Advanced Hub Main Navigation Menu
Abstract 抽象
Phase change materials (PCMs) with remarkable latent heat storage/release capacity have demonstrated prominent advantages in energy conservation and efficient thermal management. Nevertheless, simultaneously achieving high thermal energy storage capacity, excellent toughness, and flexibility in PCMs is a significant challenge for programmable deformations when used in complex environmental scenarios. A flexible PCM is reported with programmable deformation constructed through a three-dimensional (3D) dynamic cross-linked network. This approach has culminated in the development of homogeneously cross-linked and self-supporting polyurethane-based solid-solid PCM with graphene enhancement, which exhibits exceptional properties of high latent heat storage/release capacity (∆Hm = 105.3 J g−1, ∆Hc = 105.0 J g−1), high toughness (ε = 1543%, σ = 19.2 MPa), excellent flexibility, and shape memory behavior (Rr = 90.3%). Notably, when subjected to photothermal stimulation, it can lift objects weighing more than 2620 times their weight, presenting a working density of 1330 kJ m−3. This flexible PCM, which simultaneously possesses a high latent capacity and photothermal-driven performance, opens a new pathway for artificial muscles or soft robots with the requirements for energy conservation and thermal management in complex scenarios.
相变材料 (PCM) 具有显著的潜热储存/释放能力,在节能和高效热管理方面表现出突出优势。然而,在复杂环境场景中使用时,在 PCM 中同时实现高热能存储容量、出色的韧性和柔韧性对于可编程变形来说是一个重大挑战。据报道,通过三维 (3D) 动态交联网络构建的柔性 PCM 具有可编程变形。这种方法最终开发了具有石墨烯增强的均匀交联和自支撑聚氨酯基固固体相变材料,其表现出高潜热储存/释放能力 (∆Hm = 105.3 J g-1, ∆Hc = 105.0 J g-1)、高韧性 (ε = 1543%, σ = 19.2 MPa)、优异的柔韧性和形状记忆行为 (Rr = 90.3%)。值得注意的是,当受到光热刺激时,它可以举起重量超过其重量 2620 倍的物体,工作密度为 1330 kJ m-3。这种柔性相变材料同时具有高潜容量和光热驱动性能,为复杂场景下对节能和热管理有要求的人造肌肉或软体机器人开辟了一条新的途径。
1 Introduction 1 引言
As science and technology, as well as the world economy, flourish, the issue of energy scarcity has become increasingly severe. Phase change materials (PCMs), as representatives of latent heat energy storage, can achieve energy storage or release by absorbing or releasing a large amount of latent heat at a constant temperature through a phase change process.[1] Traditional PCMs, especially solid-liquid PCMs, have numerous significant advantages of excellent chemical stability, no supercooling phenomenon, no corrosion, and recyclability, thus presenting great application prospects.[2] However, its practicality is adversely affected by related volume expansion, phase segregation, reduced mechanical strength at ultra-state melting points, and leakage.[3] Therefore, solid-solid PCMs (ssPCMs) have become a promising alternative to solid-liquid PCMs owing to their solid-state processing capacity, lack of pollution, and outstanding cycling durability. There are usually two preparation methods for ssPCMs:physical and chemical methods.[4] However, the ssPCMs, obtained through physical methods, exhibit significant phase segregation issues in multiple melting and freezing cycles, which may ultimately limit their practical applications. Chemical crosslinking, including closed copolymerization, chemical grafting, and chemical crosslinking, is conducive to developing polymer-based ssPCMs with excellent chemical stability, better solvent resistance, and widely adjustable mechanical properties.[5
随着科学技术以及世界经济的蓬勃发展,能源短缺问题日益严重。相变材料 (PCM) 作为潜热储能的代表,可以通过相变过程在恒温下吸收或释放大量潜热来实现能量储存或释放。1 传统相变材料,尤其是固液相变材料,具有化学稳定性好、无过冷现象、无腐蚀、可回收等众多显著优点,具有很好的应用前景。2 然而,它的实用性会受到相关体积膨胀、相偏析、超态熔点下机械强度降低和泄漏的不利影响。3 因此,固-固相变材料 (ssPCM) 因其固相材料处理能力强、无污染和出色的循环耐久性而成为固-液相变材料的一种有前途的替代品。ssPCMs通常有两种制备方法:物理法和化学法。4 然而,通过物理方法获得的 ssPCM 在多个熔化和冷冻循环中表现出明显的相偏析问题,这最终可能会限制它们的实际应用。化学交联,包括封闭共聚、化学接枝和化学交联,有利于开发具有优异化学稳定性、更好耐溶剂性和广泛可调机械性能的聚合物基 ssPCM。5]
The phase-change process is an entropy phenomenon related to the relaxation behavior of molecular chain segments.[6] Thus, the volume changes caused by phase transformation characteristics can convert into the driving force of artificial muscles. Traditional PCMs have been applied in the field of artificial muscles for a long time. The pivotal advantage of PCMs is their ability to store and release thermal energy during phase transition. High latent heat storage and release capacity enable artificial muscles to maintain specific shapes and tensions without continuous energy input, contributing to reducing energy consumption. Even if scientists have developed stimulus-responsive materials such as hydrogels,[7] dielectric elastomers,[8] liquid crystal elastomers (LCEs),[9] shape memory polymers (SMPs),[10] and twisted fibers[8, 11] for artificial muscles or soft robots, flexible actuators based on phase change still exhibit progressiveness and uniqueness in high efficiency and energy saving.[10, 12] Many researchers have combined organic solid-liquid PCMs with elastic polymers to develop shape memory materials or tendon-like fiber actuators for the applications of artificial muscles and soft robots.[5, 13] However, the low thermal conductivity and potential leakage associated with solid-liquid PCMs limit their applications in rapid response and stable durability scenarios.[7, 14
相变过程是一种与分子链段的弛豫行为有关的熵现象。6 因此,由相变特性引起的体积变化可以转化为人造肌的驱动力。传统的相变材料在人工肌肉领域应用已久。相变材料的关键优势是它们能够在相变过程中储存和释放热能。高潜热储存和释放能力使人造肌肉能够在没有持续能量输入的情况下保持特定的形状和张力,有助于降低能源消耗。即使科学家们已经开发出刺激响应材料,如水凝胶、7 介电弹性体、8 液晶弹性体 (LCE)、9 形状记忆聚合物 (SMP)10 和扭曲纤维8、11对于人工肌肉或软体机器人,基于相变的柔性致动器在高效节能方面仍然表现出进步性和独特性。10、12许多研究人员将有机固液相变材料与弹性聚合物相结合,开发形状记忆材料或肌腱状纤维致动器,用于人造肌肉和软机器人的应用。5、13然而,与固液相变材料相关的低导热性和潜在泄漏限制了它们在快速响应和稳定耐久性场景中的应用。7、14]
We drew inspiration from the growth, evolution, and movement of biological tissues. Biological muscle tissues are commonly composed of a bundle of muscle fascicles, each is composed of muscle filaments, which are composed of myofibril as shown in Figure 1a. Myofibrils are composed of two filamentous proteins (mainly actin and myosin), which are responsible for muscle contraction. The periodic contraction and release of muscles depends on the interaction between actin cross-linking and debonding.[2] The heads of myosin molecules (known as transverse bridges) sequentially attach to adjacent actin molecules, thereby generating forces. The sequential connection and separation of these bridges, driven by the energy generated by the breakdown and consumption of adenosine triphosphate, generate activation.[15] This network structure and bonding enable myofibrils to achieve movement. Inspired by the muscle tissues of organisms, dynamic crosslinked network structures, co-constructed by the chemical and physical cross-linking methods can be available for obtaining a flexible solid-solid PCM to address the challenges of easy leakage and poor stability. This responsive structure can provide new insights for the manufacture of programmable flexible PCMs.[16
我们从生物组织的生长、进化和运动中汲取灵感。生物肌肉组织通常由一束肌肉束组成,每个肌肉束由肌肉丝组成,肌丝由肌原纤维组成,如图 1a 所示。肌原纤维由两种丝状蛋白(主要是肌动蛋白和肌球蛋白)组成,它们负责肌肉收缩。肌肉的周期性收缩和释放取决于肌动蛋白交联和解粘之间的相互作用。2 肌球蛋白分子的头部(称为横桥)依次附着在相邻的肌动蛋白分子上,从而产生力。这些桥的顺序连接和分离,由三磷酸腺苷分解和消耗产生的能量驱动,产生激活。15 这种网络结构和结合使肌原纤维能够实现运动。受生物体肌肉组织的启发,通过化学和物理交联方法共同构建的动态交联网络结构可用于获得柔性固-固相变材料,以应对易泄漏和稳定性差的挑战。这种响应式结构可以为可编程柔性 PCM 的制造提供新的见解16。]

PU-ssPCM 的结构设计、制造和性能表征。a) 受骨骼肌结构启发的 PU-ssPCM 化学结构示意图(左);PU-ss相变材料在25°C至80°C的加热过程中发生从结晶到无定形的相变,并保持形状稳定性,实现潜热储存或释放(右上);在拉伸恢复过程中,PU-ssPCM 中分子链段从网状结构到定向伸长的转变(右下)。b) PCL、PEO、HDI 和 PU-ssPCM 的 FTIR 光谱。c) 结晶焓值 (ΔHc = 109.5 J g-1) 和熔融焓值 (ΔHm = 110.3 J g-1) 分别对应于 PU-ssPCM 的冷却和加热过程曲线(PEO:PCL 摩尔比 = 1:400);结晶过程中的峰值温度 (Tc = 44.0 °C) 和熔化过程中的峰值温度 (Tm = 62.0 °C)。d) PU-ssPCM 的应力-应变曲线和相应的微观表面形态(PEO:PCL 摩尔比 = 1:400)。
Furthermore, light is a well-known clean energy source.[17] Thus, light-driven soft actuators have broad application prospects owing to the unique advantages of simplified systems such as wireless functionality, relatively simple coupling, remote control, green energy, and high-level integration.[18] Mirvakili et al.[19] innovatively proposed an unconstrained pneumatic hydraulic-hybrid driving method, which utilized the relatively large volume expansion to hydraulically drive during the liquid-gas phase transition. The specific method is to generate a high pressure by inducing the evaporation of a low-boiling-point liquid sealed in the chamber through light, thereby presenting the advantage of remote driving. Moreover, polymer-based optical flexible actuators provide an effective method for coupling photon energy into the actuator structure, which can change their size through mechanical movements, such as contraction, expansion, bending, twisting, and oscillation, when exposed to photons (light emission).[20] Recently, many optocoupler polymers have been reported, including photo-responsive hydrogels, SMPs, and LCEs.[18, 20, 21] However, the application and development of photo-responsive hydrogels are constrained by the disadvantages of poor stability and strength.[22] The high cost caused by the complexity of synthesizing LCEs is a significant obstacle to their widespread use.[21, 23] Owing to the numerous advantages of high output strain, high output energy capacity, and high output power density, SMPs with small volumes and high degrees of movement freedom can adapt to limited working environments and have received widespread attention.[24] However, SMPs have the disadvantage of low thermal conductivities. To achieve photothermal-responsive characteristics and improve thermal conductivity, functional nanoparticles can be selectively integrated into the matrix. Graphene exhibits prominent performance advantages in terms of light absorption, ultra-high thermal conductivity (5000 W m−1 K−1), significant photothermal conversion, conspicuous specific area (2630 m2 g−1), ultra-light weight, and remarkable mechanical strength.[25] Owing to its excellent physical and chemical stability, graphene can be selected as the best candidate for empowering a flexible PCMs matrix to improve the photothermal energy conversion capacity and thermal conductivity.
此外,光是一种众所周知的清洁能源。17 因此,由于简化系统的独特优势,如无线功能、相对简单的耦合、远程控制、绿色能源和高级集成,光驱动软致动器具有广阔的应用前景。18 Mirvakili 等人19 创新性地提出了一种无约束的气动液压混合动力驱动方法,该方法利用相对较大的体积膨胀在液气相变过程中进行液压驱动。具体方法是通过光线使密封在腔体内的低沸点液体蒸发,从而产生高压,从而呈现远程驾驶的优势。 此外,基于聚合物的光学柔性致动器提供了一种将光子能量耦合到致动器结构中的有效方法,当暴露于光子(光发射)时,可以通过机械运动(如收缩、膨胀、弯曲、扭曲和振荡)来改变其尺寸。20 最近,报道了许多光耦合聚合物,包括光响应水凝胶、SMP 和 LCE。票价:18、20、21 元然而,光响应式水凝胶的应用和发展受到稳定性和强度差等缺点的制约。22 合成 LCE 的复杂性造成的高成本是其广泛使用的重大障碍。21、23 元由于具有高输出应变、高输出能量容量和高输出功率密度等众多优点,体积小、移动自由度高的 SMP 可以适应有限的工作环境,受到广泛关注。24 然而,SMP 的缺点是导热率低。为了实现光热响应特性并提高导热性,可以选择性地将功能性纳米颗粒整合到基质中。 石墨烯在光吸收、超高导热率 (5000 W m-1 K-1)、显着的光热转换、显著的比面积 (2630 m2 g-1)、超轻重量和显着的机械强度方面表现出突出的性能优势。25 由于其优异的物理和化学稳定性,石墨烯可以被选为增强柔性 PCMs 基体以提高光热能转换能力和热导率的最佳候选者。
In this work, for the first time, a crosslinked homogenous network structure of a self-supporting polyurethane-based solid-solid PCM with graphene nanoplatelet reinforcement (denoted as PU-ssPCM/GNP) was optimized and constructed to realize a programmable flexible PCM. Remarkably, the construction of a three-dimensional (3D) dynamic cross-linked network was expected to simultaneously achieve high latent heat capacity, toughness, and shape memory properties of PU-ssPCM/GNP. Representative samples, PU-ssPCM/GNP (1 wt.%), exhibit commendable properties of high latent heat storage capacity (∆Hm = 105.3 J g−1, ∆Hc = 105.0 J g−1), remarkable elongation at break (ε = 1543%), tensile strength (σ = 19.2 MPa), and remarkable performance in shape memory (Rr = 90.3%). Furthermore, the flexible PCM exhibits other attractive adjustable mechanical properties as follows: 1) high rigidity and can support heavy objects that are 200 times heavier than itself; 2) outstanding load-bearing capacity and can lift exceeding 50 000 times its own weight. Notably, when subjected to photothermal stimulation, it can lift objects weighing more than 2620 times their weight, presenting a work density of 1330 kJ m−3. Owing to the advantages of high thermal energy storage capacity and photothermal-driven performance, the flexible PCM can maintain a specific shape and position without the requirement for continuous energy input, thus, exhibiting a distinct advantage over other types of responsive materials in energy conservation and simplification of control systems.
在这项工作中,首次优化并构建了具有石墨烯纳米片增强剂(表示为 PU-ssPCM/GNP)的自支撑聚氨酯基固固相变材料(表示为 PU-ssPCM/GNP)的交联均质网络结构,以实现可编程的柔性 PCM。值得注意的是,三维 (3D) 动态交联网络的构建有望同时实现 PU-ssPCM/GNP 的高潜热容、韧性和形状记忆特性。代表性样品 PU-ssPCM/GNP (1 wt.%) 表现出值得称道的高潜热存储容量 (∆Hm = 105.3 J g-1, ∆Hc = 105.0 J g-1)、显著的断裂伸长率 (ε = 1543%)、拉伸强度 (σ = 19.2 MPa) 和显著的形状记忆性能 (Rr = 90.3%)。此外,柔性相变材料还表现出其他有吸引力的可调节机械性能,如下:1) 高刚性,可以支撑比自身重 200 倍的重物;2) 出色的承载能力,可以提升超过自身重量 50 000 倍的重量。值得注意的是,当受到光热刺激时,它可以举起重量超过其重量 2620 倍的物体,呈现出 1330 kJ m−3 的工作密度。由于具有高热能存储能力和光热驱动性能的优势,柔性相变材料可以保持特定的形状和位置,而无需持续的能量输入,因此在节能和简化控制系统方面表现出优于其他类型的响应材料的独特优势。
2 Results and Discussion 2 结果与讨论
2.1 Structural Design and Performance Characteristics of PU-ssPCM
2.1 PU-ss相变材料的结构设计及性能特点
To achieve simultaneously high thermal energy storage and mechanical properties, the chemical structure of the flexible PCM needs to be carefully chosen and designed. Specifically, a polyurethane-based solid-solid PCM polymer (denoted as PU-ssPCM) was prepared from hexamethylene diisocyanate (HDI), polyethylene oxide (PEO), and polycaprolactone (PCL) with D-sorbitol as a chain extender through a pre-polymerization method (Figure S1 and more details can be found in the Supporting Information). The advantages are that the introduction of ether groups can separate adjacent methylene groups, thereby weakening the mutual repulsion force between the hydrogen atoms of two methylene groups and contributing to the flexibility of PU-ssPCM. In addition, ester groups (COOR) with high cohesive energy can generate significant intermolecular forces, improving the stiffness of the PU-ssPCM. To confirm the formation of PU-ssPCM, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was performed. The disappearance of the infrared absorption peak of N═C═O at the wavenumber of 2283 cm−1 indicated that the NCO group was completely converted and the polycondensation reaction of PU-ssPCM completed (Figure 1b). Moreover, a multi-hydrogen bonding interaction network structure was easily generated as follows: 1) The positive configuration hydrogen bonding between -NH and C═O bonds formed in the ethyl carbamate group; 2) Crossed-configuration hydrogen bonding between the -NH- bond and COC bonds. The PU-ssPCM with an ultra-long molecular chain structure consists of two segmented blocks (i.e., soft segments and hard segments). No difference was observed, and no liquid leakage was observed on the surface of the PU-ssPCM at 25 and 80 °C, indicating that the sample could maintain stable shaping (Figure 1a). The reason is that PU-ssPCM with a crystalline structure undergoes a solid-to-solid phase transition at high temperatures. Consequently, the synergistic construction of chemical crosslinking and physical crosslinking enabled the PU-ssPCM to achieve shape stability at different temperatures (Figure 1a (upper right)). The PU-ssPCM with the characteristic functional group (NHCOO) was essentially endowed with the expected performance of flexibility, stability, and self-supporting shaping through the combination of these factors (Figure 1a,b).
为了同时实现高热能存储和机械性能,需要仔细选择和设计柔性相变材料的化学结构。具体来说,以六亚甲基二异氰酸酯 (HDI)、聚环氧乙烷 (PEO) 和聚己内酯 (PCL) 为基聚氨酯基固-固相材料聚合物(表示为 PU-ssPCM)通过预聚合方法制备,其中 D-山梨醇作为扩链剂(图 S1 和更多详细信息可在支持信息中找到)。优点是醚基的引入可以分离相邻的亚甲基,从而减弱两个亚甲基的氢原子之间的相互排斥力,有助于 PU-ssPCM 的柔韧性。此外,具有高内聚能的酯基 (COOR) 可以产生显着的分子间作用力,从而提高 PU-ssPCM 的刚度。为了确认 PU-ssPCM 的形成,进行了衰减全反射傅里叶变换红外光谱 (ATR-FTIR)。N═C═O 在 2283 cm-1 波数处的红外吸收峰消失,表明 NCO 基团完全转化,PU-ssPCM 的缩聚反应完成(图 1b)。此外,多氢键相互作用网络结构很容易产生如下:1) 氨基甲酸乙酯基团中形成的 -NH 和 C═O 键之间的正构型氢键;2) -NH- 键和 COC 键之间的交叉构型氢键。具有超长分子链结构的 PU-ssPCM 由两个分段段(即软段和硬段)组成。 未观察到差异,在 25 °C 和 80 °C 时 PU-ssPCM 表面未观察到液体泄漏,表明样品可以保持稳定的形状(图 1a)。原因是具有晶体结构的 PU-ssPCM 在高温下发生固-固相转变。因此,化学交联和物理交联的协同结构使 PU-ssPCM 能够在不同温度下实现形状稳定性(图 1a(右上))。通过这些因素的组合,具有特征官能团 (NHCOO) 的 PU-ssPCM 基本上被赋予了柔韧性、稳定性和自支撑成型的预期性能(图 1a、b)。
Additionally, to elucidate the correlation between the structure and properties of the PU-ssPCM, we conducted supplementary analyses. The stacked fold morphology could be observed in the SEM images, which were produced by curling and stacking the long molecular chain (Figure S2, Supporting Information). It was also found that the peak value of the mechanical loss (tan δ) gradually increased as the input amount of PCL increased (Figure S3, Supporting Information), indicating that the activation energy required for molecular segment or functional group activation increased. This was related to the gradual increase in the degree of crosslinking of the chemical structure and the limitation level of the molecular chains. PCL and D-sorbitol, with their multi-hydrogen bonding characteristics, possess the advantage of providing more active sites. It was found that the absorption peak of the amino group (N-H) at a wavenumber of 3337 cm−1 and the stretching vibration absorption peak of the C═O bond at a wavenumber of 1622 cm−1 (hydrogen bonding) became wider and stronger with an increase in PCL dosage (Figure S4, Supporting Information). This further verifies the generation of additional hydrogen bond formation sites. Hydrogen bonds exist not only in hard segments but also within soft segments. This structural characteristic could be conducive to increasing the thermal stability of PU-ssPCM as shown in Figure S5 (Supporting Information). Furthermore, when the molar ratio of PEO to PCL was 1:400, the maximum elongation at break of PU-ssPCM was 1703%, and the tensile strength was 10.4 MPa under normal temperature and pressure (Figure 1a,d (bottom right); Figure S6, Supporting Information). To the best of our knowledge, this elongation at break is very significant and high-level for ssPCMs. When the dosage of PCL was low, the crosslinking degree or rigid segments of the structure were not sufficient to support high mechanical properties, especially the elongation at break. With an increase in PCL dosage, the hard segments of the polymer skeleton increased, accompanied by an increase in the degree of crosslinking. However, the asymmetry of the molecular chain segments affects the mechanical properties, and the elongation at the break of the flexible PCM decreases (Figure S6, Supporting Information). Therefore, when the molar ratio of PEO to PCL was 1:400, the similar length between two adjacent cross-linked molecular chains contributed to constructing a homogeneous network structure for PU-ssPCM, effectively avoiding stress concentration on shorter chains. This homogeneous network structure can manipulate the uniform distribution of load stress and avoid fracture nucleation on shorter molecular chains. This kind of structural symmetry not only prompted PU-ssPCM to maintain shape stability but also presented the advantages of few limitations and little resistance to deformation (Figure S6, Supporting Information). When the material is deformed by an external force, the net chains are oriented and elongated along the direction of the external force, similar to the stretching state of the muscle (Figure 1a (bottom right)). When the material was not subjected to external forces or exposed to external stimuli, the oriented alignment of net chains was restored, which was similar to the contraction of the muscle (Figure 1a (bottom right)). Therefore, inspired by the structure of skeletal muscles, the construction of numerous hydrogen-bonding interactions and homogeneous networks favors the PU-ssPCM with high toughness and exceptional flexibility (Figure 1a).
此外,为了阐明 PU-ssPCM 的结构和性能之间的相关性,我们进行了补充分析。在 SEM 图像中可以观察到堆叠折叠形态,这些图像是通过卷曲和堆叠长分子链产生的(图 S2,支持信息)。研究还发现,随着 PCL 输入量的增加,机械损失的峰值 (tan δ) 逐渐增加(图 S3,支持信息),表明分子段或官能团激活所需的活化能增加。这与化学结构交联程度的逐渐增加和分子链的限制水平有关。PCL 和 D-山梨醇具有多氢键特性,具有提供更多活性位点的优势。结果发现,随着 PCL 剂量的增加,波数为 3337 cm-1 的氨基吸收峰 (N-H) 和 C═O 键在 1622 cm-1 的波数处的拉伸振动吸收峰(氢键)变得更宽、更强(图 S4,支持信息)。这进一步验证了其他氢键形成位点的产生。氢键不仅存在于硬链段中,也存在于软链段中。这种结构特性可能有助于提高 PU-ssPCM 的热稳定性,如图 S5(支持信息)所示。 此外,当 PEO 与 PCL 的摩尔比为 1:400 时,PU-ssPCM 的最大断裂伸长率为 1703%,在常温常压下拉伸强度为 10.4 MPa(图 1a,d(右下);图 S6,支持信息)。据我们所知,这种断裂伸长率对于 ssPCM 来说非常显着且水平很高。当 PCL 的用量较低时,结构的交联度或刚性段不足以支持高机械性能,尤其是断裂伸长率。随着 PCL 剂量的增加,聚合物骨架的硬段增加,伴随着交联程度的增加。然而,分子链段的不对称性会影响机械性能,并且柔性 PCM 的断裂伸长率降低(图 S6,支持信息)。因此,当 PEO 与 PCL 的摩尔比为 1:400 时,两条相邻交联分子链之间的相似长度有助于构建 PU-ssPCM 的均匀网络结构,有效避免应力集中在较短链上。这种均相网络结构可以纵载荷应力的均匀分布,并避免在较短的分子链上发生断裂成核。这种结构对称性不仅促使 PU-ssPCM 保持形状稳定性,而且还具有限制少、抗变形能力小等优点(图 S6,支持信息)。当材料因外力而变形时,网链沿外力的方向定向和拉长,类似于肌肉的拉伸状态(图 1a(右下))。 当材料不受外力或受到外部刺激时,网链的定向排列得以恢复,这类似于肌肉的收缩(图 1a(右下))。因此,受骨骼肌结构的启发,许多氢键相互作用和均相网络的构建有利于具有高韧性和卓越柔韧性的 PU-ssPCM(图 1a)。
Generally, soft and hard segments have random distributions and ordered arrangements in their respective phases. The hard-segment phase is composed of small particles with crystalline microdomains of varying sizes and densities. The average size was approximately dozens of nanometers, as shown in the AFM images (Figure S7, Supporting Information). In addition, the XRD patterns and POM images corroborated the crystalline molecular structure of the PU-ssPCM (Figure 1c; Figures S8 and S9, Supporting Information). Generally, polymerization can inhibit the movement of molecular chains. The increasing amounts of PCL caused more formation of carbamate, and thus, the number and area of crystalline micro-zones of the hard segment embedded in the crystalline regions of the soft segment gradually increased (Figure S10, Supporting Information). Restricted crystallization led to a decrease in crystallinity (Figure S10, Supporting Information). The increasing number of crystalline microdomains of the hard segment in the crystal regions of the soft segment might lead to incomplete two-phase separation. Therefore, the formation and existence of the microphase separation structure in the PU-ssPCM were related to the formation of a continuous hard segment (Figure S7, Supporting Information). Furthermore, the free movement of the molecular chain segments was limited by the isocyanate skeleton, resulting in an increase in the degree of hydrogen bonding and a decrease in enthalpy (Figure S11, Supporting Information). When the molar ratio of PEO to PCL was 1: 400, PU-ssPCM exhibited high chemical stereoregularity of molecular chain and possessed relatively high latent heat storage and release capacity (∆Hm = 110.3 J g−1, ∆Hc = 109.5 J g−1) (Figure 1c; Figure S11, Supporting Information).
通常,软段和硬段在各自的阶段具有随机分布和有序排列。硬段相由具有不同大小和密度的结晶微域的小颗粒组成。平均尺寸约为数十纳米,如 AFM 图像所示(图 S7,支持信息)。此外,XRD 图谱和 POM 图像证实了 PU-ssPCM 的晶体分子结构(图 1c;图 S8 和 S9,支持信息)。通常,聚合可以抑制分子链的运动。PCL 量的增加导致氨基甲酸酯的形成增加,因此,嵌入软链段结晶区域中的硬链段结晶微区的数量和面积逐渐增加(图 S10,支持信息)。结晶受限导致结晶度降低(图 S10,支持信息)。在软链段的晶体区域中,硬链段的晶体微域数量增加可能会导致两相分离不完全。因此,PU-ssPCM 中微相分离结构的形成和存在与连续硬链段的形成有关(图 S7,支持信息)。此外,分子链段的自由运动受到异氰酸酯骨架的限制,导致氢键程度增加而焓降低(图 S11,支持信息)。 当 PEO 与 PCL 的摩尔比为 1:400 时,PU-ssPCM 表现出较高的分子链化学立体规则性,并具有相对较高的潜热储存和释放能力 (∆Hm = 110.3 J g-1, ∆Hc = 109.5 J g-1) (图 1c;图 S11,支持信息)。
In brief, a typical sample (PU-ssPCM), prepared via a molar ratio of 1: 400 between PEO and PCL, simultaneously achieved excellent flexibility, high toughness (σ = 10.4 MPa, ε = 1703%), and latent heat storage/release capacity (∆Hm = 110.3 J g−1, ∆Hc = 109.5 J g−1). This can lay a solid foundation for achieving programmable deformations and exploring multi-responsive performance. In the entire structure, the long carbon chains with regular arrangements can be regarded as the crystalline skeleton of macromolecules, and the chain segments of each level remain relatively independent, which plays an important role in the physical crosslinking network. The reversible switching mechanism is associated with the temperature-dependent sequential transition of crystalline domains from an ordered arrangement to the amorphous state (Figure 1a; Figure S12, Supporting Information). Consequently, a multi-hydrogen bond network and continuous crystal phase with temperature dependency collaboratively constructed a 3D dynamic network structure of the PU-ssPCM.
简而言之,通过 PEO 和 PCL 之间 1:400 的摩尔比制备的典型样品 (PU-ssPCM) 同时获得了优异的柔韧性、高韧性(σ = 10.4 MPa,ε = 1703%) 和潜热储存/释放能力(∆Hm = 110.3 J g-1,∆Hc = 109.5 J g-1)。这可以为实现可编程变形和探索多响应性能奠定坚实的基础。在整个结构中,排列规则的长碳链可被视为大分子的结晶骨架,各能级的链段保持相对独立,在物理交联网络中起着重要作用。可逆开关机制与晶畴从有序排列到非晶态的温度依赖性顺序转变有关(图 1a;图 S12,支持信息)。因此,多氢键网络和具有温度依赖性的连续晶相协同构建了 PU-ssPCM 的三维动态网络结构。
2.2 Preparation and Properties of PU-ssPCM/GNP
2.2 PU-ssPCM/GNP的制备和性能
To further improve the thermal conductivity and enhance the photo-to-thermal energy conversion performance, graphene with a 2D hexagonal honeycomb-like single-layer lattice structure was selected for introduction into the self-supporting PU-ssPCM matrix. Nanosized graphene can effectively decrease the thermal resistance in polymers, efficiently improving the thermal interface conductivity and accelerating heat transfer. In this study, graphene was uniformly dispersed in the network structure of PU-ssPCM based on a suitable solvent system through ultrasonic cavitation. The microscopic surface morphology and microstructure of the PU-ssPCM/GNP membranes are shown in Figure S13 (Supporting Information). A diagrammatic sketch of the synthesis process and chemical structure of PU-ssPCM/GNP and the interaction mechanism between graphene and the molecular chains of PU-ssPCM are exhibited in Figure 2a. The ordered crystal structure of graphene can be used to replace partially disordered PU-ssPCM; thus, local thermal chains of PU-ssPCM/GNP were in contact with each other as the proportion of graphene increased, forming a thermally connected network. Consequently, although the effects of crystal defects, interface thermal resistance, and phonon scattering are inevitable at heterogeneous interfaces (Figure S14a, Supporting Information), the thermal conductivity of PU-ssPCM/GNP increased by 100.6% over that of PU-ssPCM (Figure S14b, Supporting Information). In addition, the hydrogen bonding interaction between graphene and net-chains of PU-ssPCM can be seen as a “heat transfer bridge” for constructing a 3D thermal conductivity network, which contributes to further reducing the interfacial thermal resistance. The regular crystalline arrangement of PU-ssPCM/GNP also increased the thermal conductivity for molecular chain interactions.[13] Therefore, the physical cross-linked network construction between the continuous crystal phase and hydrogen bonding interactions can provide a fast channel for phonon thermal conduction. Thermal transfer can be rapidly achieved from the high-temperature region to the low-temperature region through phonon vibrations.
为了进一步提高热导率和增强光热能转换性能,选择具有 2D 六边形蜂窝状单层晶格结构的石墨烯引入自支撑 PU-ssPCM 基体中。纳米石墨烯可以有效降低聚合物中的热阻,有效提高热界面导电性并加速传热。在本研究中,石墨烯通过超声空化,基于合适的溶剂体系均匀分散在 PU-ssPCM 的网络结构中。PU-ssPCM/GNP 膜的微观表面形态和微观结构如图 S13 所示(支持信息)。图 2a 显示了 PU-ssPCM/GNP 的合成过程和化学结构以及石墨烯与 PU-ssPCM 分子链之间的相互作用机制的示意图。石墨烯的有序晶体结构可用于替代部分无序的 PU-ssPCM;因此,随着石墨烯比例的增加,PU-ssPCM/GNP 的局部热链相互接触,形成热连接网络。因此,尽管晶体缺陷、界面热阻和声子散射的影响在异质界面上是不可避免的(图 S14a,支持信息),但 PU-ssPCM/GNP 的热导率比 PU-ssPCM 的热导率增加了 100.6%(图 S14b,支持信息)。此外,石墨烯与 PU-ssPCM 网链之间的氢键相互作用可以看作是构建 3D 导热网络的“传热桥”,有助于进一步降低界面热阻。 PU-ssPCM/GNP 的规则晶体排列也增加了分子链相互作用的热导率。13 因此,连续晶相和氢键相互作用之间的物理交联网络构建可以为声子热传导提供快速通道。通过声子振动,可以从高温区快速实现从高温区到低温区的热传递。

复合工艺和结构性能。a) 通过预聚合合成 PU-ssPCM;通过超声空化法将石墨烯分散到 PU-ssPCM 基体中制备 PU-ssPCM/GNP;PU-ssPCM 和 PU-ssPCM/GNP 的合成流程图和相应材料的结构示意图;石墨烯与 PU-ssPCM 网链之间的相互作用机制;PU-ssPCM/GNP 膜的照片和微观表面形貌。b) 照片显示,PU-ssPCM/GNP (1 wt.%) 样品条可以打结、卷曲、堆叠、折叠以及承重,支撑 100 g 的重量(样品尺寸:长×宽 × 厚度 = 35 × 15 × 0.87 mm)和提升 5 kg 的重量(样品尺寸:长 × 宽 × 厚度 = 100 × 2 × 0.24 mm)。
In addition, the introduction of graphene enhances the shape stability and mechanical robustness of the material.[13] The excellent mechanical properties and durability of PU-ssPCM/GNP were underscored by the conspicuous load-bearing capacity and enduring multiple cycles of folding, bending, knotting, and stacking. Furthermore, the synergistic effect between chemical crosslinking and physical crosslinking, and graphene empowerment is beneficial for enhancing the rigidity of PU-ssPCM/GNP, effortlessly supporting a weight of up to 100 g, featuring 200 times that of a sample measuring 35 mm in length, 15 mm in width and 0.87 mm in thickness (Figure 2b). Moreover, mechanical reinforcement enables PU-ssPCM/GNP to exhibit exciting toughness, bearing loads up to 50 000 times its own weight (size of sample: length × width × thickness = 100 × 2 × 0.24 mm) (Figure 2b). In short, this flexible PCM with adjustable mechanical properties is capable of various configurations according to different needs, exhibiting a preeminent mechanical performance.
此外,石墨烯的引入增强了材料的形状稳定性和机械强度。13 PU-ssPCM/GNP 优异的机械性能和耐用性通过显著的承载能力和耐久的折叠、弯曲、打结和堆叠的多次循环得到强调。此外,化学交联和物理交联以及石墨烯赋能之间的协同效应有利于增强 PU-ssPCM/GNP 的刚度,轻松支撑高达 100 g 的重量,是长 35 毫米、宽 15 毫米、厚度为 0.87 毫米的样品的 200 倍(图 2b)。此外,机械加固使 PU-ssPCM/GNP 表现出令人兴奋的韧性,承受高达自身重量 50 000 倍的载荷(样品尺寸:长×宽 × 厚度 = 100 × 2 × 0.24 毫米)(图 2b)。简而言之,这种具有可调机械性能的柔性 PCM 能够根据不同的需求进行各种配置,表现出卓越的机械性能。
2.3 Thermophysical Performance of PU-ssPCM/GNP
2.3 PU-ssPCM/GNP 的热物理性能
The thermal performance and mechanical properties of flexible PCM are crucial for their practical application. The corresponding 2θ values of the principle characteristic peaks of PU-ssPCM/GNP were 19.0° and 23.5°, respectively (Figure 3b), implying that it possessed the same crystal structure as the original PU-ssPCM, and no new phase formed during the preparation process (Figure S15c,b; Supporting Information). PU-ssPCM remained the main active ingredient for latent heat storage and release in PU-ssPCM/GNP. Compared with PU-ssPCM, the phase transition temperature of PU-ssPCM/GNP (1 wt.%) slightly increased (Figure 3a; Figure S16a–c, Supporting Information) and the crystalline peak intensity was enhanced (Figure 3b). This was related to the introduction of graphene, which might lead to a tighter molecular arrangement and an increased wafer thickness of the substrate.[26] However, the melting enthalpy value of PU-ssPCM/GNP lightly decreased from 110.3 to 104.0 J g−1 with increasing amounts of graphene (Figure S16a–c, Supporting Information), which was related to the relative proportion of graphene in the crystalline phase. The latent heat storage/release capacity possessed excellent cyclic durability according to the indistinguishable difference in the 100 curves of the heating/cooling process (Figure 3c; Figure S16d, Supporting Information). In addition, as the PU-ssPCM was subjected to sustained heating up to its melting temperature (Tm), the crystalline peak intensities at 2θ of 19.0° and 23.1° gradually decreased until they vanished entirely (Figure 3d), indicating that the molecular chains underwent a transformation from a regular arrangement to an amorphous state in response to external thermal stimulation. This temperature-dependent transition was consistent with the changes from the anisotropic spherical crystallographic structure to the isotropic structure observed via POM (Figure 3e1–e6; Figure S12, Supporting Information), and this transition was reversible.
柔性 PCM 的热性能和机械性能对其实际应用至关重要。PU-ssPCM/GNP 主特征峰的相应 2θ 值分别为 19.0° 和 23.5°(图 3b),这意味着它具有与原始 PU-ssPCM 相同的晶体结构,并且在制备过程中没有形成新的相(图 S15c,b;支持信息)。PU-ssPCM 仍然是 PU-ssPCM/GNP 中潜热储存和释放的主要活性成分。与 PU-ssPCM 相比,PU-ssPCM/GNP 的相变温度 (1 wt.%) 略有升高(图 3a;图 S16a–c,支持信息),结晶峰强度增强(图 3b)。这与石墨烯的引入有关,石墨烯可能会导致更紧密的分子排列和衬底的晶圆厚度增加。26 然而,随着石墨烯含量的增加,PU-ssPCM/GNP 的熔融焓值从 110.3 略微下降到 104.0 J g-1(图 S16a-c,支持信息),这与石墨烯在结晶相中的相对比例有关。根据加热/冷却过程的 100 条曲线的不可区分的差异,潜热储存/释放能力具有优异的循环持久性(图 3c;图 S16d,支持信息)。 此外,当 PU-ssPCM 持续加热至其熔融温度 (Tm) 时,2θ 处的 19.0° 和 23.1° 的结晶峰强度逐渐降低,直到完全消失(图 3d),表明分子链在响应外部热刺激时经历了从规则排列转变为无定形状态。这种温度依赖性转变与通过 POM 观察到的从各向异性球形晶体结构到各向同性结构的变化一致(图 3e1-e6;图 S12,支持信息),并且这种转变是可逆的。

化学结构和热物理性质。a) DSC 曲线,b) PU-ssPCM、PU-ssPCM/GNP、PEO 和 PCL 的 XRD 图谱。c) 使用 DSC 收集的 PU-ssPCM/GNP 潜伏储存和释放过程的循环稳定性。d) PU-ssPCM/GNP 的原位 XRD 图谱。e1–e6) 在熔化过程中在不同温度下记录的 PU-ssPCM 的偏振显微镜 (POM) 图像。f) -N-H 键在 3337 cm-1 波数处的变形振动,g) FTIR 光谱和 h) -C=O 在 1622 cm-1 波数(H 键合)处的拉伸振动吸收峰,在熔化过程中在不同温度下收集。
The binding energy of hydrogen bonds (RT≈2.5 kJ mol−1) is higher than that of thermal energy and can survive for a long time under low-temperature conditions.[27] The hydrogen bonding interactions gradually decreased with increasing temperature, as shown in Figure 3f–h. The characteristic peak intensities of the NH bonds and C═O bond weakened during the heating process, suggesting that hydrogen bonding in the remote structure of the hard segment began to dissociate when the molecular chain obtained sufficient energy to move. Strong and uniform hydrogen bonds existing in the ordered crystallization zones also caused the characteristic peak intensity of hydrogen bonds to decrease faster around the melting point. Thereby, there are inter- and intra-chain hydrogen bonds in the structure of PU-ssPCM, contributing to the formation of multi-hydrogen bond network chains, which display molecular time-bonding effects.[27] The characteristic of hydrogen-bonding interactions is that they can break at high temperatures and re-form at room temperature.
氢键的结合能 (RT≈2.5 kJ mol-1) 高于热能,可以在低温条件下存活很长时间。27 氢键相互作用随着温度的升高而逐渐减少,如图 3f-h 所示。NH 键和 C═O 键的特征峰强度在加热过程中减弱,表明当分子链获得足够的能量移动时,硬链段远程结构中的氢键开始解离。存在于有序结晶区中的强而均匀的氢键也导致氢键的特征峰值强度在熔点附近下降得更快。因此,PU-ssPCM 的结构中存在链间和链内氢键,有助于形成多氢键网络链,从而表现出分子时间键效应。27 氢键相互作用的特点是它们可以在高温下断裂,在室温下重新形成。
2.4 Mechanical Properties of PU-ssPCM/GNP
2.4 PU-ssPCM/GNP 的机械性能
The changes in the chemical structure and hydrogen bonding interactions of PU-ssPCM/GNP with increasing graphene content were explored through ATR-FTIR analysis (Figure 4a–c). No new chemical bonds were formed in the spectral analysis of PU-ssPCM/GNP, implying that no chemical reaction occurred between the graphene nanoparticles (GNPs) and the PU-ssPCM. As the proportion of graphene increased, the intensity of the vibration peak of the -N-H bond at wavenumbers 3337 and 1625 cm−1 became stronger, and the vibration peak width of -N-H bond at wavenumbers of 3337 and 1625 cm−1 increased, implying that hydrogen bonding interactions between graphene and molecular chain of PU-ssPCM generated and gradually increased. The hydrogen-bonding network collaborated with the crystalline skeleton to construct a 3D dynamic network structure in PU-ssPCM/GNP. This structural characteristic contributes to the strengthening of the thermal stability and storage modulus of PU-ssPCM/GNP (Figure 4d; Figure S15a, Supporting Information). In addition, owing to the introduction of graphene, interfacial force, and internal friction between polymeric molecular chains and graphene generated and gradually enhanced, resulting in higher damping behavior and tanδ values (Figure 4e). The storage modulus of PU-ssPCM/GNP demonstrated temperature-dependent characteristics, with an increased modulus at reduced temperatures (Figure 4d).
通过 ATR-FTIR 分析探讨了 PU-ssPCM/GNP 的化学结构和氢键相互作用随石墨烯含量增加的变化(图 4a-c)。在 PU-ssPCM/GNP 的光谱分析中没有形成新的化学键,这意味着石墨烯纳米颗粒 (GNP) 和 PU-ssPCM 之间没有发生化学反应。随着石墨烯比例的增加,-N-H 键在波数 3337 和 1625 cm−1 处的振动峰强度变得更强,在 3337 和 1625 cm−1 波长处-N-H 键的振动峰宽度增加,表明石墨烯与 PU-ssPCM 分子链之间的氢键相互作用产生并逐渐增加。氢键网络与晶体骨架合作,在 PU-ssPCM/GNP 中构建了 3D 动态网络结构。这种结构特性有助于加强 PU-ssPCM/GNP 的热稳定性和存储模量(图 4d;图 S15a,支持信息)。此外,由于石墨烯的引入,界面力以及聚合物分子链和石墨烯之间的内部摩擦产生并逐渐增强,导致更高的阻尼行为和 tanδ 值(图 4e)。PU-ssPCM/GNP 的储能模量表现出与温度相关的特性,在降低温度下模量增加(图 4d)。

PU-ssPCM/GNP 的化学结构和机械性能。a) -N-H 键在 3337 cm-1 波数处的振动吸收峰的 FTIR 吸收曲线。b) 具有不同石墨烯含量的全光谱 PU-ssPCM/GNP 和 c) -N-H 键在 1625 cm-1 波数处的振动吸收峰。d) 在 -80–80 °C 的温度范围内记录的不同石墨烯剂量下 PU-ssPCM/GNP 的储能模量与温度之间的关系。e) 在 -80–15 °C 的温度范围内记录的不同量石墨烯的 PU-ssPCM/GNP 的损耗角正切(tanδ)与温度之间的关系。 f) 不同石墨烯剂量下 PU-ssPCM/GNP 的应力和应变之间的关系曲线。g) 不同石墨烯剂量下 PU-ssPCM/GNP 的应变、负载和应力的变化关系。h) 不同类型刺激响应软致动器的应力-应变关系分布。78, 9, 11, 13, 28 i) 本作品与同行作品的变形和工作密度性能比较。9, 11, 21, 23, 24, 28, 29]
In addition, as shown in Figure 4f,g, the mechanical properties of PU-ssPCM/GNP were strengthened as a result of the introduction of graphene. The PU-ssPCM/GNP (1 wt.%) presented remarkable elongation at break (ε = 1543%) and ultimate stress (σ = 19.2 MPa), and the maximum loading capacity was 87.4 N (Figure S17, Supporting Information). The enhanced mechanical performance of the PU-ssPCM/GNP (1 wt.%) might be caused by the participating stress produced by the surface crystallization of graphene and the interaction between graphene and molecular chains.[26] Moreover, high elongation was conducive to a sharp increase in stress or modulus, and increased stress can accelerate the crystallization of the polymer. The generated microcrystals played a role in physical crosslinking. Thereby, the ordered arrangement of the molecular chains and hydrogen bonding interactions contributed to improving the mechanical strength.[13] However, excess amounts of graphene were prone to agglomeration in the matrix, resulting in stress concentration and fracturing, thus damaging the mechanical properties of PU-ssPCM/GNP. Compared with other types of materials, PU-ssPCM and PU-ssPCM/GNP (1 wt.%) exhibited high tensile and damage resistance performance as well as mechanical stability (Figure 4h).
此外,如图 4f,g 所示,由于石墨烯的引入,PU-ssPCM/GNP 的机械性能得到了增强。PU-ssPCM/GNP (1 wt.%) 表现出显着的断裂伸长率 (ε = 1543%) 和极限应力 (σ = 19.2 MPa),最大负载能力为 87.4 N(图 S17,支持信息)。PU-ssPCM/GNP (1 wt.%) 的增强机械性能可能是由石墨烯表面结晶产生的参与应力以及石墨烯与分子链之间的相互作用引起的。26 此外,高伸长率有利于应力或模量的急剧增加,而增加的应力可以加速聚合物的结晶。生成的微晶在物理交联中发挥作用。因此,分子链的有序排列和氢键相互作用有助于提高机械强度。13 然而,过量的石墨烯容易在基体中团聚,导致应力集中和断裂,从而破坏 PU-ssPCM/GNP 的机械性能。与其他类型的材料相比,PU-ssPCM 和 PU-ssPCM/GNP (1 wt.%) 表现出较高的拉伸和抗损伤性能以及机械稳定性(图 4h)。
Generally, the tensile force of stimulus-responsive soft actuators is determined by their characteristics and geometric shape. Work capacity, output energy density, and recovery power are common parameters for evaluating actuation efficiency. The work capacity and density are determined by the distance of movement, which is related to the temporary strain and elongation at the break of the materials. Therefore, to further evaluate the actuation efficiency level of our work, we conducted extensive literature reviews and compared the deformation ability and work density of different soft actuators, as shown in Figure 4i. Compared with LCEs, SMPs, and fiber materials, the flexible PCM developed in our study presented high deformation and prominent work density, which may function as soft actuators.
通常,刺激响应软致动器的拉力由其特性和几何形状决定。工作能力、输出能量密度和回收功率是评估驱动效率的常用参数。工作能力和密度由运动距离决定,这与材料断裂时的临时应变和伸长率有关。因此,为了进一步评估我们工作的驱动效率水平,我们进行了广泛的文献综述,并比较了不同软致动器的变形能力和工作密度,如图 4i 所示。与 LCEs、SMPs 和纤维材料相比,我们研究中开发的柔性 PCM 表现出高变形和突出的工作密度,可能起到软致动器的作用。
2.5 Mechanism of Shape Memory Effect
2.5 形状记忆效应的机制
PU-ssPCM/GNP (1 wt.%) displayed notable shape programmability, wherein the polymer exhibited substantial stretching up to 600% of its original length. Subsequently, when subjected to temporary conditions, the polymer can revert to its original dimensions upon heating by a hot air fan (Movie S1, Supplementary Movie) or full- spectrum sunlight in a short time, as shown in Figure 5d. This coupling effect between excitation and contraction ensured that the PU-ssPCM/GNP (1 wt.%) actualized coordinated and synchronous contraction under external environmental stimuli (such as thermal stimulation and photic stimulation). Subsequently, we explored the shape behavior of the polymer using DMA (Figure 5b,c). The experimental results revealed that the PU-ssPCM/GNP (1 wt.%) exhibited a maximum recoverable strain (ɛr,max) of 300% under an applied maximum recovery stress (σr,max) of 3 MPa. The combination of high extensibility and prominent recovery stress confers polymers with high work density.[28] Furthermore, the PU-ssPCM/GNP (1 wt.%) presented a shape fixity (Rf) of 76.0% and shape recovery (Rr) of 90.3%, respectively (Equations (S1) and (S2), Supporting Information, Figure 5b). Furthermore, following a series of four cyclic tests, the Rf of the sample exhibited a progressive trend with values of 52.3%, 56.5%, 60.4%, and 60.3%, respectively. Because partial prestored stress was employed to balance the loading gravity, a localized shape recovery behavior emerged after the removal of the external force. Concurrently, the Rr of the sample demonstrated an interesting pattern, with intestinal values of 47.8%, 51.0%, and 56.3%, culminating in a remarkably high value of 99.0% after the fourth cycle. The observed increase in Rf and the significant increase in Rr may be attributed to the continuous soft segment phase, which is characterized by a high degree of elongation orientation. This phase facilitates plastic deformation under mechanical stress.[30] However, it is hypothesized that the initial plastic deformation may undergo a transformation through a process of mechanical conditioning, manifesting as a substantial increase in elastic deformation. This phenomenon may indicate that the composite undergoes structural reorganization that enhances its ability to revert to its original state following deformation. We also discovered that the elastic behavior of PU-ssPCM/GNP (1 wt.%) can be enhanced by exerting a controlled degree of stress (Figure S18, Supporting Information). During continuous stretching and release, the disordered dispersion state of graphene within the polymer matrix contributes to the entropy increment process. The implications of these findings are significant as they highlight the potential of PU-ssPCM/GNP to exhibit improved resilience and adaptability in applications where materials are subjected to repetitive mechanical stress.
PU-ssPCM/GNP (1 wt.%) 显示出显着的形状可编程性,其中聚合物表现出高达其原始长度 600% 的实质性拉伸。随后,当受到临时条件时,聚合物可以在热风风扇(电影 S1、补充电影)或全光谱阳光下在短时间内恢复到其原始尺寸,如图 5d 所示。这种激发和收缩之间的耦合效应确保了 PU-ssPCM/GNP (1 wt.%) 在外部环境刺激(如热刺激和光刺激)下实现协调和同步收缩。随后,我们使用 DMA 探索了聚合物的形状行为(图 5b,c)。实验结果表明,在施加的最大恢复应力 (σr,max) 为 3 MPa 的情况下,PU-ssPCM/GNP (1 wt.%) 表现出 300% 的最大可恢复应变 (ɛr,max)。高延展性和突出的恢复应力相结合,赋予聚合物高工作密度。28 此外,PU-ssPCM/GNP (1 wt.%) 的形状固定性 (Rf) 为 76.0%,形状恢复率 (Rr) 分别为 90.3%(方程 (S1) 和 (S2),支持信息,图 5b)。此外,经过一系列的 4 次循环测试,样品的 Rf 呈渐进趋势,值分别为 52.3%、56.5%、60.4% 和 60.3%。由于采用了部分预存储应力来平衡加载重力,因此在去除外力后出现了局部形状恢复行为。 同时,样本的 Rr 表现出一种有趣的模式,肠道值为 47.8%、51.0% 和 56.3%,在第四个周期后达到 99.0% 的非常高的值。观察到的 Rf 增加和 Rr 的显着增加可能归因于连续的软段阶段,其特征是高度伸长取向。此相有助于在机械应力下发生塑性变形。30 然而,据推测,最初的塑性变形可能会通过机械调节过程发生转变,表现为弹性变形的大幅增加。这种现象可能表明复合材料发生了结构重组,从而增强了其在变形后恢复到原始状态的能力。我们还发现,PU-ssPCM/GNP (1 wt.%) 的弹性行为可以通过施加受控程度的应力来增强(图 S18,支持信息)。在连续拉伸和释放过程中,石墨烯在聚合物基体中的无序分散态有助于熵增量过程。这些发现的意义重大,因为它们强调了 PU-ssPCM/GNP 在材料承受重复机械应力的应用中表现出更好的弹性和适应性的潜力。

形状记忆效应机制分析。a) 不同外部条件下 PU-ssPCM 和 PU-ssPCM/GNP 的结构转变过程示意图。受热后,样品经历了从结晶到无定形的结构相变,其特征是氢键的破坏。当进行冷拉时,样品内的分子链沿施加的力方向排列,导致定向结晶。在随后的加热中,延伸的分子链获得足够的能量来克服分子间作用力,从而导致氢键断裂。在这个分子弛豫之后,样品逐渐恢复到原来的长度。b) PU-ssPCM/GNP (1 wt.%) 从 300% 开始的典型自由应变恢复实验。c) PU-ssPCM/GNP (1 wt.%) 在指定持续时间内的循环应变响应,通过调节应力的施加和释放,以及施加的应力的大小。d) PU-ssPCM/GNP (1 wt.%) 的变形恢复过程 (ε = 600%) 和热风风扇刺激和全光谱太阳灯刺激下所需的收缩反应时间。e) XRD 曲线,f) 放热过程,g) 吸热过程,以及 PU-ssPCM 在不同变形程度下的相变焓和温度变化(PEO:PCL = 1:400 的摩尔比)。h) -N-H 键在 3337 cm-1 波数处的振动吸收峰,i) 全光谱,以及 j) -N-H 键在 1538 cm-1 波数处的振动吸收峰,从中间位置收集不同程度的拉伸取向。
We speculated that the structural transition of the polymer is related to the crystal structural transformation and hydrogen bonding interactions under different external conditions. Figure 5a depicts the process of structural transformation that the sample undergoes in different settings: 1) the transition of molecular chains from a regular arrangement to the amorphous state generated when external thermal stimulation was applied (corresponding to Figure 3d,e1,e2); 2) the hydrogen bonding interaction between and within molecular chains underwent dissociation once the molecular chains obtained sufficient energy (corresponding to Figure 3f–h). In addition, the molecular chains of the flexible PCM gradually underwent directional arrangement and elongation along the direction of the force under an external force at room temperature. The ordering degree of the crystals increased significantly as the stretching state changed from 60% to 200%, as displayed in XRD pattern (Figure 5e). As the stretching state increased from 200% to 400%, local lamellar fragmentation or strain-induced melting of the crystal structure resulted in a decreased crystalline peak intensity. As the stretching deformation further increased to 800%, the generation of melt recrystallization resulted in a significantly increased crystalline peak intensity. Flory and Yoon[31] first proposed the strain-induced melting-recrystallization model, which described the molecular micromechanisms of polymer crystals during the multi-stage deformation process.[30] The crystal structure of the flexible PCM transformed from the disordered intermediate state of the original crystal into new crystallites with a preferable net-chain orientation along the stress direction, forming a fibrillation structure, which implies orientation-induced crystallization enhancement. Therefore, the degree of orderliness of the net chains of PU-ssPCM gradually improved after stretching by an external force, causing the formation of new crystals (Figure 5e). Additionally, an increase in the degree of orderliness and crystallinity of the network chain contributed to an enthalpy increase, as shown in Figure 5g. Deformation and relaxation are related to the bond rotation. The energy and recovery stress in a rigid thermosetting network can be stored through bond rotation and bond length variation during the programming process,[32] mainly through an increase in enthalpy. Thus, the stretching process was capable of inducing orientational crystallization, which was accompanied by the accumulation and storage of energy, as shown in Figure 5f,g. The stress recovery and energy output depend on the energy input during programming and energy storage of the temporary shape after programming. The stored energy is composed of entropy and enthalpy. Stress and energy storage in polymer networks are achieved by entropy reduction during deformation. Based on the increase in enthalpy through stretching bonds, we speculated that storing enthalpy during programming might also be a method to enhance stress recovery and energy output.[33
我们推测聚合物的结构转变与不同外部条件下的晶体结构转变和氢键相互作用有关。图 5a 描述了样品在不同设置下经历的结构转变过程:1) 分子链从规则排列转变为施加外部热刺激时产生的无定形状态(对应于图 3d,e1,e2);2) 一旦分子链获得足够的能量,分子链之间和分子链内的氢键相互作用就会发生解离(对应于图 3f-h)。此外,在室温下,柔性相变材料的分子链在外力作用下沿力的方向逐渐发生定向排列和伸长。当拉伸状态从 60% 变为 200% 时,晶体的有序度显著增加,如 XRD 图所示(图 5e)。当拉伸状态从 200% 增加到 400% 时,局部层状碎裂或应变诱导的晶体结构熔化导致结晶峰强度降低。随着拉伸变形进一步增加到 800%,熔融再结晶的产生导致结晶峰强度显着增加。 Flory 和 Yoon31 首先提出了应变诱导熔融再结晶模型,该模型描述了聚合物晶体在多阶段变形过程中的分子微观机制。30 柔性相变材料的晶体结构从原始晶体的无序中间状态转变为新的微晶,沿应力方向具有优选的净链取向,形成纤化结构,这意味着取向诱导的结晶增强。因此,PU-ssPCM 的净链在受到外力拉伸后逐渐改善,导致新晶体的形成(图 5e)。此外,网络链的有序性和结晶度的增加也导致了焓的增加,如图 5g 所示。变形和松弛与键旋转有关。刚性热固性网络中的能量和恢复应力可以通过编程过程中的键旋转和键长变化来储存,32 主要是通过焓的增加。因此,拉伸过程能够诱导取向结晶,并伴随着能量的积累和储存,如图 5f,g 所示。应力恢复和能量输出取决于编程过程中的能量输入和编程后临时形状的能量存储。储存的能量由熵和焓组成。聚合物网络中的应力和能量存储是通过变形过程中的熵减少来实现的。 基于通过拉伸键增加焓,我们推测在编程过程中存储焓也可能是增强应力恢复和能量输出的一种方法。33]
Hydrogen bonding is a direct attraction between electron-deficient and high-electron-cloud density atoms and is a widely existing weak force at the molecular level.[34] The energy of hydrogen bonds is usually between 5 and 20 kJ mol−1, which is much weaker than the covalent and ionic bonds, but slightly stronger than the π–π stacking forces and van der Waals forces.[35] We discovered that the stability of the stretching state was closely related to hydrogen bonding interactions, according to ATR-FTIR analysis (Figure 5h–j). Although the dissociation energy of a single hydrogen bond is low, aggregation can form strong bond energies with covalent bonds in the microdomains,[36] contributing to more rigidity in the crystal. Therefore, the abundant hydrogen bonding between the inter- and intra-chains may serve as an internal stress provider and contribute to maintaining the elongation state of the molecular chain without external force, as well as maintaining stable deformation with external force. The weakened hydrogen bonding (at ɛ = 800%) was related to melt recrystallization of crystal structure (Figure 5h–j). Moreover, hydrogen bonds with unique directionality and adjustability can act as molecular switches to achieve a dynamic equilibrium. The strength and degree of hydrogen bonding in the hard segments of PU-ssPCM/GNP decreased with increasing temperature, exhibiting dynamic reversibility and unique responsiveness to external environmental stimuli (Figure 3f–h).[37] In short, chemical bonding forces and hydrogen bonding interactions synergistically facilitated the mechanical performance and programmable features of PU-ssPCM and PU-ssPCM/GNP (Figure 1d and Figure 4f). We summarized that the stretching process of dumbbell shapes at room temperature can be regarded as the accumulation and temporary storage of energy through crystallization regions, simultaneously achieving effective “locking” and shape fixation via hydrogen bonding interactions.
氢键是缺电子原子和高电子云密度原子之间的直接吸引,是分子水平上广泛存在的弱力。34 氢键的能量通常在 5 到 20 kJ mol-1 之间,这比共价键和离子键弱得多,但比 π-π 堆叠力和范德华力略强。35 根据 ATR-FTIR 分析,我们发现拉伸状态的稳定性与氢键相互作用密切相关(图 5h-j)。尽管单个氢键的解离能很低,但聚集可以在微域中与共价键形成强键能,36 从而有助于提高晶体的刚度。因此,链间和链内之间丰富的氢键可以作为内应力提供者,有助于在没有外力的情况下维持分子链的伸长状态,以及在外力作用下保持稳定的变形。减弱的氢键(ɛ = 800%)与晶体结构的熔融再结晶有关(图 5h-j)。此外,具有独特方向性和可调节性的氢键可以充当分子开关以实现动态平衡。 PU-ssPCM/GNP 硬段中的氢键强度和程度随着温度的升高而降低,表现出动态可逆性和对外部环境刺激的独特响应性(图 3f-h)。37 简而言之,化学键和氢键相互作用协同促进了 PU-ssPCM 和 PU-ssPCM/GNP 的机械性能和可编程特性(图 1d 和图 4f)。我们总结说,哑铃形状在室温下的拉伸过程可以看作是通过结晶区积累和临时储存能量,同时通过氢键相互作用实现有效的“锁定”和形状固定。
When thermal stimulation was applied, the transition of the polymeric molecular chains from the stretching state to a randomly coiled conformation occurred, and the deformation of the material was restored to its original length (Figure 5d and 1a). At this time, molecular chains moved toward the “thawing” direction after hydrogen rupture. This means that the stored energy underwent “unlocking” and was controllably released upon applying external thermal stimulation. The amorphous state possesses the highest entropy in the Boltzmann equation (S = κ lnW, where S is entropy, κ is Boltzmann's constant, and W is the possibility of a polymer chain conformation).[10, 38] Entropy energy can be stored through the phase transition of crystal domains, and the entropy increment induced by length contraction can overcome the tension effect provided by the hydrogen-bonding network. Therefore, entropy energy release can drive deformation recovery. The shape recovery caused by energy release may generate a significant force for implementing actuation tasks. In summary, we believe that hydrogen bonding interactions (i.e., internal stress provider) and the sequential change of orientation crystallization domains serve as reversible switches, which play an important role in the shape memory behavior and programmable deformation of the flexible PCM.
当施加热刺激时,聚合物分子链从拉伸状态转变为随机卷曲构象,并且材料的变形恢复到其原始长度(图 5d 和 1a)。此时,氢破裂后分子链向“解冻”方向移动。这意味着储存的能量经历了“解锁”,并在施加外部热刺激时被可控地释放。非晶态在玻尔兹曼方程中具有最高的熵(S = κ lnW,其中 S 是熵,κ 是玻尔兹曼常数,W 是聚合物链构象的可能性)。10、38熵能可以通过晶畴的相变来储存,长度收缩引起的熵增量可以克服氢键网络提供的张力效应。因此,熵能释放可以驱动变形恢复。由能量释放引起的形状恢复可能会产生用于执行驱动任务的重要力。综上所述,我们认为氢键相互作用(即内应力提供者)和取向结晶域的顺序变化起到了可逆开关的作用,它们在柔性 PCM 的形状记忆行为和可编程变形中起着重要作用。
In brief, our work is mainly based on the regulation of the cross-linked structure of molecular chains to construct a flexible PCM. It not only solves the problems of leakage in traditional solid-liquid PCMs but also possesses programmable deformation and shape stability. Due to the limitations of hard segments on the free movement of molecular chains of solid-liquid PCM, the crystallinity is reduced to some extent, but it exhibits better high-temperature stability and mechanical performance. The symmetry and regularity of the network structure can significantly improve rigidity and anti-damage tensile performance. In addition, the chemical bonds and physical interactions (such as crystalline domains, hydrogen bonds, and entanglement of polymer chains) in the network chains can effectively store entropy energy and regulate molecular mobility through crystallization/melting phase-transition processes to achieve fixed/released temporary shapes, thus achieving a shape-memory effect.
简而言之,我们的工作主要基于调节分子链的交联结构来构建柔性 PCM。它不仅解决了传统固液相变材料中的泄漏问题,而且具有可编程的变形和形状稳定性。由于硬链段对固液相变材料分子链自由运动的限制,结晶度在一定程度上降低,但表现出较好的高温稳定性和力学性能。网络结构的对称性和规则性可以显著提高刚度和抗损伤拉伸性能。此外,网络链中的化学键和物理相互作用(如晶域、氢键和聚合物链的纠缠)可以有效地储存熵能,并通过结晶/熔融相变过程调节分子迁移率,以实现固定/释放的临时形状,从而达到形状记忆效应。
2.6 Photo-to-Thermal Conversion and Actuation Performance
2.6 光热转换和驱动性能
To further explore the development potential of flexible PCM in the application of photothermal actuation, the photo-to-thermal conversion performance of PU-ssPCM/GNP was investigated. The absorptivity of the PU-ssPCM/GNP (1 wt.%) (≈96%) is obviously higher than that of PU-ssPCM in the wavelength range of 200–2500 nm via UV-vis-NIR (Figure S19, Supporting Information). The surface temperature variations of the samples with illumination time were collected using a thermocouple thermometer under simulated solar sunlight irradiation (100 mW cm−2, AM 1.5). Due to its capacity to capture incident photons, graphene can quickly absorb solar energy to induce structural changes in PU-ssPCM/GNP upon exposure to solar radiation, as shown in Figure 6a. The corresponding temperature-time evolution curves of PU-ssPCM/GNP and PU-ssPCM were used to explore the light-to-thermal energy conversion performance, as shown in Figure 6b. The formation of turning points, attributed to the absorption or release of heat during phase transitions, indicates the phenomenon of absorbed solar energy conversion into latent thermal energy inside the PU-ssPCM/GNP composite. The light-to-thermal conversion and storage efficiency (η) of PU-ssPCM and PU-ssPCM/GNP were 39.5% and 97.8%, respectively, as determined by the formula provided in the supplementary material (Equation (S8), Supporting Information). Additionally, the differences in the thermal distribution in the infrared thermal images of PU-ssPCM and PU-ssPCM/GNP indicated that the intense vibration and mutual interaction of phonons within the graphene layer resulted in a rapid accumulation of thermal energy within the polymer molecular chains following exposure to light irradiation, as shown in Figure 6c (additional data can be found in Figures S20 and S21, Supporting Information). These findings corroborated the pivotal role of graphene, acting as both an efficient photon-absorbing agent and a molecular heat generator, effectively enhancing the thermal conductivity and overall photothermal conversion efficiency of the PU-ssPCM (1 wt.%). Additionally, PU-ssPCM/GNP (1 wt.%) demonstrated a consistent and enduring capacity for converting light to thermal energy. This was evidenced by the comparable cyclic thermal profiles during the heat storage and release cycles at a simulated solar sunlight irradiation of 100 mW cm−2 (AM 1.5), as shown in Figure 6d. In addition, subsequent experiments revealed that the η values increased and the heating time diminished with an increase in solar intensity, indicating that photothermal conversion can be accomplished within a shorter timeframe under strong light irradiation (Figure S22, Supporting Information). In short, the findings from the photothermal conversion performance offered compelling evidence and a solid theoretical foundation for further research on the photothermal-driven performance.
为进一步探索柔性相变材料在光热驱动应用中的发展潜力,研究了 PU-ssPCM/GNP 的光热转换性能。通过 UV-vis-NIR 在 200–2500 nm 波长范围内,PU-ssPCM/GNP (1 wt.%) (≈96%) 的吸收率明显高于 PU-ssPCM(图 S19,支持信息)。使用热电偶温度计在模拟太阳光照射 (100 mW cm-2, AM 1.5) 下收集样品表面温度随光照时间的变化。由于其捕获入射光子的能力,石墨烯可以在暴露于太阳辐射时快速吸收太阳能以诱导 PU-ssPCM/GNP 的结构变化,如图 6a 所示。使用 PU-ssPCM/GNP 和 PU-ssPCM 的相应温度-时间演变曲线来探索光能转换性能,如图 6b 所示。由于相变过程中热量的吸收或释放而形成转折点,表明 PU-ssPCM/GNP 复合材料内部吸收的太阳能转化为潜热能的现象。PU-ssPCM 和 PU-ssPCM/GNP 的光热转化率和存储效率 (η) 分别为 39.5% 和 97.8%,由补充材料中提供的公式确定(方程 (S8),支持信息)。 此外,PU-ssPCM 和 PU-ssPCM/GNP 红外热图像中热分布的差异表明,石墨烯层内声子的强烈振动和相互作用导致热能在暴露于光照射后在聚合物分子链内迅速积累,如图 6c 所示(其他数据见图 S20 和 S21、支持信息)。这些发现证实了石墨烯的关键作用,石墨烯既是高效的光子吸收剂,又是分子热发生器,有效提高了 PU-ssPCM 的导热性和整体光热转换效率 (1 wt.%)。此外,PU-ssPCM/GNP (1 wt.%) 表现出将光转化为热能的一致和持久的能力。如图 6d 所示,在模拟 100 mW cm-2 (AM 1.5) 的太阳光照射下,储热和释放循环期间的可比循环热曲线证明了这一点。此外,随后的实验表明,随着太阳强度的增加,η值增加,加热时间减少,这表明在强光照射下可以在更短的时间内完成光热转换(图 S22,支持信息)。简而言之,光热转换性能的研究结果为进一步研究光热驱动性能提供了令人信服的证据和坚实的理论基础。

光热驱动相变人造肌的应用探索。a) PU-ssPCM/GNP 的光热能转换测量和结构转变示意图。b) 在 100 mW cm-2 的模拟太阳光照射下收集了 PU-ssPCM 和 PU-ssPCM (1 wt.%) 的储热和释放过程曲线,以探索光到热转换性能。c) PU-ssPCM 和 PU-ssPCM/GNP 在不同时间在模拟太阳光照射 (100 mW cm-2) 下的红外热成像。d) 在 100 mW cm-2 的模拟太阳光照射下收集了 PU-ssPCM/GNP (1 wt.%) 的储热和释放过程的五条循环曲线,用于稳定性探索。e) 通过在光刺激下提升不同重量的物体来评估 PU-ssPCM 的主动驱动力 (1 wt.%)。f) PU-ssPCM/GNP (1 wt.%) 的工作能力和工作密度分别与物体起重的关系曲线。g) 举起各种重量的物体时 PU-ssPCM/GNP 的吸收热能和输出能量 (1 wt.%) 的变化。h) 受人类手臂启发的打印手臂假肢模型。i) PU-ssPCM/GNP (1 wt.%) 关于模拟光刺激下肱二头肌弯曲运动的驱动行为。
In addition, according to basic thermodynamics (ΔG = ΔH−TΔS, where ΔG, ΔH, and ΔS are the changes in Gibbs free energy, enthalpy, and entropy, respectively, and T is the absolute temperature), the stored energy is composed of entropy and enthalpy. In general, entropy elasticity is a recognized driving force for shape and stress memory in SMP. Fan et al suggested that storing enthalpy through bond rotation and bond length changes during the programming process may be another way to increase recovery pressure and energy output.[32] Therefore, we considered that storing enthalpy can act as a way to further increase stress recovery and energy output. The chain conformation and interchain stacking of the original lattice may undergo a phase transition by applying tensile stress,[30] and the flexible chains undergo tensile orientation-induced crystallization, resulting in an enthalpy increase and a decrease in entropy (Figure 5f,g). The stored energy in the network and the restored stress are increased through bond rotation and bond length changes.[32] When the external force is eliminated, solidification of the switch segment of PU-ssPCM/GNP prevents the molecular migration rate from being triggered. Applying only a heating-stimulus triggers the molecular migration rate, and the molecular chains transform from an ordered arrangement to a random coiled conformation with the highest entropy, thus restoring their original shape. The high-energy conversion occurring inside the material puts it in a metastable state during this process. Therefore, the material tends to release this energy, which can be considered the driving force for actuation. Therefore, the latent capacity (ordered crystal arrangement) of PU-ssPCM/GNP (1 wt.%) contributes to driving more energy storage and reducing relaxation during the recovery process, achieving high recovery stress and energy output. In addition, the introduction of GNPs can significantly increase the steric hindrance and interaction between molecular segments, which is conducive to improving the recovery stress.
此外,根据基本热力学(ΔG = ΔH-T ΔS,其中 Δ G、ΔH 和 ΔS 分别是吉布斯自由能、焓和熵的变化,T 是绝对温度),存储的能量由熵和焓组成。一般来说,熵弹性是 SMP 中形状和应力记忆的公认驱动力。Fan 等人认为,在编程过程中通过键旋转和键长变化来存储焓可能是增加回收压力和能量输出的另一种方法。32 因此,我们认为储存焓可以作为进一步增加应力恢复和能量输出的一种方式。原始晶格的链构象和链间堆叠可以通过施加拉伸应力发生相变,30 并且柔性链发生拉伸取向诱导的结晶,导致焓增加和熵减少(图 5f,g)。网络中存储的能量和恢复的应力通过键旋转和键长变化而增加。32 当外力消除时,PU-ssPCM/GNP 开关段的凝固会阻止分子迁移速率的触发。仅施加加热刺激会触发分子迁移速率,分子链从有序排列转变为具有最高熵的随机卷曲构象,从而恢复其原始形状。在此过程中,材料内部发生的高能转换使其处于亚稳态。 因此,材料倾向于释放这种能量,这可以被认为是驱动的驱动力。因此,PU-ssPCM/GNP 的潜在容量(有序晶体排列)(1 wt.%) 有助于驱动更多的能量存储并减少恢复过程中的松弛,实现高恢复应力和能量输出。此外,GNPs的引入可以显著增加分子片段之间的空间位阻和相互作用,有利于改善恢复应力。
We demonstrated that PU-ssPCM/GNP (1 wt.%) possessed excellent extensibility (ɛ > 1500%), toughness, and programmable deformation. However, further experimental verification is required to determine whether the shape recovery of this flexible PCM can generate a tensile force. The flexible PCM exhibited thermal-driven actuation (Figure S23, Movies S1–S5, Supplementary Movie) and photothermal-driven actuation (Figure 6e; Figure S24, Movies S6–S10, Supplementary Movie). The pre-strained thin spline of the PU-ssPCM exhibited hydration actuation and displayed a work density of 405 kJ m−3 (Figure S23 and Movies S2–S5, Supplementary Movie). In addition, a pre-strained thin spline of the PU-ssPCM/GNP (1 wt.%) was able to lift a 55 g object (2620 times its own weight) accompanied by shrinkage deformation rate of 53.3% under light stimulation, presenting a work density of 1330 kJ m−3 (Figure 6e; Movie S7, Supplementary Movie). Similarly, another pre-strain thin spline (45 mg) was capable of hoisting a 105 g weight upon exposure to a full spectrum sunlamp (Figure S23 and Movie S8, Supplementary Movie). The lifting ratio (m1/ma) exceeded 2333, translating to an energy output of 460 J kg−1. We conducted a comprehensive analysis of the work density of PU-ssPCM/GNP (1 wt.%) by lifting objects of varying weights when exposed to light stimulation as shown in Figure 6f. The working capacity is related to the distance of movement, which is related to the temporary strain and elongation at the break of the material.[39] PU-ssPCM/GNP (1 wt.%) has been experimentally proven to possess high toughness (ε = 1543%, σ = 19.2 MPa) and rigidity. Therefore, actuators with a higher elongation at break or temporary strain contribute to the generation of larger movement distances and exhibit a greater working capacity. In addition, to maximize the measurement of the work capacity caused by photothermal actuation, lightweight samples with a small volume are preferred for testing. However, intermolecular interactions of molecular chains (such as binding and entanglement) can introduce higher energy barriers during the phase transitions. Thereby, when being a photothermal stimulus, a large molecule requires a longer time to adapt to and reach a new equilibrium, especially during the process of lifting heavy objects. Furthermore, one of the advantages of developing flexible PCMs with high toughness is that the crystalline skeleton is conducive to energy storage during the stretching orientation process. The tensile force of an optical actuator is determined by its own characteristics and geometric shape, and high mechanical performance and large cross-sectional area contribute to generating significant tensile force.[39] In brief, the flexible ssPCM integrated with high thermal energy storage, toughness, and multi-stimuli responsive performance, is extremely attractive for artificial muscles and soft robots with the requirement for low consumption and energy conservation in complex scenes to expand developments.
我们证明 PU-ssPCM/GNP (1 wt.%) 具有出色的可扩展性 (ɛ > 1500%)、韧性和可编程变形。然而,需要进一步的实验验证来确定这种柔性 PCM 的形状恢复是否可以产生拉力。柔性 PCM 表现出热驱动驱动(图 S23,电影 S1-S5,补充电影)和光热驱动驱动(图 6e;图 S24,电影 S6-S10,补充电影)。PU-ssPCM 的预应变薄花键表现出水化驱动,并显示出 405 kJ m-3 的工作密度(图 S23 和电影 S2-S5,补充电影)。此外,PU-ssPCM/GNP (1 wt.%) 的预应变薄花键能够在光刺激下举起 55 g 的物体(其自身重量的 2620 倍),收缩变形率为 53.3%,呈现 1330 kJ m-3 的工作密度(图 6e;电影 S7、补充电影)。同样,另一种预应变薄花键 (45 mg) 在暴露于全光谱太阳灯时能够举起 105 g 的重量(图 S23 和电影 S8,补充电影)。提升比 (m1/ma) 超过 2333,转化为 460 J kg-1 的能量输出。如图 6f 所示,当暴露于光刺激时,我们通过举起不同重量的物体对 PU-ssPCM/GNP (1 wt.%) 的工作密度进行了全面分析。 工作能力与运动距离有关,而运动距离与材料断裂时的临时应变和伸长率有关。39 PU-ssPCM/GNP (1 wt.%) 已被实验证明具有高韧性 (ε = 1543%, σ = 19.2 MPa) 和刚度。因此,具有较高断裂伸长率或临时应变的致动器有助于产生更大的运动距离,并表现出更大的工作能力。此外,为了最大限度地测量光热驱动引起的工作能力,首选小体积的轻质样品进行测试。然而,分子链的分子间相互作用(如结合和纠缠)可以在相变过程中引入更高的能垒。因此,当成为光热刺激时,大分子需要更长的时间来适应并达到新的平衡,尤其是在举起重物的过程中。此外,开发具有高韧性的柔性 PCM 的优势之一是结晶骨架有利于在拉伸取向过程中储存能量。光致动器的拉力由其自身的特性和几何形状决定,高机械性能和大横截面积有助于产生显着的拉力。39 简而言之,柔性 ssPCM 集成了高热能存储、韧性和多刺激响应性能,对复杂场景下需要低功耗和节能的人工肌肉和软体机器人极具吸引力,以拓展发展。
Energy storage and release of flexible PCM can be achieved through intermolecular interactions (such as van der Waals forces and hydrogen bonds) during phase transitions. The advantage of a high energy storage density is that it improves energy utilization and addresses the issue of energy distribution, which plays an important role in energy conservation. Owing to its high latent storage/release capability and photothermal-driven performance, when subjected to thermal or photothermal stimulation, the flexible PCM undergoes deformation recovery due to absorbed heat, resulting in actuation. This stimulation and driving process takes a very short time, and energy conversion can be completed within a few seconds. After the heat source is removed, the flexible PCM remains in an exothermic state and can maintain a contracted state or deformation. Thus, the phase transition characteristics are beneficial for thermal energy utilization and conversion.
柔性 PCM 的能量储存和释放可以通过相变过程中的分子间相互作用(例如范德华力和氢键)来实现。高储能密度的优点是提高了能源利用率,解决了能源分配问题,这在节能方面起着重要作用。由于其高潜伏储存/释放能力和光热驱动性能,当受到热或光热刺激时,柔性相变材料会因吸收热量而发生变形恢复,从而导致驱动。这个刺激和驱动过程需要很短的时间,能量转换可以在几秒钟内完成。去除热源后,柔性相变材料保持放热状态,可以保持收缩状态或变形。因此,相变特性有利于热能的利用和转换。
To analyze the obtained results and evaluate the photothermal absorption efficiency and energy output, numerical simulations were conducted to obtain the energy intensity distribution of light inside PU-ssPCM/GNP (1 wt.%) via using COMSOL software according to Beer-Lambert law and Gaussian distribution (Figures S25 and S26, Equations S9–S11, Supporting Information). The changes in the absorbed photothermal energy and output energy of the PU-ssPCM/GNP (1 wt.%) when lifting objects of various weights can be observed in Figure 6g. It is simple to lift a relatively heavy object for a pre-stretched sample strip of small size. The photothermal energy absorbed inside the material is closely related to the irradiation distance (Figures S25 and S26, Supporting Information). Therefore, after setting the illumination distance, the output energy can increase with the mass of the heavy object, and the internal thermal energy gradually tends to stabilize from a decreasing trend. The output capacity was determined by the movement distance, which was related to the temporary strain and elongation at the break of the flexible PCM. The PU-ssPCM/GNP (1 wt.%) can respond to light stimulation and achieve energy output by controlling the appropriate illumination distance, which contributes to remote control and thermal management in the application of artificial muscle and soft robots. Owing to its high latent heat storage/release capacity, the PU-ssPCM/GNP (1 wt.%) can maintain the state of lifting heavy objects without the requirement for additional energy input, which effectively reduces energy consumption compared to other stimulus-responsive materials. Photothermal stimuli can trigger the reorganization of the molecular structure within PU-ssPCM/GNP (1 wt.%) during deformation, leading to the formation of a stable configuration to achieve a stable catch state. This characteristic is highly beneficial for energy conservation and simplification of control systems. To further clarify the application value of this flexible PCM in the field of artificial muscles, we designed and printed an arm prosthetic inspired by the human arm (Figure 6g). After fixing the fibrous sample (46 mg) onto the prosthetic limb, the arm model could undergo a bending motion similar to that of the biceps brachii, achieving a bending close to 90° under photic stimulation. The fibrous sample exhibited a work capacity of 622 J kg−1 (Figure 6h,i; Movie S11, Supplementary Movie). In summary, PU-ssPCM/GNP (1 wt.%) with high latent heat storage capacity is capable of responding to thermal/photothermal stimuli, generating actuation distance and driving force simultaneously (Figure 6e–i; Movies S1,S6–S11, Supplementary Movie). The flexible PCM with high toughness and programmable deformation possesses photothermal actuation features due to its high latent storage capacity, which demonstrates that it has enormous potential for the application of artificial muscles and soft actuators with requirements for energy-saving and thermal-management.
为了分析获得的结果并评估光热吸收效率和能量输出,使用 COMSOL 软件根据比尔-朗伯定律和高斯分布(图 S25 和 S26,方程 S9-S11 )进行了数值模拟,以获得 PU-ssPCM/GNP (1 wt.%) 内光的能量强度分布(图 S25 和 S26,方程 S9-S11、支持信息)。在图 6g 中可以观察到 PU-ssPCM/GNP (1 wt.%) 在举起各种重量的物体时吸收的光热能和输出能量的变化。对于小尺寸的预拉伸样品条,抬起相对较重的物体很简单。材料内部吸收的光热能与照射距离密切相关(图 S25 和 S26,支持信息)。因此,在设定照明距离后,输出能量可以随着重物质量的增加而增加,内部热能从减小的趋势逐渐趋于稳定。输出容量由移动距离决定,这与柔性 PCM 断裂时的临时应变和伸长率有关。PU-ssPCM/GNP (1 wt.%) 可以响应光刺激并通过控制适当的照明距离来实现能量输出,这有助于在人工肌肉和软体机器人应用中进行远程控制和热管理。由于其高潜热储存/释放能力,PU-ssPCM/GNP (1 wt.%) 可以保持提升重物的状态,而无需额外的能量输入,与其他刺激响应材料相比,有效降低了能耗。 光热刺激可以在变形过程中触发 PU-ssPCM/GNP (1 wt.%) 内的分子结构重组,从而形成稳定的构型以实现稳定的捕获状态。这一特性对于节能和简化控制系统非常有益。为了进一步阐明这种柔性 PCM 在人工肌肉领域的应用价值,我们设计并打印了一种受人类手臂启发的手臂假肢(图 6g)。将纤维样本 (46 mg) 固定到假肢上后,手臂模型可以进行类似于肱二头肌的弯曲运动,在光刺激下实现接近 90° 的弯曲。纤维样品的功容量为 622 J kg-1(图 6h,i;电影 S11、补充电影)。综上所述,具有高潜热储存能力的 PU-ssPCM/GNP (1 wt.%) 能够响应热/光热刺激,同时产生驱动距离和驱动力(图 6e-i;电影 S1、S6–S11、辅助电影)。这种具有高韧性和可编程变形的柔性相变材料由于其高潜在存储容量而具有光热驱动特性,这表明它在应用具有节能和热管理要求的人造肌肉和软致动器方面具有巨大的潜力。
3 Conclusion 3 总结
In summary, for the first time, we successfully developed a flexible solid-solid PCM with programmable deformation and photothermal actuation characteristics using a pre-polymerization and ultrasonic cavitation method. A typical PU-ssPCM/GNP mixture (1 wt.%) boasts high toughness (εmax = 1543%, σmax = 19.2 MPa), high latent heat storage/release performance (∆Hm = 105.3 J g−1, ∆Hc = 105.0 J g−1), and shape memory behaviors (Rr = 90.3%). This is mainly thanks to the construction of a 3D dynamic network through the collaborative strategic introduction of multiple hydrogen bonding interactions and a crystalline skeleton. Furthermore, the flexible ssPCM exhibited outstanding cyclic durability, shape stability, a certain degree of rigidity, and excellent load-bearing capacity, exceeding 50 000 times its own weight. Notably, it exhibits surprising photothermal-driven performance, lifting heavy objects that exceed 2620 times its own weight when subjected to photothermal stimulus, exhibiting an output work density of 1330 kJ m−3. Owing to its high latent heat storage and release capability and photothermal actuation performance, the flexible PCM is capable of sustaining a specific shape and position without the requirement for continuous energy input, which is highly advantageous for the application of artificial muscles and soft robots in energy conservation and the simplification of control systems.
总之,我们首次使用预聚合和超声空化方法成功开发了一种具有可编程变形和光热驱动特性的柔性固-固相变材料。典型的 PU-ssPCM/GNP 混合物 (1 wt.%) 具有高韧性 (εmax = 1543%, σmax = 19.2 MPa)、高潜热储存/释放性能 (∆Hm = 105.3 J g-1, ∆Hc = 105.0 J g-1) 和形状记忆行为 (Rr = 90.3%)。这主要归功于通过协作战略引入多种氢键相互作用和晶体骨架构建了 3D 动态网络。此外,柔性 ssPCM 表现出优异的循环耐久性、形状稳定性、一定程度的刚度和优异的承载能力,超过其自身重量的 50 000 倍。值得注意的是,它表现出令人惊讶的光热驱动性能,在受到光热刺激时,它可以举起超过自身重量 2620 倍的重物,输出功密度为 1330 kJ m−3。由于其高潜热储存和释放能力以及光热驱动性能,柔性相变材料能够在不需要持续能量输入的情况下维持特定的形状和位置,这对于人工肌肉和软体机器人在节能和简化控制系统方面的应用非常有利。
4 Experimental section 4 实验部分
Materials 材料
Graphene powder (diameter: 100–200 nm, thickness: 0.8–1.2 nm) was purchased from Anhui Zesheng Technology (3AChem) Co., Anhui, China. Polyethylene oxide (PEO) and polycaprolactone (PCL) were obtained from Shanghai Macklin Biochemical Technology Co., Ltd. Hexamethylene diisocyanate (HDI), dibutyltin dilaurate and d-sorbitol were obtained from Aladdin Reagent (Shanghai) Co., Ltd. N,N- Dimethylformamide (DMF) was provided by Tianjin Kangkede Technology Co., Ltd. All the commercially purchased materials were used directly without further purification.
石墨烯粉末(直径:100-200 nm,厚度:0.8-1.2 nm)购自中国安徽省安徽泽盛科技 (3AChem) 有限公司。聚环氧乙烷(PEO)和聚己内酯(PCL)购自上海麦克林生化科技有限公司。己亚甲基二异氰酸酯(HDI)、二月桂酸二丁基锡和d-山梨醇购自阿拉丁试剂(上海)有限公司。N,N-二甲基甲酰胺(DMF)由天津康科德科技有限公司提供。所有商业购买的材料均直接使用,无需进一步纯化。
Preparation of PU-ssPCM PU-ssPCM 的制备
Prior to use, PCL (Mn = 1000) and PEO (Mn = 600 000) were vacuum-dried at 120 °C for 2 h to remove water, and then, PEO was completely dissolved in DMF. The isocyanate-terminated polymer was prepared via a pre-polymerization method between PCL and HDI under a nitrogen-protective atmosphere. This was followed by the addition of PEO to form a grafted prepolymer with a linear structure of ultra-long molecular chains, reacting at 75 °C for 2 h. Moderate amounts of D-sorbitol were added to the reaction system at 80 °C for 3 h. The aim of adding D-sorbitol was to expand the chain further and form a network structure. PCL and PEO were adopted at different molar ratios (1:100, 1:200, 1:300, 1:400, 1:500, 1:600), and the isocyanate index was constant in the reaction process. The PU-ssPCM film was obtained by drying and removing the solvent at 80 °C for 7 h in a vacuum environment.
使用前,将 PCL (Mn = 1000) 和 PEO (Mn = 600 000) 在 120 °C 下真空干燥 2 h 以去除水分,然后将 PEO 完全溶解在 DMF 中。在保氮气氛下,通过 PCL 和 HDI 之间的预聚合法制备异氰酸酯封端聚合物。随后添加 PEO 以形成具有超长分子链线性结构的接枝预聚物,在 75 °C 下反应 2 小时。在 80 °C 下向反应体系中加入适量的 D-山梨醇 3 h。添加 D-山梨醇的目的是进一步扩展链并形成网络结构。采用不同摩尔比(1:100、1:200、1:300、1:400、1:500、1:600)的 PCL 和 PEO,反应过程中异氰酸酯指数恒定。通过在真空环境中在 80 °C 下干燥并去除溶剂 7 h 得到 PU-ssPCM 薄膜。
Preparation of PU-ssPCM/GNP
PU-ssPCM/GNP 的制备
Prior to the reaction, different dosages of graphene were uniformly dispersed in a suitable solvent using the cavitation ultrasound method at room temperature. Subsequently, graphene samples with different mass fractions (0, 0.5, 0.75, 1.0, and 1.5 wt.%) were respectively added into the reacting system before the polymerization completion of PU-ssPCM, keeping with vigorous magnetic stirring for 24 h for achieving a homogeneous hybrid. Finally, the PU-ssPCM/GNP film was obtained after drying and removing the solvent at 80 °C in a vacuum environment for 7 h.
反应前,在室温下采用空化超声法将不同剂量的石墨烯均匀分散在合适的溶剂中。随后,在 PU-ssPCM 聚合完成之前,将不同质量分数 (0、0.5、0.75、1.0 和 1.5 wt.%) 的石墨烯样品分别加入反应体系中,并保持 24 h 的剧烈磁力搅拌以获得均匀的杂化。最后,在 80 °C 真空环境中干燥并去除溶剂 7 h 后得到 PU-ssPCM/GNP 薄膜。
Acknowledgements 确认
The authors gratefully acknowledge financial support for this research from the National Key Research and Development Program of China (2020YFA0210701) and the China National Petroleum Corporation-Peking University Strategic Cooperation Project of Fundamental Research. The authors thank the Materials Processing and Analysis Center, Peking University for assistance with the SEM and XRD characterization. All authors discussed the results, analyzed the data, and approved the submission of the final version.
作者感谢国家重点研发计划(2020YFA0210701)和中国石油天然气集团公司-北京大学基础研究战略合作项目对本研究的资助。作者感谢北京大学材料加工与分析中心在 SEM 和 XRD 表征方面的帮助。所有作者都讨论了结果,分析了数据,并批准了最终版本的提交。
Conflict of Interest 利益冲突
The authors declare no conflict of interest.
作者声明没有利益冲突。