这是用户在 2024-11-20 22:07 为 https://app.immersivetranslate.com/pdf-pro/0b65e91f-7fa3-4d5c-b92f-f08ac80ecd46 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Basins associated with strike-slip deformation
与走滑变形相关的盆地

Summary 总结

Sedimentary basins generally form by localised extension along a strike-slip fault system that may be related to either divergent, convergent or oblique relative plate motion. Less commonly, loading resulting from local crustal thickening may cause flexural subsidence. Although strike-slip basins form in a wide variety of geodynamical settings, such as oceanic and continental transforms and arc and suture collisional boundaries, they are best known from intracontinental and continental margin environments.
沉积盆地通常是通过沿走滑断层系统的局部延伸形成的,这可能与发散、会聚或倾斜的相对板块运动有关。不太常见的是,局部地壳增厚引起的负荷可能导致弯曲沉降。尽管走滑盆地形成于多种地球动力学环境中,例如海洋和大陆变换以及弧和缝合碰撞边界,但它们最广为人知的是大陆内和大陆边缘环境。

In simple systems, the orientation of the strike-slip fault in relation to the plate motion vector is important in determining whether divergent (transtensile) or convergent (transpressive) strike-slip takes place. This guide breaks down, however, in complex regions of continental convergence such as Turkey.
在简单的系统中,走滑断层相对于板运动矢量的方向对于确定是发生发散(transtensic)还是收敛(transpressic)走滑很重要。然而,本指南对土耳其等大陆融合的复杂区域进行了细分。

Zones of strike-slip tectonics are characterised by active seismicity on strike-parallel and strongly oblique faults, with zones of infrequent large earthquakes along locked segments, and frequent small earthquakes along unlocked segments. Some of the world’s best known and most hazardous faults are strike-slip. Heat flows are generally low, suggesting that major strike-slip fault zones are weak and therefore generate little frictional heat. Geodetic surveys and paleomagnetic results show that small and large crustal blocks commonly rotate about a sub-vertical axis during strike-slip deformation. Characteristic geomorphic features result from the lateral displacement of adjacent terranes.
走滑构造带的特点是在走向平行和强斜断层上发生活跃的地震活动,沿锁定段发生不频繁的大地震区,沿未锁定段发生频繁的小地震。世界上一些最著名和最危险的故障是走滑。热流通常很低,这表明主要的走滑断层带很弱,因此产生的摩擦热很小。大地测量和古地磁结果表明,在走滑变形过程中,小型和大型地壳块通常围绕次垂直轴旋转。特征性地貌特征是由相邻地层的横向位移引起的。

Sedimentary basins in zones of strike-slip deformation are diverse and complex. Some are clearly thin-skinned and related to extensional or contractional detachments in the weak lower crust. Others involve thinning of the mantle lithosphere and experience elevated surface heat flows. A number of different types of basin can be discriminated on the basis of kinematic setting, chief of which are fault-bend basins, overstep basins, transrotational and transpressional basins.
走滑变形带的沉积盆地是多样和复杂的。有些明显皮肤薄,与薄弱的下壳的伸展或收缩脱离有关。其他涉及地幔岩石圈变薄并经历高表面热流。根据运动学设置可以区分许多不同类型的盆地,其中最主要的是断层-弯曲盆地、跨步盆地、跨旋盆地和跨压盆地。
The bulk of the shear strain is accommodated in a central principal displacement zone (PDZ), which may be linear to curvilinear in plan view and steeply inclined in cross section. The PDZ commonly branches upwards into a splaying system of faults producing a flower structure. Some fault zones, such as the Garlock Fault in California, penetrate to great depths, terminating in the middle crust, whereas others link at depth with relatively shallow low-angle detachments belonging to orogenic wedges. Strike-slip zones are characterised by en echelon arrangements of faults and folds that are orientated in a consistent pattern with respect to the strain ellipse. The most important fractures are termed Riedel shears, but extension fractures are also formed. En echelon folds may form, with axes roughly at right angles to the extension fractures. The exact pattern of faults and folds produced in any particular fault zone depends on the local geological fabric and the youth or maturity of the fault system.
大部分剪切应变被容纳在中央主位移区 (PDZ) 中,该区在平面图上可能是线性到曲线的,在横截面上可能是陡峭的倾斜。PDZ 通常向上分支成一个张开的断层系统,产生花朵结构。一些断层带,如加利福尼亚的加洛克断层,深入很深,终止于中间地壳,而其他断层带则与属于造山楔形的相对较浅的低角度分离层相连。走滑带的特点是断层和褶皱的梯队排列,这些断层和褶皱相对于应变椭圆的定向一致。最重要的裂缝被称为 Riedel 剪切,但也会形成伸展裂缝。可能形成梯形皱襞,轴与伸展骨折大致成直角。在任何特定断层带中产生的断层和褶皱的确切模式取决于当地的地质结构以及断层系统的年轻或成熟度。

The precise structural pattern is controlled by a number of factors, including: (i) the kinematics (convergent, divergent, parallel) of the fault system; (ii) the magnitude of the displacement; (iii) the material properties of the rocks and sedimentary infills in the deforming zone; and (iv) the configuration of pre-existing structures.
精确的结构模式由许多因素控制,包括:(i) 断层系统的运动学(收敛、发散、平行);(ii) 流离失所的程度;(iii) 变形带中岩石和沉积填充物的材料特性;以及 (iv) 预先存在的结构的配置。
The PDZ is characteristically segmented. The individual segments may be linked, both in plan view and cross-sectional view, by oversteps. If the sense of an along-strike overstep is the same as the sense of fault slip, a pull-apart basin is formed; if the sense of the overstep is opposite to that of fault slip, a push-up range is formed. Pull-apart basins appear to develop in a continuous evolutionary sequence at releasing bends with increasing offset, from narrow ‘spindle-shaped’ basins to ‘lazy S’ and ‘lazy Z’ basins to ‘rhomboidal’ basins and eventually into oceanfloored basins. However, the weakness of major strike-slip zones may cause transform-normal extension, producing markedly asymmetrical strike-slip basins. A global compilation suggests that pull-apart basins have a linear length-width relationship. This has implications for the kinematic models of their formation and evolution, and favours the idea of coalescence of individual scale-dependent depocentres during progressive deformation.
PDZ 的特点是分段的。在平面图和横截面图中,各个段都可以通过超台阶进行链接。如果沿走上越步感与断层滑移感相同,则形成拉开盆地;如果越界感与错误滑移感相反,则形成俯卧撑范围。拉开盆地似乎以连续的进化序列发展,随着偏移量的增加而释放弯曲,从狭窄的“纺锤形”盆地到“懒惰的 S”和“懒惰的 Z”盆地,再到“菱形”盆地,最终进入海底盆地。然而,主要走滑带的弱点可能导致转换法向扩展,产生明显不对称的走滑盆地。全局编译表明,拉开式盆地具有线性长宽关系。这对它们形成和演化的运动学模型有影响,并支持在渐进变形过程中单个尺度依赖性沉积中心合并的想法。

Strike-slip deformation is associated with arc-continent collision and continent-continent collision. In the case of the Caribbean-South American plate boundary zone, strike-slip basins were activated diachronously due to the dextral interplate motion as the Caribbean arc elongates eastwards. Pull-apart basin stages are phases in a complex geological history involving flexural foreland basin formation, inversion and E-W extension. In continent-continent collision zones, such as Himalaya-Tibet and central Asia, strike-slip tectonics is a response to lateral extrusion towards the Pacific and oblique collision of the Indian indenter.
走滑变形与弧-洲碰撞和洲-大陆碰撞有关。在加勒比海-南美板块边界区的情况下,随着加勒比弧向东伸长,由于右旋板块间运动,走滑盆地被历时激活。拉开式盆地阶段是复杂地质历史中的阶段,涉及弯曲前陆盆地的形成、反转和东西向延伸。在大洲-大陆碰撞带,如喜马拉雅-西藏和中亚,走滑构造是对向太平洋的横向挤压和印度压头斜碰撞的响应。

Numerical modelling of basins at stepovers using a basal forcing are successful at generating the broad features of pull-apart basins, such as the Dead Sea Basin. Analogue models replicate many of the key features of natural pull-apart basins and emphasise the importance of small amounts of transtension compared to pure strike-slip.
使用基底强迫对跨距处的盆地进行数值建模可以成功地生成拉开盆地的广泛特征,例如死海盆地。模拟模型复制了天然拉开式水池的许多关键特征,并强调了与纯走滑相比,少量张力的重要性。
Thermal and subsidence modelling is poorly developed in strike-slip basins, largely on account of their complex structural history. In basins involving lithospheric thinning, the uniform extension model has been applied with modifications for the lateral loss of heat through the basin walls during the extension. Other basins appear to form over zones of thin-skinned extension, with no mantle involvement. These basins, such as the Vienna Basin in the compressive Alpine-Carpathian system, are cool and lack a well-developed phase of post-extension thermal subsidence.
走滑盆地的热和沉降建模发展不佳,主要是因为它们的结构历史复杂。在涉及岩石圈变薄的盆地中,应用了均匀伸展模型,并修改了伸展过程中通过盆地壁的横向热量损失。其他盆地似乎形成在薄皮延伸带上,没有地幔参与。这些盆地,例如阿尔卑斯-喀尔巴阡山脉压缩系统中的维也纳盆地,很凉爽,缺乏一个发达的伸展后热沉降阶段。

6.1 Overview 6.1 概述

6.1.1 Geological, geomorphological and geophysical observations
6.1.1 地质、地貌和地球物理观测
Basins associated with strike-slip deformation are generally small and complex compared to cratonic sags (Chapter 3), passive margins (Chapter 3) and foreland basins (Chapter 4). They are intimately linked to the detailed structural evolution of an area, and mechanical models have been relatively slow to appear because of the extreme complexity of this history of deformation. Nevertheless, basins in zones of strike-slip deformation have been generated in analogue ‘sandbox’ experiments, and numerical three-dimensional models are available for basin development in particular structural settings.
与克拉通凹陷(第 3 章)、被动边缘(第 3 章)和前陆盆地(第 4 章)相比,与走滑变形相关的盆地通常较小而复杂。它们与一个区域的详细结构演变密切相关,并且由于这种变形历史的极端复杂性,机械模型的出现相对缓慢。尽管如此,在模拟“沙盒”实验中已经生成了走滑变形带的盆地,并且数值三维模型可用于特定结构设置下的盆地开发。
Strike-slip deformation occurs where principally lateral movement takes place between adjacent crustal or lithospheric blocks. In pure strike-slip, the displacement is purely horizontal, so there is no strain in the vertical dimension y y yy. This is the situation of plane strain. The vertical stress in strike-slip faulting is the vertical lithostatic stress σ y y = ρ g y σ y y = ρ g y sigma_(yy)=rho gy\sigma_{y y}=\rho g y. The horizontal stresses are the deviatoric stresses, one compressional and the other extensional. The vertical stress is always the intermediate stress. Two conjugate strike-slip faults are anticipated from this state of stress, one right-lateral (dextral) and the other left-lateral (sinistral), inclined at an angle φ φ varphi\varphi to the principal stress σ xx σ xx sigma_(xx)\sigma_{\mathrm{xx}} (Fig. 6.1).
走滑变形发生在相邻地壳或岩石圈块体之间主要发生横向运动的地方。在纯走滑中,位移是纯水平的,因此在垂直维度 y y yy 上没有应变。这就是飞机应变的情况。走滑断层中的竖向应力是 竖向静岩应力 σ y y = ρ g y σ y y = ρ g y sigma_(yy)=rho gy\sigma_{y y}=\rho g y 。水平应力是偏应力,一种是压缩应力,另一种是拉伸应力。竖向应力始终是中间应力。从这种应力状态可以预期会出现两个共轭走滑断层,一个是右侧(右旋)和另一个左侧(鼻窦),与主应力 σ xx σ xx sigma_(xx)\sigma_{\mathrm{xx}} 成一定角度 φ φ varphi\varphi 倾斜(图 6.1)。
In reality, movement in strike-slip zones is rarely purely lateral, and displacements are commonly oblique, that is, involving a certain amount of normal or reverse dip-slip movement. Oblique slip may therefore characterise any strike-slip zone, but particular zones may experience a net contraction while others may suffer net extension. The stress regimes responsible for these two variants on pure strikeslip deformation are known as transpressive and transtensile.
实际上,走滑带的运动很少是纯粹的横向运动,位移通常是倾斜的,即涉及一定量的正常或反向倾滑运动。因此,斜滑可能是任何走滑区的特征,但特定区域可能会经历净收缩,而其他区域可能会遭受净延伸。导致纯走滑变形的这两种变体的应力状态称为 transpressive 和 transtensible。

(a) (一)

(b) (二)
Fig. 6.1 Plane strain approximation for strike-slip faults. (a) Conjugate strike-slip faults at an angle φ φ varphi\varphi to the principal stress σ xc σ xc sigma_(xc)\sigma_{\mathrm{xc}}. (b) Principal stresses are related by σ z z > σ y y > σ xc σ z z > σ y y > σ xc sigma_(zz) > sigma_(yy) > sigma_(xc)\sigma_{z z}>\sigma_{y y}>\sigma_{\mathrm{xc}}.
图 6.1 走滑断层的平面应变近似。(a) 与主应力 σ xc σ xc sigma_(xc)\sigma_{\mathrm{xc}} 成一定角度 φ φ varphi\varphi 的共轭走滑断层。(b) 主应力与 相关。 σ z z > σ y y > σ xc σ z z > σ y y > σ xc sigma_(zz) > sigma_(yy) > sigma_(xc)\sigma_{z z}>\sigma_{y y}>\sigma_{\mathrm{xc}}
Major strike-slip deformation and associated basin formation takes place in a wide range of geodynamical situations. Strike-slip zones may be associated with entire plate boundaries such as the San Andreas Fault system of California and the Alpine Fault system of New Zealand, microplate boundaries, intraplate deformations or small fractures of limited displacement. Sylvester (1988), drawing considerably on Woodcock’s (1986) genetic scheme (Fig. 6.2), proposed a classification of strike-slip faults into interplate and intraplate varieties (Table 6.1). He recommended use of the term ‘transform’ fault for deep-seated interplate types and ‘transcurrent’ fault for intraplate strike-slip faults confined to the crust. Of greatest importance to students of basin analysis are the strike-slip faults cutting continental lithosphere where uplifting and eroding source areas for sediment are available.
主要的走滑变形和相关的盆地形成发生在广泛的地球动力学情况下。走滑带可能与整个板块边界有关,例如加利福尼亚的圣安德烈亚斯断层系统和新西兰的阿尔卑斯断层系统、微板边界、板内变形或有限位移的小裂缝。Sylvester (1988) 大量借鉴了 Woodcock (1986) 的遗传方案(图 6.2),提出了将走滑断层分为板间和板内品种的分类(表 6.1)。他建议对深部板间类型使用术语“转换”断层,对局限于地壳的板内走滑断层使用术语“跨流”断层。对于盆地分析的学生来说,最重要的是切割大陆岩石圈的走滑断层,那里有沉积物的隆起和侵蚀源区。

The development of regions of extension and shortening along strike-slip systems has been related to the relative orientation of the plate slip vectors and the major faults (Mann et al. 1983). In the case of the San Andreas and Dead Sea strike-slip systems, basins develop where the PDZ is divergent with respect to the plate vector (Fig. 6.3). In contrast, uplifts or push-up blocks such as the Transverse Ranges, California, and the Lebanon Ranges of the Levant, occur where the PDZ is convergent with respect to the plate vector. This simple relationship is unlikely to apply where deformation takes place on many faults enclosing rotating crustal blocks. It is a very poor guide to patterns of uplift and subsidence in complex regions of continental convergence such as Turkey (Sengör et al. 1985).
沿走滑系统的延伸和缩短区域的发展与板块滑移矢量的相对方向和主要断层有关(Mann 等人,1983 年)。在圣安德烈亚斯和死海走滑系统的情况下,在 PDZ 相对于板块矢量发散的地方形成盆地(图 6.3)。相比之下,隆起或俯卧撑块,例如加利福尼亚的横向山脉和黎凡特的黎巴嫩山脉,发生在 PDZ 相对于板块矢量收敛的地方。这种简单的关系不太可能适用于围绕旋转地壳块的许多断层发生变形的情况。对于大陆辐合的复杂区域(如土耳其)的隆起和沉降模式,它是一个非常糟糕的指南(Sengör et al. 1985)。

Strike-slip zones are characterised by extreme structural complexity. Individual strike-slip faults are generally linear or curvilinear in plan view, steep (sub-vertical) in section, and penetrate to considerable depths, perhaps decoupling crustal blocks at the base of the seismogenic crust (that is, at 10 15 km 10 15 km 10-15km10-15 \mathrm{~km} ). In contrast to regions of pure extension or contraction, strike-slip zones possess prominent en echelon faults and folds, and faults with normal and reverse slip
走滑带的特点是结构极其复杂。单个走滑断层在平面图上通常是线性或曲线的,截面陡峭(次垂直),并穿透到相当深的深度,可能在地震地壳底部(即 处 10 15 km 10 15 km 10-15km10-15 \mathrm{~km} )的地壳块体脱钩。与纯粹的伸展或收缩区域相比,走滑带具有突出的梯形断层和褶皱,以及具有正常和反向滑移的断层

Fig. 6.2 Genetic classification of major classes of strike-slip fault according to plate tectonic setting (after Woodcock 1986). See also Table 6.1. Reproduced with permission from the Royal Society.
图 6.2 根据板块构造设置对走滑断层主要类别的遗传分类(根据 Woodcock 1986)。另见表 6.1。经英国皇家学会许可转载。
Table 6.1 Sylvester’s (1988) classification of strike-slip faults, slightly modified
表 6.1 Sylvester (1988) 对走滑断层的分类,略有修改
1 Interplate ‘transforms’ (deep-seated, delimiting plate)
1 个板间 'transforms' (深层、分隔板)

1.1 Ridge transform faults
1.1 山脊变换断层
Displace segments of oceanic crust with similar spreading vectors
用类似的扩散向量移动海洋地壳的片段

e.g. Romanche fracture zone (Atlantic Ocean)
例如,罗曼什断裂带(大西洋)

1.2 Boundary transform faults
1.2 边界变换故障
Separate different plates parallel to the plate boundary e.g. San Andreas (California), Alpine Fault (New Zealand), Central Range Fault Zone (offshore Trinidad)
平行于板块边界分离不同的板块,例如圣安地列斯(加利福尼亚州)、阿尔卑斯断层(新西兰)、中央山脉断层带(特立尼达近海)

1.3 Trench-linked strike-slip faults
1.3 与沟槽相连的走滑断层
Accommodate horizontal component of oblique subduction
容纳斜俯冲的水平分量

e.g. Atacama Fault (Chile), Median Tectonic Line (Japan)
例如:Atacama Fault (Chile)、中位构造线 (Japan)
2 Intraplate ‘transcurrent’ faults (confined to crust)
2 板内“跨流”故障(局限于结皮)

2.1 Indent-linked strike-slip faults
2.1 压痕连接的走滑故障
Bound continental blocks in collision zones
碰撞区域中的绑定大陆块

e.g. North Anatolian Fault (Turkey), East Anatolian Fault (Turkey), Altyn Tagh Fault (Mongolia-China), Kunlun Fault (Tibet), Red River Fault (SE Asia)
例如:北安纳托利亚断层(土耳其)、东安纳托利亚断层(土耳其)、阿尔金塔格断层(蒙古-中国)、昆仑断层(西藏)、红河断层(东南亚)

2.2 Intracontinental strike-slip faults
2.2 大陆内走滑断层
Separate allochthons of different tectonic styles
不同构造风格的单独分布

e.g. Garlock Fault (California)
例如:Garlock Fault (California)

2.3 Tear faults 2.3 撕裂断层
Accommodate different displacement within a given allochthon or between the allochthon and adjacent structural units e.g. Asiak fold-thrust belt (Canada)
在给定的 allochthon 内或 allochthon 与相邻结构单元之间适应不同的位移,例如 Asiak fold-thrust belt(加拿大)

2.4 Transfer faults 2.4 传输故障
Linking overstepping or en echelon strike-slip faults
连接越界或梯次走滑断层

e.g. Southern and Northern Diagonal faults (eastern Sinai, Israel)
例如,南部和北部对角线断层(以色列西奈半岛东部)

commonly coexist. The vergence direction of folds and the mass transport indicators from thrusts associated with transpression are distinctively poorly clustered or apparently random.
通常共存。褶皱的辐辏方向和与压迫相关的推力的质量传递指标明显聚集性差或明显随机。
Zones of major strike-slip tectonics are marked by important seismicity (Fig. 6.4). In California, the relative velocity between the Pacific and North American plates is 47 mm rr 1 47 mm rr 1 47mmrr^(-1)47 \mathrm{~mm} \mathrm{rr}^{-1}. Much of this displacement is taken up on the right-lateral (dextral) San Andreas Fault. However, as is the case with many other major translithospheric strike-slip faults, the San Andreas Fault occurs within a broader zone of faulting that may stretch laterally for 500 km . Much of the present-day seismicity in the San Andreas system originates from faults oblique to the main fault zone (e.g. the NE-trending Garlock Fault and Big Pine Fault) (Nicholson et al. 1986a). These oblique faults define crustal blocks that are rotating about a vertical axis. Seismicity dies out below about 15 km , indicating the brittleductile transition. Focal mechanism solutions in strike-slip zones are commonly highly variable, with mixtures of strike-slip, extension and compression (e.g. North Anatolian Fault, Turkey, Taymaz et al. 1991), reflecting the complexities of deformation within a zone of overall strike-slip deformation.
主要走滑构造带以重要的地震活动为标志(图 6.4)。在加利福尼亚,太平洋板块和北美板块之间的相对速度为 47 mm rr 1 47 mm rr 1 47mmrr^(-1)47 \mathrm{~mm} \mathrm{rr}^{-1} 。这种位移大部分被右侧(右旋)San Andreas 断层占据。然而,与许多其他主要的跨岩石圈走滑断层一样,圣安德烈亚斯断层发生在更广泛的断层带内,该断层可能横向延伸 500 公里。圣安德烈亚斯系统中当今的大部分地震活动起源于斜向主断层带的断层(例如,东北走向的加洛克断层和大松树断层)(Nicholson 等人,1986a)。这些斜断层定义了绕垂直轴旋转的地壳块体。地震活动在大约 15 公里以下消失,表明脆性过渡。走滑带的焦点机制解决方案通常是高度可变的,有走滑、伸展和压缩的混合物(例如北安纳托利亚断层,土耳其,Taymaz 等人,1991 年),反映了整体走滑变形带内变形的复杂性。
Paleomagnetic studies support the idea that crustal blocks commonly undergo rotations about vertical axes (Fig. 6.5). The amount and scale of rotation varies greatly. The western Transverse Ranges of southern California have experienced net clockwise rotations of 30 90 30 90 30^(@)-90^(@)30^{\circ}-90^{\circ}, for example, whereas in the Cajon Pass region (Fig. 6.6) there has been no significant rotation since 9.5 Ma . Small blocks can rotate rapidly, such as the Imperial Valley area, which has rotated by
古地磁研究支持地壳块通常绕垂直轴旋转的观点(图 6.5)。旋转的数量和规模差异很大。例如,南加利福尼亚的西部横贯山脉经历了净顺时针旋转 30 90 30 90 30^(@)-90^(@)30^{\circ}-90^{\circ} ,而在 Cajon Pass 地区(图 6.6)自 9.5 马 以来没有明显的旋转。小块可以快速旋转,比如帝王谷区域,它已经旋转了

Fig. 6.3 Regions of compression and extension along strikeslip boundaries between rigid continental plates related to the orientation of the fault zone with respect to the plate slip vector. After Mann et al. (1983). (a) Pacific-North American plate boundary. The dashed lines are theoretical interplate slip lines from Minster et al. (1974). The major zone of compression is the pushup block of the Transverse Ranges where the dextral San Andreas Fault zone has a ‘convergent’ orientation with respect to the interplate slip line. The prominent pull-apart basins, however, are situated relatively to the south where the fault zone has a ‘divergent’ orientation with respect to the interplate slip line. TR, Transverse Ranges; SS, Salton Sea pull-apart at a right step between the San Andreas and Imperial faults. Pull-aparts in the Gulf of California include: W, Wagner Basin; D, Delfin Basin; SP, San Pedro Martir Basin; G, Guaymas Basin; C, Carmen Basin; F, Farallon Basin; P, Pescadero Basin complex; A, Alarcon Basin; M, MazatBasin; P, Pescadero Basin. (b) Arabia-Sinai (Levant) plate boundary zone (Garfunkel 1981; Ben-Avraham et al. 1979). Theoretical interplate slip lines are from Le Pichon & Francheteau (1978). The prominent area of compression is the Lebanon Ranges push-up block where the sinistral Dead Sea Fault zone is ‘convergent’ with respect to the interplate slip lines. Most of the pull-apart basins are in the Dead Sea and Gulf of Aqaba regions where the fault zone is locally ‘divergent’ with respect to the interplate slip lines. Pullaparts include: H, Hula Basin; DS, Dead Sea Basin; A, Arava Fault trough; E, Elat Basin in the northern Gulf of Aqaba; AA, Arnona-Aragonese Basin; DT, Dakar-Tiran Basin. Dead Sea Fault Arnona-Aragonese Basin; DT, Dakar-Tiran Basin. Dead Sea Fault
图 6.3 刚性大陆板块之间沿走滑边界的压缩和延伸区域,与断层带相对于板块滑移矢量的方向有关。在 Mann 等人 (1983) 之后。(a) 太平洋-北美板块边界。虚线是 Minster 等人 (1974) 的理论板间滑移线。主要的压缩带是横洲的俯卧撑块,其中右旋圣安德烈亚斯断层带相对于板间滑移线具有“收敛”方向。然而,突出的拉开盆地位于相对南部,那里的断层带相对于板块间滑移线具有“发散”方向。TR, 横向范围;SS 和 Salton Sea 在 San Andreas 和 Imperial 断层之间以正确的步骤分开。加利福尼亚湾的拉开区包括:W,瓦格纳盆地;D, Delfin 盆地;SP,圣佩德罗马蒂尔盆地;G, 瓜伊马斯盆地;C, 卡门盆地;F, 法拉隆盆地;P, Pescadero 盆地杂岩体;A, 阿拉尔孔盆地;M, 马扎特盆地;P, 佩斯卡德罗盆地.(b) 阿拉伯-西奈(黎凡特)板块边界区(Garfunkel 1981;Ben-Avraham 等人,1979 年)。理论上的板间滑线来自Le Pichon和Francheteau (1978)。突出的压缩区域是黎巴嫩山脉俯卧撑块,其中正弦死海断层带相对于板间滑移线是“收敛的”。大多数拉开盆地位于死海和亚喀巴湾地区,那里的断层带相对于板块间滑移线在局部“发散”。拉式公寓包括:H、呼拉盆地;DS, 死海盆地;A, Arava 断层槽;E, 亚喀巴湾北部的 Elat 盆地;AA,阿诺纳-阿拉贡盆地;DT,达喀尔-蒂朗盆地。死海断层 Arnona-Aragonese 盆地;DT,达喀尔-蒂朗盆地。死海断层

Zone extends from Lebanon Ranges (LR) in the north to Red Sea Zone extends from Lebanon Ranges (LR) in the north to Red Sea
区域从北部的黎巴嫩山脉 (LR) 延伸到红海区域从北部的黎巴嫩山脉 (LR) 延伸到红海

(RS) in the south. O /ournal of Geology 1983. Reproduced with the permission of University of Chicago Press Journals.
(RS) 在南部。O /ournal of Geology 1983 年。经芝加哥大学新闻期刊许可转载。

35 35 35^(@)35^{\circ} in the last 0.9 Ma . The existence of such rotating blocks supports the view that the crustal blocks deform like a set of dominoes (Freund 1970). There is an obvious physical implication of the existence of rotating blocks, which is that the blocks must detach on their boundary faults at some level in the crust or upper mantle (Terres & Sylvester 1981; Dewey & Pindell 1985).
35 35 35^(@)35^{\circ} 在最后 0.9 马 .这种旋转块的存在支持了地壳块像一组多米诺骨牌一样变形的观点(Freund 1970)。旋转块的存在有一个明显的物理含义,那就是块必须在地壳或上地幔的某个层次的边界断层上分离(Terres & Sylvester 1981;Dewey & Pindell 1985)。

Pure strike-slip plate boundary faults should fall along a small circle drawn from the pole of rotation that defines the relative motion between the two plates. This is true for the San Andreas system along the boundary of the Pacific and North American plates (Fig. 6.4). However, seismicity is distributed unevenly along the fault. In some
纯走滑板边界断层应沿着从旋转极点绘制的小圆圈落下,该旋转极定义了两个板块之间的相对运动。沿着太平洋和北美板块边界的圣安地列斯系统就是如此(图 6.4)。然而,地震活动沿断层分布不均匀。在一些