当考虑 SOC 效应时,激子态是自旋单线态和自旋三线态的混合态[45] 。最低能量的激子主要源自低能自旋三重态,是暗色的,如图2(c)所示。此外,SOC效应导致吸收边发生显着的红移(从1.34到1.04 eV),使理论与实验更加一致[49] 。激子结合能 Cs2TiI6 ( 𝐸ex𝑏=0.98eV )几乎是单层2H-的两倍 MoSe2 ( 𝐸ex𝑏=0.55eV ) [5] ,具有可比较的准粒子能隙 ( 𝐸𝑔= 2.1 eV)。这一发现相当令人惊讶,因为众所周知,由于 3D 固体中的屏蔽效应更强,块体半导体中的激子效应通常比 2D 半导体中的激子效应弱得多[64-66]

The calculated energies of the lowest-energy bright excitons for the other three VODPs ( Cs2TiBr6, Cs2ZrI6, and Cs2ZrBr6) also agree well with the experimental optical gaps, as summarized in Table I. The imaginary parts of the dielectric functions of these three VODPs are compared in Figs. S4–S6 of Supplemental Material [50]. In addition, we compared the calculated absorption spectra of Cs2TiI6 with the experimental results [67], which achieved best match, as shown in Fig. S9 of Supplemental Material [50]. Similar to the case of Cs2TiI6, the lowest-energy excitons of these three VODPs are also dark, and the corresponding exciton binding energies are extremely large. Perhaps the most striking finding is the binding energy of the lowest dark exciton in Cs2ZrBr6, which reaches 1.69 eV.
计算出其他三个 VODP 的最低能量亮激子的能量( Cs2TiBr6, Cs2ZrI6 , 和 Cs2ZrBr6 )也与实验光学间隙非常吻合,如表所示。这三种 VODP 的介电函数的虚部在图 2 和 3 中进行了比较。补充材料[50]的 S4–S6。此外,我们还比较了计算的吸收光谱 Cs2TiI6 与实验结果[67] ,达到最佳匹配,如补充材料[50]的图S9所示。类似的情况 Cs2TiI6 ,这三种VODP的最低能量激子也是暗的,相应的激子结合能极大。也许最引人注目的发现是最低暗激子的结合能 Cs2ZrBr6 ,达到 1.69 eV。

D. Characters of low-energy excitons
D. 低能激子的特征

The abnormally large exciton binding energies in these moderate-gap VODPs deserve closer scrutiny. To gain a deeper insight into the low-energy excitons, we examine their wave functions in both the reciprocal and real spaces. Within the Tamm-Dancoff approximation [45,68], the exciton wave functions can be expanded as a linear combination of products of the electron and hole wave functions 𝜓𝑐𝒌(𝒓𝒆) and 𝜓𝑣𝒌(𝒓𝒉):
这些中等能隙 VODP 中异常大的激子结合能值得更仔细的研究。为了更深入地了解低能激子,我们研究了它们在倒易空间和实空间中的波函数。在 Tamm-Dancoff 近似[45, 68]中,激子波函数可以展开为电子和空穴波函数乘积的线性组合 𝜓𝑐𝒌(𝒓𝒆)𝜓𝑣𝒌(𝒓𝒉) :

𝜓𝑆(𝒓𝒆,𝒓𝒉)=𝑘,𝑐,𝑣𝐴𝑠𝑣𝑐𝒌𝜓𝑐𝒌(𝒓𝒆)𝜓*𝑣𝒌(𝒓𝒉),
(1)

where 𝑆 indexes the excitonic state and 𝐴𝑆𝑣𝑐𝒌 are often called the e-h amplitudes, which give the weights of independent e-h pair states in an excitonic state 𝑆. We have analyzed the BZ distribution of the lowest-energy dark and bright excitons in VODPs by defining a 𝑘-dependent e-h amplitude |Ψ𝑆(𝒌)|2=𝑣𝑐|𝐴𝑆𝑣𝑐𝒌|2. The radii of the circles in Fig. 3(a) are proportional to |Ψ𝑆(𝒌)|2. In contrast to halide perovskites, in which the Wannier-Mott excitons are highly localized in small regions of the BZ [69–71], the low-energy excitons in Cs2TiI6 are far more extended in the BZ, as can be seen from Fig. 3(a). Therefore, the excitonic states can be accurately described even with a relatively coarse 𝑘 grid. To further illustrate the Frenkel nature of the excitons, we compare Ψ𝑆(𝒌) with that of a hydrogenic model [72,73], Ψhy(𝒌)=(2𝑎0)32/𝜋(1+𝑎20𝑘2)2, as shown in the inset of Fig. 3(a). The calculated |Ψ𝑆(𝒌)|2 of the lowest-energy exciton agrees reasonably with |Ψhy(𝒌)|2 using very small Bohr radius 𝑎0=3.7a.u., suggesting a highly localized exciton in this system.
在哪里 𝑆 索引激子态和 𝐴𝑆𝑣𝑐𝒌 通常称为eh振幅,它给出激子态中独立eh对状态的权重 𝑆 。我们通过定义 VODP 中最低能量暗激子和亮激子的 BZ 分布进行了分析 𝑘 依赖的eh幅度 |Ψ𝑆(𝒌)|2=𝑣𝑐|𝐴𝑆𝑣𝑐𝒌|2 。图3(a)中圆的半径与 |Ψ𝑆(𝒌)|2 。与卤化物钙钛矿相反,其中万尼尔-莫特激子高度集中在 BZ 的小区域中[69-71] ,低能激子 Cs2TiI6 从图3(a)可以看出,BZ 中的边界更加扩展。因此,即使使用相对粗糙的参数,也可以准确地描述激子态。 𝑘 网格。为了进一步说明激子的弗兰克尔性质,我们比较 Ψ𝑆(𝒌) 与氢模型[72, 73]Ψhy(𝒌)=(2𝑎0)32/𝜋(1+𝑎20𝑘2)2 ,如图3(a)的插图所示。计算出的 |Ψ𝑆(𝒌)|2 最低能量激子的合理符合 |Ψhy(𝒌)|2 使用非常小的玻尔半径 𝑎0=3.7a.u. ,表明该系统中存在高度局域化的激子。

FIG. 3. 如图。 3.

(a) Reciprocal-space distribution of exciton wave functions of Cs2TiI6. The orange and black circles represent the lowest bright and dark excitons, respectively. The inset is a fitting of the exciton wave function with a hydrogenic model. (b) Real-space distribution of electrons for the lowest-energy dark and bright excitons. The hole position is fixed at an iodine atom. About 80% of the electron density is within the isosurface (shown in yellow).
(a) 激子波函数的倒易空间分布 Cs2TiI6 。橙色和黑色圆圈分别代表最低的亮激子和暗激子。插图是激子波函数与氢模型的拟合。 (b) 最低能量暗激子和亮激子的电子的实空间分布。空穴位置固定在碘原子上。大约 80% 的电子密度位于等值面内(以黄色显示)。

The localization of excitons can also be directly visualized in real space. To this end, we fix the hole position at an iodine atom, and plot the electron distribution of the lowest-energy dark and bright excitons for Cs2TiI6 in Fig. 3(b), which shows that the electron is mainly localized within one [TiI6]2 octahedron. This conclusion does not change with different choices of the hole position, as shown in Fig. S7 of the Supplemental Material [50]. The fact that excitons are highly localized is in line with our previous analysis of the electronic structure, and the conclusion that Cs2𝑀𝑋6 can be considered as a 3D assembly of weakly coupled [𝑀𝑋6]2 clusters, resulting in the formation of Frenkel excitons like those in molecular solids [74]. The electronic dielectric constants ɛ of Cs2𝑀𝑋6 range from 2.97 to 4.46 (Table I), which are very small compared to typical semiconductors such as Si or GaAs, but are comparable to other molecular solids such as naphthalene or anthracene [75] (Table S2 in Supplemental Material [50]). The relatively weak dielectric screening of Cs2𝑀𝑋6 also contributes to an overall strong e-h interaction, thus the exceptionally large exciton binding energies.
激子的局域化也可以在真实空间中直接可视化。为此,我们固定了碘原子上的空穴位置,并绘制了最低能量暗激子和亮激子的电子分布: Cs2TiI6 在图3(b)中,表明电子主要局域于一个区域内。 [TiI6]2 八面体。这一结论不会随着孔位置选择的不同而改变,如补充材料[50]的图S7所示。激子高度局域化这一事实与我们之前对电子结构的分析一致,得出的结论是 Cs2𝑀𝑋6 可以被视为弱耦合的 3D 组装 [𝑀𝑋6]2 团簇,导致形成像分子固体中那样的弗伦克尔激子[74] 。电子介电常数 ɛCs2𝑀𝑋6 范围从 2.97 到 4.46(表),与 Si 或 GaAs 等典型半导体相比非常小,但与萘或蒽等其他分子固体相当[75] (补充材料[50]中的表 S2)。相对较弱的介电屏蔽 Cs2𝑀𝑋6 也有助于整体强的电子相互作用,从而产生异常大的激子结合能。

Finally, we would like to address possible exciton-phonon coupling effects on the calculated exciton binding energy. As recently shown by Filip et al. [76], exciton-phonon coupling can considerably renormalize the exciton binding energies in ionic materials. We estimate the correction ( Δ𝐸𝑏) to the exciton binding energy due to phonon-screening effects using a simplified formula [76]:
最后,我们想解决激子-声子耦合对计算的激子结合能的可能影响。正如 Filip等人最近所表明的。 [76] ,激子-声子耦合可以显着重整离子材料中的激子结合能。我们估计修正值( Δ𝐸𝑏 )使用简化公式将由于声子屏蔽效应引起的激子结合能[76]

Δ𝐸𝑏=2𝐸𝑏𝜔LO𝜔LO+𝐸𝑏(1ɛɛ0),
(2)

where 𝜀 is the high-frequency dielectric constant, 𝜀0 is the static dielectric constant, and 𝜔LO is the frequency of the dominant longitudinal optical (LO) phonon, which is usually the highest LO phonon. The phonon dispersions [77,78] of four VODPs are shown in Fig. S8 of the Supplemental Material [50]. We show in Table I the estimated Δ𝐸𝑏, which are less than 50 meV for all four systems studied. Therefore, while these corrections are not negligible, they do not significantly affect our conclusion.
在哪里 𝜀 是高频介电常数, 𝜀0 是静态介电常数,并且 𝜔LO 是主要纵向光学 (LO) 声子的频率,通常是最高的 LO 声子。补充材料[50]的图 S8 显示了四种 VODP 的声子色散[77, 78] 。我们在表中显示了估计 Δ𝐸𝑏 ,所研究的所有四个系统均小于 50 meV。因此,虽然这些修正不可忽略,但它们并不会显着影响我们的结论。

III. SUMMARY 三.概括

In summary, we have predicted giant exciton binding energies ranging from 0.95 to 1.65 eV (after correction for the electron-phonon renormalization effects) in moderate-gap bulk VODP materials 𝐴2𝑀𝑋6 ( 𝐴 = Cs; 𝑀=Ti,Zr;𝑋=I, Br). The exciton binding energies in these systems are one order of magnitude larger than typical inorganic semiconductors with comparable quasiparticle band gaps; they are even larger than those of monolayer transition metal dichalcogenides with similar fundamental band gaps. The lowest-energy excitons are dark, and the predicted absorption edges agree well with experiment, resolving an outstanding puzzle that the calculated (quasiparticle) band gaps seem to be much larger than the measured (optical) gaps. SOC effects play an important role in mixing the spin-singlet and spin-triplet excitons, resulting in a redshift to the absorption edges. We believe these materials provide a unique platform for exploring the properties and dynamics of Frenkel excitons, investigating more exotic composite quasiparticles such as biexcitons and trions, and realizing exciton-based optoelectronics devices. Our finding also paves the way for searching bulk semiconductors with extraordinarily strong e-h interaction. Two characteristics of such semiconductors are (1) the crystal structure should consist of weakly coupled building units (e.g., clusters, superatoms, or one-dimensional wires) and (2) the material should have relatively weak dielectric screening effects to ensure a strong Coulomb interaction between electrons and holes.
总之,我们预测中等能隙体 VODP 材料中的巨激子结合能范围为 0.95 至 1.65 eV(校正电子声子重正化效应后) 𝐴2𝑀𝑋6𝐴 =铯; 𝑀=Ti,Zr;𝑋=I ,Br)。这些系统中的激子结合能比具有相当准粒子带隙的典型无机半导体大一个数量级;它们甚至比具有相似基本带隙的单层过渡金属二硫属化物更大。最低能量的激子是暗的,并且预测的吸收边与实验非常吻合,解决了计算的(准粒子)带隙似乎比测量的(光学)带隙大得多的突出难题。 SOC 效应在混合自旋单重态和自旋三重态激子方面发挥着重要作用,导致吸收边红移。我们相信这些材料为探索弗伦克尔激子的性质和动力学、研究更奇特的复合准粒子(如双激子和三重子)以及实现基于激子的光电器件提供了一个独特的平台。我们的发现也为寻找具有极强电子相互作用的体半导体铺平了道路。此类半导体的两个特征是(1)晶体结构应由弱耦合的构建单元(例如簇、超原子或一维线)组成,以及(2)材料应具有相对较弱的介电屏蔽效应,以确保强库仑电子和空穴之间的相互作用。

Note added. Recently, we became aware of computational studies by Kavanagh et al. [79] and Cucco et al. [80], which also show the large exciton binding energies in several vacancy-ordered double perovskites.
添加注释。最近,我们注意到 Kavanagh等人的计算研究。 [79]和库科等人。 [80] ,这也显示了几种空位有序双钙钛矿中的大激子结合能。

This work is supported by the National Natural Science Foundation of China (Grants No. 12104080 and No. 91961204), the Fundamental Research Funds for the Central Universities (Grants No. DUT22LK04, and DUT22ZD103) and XingLiaoYingCai Project of Liaoning province, China (Grant No. XLYC1905014). Work at State University of New York at Buffalo (SUNYB) is supported by NSF Grant No. DMREF-1626967. The authors acknowledge the computer resources provided by the Supercomputing Center of Dalian University of Technology and the Center for Computational Research, SUNYB.
该工作得到了国家自然科学基金(批准号:12104080和91961204)、中央高校基本科研业务费专项资金(批准号:DUT22LK04和DUT22ZD103)和辽宁省杏辽英才项目(批准号)的资助。编号 XLYC1905014)。纽约州立大学布法罗分校 (SUNYB) 的工作得到 NSF 拨款号 DMREF-1626967 的支持。作者感谢大连理工大学超级计算中心和纽约州立大学计算研究中心提供的计算机资源。

Supplemental Material  补充材料

Click to Expand 单击展开

References  参考

  1. X. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen, T. J. H. Hele, R. H. Friend, and F. Li, Efficient radical-based light-emitting diodes with doublet emission, Nature (London) 563, 536 (2018).
    X.Ai、EW Evans、S.Dong、AJ Gillett、H.Guo、Y.Chen、TJH Hele、RH Friend 和 F.Li,具有双态发射的高效自由基发光二极管自然(伦敦) 563 ,536(2018)
  2. K. Takanabe, Photocatalytic water splitting: quantitative approaches toward photocatalyst by design, ACS Catal. 7, 8006 (2017).
    K. Takanabe,光催化水分解:通过设计实现光催化剂的定量方法ACS Catal。 7、8006 (2017)
  3. N. S. Ginsberg and W. A. Tisdale, Spatially resolved photogenerated exciton and charge transport in emerging semiconductors, Annu. Rev. Phys. Chem. 71, 1 (2020).
    NS Ginsberg 和 WA Tisdale,空间解析新兴半导体中的光生激子和电荷传输Annu。物理博士。化学。 71、1 (2020)
  4. L. M. Herz, How lattice dynamics moderate the electronic properties of metal-halide perovskites, J. Phys. Chem. Lett. 9, 6853 (2018).
    LM Herz,晶格动力学如何调节金属卤化物钙钛矿的电子特性J. Phys。化学。莱特。 9、6853 (2018)
  5. M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13, 1091 (2014).
    MM Ugeda,AJ Bradley,S.-F。 Shi,FH da Jornada,Y.Zhang,DY Qiu,W.Ruan,S.-K。莫,Z.侯赛因,Z.-X。 Shen、F. Wang、SG Louie 和 MF Crommie,单层过渡金属二硫族化物半导体中的巨带隙重正化和激子效应Nat。马特。 13、1091 (2014)
  6. H.-P. Komsa and A. V. Krasheninnikov, Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles, Phys. Rev. B 86, 241201(R) (2012).
    H.-P。 Komsa 和 AV Krasheninnikov,限制和环境对电子结构和激子结合能的影响 MoS2 从第一原理物理学。修订版 B 86 , 241201(R) (2012)
  7. A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86, 115409 (2012).
    A. Ramasubramaniam,单层钼和钨二硫化物中的大激子效应物理学。修订版 B 86 , 115409 (2012)
  8. J. Feng, X. Qian, C.-W. Huang, and J. Li, Strain-engineered artificial atom as a broad-spectrum solar energy funnel, Nat. Photonics 6, 866 (2012).
    J.冯,X.钱,C.-W。 Huang 和 J. Li,应变工程人造原子作为广谱太阳能漏斗Nat。光子学6 , 866 (2012)
  9. J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor, ACS Nano 9, 647 (2015).
    J. Shang、X. Shen、C. Cong、N. Peimyoo、B. Cao、M. Eginligil 和 T. Yu,二维过渡金属二硫化物半导体中激子精细结构的观察ACS Nano 9 , 647 (2015 )
  10. Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Observation of biexcitons in monolayer WSe2 , Nat. Phys. 11, 477 (2015).
    Y. 你,X.-X。张,TC Berkelbach,MS Hybertsen,DR Reichman 和 TF Heinz,单层双激子的观察 WSe2纳特。物理。 11、477 (2015)
  11. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2 , Nat. Mater. 12, 207 (2013).
    KF Mak、K. He、C. Lee、GH Lee、J. Hone、TF Heinz 和 J. Shan,单层中紧密结合的三重体 MoS2纳特。马特。 12、207 (2013)
  12. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun. 4, 1474 (2013).
    JS Ross、S. Wu、H. Yu、NJ Ghimire、AM Jones、G. Aivazian、J. Yan、DG Mandrus、D. Xiao、W. Yao 和 X. Xu,中性和带电激子的电控制单层半导体自然。交流。 4、1474 (2013)
  13. S. Kéna-Cohen and S. R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics 4, 371 (2010).
    S. Kéna-Cohen 和 SR Forrest,有机单晶微腔中的室温极化子激射Nat。光子学4 , 371 (2010)
  14. J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer, Nat. Mater. 13, 247 (2014).
    JD Plumhof、T. Stöferle、L. Mai、U. Scherf 和 RF Mahrt,聚合物中空腔激子极化激元的室温玻色-爱因斯坦凝聚Nat。马特。 13、247 (2014)
  15. J. Even, L. Pedesseau, and C. Katan, Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites, Chem. Phys. Chem. 15, 3733 (2014).
    J. Even、L. Pedesseau 和 C. Katan,了解层状 2D 杂化钙钛矿中载流子的量子限制Chem。物理。化学。 15、3733 (2014)
  16. B. Traore, L. Pedesseau, L. Assam, X. Che, J.-C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, M. G. Kanatzidis, S. Tretiak, A. D. Mohite, J. Even, M. Kepenekian, and C. Katan, Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment, ACS Nano 12, 3321 (2018).
    B.特拉奥雷、L.佩德索、L.阿萨姆、X.车、J.-C。 Blancon、H. Tsai、W. Nie、CC Stoumpos、MG Kanatzidis、S. Tretiak、AD Mohite、J. Even、M. Kepenekian 和 C. Katan,层状杂化钙钛矿的复合性质:量子和介电限制的评估和带对齐ACS Nano 12,3321 (2018)
  17. D. B. Straus and C. R. Kagan, Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties, J. Phys. Chem. Lett. 9, 1434 (2018).
    DB Straus 和 CR Kagan,二维杂化钙钛矿中的电子、激子和声子:连接结构、光学和电子特性J. Phys。化学。莱特。 9、1434 (2018)
  18. J.-H. Choi, P. Cui, H. Lan, and Z. Zhang, Linear Scaling of the Exciton Binding Energy Versus the Band Gap of Two-Dimensional Materials, Phys. Rev. Lett. 115, 066403 (2015).
    J.-H。 Choi、P.Cui、H.Lan 和 Z.Zhang,激子结合能与二维材料带隙的线性缩放物理学。莱特牧师。 115、066403 (2015)
  19. L. Wirtz, A. Marini, and A. Rubio, Excitons in Boron Nitride Nanotubes: Dimensionality Effects, Phys. Rev. Lett. 96, 126104 (2006).
    L. Wirtz、A. Marini 和 A. Rubio,氮化硼纳米管中的激子:维度效应物理学。莱特牧师。 96、126104 (2006)
  20. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 92, 077402 (2004).
    CD Spataru、S. Ismail-Beigi、LX Benedict 和 SG Louie,单壁碳纳米管的激子效应和光谱物理学。莱特牧师。 92、077402 (2004)
  21. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical Spectrum of MoS: Many-Body Effects and Diversity of Exciton States, Phys. Rev. Lett. 111, 216805 (2013).
    DY Qiu、FH da Jornada 和 SG Louie, MoS2 的光谱:多体效应和激子态的多样性物理学。莱特牧师。 111、216805 (2013)
  22. E. L. Shirley, L. X. Benedict, and S. G. Louie, Excitons in solid C60 , Phys. Rev. B 54, 10970 (1996).
  23. J. C. Grossman, M. Rohlfing, L. Mitas, S. G. Louie, and M. L. Cohen, High Accuracy Many-Body Calculational Approaches for Excitations in Molecules, Phys. Rev. Lett. 86, 472 (2001).
    JC Grossman、M. Rohlfing、L. Mitas、SG Louie 和 ML Cohen,分子激发的高精度多体计算方法物理学。莱特牧师。 86、472 (2001)
  24. Y. Onodera and Y. Toyozawa, Excitons in alkali halides, J. Phys. Soc. Jpn. 22, 833 (1967).
    Y. Onodera 和 Y. Toyozawa,碱金属卤化物中的激子J. Phys。苏克。日本。 22、833 (1967)
  25. R. T. Williams and K. S. Song, The self-trapped exciton, J. Phys. Chem. Solids 51, 679 (1990).
    RT Williams 和 KS Song,自陷激子J. Phys。化学。固体51 , 679 (1990)
  26. A. Trichet, F. Médard, J. Zúñiga-Pérez, B. Alloing, and M. Richard, From strong to weak coupling regime in a single GaN microwire up to room temperature, New J. Phys. 14, 073004 (2012).
    A. Trichet、F. Médard、J. Zúñiga-Pérez、B. Alloing 和 M. Richard,从单个 GaN 微线到室温的强耦合到弱耦合状态New J. Phys。 14、073004 (2012)
  27. S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Room-Temperature Polariton Lasing in Semiconductor Microcavities, Phys. Rev. Lett. 98, 126405 (2007).
    S. Christopoulos、GBH von Högersthal、AJD Grundy、PG Lagoudakis、AV Kavokin、JJ Baumberg、G. Christmann、R. Butté、E. Feltin、J.-F。 Carlin 和 N. Grandjean,半导体微腔中的室温极化子激光物理学。莱特牧师。 98、126405 (2007)
  28. T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity, Opt. Express 20, 5530 (2012).
    T.-C。卢,Y.-Y。赖,Y.-P。兰,S.-W。黄,J.-R。陈,Y.-C。吴,W.-F。 Hsieh 和 H. Deng, ZnO 基混合微腔中的室温极化子激光与光子激光选项。快报20,5530 (2012)
  29. D. Snoke and G. M. Kavoulakis, Bose-Einstein condensation of excitons in Cu2O: Progress over 30 years, Rep. Prog. Phys. 77, 116501 (2014).
  30. T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Giant Rydberg excitons in the copper oxide Cu2O , Nature (London) 514, 343 (2014).
  31. K. Saito, M. Hasuo, T. Hatano, and N. Nagasawa, Band gap energy and binding energies of Z3-excitions in CuCl, Solid State Commun. 94, 33 (1995).
    K. Saito、M. Hasuo、T. Hatano 和 N. Nagasawa, CuCl 中 Z3 激发的带隙能和结合能固态通讯。 94、33 (1995)
  32. R. Laskowski, N. E. Christensen, P. Blaha, and B. Palanivel, Strong excitonic effects in CuAlO2 delafossite transparent conductive oxides, Phys. Rev. B 79, 165209 (2009).
  33. H. Hiraga, T. Makino, T. Fukumura, A. Ohtomo, and M. Kawasaki, Excitonic characteristics in direct wide-band-gap CuScO2 epitaxial thin films, Appl. Phys. Lett. 95, 211908 (2009).
  34. B. Cai, X. Li, Y. Gu, M. Harb, J. Li, M. Xie, F. Cao, J. Song, S. Zhang, L. Cavallo, and H. Zeng, Quantum confinement effect of two-dimensional all-inorganic halide perovskites, Sci. China Mater. 60, 811 (2017).
  35. Y.-F. Ding, Q.-Q. Zhao, Z.-L. Yu, Y.-Q. Zhao, B. Liu, P.-B. He, H. Zhou, K. Li, S.-F. Yin, and M.-Q. Cai, Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden-Popper structure, J. Mater. Chem. C 7, 7433 (2019).
  36. Z. Yang, M. Wang, H. Qiu, X. Yao, X. Lao, S. Xu, Z. Lin, L. Sun, and J. Shao, Engineering the exciton dissociation in quantum-confined 2D nanosheet films, Adv. Funct. Mater. 28, 1705908 (2018).
  37. B. Cucco, G. Bouder, L. Pedesseau, C. Katan, J. Even, M. Kepenekian, and G. Volonakis, Electronic structure and stability of and ( vacancy ordered double perovskites, Appl. Phys. Lett. 119, 181903 (2021).
  38. A. E. Maughan, A. M. Ganose, D. O. Scanlon, and J. R. Neilson, Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors, Chem. Mater. 31, 1184 (2019).
  39. R. Sa, Q. Zhang, B. Luo, and D. Liu, Exploring the electronic and optical properties of vacancy-ordered double perovskites ( , J. Solid State Chem. 304, 122602 (2021).
  40. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
  41. M. Giantomassi, M. Stankovski, R. Shaltaf, M. Grüning, F. Bruneval, P. Rinke, and G.-M. Rignanese, Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications, Phys. Status Solidi 248, 275 (2011).
  42. G. Onida, L. Reining, and A. Rubio, Electronic excitations: Density-functional versus many-body Green's-function approaches, Rev. Mod. Phys. 74, 601 (2002).
  43. M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986).
  44. M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 4927 (2000).
  45. J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, Comput. Phys. Commun. 183, 1269 (2012).
  46. S. Lebègue, B. Arnaud, M. Alouani, and P. E. Bloechl, Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH, Phys. Rev. B 67, 155208 (2003).
  47. J. Deslippe, G. Samsonidze, M. Jain, M. L. Cohen, and S. G. Louie, Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: A modified static remainder approach, Phys. Rev. B 87, 165124 (2013).
  48. M. Rohlfing and S. G. Louie, Electron-Hole Excitations in Semiconductors and Insulators, Phys. Rev. Lett. 81, 2312 (1998).
  49. M.-G. Ju, M. Chen, Y. Zhou, H. F. Garces, J. Dai, L. Ma, N. P. Padture, and X. C. Zeng, Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett. 3, 297 (2018).
  50. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.107.235119 for the computation methods; convergence behavior of the calculated excitonic properties; the optical absorption and excitonic structure of Cs2TiBr6, Cs2ZrI6, and Cs2ZrBr6; real-space distribution of electrons of Cs2TiI6 for the lowest-energy dark excitons with different hole positions; comparison of the electronic dielectric constants; phonon calculations; and the calculated absorption spectra of Cs2TiI6.
  51. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
  52. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, quantum espresso: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009).
  53. D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013).
  54. M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018).
  55. W. Gao, X. Gao, T. A. Abtew, Y.-Y. Sun, S. Zhang, and P. Zhang, Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects, Phys. Rev. B 93, 085202 (2016).
  56. P. Jena and Q. Sun, Super atomic clusters: Design rules and potential for building blocks of materials, Chem. Rev. 118, 5755 (2018).
  57. M. Stankovski, G. Antonius, D. Waroquiers, A. Miglio, H. Dixit, K. Sankaran, M. Giantomassi, X. Gonze, M. Côté, and G.-M. Rignanese, band gap of ZnO: Effects of plasmon-pole models, Phys. Rev. B 84, 241201(R) (2011).
  58. C. Friedrich, M. C. Müller, and S. Blügel, Band convergence and linearization error correction of all-electron GW calculations: the extreme case of zinc oxide, Phys. Rev. B 83, 081101(R) (2011).
  59. W. Gao, W. Xia, X. Gao, and P. Zhang, Speeding up GW calculations to meet the challenge of large scale quasiparticle predictions, Sci. Rep. 6, 36849 (2016).
  60. B.-C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, Quasiparticle Band Gap of ZnO: High Accuracy from the Conventional Approach, Phys. Rev. Lett. 105, 146401 (2010).
  61. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Applications of Group Theory to the Physics of Solids (Springer, New York, 2008).
  62. D. Kammerlander, S. Botti, M. A. L. Marques, A. Marini, and C. Attaccalite, Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation, Phys. Rev. B 86, 125203 (2012).
  63. Z. Yang and C. A. Ullrich, Direct calculation of exciton binding energies with time-dependent density-functional theory, Phys. Rev. B 87, 195204 (2013).
  64. K. A. Velizhanin and A. Saxena, Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach, Phys. Rev. B 92, 195305 (2015).
  65. Z. Qiu, M. Trushin, H. Fang, I. Verzhbitskiy, S. Gao, E. Laksono, M. Yang, P. Lyu, J. Li, J. Su, M. Telychko, K. Watanabe, T. Taniguchi, J. Wu, A. H. C. Neto, L. Yang, G. Eda, S. Adam, and J. Lu, Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor, Sci. Adv. 5, eaaw2347 (2022).
  66. A. C. Riis-Jensen, T. Deilmann, T. Olsen, and K. S. Thygesen, Classifying the electronic and optical properties of janus monolayers, ACS Nano 13, 13354 (2019).
  67. S. M. Liga and G. Konstantatos, Colloidal synthesis of lead-free perovskite nanocrystals, J. Mater. Chem. C 9, 11098 (2021).
  68. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Courier, New York, 2012).
  69. J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite, ACS Nano 10, 6363 (2016).
  70. L. Huang and W. R. L. Lambrecht, Electronic band structure, phonons, and exciton binding energies of halide perovskites , and , Phys. Rev. B 88, 165203 (2013).
  71. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Lett. 14, 2584 (2014).
  72. G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52, 191 (1937).
  73. R. J. Elliott, Intensity of optical absorption by excitons, Phys. Rev. 108, 1384 (1957).
  74. P. Cudazzo, F. Sottile, A. Rubio, and M. Gatti, Exciton dispersion in molecular solids, J. Phys. Condens. Matter 27, 113204 (2015).
  75. M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors, Vol. 619 (Springer, New York, 2005); M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Vol. 56 (Oxford University Press, Oxford, 1999); T. Suthan, N. P. Rajesh, P. V. Dhanaraj, and C. K. Mahadevan, Growth and characterization of naphthalene single crystals grown by modified vertical Bridgman method, Spectrochim. Acta, Part A 75, 69 (2010).
  76. M. R. Filip, J. B. Haber, and J. B. Neaton, Phonon Screening of Excitons in Semiconductors: Halide Perovskites and Beyond, Phys. Rev. Lett. 127, 067401 (2021).
  77. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001).
  78. A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015).
  79. S. R. Kavanagh, C. N. Savory, S. M. Liga, G. Konstantatos, A. Walsh, and D. O. Scanlon, Frenkel excitons in vacancy-ordered titanium halide perovskites (), J. Phys. Chem. Lett. 13, 10965 (2022).
  80. B. Cucco, C. Katan, J. Even, M. Kepenekian, and G. Volonakis, Fine structure of excitons in vacancy-ordered halide double perovskites, ACS Mater. Lett. 5, 52 (2023).
Issue 问题

Vol. 107, Iss. 23 — 15 June 2023
卷。 107,一号。 2023 年 6 月 23 日至 15 日

Reuse & Permissions 重用和权限
Access Options 访问选项
CHORUS

Article part of CHORUS
合唱的文章部分

Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

  • Figure 1
    Figure 1

    (a) Crystal structures of showing the weakly coupled octahedral units. The red dotted circles show M vacancies. (b) DFT-PBE band structures of crystal (green solid curves), crystal (dashed black curve), and isolated molecule (red lines). The highest occupied states are shifted to zero. (c) Quasiparticle band structure of including the SOC effects. (d) A schematic diagram showing the spin-orbit splitting and allowed optical transitions at the and points of .

    Reuse & Permissions
  • Figure 2
    Figure 2

    (a) The imaginary part of the dielectric function of , calculated without (black dashed line) and with (red solid line) e-h interactions. A Gaussian broaden of 0.05 eV is used in the calculations. The lowest-energy bright exciton and fundamental band gap are marked in orange and blue lines, respectively. (b) Energies of singlet and triplet excitons. (c) Energies of excitons calculated with the SOC effects.

    Reuse & Permissions
  • Figure 3
    Figure 3

    (a) Reciprocal-space distribution of exciton wave functions of . The orange and black circles represent the lowest bright and dark excitons, respectively. The inset is a fitting of the exciton wave function with a hydrogenic model. (b) Real-space distribution of electrons for the lowest-energy dark and bright excitons. The hole position is fixed at an iodine atom. About 80% of the electron density is within the isosurface (shown in yellow).

    Reuse & Permissions
3 of 3
×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×
×
GW method GW法
  1. Techniques 技巧
  2. Theoretical & Computational Techniques
    理论与计算技术
  3. First-principles calculations
    第一性原理计算
  4. GW method GW法