Standard Specifications and Test Methods for Components Used in the Surgical Fixation of the Spinal Skeletal System ^(1){ }^{1} 脊柱骨骼系统手术固定所用组件的标准规格和测试方法 ^(1){ }^{1}
Abstract 摘要
This standard is issued under the fixed designation F2193; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (epsi)(\varepsilon) indicates an editorial change since the last revision or reapproval. 本标准以固定编号 F2193 发布;编号后面的数字表示最初采用的年份,如为修订本,则表示最近一次修订的年份。括号中的数字表示最近一次重新批准的年份。上标ε (epsi)(\varepsilon) 表示上次修订或重新批准后的编辑改动。
1. Scope 1.范围
1.1 These specifications and test methods are intended to provide a comprehensive reference for the components of systems used in the surgical fixation of the spinal skeletal system. The document catalogs standard specifications that specify material, labeling, and handling requirements. The specifications and test methods also establish common terminology that can be used to describe the size and other physical characteristics of spinal components and performance definitions related to the performance of spinal components. Additionally, the specifications and test methods establish performance requirements and standard test methods to consistently measure performance-related mechanical characteristics of spinal components. 1.1 本规范和测试方法旨在为脊柱骨骼系统手术固定中使用的系统组件提供全面的参考。本文件收录了规定材料、标签和处理要求的标准规范。规范和测试方法还建立了通用术语,可用于描述脊柱组件的尺寸和其他物理特征,以及与脊柱组件性能相关的性能定义。此外,这些规范和测试方法还制定了性能要求和标准测试方法,用于统一测量脊柱组件与性能相关的机械特性。
1.2 These specifications and test methods are part of a series of standards addressing systems used in the surgical fixation of the spinal skeletal system. These specifications and test methods concentrate on the individual components, which are found in many spinal fixation systems. If the user is interested in evaluating the next level in the spinal fixation system chain, the interconnections between individual components and subassemblies (two or more components), the user should consult Guide F1798. At the highest level in this chain is Test Methods F1717, which is used to evaluate an entire construct assembled from many components and involves numerous interconnections and several subassemblies. 1.2 本规范和测试方法是针对脊柱骨骼系统手术固定系统的系列标准的一部分。这些规范和测试方法主要针对许多脊柱固定系统中的单个组件。如果用户有兴趣评估脊柱固定系统链中的下一级,即单个组件和子组件(两个或多个组件)之间的互连,则应参考指南 F1798。该链的最高级别是测试方法 F1717,用于评估由多个组件组装而成的整个结构,涉及众多互连和多个子组件。
1.3 It is not the intention of these specifications and test methods to define levels of performance or case-specific clinical performance for spinal components addressed by this document. Insufficient knowledge to predict the consequences of using any of these components in individual patients for specific activities of daily living is available. Furthermore, it is not the intention of this document to describe or specify specific designs for the individual components of systems used in the surgical internal fixation of the spinal skeletal system. 1.3 本规范和测试方法无意为本文件所涉及的脊柱部件定义性能水平或特定病例的临床表现。目前还没有足够的知识来预测这些组件在个别患者身上用于特定日常生活活动的后果。此外,本文件无意描述或规定用于脊柱骨骼系统手术内固定的系统单个组件的具体设计。
1.4 These specifications and test methods may not be appropriate for all types of spinal surgical fixation systems. The user is cautioned to consider the appropriateness of this document in view of the particular implant system and its potential application. 1.4 这些规范和测试方法可能并不适用于所有类型的脊柱外科固定系统。用户应根据具体的植入系统及其潜在应用来考虑本文件的适用性。
1.5 This document includes the following specifications and test methods that are used in determining the spinal component’s mechanical performance characteristics: 1.5 本文件包括以下用于确定脊柱组件机械性能特征的规格和测试方法:
1.5.1 Specification for Metallic Spinal Screws-Annex A1. 1.5.1 金属脊柱螺钉规范-附件 A1。
1.5.2 Specification for Metallic Spinal Plates-Annex A2. 1.5.2 金属脊柱板规范--附件 A2。
1.5.3 Specification for Metallic Spinal Rods-Annex A3. 1.5.3 金属脊髓棒规范-附件 A3。
1.5.4 Test Method for Measuring the Static and Fatigue Bending Strength of Metallic Spinal Screws-Annex A4. 1.5.4 测量金属脊柱螺钉静态和疲劳弯曲强度的试验方法--附件 A4。
1.6 Unless otherwise indicated, the values stated in SI units shall be regarded as the standard. 1.6 除非另有说明,以国际单位制单位表示的数值应视为标准值。
1.7 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 本标准可能涉及危险材料、操作和设备。本标准无意解决与使用本标准有关的所有安全问题(如果有的话)。本标准的使用者有责任在使用前制定适当的安全、健康和环保措施,并确定法规限制的适用性。
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 1.8 本国际标准是根据世界贸易组织技术性贸易壁垒委员会发布的《关于制定国际标准、指南和建议的原则的决定》中确定的国际公认的标准化原则制定的。
E4 Practices for Force Verification of Testing Machines E4 试验机测力验证方法
E6 Terminology Relating to Methods of Mechanical Testing E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process E6 与机械测试方法有关的术语 E122 按规定精度计算样本量以估计批量或过程特性平均值的方法
E467 Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System E467 轴向疲劳试验系统中恒定振幅动态力的验证方法
E1823 Terminology Relating to Fatigue and Fracture Testing E1942 Guide for Evaluating Data Acquisition Systems Used in Cyclic Fatigue and Fracture Mechanics Testing E1823 疲劳和断裂测试相关术语 E1942 循环疲劳和断裂力学测试数据采集系统评估指南
F382 Specification and Test Method for Metallic Bone Plates F382 金属骨板的规格和测试方法
F543 Specification and Test Methods for Metallic Medical Bone Screws F543 金属医用骨螺钉的规格和测试方法
F565 Practice for Care and Handling of Orthopedic Implants and Instruments F565 骨科植入物和器械的护理和处理规范
F983 Practice for Permanent Marking of Orthopaedic Implant Components F983 骨科植入组件永久标记规范
F1582 Terminology Relating to Spinal Implants F1582 与脊柱植入物有关的术语
F1717 Test Methods for Spinal Implant Constructs in a Vertebrectomy Model F1717 脊骨切除术模型中脊柱植入结构的测试方法
F1798 Test Method for Evaluating the Static and Fatigue Properties of Interconnection Mechanisms and Subassemblies Used in Spinal Arthrodesis Implants F1798 用于评估脊柱关节固定植入物中使用的互连机制和子组件的静态和疲劳特性的测试方法
F1839 Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments F1839 硬质聚氨酯泡沫用作测试矫形设备和器械的标准材料的规范
F2503 Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment F2943 Guide for Presentation of End User Labeling Information for Musculoskeletal Implants F2503 在磁共振环境中对医疗器械和其他物品进行安全标记的做法 F2943 肌肉骨骼植入物最终用户标签信息表述指南
2.2 ASTM Standards: Materials ^(2){ }^{2} 2.2 ASTM 标准:材料 ^(2){ }^{2}
D4020 Specification for Ultra-High-Molecular-Weight Polyethylene Molding and Extrusion Materials D4020 超高分子量聚乙烯成型和挤出材料规范
F67 Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700) F67 外科植入应用非合金钛规范(UNS R50250、UNS R50400、UNS R50550、UNS R50700)
F136 Specification for Wrought Titanium-6Aluminum4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401) F136 外科植入物用锻造钛-6 铝-4 钒 ELI(超低间隙)合金(UNS R56401)规范
F138 Specification for Wrought 18Chromium-14Nickel2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673) F138 外科植入物用锻造 18 铬-14 镍-2.5 钼不锈钢棒材和线材规格(UNS S31673)
F648 Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants F648 外科植入物用超高分子量聚乙烯粉末及制成品规范
F1295 Specification for Wrought Titanium-6Aluminum7Niobium Alloy for Surgical Implant Applications (UNS R56700) F1295 外科植入应用锻造钛-6 铝-7 铌合金(UNS R56700)规范
F1314 Specification for Wrought Nitrogen Strengthened 22 Chromium-13 Nickel-5 Manganese-2.5 Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910) F1314 用于外科植入物的锻造氮强化 22 铬-13 镍-5 锰-2.5 钼不锈钢合金棒材和线材(UNS S20910)规范
F1472 Specification for Wrought Titanium-6Aluminum4Vanadium Alloy for Surgical Implant Applications (UNS R56400) F1472 外科植入物用锻造钛-6 铝-4 钒合金(UNS R56400)规范
2.3 ISO Standards: 2.3 ISO 标准:
ISO 14630 Non-active Surgical Implants-General Requirements ^(3)^{3} ISO 14630 非活动外科植入物--一般要求 ^(3)^{3}
3. Terminology 3.术语
3.1 Unless otherwise defined in these specifications and test methods, the terminology used in this document that is related to spinal implants will be in accordance with the definitions of Specification F382, Specification F543, and Terminology F1582. 3.1 除非本规范和测试方法另有规定,本文件中使用的与脊柱植入物有关的术语应符合规范 F382、规范 F543 和术语 F1582 的定义。
3.2 Unless otherwise defined in these specifications and test methods, the terminology related to mechanical testing that is used in this document will be in accordance with the definitions of Terminology E6, Terminology E1823, Specification F382, Terminology F1582, Test Methods F1717, and Guide F1798. 3.2 除非本规范和测试方法另有规定,本文件中使用的与机械测试有关的术语应符合术语 E6、术语 E1823、规范 F382、术语 F1582、测试方法 F1717 和指南 F1798 的定义。
3.3 Terminology—General: 3.3 术语--一般:
3.3.1 expansion head screw, nn-threaded anchor that is designed so that the head can be elastically deformed, through mechanical means, to establish an interconnection with another spinal construct element. 3.3.1 膨胀头螺钉, nn 螺纹锚栓,其设计可使头部通过机械方式发生弹性变形,从而与另一个脊柱构造部件建立相互连接。
3.3.2 locking screw, nn-threaded anchor that is rigidly connected to the longitudinal element of the spinal construct. 3.3.2 锁定螺钉, nn 与脊柱结构纵向部件刚性连接的螺纹锚。
3.3.3 self-locking screw, nn-threaded anchor design that undergoes a deformation process at the end of the insertion process which results in the screw’s locking to the mating spinal construct element. 3.3.3 自锁螺钉, nn 螺纹锚栓设计,在插入过程结束时经历变形过程,从而使螺钉锁定到配合的脊柱构造元件上。
3.3.4 shaft screw, nn-threaded anchor having an unthreaded shank equal to its thread diameter. 3.3.4 轴螺丝, nn 有螺纹的锚栓,其无螺纹柄与其螺纹直径相等。
3.4 Terminology—Geometric: 3.4 术语--几何:
3.4.1 rod diameter ( mm ), nn-length in mm of a chord passing through the center of the rod’s cross-section. 3.4.1 杆件直径(毫米), nn 通过杆件横截面中心的弦长,以毫米为单位。
3.4.2 rod length ( mm ), nn-overall dimension measured in mm between the ends of a given rod. 3.4.2 杆件长度(毫米), nn 特定杆件两端之间的总尺寸,以毫米为单位。
3.5.1 0.2%0.2 \% offset displacement ( mm ), nn-permanent displacement equal to 0.002 times the test gage section length for the specific test, in mm . The test gage section length is equal to the bending moment arm for spinal screw tests. The test gage section length is equal to the center span distance for spinal plate and rod tests where the loading rollers are directly contacting the test specimen (Fig. A2.1 and Fig. A3.1). The test gage section length is equal to the unsupported distance between the ends of the extension segments for spinal plate and rod tests where extension segments are used to load the test sample (Fig. A2.2). (distance OBO B in Fig. A4.1). 3.5.1 0.2%0.2 \% 偏移位移(毫米), nn 永久位移等于 0.002 乘以特定试验的试验量规截面长度,以毫米为单位。在脊柱螺钉测试中,测试规截面长度等于弯矩臂。对于加载辊直接接触试样的椎板和椎棒试验,测试规截面长度等于中心跨距(图 A2.1 和图 A3.1)。在使用延伸段加载测试样本的脊板和杆测试中,测试量规截面长度等于延伸段两端之间的无支撑距离(图 A2.2)。(图 A4.1 中的距离 OBO B )。
3.5.2 axial pull-out load (N)(N), nn-tensile force in N required to fail or remove a screw from a material into which the screw has been inserted when tested in accordance with Specification and Test Methods F543, Annex A3. 3.5.2 轴向拉出载荷 (N)(N) , nn --按照规格和试验方法 F543 附件 A3 进行试验时,使螺钉失效或从已插入螺钉的材料中取出螺钉所需的拉力,单位 N。
3.5.3 bending fatigue runout moment (N*m)(N \cdot m), nn-value in N-m\mathrm{N}-\mathrm{m} of the maximum moment that can be applied to a spinal component where all of the tested samples have experienced 2500000 loading cycles without a failure at a specific RR-ratio. 3.5.3 弯曲疲劳跳动力矩 (N*m)(N \cdot m) 、 nn -- N-m\mathrm{N}-\mathrm{m} 中的值,在特定的 RR 比率下,所有测试样品经历 2500000 次加载循环而未出现故障时,可施加于脊柱部件的最大力矩。
3.5.4 bending moment arm, L(mm)L(\mathrm{~mm}), nn-distance in mm between the point where the test sample is gripped (typically the axis of the longitudinal element) and the line-of-action for the applied force prior to any deformation of of the assembly. (See dimension LL of Fig. A4.2). 3.5.4 弯曲力臂, L(mm)L(\mathrm{~mm}) , nn -测试样品的夹持点(通常是纵向元件的轴线)与组件变形之前的外力作用线之间的距离,以毫米为单位。(见图 A4.2 中的尺寸 LL )。
3.5.5 bending stiffness, S(N//mm)S(N / \mathrm{mm}), nn-slope in N//mm\mathrm{N} / \mathrm{mm} of the initial linear elastic portion of the load versus total displacement curve (slope of line OmO m in Fig. A4.1). 3.5.5 弯曲刚度, S(N//mm)S(N / \mathrm{mm}) , nn -荷载与总位移曲线(图 A4.1 中 OmO m 线的斜率)中初始线性弹性部分的 N//mm\mathrm{N} / \mathrm{mm} 斜率。
3.5.6 bending ultimate moment ( N*mN \cdot m ), nn-maximum bending moment in N-m\mathrm{N}-\mathrm{m} that can be applied to a test sample. This would correspond to the bending moment at Point EE in Fig. A4.1. 3.5.6 弯曲极限力矩( N*mN \cdot m ), nn -可作用于测试样本的 N-m\mathrm{N}-\mathrm{m} 中的最大弯曲力矩。这相当于图 A4.1 中 EE 点处的弯矩。
3.5.7 bending yield moment ( N*mN \cdot m ), n-n- bending moment in N-m\mathrm{N}-\mathrm{m} necessary to produce a 0.2%0.2 \% offset displacement in the spinal component. If the specimen fractures before the test reaches the 0.2%0.2 \% offset displacement point, the bending yield moment shall be defined as the bending moment at fracture (point DD in Fig. A4.1). 3.5.7 弯曲屈服力矩( N*mN \cdot m ), n-n- 在 N-m\mathrm{N}-\mathrm{m} 中产生脊柱部件 0.2%0.2 \% 偏移位移所需的弯曲力矩。如果试样在试验达到 0.2%0.2 \% 偏移位移点之前断裂,则弯曲屈服力矩应定义为断裂时的弯曲力矩(图 A4.1 中的 DD 点)。
3.5.8 exposed length ( mm ), nn-linear distance measured in mm between the surface of the test block that the screw is embedded in during the test and the location where the screw is anchored (typically the axis of the longitudinal element) in the test fixture (see Fig. A4.2). 3.5.8 外露长度(毫米), nn 试验中螺钉嵌入的试块表面与试验夹具中螺钉锚定位置(通常是纵向元件的轴线)之间的线性距离,单位为毫米(见图 A4.2)。
3.5.9 gross failure, nn-permanent displacement resulting from fracture or plastic deformation in excess of the yield displacement that renders the spinal component ineffective in fulfilling its intended function. 3.5.9 严重失效, nn -由于断裂或塑性变形产生的永久位移超过屈服位移,使脊柱部件不能有效地实现其预期功能。
3.5.10 insertion depth ( mm ), nn-linear advancement in mm of the screw into the test block measured relative to its seated position at the test block’s surface prior to testing. 3.5.10 插入深度(毫米), nn 相对于试验前在试验块表面的就位位置测量的螺钉插入试验块的线性推进量,以毫米为单位。
3.5.11 median bending fatigue moment at NN cycles (N*m)(N \cdot m), nn-value in N-m\mathrm{N}-\mathrm{m} of the maximum moment that can be applied to a spinal component for which 50%50 \% of the test specimens of a given sample can be expected to survive NN loading cycles at a specific RR-ratio. 3.5.11 NN 循环时的弯曲疲劳力矩中值 (N*m)(N \cdot m) 、 nn --在 N-m\mathrm{N}-\mathrm{m} 中的值,该值是在特定 RR 比率下,对脊柱部件施加的最大力矩,其中 50%50 \% 给定样品的测试试样可望在 NN 加载循环中存活。
3.5.12 permanent displacement ( mm ), nn-total displacement in mm remaining after the applied load has been removed from the test specimen. 3.5.12 永久位移(毫米), nn 从试验试样上卸除外加载荷后剩余的总位移,以毫米为单位。
3.5.13 torsion yield moment ( N*mN \cdot m ), n-n- applied torque in N-m\mathrm{N}-\mathrm{m} at which the screw reaches its proportional limit when tested in accordance with Specification and Test Methods F543, Annex A1. The value is determined by using an offset method with a 2^(@)2^{\circ} angular offset. 3.5.13 扭转屈服力矩( N*mN \cdot m ), n-n- 在 N-m\mathrm{N}-\mathrm{m} 中的应用扭矩,当按照规格和试验方法 F543 附件 A1 进行试验时,螺钉达到其比例极限。该值通过使用 2^(@)2^{\circ} 角度偏移的偏移方法确定。
3.5.14 total displacement ( mm ), nn-distance in mm , in the direction of the applied load, which the load application point has moved relative to the zero load intercept of the initial linear segment of the load versus displacement curve (point 0 in Fig. A4.1). 3.5.14 总位移(毫米), nn 在施加荷载的方向上,施加荷载点相对于荷载与位移曲线的初始线性段(图 A4.1 中的 0 点)的零荷载截距的移动距离(毫米)。
3.5.15 yield displacement ( mm ), nn-total displacement in mm associated with the bending yield strength (distance OAO A in Fig. A4.1). 3.5.15 屈服位移(毫米), nn -与弯曲屈服强度相关的总位移(毫米)(图 A4.1 中的距离 OAO A )。
4. Significance and Use 4.意义和用途
4.1 Spinal implant constructs are typically a compilation of several components. Screws, plates, and rods are integral components of many spinal implant constructs. These components are designed to transfer load between the bone and the longitudinal or transverse element, or both. These specifications and test methods identify specifications for such components and define standard equivalent test methods that can be used when evaluating different related component designs. 4.1 脊柱植入物通常由多个组件组成。螺钉、钢板和钢棒是许多脊柱植入物结构的组成部分。这些部件的设计目的是在骨骼和纵向或横向部件之间或两者之间传递载荷。这些规格和测试方法确定了此类组件的规格,并定义了标准等效测试方法,可用于评估不同的相关组件设计。
4.2 Since the loading of spinal components in-vivo may differ from the loading configurations addressed in these specifications and test methods, the results obtained from this document may not predict in-vivo performance of either the components or the construct as a whole. Such tests can, however, be used to compare different component designs in terms of relevant mechanical performance characteristics. 4.2 由于脊柱组件的活体加载可能不同于本规范和测试方法中涉及的加载配置,因此从本文件中获得的结果可能无法预测组件或整个结构的活体性能。不过,此类测试可用来比较不同部件设计的相关机械性能特征。
4.3 The performance-related mechanical characteristics determined by these specifications and test methods will supply the user with information that may be used to predict the mechanical performance of different design variations of similar (function and indication) spinal construct components. 4.3 本规范和试验方法确定的与性能有关的机械特性将为用户提供信息,可用于预测类似 (功能和指示)脊柱结构部件的不同设计变体的机械性能。
5. Requirements 5.要求
5.1 The following spinal components shall conform to the requirements of the listed standard specification: 5.1 下列脊柱部件应符合所列标准规范的要求:
5.1.1 Screws-Standard Specification for Metallic Spinal Screws (see Annex A1). 5.1.1 螺钉-金属脊柱螺钉标准规格(见附件 A1)。
5.1.2 Plates-Standard Specification for Metallic Spinal Plates (see Annex A2). 5.1.2 钢板-金属脊柱钢板标准规格(见附件 A2)。
5.1.3 Rods-Standard Specification for Metallic Spinal Rods (see Annex A3). 5.1.3 脊骨棒-金属脊骨棒标准规格(见附件 A3)。
6. Marking, Packaging, Labeling, and Handling 6.标记、包装、标签和处理
6.1 Mark spinal components using the methods specified in Practice F983. 6.1 使用规范 F983 中规定的方法标记脊柱组件。
6.2 Markings on spinal components shall identify the manufacturer or distributor. When size permits, the following information should be legibly marked on the spinal component (items listed in order of preference): 6.2 脊骨组件上的标记应标明制造商或经销商。在尺寸允许的情况下,脊柱组件上应清晰标注以下信息(按优先顺序排列):
6.2.1 Manufacturer’s name or logo, 6.2.1 制造商名称或徽标、
6.2.2 Material and, when applicable, the ASTM designation, 6.2.3 Catalog number, 6.2.2 材料及(如适用)ASTM 名称, 6.2.3 目录号、
6.2.4 Manufacturing lot number, and 6.2.4 制造批号,以及
6.2.5 If the component is manufactured according to an ASTM specification, the ASTM designation. 6.2.5 如果部件是按照 ASTM 规范制造的,则应注明 ASTM 名称。
6.3 Packaging shall be adequate to protect the spinal component during shipment. 6.3 包装应足以在运输过程中保护脊柱组件。
6.4 Package labeling for spinal components shall include the following information: 6.4 脊骨组件的包装标签必须包括以下信息
6.4.1 Manufacturer and product name, 6.4.1 制造商和产品名称、
6.4.2 Catalog number, 6.4.2 目录编号、
6.4.3 Lot or serial number, 6.4.3 批量或序列号、
6.4.4 Material and, when applicable, the ASTM designation for the material, and 6.4.4 材料和(如适用)材料的 ASTM 名称,以及
6.4.5 The sterility condition of the packaged spinal component. 6.4.5 包装脊柱部件的无菌条件。
6.5 Package labeling may elect to follow guidance in Guide F2943 for package label presentation. 6.5 包装标签可选择遵循指南 F2943 中关于包装标签表述的指导。
6.6 Product labeling may include marking for safety in the Magnetic Resonance Environment in accordance with Practice F2503. 6.6 产品标签可包括符合 F2503 规范的磁共振环境安全标记。
6.7 Spinal components shall be cared for and handled according to the requirements specified in Practice F565. 6.7 脊柱部件应按照实践 F565 中规定的要求进行护理和处理。
7. Materials 7.材料
7.1 The manufacturer is responsible for ensuring that materials used to manufacture spinal components are suitable for implanting into the body. Material suitability can be verified with the methods described in ISO 14630. 7.1 制造商有责任确保用于制造脊柱部件的材料适合植入人体。材料适用性可通过 ISO 14630 中描述的方法进行验证。
7.2 The manufacturer should also consider the materials of other spinal components within the spinal implant construct when selecting a material. Avoid the mixing of materials within a spinal implant construct in order to prevent the development of undesirable corrosion conditions. 7.2 制造商在选择材料时还应考虑脊柱植入物结构中其他脊柱部件的材料。避免脊柱植入物结构内的材料混合,以防止出现不良的腐蚀情况。
7.3 All spinal components that are made of materials that have an ASTM standard designation shall meet those requirements given in the ASTM standards. The following is a list of some materials that have been used for spinal components: 7.3 所有由 ASTM 标准指定的材料制成的脊柱组件均应符合 ASTM 标准中的要求。以下是一些已用于脊柱组件的材料清单:
7.3.1 Unalloyed Titanium (see Specification F67). 7.3.1 非合金钛(见规格 F67)。
7.3.2 Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy (see Specification F136). 7.3.2 锻钛-6铝-4钒 ELI(特低间隙)合金(见规格 F136)。
7.3.3 Stainless Steel Bar and Wire (see Specification F138). 7.3.3 不锈钢棒材和线材(见规格 F138)。
7.3.4 Wrought Titanium-6Aluminum-7Niobium Alloy (see Specification F1295). 7.3.4 锻制钛-6铝-7铌合金(见规格 F1295)。
7.3.5 Wrought Nitrogen Strengthened 22Chromium-12.5Nickel-5Manganese-2.5Molybdenum Stainless Steel Bar and Wire (see Specification F1314). 7.3.5 锻氮强化 22 铬-12.5 镍-5 锰-2.5 钼不锈钢棒材和线材(见规格 F1314)。
7.3.6 Wrought Titanium Ti-6Al-4V Alloy (see Specification F1472). 7.3.6 锻钛 Ti-6Al-4V 合金(见规格 F1472)。
8. Keywords 8.关键词
8.1 bend testing-plate; bend testing-rod; bend testing-screw; bend testing-surgical implants; fatigue test-plate; fatigue test-rod; fatigue test-screw; fatigue test-surgical implants; orthopedic medical device-plate; orthopedic medical device-rod; orthopedic medical device-screw; orthopedic spinal devices; performance; spinal arthrodesis; surgical devices; terminology; test methods-surgical implants 8.1 弯曲测试-板;弯曲测试-杆;弯曲测试-螺钉;弯曲测试-外科植入物;疲劳测试-板;疲劳测试-杆;疲劳测试-螺钉;疲劳测试-外科植入物;矫形医疗设备-板;矫形医疗设备-杆;矫形医疗设备-螺钉;矫形脊柱设备;性能;脊柱关节成形术;外科设备;术语;测试方法-外科植入物
ANNEXES 附 件
(Mandatory Information) (必填信息)
A1. SPECIFICATION FOR METALLIC SPINAL SCREWS A1.金属脊柱螺钉规格
A1.1 Scope A1.1 范围
A1.1.1 This specification describes metallic spinal screws that are used as anchor elements in spinal arthrodesis implants for the surgical fixation of the skeletal spinal system. A1.1.1 本规范描述在脊柱关节固定植入物中用作锚固件的金属脊柱螺钉,用于骨骼脊柱系统的手术固定。
A1.2 Classification A1.2 分类
A1.2.1 Classify spinal screws according to the classification methods identified in Specification F543. A1.2.1 根据规范 F543 中确定的分类方法对脊柱螺钉进行分类。
A1.2.2 Spinal screws can also be classified with regard to the screw’s interconnecting capabilities with other spinal fixation system components such as expansion head, locking, and self-locking. A1.2.2 脊柱螺钉还可根据螺钉与其他脊柱固定系统组件(如膨胀头、锁定和自锁)的相互连接能力进行分类。
A1.3 Marking, Packaging, Labeling, and Handling A1.3 标记、包装、标签和处理
A1.3.1 Dimensions of spinal screws shall follow the nomenclature established in Section 3. A1.3.1 脊柱螺钉的尺寸应遵循第 3 节中规定的术语。
A1.3.2 In addition to the requirements of Section 6, add the screw diameter on the spinal screw labeling (when size permits). A1.3.2 除第 6 节的要求外,在脊柱螺钉标签上增加螺钉直径(尺寸允许时)。
A1.3.3 In addition to the packaging information contained in Section 6, include the screw diameter and screw length. A1.3.3 除第 6 节所载包装信息外,还应包括螺杆直径和螺杆长度。
A1.4 Materials A1.4 材料
A1.4.1 Select spinal screw materials in accordance with the requirements and recommendations of Section 7. A1.4.1 根据第 7 节的要求和建议选择脊柱螺钉材料。
A1.5 General Requirements, Performance Considerations, and Test Methods A1.5 一般要求、性能考虑因素和测试方法
A1.5.1 Drive Connection-Suggested drive recesses for spinal screws can be found in Specification F543, Annex A6. A1.5.1 传动连接-脊柱螺钉的建议传动凹槽见规格 F543,附件 A6。
A1.5.2 Torsion Properties-Determine the screw’s torsion strength characteristics (torsional yield moment, maximum torque, and breaking angle) using the test method of Specification F543. Annex A1. A1.5.2 扭转特性-使用规范 F543 的试验方法确定螺钉的扭转强度特性(扭转屈服力矩、最大扭矩和断裂角)。附件 A1.
A1.5.3 Driving Torque Requirements-Determine the driving torque requirements (insertion and removal torque) for self-tapping and self-drilling spinal screws according to the test method found in Specification F543, Annex A2 with the following conditional requirements: A1.5.3 驱动扭矩要求--根据规格 F543 附件 A2 中的试验方法,确定自攻和自钻脊柱螺钉的驱动扭矩要求(插入和拆除扭矩),并附带以下条件要求:
A1.5.3.1 Manufacture the test blocks from Grade 20, Specification F1839 rigid polyurethane foam whose length is no less than the insertion depth of the test being conducted. A1.5.3.1 用规格为 F1839 的 20 级硬质聚氨酯泡沫塑料制造试块,其长度不小于所进行试验的插入深度。
A1.5.3.2 Conduct the driving torque tests at a motor speed of 30r//min30 \mathrm{r} / \mathrm{min}. A1.5.3.2 在 30r//min30 \mathrm{r} / \mathrm{min} 电机转速下进行驱动扭矩试验。
A1.5.3.3 Specific Screw Performance Tests-Measure the driving torque of the longest length spinal screw of a given design until the insertion depth is equal to the screw’s thread length. A1.5.3.3 特定螺钉性能试验--测量特定设计的最长螺钉的驱动扭矩,直到插入深度等于螺钉的螺纹长度。
A1.5.3.4 Comparative Screw Performance Tests-Measure the driving torque until an insertion depth is reached that is equal to the shortest maximum screw thread length possible for the screw designs being compared. A1.5.3.4 螺钉性能比较试验-测量驱动扭矩,直到插入深度等于所比较的螺钉设计可能的最短最大螺纹长度。
A1.5.4 Axial Pull-Out Load-Determine the screw’s axial pull-out load using the standard test method of Specification F543, Annex A3 with the following conditional requirements: A1.5.4 轴向拉出载荷-使用规范 F543 附件 A3 的标准测试方法确定螺钉的轴向拉出载荷,并满足以下条件要求:
A1.5.4.1 Manufacture the test blocks from Grade 20, Specification F1839 rigid polyurethane foam. A1.5.4.1 用规格为 F1839 的 20 级硬质聚氨酯泡沫塑料制造试块。
A1.5.4.2 Insert each screw into the test block at a motor speed of 30r//min30 \mathrm{r} / \mathrm{min}. A1.5.4.2 以 30r//min30 \mathrm{r} / \mathrm{min} 的电机速度将每个螺钉插入试块。
A1.5.4.3 Specific Screw Performance Tests-Insert the shortest spinal screw of a given design until the insertion depth is equal to the screw’s thread length. A1.5.4.3 特定螺钉性能试验-插入特定设计的最短脊柱螺钉,直到插入深度等于螺钉的螺纹长度。
A1.5.4.4 Comparative Screw Performance Tests-Insert each spinal screw until an insertion depth is reached that is equal to the shortest maximum screw thread length possible for the screw designs being compared. A1.5.4.4 螺钉性能比较试验--插入每根脊柱螺钉,直到插入深度等于所比较的螺钉设计可能的最短螺纹长度。
A1.5.5 Bending Properties-Determine the screw’s bending structural stiffness, bending yield moment, bending ultimate moment, bending fatigue runout moment, and when applicable, the median fatigue bending moment at 2500000 cycles using the test methods described in Annex A4. A1.5.5 弯曲性能--采用附件 A4 中所述的试验方法,确定螺钉的弯曲结构刚度、弯曲屈服力矩、弯曲极限力矩、弯曲疲劳跳动力矩,并在适用情况下,确定 2500000 次循环时的疲劳弯曲力矩中值。
A2. SPECIFICATION FOR METALLIC SPINAL PLATES A2.金属脊板规格
A2.1 Scope A2.1 范围
A2.1.1 This specification describes metallic spinal plates that are used as longitudinal elements in spinal arthrodesis implants for the surgical fixation of the skeletal spinal system. A2.1.1 本规范描述了在脊柱关节固定植入物中用作纵向元件的金属脊柱板,用于骨骼脊柱系统的手术固定。
A2.2 Classification A2.2 分类
A2.2.1 Plates intended for spinal applications can be classified with regard to the following characteristics: A2.2.1 用于脊柱的钢板可根据以下特征进行分类:
A2.2.2 Preferred Anatomic Location-The spinal region where the plate is indicated (such as cervical, thoracic, lumbar, and sacral) and position (anterior versus posterior). A2.2.2 首选的解剖位置--指示钢板的脊柱区域(如颈椎、胸椎、腰椎和骶椎)和位置(前方或后方)。
A2.2.3 Preferred Use Limited to Specific Procedures-The type of surgical procedure where the plate is indicated (such as reconstruction, trauma, deformity, degenerative). A2.2.3 限于特定手术的优先使用--钢板适用的手术类型(如重建、创伤、畸形、退行性变)。
A2.3 Marking, Packaging, Labeling, and Handling A2.3 标记、包装、标签和处理
A2.3.1 Dimensions of bone plates shall follow the nomenclature established in Section 3. A2.3.1 骨板的尺寸应遵循第 3 节中规定的术语。
A2.3.2 In addition to the requirements of Section 6, include the plate length on spinal plate labeling. A2.3.2 除第 6 节的要求外,还要在脊板标签上标明板长。
A2.4 Materials A2.4 材料
A2.4.1 Select spinal plate materials in accordance with the requirements and recommendations of Section 7. A2.4.1 根据第 7 节的要求和建议选择脊板材料。
A2.5 Performance Considerations and Test Methods A2.5 性能考虑因素和测试方法
A2.5.1 Determine the spinal plate’s bending structural stiffness, bending yield moment, bending ultimate moment, bending fatigue runout moment, and, when applicable, the median bending fatigue moment at 2500000 cycles using the methods of Specification F382 and in accordance with the following requirements. A2.5.1 使用规范 F382 的方法并按照以下要求确定脊板的弯曲结构刚度、弯曲屈服力矩、弯曲极限力矩、弯曲疲劳跳动力矩,并在适用情况下确定 2500000 次循环时的弯曲疲劳力矩中值。
A2.5.2 Configure the four-point bending test fixtures so that the loading rollers (inner rollers that are located dimension “a” apart) are positioned in accordance with the requirements of Table A2.1 (see also Fig. A2.1). A2.5.2 配置四点弯曲试验夹具,使加载辊(相距尺寸 "a "的内辊)的位置符合表 A2.1 的要求(另见图 A2.1)。
A2.5.3 Position the test fixture support rollers (outer rollers that are located dimension “h” from the nearest loading roller) far enough away from the loading rollers so that the test article is free to respond to the applied bending moment (see Fig. A2.1). Under ideal conditions, position the support rollers in accordance with the recommended dimensions of Table A2.1. The dimension “h” may be reduced to a//2\mathrm{a} / 2 in order to accomodate testing of shorter plates, but this condition must be documented in the final report. A2.5.3 将试验夹具的支撑辊(距离最近的加载辊尺寸为 "h "的外辊)放置在离加载辊足够远的位置,以便试验件可以自由地对施加的弯矩做出反应(见图 A2.1)。在理想条件下,支撑辊的位置应符合表 A2.1 的建议尺寸。尺寸 "h "可减小到 a//2\mathrm{a} / 2 以适应较短板材的测试,但这种情况必须记录在最终报告中。
A2.5.4 Maintain the test fixture configuration consistent for comparative tests. A2.5.4 在比较试验中保持试验夹具配置一致。
A2.5.5 Only unused and untested specimens shall be included in the sample for a given spinal plate design. Include only final form and finished components in the sample. A2.5.5 特定脊板设计的样品中只能包括未使用和未测试的试样。样品中只包括最终形状和成品部件。
Static Tests 静态测试
A2.5.6 The sample size used for static tests shall be determined according to the methods defined in Practice E122 for any given loading condition. If insufficient information is available to determine a suitable sample size with Practice E122, use a minimum sample size of five. A2.5.6 对于任何给定的加载条件,静态试验所用的样本量应根据试验规程 E122 规定的方法确定。如果没有足够的资料按 "规程 E122 "确定合适的样本量,则最少使用五个样本量。
A2.5.7 Load the test specimen during static tests at a displacement rate not to exceed 10mm//min10 \mathrm{~mm} / \mathrm{min}. A2.5.7 在静态试验中,以不超过 10mm//min10 \mathrm{~mm} / \mathrm{min} 的位移速率对试验试样加载。
Fatigue Tests 疲劳试验
A2.5.8 Test at least two specimens at each of three different maximum moment levels. One of the three maximum moment levels shall satisfy the maximum runout moment condition. Several references have been compiled that can provide the user with guidance and recommendations for selecting suitable sample sizes for fatigue studies used to develop an M-NM-N diagram. (1 and 2) ^(4){ }^{4} A2.5.8 在三个不同的最大力矩水平下,每个水平至少试验两个试样。三个最大力矩水平中必须有一个满足最大跳动力矩条件。已汇编了一些参考文献,可为用户提供指导和建议,以便为疲劳研究选择合适的样本大小,用于绘制 M-NM-N 图。(1 和 2) ^(4){ }^{4}
A2.5.9 Conduct the recommended fatigue test in a laboratory air environment at room temperature. Other test environments (simulated body fluid, 9-gNaCl9-\mathrm{g} \mathrm{NaCl} per 1000 mL water saline, a saline drip, or water) may be used while testing, but the suitability of using the respective test environment must be justified, given the accelerated nature of the laboratory fatigue test. If an alternative test environment is used, record all pertinent parameters related to the environmental conditions A2.5.9 在实验室室温空气环境中进行建议的疲劳试验。试验时可使用其他试验环境(模拟体液、 9-gNaCl9-\mathrm{g} \mathrm{NaCl} 每1000毫升生理盐水、生理盐水滴注或水),但鉴于实验室疲劳试验的加速性质,必须证明使用相应试验环境的适宜性。如果使用其他试验环境,应记录与环境条件有关的所有参数
FIG. A2.1 Spinal Plate Test Configuration 图 A2.1 脊骨板测试配置
(temperature, pH , solution strengths, and so forth) before, during, and after the test. (温度、pH 值、溶液强度等)。
A2.5.10 Apply sinusoidal cyclic loads in load control at an RR ratio of 0.10 for testing of devices intended for either the lumbar and thoracic spine regions. Apply sinusoidal cyclic loads in load control at an RR ratio of -1.0 for testing of devices intended for the cervical spine region. Fig. A2.2 illustrates a test setup for spinal plates that is capable of applying fully reversed loads ( R=-1R=-1 ). Other RR ratios may be used but must be documented in the report. A2.5.10 用于腰椎和胸椎部位的设备测试时,在载荷控制中以 RR 0.10 的比率施加正弦循环载荷。测试颈椎部位的设备时,在负载控制中施加正弦周期负载, RR 比率为-1.0。图 A2.2 展示了能够施加完全反向负载 ( R=-1R=-1 ) 的脊柱板测试装置。可以使用其他 RR 比率,但必须在报告中记录。
A2.5.11 The user shall determine the frequency at which to conduct the fatigue test, but the maximum frequency of cyclic loading shall be 30 Hz . A2.5.11 用户应确定进行疲劳试验的频率,但循环加载的最大频率应为 30 赫兹。
A2.5.12 Initial fatigue maximum moment levels that are 75, 50 , and 25%25 \% of the bending ultimate moment determined with the static test method are suggested for the fatigue study. One maximum moment level should have specimens that do not fail before 2500000 cycles. The difference between the maximum moment value resulting in specimen failure and the maximum runout moment value must be less than 10%10 \% of the device’s bending ultimate moment. A2.5.12 建议在疲劳研究中采用静态试验方法确定的弯曲极限力矩的 75、50 和 25%25 \% 的初始疲劳最大力矩水平。在一个最大力矩水平上,试样应在 2500000 次循环之前不失效。导致试样失效的最大力矩值与最大跳动力矩值之间的差值必须小于设备弯曲极限力矩的 10%10 \% 。
A3. SPECIFICATION FOR METALLIC SPINAL RODS A3.金属脊柱棒规格
A3.1 Scope A3.1 范围
A3.1.1 This specification describes spinal rods that are used as longitudinal elements in spinal arthrodesis implants for the surgical fixation of the skeletal spinal system. A3.1.1 本规范描述了在脊柱关节固定植入物中用作纵向元件的脊柱杆,用于骨骼脊柱系统的手术固定。
A3.2 Classification A3.2 分类
A3.2.1 Spinal rods indicated for spinal applications can be classified with regard to the following characteristics: A3.2.1 用于脊柱的脊柱棒可根据以下特征进行分类:
A3.2.2 Preferred Anatomic Location-The spinal region where the rod is indicated (such as cervical, thoracic, lumbar, and sacral) and position (anterior versus posterior). A3.2.2 首选的解剖位置--指示使用棒的脊柱区域(如颈椎、胸椎、腰椎和骶椎)和位置(前位或后位)。
A3.2.3 Preferred Use Limited to Specific Procedures-The type of surgical procedure where the rod is indicated (such as reconstruction, trauma, deformity, degenerative). A3.2.3 限于特定手术的优先使用--适用于该棒的手术类型(如重建、创伤、畸形、退行性变)。
A3.3 Marking, Packaging, Labeling, and Handling A3.3 标记、包装、标签和处理
A3.3.1 Dimensions of spinal rods shall follow the nomenclature established in Section 3. A3.3.1 脊骨棒的尺寸应遵循第 3 节中规定的术语。
A3.3.2 In addition to the requirements of Section 6, include the rod diameter and rod length on spinal rod labeling. A3.3.2 除第 6 节的要求外,还要在脊柱杆标签上注明杆直径和杆长度。
A3.4 Materials A3.4 材料
A3.4.1 Select spinal rod materials in accordance with the requirements and recommendations of Section 7. A3.4.1 根据第 7 节的要求和建议选择脊柱杆材料。
A3.5 Performance Considerations and Test Methods A3.5 性能考虑因素和测试方法
A3.5.1 Determine the spinal rod’s bending structural stiffness, bending yield moment, bending ultimate moment, bending fatigue runout moment, and when applicable, the median bending fatigue moment at 2500000 cycles using the methods of Specification F382 and in accordance with the following requirements. A3.5.1 使用规范 F382 的方法并按照以下要求确定脊柱杆的弯曲结构刚度、弯曲屈服力矩、弯曲极限力矩、弯曲疲劳跳动力矩,并在适用情况下确定 2500000 次循环时的弯曲疲劳力矩中值。
A3.5.2 Fit the test fixture with 90^(@)90^{\circ} “V” alignment notched rollers. This roller profile will allow the testing of a range of rod sizes with a single roller set. Such rollers will also prevent the application of the load at the most highly stressed point on the circumference of the rod. A3.5.2 在测试夹具上安装 90^(@)90^{\circ} "V "型对齐凹槽滚轮。这种辊轮轮廓允许使用单个辊轮组测试各种尺寸的杆。这种滚轮还可以防止在杆圆周上应力最大的点施加载荷。
A3.5.3 Configure the four-point bending test fixtures so that the loading rollers (inner rollers that are located dimension " aa " apart) are positioned in accordance with the requirements of Table A2.1 (see also Fig. A3.1). A3.5.3 配置四点弯曲试验夹具,使加载辊(相距尺寸为 " aa " 的内辊)的位置符合表 A2.1 的要求(另见图 A3.1)。
A3.5.4 Position the test fixture support rollers (outer rollers that are located dimension “h” from the nearest loading roller) in accordance with the recommended dimensions of Table A2.1. A3.5.4 按照表 A2.1 中的推荐尺寸定位试验夹具支撑辊(与最近的加载辊的距离尺寸为 "h "的外辊)。
A3.5.5 Maintain the test fixture configuration consistent for comparative tests. A3.5.5 在比较试验中保持试验夹具配置的一致性。
A3.5.6 Only unused and untested specimens shall be included in the sample for a given spinal plate design. Include only final form and finished components in the sample. A3.5.6 特定脊板设计的样品中只能包括未使用和未测试的试样。样品中仅包括最终形状和成品部件。
Static Test Method 静态测试方法
A3.5.7 The sample size used for static tests shall be determined according to the methods defined in Practice E122 for any given loading condition. If insufficient information is available to determine a suitable sample size with Practice E122, use a minimum sample size of five. A3.5.7 静态试验所用的样本量,应根据 "规程E122 "对任何给定加载条件所规定的方法确定。如果没有足够的资料按 "规程E122 "确定合适的样本量,则最少使用5个样本量。
A3.5.8 Load the test specimen during static tests at a displacement rate not exceeding 10mm//min10 \mathrm{~mm} / \mathrm{min}. A3.5.8 在静态试验中,以不超过 10mm//min10 \mathrm{~mm} / \mathrm{min} 的位移速率对试验试样加载。
Fatigue Test Method 疲劳测试方法
A3.5.9 For fatigue studies, test at least two specimens at each of three different maximum moment levels. One of the three maximum moment levels shall satisfy the maximum runout moment condition. Several references have be compiled that can provide the user with guidance and recommendations for selecting suitable sample sizes for fatigue studies used to develop an M-NM-N diagram. (1 and 2) A3.5.9 对于疲劳研究,在三个不同的最大力矩水平下至少各测试两个试样。三个最大力矩水平中必须有一个满足最大跳动力矩条件。我们汇编了一些参考文献,可为用户提供指导和建议,帮助他们为疲劳研究选择合适的样本大小,用于绘制 M-NM-N 图。(1 和 2)
FIG. A3.1 Spinal Rod Test Configuration 图 A3.1 脊髓棒测试配置
A3.5.10 Conduct the recommended fatigue test in a laboratory air environment at room temperature. Other test environments (simulated body fluid, 9-gNaCl9-\mathrm{g} \mathrm{NaCl} per 1000 mL water saline, a saline drip, or water) may be used while testing, but the suitability of using the respective test environment must be justified, given the accelerated nature of the laboratory fatigue test. If an alternative test environment is used, record all pertinent parameters related to the environmental conditions (temperature, pH , solution strengths, and so forth) before, during, and after the test. A3.5.10 在实验室室温空气环境中进行建议的疲劳试验。试验时可使用其他试验环境(模拟体液、 9-gNaCl9-\mathrm{g} \mathrm{NaCl} 每1000毫升生理盐水、生理盐水滴注或水),但鉴于实验室疲劳试验的加速性质,必须证明使用相应试验环境的适宜性。如果使用其他测试环境,应记录测试前、测试中和测试后与环境条件(温度、 pH 值、溶液强度等)有关的所有参数。
A3.5.11 Apply sinusoidal cyclic loads in load control at an RR ratio of 0.10 for testing of devices intended for either the lumbar and thoracic spine regions. Apply sinusoidal cyclic loads in load control at an RR ratio of -1.0 for testing of devices intended for the cervical spine region. Fig. A2.2 illustrates a test setup for spinal plates that can be similarly adapted in order to apply fully reversed loads (R=-1)(R=-1) to spinal rods. Other RR ratios may be used but must be documented in the report. A3.5.11 用于腰椎和胸椎部位的设备测试时,在载荷控制中以 RR 0.10 的比率施加正弦循环载荷。在测试颈椎区域的装置时,在负载控制中以 RR 比率-1.0施加正弦周期负载。图 A2.2 展示了脊柱板的测试装置,可进行类似调整,以便对脊柱杆施加完全反向的 (R=-1)(R=-1) 负载。也可使用其他 RR 比率,但必须在报告中记录。
A3.5.12 The user shall determine the frequency at which to conduct the fatigue test, but the maximum recommended frequency of cyclic loading shall be 30 Hz . A3.5.12 用户应确定进行疲劳试验的频率,但建议循环加载的最大频率应为 30 赫兹。
A3.5.13 Initial fatigue maximum moment levels that are 75, 50 , and 25%25 \% of the bending ultimate moment determined with the static test method are suggested for the fatigue study. One maximum moment level should have specimens that do not fail before 2500000 cycles. The difference between the maximum moment value resulting in specimen failure and the maximum runout moment value must be less than 10%10 \% of the device’s bending ultimate moment. A3.5.13 建议在疲劳研究中采用静态试验方法确定的弯曲极限力矩的75、50和 25%25 \% 的初始疲劳最大力矩水平。在一个最大力矩水平上,试样应在 2500000 次循环之前不失效。导致试样失效的最大力矩值与最大跳动力矩值之间的差值必须小于设备弯曲极限力矩的 10%10 \% 。
A4. TEST METHOD FOR MEASURING THE STATIC AND FATIGUE BENDING STRENGTH OF METALLIC SPINAL SCREWS A4.测量金属脊柱螺钉静态和疲劳弯曲强度的测试方法
A4.1 Scope A4.1 范围
A4.1.1 This test method describes the methods for determining the static and dynamic bending properties of metallic spinal screws that are used in spinal arthrodesis implants. A4.1.1 本试验方法描述了测定用于脊柱关节置换植入物的金属脊柱螺钉的静态和动态弯曲特性的方法。
A4.1.2 This test method is intended to provide a means of mechanically characterizing different component designs of spinal screws. It is not the intention of this test method to define levels of performance of spinal screws since insufficient information is available to predict the consequences of the use of a particular screw design. A4.1.2 本试验方法旨在提供一种方法,对脊柱螺钉的不同组件设计进行机械鉴定。本测试方法无意定义脊柱螺钉的性能水平,因为没有足够的信息来预测使用特定螺钉设计的后果。
A4.2 Summary of Method A4.2 方法概述
A4.2.1 Spinal screws are loaded in quasi-static cantilever bending in order to record the component’s mechanical response to the applied load. The load-versus-deflection curve is then analyzed in order to determine data used to derive the remaining bending properties of the spinal screw. A4.2.1 在准静态悬臂弯曲中加载脊柱螺钉,以记录部件对施加载荷的机械响应。然后分析载荷-挠度曲线,以确定用于推导脊柱螺钉剩余弯曲特性的数据。
A4.2.2 Samples of a given spinal screw are loaded under cantilever bending in a sinusoidal cyclic manner at a predetermined frequency. The fatigue loading is continued until the specimen fails, a limit is reached which terminates the test, or until a predetermined cycle count (runout limit) is reached. The resulting test information is then used to develop a moment versus number of cycles curve that will characterize the general fatigue behavior for the given spinal screw design over a range of applied bending moments. Additionally, the information can be used, when applicable, to determine the spinal screw’s median bending fatigue moment determined for a specified NN number of cycles. A4.2.2 在悬臂弯曲状态下,以预定频率正弦循环加载特定脊柱螺钉样品。疲劳加载一直持续到试样失效、达到终止试验的极限或达到预定的循环次数(跳动极限)为止。测试结果信息可用于绘制弯矩与循环次数的曲线,该曲线将描述特定椎弓螺钉设计在一定范围的外加弯矩下的一般疲劳行为。此外,在适用的情况下,这些信息还可用于确定脊柱螺钉在指定 NN 循环次数下的中位弯曲疲劳力矩。
A4.3 Significance and Use A4.3 重要性和用途
A4.3.1 This test method establishes a uniform static and dynamic bending test that will characterize, and can be used to compare, the static bending characteristics and fatigue performance of different designs of spinal screws. This test method is used to determine a spinal screw’s fatigue life over a range of maximum bending moment conditions. Additionally, the method may be used to estimate the spinal screw’s fatigue characteristics for a specified number of fatigue cycles. A4.3.1 本试验方法规定了统一的静态和动态弯曲试验,可鉴定并用于比较不同设计的脊柱螺钉的静态弯曲特性和疲劳性能。该测试方法用于确定脊柱螺钉在一系列最大弯矩条件下的疲劳寿命。此外,该方法还可用于估算脊柱螺钉在特定疲劳循环次数下的疲劳特性。
A4.3.2 Spinal screws are integral components of many spinal implant constructs. They are designed to anchor the longitudinal or transverse elements, or both, to the bone. This test method defines standard equivalent test methods that can be used when evaluating different designs of spinal screws. A4.3.2 脊柱螺钉是许多脊柱植入物结构的组成部分。其设计目的是将纵向或横向元件或两者都固定在骨骼上。本测试方法定义了标准等效测试方法,可用于评估脊柱螺钉的不同设计。
A4.3.3 This test method assumes that the spinal screw is manufactured from a material that exhibits linear-elastic material behavior. Therefore, the test method is not applicable for testing spinal screws made from materials that exhibit nonlinear elastic behavior. A4.3.3 本试验方法假定脊柱螺钉是由表现出线性弹性材料行为的材料制造的。因此,该测试方法不适用于测试由表现出非线性弹性行为的材料制成的脊柱螺钉。
A4.3.4 The fatigue test method described in this document is restricted to the testing of the spinal screw within the material’s linear-elastic range. Therefore, the fatigue test method is not applicable for testing spinal screws under conditions that would approach or exceed the bending strength of the spinal screw being tested. A4.3.4 本文件所述的疲劳试验方法仅限于在材料的线弹性范围内对脊柱螺钉进行试验。因此,疲劳测试方法不适用于在接近或超过被测脊柱螺钉弯曲强度的条件下测试脊柱螺钉。
A4.3.5 The reporting of static and fatigue bending properties determined by this testing technique are only suitable for comparative evaluations between screws of different sizes, designs, and materials. A4.3.5 通过该测试技术确定的静态和疲劳弯曲特性报告仅适用于不同尺寸、设计和材料的螺钉之间的比较评估。
A4.4 Apparatus A4.4 仪器
Test System Requirements: Static Bend Tests 测试系统要求:静态弯曲测试
A4.4.1 Axial Load Frame-A test machine capable of applying tensile or compressive loads at a constant displacement rate. A4.4.1 轴向载荷框架--能以恒定位移速率施加拉伸或压缩载荷的试验机。
A4.4.2 Force Transducer-A calibrated sensor capable of measuring axial loads per the requirements of Practice E4, and providing an output readable by a suitable recording device. A4.4.2 力传感器--经过校准的传感器,能够按照规范 E4 的要求测量轴向载荷,并提供可由适当记录装置读取的输出。
A4.4.3 Displacement Transducer-A calibrated sensor capable of measuring axial displacements with an accuracy of +-1%\pm 1 \% of its full scale range, and providing an output readable by a suitable recording device. A4.4.3 位移传感器 -- 经过校准的传感器,能够测量轴向位移,精度为其满量程的 +-1%\pm 1 \% ,并提供可由适当记录装置读取的输出。
A4.4.4 Recording Device-A calibrated recording device capable of monitoring the output of the force and displacement transducers and capable of generating a force versus displacement curve. A4.4.4 记录装置--经过校准的记录装置,能够监测力和位移传感器的输出,并能生成力与位移的曲线。
A4.4.5 The suitability of any data acquisition system used in monitoring the progress of these tests should be evaluated in accordance with the guidelines of Guide E1942. A4.4.5 应根据《E1942 指南》的准则评估用于监测这些试验进展的任何数据采集系统的适用性。
Test System Requirements: Bending Fatigue Tests 测试系统要求:弯曲疲劳试验
A4.4.6 Force Transducer-A calibrated sensor capable of measuring dynamic tensile or compressive loads, or both, in accordance with Practice E467. A4.4.6 力传感器--按照规范 E467 校准的传感器,能够测量动态拉伸或压缩载荷或两者。
A4.4.7 Cycle Counter-A device capable of counting the number of loading cycles applied to a test sample during the course of a fatigue test. A4.4.7 循环计数器(Cycle Counter)--能计算疲劳试验过程中加载到试验样品上的循环次数的装置。
A4.4.8 Limit-A device capable of detecting when a test parameter (for example, load, actuator displacement, DC error, and so forth) reaches a limiting value, at which time the test is stopped and the current cycle count is maintained. A4.4.8 极限--当测试参数(如负载、执行器位移、直流误差等)达到极限值时,能 够检测到的装置,此时停止测试并保持当前的循环次数。
A4.4.9 The suitability of any data acquisition systems used in monitoring the progress of these tests should be evaluated in accordance with the guidelines of Guide E1942. A4.4.9 应根据《E1942 指南》的准则评估用于监测这些试验进展的任何数据采集系统的适用性。
Test Fixture Requirements 测试夹具要求
A4.4.10 Any test fixture implemented shall be sufficiently rigid so that its deformation under the maximum load is less than 1%1 \% of the test sample’s deformation. A4.4.10 使用的任何试验夹具必须具有足够的刚度,使其在最大载荷作用下的变形小于试验样品变形的 1%1 \% 。
A4.4.11 The threaded region of the spinal screw is embedded into a test block made from a synthetic material that is easily processed with standard spinal fixation system instruments. The user may manufacture a more rigid metallic test block (that is, hardened stainless steel at 40 HRC min.), if so desired, but may substitute Specification D4020 or Specification F648 UHMWPE or Grade 40, Specification F1839 rigid polyurethane foam, for the test block material. A4.4.11 脊柱螺钉的螺纹区域嵌入由合成材料制成的试验块中,这种材料易于使用标准脊柱固定系统器械进行加工。用户可根据需要制造硬度更高的金属试块(即硬度不低于 40 HRC 的硬化不锈钢),但也可以用规格 D4020 或规格 F648 超高分子量聚乙烯或规格 F1839 的 40 级硬质聚氨酯泡沫代替试块材料。
A4.4.12 An anchoring fixture is rigidly attached to the spinal screw’s head so that the screw’s head is fully constrained during the test. The load is applied to the test sample at the end containing the test block, which is protected from localized failure by a protection sleeve placed around the test block. (See Fig. A4.2) A4.4.12 锚定夹具与脊柱螺钉头部刚性连接,使螺钉头部在试验期间受到完全约束。载荷加在包含测试块的一端的测试样本上,测试块周围的保护套可防止局部失效。(见图 A4.2)
A4.5 Sampling A4.5 取样
A4.5.1 Only unused and untested specimens shall be included in the sample for a given spinal component design. Include only final form and finished components in the sample. A4.5.1 对于给定的脊柱部件设计,样品中只能包括未使用和未测试的试样。样品中只包括最终形状和成品部件。
A4.5.2 The sample size used for static tests shall be determined according to the methods defined in Practice E122 for any given loading condition. If insufficient information is available to determine a suitable sample size with Practice E122, then use a minimum sample size of five. A4.5.2 对于任何给定的加载条件,静态试验所用的样本量应根据试验规程E122 中规定的方法确定。如果没有足够的资料可用 "规程E122 "确定合适的样本量,则最少使用5个样本量。
A4.5.3 For fatigue studies, test at least two specimens at each of three different maximum moment levels. One of the three maximum moment levels shall satisfy the maximum runout moment condition. Several references have been compiled that can provide the user with guidance and recommendations for selecting suitable sample sizes for fatigue studies used to develop an M-NM-N diagram. (1 and 2) A4.5.3 对于疲劳研究,在三个不同的最大力矩水平下至少各测试两个试样。三个最大力矩水平中必须有一个满足最大跳动力矩条件。已汇编了一些参考资料,可为用户提供指导和建议,以便为疲劳研究选择合适的样本大小,用于绘制 M-NM-N 图。(1 和 2)
A4.5.4 Use spinal screws of sufficient length so that at least 5 mm of screw thread length is included in the exposed length (see Fig. A4.2). A4.5.4 使用足够长的脊柱螺钉,使外露长度中至少包括 5 毫米的螺纹长度(见图 A4.2)。
A4.6 Preparation of Apparatus A4.6 准备仪器
A4.6.1 Manufacture test blocks so that the surface defined by the outside diameter of the screw is at least one screw thread diameter away from the test block’s outer surface and 10 mm long (measured in the direction of the screw’s longitudinal axis). Check to ensure that the test block surfaces are oriented A4.6.1 制造试块,使螺钉外径确定的表面与试块外表面至少相差一个螺纹直径,长度为 10 毫米(沿螺钉纵轴方向测量)。检查试块表面的方向是否正确
so that the spinal screw’s undeflected longitudinal axis is aligned perpendicular to the direction of the applied load. 使脊柱螺钉的未变形纵轴垂直于施加载荷的方向。
A4.6.2 Drill pilot holes in the test block for insertion of the test specimen. The holes shall be drilled coincident to the test block’s longitudinal axis. The drill used shall be the size specified by the manufacturer for the specimen being tested. When testing self-drilling spinal screws, a pilot hole that is no larger than 75%75 \% of the screw’s core diameter is recommended simply to ensure the screw’s orientation for testing. Drill the pilot hole straight and true at 90^(@)90^{\circ} to the surface of the test block that will be penetrated. Tapered holes are allowed when tapered screws are to be tested. Complete the test block’s hole preparation according to the given spinal screw’s surgical technique (such as tapping when required). A4.6.2 在试块上钻导向孔,以便插入试样。钻孔应与试块的纵轴重合。所使用的钻头必须是制造商为所测试的试样规定的尺寸。测试自钻脊柱螺钉时,建议钻一个不大于螺钉芯直径 75%75 \% 的导向孔,以确保测试时螺钉的方向。在 90^(@)90^{\circ} 处将导向孔钻直,并与要穿透的试块表面保持一致。测试锥形螺钉时,允许钻锥形孔。根据特定脊柱螺钉的手术技术完成测试块的孔准备工作(如需要时进行攻丝)。
A4.6.3 Insert the test sample into the test block to a depth of approximately 10 mm to create the same moment arm (L)(L) for all screws having the same nominal length. For screws whose nominal length is less than 30 mm , inset the screw until A4.6.3 将测试样本插入测试块,深度约为 10 毫米,以便为所有具有相同标称长度的螺钉创建相同的力矩臂 (L)(L) 。对于标称长度小于 30 毫米的螺钉,插入螺钉直至
one-third the length of the screw (measured from the longitudinal element interconnection and the screw’s tip) is engaged in the test block. 螺杆长度的三分之一(从纵向元件连接处和螺杆顶端测量)啮合在试块上。
A4.6.4 Mount the test sample in the test machine so that the screw’s head is rigidly constrained as illustrated in Fig. A4.2. The test fixture depicted in Fig. A4.2 can be modified so that the interconnection mechanism can be used for anchoring the screw. A4.6.4 如图A4.2 所示,将试验样品安装在试验机中,使螺钉头部受到刚性约束。图 A4.2 所示的试验夹具可以改装,以便使用互联机构固定螺钉。
A4.6.5 Position the test setup so that the load is applied to the center of the test block, 5 mm from each end. The bending moment arm (L)(L) shall be held constant for all diameter screws of a given length. Install the protection sleeve over the test block. A4.6.5 放置试验装置,使载荷作用在试验块的中心,两端各距 5 毫米。对于给定长度的所有直径螺钉,弯矩臂 (L)(L) 应保持恒定。在试块上安装保护套。
A4.6.6 Record the exposed length and bending moment arm (L)(L) for the final test setup. A4.6.6 记录最终测试装置的外露长度和弯矩臂 (L)(L) 。
A4.7 Procedure A4.7 程序
Static Test Method 静态测试方法
A4.7.1 Apply loads of increasing magnitude (in displacement control), and generate a load-versus-displacement diagram either automatically or from numeric data acquired during the test. Bending characteristics shall be measured using the apparatus described in A4.4. A4.7.1 (在位移控制条件下)施加越来越大的荷载,并自动或根据试验过程中获 得的数值数据生成荷载与位移的关系图。应使用 A4.4 所述仪器测量弯曲特性。
A4.7.2 Load the test specimen at a displacement rate not exceeding 25mm//min25 \mathrm{~mm} / \mathrm{min}. Continue loading the test specimen until the slope of the load-versus-displacement curve, beyond the linear elastic region, changes “sign.” A4.7.2 以不超过 25mm//min25 \mathrm{~mm} / \mathrm{min} 的位移速率加载试样。继续加载试样,直至线性弹性区域以外的荷载-位移曲线斜率 "符号 "发生变化。
A4.7.3 Unload the test specimen and record the failure location and failure mode, if applicable. A4.7.3 卸载试验试样并记录失效位置和失效模式(如适用)。
Fatigue Test Method 疲劳测试方法
A4.7.4 Conduct the recommended fatigue test in a laboratory air environment at room temperature. Other test environments (simulated body fluid, 9-gNaCl9-\mathrm{g} \mathrm{NaCl} per 1000 mL water saline, a saline drip, or water) may be used while testing, but the suitability of using the respective test environment must be justified, given the accelerated nature of the laboratory fatigue test. If an alternative test environment is used, record all pertinent parameters related to the environmental conditions (temperature, pH , solution strengths, and so forth) before, during, and after the test. A4.7.4 在实验室室温空气环境中进行建议的疲劳试验。试验时可使用其他试验环境(模拟体液、 9-gNaCl9-\mathrm{g} \mathrm{NaCl} 每1000毫升生理盐水、生理盐水滴注或水),但鉴于实验室疲劳试验的加速性质,必须证明使用相应试验环境的适宜性。如果使用其他试验环境,应记录试验前、试验中和试验后与环境条件(温度、 pH 值、溶液强度等)有关的所有参数。
A4.7.5 Apply sinusoidal cyclic loads in load control at an RR ratio of 0.10 for testing of devices intended for either the lumbar or thoracic spine regions. Apply sinusoidal cyclic loads in load control at an RR ratio of -1.0 for testing of devices intended for the cervical spine region. Other RR ratios may be used but must be documented in the report. A4.7.5 用于腰椎或胸椎部位的设备测试时,在载荷控制中以 RR 0.10 的比率施加正弦循环载荷。在负载控制中施加正弦周期负载, RR 比率为-1.0,用于测试颈椎区域的设备。也可使用其他 RR 比率,但必须在报告中记录。
A4.7.6 The user shall determine the frequency at which to conduct the fatigue test, but the maximum recommended frequency of cyclic loading shall be 30 Hz . A4.7.6 用户应确定进行疲劳试验的频率,但建议循环加载的最大频率应为 30 赫兹。
A4.7.7 Initial fatigue maximum moment levels that are 75, 50 , and 25%25 \% of the bending ultimate moment determined with the static test method are suggested for the fatigue study. One maximum moment level should have specimens that do not fail before 2500000 cycles. The difference between the maximum moment value resulting in specimen failure and the maximum runout moment value must be less than 10%10 \% of the device’s bending ultimate moment. A4.7.7 建议在疲劳研究中采用静态试验方法确定的弯曲极限力矩的75、50和 25%25 \% 的初始疲劳最大力矩水平。一个最大力矩水平应能使试样在 2500000 次循环之前不失效。导致试样失效的最大力矩值与最大跳动力矩值之间的差值必须小于设备弯曲极限力矩的 10%10 \% 。
A4.7.8 The cycle counter shall record the cumulative number of cycles applied to the test specimen, and the appropriate limits should be set to indicate specimen failure or deviations from the intended load system performance. A4.7.8 循环计数器应记录施加在试验试样上的循环次数,并应设置适当的限值, 以显示试样失效或偏离预期的负载系统性能。
A4.7.9 Testing shall continue until the specimen breaks, a limit is reached which terminates the test, or the runout criterion is reached. A4.7.9 试验应继续进行,直至试样断裂、达到终止试验的极限或达到跳动标准。
A4.7.10 Record the results of each test, including the maximum moment, cycle count at test termination, and the failure location and failure mode, if applicable. A4.7.10 记录每次试验的结果,包括最大力矩、试验结束时的循环次数以及故障位置和故障模式(如适用)。
A4.8 Calculation and Interpretation of Results A4.8 计算和结果解释
Static Test Method 静态测试方法
A4.8.1 Determine the bending stiffness, bending structural stiffness, 0.2%0.2 \% offset displacement, bending yield moment, and bending ultimate moment in the following manner: A4.8.1 按以下方式确定弯曲刚度、弯曲结构刚度、 0.2%0.2 \% 偏移位移、弯曲屈服力矩和弯曲极限力矩:
A4.8.2 On the test record that was generated during the test, draw a best fit straight line (0m)(0 m) through the initial linear portion of the load-versus-total-displacement curve (see Fig. A4.1). A4.8.2 在试验过程中生成的试验记录上,通过载荷与总位移曲线的初始线性部分(见图 A4.1),画出一条最佳拟合直线 (0m)(0 m) 。
A4.8.3 Determine the spinal component’s bending stiffness by calculating the slope of line 0 m . A4.8.3 通过计算直线 0 m 的斜率,确定脊柱部件的弯曲刚度。
A4.8.4 Calculate the spinal screw’s bending structural stiffness using the following specified relationship: A4.8.4 使用以下指定关系计算脊柱螺钉的弯曲结构刚度:
EI_(e)=(SL^(3))/(3)E I_{e}=\frac{S L^{3}}{3}
where: 在哪里? EI_(e)=E I_{e}= bending structural stiffness (N*m^(2))\left(\mathrm{N} \cdot \mathrm{m}^{2}\right), EI_(e)=E I_{e}= 弯曲结构刚度 (N*m^(2))\left(\mathrm{N} \cdot \mathrm{m}^{2}\right) 、 S=S= bending stiffness expressed in units of N//m\mathrm{N} / \mathrm{m}, and 以 N//m\mathrm{N} / \mathrm{m} 为单位表示的 S=S= 弯曲刚度,以及 L=L= bending moment arm expressed in units of m . L=L= 弯矩臂以 m 为单位表示。
A4.8.5 Calculate the 0.2%0.2 \% offset displacement value (see 3.5). On the load-versus-total-displacement curve lay off the line BCB C parallel to line 0m0 m and offset by the 0.2%0.2 \% offset displacement value. A4.8.5 计算 0.2%0.2 \% 偏移位移值(见 3.5)。在荷载与总位移曲线上,划出与 0m0 m 平行的 BCB C 线,并偏移 0.2%0.2 \% 偏移位移值。
A4.8.6 Determine the load at the intersection point between line BCB C and the load-versus-total-displacement curve (point DD of Fig. A4.1). Determine the spinal component’s bending yield moment (N*m)(\mathrm{N} \cdot \mathrm{m}) with the following specified relationship: A4.8.6 确定线 BCB C 与荷载与总位移曲线(图 A4.1 中的点 DD )交点处的荷载。根据以下指定关系确定脊柱构件的弯曲屈服力矩 (N*m)(\mathrm{N} \cdot \mathrm{m}) :
" Bending Yield Moment "=PL\text { Bending Yield Moment }=P L
where: 在哪里? P=P= the load (N)(N) at point D of Fig. A4.1, and P=P= 图 A4.1 中 D 点的负载 (N)(N) ,以及 L=L= bending moment arm expressed in units of m . L=L= 弯矩臂以 m 为单位表示。
A4.8.7 Determine the peak load during the static test (point EE of Fig. A4.1). Determine the spinal component’s bending ultimate moment (N*m)(\mathrm{N} \cdot \mathrm{m}) with the equation of A 4.8 .6 and substitute the load (N)(N) at point EE of Fig. A4.1 for variable PP. A4.8.7 确定静态试验期间的峰值载荷(图 A4.1 中的 EE 点)。用 A 4.8.6 的公式确定脊柱部件的弯曲极限力矩 (N*m)(\mathrm{N} \cdot \mathrm{m}) ,并用图 A4.1 中 EE 点的荷载 (N)(N) 代替变量 PP 。
Fatigue Test Method 疲劳测试方法
A4.8.8 Plot the maximum moment (N*m)(\mathrm{N} \cdot \mathrm{m}) and cycles to test termination on an M-NM-N diagram. Various techniques may be A4.8.8 在 M-NM-N 图上绘制最大力矩 (N*m)(\mathrm{N} \cdot \mathrm{m}) 和测试终止的周期。可采用各种技术
used to estimate mean or median fatigue lives, statistical differences between groups, curve fits of the fatigue data, probability of survival curves, and so forth. (3-8) 用于估算平均或中位疲劳寿命、组间统计差异、疲劳数据曲线拟合、生存概率曲线等。(3-8)
A4.8.9 If determining median fatigue bending moment at 2500000 cycles, it is recommended that the fatigue bending moment be determined as the median fatigue moment ( 50%50 \% probability of survival), using a technique or criteria described in the literature. (1-6) A4.8.9 如果确定 2500000 次循环时的中位疲劳弯曲力矩,建议使用文献中描述的技术或标准,将疲劳弯曲力矩确定为中位疲劳力矩( 50%50 \% 存活概率)。(1-6)
A4.9 Report A4.9 报告
A4.9.1 The test report shall specify the following spinal screw characteristics: A4.9.1 试验报告应说明以下螺钉的特性:
A4.9.2 Manufacturer’s name or logo. A4.9.2 制造商名称或徽标。
A4.9.3 Screw descriptions, including any relevant geometric characteristics. A4.9.3 螺杆说明,包括任何相关几何特征。
A4.9.4 The ASTM designation, if the screw is manufactured according to an ASTM specification. A4.9.4 如果螺钉是按照 ASTM 规范制造的,则应注明 ASTM 名称。
A4.9.5 Material and the ASTM designation, if applicable. A4.9.5 材料和 ASTM 名称(如适用)。
A4.9.6 Catalog number. A4.9.6 目录编号。
A4.9.7 Manufacturing lot number. A4.9.7 制造批号。
A4.9.8 Test block material and dimensional information for spinal screw tests. A4.9.8 用于脊柱螺钉试验的试块材料和尺寸信息。
A4.9.9 Intended spinal location for the spinal screw. A4.9.9 脊柱螺钉的预定位置。
A4.9.10 Illustration of the loading configuration used during the investigation. Describe the similarities and differences to the relevant figures contained therein. A4.9.10 说明调查期间使用的加载配置。说明与其中相关数字的异同。
A4.9.11 Any deviations from the recommended test method. A4.9.11 与建议试验方法的任何偏差。
A4.9.12 Measurements for the bending moment arm, the gripped length, and the exposed length. A4.9.12 测量弯矩臂、夹持长度和外露长度。
A4.9.13 Number of specimens tested for each sample and the rationale for the sample size selected for the static test. A4.9.13 每个试样测试的试样数量,以及为静态试验选择试样数量的理由。
A4.9.14 Test specimen static test failure modes observed. A4.9.14 观察到的试样静态试验失效模式。
A4.9.15 Load versus total displacement curves for all static tests. A4.9.15 所有静态试验的载荷与总位移曲线。
A4.9.16 0.2%0.2 \% offset displacement value. A4.9.16 0.2%0.2 \% 偏移位移值。
A4.9.17 Mean and standard deviation for the test component’s bending stiffness, bending structural stiffness, bending yield moment, and bending ultimate moment. A4.9.17 试验部件弯曲刚度、弯曲结构刚度、弯曲屈服力矩和弯曲极限力矩的平均值和标准偏差。
A4.9.18 RR-ratio used during the fatigue tests. A4.9.18 疲劳试验中使用的 RR 比率。
A4.9.19 Fatigue test frequency. A4.9.19 疲劳试验频率。
A4.9.20 Description of the fatigue test environment if other than the recommended room temperature laboratory air environment. A4.9.20 除推荐的室温实验室空气环境之外的疲劳试验环境说明。
A4.9.21 Description of the fatigue failure mode and failure location for each specimen that failed. A4.9.21 说明每个失效试样的疲劳失效模式和失效位置。
A4.9.22 Number of specimens tested for each sample and the rationale for the sample size selected for the fatigue tests. A4.9.22 每个试样测试的试样数量,以及疲劳试验选择试样数量的理由。
A4.9.23 Tabular listing that summarizes the maximum moment and the resulting cycles to test termination data for the fatigue tests. A4.9.23 表列汇总了疲劳试验的最大力矩和由此产生的试验终止循环数据。
A4.9.24 Bending fatigue runout moment. A4.9.24 弯曲疲劳跳动力矩。
A4.9.25 All initial and secondary fatigue failures and the failure modes. A4.9.25 所有初始和二次疲劳失效及失效模式。
A4.9.26 Pictures of the failure surfaces. A4.9.26 故障表面图片。
A4.9.27 Plot a semi-log M-NM-N diagram of the maximum moment versus number of cycles to test termination. Uniquely identify specimens that have not failed prior to accumulating 2500000 fatigue-loading cycles. A4.9.27 绘制最大力矩与试验终止循环次数的半对数 M-NM-N 图。唯一标识在累积 2500000 次疲劳加载循环之前未失效的试样。
A4.9.28 Regression analysis results for the maximum moment versus number of cycles to failure data (including descriptions of any analytical or statistical techniques used when interpreting the fatigue data). A4.9.28 最大力矩与失效循环次数数据的回归分析结果(包括解释疲劳数据时使用的任何分析或统计技术的说明)。
A4.10 Precision and Bias A4.10 精确度和偏差
A4.10.1 Precision-Data establishing the precision of this method have not yet been obtained. A4.10.1 精确度--尚未获得确定该方法精确度的数据。
A4.10.2 Bias-No statement can be made as to bias of this test method since no acceptable reference values are available, nor can they be obtained because of the destructive nature of the tests. A4.10.2 偏差--由于没有可接受的参考值,也由于试验的破坏性而无法获得参考值,因此无法说明本试验方法的偏差。
APPENDIXES 附录
(Nonmandatory Information) (非强制性信息)
X1. RATIONALE FOR THE OVERALL SPECIFICATION X1.总体规格的依据
X1.1 These specifications and test methods are intended to provide useful and consistent information related to the terminology, performance, application of test methods, and the application of components used in spinal constructs. Spinal construct component geometrical definitions, dimensions, classification and terminology; material specifications; and perfor- mance definitions are provided. X1.1 本规范和测试方法旨在提供与脊柱结构部件的术语、性能、测试方法应用和应用相关的有用和一致的信息。其中包括脊柱结构部件的几何定义、尺寸、分类和术语;材料规格;以及性能定义。
X1.2 The surgeon should be able to select the spinal device that he feels is appropriate for the indication. In order to do this, the surgeon must have confidence that the designation of size and its instrumentation has a specific, known meaning that X1.2 外科医生应能选择他认为适合适应症的脊柱器械。为了做到这一点,外科医生必须确信尺寸及其器械的名称具有特定的已知含义,即
is quantifiable and reliable, regardless of the manufacturer or design. The mechanical behavior and material properties must also be described in a reliable, known manner that is irrespective of the manufacturer or design. In order to accomplish this uniformity of designations, the terminology, dimensions, mechanical properties, and material properties must be standardized. 无论制造商或设计如何,材料都必须是可量化和可靠的。机械性能和材料特性也必须以可靠、已知的方式进行描述,与制造商或设计无关。为了实现名称的统一性,术语、尺寸、机械性能和材料性能必须标准化。
X1.3 These specifications and test methods are not intended to define performance levels of spinal implants, as insufficient knowledge to predict the consequence of the use of particular spinal implant design and assemblies is available. X1.3 这些规范和测试方法并不用于定义脊柱植入物的性能水平,因为目前还没有足够的知识来预测使用特定脊柱植入物设计和组件的后果。
X1.4 These specifications and test methods include a test method that covers the static and dynamic evaluation of spinal components used as either anchorage elements or longitudinal elements of spinal constructs. The purpose of spinal implants is to provide short-term stability while arthrodesis takes place. This test method does not address the long-term mechanical issues of spinal components, nor does it address the performance of implants that do not lead to spinal fusion. X1.4 这些规范和试验方法包括一种试验方法,用于对用作脊柱结构的锚固元件或纵向元件的脊柱组件进行静态和动态评估。脊柱植入物的目的是在关节置换过程中提供短期稳定性。该测试方法不涉及脊柱组件的长期机械问题,也不涉及不会导致脊柱融合的植入物的性能。
X1.5 One of the objectives of these specifications and test methods was to provide a consistent methodology for determining an estimate of the spinal component’s fatigue strength at a meaningful cycle count. The estimated number of cycles seen in vivo in a twelve month period, which can be considered the approximate average time until fusion, ranges from 1 to 2.5 million cycles. Doubling the 2.5 million cycles to 5 million provides a safety factor, but substantially increases the cost of testing without providing additional meaningful data. Even if a failure is noted in the 2.5 to 5 million cycle range, it generally occurs below the horizontal runout portion of the curve, and does not significantly affect the curve itself. Therefore, 2.5 million cycles was chosen as the cyclic runout limit. X1.5 这些规范和测试方法的目标之一是提供一种一致的方法,用于确定脊柱部件在有意义的循环次数下的疲劳强度估计值。据估计,12 个月内的活体循环次数在 100 万到 250 万次之间,这可以被视为融合前的大致平均时间。将 250 万次循环次数增加一倍至 500 万次可提供一个安全系数,但会大大增加测试成本,且无法提供更多有意义的数据。即使在 250 万至 500 万次循环范围内出现故障,一般也发生在曲线的水平跳动部分以下,对曲线本身影响不大。因此,250 万次循环被选为循环跳动极限。
X1.6 The influence of simulated body fluid or saline may affect the relative performance of tested spinal components. The performance tests identified in these specifications and test methods are specified for ambient laboratory conditions in order to reduce variability within the results. An individual investigator may consider additional evaluations in simulated body fluids, saline, or water to address environmental factors. X1.6 模拟体液或生理盐水的影响可能会影响测试脊柱部件的相对性能。本规范和测试方法中确定的性能测试是针对实验室环境条件的,以减少结果的可变性。个别研究人员可考虑在模拟体液、生理盐水或水中进行额外评估,以应对环境因素。
X2. RATIONALE FOR ANNEX A1 X2.附件 A1 的依据
X2.1 This annex is intended to provide useful and consistent information related to the terminology, performance, application of test methods, and the application of spinal screws. Spinal screw geometrical definitions, dimensions, classification and terminology; material specifications; and performance definitions are provided in A1.1 - A1.5. X2.1 本附件旨在提供与脊柱螺钉的术语、性能、试验方法应用和应用有关的有用和一致的信息。脊柱螺钉的几何定义、尺寸、分类和术语;材料规格;以及性能定义见 A1.1 - A1.5。
X2.2 The following mechanical performance characteristics of spinal screws are considered to be important to the surgeon for various reasons. X2.2 出于各种原因,脊柱螺钉的以下机械性能特征对外科医生来说非常重要。
X2.2.1 Maximum Torque-This characteristic identifies the limiting torsional capacity of the spinal screw. This characteristic is particularly important when dealing with self-tapping and self-drilling screws. These screw designs have the potential to stress the screw to the torsional limit when they are inserted into thick cortical bone. X2.2.1 最大扭矩--该特性确定了脊柱螺钉的极限扭转能力。这一特性在处理自攻和自钻螺钉时尤为重要。当螺钉插入厚皮质骨时,这些螺钉设计有可能使螺钉的扭转应力达到极限。
X2.2.2 Driving Torque Requirements-These requirements identify the potential level that the screw could be stressed in torque upon insertion. This characteristic is particularly important when dealing with self-tapping and self-drilling screws. These screw designs have the potential to stress the screw to the torsion limit when it is inserted into thick cortical bone. X2.2.2 驱动扭矩要求--这些要求确定了螺钉在插入时可能承受的扭矩水平。这一特性在处理自攻和自钻螺钉时尤为重要。当螺钉插入厚皮质骨时,这些螺钉设计有可能将螺钉的应力提高到扭转极限。
X2.2.3 Bending Properties-Bending properties are critical characteristics of spinal screws since the screw provides the primary means of transferring the load from the longitudinal element to the bony element. Additionally, the bending stiffness of the screw may directly affect the rate and ability of healing or fusion. X2.2.3 弯曲特性--弯曲特性是脊柱螺钉的关键特性,因为螺钉是将载荷从纵向部件转移到骨性部件的主要手段。此外,螺钉的弯曲刚度可能会直接影响愈合或融合的速度和能力。
X2.2.4 Axial Pull-Out Load-Axial pull-out load is a critical characteristic of spinal screws since the screw provides the primary means of transferring the load from the longitudinal element to the bony element. X2.2.4 轴向拉出载荷-轴向拉出载荷是脊柱螺钉的一个重要特征,因为螺钉是将载荷从纵向构件转移到骨性构件的主要手段。
X2.3 The driving torque test requirements in this specification call for the insertion of the spinal screw into test blocks manufactured from Grade 40, Specification F1839 rigid polyurethane foam. This density material was chosen for two reasons. First, the material closely replicates cortical bone and will, therefore, provide tests results that are representative of the worst case clinical situation. Second, the referenced material provides a uniform material for testing. X2.3 本规范中的驱动扭矩试验要求将脊柱螺钉插入由 40 级规格 F1839 硬质聚氨酯泡沫塑料制成的试验块中。选择这种密度材料有两个原因。首先,这种材料非常接近皮质骨,因此能提供代表最坏临床情况的测试结果。其次,参考材料为测试提供了统一的材料。
X2.4 The axial pull-out load test requirements in this specification call for the insertion of the spinal screw into test blocks manufactured from Grade 20, Specification F1839 rigid polyurethane foam. This density material was chosen for two reasons. First, the material closely replicates cancellous bone and will, therefore, provide tests results that are representative of the worst case situation. Second, the referenced material provides a uniform material for testing. X2.4 本规范中的轴向拉出载荷试验要求将脊柱螺钉插入由规格为 F1839 的 20 级硬质聚氨酯泡沫塑料制成的试验块中。选择这种密度材料有两个原因。首先,这种材料非常接近松质骨,因此能提供代表最坏情况的测试结果。其次,参考材料为测试提供了统一的材料。
X2.5 An insertion speed of 30r//min30 \mathrm{r} / \mathrm{min} (one-half turn per second) was chosen for the screw insertion processes since this speed better represents the clinical insertion speed for screws than the 3r//min3 \mathrm{r} / \mathrm{min} specified in Specification F543, Annex A2. X2.5 螺钉插入过程选择了 30r//min30 \mathrm{r} / \mathrm{min} (每秒半圈)的插入速度,因为该速度比规格 F543 附件 A2 中规定的 3r//min3 \mathrm{r} / \mathrm{min} 更能代表临床上的螺钉插入速度。
X2.6 Spinal screws are inserted into the test block to specific insertion depths that are correlated to the specific test. The greatest insertion depth was selected for the driving torque test and the smallest insertion depth was chosen for the axial pull-out load test since these conditions each represent the worst case clinical condition for the respective performance test. X2.6 将脊柱螺钉插入测试块的特定插入深度与特定测试相关联。驱动扭矩测试选择了最大的插入深度,轴向拉出载荷测试选择了最小的插入深度,因为这些条件分别代表了相应性能测试的最差临床条件。
X3. RATIONALE FOR ANNEX A2 X3.附件 A2 的依据
X3.1 This annex is intended to provide useful and consistent information related to spinal plates. X3.1 本附件旨在提供与脊椎板有关的有用和一致的信息。
X3.2 Spinal plate bending properties are the critical performance characteristic since the plate provides the primary means of stabilizing the motion segments. Additionally, the bending stiffness of the plate may directly affect the rate and ability of healing. X3.2 椎板的弯曲性能是关键的性能特征,因为椎板是稳定运动节段的主要手段。此外,钢板的弯曲刚度会直接影响愈合的速度和能力。
X3.3 A four-point bending load is specified for spinal plates since that loading configuration can reproduce the dominant stress condition within an implanted spinal plate. X3.3 对脊柱板规定了四点弯曲载荷,因为这种载荷配置可以再现植入脊柱板内的主要应力状况。
X3.4 The specified bending test roller positions in this method have been selected so that the spinal plate section being tested is equivalent to the active length of the spinal plate when tested according to Test Methods F1717. It is important that all spinal plate design features that would normally be tested during an Test Methods F1717 test be included in the spinal plate component test. This would ensure that all stress concentrating features of a given plate design are considered during the component test. X3.4 本方法中规定的弯曲试验辊轴位置的选择,是为了使所试验的椎板截面等同于按试验方法 F1717 试验时的椎板有效长度。重要的是,在脊骨板组件测试中应包括通常在测试方法 F1717 测试中测试的所有脊骨板设计特征。这将确保在组件测试中考虑到特定椎板设计的所有应力集中特征。
X4. RATIONALE FOR ANNEX A3 X4.附件 A3 的理由
X4.1 This annex is intended to provide useful and consistent information related to spinal rods. X4.1 本附件旨在提供与脊柱棒有关的有用和一致的信息。
X4.2 Spinal rod bending properties are the critical performance characteristic since the rod(s)\operatorname{rod}(\mathrm{s}) provides the primary means of stabilizing the motion segments. Additionally, the bending stiffness of the rod may directly affect the rate and ability of healing. X4.2 脊柱杆的弯曲特性是关键的性能特征,因为 rod(s)\operatorname{rod}(\mathrm{s}) 提供了稳定运动节段的主要手段。此外,脊柱杆的弯曲刚度可能会直接影响愈合的速度和能力。
X4.3 A four-point bending load is specified for spinal rods since that loading configuration can reproduce the dominant stress condition within an implanted spinal rod. X4.3 对脊柱杆规定了四点弯曲载荷,因为这种载荷配置可以再现植入脊柱杆内的主要应力状况。
X4.4 The user is allowed to freely pick the test fixture configuration (roller contact points) for spinal rod testing since the rod’s cross section is uniform along the rod’s length and lacks any design features along its length that would be considered stress concentrators. Therefore, any rod section selected for the test would be representative of the overall rod’s mechanical properties. X4.4 允许用户自由选择脊柱杆测试的测试夹具配置(滚轮接触点),因为脊柱杆的横截面沿其长度方向是均匀的,并且在其长度方向上没有任何被认为是应力集中器的设计特征。因此,为测试选择的任何杆截面都能代表整个杆的机械性能。
X5. RATIONALE FOR ANNEX A4 X5.附件 A4 的依据
X5.1 This test method is designed to measure the mechanical properties of spinal components subjected to both static and fatigue-bending loads, which are the most common types of loading encountered in vivo. This test method addresses itself to properties of the component rather than the material from which the spinal component is manufactured. X5.1 本试验方法旨在测量脊柱部件在承受静态和疲劳弯曲载荷时的机械性能,这两种载荷是体内最常见的载荷类型。本测试方法针对的是组件的特性,而不是制造脊柱组件的材料。
X5.2 A cantilever-bending load is specified for spinal screws since it provides a simplification of the dominant stress condition within an implanted spinal screw. X5.2 对脊柱螺钉规定了悬臂弯曲载荷,因为它简化了植入脊柱螺钉内的主要应力状况。
REFERENCES 参考文献
(1) Little, R. E., Statistical Planning and Analysis, ASTM STP 588, American Society of Testing and Materials, Philadelphia, PA.
(2) Little, R. E. and Ekvall, Statistical Analysis of Fatigue Data, ASTM STP 744, American Society of Testing and Materials, Philadelphia, PA.
(3) Little, R. E. and Jebe, E. H., Manual on Statistical Planning and Analysis of Fatigue Experiments, ASTM STP 588, American Society of Testing and Materials, Philadelphia, PA, 1975.
(4) Conway, J. B. and Sjodahl, L. H., Analysis and Representation of Fatigue Data, ASM International, Materials Park, OH, 1991.
(5) Collins, J. A., Failure of Materials in Mechanical Design, John Wiley and Sons, New York, NY, 1981.
(6) Swanson, Handbook of Fatigue Testing, ASTM STP 566, American Society of Testing and Materials, Philadelphia, PA. (6) Swanson,《疲劳测试手册》,ASTM STP 566,美国测试与材料协会,宾夕法尼亚州费城。
(7) Little, R. E., “Optimal Stress Amplitude Selection in Estimating Median Fatigue Limits Using Small Samples,” J. of Testing and Evaluation, ASTM, 1990, pp. 115-122. (7) Little, R. E., "Optimal Stress Amplitude Selection in Estimating Median Fatigue Limits Using Small Samples," J. of Testing and Evaluation, ASTM, 1990, pp.
(8) International Organization for Standardization (ISO), 1 rue de Varembe, Case postale 56, CH-1211, Geneva 20, Switzerland. (8) 国际标准化组织(ISO),1 rue de Varembe, Case postale 56, CH-1211, Geneva 20, Switzerland。
ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. ASTM 国际协会对本标准中提及的任何项目所主张的任何专利权的有效性不持任何立场。明确告知本标准的用户,确定任何此类专利权的有效性以及侵犯此类权利的风险完全由其自行承担。
This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below. 本标准可由负责的技术委员会随时修订,必须每五年审查一次,如不修订,则重新批准或撤销。欢迎对本标准的修订或其他标准提出意见,并将意见寄至 ASTM 国际总部。您的意见将在负责的技术委员会会议上得到认真考虑,您也可以出席会议。如果您认为您的意见没有得到公正的听取,请按以下地址向 ASTM 标准委员会提出您的意见。
This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service @astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/ 本标准版权归 ASTM International(100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States)所有。本标准的单份或多份重印本可通过上述地址或 610-832-9585 (电话)、610-832-9555 (传真) 或 service @astm.org (电子邮件) 与 ASTM 联系;或通过 ASTM 网站 (www.astm.org) 获取。也可向版权清算中心(地址:222 Rosewood Drive, Danvers, MA 01923,电话:(978) 646-2600;http://www.copyright.com/)申请复印本标准的许可权。
^(1){ }^{1} These specifications and test methods are under the jurisdiction of ASTM Committee F04 on Medical and Surgical Materials and Devices and are the direct responsibility of Subcommittee F04.25 on Spinal Devices. ^(1){ }^{1} 这些规范和测试方法属于 ASTM 委员会 F04(医疗和外科材料与设备)的管辖范围,并由 F04.25 脊柱设备小组委员会直接负责。
Current edition approved Feb. 1, 2018. Published March 2018. Originally approved in 2002. Last previous edition approved in 2014 as F2193-14. DOI: 10.1520/F2193-18. 当前版本于 2018 年 2 月 1 日批准。2018 年 3 月出版。最初于 2002 年批准。上一版于 2014 年批准,编号为 F2193-14。DOI: 10.1520/F2193-18。
^(2){ }^{2} For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website. ^(2){ }^{2} 有关参考的ASTM标准,请访问ASTM网站www.astm.org,或通过service@astm.org联系ASTM客户服务部。有关《ASTM 标准年鉴》卷册信息,请参阅 ASTM 网站上的标准文件摘要页面。
^(3){ }^{3} Available from International Organization for Standardization (ISO), 1 rue de Varembe, Case postale 56, CH-1211, Geneva 20, Switzerland. ^(3){ }^{3} 可向国际标准化组织(ISO)索取,地址:1 rue de Varembe, Case postale 56, CH-1211, Geneva 20, Switzerland。
^(4){ }^{4} The boldface numbers in parentheses refer to the list of references at the end of this standard. ^(4){ }^{4} 括号中的黑体数字指的是本标准末尾的参考文献列表。