用于H 2纯化的大面积α-氧化铝管上含有苯并咪唑键的分子级杂化膜
关键词
一、简介
能源是现代社会的支柱。清洁、廉价、丰富的能源对于经济社会可持续发展具有重要意义。氢是一种良好的能源载体,人们相信氢将在能源转型中发挥重要作用[ 1 , 2 ]。尽管最近已经尝试基于可再生能源生产绿色氢,但目前氢生产的主要来源是化石燃料[ 3 ]。化石燃料经过气化/重整和水煤气变换后可以转化为以H 2和CO 2为主的变换气。该过程每年排放二氧化碳500吨[ 4 ]。发展绿色可持续的氢气提纯技术对于氢能的普及具有重要意义。
用于氢气纯化的膜有无机膜、有机膜和有机-无机杂化膜。钯膜、二氧化硅膜、沸石膜等无机膜表现出高性能。然而,在生产和使用过程中存在一些限制[ 8 , 9 ]。有机膜具有生产成本低、加工性能高等优点[ 10 ]。人们已经设计和合成了多种材料来增强膜的性能,包括聚苯并咪唑(PBI)[ 11 ]、聚酰亚胺(PI)[ 12 ]、多孔芳香骨架(PAF)[ 13 ]、多孔有机骨架(POF)如共价键有机框架(COF)[ 14 ]、苯并咪唑连接聚合物(BILP)[ 15 ]以及苯并咪唑和亚胺连接聚合物(BIILP)[ 16 ]。基于尺寸依赖性扩散选择性,BILP和BIIIP被证明具有良好的H 2 /CO 2分离能力。此外,BILP 和 BIILP 膜可以通过界面聚合(IP)轻松制造[ 16 , 17 ]。 有机-无机杂化膜,如普通混合基质膜(MMM),结合了无机填料和有机基质的优点,有望提高氢气净化膜的综合性能[ 18 ]。此外,刘等人。用无机单体在分子水平上调节聚合物膜的结构,并提出了分子级杂化膜(MHM)的概念[ 8 ]。分子级杂化膜避免了MMM的界面相容性问题,有效提高了H 2 /CO 2分离性能。 [Zr 6 (O 4 ) (OH) 4 (H 2 O) 8 (Gly) 8 ]•12Cl•8H 2 O (CP-2) [ 19 ]是一种Zr 6簇,其丰富的氨基官能团为能与醛基反应形成网络结构。据报道,引入 CP-2 单体形成 MHM 可以提高聚合物膜的性能[ 8 ]。此外,使用大分子量单体有利于在粗糙基材上合成无缺陷层,因为它们可以使粗糙基材变得光滑[ 20 , 21 ]。
2. Experimental section
2.1. Materials
2.2. Fabrication of tubular membranes

Fig. 1. (A) Fabrication procedures of tubular membranes; selective layer structures of M5 (B), M7 (C) and M8 (D).
Table 1. Preparation parameters of the membranes studied in this work.
Membrane code | Aqueous phase | Toluene phase | IP duration | Post cross-linking reagent |
---|---|---|---|---|
M1 | 1.2 wt% BTA | 0.5 wt% TPA | 30 min | |
M2 | 1.2 wt% BTA+0.5 wt% CP-2 | 0.5 wt% TPA | 30 min | |
M3 | 1.2 wt% BTA+0.3 wt% CP-2 | 0.5 wt% TPA | 30 min | |
M4 | 1.2 wt% BTA+0.2 wt% CP-2 | 0.5 wt% TPA | 30 min | |
M5 | 1.5 wt% BTA+0.3 wt% CP-2 | 0.5 wt% TPA | 30 min | |
M6 | 2.0重量%BTA+0.3重量%CP-2 | 0.5 重量% TPA | 30分钟 | |
M7 | 1.5% BTA+0.3% CP-2 | 0.5 重量% TPA | 30分钟 | TMC |
M8 | 1.5% BTA+0.3% CP-2 | 0.5 重量% TPA | 30分钟 | DBX |

图2 . (A) α-Al 2 O 3管(长度和外径分别为 10 cm、1.2 cm)、(B) 膜 (M5) 和 (C) 用于性能评估的膜电池的数码照片。
2.3.管状膜的后交联
IP 后管状膜进一步交联。在这项工作中我们采用TMC和DBX作为交联剂。将TMC溶解在正己烷中,浓度为0.2wt%。将DBX溶解在甲苯中,浓度为0.5wt%。在后交联之前将管干燥至少两天以除去溶剂。将膜在室温下交联24小时并在环境条件下干燥两天。
2.4.表征方法
通过扫描电子显微镜(SEM,Regulus 8100)观察膜的形貌。通过SEM(日立,S-4800)的能量色散光谱仪(EDS)分析膜内元素的分布。通过原子力显微镜(AFM,Bruker Dimension 图标)测量观察表面形貌和粗糙度。采用非接触方式,扫描尺寸为5μm×5μm。 X 射线光电子能谱 (XPS) 在 K-Alpha + 能谱仪 (Thermo) 上进行。结合能用受污染的碳 C1s (284.8 eV) 进行校准。结果是通过测试膜的表面获得的。使用iS50 FT-IR光谱仪(Thermo)在400-4000 cm -1范围内以1 cm -1的分辨率测量衰减全反射傅里叶变换红外光谱(ATR-FTIR)光谱。
2.5.膜性能评估
使用Wicke-Kallenbach方法用自制膜池(如图2C所示)测试气体渗透性。膜的内表面和外表面被O形环分开(图S1 )。密封后有效膜面积为26.4cm 2 。通过质量流量控制器调节进料气体的流速和组成。原料气为等摩尔比的H 2和CO 2 ,体积流量各300mL·min -1 。进料温度和压力分别由对流烘箱和背压阀控制。使用氩气稀释并携带渗透气体,流量为300 mL min -1 。透过气相色谱仪(Shimadzu, GC-2014)热导检测器分析渗透液的组成和摩尔浓度,柱箱温度120℃,检测器电流55mA,载气流量25mL分钟-1 )。每个数据在稳定10小时左右后记录。气体渗透率( ) 根据以下等式(1)计算: (1) N为组分i的透过量(mol·s -1 ), A为有效膜面积(m 2 ), Δp为组分i的跨膜压差(Pa)。本文中气体渗透率采用气体渗透单元(GPU)作为单位,1 GPU = 3.35 × 10 -10 mol m -2 s -1 ·Pa -1 。气体选择性( )通过以下等式(2)定义为它们的磁导率之比: (2)
2.6。膜工艺设计
先前的工作表明单级膜系统很难实现高H 2纯度和高H 2产率[ 32 ]。在这项工作中,设计了模拟两级膜系统来讨论管式膜的技术可行性。过程中使用的性能选自M5-1。操作温度为150℃。两级的进料压力相同。氢气纯度和氢气产率根据以下方程(3) 、 (4) 、 (5)计算: (3) (4) (5)
N为组分 i 透过膜的透过率(mol∙s −1 ), P为组分 i 的透过量(mol∙m −2 ∙s −1 ∙Pa −1 ), A为有效膜面积(m 2 )、 pi ,渗余物是组分i在渗余物侧的分压(bar), pi ,permeate是组分i在渗透物侧的分压(bar)。
3。结果与讨论
3.1.膜的表征
裸基板和膜的SEM图像如图3所示。 α-Al 2 O 3管的外表面不光滑,表面孔径达数百纳米(图3A )。如图3 B和C所示,膜层(M5)是连续的,厚度为40-50 nm,并随着基底的表面形貌而波动。后交联后,膜表面稍微光滑,厚度略有增加(图3D和E)。值得注意的是,孔隙渗透不明显,有利于H 2渗透。从 EDS 图可以看出,Zr、C 和 N 元素均匀分布在膜层中(图 3 (G-I))。 C、N和Zr的归一化质量百分比分别为59.7%、39.0%和1.3%。经过523 K的测试后,M5的表面部分受损(图3 J),而M8则完好保留(图3 K),表明用DBX进行后交联可以增强热稳定性。

图3 . (A) α-Al 2 O 3管的表面。合成膜的 SEM 图像:(B) M5 的表面和 (C) 横截面; (D) M8 的表面和 (E) 横截面; (F) 用于 EDS 映射分析的 M5 表面。图像 (F) 上扫描的 EDS 映射:(G) Zr 信号; (H) C 信号; (I) N 个信号。 (G)、(H)和(I)的比例尺与(F)相同。 523 K 测试后膜的表面 SEM 图:(J) M5; (K)M8。
图4显示了裸露的α-Al 2 O 3基板和膜(M5)的3D图像和高度测量结果。 α-Al 2 O 3基材和膜的均方根粗糙度(Rq)分别为21.2nm和11.2nm。另外,α-Al 2 O 3基材和膜的算术平均粗糙度(Ra)分别为16.8nm和8.68nm。这表明基材具有粗糙的表面,这也通过SEM观察到(图3A )。这将增加其表面形成无缺陷膜的难度。选择性层形成后,表面变得更加光滑。这一变化与之前对聚酰胺膜的研究结果一致[ 27 , 33 ]。

图4 .裸露的α-Al 2 O 3管表面的3D图像(A)和高度测量(B);膜 (M5) 表面的 3D 图像 (C) 和高度测量 (D)。
图5显示了膜的XPS数据。 M1和M2的N1s光谱的窄扫描分为两个峰成分(-NH-和-N=),证明了亚胺和苯并咪唑环的形成(图1B )[ 16 ]。值得注意的是,M5中CP-2的使用降低了–N=的比例(从44.5%降至21.0%),表明CP-2中的部分–NH 2基团不与TPA反应。 CP-2的引入可以产生新的孔隙,调节聚合物链的结构并提高气体渗透性[ 8 ]。后交联后,分配给 –N< 的新峰出现,表明 TMC 或 DBX 成功交联(图 1 C 和 D)[ 34 ]。

图5 。 N1s 光谱的 XPS 窄扫描 (A) 不含 CP-2 的膜(即 M1); (B)膜:用CP-2(即M5); (C)具有CP-2并通过TMC后交联的膜(即M7); (D) 具有 CP-2 并通过 DBX 后交联的膜(即 M8)。
此外,对合成的膜进行了 ATR-FTIR 分析。如图6所示,膜中存在1290 cm -1 、1566 cm -1和1616 cm -1处的特征峰,表明苯并咪唑和亚胺键的形成(图1 B)[ 8 , 16 , 17 ]。可以发现,CP-2的添加降低了苯并咪唑环吸收峰的相对强度,因为XPS证明CP-2中的一些NH 2没有与TPA反应(图5B )。 M7 1646 cm -1处的峰对应于C


Fig. 6. FT-IR spectra of the as-synthesized membranes.
3.2. Effect of preparation parameters on membrane performance
Table 2. Performance of the membranes studied in this work. Feed: equal molar H2 and CO2, 2 bar and 423 K.
Membrane code | H2 Permeance (GPU) | CO2 Permeance (GPU) | H2/CO2 Selectivity |
---|---|---|---|
M1 | 12.7 | 3.15 | 4.03 |
M2 | 70.3 | 16.4 | 4.28 |
M3 | 86.1 ± 6.1 | 17.8 ± 2.3 | 4.87 ± 0.29 |
M4 | 941 | 270 | 3.48 |
M5 | 203 ± 6.5 | 25.7 ± 1.8 | 7.91 ± 0.28 |
M6 | 168 ± 9.0 | 30.8 ± 2.6 | 5.47 ± 0.17 |
M7 | 29.5 | 2.08 | 14.2 |
M8 | 90.2 | 10.8 | 8.35 |

Fig. 7. Performance of the tubular membranes prepared with different CP-2 content (A) and BTA content (B). Feed conditions: equimolar H2 and CO2, 423 K and 2 bar. Error bars are standard deviations of performance of independent membranes fabricated with the same recipe.
3.3. Effect of feed conditions on membrane performance

Fig. 8. Effect of feed pressure (A) and temperature (B) on M5, and effect of feed temperature on M7 (C) and M8 (D). Feed conditions: equimolar H2 and CO2, 423 K and 2 bar. When one feed condition was studied, the others were fixed.

Fig. 9. Membrane (a M5) stability for H2/CO2 separation. Feed conditions: equimolar H2 and CO2, 423 K and 2 bar. The membrane was placed on stream from 0 to 74th h while data were not collected during 13th to 64th h.
3.4. Membrane process

Fig. 10. (A) Effect of membrane area of the second stage on H2 purity and H2 yield (the membrane area of the first stage was 500 m2, Feed conditions: 423 K, 6 bar); (B) Effect of feed pressure on H2 purity and H2 yield (the membrane area of the first stage and second stage were 500 m2 and 100 m2, respectively, Feed temperature: 423 K).
4. Conclusions
CRediT authorship contribution statement
Declaration of competing interest
Acknowledgements
Appendix A. Supplementary data
Multimedia component 1.
References
- [1]Technoeconomics and carbon footprint of hydrogen productionInt. J. Hydrogen Energy, 49 (2023), pp. 59-74
- [2]Sustainability analysis of hydrogen production processesInt. J. Hydrogen Energy, 54 (2024), pp. 540-553
- [3]Advanced technologies for green hydrogen productionEnergies, 16 (2023), p. 2882
- [4]Hydrogen production with CO2 captureInt. J. Hydrogen Energy, 41 (2016), pp. 4969-4992
- [5]Membrane Technology and Applications(third ed.), John Wiley & Sons Ltd., Chichester (2012)
- [6]Carbon dioxide capture with membranes at an IGCC power plantJ. Membr. Sci., 389 (2012), pp. 441-450
- [7]Conceptual design of membrane-based pre-combustion CO2 capture process: role of permeance and selectivity on performance and costsJ. Membr. Sci., 575 (2019), pp. 229-241
- [8]Molecular‐scale hybrid membranes: metal‐oxo cluster crosslinked benzimidazole‐linked polymer membranes for superior H2 purificationAIChE J., 69 (2023), Article e18226
- [9]Hydrogen production for energy: an overviewInt. J. Hydrogen Energy, 45 (2020), pp. 3847-3869
- [10]Membranes for hydrogen separationChem. Rev., 107 (2007), pp. 4078-4110
- [11]High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separationJ. Membr. Sci., 375 (2011), pp. 231-240
- [12]Membrane gas separation: a review/state of the artInd. Eng. Chem. Res., 48 (2009), pp. 4638-4663
- [13]Facile synthesis of porphyrin-based PAF membrane for hydrogen purificationInorg. Chem. Commun., 141 (2022), Article 109526
- [14]MOF-in-COF molecular sieving membrane for selective hydrogen separationNat. Commun., 12 (2021), p. 38
- [15]Facile manufacture of porous organic framework membranes for precombustion CO2 captureSci. Adv., 4 (2018), Article eaau1698
- [16]Random organic framework membranes with hierarchical channels for H2 separationJ. Membr. Sci., 694 (2024), Article 122420
- [17]Designed channels in thin benzimidazole-linked polymer membranes for hot H2 purificationJ. Membr. Sci., 668 (2023), Article 121293
- [18]Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separationScience, 381 (2023), pp. 1350-1356
- [19]Thermally resolved in situ dynamic light scattering studies of zirconium(IV) complex formationCryst. Growth Des., 9 (2009), pp. 5213-5219
- [20]Enhancing mechanical stability and uniformity of 2-D continuous ZIF-8 membranes by Zn(II)-doped polydopamine modificationJ. Membr. Sci., 541 (2017), pp. 101-107
- [21]Fabrication of defect-free Matrimid® asymmetric membranes and the elevated temperature application for N2/SF6 separationJ. Membr. Sci., 577 (2019), pp. 258-265
- [22]Synthesis of tubular ZIF-8 membranes for propylene/propane separation under high-pressureJ. Membr. Sci., 595 (2020), Article 117503
- [23]Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalinationNat. Commun., 12 (2021), p. 2338
- [24]Ceramic-supported thin film composite membrane for organic solvent nanofiltrationJ. Membr. Sci., 563 (2018), pp. 857-863
- [25]Direct interfacial polymerization onto thin ceramic hollow fibersJ. Membr. Sci., 550 (2018), pp. 296-301
- [26]Polyoctahedral silsesquioxane hexachlorocyclotriphosphazene membranes for hot gas separationAcs Appl Mater Inter, 13 (2021), pp. 8960-8966
- [27]From micro to nano: polyamide thin film on microfiltration ceramic tubular membranes for nanofiltrationJ. Membr. Sci., 587 (2019), Article 117161
- [28]Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatmentSep. Purif. Technol., 293 (2022), Article 121092
- [29]Cost and efficiency perspectives of ceramic membranes for water treatmentWater Res., 220 (2022), Article 118629
- [30]Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separationJ. Membr. Sci., 660 (2022), Article 120813
- [31]Large surface-to-volume-ratio and ultrahigh selectivity SSZ-13 membranes on 61-channel monoliths for efficient separation of CO2/CH4 mixtureSep. Purif. Technol., 311 (2023), Article 123285
- [32]Hybrid FSC membrane for CO2 removal from natural gas: experimental, process simulation, and economic feasibility analysisAIChE J., 60 (2014), pp. 4174-4184
- [33]Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capabilityJ. Membr. Sci., 468 (2014), pp. 52-61
- [34]Crosslinked benzimidazole-linked polymer membranes for dehydration of organicsSep. Purif. Technol., 316 (2023), Article 123802
- [35]Molecular-level manipulation of polyamide membranes for high-performance H2/CO2 separationJ. Membr. Sci., 700 (2024), Article 122698
- [36]Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environmentsJ. Membr. Sci., 457 (2014), pp. 62-72
- [37]Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistanceJ. Membr. Sci., 256 (2005), pp. 46-56
- [38]The effects of 1,3-cyclohexanebis(methylamine) modification on gas transport and plasticization resistance of polyimide membranesJ. Membr. Sci., 267 (2005), pp. 78-89