Skills for Business Enquiry Research Proposal
商业调查研究计划书的技能
Title of Journal:
期刊名称:
Entrepreneurial growth in digital business ecosystems: an integrated framework blending the knowledge‑based view of the firm and business ecosystems
数字商业生态系统中的创业增长:一个融合了公司和商业生态系统基于知识的观点的综合框架
Research Question:
研究问题:
Exploring How Small and Medium-Sized Enterprises (SMEs) in the Manufacturing Sector Can Leverage Generative AI for Enhanced Innovation in a Global Market
探索制造业的中小型企业 (SME) 如何利用生成式 AI 来增强全球市场的创新
Abstract
A小区
Entrepreneurial Growth in Digital Business Ecosystems: An Integrated Framework Blending the Knowledge-Based View of the Firm and Business Ecosystems [1] " provides a comprehensive study on how digital ecosystems impact entrepreneurial growth. Three ways in which small enterprises can improve their competitiveness are described: Internal Exploitation, Internal Exploration, and External Exploration. To respond to this argument, this paper replicates the research of it. Using a combination of qualitative and quantitative methods, it analyses how SMEs rely on digital tools to enhance their competitiveness in the market. This paper collects operational data, revenues, etc. of SMEs, as well as observing the mode of operation of these companies and analysing their intellectual capital. in order to assess the innovative role of digital technology.
数字商业生态系统中的创业增长:融合公司和商业生态系统基于知识的观点的综合框架 [1] “提供了关于数字生态系统如何影响创业增长的全面研究。描述了小企业提高竞争力的三种方式:内部开发、内部探索和外部探索。为了回应这一论点,本文复制了对它的研究。它采用定性和定量方法相结合的方法,分析了中小企业如何依靠数字工具来提高其市场竞争力。本文收集了中小企业的运营数据、收入等,并观察了这些公司的运营模式并分析了它们的智力资本。为了评估数字技术的创新作用。
I. Introduction
I. 引言
The digital business ecosystem, and generative AI in particular, is constantly shaping the contemporary technological landscape. Small and medium-sized enterprises (SMEs) in the manufacturing industry are constantly striving towards digitalisation in a highly competitive environment with big waves, but how should they do it? Where does success lie? Under the invisible pressure of many large enterprises, how should they go about finding their own space for survival? Compared with large enterprises, SMEs often lack sufficient resources and their intellectual capital (human capital, enterprise structure capital, customer capital) is relatively weak. But we have to admit that SMEs, especially in the manufacturing sector, have a crucial role to play in economic growth. Therefore, in the context of an increasingly digitised global economy, we are very curious about the relationship between the digital business ecosystem and these enterprises.We will discuss in this paper how small and medium-sized manufacturing industries can leverage generative AI to improve innovation and remain competitive in the global marketplace. In particular, what are the advantages of generative AI over traditional digital tools in terms of its strategic impact on internal knowledge reconstruction, external collaboration, and innovation processes?
数字商业生态系统,尤其是生成式 AI,正在不断塑造当代技术格局。制造业的中小企业 (SME) 在竞争激烈的环境中不断努力实现数字化,但他们应该如何做到这一点呢?成功在哪里?在众多大企业的无形压力下,他们该如何去寻找自己的生存空间呢?与大型企业相比,中小企业往往缺乏足够的资源,其智力资本(人力资本、企业结构资本、客户资本)相对薄弱。但我们不得不承认,中小企业,尤其是制造业的中小企业,在经济增长中发挥着至关重要的作用。因此,在全球经济日益数字化的背景下,我们非常好奇数字商业生态系统与这些企业之间的关系。在本文中,我们将讨论中小型制造业如何利用生成式 AI 来改善创新并在全球市场中保持竞争力。特别是,生成式 AI 在对内部知识重建、外部协作和创新过程的战略影响方面与传统数字工具相比有哪些优势?
The goal of this paper is to examine the three pathways of corporate entrepreneurial growth mentioned in Anlan Chen et al.'s article by replicating their study and giving our answer.
本文的目标是通过复制陈安澜等人的文章中提到的企业创业成长的三种途径,通过复制他们的研究并给出我们的答案。
II. Literature Review (approx. 700 words)
II. 文献综述(约 700 字)
Particularly in the industrial sector, where Generative AI is vital in promoting innovation and boosting competitiveness, it has evolved into a transforming technology revolutionising sectors. Generative AI, as described by Sedkaoui and Benaichouba (2024), is a powerful instrument for generating innovation and creativity in many fields. They draw attention to how this technology produces fresh designs, streamlines manufacturing techniques, and lets companies—including small and medium-sized firms (SMEs)—quickly develop and produce new products (Sedkaoui and Benaichouba, 2024).
特别是在工业领域,生成式人工智能在促进创新和提高竞争力方面至关重要,它已经发展成为一种变革性的技术,使行业发生革命性的变化。正如 Sedkaoui 和 Benaichouba (2024) 所描述的那样,生成式 AI 是在许多领域产生创新和创造力的强大工具。他们提请注意这项技术如何产生新的设计、简化制造技术,并让公司(包括中小型公司 (SME))快速开发和生产新产品(Sedkaoui 和 Benaichouba,2024 年)。
Generative AI helps many of the limitations usually experienced by smaller companies, such as limited resources and technical knowledge. Emphasising the importance of artificial intelligence in manufacturing, Peretz-Andersson et al. (2024) explain how small businesses may employ AI-driven solutions to improve resource orchestration, accelerate manufacturing, and more successfully mobilise qualified workers (Peretz-Andersson et al., 2024). By providing more flexibility, creativity, and speed in innovation, Generative AI enables SMEs to compete in a global market dominated by larger companies.
生成式 AI 有助于解决小公司通常遇到的许多限制,例如资源和技术知识有限。Peretz-Andersson 等人(2024 年)强调了人工智能在制造业中的重要性,解释了小企业如何利用人工智能驱动的解决方案来改善资源编排、加速制造并更成功地动员合格工人(Peretz-Andersson 等人,2024 年)。通过提供更高的灵活性、创造力和创新速度,生成式 AI 使中小企业能够在由大公司主导的全球市场中竞争。
Recent studies on digital transformation are prevalent, mostly with a focus towards how companies embrace new technology to increase creativity and competitiveness. According to Zaoui and Souissi (2020), digital transformation requires businesses to reinvent their structures to produce new value via AI and data integration, therefore going beyond mere technological adoption. Generative AI improves automation, customisation, and efficiency, which are vital for SMEs looking for fast and effective innovation (Zaoui and Souissi, 2020).
最近关于数字化转型的研究很普遍,主要集中在公司如何利用新技术来提高创造力和竞争力。根据 Zaoui 和 Souissi (2020) 的说法,数字化转型要求企业重塑其结构,以通过 AI 和数据集成产生新价值,因此不仅仅是技术采用。生成式 AI 提高了自动化、定制和效率,这对于寻求快速有效创新的中小企业至关重要(Zaoui 和 Souissi,2020 年)。
By allowing automation, customising, and rapid prototyping, generative artificial intelligence drives manufacturing innovation (Feuerriegel et al., 2024). By overcoming constraints including resources and knowledge, SMEs implementing artificial intelligence will be able to compete worldwide, where quick innovation is essential (Peretz-Andersson et al., 2024). In this way, AI supports SMEs in process optimisation and product design, improving time-to-market and competitiveness.
通过允许自动化、定制和快速原型制作,生成式人工智能推动了制造创新(Feuerriegel et al., 2024)。通过克服资源和知识等限制,实施人工智能的中小企业将能够在全球范围内竞争,其中快速创新至关重要(Peretz-Andersson et al., 2024)。通过这种方式,AI 在流程优化和产品设计方面为中小企业提供支持,从而缩短上市时间并提高竞争力。
Ayoko (2021) discusses how artificial intelligence is helping reshaping industries, therefore fostering adaptation and creativity. Adoption of artificial intelligence by SMEs can assist close the disparity with bigger companies by means of innovation despite limited means (Sedkaoui and Benaichouba, 2024).
Ayoko (2021) 讨论了人工智能如何帮助重塑行业,从而促进适应和创造力。尽管手段有限,但中小企业采用人工智能可以通过创新帮助缩小与大公司的差距(Sedkaoui 和 Benaichouba,2024 年)。
For manufacturing-based SMEs, generative AI presents both opportunities and difficulties. High expenses and a lack of technical knowledge are among the main obstacles that prevent SMEs from fully using AI technologies (Bhalerao et al., 2022). Such challenges can make it more difficult for them to compete with more established companies.
对于以制造业为基础的中小企业来说,生成式 AI 既是机遇也是困难。高昂的费用和缺乏技术知识是阻碍中小企业充分利用人工智能技术的主要障碍之一(Bhalerao et al., 2022)。这些挑战可能使他们更难与更成熟的公司竞争。
While Schönberger (2023) emphasises the possible advantages of Generative AI—including automation, product customising, and enhanced efficiency—she also acknowledges the technical challenges SMEs have in expanding and combining AI solutions. Notwithstanding these challenges, artificial intelligence offers major chances for improving creativity (Schönberger, 2023)
虽然 Schönberger (2023) 强调了生成式 AI 的可能优势——包括自动化、产品定制和提高效率——但她也承认中小企业在扩展和组合 AI 解决方案方面面临的技术挑战。尽管存在这些挑战,但人工智能为提高创造力提供了重大机会(Schönberger,2023 年)
Generative machine learning, according to Sedkaoui and Benaichouba (2024), reduces time-to--market and gives SMEs a competitive edge by fostering creativity in product design. Generative artificial intelligence enables more rapid innovation and more customised products, therefore helping SMEs stand out in a market dominated by bigger companies (Sedkaoui and Benaichouba, 2024).
根据 Sedkaoui 和 Benaichouba (2024) 的说法,生成式机器学习通过培养产品设计的创造力来缩短上市时间并为中小企业提供竞争优势。生成式人工智能可实现更快速的创新和更多定制化的产品,从而帮助中小企业在由大公司主导的市场中脱颖而出(Sedkaoui 和 Benaichouba,2024 年)。
Zang (2018) vividly illustrates how SMEs have to achieve a proper mix between exploratory and exploitative innovation. Although bigger companies usually concentrate on improving their current procedures, SMEs are more likely to participate in exploratory innovation—that is, search for new prospects, develop ground-breaking ideas, and enter unexplored markets (Zang, 2018). Zang's insights into how structural holes affect innovation provide a useful framework for understanding the challenges SMEs face in competing with larger companies (Zang, 2018).
Zang (2018) 生动地说明了中小企业如何实现探索性创新和开发性创新的适当结合。尽管大公司通常专注于改进其当前程序,但中小企业更有可能参与探索性创新,即寻找新的前景,开发突破性的想法,并进入未开发的市场(Zang,2018)。Zang 对结构性漏洞如何影响创新的见解为理解中小企业在与大公司竞争时面临的挑战提供了一个有用的框架(Zang,2018 年)。
Schönberger (2023) shows how artificial intelligence, especially generative AI, helps SMEs to propel exploratory and exploitative innovation. Survival for SMEs usually depends on their capacity for radical innovation—that is, creation of unique goods or services to set them apart in cutthroat markets. Schönberger's study shows how Generative AI accelerates the innovation process so that SMEs may explore new frontiers while simultaneously enhancing current processes to sustain efficiency (Schönberger, 2023).
Schönberger (2023) 展示了人工智能,尤其是生成式 AI,如何帮助中小企业推动探索性和开发性创新。中小企业的生存通常取决于他们进行激进创新的能力,即创造独特的商品或服务,使其在竞争激烈的市场中脱颖而出。Schönberger 的研究展示了生成式 AI 如何加速创新过程,以便中小企业可以探索新的领域,同时增强当前流程以维持效率(Schönberger,2023 年)。
Emphasising the financial impact of Generative AI on SMEs, Soni (2023) lends still another aspect to this story. Using artificial intelligence to investigate new product lines and join specialised markets would help SMEs increase their client base and create more income (Soni, 2023). Generative artificial intelligence, according to Soni's research, is not only a tool for invention but also a catalyst for development enabling SMEs to investigate fresh prospects, increase income, and create a competitive edge in a market controlled by bigger companies (Soni, 2023).
Soni (2023) 强调了生成式人工智能对中小企业的财务影响,为这个故事提供了另一个方面。使用人工智能来调查新产品线并加入专业市场将有助于中小企业增加客户群并创造更多收入(Soni,2023 年)。根据 Soni 的研究,生成式人工智能不仅是一种发明工具,也是发展的催化剂,使中小企业能够调查新的前景、增加收入并在由大公司控制的市场中创造竞争优势(Soni,2023 年)。
References:
引用:
1. Sedkaoui, S. and Benaichouba, R., 2024. Generative AI as a transformative force for innovation: a review of opportunities, applications and challenges. European Journal of Innovation Management.
1.Sedkaoui, S. 和 Benaichouba, R.,2024 年。 生成式 AI 作为创新的变革力量:机遇、应用和挑战回顾。 欧洲创新管理杂志。
2. Peretz-Andersson, E., Tabares, S., Mikalef, P. and Parida, V., 2024. Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach. International Journal of Information Management, 77, p.102781.
2.Peretz-Andersson, E.、Tabares, S.、Mikalef, P. 和 Parida, V.,2024 年。制造业中小企业的人工智能实施:一种资源编排方法。国际信息管理杂志 (International Journal of Information Management),第 77 期,第 102781 页。
3. Zaoui, F. and Souissi, N., 2020. Roadmap for digital transformation: A literature review. Procedia Computer Science, 175, pp.621-628.
3.Zaoui, F. 和 Souissi, N.,2020 年。数字化转型路线图:文献综述。Procedia 计算机科学 (Procedia Computer Science),第 175 期,第 621-628 页。
4. Feuerriegel, S., Hartmann, J., Janiesch, C. and Zschech, P., 2024. Generative ai. Business & Information Systems Engineering, 66(1), pp.111-126.
4.Feuerriegel, S.、Hartmann, J.、Janiesch, C. 和 Zschech, P.,2024 年。生成式 AI。商业与信息系统工程,66(1),pp.111-126。
5. Ayoko, O.B., 2021. Digital transformation, robotics, artificial intelligence, and innovation. Journal of Management & Organization, 27(5), pp.831-835.
5.Ayoko, O.B.,2021 年。数字化转型、机器人技术、人工智能和创新。管理与组织杂志,27(5),pp.831-835。
6. Bhalerao, K., Kumar, A., Kumar, A. and Pujari, P., 2022. A study of barriers and benefits of artificial intelligence adoption in small and medium enterprise. Academy of Marketing Studies Journal, 26, pp.1-6.
6.Bhalerao, K.、Kumar, A.、Kumar, A. 和 Pujari, P.,2022 年。研究中小型企业采用人工智能的障碍和好处。营销研究学院杂志 (Academy of Marketing Studies Journal),第 26 期,第 1-6 页。
7. Schönberger, M., 2023. Artificial Intelligence For Small And Medium-Sized Enterprises: Identifying Key Applications And Challenges. Journal of Business Management, 21, pp.89-112.
7.Schönberger, M.,2023 年。面向中小型企业的人工智能:确定关键应用和挑战。商业管理杂志 (Journal of Business Management),第 21 期,第 89-112 页。
8. Zang, J., 2018. Structural holes, exploratory innovation and exploitative innovation. Management Decision, 56(8), pp.1682-1695.
8.Zang, J.,2018 年。结构性漏洞、探索性创新和开发性创新。管理决策,56(8),第 1682-1695 页。
9. Soni, V., 2023. Impact of generative ai on small and medium enterprises' revenue growth: the moderating role of human, technological, and market factors. Reviews of Contemporary Business Analytics, 6(1), pp.133-153.
9.Soni, V.,2023 年。生成式 AI 对中小型企业收入增长的影响:人力、技术和市场因素的调节作用。当代商业分析评论,6(1),第 133-153 页。
IV. Research Design & Methodology (700–1000 words)
IV. 研究设计与方法论(700–1000 字)
Choice of research method
研究方法的选择
We chose as our research methodology the 2x2 matrix, a very common decision analysis tool that helps us to simplify complex problems. This research methodology is particularly useful when faced with the various influences in the digital business ecosystem, which can make it difficult to assess where they are pushing the organisation.
我们选择了 2x2 矩阵作为我们的研究方法,这是一种非常常见的决策分析工具,可以帮助我们简化复杂的问题。当面对数字商业生态系统中的各种影响时,这种研究方法特别有用,这可能使评估他们推动组织走向何方。
This approach will help us understand and categorise data through two key variables. It gives us a more intuitive understanding of how digital technology in turn helps SMEs to innovate and become more competitive. From there, we can further analyse the relationship between the various factors, thus preventing our research from getting bogged down in complex details.
这种方法将帮助我们通过两个关键变量来理解和分类数据。它让我们更直观地了解数字技术如何反过来帮助中小企业进行创新并提高竞争力。从那里,我们可以进一步分析各种因素之间的关系,从而防止我们的研究陷入复杂的细节。
The graphical presentation of the 2x2 matrix allows us to place the key factors and different phenomena, strategies and structures in the four quadrants, which allows us to place all the experimental samples in front of us at a glance, and to easily derive the optimal solutions and the maximum risk behaviours. Helps us to analyse the experimental subjects in depth.
2x2 矩阵的图形表示使我们能够将关键因素和不同的现象、策略和结构放在四个象限中,这使我们能够将所有实验样本一目了然地放在我们面前,并轻松得出最佳解决方案和最大风险行为。帮助我们深入分析实验对象。
The 2x2 matrix study, helped us to learn that XX is the highest priority in the entire digital business ecosystem and it plays a vital role in the entire matrix, based on which we assessed that Content Development, Internal Exploration and External Exploration are indeed the three important avenues of growth in the start-up phase of an SME. We also assessed what risks and opportunities these three avenues hold for SMEs, helping future SMEs in the manufacturing industry to combine complex technologies with market appeal, weighing the pros and cons and shaping a healthy digital economy model.
2x2 矩阵研究帮助我们了解到 XX 是整个数字商业生态系统中的最高优先级,它在整个矩阵中起着至关重要的作用,在此基础上,我们评估了内容开发、内部探索和外部探索确实是中小企业初创阶段的三大重要成长途径。我们还评估了这三种途径为中小企业带来的风险和机遇,帮助制造业的未来中小企业将复杂技术与市场吸引力相结合,权衡利弊,塑造健康的数字经济模式。
There are, of course, many other kinds of research methods that combine directional and quantitative approaches, but some are suitable for macro-level analyses rather than for delving into specific technologies (generative AI), and some are more suited to long-term strategic performance than to the capture of emerging technologies and innovation opportunities.
当然,还有许多其他类型的研究方法结合了定向和定量方法,但有些方法适合宏层面的分析,而不是深入研究特定技术(生成式人工智能),有些更适合长期战略绩效,而不是捕捉新兴技术和创新机会。