根据 EN 1520 [20],ILC C_("Origin ")C_{\text {Origin }} 属于强度等级 LAC 4 和密度等级 0.6。根据 DIN EN 13055-1 [29],ILC 起源中使用的 LWA 是 1-2 毫米和 2-4 毫米馏分的膨胀玻璃。粘结剂由符合 EN 197-1 [68] 标准的矿渣水泥 CEM III/A 42.5 N 和符合 EN 13263-1 [69] 标准的悬浮凝结硅灰组成。硅灰悬浮液的含水量已在混合料设计中考虑在内。根据 EN 14889-2 [70],添加剂包括聚羧酸醚基超塑化剂、引气剂和微聚合纤维。
Step Approx. mixing time [s]
Mixing of RLCA with half of the water 30
Addition of Cement 45-60
Addition of remaining mixing water 60-90
Addition of Silica Fume, SP and AEA 180
Addition of Stabilizer 60| Step | Approx. mixing time [s] |
| :--- | :--- |
| Mixing of RLCA with half of the water | 30 |
| Addition of Cement | $45-60$ |
| Addition of remaining mixing water | $60-90$ |
| Addition of Silica Fume, SP and AEA | 180 |
| Addition of Stabilizer | 60 |
图 4 显示了不同 RLCA 组的颗粒密度和吸水性。对储存条件( ∼20^(@)C//65%\sim 20^{\circ} \mathrm{C} / 65 \% 相对湿度)和烘箱干燥条件( 105^(@)C105^{\circ} \mathrm{C} 质量恒定)进行了区分。虽然储存条件与 RILC 的混合设计成分特别相关,但它在一定程度上与饱和表干阶段的颗粒密度( rho_("ssd ")\rho_{\text {ssd }} )相当[72]。烘箱干燥条件下的结果可作为参考,并允许相同粒度组的 RLCA s of different origins. The particle density of RLCA ranges from 730 to \(1590 \mathrm{~kg} / \mathrm{m}^{3}\). The \(\mathrm{RLCA}_{\text {fine }}\) group deviates significantly from the other RLCA groups, being, on average, at least \(500 \mathrm{~kg} / \mathrm{m}^{3}\) denser. This can be attributed to the distinctive agglomerate structure of the RLCA. Larger particle contain a higher proportion of LWAs with relatively low densities, while the \(\mathrm{RLCA}_{\text {fine }}\) fraction contains an increased proportion of crushed LWA, which have a reduced pore volume and thus a higher particle density. As a result, the density decreases with increasing particle size. These observations are consistent with results reported in literature [40-42]. The horizontal dashed lines in Fig. 4 represent the densities of the original LWA used (expanded glass) in ILC \({ }_{\text {Origin. }}\). It should be noted that the RLCA s 之间进行比较( RLCA_(1-2)\mathrm{RLCA}_{1-2} 和 RLCA_(2-4)\mathrm{RLCA}_{2-4} 的颗粒密度分别高出 2.6 和 2.7 倍。这一性能参数限制了从 RLCA 生产出的 RILC 获得相同密度的可能性。
下文将比较 RILC s mechanical properties to those of other established lightweight concretes, including the reference material ILC Origin. . The correlation between dry density and compressive strength for RILC is plotted in Fig. 9 (top left). Similar to what is observed for LAC [98] and other LC's [99], RILC's compressive strength tends to increase with higher density, as a denser structure generally indicates reduced porosity and better load-bearing capacity. However, several factors must be taken into account when considering the fluctuations in RILC strength. Variations in RLCA density and water absorption impact the resulting density of the hardened RILC and affect the balance between RLCA, cement paste and water. Typically, RLCA with higher particle density and lower porosity will yield higher strength in the hardened concrete. These factors, along with the normal variations in concrete production, compaction and testing, contribute to the observed variability in compressive strength. Fig. 9 (top right) illustrates the variation in compressive strength, based on tests from nine cylinders across different batches. The mean compressive strength after 28 days is \(7.1 \mathrm{~N} / \mathrm{mm}^{2}\), with a standard deviation of \(0.9 \mathrm{~N} / \mathrm{mm}^{2}\), which is consistent with LAC's of similar strength. The characteristic compressive strength, calculated according to EN 1520 [20], is \(5 \mathrm{~N} / \mathrm{mm}^{2}\), matching the characteristic compressive strength of ILC Origin (see Table 8). Therefore, the study 实现与 ILC_("Origin ")\mathrm{ILC}_{\text {Origin }} 相同强度的目标的情况。
Na_(2)O content [wt%]
Residue CaO for
CO_(2) uptake ( {:m_(CaO-CO2))[kg//t]
Potential of CO_(2) uptake
quad[kg//t]| $\mathrm{Na}_{2} \mathrm{O}$ content [wt%] |
| :--- |
| Residue CaO for |
| $\mathrm{CO}_{2}$ uptake ( $\left.\mathrm{m}_{\mathrm{CaO}-\mathrm{CO} 2}\right)[\mathrm{kg} / \mathrm{t}]$ |
| Potential of $\mathrm{CO}_{2}$ uptake |
| $\quad[\mathrm{kg} / \mathrm{t}]$ |
258
247
246
RLCA _("fine ") RLCA _(2-4) RLCA _(8-16)
"Amount of LWA in
RLCA based on the" 43 46
"Na_(2)O content [wt%]
Residue CaO for
CO_(2) uptake ( {:m_(CaO-CO2))[kg//t]
Potential of CO_(2) uptake
quad[kg//t]" 258 247 246| | RLCA $_{\text {fine }}$ | RLCA $_{2-4}$ | RLCA $_{8-16}$ |
| :--- | :---: | :---: | :---: |
| Amount of LWA in <br> RLCA based on the | 43 | 46 | |
| $\mathrm{Na}_{2} \mathrm{O}$ content [wt%] <br> Residue CaO for <br> $\mathrm{CO}_{2}$ uptake ( $\left.\mathrm{m}_{\mathrm{CaO}-\mathrm{CO} 2}\right)[\mathrm{kg} / \mathrm{t}]$ <br> Potential of $\mathrm{CO}_{2}$ uptake <br> $\quad[\mathrm{kg} / \mathrm{t}]$ | 258 | 247 | 246 |
数据可用性
数据将应要求提供。
参考资料
[1] J. Kim、A.M. Grabiec、A. Ubysz,《含建筑和拆除废物再生骨料和粉末的结构混凝土实验研究》,材料(2022)。
[2] J. Kim,《韩国的建筑和拆除废物管理:再生骨料及其应用》,Clean.Technol.Environ.Policy 23 (8) (2021) 2223-2234.
[3] H. Yang, J. Xia, J.R. Thompson, R.J. Flower, Urban Construction and demolition waste and landfill failure in Shenzhen, China, Waste Manag.63 (2017) 393-396.
[4] A. Müller, , Progresses and challenges in recycling of construction and demolition waste.国际建筑环境再循环会议,RILEM 出版社 S.A.R.L,德国魏玛,2023 年。
[5] V. Verein Deutscher Zementwerke e, Ressourcen der Zukunft für Zement und Beton, Düsseldorf, Germany, 2022, p. 56.
[6] M. Zajac, J. Skocek, M. Ben Haha, J. Deja, CO_(2)\mathrm{CO}_{2} 水泥和混凝土工业中的矿化方法,能源 15 (10) (2022) 3597.
[7] A. Saxena、S.S. Sulaiman、M. Shariq、M.A. Ansari,《使用再生粗骨料和底灰制成的混凝土性能的实验和分析研究》,Innov.Infrastruct.Solut.8 (7) (2023) 197.
[10] DIN EN 933-11,Pruifverfahren für geometrische Eigenschaften von Gesteinskörnungen - Teil 11: Einteilung der Bestandteile in grober recyclierter Gesteinskörnung(骨料几何特性测试 - 第 11 部分:粗再生骨料成分分类测试),Beuth Verlag GmbH,德国柏林,2011 年,第 15 页。
[11] DIN 4226-101,Rezyklierte Gesteinskörnungen für Beton nach DIN EN 12620 Teil 101:Typen und geregelte gefährliche Substanzen(槟榔用再生骨料)。
混凝土符合 DIN EN 12620 - 第 101 部分:类型和受管制危险物质),2017 年,第 11 页。
[12] DIN 1045-2,Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 2: Beton(混凝土、钢筋混凝土和预应力混凝土结构--第 2 部分:混凝土),德国柏林 Beuth-Verlag 出版社,2023 年,第 62 页。
[13] M.S. de Juan、P.A. Gutiérrez,《附着砂浆含量对再生混凝土骨料性能的影响研究》,Constr.Build.Mater.23 (2) (2009) 872-877.
[14] J. Scheidt, Einfluss der Wasseraufnahme von rezyklierten Gesteinskörnungen auf den Wasserzementwert von R-Beton, Beton 70 (4) (2020) 2-8.
[15] K.-C.Thienel, T. Haller, N. Beuntner, Lightweight concrete-from basics to innovations, Materials 13 (5) (2020) 1120.
[16] A. Hückler, M. Schlaich, Zur Biegung von Infraleichtbetonbauteilen - Werkstoff-, Verbund-, Trag- und Verformungsverhalten, Beton- und Stahlbetonbau 112 (5) (2017) 282-292.
[17] C. Lösch, A. Hückler, M. Schlaich, Infraleichtbeton, Bauphysik 41 (1) (2019) 1-6.
[18] M. Schlaich, A. Hückler, C. Lösch, Infraleichtbeton (ILC), in:K. Bergmeister, F. Fingerloos, J.-D.Wörner (Eds.), Beton-Kalender 2021, Ernst & Sohn GmbH & Co.KG, Berlin, Germany, 2021, pp.
[19] B. Callsen, K.-C.Thienel, Besondere Aspekte bei der Entwicklung und Ausfuhrung eines hochwärmedämmenden Hochleistungs-Leichtbetons mit sehr niedriger Betonrohdichte, Beton 67 (4) (2017) 128-134.
[20] DIN EN 1520,Vorgefertigte Bauteile aus haufwerksporigem Leichtbeton und mit statisch anrechenbarer oder nicht anrechenbarer Bewehrung(轻质骨料混凝土的预制加固构件,具有结构性和非结构性加固的开放式结构),Beuth Verlag GmbH,德国柏林,2011 年,第 119 页。
[21] S. Akçaözoğlu, C. Ulu, Recycling of waste PET granules as aggregate in alkaliactivated blast furnace slag/metakaolin blends, Constr.Building.Mater.58 (2014) 31-37.
[22] J.M. Abed, B.A. Khaleel, I.S. Aldabagh, N.H. Sor, The effect of recycled plastic waste polyethylene terephthalate (PET) on characteristics of cement mortar, J. Phys:Conf.1973 (1) (2021) 012121.
[24] S. Talukdar, S.T. Islam, N. Banthia, Development of a lightweight low-carbon footprint concrete containing recycled waste materials, Adv.2011 (2011) 594270.2011 (2011) 594270.
[25] C. Parra, E.M. Sánchez, I. Miñano, F. Benito, P. Hidalgo, Recycled plastic and cork waste for structural lightweight concrete production, Sustainability 11 (7) (2019) 1876.
[26] A. Petrella, M. Petrella, G. Boghetich, D. Petruzzelli, D. Calabrese, P. Stefanizzi, D. De Napoli, m Guastamacchia, Recycled waste glass as aggregate for lightweight concrete, Proc. Inst.Eng.Mater.160 (4) (2007) 165-170.
[27] D. Kralj,《使用含有膨胀玻璃的骨料回收轻质混凝土的实验研究》,《工艺安全、环境》(Process Saf.Environ.Prot.87 (4) (2009) 267-273.
[28] S. -Y.Chung、M. Abd Elrahman、P. Sikora、T. Rucinska、E. Horszczaruk、D. Stephan, 使用基于图像的方法评估破碎和膨胀废玻璃骨料对轻质混凝土材料性能的影响,《材料》10 (12) (2017) 1354.
[29] DIN EN 13055-1,Leichte Gesteinskörnungen Teil 1:Leichte Gesteinskörnungen für Beton, Mörtel und Einpressmörtel(轻质骨料--第 1 部分:用于混凝土、砂浆和灌浆的轻质骨料》,Beuth-Verlag GmbH,德国柏林,2002 年,第 39 页。
[30] A. Wongkvanklom、P. Posi、B. Khotsopha、C. Ketmala、N. Pluemsud、S. Lertnimoolchai、P. Chindaprasirt,含有再生轻质混凝土骨料的结构轻质混凝土,KSCE J. Civ.22 (8) (2018) 3077-3084.
[31] J. Suchorzewski, N. Chitvoranund, S. Srivastava, M. Prieto, K. Malaga, Recycling potential of cellular lightweight concrete insulation as supplementary cementitious material, in:A. Jędrzejewska, F. Kanavaris, M. Azenha, F. Benboudjema, D. Schlicke (Eds.), International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures - SynerCrete'23, I, Springer Nature Switzerland, Milos, Greece, 2023, pp.
[32] F. Hlawatsch, M. Peters, D. Ufermann-Wallmeier, Leichter Schaumstein aus groben Porenbetongranulaten im zweiten Nutzungszyklus - RC-Schaumstein, ce/ Pap.6 (6) (2023) 867-874.
[33] Y. Zhao, J. Gao, F. Chen, C. Liu, X. Chen, Utilization of waste clay brick as coarse and fine aggregates for the preparation of lightweight aggregate concrete, J. Clean.201 (2018) 706-715.
[34] I. Wichmann, R. Firdous, D. Stephan, Upcycling of demolition material from concrete and brick for the production of cold-bound, alkali-activated lightweight aggregates, Mater.Struct.56 (7) (2023) 135.
[35] F. Tajra, M.A. Elrahman, D. Stephan, The production and properties of coldbonded aggregate and its applications in concrete: a review, Constr.Build.Mater.225 (2019) 29-43.
[36] B. Leydolph, A. Müller, U. Palzer, Sustainability benefits of lightweight concrete:BFT Int. 82 (2) (2016) 127-129.
[37] A. Mueller, A. Schnell, K. Ruebner, The manufacture of lightweight aggregates from recycled masonry rubble, Constr.Build.Mater.98 (2015) 376-387.
[38] H.G.A. Kouwenhoven, M.-L. Peters, Economic Design and Construction with Light Weight Aggregate Concrete.回收轻质骨料混凝土》,EuroLightCon,欧盟-Brite EuRam III,2000 年。
[39] DIN EN 206, Beton - Festlegung, Eigenschaften, Herstellung und Konformitat (Concrete - Specification, performance, production and conformity), Beuth Verl.GmbH, Berl., Ger. (2021) 105.
[40] J. Kümmel, Ökobilanzierung von Baustoffen am Beispiel des Recyclings von Konstruktionsleichtbeton, Fak.ät Bauing.- und Vermess., Univ. ät Stuttg.
[41] J.A. Bogas、J. de Brito、J. Cabaço,《用回收的轻质膨胀粘土骨料混凝土生产的混凝土的长期行为》,《建筑。Build.Mater.65 (2014) 470-479.
[42] J.A. Bogas、J. de Brito、J.M. Figueiredo,用回收的轻质膨胀粘土骨料混凝土生产的混凝土的力学特征,J. Clean.Prod.89 (2015) 187-195.
[43] L. Huang, Z. Yang, Z. Li, Y. Xu, L. Yu, Recycling of the end-of-life lightweight aggregate concrete (LWAC) with a novel approach, J. Clean.275 (2020) 123099.
[44] J. de Brito, N. Saikia, Recycled Aggregate in Concrete - Use of Industrial, Construction and Demolition Waste, Springer-Verlag, London, London, 2013.
[45] J. Dahms, G. Brune, Wasseraufnahme und Rohdichte von Betonbruch, Beton 46 (8) (1996) 480-486.
[46] Expanded Clay and Slate Institute, Internal Curing Using Expanded Shale, Clay and Slate Lightweight Aggregate, Publication #4362, Expanded Shale, Clay & Slate Institute, Salt Lake City, UT, 2006...
[47] G.W. Groves, A. Brough, I.G. Richardson, C.M. Dobson, Progressive Changes in the Structure of Hardened C3S Cement Pastes due to Carbonation, J. Am.Ceram.74 (11) (1991) 2891-2896.
[49] CEMBUREAU, Cementing the European Green Deal (Brussels), in:C.-T.E. C. Association (Ed.), REACHING Clim.NEUTRALITY Cem.Concr.value chain 2050 (2020) 38.
[50] T. Kikuchi, Y. Kuroda, Carbon Dioxide Uptake in Demolished and Crushed Concrete, J. Adv.Concr.Technol.9 (1) (2011) 115-124.
[51] X. Fang, D. Xuan, C.S. Poon, Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions, Mater.Struct.50 (4) (2017) 200.
[52] L. Rosa, V. Becattini, P. Gabrielli, A. Andreotti, M. Mazzotti, Carbon dioxide mineralization in recycled concrete aggregates can contribute immediately to carbon-neutrality, Resour.184 (2022) 106436.
[53] H.-J. Ho, A. Iizuka, E. Shibata, H. Tomita, K. Takano, T. Endo, Utilization of CO2 in direct aqueous carbonation of concrete fines generated from aggregate recycling. Influences of the solid-liquid ratio and CO2 concentration, J. Clean:固液比和二氧化碳浓度的影响,J. Clean.Prod.312 (2021) 127832.
[55] L. Izoret, T. Pernin, J.-M.Potier, J.-M.Torrenti, Impact of industrial application of fast carbonation of recycled concrete aggregates, Appl.
[56] C. Shi, Y. Li, J. Zhang, W. Li, L. Chong, Z. Xie, Performance enhancement of recycled concrete aggregate - A review, J. Clean.Prod.112 (2016) 466-472.
[57] K. Ouyang, C. Shi, H. Chu, H. Guo, B. Song, Y. Ding, X. Guan, J. Zhu, H. Zhang, Y. Wang, J. Zheng, An overview on the efficiency of different pretreatment techniques for recycled concrete aggregate, J. Clean.263 (2020) 121264.
[58] D. Xuan,B. Zhan,C.S. Poon,掺入碳化再生混凝土骨料的混凝土力学性能评估,Cem.Cem. Concr.Compos.65 (2016) 67-74.
[59] R. Infante Gomes, C. Brazão Farinha, R. Veiga, J. de Brito, P. Faria, D. Bastos, CO2 sequestration by construction and demolition waste aggregates and effect on mortars and concrete performance - an overview, Renew.Sustain.152 (2021) 111668.
[60] J. Skocek, M. Zajac, M. Ben Haha, Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete, Sci. Rep. 10 (2020).
[61] A. Gholizadeh-Vayghan, R. Snellings, Beneficiation of recycled concrete fines through accelerated carbonation, Mater.Struct.55 (7) (2022) 171.
[62] M. Sereng, A. Djerbi, O.O. Metalssi, P. Dangla, J.-M. Torrenti, Improvement of Recycled Aggregates Properties by Means of CO2 Uptake, Appl.Torrenti, Improvement of Recycled Aggregates Properties by Means of CO2 Uptake, Appl.
[63] A. Leemann, F. Winnefeld, B. Münch, J. Tiefenthaler, Accelerated carbonation of recycled concrete aggregates and its implications for the production of recycling concrete, J. Build.Eng.79 (2023) 107779.
[64] F. Kaddah, E. Roziere, H. Ranaivomanana, O. Amiri, Complementary use of thermogravimetric analysis and oven to assess the composition and bound CO2 content of recycled concrete aggregates, Dev.Built Environ.15 (2023) 100184.
[65] B. Dündar, M.S. Tuğluca, H. İlcan, O. Şahin, M. Şahmaran, The effects of various operational- and materials-oriented parameters on the carbonation performance of low-quality recycled concrete aggregate, J. Build.68 (2023) 10613868 (2023) 106138.
[66] D. Bastos, C. Brazão Farinha, C. Maia Pederneiras, R. Veiga, J.A. Bogas, R. Infante Gomes, A. Santos Silva, Pathway to carbon neutrality in the cement industry:应用科学》(2024 年)。
[67] T. Haller, N. Beuntner, H. Gutsch, K.-C. Thienel, Challenges on pumping infralightweight concrete based on highly porous aggreges, J. Build.Thienel, Challenges on pumping infralightweight concrete based on highly porous aggregates, J. Build.Eng.65 (2023) 105761.
[68] DIN EN 197-1,Zement - Teil 1: Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement(水泥 - 第 1 部分:常见水泥的成分、规格和合格标准),德国柏林 Beuth-Verlag 出版社,2011 年,第 8 页。
[69] DIN EN 13263-1,Silikastaub für Beton - Teil 1:Definitionen, Anforderungen und Konformitatskriterien(混凝土用硅灰 - 第 1 部分:定义、要求和合格标准),德国柏林 Beuth-Verlag 出版社,2009 年,第 22 页。
[70] DIN EN 14889-2,Fasern für Beton - Teil 2:Polymerfasern - Begriffe, Festlegungen und Konformität(混凝土用纤维 高分子纤维。定义、规格和符合性),Beuth Verlag GmbH,德国柏林,2006 年,第 25 页。
[71] DIN EN 1097-3,Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen - Teil 3: Bestimmung von Schüttdichte und Hohlraumgehalt,1998 年。
[72] DIN EN 1097-6,Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen - Teil 6: Bestimmung der Rohdichte und der Wasseraufnahme;集料机械和物理特性试验第 6 部分:颗粒密度和吸水率的测定,德国柏林 Beuth Verlag 出版社,2022 年,第 64 页。
[73] DIN 4226-3, , Zuschlag für Beton - Prüfung von Zuschlag mit dichtem oder porigem Gefüge (Aggregates for concrete, Test. Aggreg. Compact Or. Porous Struct. ) (1983) 8.
[74] DIN EN 12350-6, Prüfung von Frischbeton - Teil 6: Frischbetonrohdichte, BeuthVerlag, Berlin, Germany, 2011, p. 7.
[77] DIN EN 992, Bestimmung der Trockenrohdichte von haufwerksporigem Leichtbeton, Beuth Verlag GmbH, Berlin, Germany, 1995, p. 5。
[78] DIN EN 1354, Bestimmung der Druckfestigkeit von haufwerksporigem Leichtbeton, Beuth Verlag GmbH, Berlin, Germany, 2005, p. 18.
[79] DIN E.N. ISO 22007-2,Kunststoffe - Bestimmung der Wärmeleitfähigkeit und der Temperaturleitfähigkeit, Teil 2: Transientes Flächenquellenverfahren (Hot-DiskVerfahren) (ISO 22007-2:2015);Deutsche Fassung EN ISO 22007-2:2015,Beuth Verlag GmbH,Berlin,Germany,2015。
[80] T. Haller, N. Beuntner, K.-C.Thienel, Optimized Building Envelope:轻质混凝土与集成钢框架》,材料 17 (6) (2024) 1278。
[81] DIN EN 1352, Bestimmung des statischen Elastizitätsmoduls unter Druckbeanspruchung von dampfgehärtetem Porenbeton und von haufwerksporigem Leichtbeton, Beuth Verlag GmbH, Berlin, Germany, 1997, p. 7。
[82] K.-C.Thienel, Besonderheiten bei Leichtbeton in DIN FB 100.Deutscher Ausschuss für Stahlbeton (Ed.), Heft 526 Erläuterungen zu den Normen DIN EN 206-1, DIN 1045-2, DIN EN 13670, DIN 1045-3, DIN 1045-4 und DIN EN 12620, Beuth Verlag, Berlin, 2011, pp.
[83] DIN 4219-1, Teil 1: Leichtbeton und Stahlleichtbeton mit geschlossenem Gefüge Anforderungen an den Beton, Herstellung und Überwachung, Beuth-Verlag, 1979, p. 4.
[84] A. C138/C138M-17a,《混凝土密度(单位重量)、屈服度和含气量(重量法)标准试验方法》,2023 年。
[85] M. Schlaich, A. Hückler, Infraleichtbeton bietet die architektonische Freiheit für ein neues einfaches und baukulturell wertvolles Bauen.Monolithische recycelbare tragende Wärmedämmungen als echte Alternative zu mehrschichtigen Wandsystemen, Der Pr. üfingenieur 56.üfingenieur 56 (2020).
[86] DIN EN 1992-1-1,《欧洲规范 2:混凝土结构设计--第 1-1 部分:一般规则和建筑物规则》,Beuth Verlag GmbH,德国柏林,2011 年,第 241 页。
[87] DIN EN 1992-1-1/NA,Nationaler Anhang - National festgelegte Parameter Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau,2013 年,第 97 页...
[88] M. Thiery, P. Dangla, P. Belin, G. Habert, N. Roussel, Carbonation kinetics of a bed of recycled concrete aggregates:A laboratory study on model materials, Cem.Concr。Res 46 (2013) 50-65.
[89] S.-C.Kou, B.-j Zhan, C.-S.Poon, Use of a CO2 curing step to improve properties of concrete prepared with recycled aggregates, Cem. Concr.Cem. Concr.Compos.45 (2014) 22-28.
[90] S. von Greve-Dierfeld、B. Lothenbach、A. Vollpracht、B. Wu、B. Huet、C. Andrade、C. Medina、C. Thiel、E. Gruyaert、H. Vanoutrive、I.F. Saéz del Bosque、I. Ignjatovic、J. Elsen、J.L. Provis、K. Scrivener、K.-C.Thienel, K. Sideris, M. Zajac, N. Alderete, O. Cizer, P. Van den Heede, R.D. Hooton, S. Kamali-Bernard, S.A. Bernal, Z. Zhao, Z. Shi, N. De Belie, Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC, Mater. Struct.Struct.53 (6) (2020) 136.
[91] S. Scherb, M. Köberl, N. Beuntner, K.-C.Thienel, J. Neubauer, Reactivity of metakaolin in alkaline environment: correlation of results from dissolution experiments with XRD quantifications, Materials 13 (2214) (2020) 18.
[93] S. Smeplass, Moisture in light weight aggregates - practical consequences for the production properties of light weight aggregate concrete, in:S. Helland, I. Holand, S. Smeplass (Eds.), Second International Conference on Structural Lightweight Aggregate Concrete, Norwegian Concrete Association, Kristiansand, Norway, 2000, pp.
[94] DIN EN 12350-7,Prüfung von Frischbeton - Teil 7: Luftgehalte - Druckverfahren(新拌混凝土测试--第 7 部分:含气量--压力方法),德国柏林 Beuth-Verlag 出版社,2019 年,第 26 页。
[95] S. Chandra,L. Berntsson,《轻质骨料混凝土》,第 1 版,诺伊斯出版社,诺里奇,2002 年。
[96] Y. Liu, T. Tafsirojjaman, A.U.R. Dogar, A. Hückler, Shrinkage behavior enhancement of infra-lightweight concrete through FRP grid reinforcement and development of their shrinkage prediction models, Constr.Mater.Mater.258 (2020) 119649.
[97] S. Labbé, M. Lopez, Towards a more accurate shrinkage modeling of lightweight and infra-lightweight concrete, Constr.Build.Mater.246 (2020) 118369.
[98] K.-C.66 (1) (2000) 62-72.
[99] K.-C.Thienel, M. Peck, Die Renaissance leichter Betone in der Architektur, Zem.+ Beton 4 (2010) 2-9.
[100] C. Lösch, P. Rieseberg, M. Schlaich, R. Leibinger, Building with Infra-lightweight Concrete, De Gruyter 2020.
[101] B. Lagerblad,《混凝土生命周期中的二氧化碳吸收--技术现状》,瑞典水泥和混凝土研究所,2005 年。