这是用户在 2024-9-25 20:55 为 https://app.immersivetranslate.com/pdf-pro/b8697a03-dd7e-43f3-837f-31ed3e33740d 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

 主题

 价键模型
 晶体场理论
 光谱化学系列

晶体场稳定

 能源
 分子轨道理论
 微观状态和术语
  quad\quad 符号
 电子吸收

quad\quad 和发射光谱

 肾毒性效应
 磁性能
 热力学方面
 价键模型
 晶体场理论
 光谱化学系列

晶体场稳定能量


分子轨道理论 微观状态和术语符号


电子吸收光谱和发射光谱 内积效应 磁性热力学方面的问题

 20.1 导言


在本章中,我们将讨论 d d dd 块状金属的络合物,并考虑可合理解释电子光谱和磁性等实验事实的成键理论。大部分讨论集中在第一行 d d dd 块状金属上,对于这些金属,成键理论是最成功的。 d d dd 块状金属配合物中的成键与其他化合物中的成键没有本质区别,我们将展示价键理论、静电模型和分子轨道理论的应用。

讨论 d d dd 块状化学的基础是第一、第二或第三行 d d dd 块状金属的 3 d , 4 d 3 d , 4 d 3d,4d3 d, 4 d 5 d 5 d 5d5 d 轨道。我们在第 1.6 节中介绍了 d d dd 轨道,并说明 d d dd 轨道的特征是具有量子数 l = 2 l = 2 l=2l=2 值。图 20.1b 显示了一组五个退化 d d dd 轨道的常规表示方法。 ^(†){ }^{\dagger} d y z , d x y d y z , d x y d_(yz),d_(xy)d_{y z}, d_{x y} d x z d x z d_(xz)d_{x z} 轨道的裂片指向笛卡尔轴之间,每个轨道位于轴所定义的三个平面之一。 d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道与 d x y d x y d_(xy)d_{x y} 有关,但 d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道的裂片沿 x x xx y y yy 轴(而不是在这两条轴之间)指向。我们可以设想再绘制两个与 d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道相关的原子轨道,即 d z 2 y 2 d z 2 y 2 d_(z^(2)-y^(2))d_{z^{2}-y^{2}} d z 2 x 2 d z 2 x 2 d_(z^(2)-x^(2))d_{z^{2}-x^{2}} 轨道(图 20.1c)。然而,这样就会产生总共六个 d d dd 轨道。对于 l = 2 l = 2 l=2l=2 ,薛定谔方程只有五个实解 ( m l = + 2 , + 1 , 0 , 1 , 2 m l = + 2 , + 1 , 0 , 1 , 2 m_(l)=+2,+1,0,-1,-2m_{l}=+2,+1,0,-1,-2 )。这个问题可以通过对 d z 2 x 2 d z 2 x 2 d_(z^(2)-x^(2))d_{z^{2}-x^{2}} d z 2 y 2 d z 2 y 2 d_(z^(2)-y^(2))d_{z^{2}-y^{2}} 轨道进行线性组合来解决。这意味着两个轨道

结合起来(图 20.1c),结果是薛定谔方程的第五个实数解对应于传统上标记为 d z 2 d z 2 d_(z^(2))d_{z^{2}} 的轨道(尽管这实际上是 d 2 z 2 y 2 x 2 d 2 z 2 y 2 x 2 d_(2z^(2)-y^(2)-x^(2))d_{2 z^{2}-y^{2}-x^{2}} 的速记符号)。

在五个 d d dd 轨道中,有三个轨道的裂片位于笛卡尔轴之间,而另外两个轨道则沿着这些轴(图 20.1b),这是理解 d d dd 块状金属配合物的成键模型和物理性质的关键点。由于它们的方向性不同,配体存在时的 d d dd 轨道会分裂成不同的能量组,分裂的类型和能量差异的大小取决于配体的排列和性质。磁性和电子吸收光谱这两种可观察到的性质都反映了 d d dd 轨道的分裂。


高自旋和低自旋态


在第 19.5 节中,我们指出顺磁性是某些 d d dd 块状金属化合物的特征。在第 20.10 节中,我们将详细讨论磁性,但现在让我们简单地说明,磁性数据允许我们确定未配对电子的数目。在孤立的第一行 d d dd 块状金属离子中, 3 d 3 d 3d3 d 轨道是退化的,电子根据亨德规则占据这些轨道:例如,图 20.1 显示了六个电子的排列。
↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑ uarr uarr uarr uarr uarr uarr uarr\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
(20.1)

然而,一系列八面体 d 6 d 6 d^(6)d^{6} 复合物的磁性数据显示,它们可分为两类:顺磁性

图 20.1 (a) 八面体复合物 [ ML 6 ] n + ML 6 n + [ML_(6)]^(n+)\left[\mathrm{ML}_{6}\right]^{n+} 的六个 M L M L M-L\mathrm{M}-\mathrm{L} 向量可以定义为沿着 x , y x , y x,yx, y z z zz 轴。(b) 五个 d d dd 轨道; d z 2 d z 2 d_(z^(2))d_{z^{2}} d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 原子轨道直接沿轴线指向,但 d x y , d y z d x y , d y z d_(xy),d_(yz)d_{x y}, d_{y z} d x z d x z d_(xz)d_{x z} 原子轨道指向它们之间。由 d z 2 y 2 d z 2 y 2 d_(z^(2)-y^(2))d_{z^{2}-y^{2}} d z 2 x 2 d z 2 x 2 d_(z^(2))-x^(2)d_{z^{2}}-x^{2} 轨道的线性组合形成 d z 2 d z 2 d_(z^(2))d_{z^{2}} 轨道。这些轨道是使用 Orbital Viewer 程序 [David Manthey, www.orbitals.com/orb/index.html] 生成的。


或二磁性。前者被称为高自旋络合物,对应于那些尽管 d d dd 轨道被分割,但仍有四个未成对电子的络合物。二磁性的 d 6 d 6 d^(6)d^{6} 复合物被称为低自旋复合物,对应于电子双双占据三个轨道,剩下两个未被占据的复合物。八面体 d 4 , d 5 , d 6 d 4 , d 5 , d 6 d^(4),d^(5),d^(6)d^{4}, d^{5}, d^{6} d 7 d 7 d^(7)d^{7} 金属络合物存在高自旋和低自旋络合物。如上图所示,对于 d 6 d 6 d^(6)d^{6} 配置,低自旋对应于二磁性复合物,而高自旋对应于顺磁性复合物。对于 d 4 , d 5 d 4 , d 5 d^(4),d^(5)d^{4}, d^{5} d 7 d 7 d^(7)d^{7} 构型,特定构型的高自旋和低自旋络合物都具有顺磁性,但未配对电子的数目不同。第 20.10 节将详细介绍 d d dd 块状金属配合物的磁性。


20.2 d-块金属配合物中的键合:价键理论

 杂交方案


尽管鲍林在 20 世纪 30 年代提出的 VB 理论(见第 2.1、2.2 和 5.2 节)现在在讨论 d d dd 块状金属配合物时已不太常用,但其中的术语和许多观点仍被保留下来,一些理论知识仍然有用。在第 5.2 节中,我们介绍了 s p 3 d , s p 3 d 2 s p 3 d , s p 3 d 2 sp^(3)d,sp^(3)d^(2)s p^{3} d, s p^{3} d^{2} s p 2 d s p 2 d sp^(2)ds p^{2} d 杂化方案在三叉金字塔、方基金字塔、八面体和方形平面分子中的应用。表 20.1 列出了这些杂化方案在描述 d d dd 块状金属配合物成键时的应用。金属中心的空杂化轨道可以接受配体的一对电子,形成 σ σ sigma\sigma 键。特定 p p pp d d dd 原子轨道的选择可能取决于相对于分子框架的轴的定义,例如,在线性 ML 2 ML 2 ML_(2)\mathrm{ML}_{2} 中, M L M L M-L\mathrm{M}-\mathrm{L} 向量通常被定义为沿 z z zz 轴。我们在表 20.1 中列出立方体,只是为了指出必须使用 f f ff 轨道。


VB 理论的局限性


我们通过考虑 Cr ( Cr ( Cr(\operatorname{Cr}( III ) ( d 3 ) ) d 3 )(d^(3)))\left(d^{3}\right) Fe ( Fe Fe(:}\mathrm{Fe}\left(\right. III) ( d 5 ) d 5 (d^(5))\left(d^{5}\right) 的八面体络合物以及 Ni ( II ) ( d 8 ) Ni ( II ) d 8 Ni(II)(d^(8))\mathrm{Ni}(\mathrm{II})\left(d^{8}\right) 的八面体、四面体和方形平面络合物,来说明 VB 模型的局限性。所需的原子轨道

表 20.1 配体供体原子不同几何构型的 σ σ sigma\sigma 键合框架的杂化方案。


第一行 d d dd 块状金属的八面体配合物中的杂化轨道是 3 d z 2 , 3 d x 2 y 2 , 4 s , 4 p x , 4 p y 3 d z 2 , 3 d x 2 y 2 , 4 s , 4 p x , 4 p y 3d_(z^(2)),3d_(x^(2)-y^(2)),4s,4p_(x),4p_(y)3 d_{z^{2}}, 3 d_{x^{2}-y^{2}}, 4 s, 4 p_{x}, 4 p_{y} 4 p z 4 p z 4p_(z)4 p_{z} (表 20.1)。这些轨道必须是空闲的,以便从配体中接受六对电子。 Cr 3 + ( d 3 ) Cr 3 + d 3 Cr^(3+)(d^(3))\mathrm{Cr}^{3+}\left(d^{3}\right) 离子有三个未成对电子,这些电子被容纳在 3 d x y , 3 d x z 3 d x y , 3 d x z 3d_(xy),3d_(xz)3 d_{x y}, 3 d_{x z} 3 d y z 3 d y z 3d_(yz)3 d_{y z} 轨道中:

将六个配体的电子包含在内,并采用八面体络合物的杂化方案,图表就变成了这样:


此图适用于所有八面体 Cr ( III ) Cr ( III ) Cr(III)\mathrm{Cr}(\mathrm{III}) 复合物,因为三个 3 d 3 d 3d3 d 电子总是单个占据不同的轨道。

对于八面体 Fe ( III ) Fe ( III ) Fe(III)\mathrm{Fe}(\mathrm{III}) 复合物 ( d 5 ) d 5 (d^(5))\left(d^{5}\right) ,我们必须考虑到高自旋和低自旋复合物的存在。自由 Fe 3 + Fe 3 + Fe^(3+)\mathrm{Fe}^{3+} 离子的电子构型为:

对于 [ Fe ( CN ) 6 ] 3 Fe ( CN ) 6 3 [Fe(CN)_(6)]^(3-)\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} 这样的低自旋八面体复合物,我们可以用下图来表示其电子构型,其中红色显示的电子由配体提供:


对于 [ FeF 6 ] 3 FeF 6 3 [FeF_(6)]^(3-)\left[\mathrm{FeF}_{6}\right]^{3-} 这样的高自旋八面体配合物,五个 3 d 3 d 3d3 d 电子占据五个 3 d 3 d 3d3 d 原子轨道(如上图所示的自由离子),而 s p 3 d 2 s p 3 d 2 sp^(3)d^(2)s p^{3} d^{2} 杂化方案所需的两个 d d dd 轨道必须来自 4 d 4 d 4d4 d 集合。在包含配体电子的情况下,价键理论对成键进行了如下描述,留下了三个空的 4 d 4 d 4d4 d 原子轨道(未显示):

然而,这种方案并不现实,因为 4 d 4 d 4d4 d 轨道的能量远远高于 3 d 3 d 3d3 d 原子轨道。



晶体场理论是一种静电模型,它预测金属复合物中的 d d dd 轨道不是退化的。 d d dd 轨道的分裂模式取决于晶体场,这是由配体的排列和类型决定的。


图 20.2 当第一行 M n + M n + M^(n+)\mathrm{M}^{n+} 离子处于八面体晶场中时,占据其 3 d 3 d 3d3 d 轨道的电子的能量变化。能量变化以轨道能量表示。第二排( 4 d 4 d 4d4 d )和第三排( 5 d 5 d 5d5 d )金属离子也可以绘制类似的图表。

 理论


方框 20.1 关于对称标签的提醒


八面体场中的两组 d d dd 轨道分别标为 e g e g e_(g)e_{g} t 2 g t 2 g t_(2g)t_{2 g} (图 20.3)。在四面体场中(图 20.8),标记变为 e e ee t 2 t 2 t_(2)t_{2} 。符号 t t tt e e ee 指的是水平的变性:

  • 一个三重退化水平被标记为 t t tt

  • 一个双重退化水平被标记为 e e ee


u u uu g g gg 标签仅适用于具有对称中心(反转中心)的系统,因此用于八面体场,而不适用于四面体场:

八面体有一个对称中心

四面体没有对称中心


关于对称标签的起源:请参阅第 5 章。


O h O h O_(h)O_{\mathrm{h}} 字符表(附录 3)可以推断出(见第 5 章), d z 2 d z 2 d_(z^(2))d_{z^{2}} d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道具有 e g e g e_(g)e_{g} 对称性,而 d x y , d y z d x y , d y z d_(xy),d_(yz)d_{x y}, d_{y z} d x z d x z d_(xz)d_{x z} 轨道具有 t 2 g t 2 g t_(2g)t_{2 g} 对称性(图 20.3)。它们之间的能量间隔为 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} ("delta oct")或 10 D q 10 D q 10 Dq10 D q t 2 g t 2 g t_(2g)t_{2 g} 轨道的总体稳定等于 e g e g e_(g)e_{g} 轨道组的总体失稳。因此, e g e g e_(g)e_{g} 组中的两个轨道相对于原心升高了 0.6 Δ oct 0.6 Δ oct  0.6Delta_("oct ")0.6 \Delta_{\text {oct }} ,而 t 2 g t 2 g t_(2g)t_{2 g} 组中的三个轨道相对于原心降低了 0.4 Δ oct 0.4 Δ oct  0.4Delta_("oct ")0.4 \Delta_{\text {oct }} 。图 20.3 还以 10 Dq 的形式显示了这些能量差异。 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 10 D q 10 D q 10 Dq10 D q 都是常用符号,但我们在本书中使用 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} ^(†){ }^{\dagger} 稳定和

图 20.3 八面体晶场中 d d dd 轨道的分裂,以及相对于极心测量到的能量变化,方格线表示能级。

t 2 g t 2 g t_(2g)t_{2 g} e g e g e_(g)e_{g} 集的失稳分别以 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 表示。 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 的大小取决于晶体场的强度,两个极端分别称为弱场和强场(式 20.1)。


Δ oct ( Δ oct  ( Delta_("oct ")(\Delta_{\text {oct }}( 弱磁场 ) < Δ oct ( ) < Δ oct  ( ) < Delta_("oct ")()<\Delta_{\text {oct }}( 强磁场 ) ) ))


晶体场理论的一个优点是,至少在原则上, Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 的值可以通过电子吸收光谱数据来评估(见第 20.7 节)。考虑 d 1 d 1 d^(1)d^{1} 复合物 [ Ti ( OH 2 ) 6 ] 3 + Ti OH 2 6 3 + [Ti(OH_(2))_(6)]^(3+)\left[\mathrm{Ti}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} ,其基态用图 20.2 或符号 t 2 g 1 e g 0 t 2 g 1 e g 0 t_(2g)^(1)e_(g)^(0)t_{2 g}{ }^{1} e_{g}{ }^{0} 表示。

(20.2)


影响 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 大小的因素(表 20.2)是金属离子的特性和氧化态以及配体的性质。我们将在后面看到 Δ Δ Delta\Delta 参数

图 20.4 [ Ti ( OH 2 ) 6 ] 3 + Ti OH 2 6 3 + [Ti(OH_(2))_(6)]^(3+)\left[\mathrm{Ti}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 在水溶液中的电子吸收光谱。

表 20.2 某些 d d dd 块状金属络合物的 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 值。
 复杂 Δ / cm 1 Δ / cm 1 Delta//cm^(-1)\Delta / \mathrm{cm}^{-1}  复杂 Δ / cm 1 Δ / cm 1 Delta//cm^(-1)\Delta / \mathrm{cm}^{-1}
[ TiF 6 ] 3 TiF 6 3 [TiF_(6)]^(3-)\left[\mathrm{TiF}_{6}\right]^{3-} 17000 [ Fe ( ox ) 3 ] 3 Fe (  ox  ) 3 3 [Fe(" ox ")_(3)]^(3-)\left[\mathrm{Fe}(\text { ox })_{3}\right]^{3-} 14100
[ Ti ( OH 2 ) 6 ] 3 + Ti OH 2 6 3 + [Ti(OH_(2))_(6)]^(3+)\left[\mathrm{Ti}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 20300 [ Fe ( CN ) 6 ] 3 Fe ( CN ) 6 3 [Fe(CN)_(6)]^(3-)\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} 35000
[ V ( OH 2 ) 6 ] 3 + V OH 2 6 3 + [(V)(OH_(2))_(6)]^(3+)\left[\mathrm{~V}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 17850 [ Fe ( CN ) 6 ] 4 Fe ( CN ) 6 4 [Fe(CN)_(6)]^(4-)\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} 33800
[ V ( OH 2 ) 6 ] 2 + V OH 2 6 2 + [(V)(OH_(2))_(6)]^(2+)\left[\mathrm{~V}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} 12400 [ CoF 6 ] 3 CoF 6 3 [CoF_(6)]^(3-)\left[\mathrm{CoF}_{6}\right]^{3-} 13100
[ CrF 6 ] 3 CrF 6 3 [CrF_(6)]^(3-)\left[\mathrm{CrF}_{6}\right]^{3-} 15000 [ Co ( NH 3 ) 6 ] 3 + Co NH 3 6 3 + [Co(NH_(3))_(6)]^(3+)\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 22900
[ Cr ( OH 2 ) 6 ] 3 + Cr OH 2 6 3 + [Cr(OH_(2))_(6)]^(3+)\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 17400 [ Co ( NH 3 ) 6 ] 2 + Co NH 3 6 2 + [Co(NH_(3))_(6)]^(2+)\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} 10200
[ Cr ( OH 2 ) 6 ] 2 + Cr OH 2 6 2 + [Cr(OH_(2))_(6)]^(2+)\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} 14100 [ Co ( en ) 3 ] 3 + Co ( en ) 3 3 + [Co(en)_(3)]^(3+)\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+} 24000
[ Cr ( NH 3 ) 6 ] 3 + Cr NH 3 6 3 + [Cr(NH_(3))_(6)]^(3+)\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 21600 [ Co ( OH 2 ) 6 ] 3 + Co OH 2 6 3 + [Co(OH_(2))_(6)]^(3+)\left[\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 18200
[ Cr ( CN ) 6 ] 3 Cr ( CN ) 6 3 [Cr(CN)_(6)]^(3-)\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-} 26600 [ Co ( OH 2 ) 6 ] 2 + Co OH 2 6 2 + [Co(OH_(2))_(6)]^(2+)\left[\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} 9300
[ MnF 6 ] 2 MnF 6 2 [MnF_(6)]^(2-)\left[\mathrm{MnF}_{6}\right]^{2-} 21800 [ Ni ( OH 2 ) 6 ] 2 + Ni OH 2 6 2 + [Ni(OH_(2))_(6)]^(2+)\left[\mathrm{Ni}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} 8500
[ Fe ( OH 2 ) 6 ] 3 + Fe OH 2 6 3 + [Fe(OH_(2))_(6)]^(3+)\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 13700 [ Ni ( NH 3 ) 6 ] 2 + Ni NH 3 6 2 + [Ni(NH_(3))_(6)]^(2+)\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} 10800
[ Fe ( OH 2 ) 6 ] 2 + Fe OH 2 6 2 + [Fe(OH_(2))_(6)]^(2+)\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} 9400 [ Ni ( en ) 3 ] 2 + Ni ( en ) 3 2 + [Ni(en)_(3)]^(2+)\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+} 11500
Complex Delta//cm^(-1) Complex Delta//cm^(-1) [TiF_(6)]^(3-) 17000 [Fe(" ox ")_(3)]^(3-) 14100 [Ti(OH_(2))_(6)]^(3+) 20300 [Fe(CN)_(6)]^(3-) 35000 [(V)(OH_(2))_(6)]^(3+) 17850 [Fe(CN)_(6)]^(4-) 33800 [(V)(OH_(2))_(6)]^(2+) 12400 [CoF_(6)]^(3-) 13100 [CrF_(6)]^(3-) 15000 [Co(NH_(3))_(6)]^(3+) 22900 [Cr(OH_(2))_(6)]^(3+) 17400 [Co(NH_(3))_(6)]^(2+) 10200 [Cr(OH_(2))_(6)]^(2+) 14100 [Co(en)_(3)]^(3+) 24000 [Cr(NH_(3))_(6)]^(3+) 21600 [Co(OH_(2))_(6)]^(3+) 18200 [Cr(CN)_(6)]^(3-) 26600 [Co(OH_(2))_(6)]^(2+) 9300 [MnF_(6)]^(2-) 21800 [Ni(OH_(2))_(6)]^(2+) 8500 [Fe(OH_(2))_(6)]^(3+) 13700 [Ni(NH_(3))_(6)]^(2+) 10800 [Fe(OH_(2))_(6)]^(2+) 9400 [Ni(en)_(3)]^(2+) 11500| Complex | $\Delta / \mathrm{cm}^{-1}$ | Complex | $\Delta / \mathrm{cm}^{-1}$ | | :---: | :---: | :---: | :---: | | $\left[\mathrm{TiF}_{6}\right]^{3-}$ | 17000 | $\left[\mathrm{Fe}(\text { ox })_{3}\right]^{3-}$ | 14100 | | $\left[\mathrm{Ti}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$ | 20300 | $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ | 35000 | | $\left[\mathrm{~V}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$ | 17850 | $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ | 33800 | | $\left[\mathrm{~V}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ | 12400 | $\left[\mathrm{CoF}_{6}\right]^{3-}$ | 13100 | | $\left[\mathrm{CrF}_{6}\right]^{3-}$ | 15000 | $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ | 22900 | | $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$ | 17400 | $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ | 10200 | | $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ | 14100 | $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ | 24000 | | $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ | 21600 | $\left[\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$ | 18200 | | $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$ | 26600 | $\left[\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ | 9300 | | $\left[\mathrm{MnF}_{6}\right]^{2-}$ | 21800 | $\left[\mathrm{Ni}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ | 8500 | | $\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$ | 13700 | $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ | 10800 | | $\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ | 9400 | $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ | 11500 |

也适用于其他配体排列(例如 Δ tet Δ tet  Delta_("tet ")\Delta_{\text {tet }} )。对于八面体配合物, Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 会沿着以下配体光谱化学系列增加。 [ NCS ] [ NCS ] [NCS]^(-)[\mathrm{NCS}]^{-} 离子可通过 N - 或 S S SS 供体(下文以红色区分)进行配位,因此在该系列中有两个位置:
I < Br < [ NCS ] < Cl < F < [ OH ] < [ ox ] 2 H 2 O < [ NCS ] < NH 3 < en < bpy < phen < [ CN ] CO weak field ligands ligands increasing Δ oct strong field I < Br < [ NCS ] < Cl < F < [ OH ] < [ ox ] 2 H 2 O < [ NCS ] < NH 3 < en <  bpy  <  phen  < [ CN ] CO  weak field ligands   ligands increasing  Δ oct   strong field  {:[I^(-) < Br^(-) < [NCS]^(-) < Cl^(-) < F^(-) < [OH]^(-) < [ox]^(2-)],[quad~~H_(2)O < [NCS]^(-) < NH_(3) < en < " bpy " < " phen " < [CN]^(-)~~CO],[" weak field ligands "rarr_("" ligands increasing "Delta_("oct ")")^("")" strong field "]:}\begin{aligned} & \mathrm{I}^{-}<\mathrm{Br}^{-}<[\mathrm{NCS}]^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<[\mathrm{OH}]^{-}<[\mathrm{ox}]^{2-} \\ & \quad \approx \mathrm{H}_{2} \mathrm{O}<[\mathrm{NCS}]^{-}<\mathrm{NH}_{3}<\mathrm{en}<\text { bpy }<\text { phen }<[\mathrm{CN}]^{-} \approx \mathrm{CO} \\ & \text { weak field ligands } \xrightarrow[\text { ligands increasing } \Delta_{\text {oct }}]{ } \text { strong field } \end{aligned}

光谱化学系列具有一定的普遍性。在该系列中,具有相同供体原子的配体相距很近。如果我们考虑 d d dd 块状金属离子的八面体配合物,就会出现一些问题,下面的例子可以说明这一点:

  • 表 20.2 中列出的 Cr (III) 复合物说明了不同配体场强对给定 M n + M n + M^(n+)\mathrm{M}^{n+} 离子的影响;

图 20.5 复合物 [ M ( NH 3 ) 6 ] 3 + M NH 3 6 3 + [M(NH_(3))_(6)]^(3+)\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 值变化趋势,其中 M = Co M = Co M=Co\mathrm{M}=\mathrm{Co} , Rh, Ir.

  • 表 20.2 中的 Fe (II) 复合物和 Fe ( III ) Fe ( III ) Fe(III)\mathrm{Fe}(\mathrm{III}) 表明,对于给定配体和给定金属, Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 随着氧化态的增加而增加;

  • 在三元组中存在一系列 M n + M n + M^(n+)\mathrm{M}^{n+} 金属离子(常数 n n nn )的类似配合物时, Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 会沿着三元组向下显著增加(如图 20.5);

  • 对于给定的配体和给定的氧化态, Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} d d dd 块的第一行不规则变化,例如,对于 [ M ( OH 2 ) 6 ] 2 + M OH 2 6 2 + [M(OH_(2))_(6)]^(2+)\left[\mathrm{M}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} 离子,在 8000 到 14000 cm 1 14000 cm 1 14000cm^(-1)14000 \mathrm{~cm}^{-1} 的范围内变化。


    Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 值的变化趋势可以得出这样的结论:金属离子可以被归入一个与配体无关的光谱化学系列:
increasing field strength Mn ( II ) < Ni ( II ) < Co ( II ) < Fe ( III ) < Cr ( III ) < Co ( III ) < Ru ( III ) < Mo ( III ) < Rh ( III ) < Pd ( II ) < Ir ( III ) < Pt ( IV )  increasing field strength  Mn ( II ) < Ni ( II ) < Co ( II ) < Fe ( III ) < Cr ( III ) < Co ( III ) < Ru (  III  ) < Mo ( III ) < Rh (  III  ) < Pd ( II ) < Ir (  III  ) < Pt (  IV  ) rarr_("" increasing field strength "")^("{:[Mn(II) < Ni(II) < Co(II) < Fe(III) < Cr(III) < Co(III)],[ < Ru(" III ") < Mo(III) < Rh(" III ") < Pd(II) < Ir(" III ") < Pt(" IV ")]:}")\xrightarrow[\text { increasing field strength }]{\begin{array}{l} \operatorname{Mn}(\mathrm{II})<\mathrm{Ni}(\mathrm{II})<\mathrm{Co}(\mathrm{II})<\mathrm{Fe}(\mathrm{III})<\mathrm{Cr}(\mathrm{III})<\mathrm{Co}(\mathrm{III}) \\ <\mathrm{Ru}(\text { III })<\mathrm{Mo}(\mathrm{III})<\operatorname{Rh}(\text { III })<\operatorname{Pd}(\mathrm{II})<\operatorname{Ir}(\text { III })<\operatorname{Pt}(\text { IV }) \end{array}}


现在我们来考虑八面体晶场中占据 d d dd 轨道的不同电子数的影响。对于 d 1 d 1 d^(1)d^{1} 系统,基态对应于构型 t 2 g 1 t 2 g 1 t_(2g)^(1)t_{2 g}{ }^{1} (20.2)。相对于重心,存在 0.4 Δ oct 0.4 Δ oct  -0.4Delta_("oct ")-0.4 \Delta_{\text {oct }} 的稳定能(图 20.3)。这就是所谓的晶体场稳定能, C F S E . C F S E . CFSE.^(†)C F S E .^{\dagger} 对于 d 2 d 2 d^(2)d^{2} 离子,基态构型为 t 2 g 2 t 2 g 2 t_(2g)^(2)t_{2 g}{ }^{2} ,CFSE 为 = 0.8 Δ oct = 0.8 Δ oct  =-0.8Delta_("oct ")=-0.8 \Delta_{\text {oct }} (式 20.2)。 d 3 d 3 d^(3)d^{3} 离子 ( t 2 g 3 ) t 2 g 3 (t_(2g)^(3))\left(t_{2 g}{ }^{3}\right) 的 CFSE 为 = 1.2 Δ oct = 1.2 Δ oct  =-1.2Delta_("oct ")=-1.2 \Delta_{\text {oct }}

CFSE = ( 2 × 0.4 ) Δ oct = 0.8 Δ oct = ( 2 × 0.4 ) Δ oct  = 0.8 Δ oct  =-(2xx0.4)Delta_("oct ")=-0.8Delta_("oct ")=-(2 \times 0.4) \Delta_{\text {oct }}=-0.8 \Delta_{\text {oct }}

(20.3)

(20.4)

对于基态 d 4 d 4 d^(4)d^{4} 离子,有两种可能的排列方式:四个电子可以占据配置为 t 2 g 4 t 2 g 4 t_(2g)^(4)t_{2 g}{ }^{4} t 2 g t 2 g t_(2g)t_{2 g} 集 (20.3),也可以单独占据四个 d d dd 轨道,即 t 2 g 3 e g 1 t 2 g 3 e g 1 t_(2g)^(3)e_(g)^(1)t_{2 g}{ }^{3} e_{g}{ }^{1} (20.4)。配置 20.3 相当于低自旋排列,配置 20.4 相当于高自旋排列。优选的构型是能量较低的构型,取决于在能量上是将第四个电子配对还是将其提升到 e g e g e_(g)e_{g} 电平。电子配对能量 P P PP 有两个项,即把不同退化轨道中两个自旋平行的电子转变为同一轨道中自旋配对的电子所需的能量:

  • 电子配对时产生的交换能损失(见方框 1.7);

  • 自旋配对电子之间的库仑斥力。

对于给定的 d n d n d^(n)d^{n} 配置,CFSE 是八面体晶场中 d d dd 电子与球面晶场中 d d dd 电子之间的能量差(见图 20.2)。为了说明这一点,请考虑 d 4 d 4 d^(4)d^{4} 配置。在球形晶场中, d d dd 轨道是退化的,四个轨道中的每个轨道都被单个占据。在八面体晶场中,公式 20.3 显示了如何确定高自旋 d 4 d 4 d^(4)d^{4} 配置 (20.4) 的 CFSE。

CFSE = ( 3 × 0.4 ) Δ oct + 0.6 Δ oct = 0.6 Δ oct = ( 3 × 0.4 ) Δ oct  + 0.6 Δ oct  = 0.6 Δ oct  =-(3xx0.4)Delta_("oct ")+0.6Delta_("oct ")=-0.6Delta_("oct ")=-(3 \times 0.4) \Delta_{\text {oct }}+0.6 \Delta_{\text {oct }}=-0.6 \Delta_{\text {oct }}

对于低自旋 d 4 d 4 d^(4)d^{4} 构型 (20.3),CFSE 包含两个项: t 2 g t 2 g t_(2g)t_{2 g} 轨道中的四个电子产生一个 1.6 Δ oct 1.6 Δ oct  -1.6Delta_("oct ")-1.6 \Delta_{\text {oct }} 项,还必须包含一个配对能 P P PP 来解释两个电子的自旋配对。现在考虑一个 d 6 d 6 d^(6)d^{6} 离子。在球形晶场中(图 20.2),一个 d d dd 轨道包含自旋配对电子,四个轨道中的每个轨道都被单个占据。当进入八面体场 ( t 2 g 4 e g 2 ) t 2 g 4 e g 2 (t_(2g)^(4)e_(g)^(2))\left(t_{2 g}{ }^{4} e_{g}{ }^{2}\right) 中的高自旋 d 6 d 6 d^(6)d^{6} 构型时,自旋配对电子的数量不会发生变化,CFSE 由式 20.4 给出。

CFSE = ( 4 × 0.4 ) Δ oct + ( 2 × 0.6 ) Δ oct = 0.4 Δ oct = ( 4 × 0.4 ) Δ oct  + ( 2 × 0.6 ) Δ oct  = 0.4 Δ oct  =-(4xx0.4)Delta_("oct ")+(2xx0.6)Delta_("oct ")=-0.4Delta_("oct ")=-(4 \times 0.4) \Delta_{\text {oct }}+(2 \times 0.6) \Delta_{\text {oct }}=-0.4 \Delta_{\text {oct }}

对于低自旋 d 6 d 6 d^(6)d^{6} 配置 ( t 2 g 6 e g 0 ) t 2 g 6 e g 0 (t_(2g)^(6)e_(g)^(0))\left(t_{2 g}{ }^{6} e_{g}{ }^{0}\right) t 2 g t 2 g t_(2g)t_{2 g} 轨道中的六个电子会产生一个 2.4 Δ oct 2.4 Δ oct  -2.4Delta_("oct ")-2.4 \Delta_{\text {oct }} 项。此外,还有一个 2 P 2 P 2P2 P 的配对能量项,用于解释与高自旋构型中一个电子对之外的两个电子对相关的自旋配对。表 20.3 列出了八面体晶场中所有 d n d n d^(n)d^{n} 构型的 CFSE 值。不等式 20.5 和 20.6 显示了对高或低自旋构型的要求。当晶体场较弱时,不等式 20.5 成立,而表达式 20.6 则适用于强晶体场。图 20.6 总结了低自旋和高自旋 d 5 d 5 d^(5)d^{5} 八面体配合物的优先选择。

For high-spin: Δ oct < P For low-spin: Δ oct > P  For high-spin:  Δ oct  < P  For low-spin:  Δ oct  > P {:[" For high-spin: ",Delta_("oct ") < P],[" For low-spin: ",Delta_("oct ") > P]:}\begin{array}{ll}\text { For high-spin: } & \Delta_{\text {oct }}<P \\ \text { For low-spin: } & \Delta_{\text {oct }}>P\end{array}

现在,我们可以将配体类型与对高或低自旋配合物的偏好联系起来。强场配体(如 [ CN ] [ CN ] [CN]^(-)[\mathrm{CN}]^{-} )倾向于形成低自旋络合物,而弱场配体(如卤化物)则倾向于形成高自旋络合物。然而,除非我们掌握了 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} P P PP 的准确值,否则无法预测会形成高或低自旋配合物。另一方面,如果我们掌握了一些实验知识,就可以对高自旋或低自旋络合物的形成进行一些比较。

表 20.3 d n d n d^(n)d^{n} 配置的八面体晶场稳定能 (CFSE);配对能 P P PP 项在适当的地方包括在内(见正文)。高自旋和低自旋八面体配合物仅在需要区分时才显示。
d n d n d^(n)d^{n}
高自旋 = = == 弱场
 电子配置 CFSE  电子配置 CFSE
d 1 d 1 d^(1)d^{1} t 2 g 1 e g 0 t 2 g 1 e g 0 t_(2g)^(1)e_(g)^(0)t_{2 g}{ }^{1} e_{g}{ }^{0} 0.4 Δ oct 0.4 Δ oct  -0.4Delta_("oct ")-0.4 \Delta_{\text {oct }}
d 2 d 2 d^(2)d^{2} t 2 g 2 e g 0 t 2 g 2 e g 0 t_(2g)^(2)e_(g)^(0)t_{2 g}{ }^{2} e_{g}{ }^{0} 0.8 Δ oct 0.8 Δ oct  -0.8Delta_("oct ")-0.8 \Delta_{\text {oct }}
d 3 d 3 d^(3)d^{3} t 2 g 3 e g 0 t 2 g 3 e g 0 t_(2g)^(3)e_(g)^(0)t_{2 g}{ }^{3} e_{g}{ }^{0} 1.2 Δ oct 1.2 Δ oct  -1.2Delta_("oct ")-1.2 \Delta_{\text {oct }}
d 4 d 4 d^(4)d^{4} t 2 g 3 e g 1 t 2 g 3 e g 1 t_(2g)^(3)e_(g)^(1)t_{2 g}{ }^{3} e_{g}{ }^{1} 0.6 Δ oct 0.6 Δ oct  -0.6Delta_("oct ")-0.6 \Delta_{\text {oct }} t 2 g 4 e g 0 t 2 g 4 e g 0 t_(2g)^(4)e_(g)^(0)t_{2 g}{ }^{4} e_{g}{ }^{0} 1.6 Δ oct + P 1.6 Δ oct  + P -1.6Delta_("oct ")+P-1.6 \Delta_{\text {oct }}+P
d 5 d 5 d^(5)d^{5} t 2 g 3 e g 2 t 2 g 3 e g 2 t_(2g)^(3)e_(g)^(2)t_{2 g}{ }^{3} e_{g}{ }^{2} 0 t 2 g 5 e g 0 t 2 g 5 e g 0 t_(2g)^(5)e_(g)^(0)t_{2 g}{ }^{5} e_{g}{ }^{0} 2.0 Δ oct + 2 P 2.0 Δ oct  + 2 P -2.0Delta_("oct ")+2P-2.0 \Delta_{\text {oct }}+2 P
d 6 d 6 d^(6)d^{6} t 2 g 4 e g 2 t 2 g 4 e g 2 t_(2g)^(4)e_(g)^(2)t_{2 g}{ }^{4} e_{g}{ }^{2} 0.4 Δ oct 0.4 Δ oct  -0.4Delta_("oct ")-0.4 \Delta_{\text {oct }} t 2 g 6 e g 0 t 2 g 6 e g 0 t_(2g)^(6)e_(g)^(0)t_{2 g}{ }^{6} e_{g}{ }^{0} 2.4 Δ oct + 2 P 2.4 Δ oct  + 2 P -2.4Delta_("oct ")+2P-2.4 \Delta_{\text {oct }}+2 P
d 7 d 7 d^(7)d^{7} t 2 g 5 e g 2 t 2 g 5 e g 2 t_(2g)^(5)e_(g)^(2)t_{2 g}{ }^{5} e_{g}{ }^{2} 0.8 Δ oct 0.8 Δ oct  -0.8Delta_("oct ")-0.8 \Delta_{\text {oct }} t 2 g 6 e g 1 t 2 g 6 e g 1 t_(2g)^(6)e_(g)^(1)t_{2 g}{ }^{6} e_{g}{ }^{1} 1.8 Δ oct + P 1.8 Δ oct  + P -1.8Delta_("oct ")+P-1.8 \Delta_{\text {oct }}+P
d 8 d 8 d^(8)d^{8} t 2 g 6 e g 2 t 2 g 6 e g 2 t_(2g)^(6)e_(g)^(2)t_{2 g}{ }^{6} e_{g}{ }^{2} 1.2 Δ oct 1.2 Δ oct  -1.2Delta_("oct ")-1.2 \Delta_{\text {oct }}
d 9 d 9 d^(9)d^{9} t 2 g 6 e g 3 t 2 g 6 e g 3 t_(2g)^(6)e_(g)^(3)t_{2 g}{ }^{6} e_{g}{ }^{3} 0.6 Δ oct 0.6 Δ oct  -0.6Delta_("oct ")-0.6 \Delta_{\text {oct }}
d 10 d 10 d^(10)d^{10} t 2 g 6 e g 4 t 2 g 6 e g 4 t_(2g)^(6)e_(g)^(4)t_{2 g}{ }^{6} e_{g}{ }^{4} 0
d^(n) High-spin = weak field Low-spin = strong field Electronic configuration CFSE Electronic configuration CFSE d^(1) t_(2g)^(1)e_(g)^(0) -0.4Delta_("oct ") d^(2) t_(2g)^(2)e_(g)^(0) -0.8Delta_("oct ") d^(3) t_(2g)^(3)e_(g)^(0) -1.2Delta_("oct ") d^(4) t_(2g)^(3)e_(g)^(1) -0.6Delta_("oct ") t_(2g)^(4)e_(g)^(0) -1.6Delta_("oct ")+P d^(5) t_(2g)^(3)e_(g)^(2) 0 t_(2g)^(5)e_(g)^(0) -2.0Delta_("oct ")+2P d^(6) t_(2g)^(4)e_(g)^(2) -0.4Delta_("oct ") t_(2g)^(6)e_(g)^(0) -2.4Delta_("oct ")+2P d^(7) t_(2g)^(5)e_(g)^(2) -0.8Delta_("oct ") t_(2g)^(6)e_(g)^(1) -1.8Delta_("oct ")+P d^(8) t_(2g)^(6)e_(g)^(2) -1.2Delta_("oct ") d^(9) t_(2g)^(6)e_(g)^(3) -0.6Delta_("oct ") d^(10) t_(2g)^(6)e_(g)^(4) 0 | $d^{n}$ | High-spin $=$ weak field | | Low-spin $=$ strong field | | | :---: | :---: | :---: | :---: | :---: | | | Electronic configuration | CFSE | Electronic configuration | CFSE | | $d^{1}$ | $t_{2 g}{ }^{1} e_{g}{ }^{0}$ | $-0.4 \Delta_{\text {oct }}$ | | | | $d^{2}$ | $t_{2 g}{ }^{2} e_{g}{ }^{0}$ | $-0.8 \Delta_{\text {oct }}$ | | | | $d^{3}$ | $t_{2 g}{ }^{3} e_{g}{ }^{0}$ | $-1.2 \Delta_{\text {oct }}$ | | | | $d^{4}$ | $t_{2 g}{ }^{3} e_{g}{ }^{1}$ | $-0.6 \Delta_{\text {oct }}$ | $t_{2 g}{ }^{4} e_{g}{ }^{0}$ | $-1.6 \Delta_{\text {oct }}+P$ | | $d^{5}$ | $t_{2 g}{ }^{3} e_{g}{ }^{2}$ | 0 | $t_{2 g}{ }^{5} e_{g}{ }^{0}$ | $-2.0 \Delta_{\text {oct }}+2 P$ | | $d^{6}$ | $t_{2 g}{ }^{4} e_{g}{ }^{2}$ | $-0.4 \Delta_{\text {oct }}$ | $t_{2 g}{ }^{6} e_{g}{ }^{0}$ | $-2.4 \Delta_{\text {oct }}+2 P$ | | $d^{7}$ | $t_{2 g}{ }^{5} e_{g}{ }^{2}$ | $-0.8 \Delta_{\text {oct }}$ | $t_{2 g}{ }^{6} e_{g}{ }^{1}$ | $-1.8 \Delta_{\text {oct }}+P$ | | $d^{8}$ | $t_{2 g}{ }^{6} e_{g}{ }^{2}$ | $-1.2 \Delta_{\text {oct }}$ | | | | $d^{9}$ | $t_{2 g}{ }^{6} e_{g}{ }^{3}$ | $-0.6 \Delta_{\text {oct }}$ | | | | $d^{10}$ | $t_{2 g}{ }^{6} e_{g}{ }^{4}$ | 0 | | |

图 20.6 弱场和强场 Fe 3 + ( d 5 ) Fe 3 + d 5 Fe^(3+)(d^(5))\mathrm{Fe}^{3+}\left(d^{5}\right) 复合物中 3 d 3 d 3d3 d 轨道的占据情况。


预测。例如,如果我们从磁性数据中得知 [ Co ( OH 2 ) 6 ] 3 + Co OH 2 6 3 + [Co(OH_(2))_(6)]^(3+)\left[\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 是低自旋的,那么我们就可以从光谱化学系列中得知 [ Co ( ox ) 3 ] 3 Co ( ox ) 3 3 [Co(ox)_(3)]^(3-)\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-} [ Co ( CN ) 6 ] 3 Co ( CN ) 6 3 [Co(CN)_(6)]^(3-)\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-} 将是低自旋的。唯一常见的高自旋钴(III)配合物是 [ CoF 6 ] 3 CoF 6 3 [CoF_(6)]^(3-)\left[\mathrm{CoF}_{6}\right]^{3-}

 自学练习


所有问题均涉及基态电子构型。

  1. 绘制能级图,表示八面体 ( O h ) O h (O_(h))\left(O_{\mathrm{h}}\right) 复合物的高自旋 d 6 d 6 d^(6)d^{6} 电子构型。确认该图与 CFSE = 0.4 Δ oct CFSE = 0.4 Δ oct  CFSE=-0.4Delta_("oct ")\mathrm{CFSE}=-0.4 \Delta_{\text {oct }} 值一致。

  2. 为什么表 20.3 没有列出所有 d n d n d^(n)d^{n} 配置的高自旋和低自旋情况?

  3. 鉴于 [ Co ( OH 2 ) 6 ] 3 + Co OH 2 6 3 + [Co(OH_(2))_(6)]^(3+)\left[\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+} 是低自旋的,请解释为什么可以预测 [ Co ( bpy ) 3 ] 3 + Co (  bpy  ) 3 3 + [Co(" bpy ")_(3)]^(3+)\left[\mathrm{Co}(\text { bpy })_{3}\right]^{3+} 也是低自旋的。

 扬-泰勒失真


d 9 d 9 d^(9)d^{9} 和高自旋 d 4 d 4 d^(4)d^{4} 离子的八面体配合物通常会发生变形,例如 CuF 2 CuF 2 CuF_(2)\mathrm{CuF}_{2} (其固态结构包含八面体位置的 Cu 2 + Cu 2 + Cu^(2+)\mathrm{Cu}^{2+} 中心,见第 21.12 节)和 [ Cr ( OH 2 ) 6 ] 2 + Cr OH 2 6 2 + [Cr(OH_(2))_(6)]^(2+)\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} ,因此两个金属配位键(轴向)与其余四个金属配位键(赤道)的长度不同。如结构 20.5(拉长的八面体)和 20.6(压缩的八面体)所示。 ^(†){ }^{\dagger} 对于高自旋 d 4 d 4 d^(4)d^{4}

离子,其中一个 e g e g e_(g)e_{g} 轨道包含一个电子,而另一个则空置。如果单个占据的轨道是 d z 2 d z 2 d_(z^(2))d_{z^{2}} ,则该轨道中的大部分电子密度将集中在阳离子和 z z zz 轴上的两个配位体之间。因此,与其他四个配位体相比,这些配位体的静电斥力会更大,从而使复合物受到拉伸 (20.5)。相反,占据 d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道将导致沿 x x xx y y yy 轴伸长,如结构 20.6 所示。对于 d 9 d 9 d^(9)d^{9} 构型也可以提出类似的论点,其中 e g e g e_(g)e_{g} 组中的两个轨道分别被一个和两个电子占据。电子密度测量结果证实, [ Cr ( OH 2 ) 6 ] 2 + Cr OH 2 6 2 + [Cr(OH_(2))_(6)]^(2+)\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} Cr 2 + Cr 2 + Cr^(2+)\mathrm{Cr}^{2+} 离子的电子构型近似于 d x y 1 d y z 1 d x z 1 d z 2 1 d x y 1 d y z 1 d x z 1 d z 2 1 d_(xy)^(1)d_(yz)^(1)d_(xz)^(1)d_(z^(2))^(1)d_{x y}{ }^{1} d_{y z}{ }^{1} d_{x z}{ }^{1} d_{z^{2}}{ }^{1} 。当 t 2 g t 2 g t_(2g)t_{2 g} 离子组被不等占位时,由于轨道并不直接指向配体,因此相应的影响预计会小得多。这一预期通常会在实验中得到证实,但并非一成不变。这种畸变被称为扬-泰勒畸变或四方畸变。


扬-泰勒(Jahn-Teller)定理指出,任何处于退化电子态的非线性分子体系都将是不稳定的,并将发生畸变,形成对称性更低和能量更低的体系,从而消除退化现象。


图 20.7 四面体 ML 4 ML 4 ML_(4)\mathrm{ML}_{4} 复合物与立方体之间的关系;立方体很容易与笛卡尔轴集联系起来。配体位于 x , y x , y x,yx, y z z zz 轴之间。与八面体配合物相比,配位体位于轴上。

在观察到八面体 [ ML 6 ] n + ML 6 n + [ML_(6)]^(n+)\left[\mathrm{ML}_{6}\right]^{n+} 复合物发生四方畸变的同时,对称性也发生了变化(从 O h O h O_(h)O_{\mathrm{h}} 变为 D 4 h D 4 h D_(4h)D_{4 \mathrm{~h}} ),而且 e g e g e_(g)e_{\mathrm{g}} t 2 g t 2 g t_(2g)t_{2 \mathrm{~g}} 两组轨道也发生了分裂(见图 20.10)。伴随着复合物 (20.5) 的拉长,每个具有 z z zz 成分的 d d dd 轨道都变得稳定,而 d x y d x y d_(xy)d_{x y} d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道则变得不稳定。


四面体晶体场


现在我们来看看四面体晶场。图 20.7 展示了将四面体与笛卡尔轴集联系起来的便捷方法。当复合物处于这个方向时,没有一个金属 d d dd 轨道完全指向配位体,但是 d x y , d y z d x y , d y z d_(xy),d_(yz)d_{x y}, d_{y z} d x z d x z d_(xz)d_{x z} 轨道比 d z 2 d z 2 d_(z^(2))d_{z^{2}} d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道更接近于指向配位体。因此,对于正四面体来说, d d dd 轨道的分裂与正八面体结构的分裂相比是相反的,能量差 ( Δ tet ) Δ tet  (Delta_("tet "))\left(\Delta_{\text {tet }}\right) 较小。如果所有其他条件都相同(当然,从来没有相同过),那么相对分裂 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} Δ tet Δ tet  Delta_("tet ")\Delta_{\text {tet }} 的关系式为公式 20.7

Δ tet = 4 9 Δ oct 1 2 Δ oct Δ tet  = 4 9 Δ oct  1 2 Δ oct  Delta_("tet ")=(4)/(9)Delta_("oct ")~~(1)/(2)Delta_("oct ")\Delta_{\text {tet }}=\frac{4}{9} \Delta_{\text {oct }} \approx \frac{1}{2} \Delta_{\text {oct }}

图 20.8 比较了八面体场和四面体场的晶体场分裂。请记住,对称性标签中的下标 g g gg (见方框 20.1)在四面体情况下是不需要的。


虽然我们可以预料到四面体配合物会是高自旋的,但强场效应配体也会降低配合物的对称性,从而导致低自旋的 "扭曲四面体 "体系。图 20.9 所示的钴(II)配合物中就出现了这种罕见的情况。从模型 T d T d T_(d)T_{\mathrm{d}} CoL 4 CoL 4 CoL_(4)\mathrm{CoL}_{4} 复合物到 C 3 v CoL 3 X C 3 v CoL 3 X C_(3v)CoL_(3)XC_{3 \mathrm{v}} \mathrm{CoL}_{3} \mathrm{X} 的对称性降低导致了轨道能级的变化(图 20.9)。如果 a 1 a 1 a_(1)a_{1} 轨道足够稳定,而 e e ee 组明显不稳定,那么低自旋系统在能量上就会受到青睐。



第二排和第三排金属 d 8 d 8 d^(8)d^{8} 复合物(如 Pt ( II ) , Pd ( II ) Pt ( II ) , Pd ( II ) Pt(II),Pd(II)\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II}) , Rh ( I ) , Ir ( I ) Rh ( I ) , Ir ( I ) Rh(I),Ir(I)\mathrm{Rh}(\mathrm{I}), \mathrm{Ir}(\mathrm{I}) )无一例外都是方形平面。

 其他晶体领域


晶体场理论:用途和局限性


20.4 分子轨道理论:八面体配合物


在本节中,我们将探讨金属配合物成键的另一种方法:分子轨道理论。与晶体场理论不同,分子轨道模型考虑的是金属中心与配体之间的共价相互作用。


无金属配体 π π pi\pi 键的配合物


我们首先考虑一个八面体配合物,如 [ Co ( NH 3 ) 6 ] 3 + Co NH 3 6 3 + [Co(NH_(3))_(6)]^(3+)\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} ,其中金属配体 σ σ sigma\sigma 键占主导地位,以此说明 MO 理论在 d d dd 块状金属配合物中的应用。在绘制这种络合物的 MO 能级图时,需要进行很多近似处理,因此结果只能说是定性准确。即便如此,这些结果对于理解金属-配体键合还是很有用的。


对称性(见附录 3), s s ss 轨道具有 a 1 g a 1 g a_(1g)a_{1 g} 对称性, p p pp 轨道具有 t 1 u t 1 u t_(1u)t_{1 u} 退化对称性, d d dd 轨道分为两组,分别具有 e g ( d z 2 e g d z 2 e_(g)(d_(z^(2)):}e_{g}\left(d_{z^{2}}\right. d x 2 y 2 d x 2 y 2 d_(x^(2)-y^(2))d_{x^{2}-y^{2}} 轨道)和 t 2 g ( d x y , d y z t 2 g d x y , d y z t_(2g)(d_(xy),d_(yz):}t_{2 g}\left(d_{x y}, d_{y z}\right. d x z d x z d_(xz)d_{x z} 轨道)对称性(图 20.12)。每个配体 L 提供一个轨道, O h L 6 O h L 6 O_(h)L_(6)O_{\mathrm{h}} \mathrm{L}_{6} 片段配体组轨道的推导类似于 SF 6 SF 6 SF_(6)\mathrm{SF}_{6} F 6 F 6 F_(6)\mathrm{F}_{6} 片段的推导(见图 5.27、公式 5.26-5.31 和附文)。这些 LGO 具有 a 1 g , t 1 u a 1 g , t 1 u a_(1g),t_(1u)a_{1 g}, t_{1 u} e g e g e_(g)e_{g} 对称性(图 20.12)。通过金属轨道和 LGO 之间的对称匹配,可以构建图 20.13 所示的 MO 图。金属轨道和配体轨道的组合产生了六个成键分子轨道和六个反键分子轨道。金属 d x y , d y z d x y , d y z d_(xy),d_(yz)d_{x y}, d_{y z} d x z d x z d_(xz)d_{x z} 原子轨道具有 t 2 g t 2 g t_(2g)t_{2 g} 对称性,并且不成键(图 20.13)。配体与金属 s s ss p p pp 轨道之间的重叠程度大于金属 d d dd 轨道之间的重叠程度,因此 a 1 g a 1 g a_(1g)a_{1 g} t 1 u t 1 u t_(1u)t_{1 u} 原子轨道的稳定程度大于 e g e g e_(g)e_{g} 原子轨道。在没有 π π pi\pi 键的八面体配合物中, t 2 g t 2 g t_(2g)t_{2 g} e g e g e_(g)^(**)e_{g}{ }^{*} 电平之间的能量差相当于晶体场理论中的 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} (图 20.13)。

  • 在低自旋 [ Co ( NH 3 ) 6 ] 3 + , 18 Co NH 3 6 3 + , 18 [Co(NH_(3))_(6)]^(3+),18\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}, 18 电子(六个来自 Co 3 + Co 3 + Co^(3+)\mathrm{Co}^{3+} ,两个来自配体)占据 a 1 g , t 1 u , e g a 1 g , t 1 u , e g a_(1g),t_(1u),e_(g)a_{1 g}, t_{1 u}, e_{g} t 2 g MOs t 2 g MOs t_(2g)MOst_{2 g} \mathrm{MOs}

  • 在高自旋 [ CoF 6 ] 3 , 18 CoF 6 3 , 18 [CoF_(6)]^(3-),18\left[\mathrm{CoF}_{6}\right]^{3-}, 18 电子中,12 个占据 a 1 g , t 1 u a 1 g , t 1 u a_(1g),t_(1u)a_{1 g}, t_{1 u} e g MOs e g MOs e_(g)MOse_{g} \mathrm{MOs} 层,4 个占据 t 2 g t 2 g t_(2g)t_{2 g} 层,2 个占据 e g e g e_(g)^(**)e_{g}{ }^{*} 层。


具有金属配体 π π pi\pi 键的配合物


π π pi\pi 受体配体从金属中心接受电子,这种相互作用涉及一个充满的金属轨道和一个空的配体轨道。 π π pi\pi -供体配体包括 Cl , Br Cl , Br Cl^(-),Br^(-)\mathrm{Cl}^{-}, \mathrm{Br}^{-} I I I^(-)\mathrm{I}^{-} ,金属配体 π π pi\pi -相互作用涉及电子从填充配体 p p pp 轨道转移到金属中心(图 20.14a)。 π π pi\pi 受体配体的例子有 CO , N 2 , NO CO , N 2 , NO CO,N_(2),NO\mathrm{CO}, \mathrm{N}_{2}, \mathrm{NO} 和烯,金属配体 π π pi\pi 键产生于

图 20.13 使用配体基团轨道法形成 [ ML 6 ] n + ML 6 n + [ML_(6)]^(n+)\left[\mathrm{ML}_{6}\right]^{n+} (其中 M 为第一排金属)的近似 MO 图;轨道如图 20.12 所示。成键只涉及 M L σ M L σ M-Lsigma\mathrm{M}-\mathrm{L} \sigma 相互作用。

20.14 π 20.14 π 20.14 pi20.14 \pi -线性 L M L L M L L-M-L\mathrm{L}-\mathrm{M}-\mathrm{L} 单元中的成键,其中金属和配体供体原子位于 x x xx 轴上:(a) 金属 d x z d x z d_(xz)d_{x z} 和配体 p z p z p_(z)p_{z} 轨道之间,如 L = I L = I L=I^(-)\mathrm{L}=\mathrm{I}^{-} π π pi\pi 供体配体的一个例子);以及 (b) 金属 d x z d x z d_(xz)d_{x z} 和配体 π π pi^(**)\pi^{*} 轨道之间,如 L = CO L = CO L=CO\mathrm{L}=\mathrm{CO} π π pi\pi 受体配体的一个例子)。


虽然图 20.13 和 20.15 是定性的,但它们揭示了含有 σ σ sigma\sigma 供体、 π π pi\pi 供体和 π π pi\pi 受体配体的八面体 [ ML 6 ] n + ML 6 n + [ML_(6)]^(n+)\left[\mathrm{ML}_{6}\right]^{n+} 复合物之间的重要差异:

  • σ σ sigma\sigma 复合物到含有 π π pi\pi 供体配体的复合物, Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 会减少;

  • 对于具有 π π pi\pi 供体配体的配合物, π π pi\pi 供体的增加会稳定 t 2 g t 2 g t_(2g)t_{2 g} 水平,破坏 t 2 g t 2 g t_(2g)^(**)t_{2 g}{ }^{*} 的稳定性,从而降低 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }}

  • 对于含有 π π pi\pi 受体配体的配合物, Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 值相对较大,这类配合物很可能是低自旋的;

上述观点与配体在光谱化学系列中的位置相一致; π π pi\pi 供体,如 I I I^(-)\mathrm{I}^{-}


图 20.15 显示了三个配体组 π π pi\pi 轨道,您可能想知道这些轨道是如何从六个配体的组合中产生的,特别是因为我们在图 20.14 中展示了 π π pi\pi 相互作用的简化视图。在一个八面体 [ ML 6 ] n + ML 6 n + [ML_(6)]^(n+)\left[\mathrm{ML}_{6}\right]^{n+} 复合物中,有六个 π π pi\pi 供体或受体配体位于 x , y x , y x,yx, y z z zz 轴上,每个配体提供两个 π π pi\pi 轨道,例如,对于位于 x x xx 轴上的配体, p y p y p_(y)p_{y} p z p z p_(z)p_{z} 轨道都可用于 π π pi\pi 键合。现在只考虑包含八面体配合物的四个配位体的一个平面,例如 x z x z xzx z 平面。下图 (a) 显示了由两个配体的 p z p z p_(z)p_{z} 轨道和另外两个配体的 p x p x p_(x)p_{x} 轨道组成的配体基团轨道 (LGO)。图 (b) 显示了 (a) 中的 LGO 如何与金属的 d x z d x z d_(xz)d_{x z} 轨道结合而产生成键 MO,而 © 则显示了反键结合。


证明在 O h O h O_(h)O_{\mathrm{h}} 对称性下,图 (a) 中的 LGO 属于 t 2 g t 2 g t_(2g)t_{2 g} 集。



工作示例 20.2 18 电子规则




[Ans. (a) 0 ; (b) 0 ; (c) 1 ; (d) 0 ]  [Ans. (a)  0 ;  (b)  0 ;  (c)  1 ; (d)  0 ] " [Ans. (a) "0;" (b) "0;" (c) "-1"; (d) "0]\text { [Ans. (a) } 0 ; \text { (b) } 0 ; \text { (c) }-1 \text {; (d) } 0]

[Y4][N+]=[Os]Y4N+Os

(20.7)
(20.8)




我们可以将论点扩展到 [ CrO 4 ] 2 CrO 4 2 [CrO_(4)]^(2-)\left[\mathrm{CrO}_{4}\right]^{2-} [ MnO 4 ] MnO 4 [MnO_(4)]^(-)\left[\mathrm{MnO}_{4}\right]^{-} 等配合物,展示 π π pi\pi 供体配体如何帮助稳定高氧化态配合物。不过,为了对这些例子进行有效的讨论,我们需要构建适合四面体物种的新 MO 图。这样做不会比我们在考虑八面体情况时获得更多的启示,感兴趣的读者可参阅更专业的文章。 ^(†){ }^{\dagger}

 20.5 配体场理论


虽然我们不会关注配体场理论的数学问题,但由于本章后面我们将使用配体场稳定能量(LFSE),因此有必要对其进行简要评述。

配体场理论是晶体场理论的延伸,它是自由参数化的,而不是采用点电荷配体产生的局部场。

配体场理论与晶体场理论一样,仅限于 d d dd 轨道的作用,但与晶体场模型不同的是,配体场方法并不是一个纯粹的静电模型。它是一个自由参数化模型,使用的 Δ oct Δ oct  Delta_("oct ")\Delta_{\text {oct }} 和 Racah 参数(我们稍后再谈)是从电子光谱(即实验)数据中获得的。最重要的是,虽然(正如我们在上一节所展示的)可以通过使用分子轨道理论来研究 d d dd 块状金属配合物中的成键情况,但认为配体场理论仅仅是 MO 理论的应用是不正确的。 ^(***){ }^{\star}


20.6 描述多电子系统中的电子


在晶体场理论中,我们考虑了 d d dd 电子和配体电子之间的斥力,但忽略了金属中心上 d d dd 电子之间的相互作用。这实际上是一个更普遍问题的一个方面,即我们如何描述多电子系统中电子之间的相互作用。现在,我们将说明为什么 2 s 2 2 p 1 2 s 2 2 p 1 2s^(2)2p^(1)2 s^{2} 2 p^{1} 4 s 2 3 d 2 4 s 2 3 d 2 4s^(2)3d^(2)4 s^{2} 3 d^{2} 等简单的电子构型不能唯一定义电子的排列。这就引出了一个术语

自由原子和离子的符号。在大多数情况下,这些符号的使用仅限于我们对 d d dd - 和 f f ff 块状复合物电子光谱的讨论。在第 1.7 节中,我们展示了如何为给定电子分配一组量子数。就许多目的而言,这种程度的讨论已经足够。但是,为了理解电子光谱,需要进行更详细的讨论。在学习本节之前,请先复习方框 1.4。




M L = m l M L = m l M_(L)=summ_(l)M_{L}=\sum m_{l}

L = ( l 1 + l 2 ) , ( l 1 + l 2 1 ) , | l 1 l 2 | L = l 1 + l 2 , l 1 + l 2 1 , l 1 l 2 L=(l_(1)+l_(2)),(l_(1)+l_(2)-1),dots|l_(1)-l_(2)|L=\left(l_{1}+l_{2}\right),\left(l_{1}+l_{2}-1\right), \ldots\left|l_{1}-l_{2}\right|




M S = m s M S = m s M_(S)=summ_(s)M_{S}=\sum m_{s}
  • S = 1 2 , 3 2 , 5 2 S = 1 2 , 3 2 , 5 2 S=(1)/(2),(3)/(2),(5)/(2)dotsS=\frac{1}{2}, \frac{3}{2}, \frac{5}{2} \ldots




First electron: m_(l)=0| First | | :--- | | electron: | | $m_{l}=\mathbf{0}$ |
Second electron: m_(l)=0| Second | | :--- | | electron: | | $m_{l}=0$ |
M L = Σ m l M L = Σ m l M_(L)=Sigmam_(l)M_{L}=\Sigma m_{l} M S = Σ m s M S = Σ m s M_(S)=Sigmam_(s)M_{S}=\Sigma m_{s}
uarr\uparrow uarr\uparrow 0 +1 )
uarr\uparrow darr\downarrow 0 0 L = 0 L = 0 L=0L=0,
\checkmark darr\downarrow 0 -1 S = 1 S = 1 int S=1\int S=1
"First electron: m_(l)=0" "Second electron: m_(l)=0" M_(L)=Sigmam_(l) M_(S)=Sigmam_(s) uarr uarr 0 +1 ) uarr darr 0 0 L=0, ✓ darr 0 -1 int S=1| First <br> electron: <br> $m_{l}=\mathbf{0}$ | Second <br> electron: <br> $m_{l}=0$ | $M_{L}=\Sigma m_{l}$ | $M_{S}=\Sigma m_{s}$ | | | :---: | :---: | :---: | :---: | :---: | | $\uparrow$ | $\uparrow$ | 0 | +1 | ) | | $\uparrow$ | $\downarrow$ | 0 | 0 | $L=0$, | | $\checkmark$ | $\downarrow$ | 0 | -1 | $\int S=1$ |


M L : L , ( L 1 ) 0 , ( L 1 ) , L M L : L , ( L 1 ) 0 , ( L 1 ) , L M_(L):L,(L-1)dots0,dots-(L-1),-LM_{L}: L,(L-1) \ldots 0, \ldots-(L-1),-L
M S : S , ( S 1 ) ( S 1 ) , S M S : S , ( S 1 ) ( S 1 ) , S M_(S):S,(S-1)dots-(S-1),-SM_{S}: S,(S-1) \ldots-(S-1),-S



量子数 J J JJ 取值为 ( L + S ) , ( L + S 1 ) ( L + S ) , ( L + S 1 ) (L+S),(L+S-1)dots(L+S),(L+S-1) \ldots | L S | | L S | |L-S||L-S| ,这些值落入系列 0 , 1 , 2 0 , 1 , 2 0,1,2dots0,1,2 \ldots 1 2 , 3 2 , 5 2 1 2 , 3 2 , 5 2 (1)/(2),(3)/(2),(5)/(2)\frac{1}{2}, \frac{3}{2}, \frac{5}{2} 中......(就像单电子的 j j jj 和多电子系统的 J J JJ 必须为正或零)。由此可见,有



( 2 L + 1 ) ( 2 L + 1 ) (2L+1)(2 L+1) J J JJ 的可能值为 L < S L < S L < SL<S


M J M J M_(J)M_{J} 的值表示总角动量沿 z z zz 轴的分量。正如 S S SS M S M S M_(S)M_{S} 之间、 L L LL M L M L M_(L)M_{L} 之间存在关系一样, J J JJ M J M J M_(J)M_{J} 之间也存在关系: