Chapter 14 - Glucocorticoid Therapy
第十四章 - 糖皮質激素治療

https://doi.org/10.1016/B978-1-4557-4456-5.00014-6Get rights and content  取得權利和內容
Full text access  全文存取
Chapter Contents  章節目錄
  1. Chemistry of Glucocorticoids and Structure-Activity Relationship, 555
    糖皮質激素的化學結構與活性關係,555
  2. Molecular Mechanism of Action, 556
    分子作用機制, 556
    • Genomic Effects, 556  基因組效應, 556
    • Nongenomic Effects, 558  非基因組效應, 558
  3. Biologic Effects of Glucocorticoids, 559
    糖皮質激素的生物學效應, 559
    • Effects on Carbohydrate, Protein, and Lipid Metabolism, 559
      對碳水化合物、蛋白質及脂質代謝的影響,559
    • Effects on Other Tissues, 559
      對其他組織的影響,559
    • Anti-Inflammatory and Immunosuppressive Effects, 562
      抗炎與免疫抑制效應,562
  4. Pharmacokinetics and Clinical Pharmacology, 563
    藥物動力學與臨床藥理學,563
    • Duration of Action, 563  作用持續時間,563
    • Route of Administration, 563
      給藥途徑,563
    • Distribution, Metabolism, and Excretion, 565
      分佈、代謝與排泄,565
    • Dose Equivalents of Glucocorticoids, 565
      糖皮質激素的劑量當量,565
    • Galenic Formulations and Steroid Esters, 566
      蓋倫製劑與類固醇酯類,566
    • Combination Products, 567
      複方產品,567
  5. Therapeutic Application and Classes of Glucocorticoid Usage, 567
    治療應用與糖皮質激素使用類別,567
    • Goals and General Guidelines, 567
      目標與一般準則,567
    • Physiological Replacement Therapy, 568
      生理性替代療法,568
    • Anti-Inflammatory Therapy, 568
      抗炎療法,568
    • Immunosuppressive Therapy, 569
      免疫抑制療法,569
    • Antineoplastic Therapy, 569
      抗腫瘤療法,569
    • Shock, 569  休克,569
    • Neurological Diseases, 570
      神經系統疾病,570
  6. Adverse Effects, 570  不良反應,570
    • Iatrogenic Hyperadrenocorticism, 570
      醫源性腎上腺皮質功能亢進,570
    • Alteration of the Hypothalamic Pituitary Adrenal Axis, 571
      下視丘-腦垂體-腎上腺軸的改變,571
    • Diabetes Mellitus, 572  糖尿病,572
    • Gastrointestinal Hemorrhage and Ulceration, 572
      胃腸道出血與潰瘍,572
    • Laboratory Abnormalities, 573
      實驗室檢查異常,573
    • Pancreatitis, 573  胰臟炎,573
    • Miscellaneous, 573  雜項,573
  7. Glucocorticoid Reduction Protocol, 574
    糖皮質激素減量方案,574
In 1949, Hench and colleagues reported on the first therapeutic use of a glucocorticoid in nine patients with rheumatoid arthritis. The substance had been known under the term “compound E” and was then named “cortisone.” Later it was found that the true hormone is in fact cortisol, which is reversibly converted to its inactive metabolite cortisone.
1949 年,Hench 及其同事首次報告了糖皮質激素在九名類風濕性關節炎患者中的治療應用。該物質曾被稱為「化合物 E」,隨後命名為「可的松」。後來發現真正的激素實際上是皮質醇,它可逆地轉化為其非活性代謝物可的松。

In 1950, Edward Kendall, a biochemist at the Graduate School of the Mayo Foundation, the Swiss chemist, Tadeus Reichstein, and a Mayo Clinic physician, Philip Hench, were awarded the Nobel Prize for their work on the adrenal gland hormones. The Noble Lecture held by Kendall on December 11, 1950, was titled, “The Development of Cortisone as a Therapeutic Agent” (Kendall, 1950). The finding of Hench and colleagues (1949) introduced the world to a new type of therapy and there was a saying, “Therapy was now dated BC (before cortisone) or after (AC)” (Goulding and Flower, 2000a). The initial discovery was followed by the development of synthetic steroids mainly for use in inflammatory and immune-mediated diseases. However, it soon became obvious that their efficacy is not without costs in terms of potentially serious adverse effects (Goulding and Flower, 2000b).
1950 年,梅奧基金會研究生院的生物化學家 Edward Kendall、瑞士化學家 Tadeus Reichstein 以及梅奧診所的醫師 Philip Hench,因他們在腎上腺荷爾蒙方面的研究而獲頒諾貝爾獎。Kendall 於 1950 年 12 月 11 日發表的諾貝爾演講題為「可體松作為治療劑的發展」(Kendall, 1950)。Hench 及其同事(1949)的發現為世界引入了一種新型療法,當時有句名言:「治療現在可分為 BC(可體松之前)或 AC(可體松之後)」(Goulding and Flower, 2000a)。最初的發現隨後促成了合成類固醇的發展,主要用於炎症和免疫介導疾病。然而,很快就顯現出它們的療效並非沒有代價,可能伴隨嚴重的副作用(Goulding and Flower, 2000b)。
Currently, glucocorticoids are among the most frequently used (and misused) drugs in veterinary medicine. Despite the widespread use of glucocorticoids, scientifically based information on optimal dose, dose interval, and physiological and pharmacological effects in dogs and cats is scarce.
目前,糖皮質激素是獸醫領域最常用(也最常被濫用)的藥物之一。儘管糖皮質激素廣泛使用,但關於其在犬貓中的最佳劑量、給藥間隔以及生理和藥理作用的科學依據仍然稀缺。

Therefore, treatment protocols are often extrapolated from human medicine or rodent studies or are the result of clinical experience (Ferguson et al., 2009, Boothe and Mealey, 2012). Knowledge on effects, different potencies of synthetic glucocorticoids, adverse effects, and contraindications will help the veterinarian to make informed decisions and to avoid serious complications as much as possible.
因此,治療方案常從人類醫學或囓齒動物研究推斷而來,或是臨床經驗的結果(Ferguson 等人,2009;Boothe 與 Mealey,2012)。關於合成糖皮質激素的效應、不同效價、不良反應及禁忌症的知識,將有助於獸醫師做出明智決策,並盡可能避免嚴重併發症。

Chemistry of Glucocorticoids and Structure-Activity Relationship
糖皮質激素的化學結構與結構活性關係

All hormones of the adrenal cortex are derivatives of cholesterol and contain the cyclopentanoperhydrophenanthrene nucleus (Fig. 14-1). The main products of the adrenal cortex are C21 and C19 steroids. The C19 steroids have a keto or hydroxyl group at position 17 and display androgenic activity. The C21 steroids have a two-carbon side chain at position 17 and are classified as mineralocorticoids and glucocorticoids. Those C21 steroids that have an additional hydroxyl group at position 17 are often called 17-hydroxycorticoids or 17-hydroxycorticosteroids (Barrett et al, 2012).
腎上腺皮質的所有激素均為膽固醇衍生物,並含有環戊烷多氫菲核(圖 14-1)。腎上腺皮質的主要產物為 C 21 與 C 19 類固醇。C 19 類固醇在第 17 位具有酮基或羥基,表現出雄激素活性。C 21 類固醇在第 17 位具有二碳側鏈,被歸類為礦物皮質激素與糖皮質激素。那些在第 17 位具有額外羥基的 C 21 類固醇,通常稱為 17-羥基皮質激素或 17-羥基皮質類固醇(Barrett 等人,2012)。
  1. Download: Download full-size image
    下載:下載全尺寸圖片

FIGURE 14-1. Basic chemical structure of the glucocorticoids (steroid nucleus).
圖 14-1. 糖皮質激素的基本化學結構(類固醇核)。

Cortisol (hydrocortisone) has glucocorticoid as well as mineralocorticoid properties due to its ability to stimulate both glucocorticoid and mineralocorticoid receptors (Parente, 2000). Certain structures and groups on the steroid base, as well as the orientation of the groups in the ring system, are essential for the biological activity. The groups lying below the plane of the steroid ring are indicated by α and a dashed line (.... OH), the groups lying above the ring are indicated by β and a solid line (– OH) (Parente, 2000, Barrett et al., 2012). The important features for biological activity are: a ketone group at C-3 and C-20, a double bond between C-4 and C-5, a hydroxyl group in β-orientation at C-11, a two-carbon chain in β-orientation, a hydroxyl group in α-orientation at C-17, and a methyl group in β-orientation at C-18 and C-19 (Parente, 2000) (Fig. 14-2).
皮質醇(氫化可的松)因其能夠刺激糖皮質激素和礦物皮質激素受體,而具有糖皮質激素和礦物皮質激素的特性(Parente, 2000)。類固醇骨架上的某些結構和基團,以及環系統中基團的取向,對於生物活性至關重要。位於類固醇環平面下方的基團以α和虛線( .... OH)表示,位於環平面上方的基團以β和實線(– OH)表示(Parente, 2000, Barrett 等人,2012)。生物活性的重要特徵包括:C-3 和 C-20 上的酮基、C-4 和 C-5 之間的雙鍵、C-11 上β取向的羥基、β取向的兩碳鏈、C-17 上α取向的羥基,以及 C-18 和 C-19 上β取向的甲基(Parente, 2000)(圖 14-2)。
  1. Download: Download full-size image
    下載:下載全尺寸圖片

FIGURE 14-2. Structure of (A) cortisol (hydrocortisone) and its inactive metabolite cortisone (B).
圖 14-2. (A)皮質醇(氫化可的松)及其非活性代謝物可的松(B)的結構。

Chemical modifications of the cortisol molecule have generated compounds with higher glucocorticoid activity and less mineralocorticoid activity (Fig. 14-3). Modifications of the molecular structure also alter the protein binding and hepatic metabolism thereby prolonging duration of action. High anti-inflammatory properties are unfortunately also associated with higher glucocorticoid activity (i.e., effects on carbohydrate and protein metabolism) (Boothe and Mealey, 2012). Introduction of a double bond between C-1 and C-2 resulted in prednisone and prednisolone, revealing increased anti-inflammatory and reduced mineralocorticoid activity compared with cortisone and cortisol.
對皮質醇分子進行化學修飾後,產生了具有更高糖皮質激素活性和較少礦物皮質激素活性的化合物(圖 14-3)。分子結構的改變也影響了蛋白質結合與肝臟代謝,從而延長了作用時間。不幸的是,高抗炎特性也與較高的糖皮質激素活性(即對碳水化合物和蛋白質代謝的影響)相關(Boothe 和 Mealey,2012 年)。在 C-1 和 C-2 之間引入雙鍵後,產生了潑尼松和潑尼松龍,與可的松和皮質醇相比,顯示出更高的抗炎活性和降低的礦物皮質激素活性。

Of note, cortisone and prednisone are inactive compounds (or prodrugs) until the 11-keto group is converted into a hydroxyl group in the liver by the enzyme 11-β hydroxysteroid dehydrogenase (11β-HSD) type 1 (Parente, 2000, Ferguson et al., 2009). The addition of a methyl group in position C-6α resulted in methylprednisolone, which has slightly higher anti-inflammatory and less mineralocorticoid effect than prednisolone. The insertion of a 16α-hydroxy group decreases mineralocorticoid activity and leads to the synthesis of triamcinolone (which also has a 9α-fluoro group).
值得注意的是,皮質酮(cortisone)和潑尼松(prednisone)屬於非活性化合物(或前藥),直到 11-酮基在肝臟中經由 11-β羥基類固醇脫氫酶(11β-HSD)第 1 型(Parente, 2000; Ferguson et al., 2009)轉化為羥基後才具有活性。在 C-6α位置添加甲基基團後形成了甲基潑尼松龍(methylprednisolone),其抗炎作用略高於潑尼松龍(prednisolone),而礦物皮質激素作用較低。插入 16α-羥基基團會降低礦物皮質激素活性,並導致合成曲安西龍(triamcinolone,該化合物還具有 9α-氟基團)。

The most potent anti-inflammatory glucocorticoids, dexamethasone and betamethasone, were designed by adding a fluorine atom at C-9α, which increases glucocorticoid activity, and a methyl group at C-16, reducing mineralocorticoid effects (adding was in α-orientation for dexamethasone and β-orientation for betamethasone) (Parente, 2000). The effects of glucocorticoids are dose dependent, and they are classified according to their potency in relation to the potency of cortisol (Table 14-1). There is an ongoing search to identify compounds or mechanism by which adverse effects can be minimized (McMaster and Ray, 2007, Vandevyver et al., 2013). One mechanism is the topical administration of drugs, which are rapidly metabolized if absorbed into the systemic circulation. This goal is mainly reached by manipulation of chemical groups of the D ring of the steroid base (Ferguson et al, 2009). Examples of those so-called “soft” glucocorticoids include beclomethasone, budesonide, fluticasone propionate, ciclesonide, and loteprednol etabonate (Ferguson et al., 2009, Boothe and Mealey, 2012). In particular the use of budesonide as an oral drug for the treatment of inflammatory bowel disease and budesonide and fluticasone propionate as inhaled medications for chronic inflammatory airway disease has recently gained popularity in dogs and cats (Bexfield et al., 2006, Padrid, 2006, Dye et al., 2013, Galler et al., 2013, Pietra et al., 2013).
最具抗炎效力的糖皮質激素——地塞米松(dexamethasone)和倍他米松(betamethasone)——是通過在 C-9α位置添加氟原子(可增強糖皮質激素活性)並在 C-16 位置添加甲基(可減少礦物皮質激素效應)而設計的(地塞米松的添加為α取向,倍他米松為β取向)(Parente, 2000)。糖皮質激素的作用具有劑量依賴性,並根據其相對於皮質醇的效力進行分類(表 14-1)。目前正在持續尋找能夠最小化不良反應的化合物或機制(McMaster and Ray, 2007, Vandevyver et al., 2013)。其中一種機制是局部給藥,這些藥物若被吸收進入全身循環會迅速代謝。這一目標主要是通過對類固醇基礎 D 環的化學基團進行修飾來實現的(Ferguson et al, 2009)。這類所謂的「軟性」糖皮質激素的例子包括倍氯米松(beclomethasone)、布地奈德(budesonide)、丙酸氟替卡松(fluticasone propionate)、環索奈德(ciclesonide)和氯替潑諾依碳酸酯(loteprednol etabonate)(Ferguson et al., 2009, Boothe and Mealey, 2012)。 特別是布地奈德作為口服藥物用於治療炎症性腸病,以及布地奈德和丙酸氟替卡松作為吸入藥物用於慢性炎症性氣道疾病,在犬貓中的應用近年來日益普及(Bexfield 等人,2006;Padrid,2006;Dye 等人,2013;Galler 等人,2013;Pietra 等人,2013)。
  1. Download: Download full-size image
    下載:下載全尺寸圖片
  1. Download: Download full-size image
    下載:下載全尺寸圖片

FIGURE 14-3. Structure of selected synthetic glucocorticoids.
圖 14-3. 選定合成糖皮質激素的結構。

TABLE 14-1. Comparison of the Characteristics of the Major Glucocorticoid Preparations
表 14-1. 主要糖皮質激素製劑特性比較

DRUGGLUCOCORTICOID/ANTI-INFLAMMATORY POTENCY
糖皮質激素/抗炎效力
MINERALOCORTICOID POTENCY
礦物皮質酮效力
EQUIVALENT ORAL DOSE (mg)
等效口服劑量 (毫克)
BIOLOGIC HALF-LIFE (h)  生物半衰期 (小時)
Short-Acting  短效型
Cortisol (hydrocortisone)
皮質醇(氫化可的松)
11208-12
Cortisone  可的松0.80.8258-12
Intermediate-Acting  中效型
Prednisolone/Prednisone  潑尼松龍/潑尼松40.8512-36
Methylprednisolone  甲基強的松龍50.5412-36
Triamcinolone  曲安西龍50412-36
Long-Acting  長效型
Betamethasone  倍他米松25-3000.7-0.836-72
Dexamethasone  地塞米松25-3000.7-0.836-72
Mineralocorticoids  礦物皮質激素
Aldosterone  醛固酮0200-1000
Fludrocortisone  氟氫可的松10125-200

Data from Parente L: The development of synthetic glucocorticoids. In Goulding NJ, Flower RJ, editors: Glucocorticoids, Basel, 2000, Springer Basel AG; and Boothe DM, Mealey KA: Glucocorticoids and mineralocorticoids. In Boothe DM, editor: Small animal clinical pharmacology and therapeutics, ed 2, St Louis, 2012, Saunders/Elsevier.
資料來源 Parente L:《合成糖皮質激素的發展》。收錄於 Goulding NJ、Flower RJ 主編:《糖皮質激素》,巴塞爾,2000 年,Springer Basel AG;以及 Boothe DM、Mealey KA:《糖皮質激素與礦物皮質激素》。收錄於 Boothe DM 主編:《小動物臨床藥理學與治療學》,第二版,聖路易斯,2012 年,Saunders/Elsevier。

Molecular Mechanism of Action
分子作用機制

Genomic Effects  基因組效應

Glucocorticoid activities can roughly be divided into genomic and nongenomic effects. The classical genomic effect is mediated by a cytoplasmic glucocorticoid receptor (GR) that belongs to the nuclear receptor superfamily, which includes all of the steroid receptors. GRs are widely distributed throughout the body: every cell appears to have GRs (Boothe and Mealey, 2012). The GRs consist of three domains with different functions: a poorly conserved N-terminal domain, a highly conserved DNA-binding domain, and a well-conserved C-terminal glucocorticoid-binding domain. Several splice variants of the GR exist, of which GRα is the most widely expressed and is the variant exerting most of the glucocorticoid actions.
糖皮質激素的活性大致可分為基因組效應和非基因組效應。經典的基因組效應由細胞質中的糖皮質激素受體(GR)介導,該受體屬於核受體超家族,其中包括所有類固醇受體。GRs 在全身廣泛分佈:每個細胞似乎都具有 GRs(Boothe 和 Mealey,2012 年)。GRs 由三個功能不同的結構域組成:一個保守性較低的 N 端結構域、一個高度保守的 DNA 結合結構域,以及一個保守性良好的 C 端糖皮質激素結合結構域。GR 存在多種剪接變體,其中 GRα 表達最為廣泛,也是發揮大部分糖皮質激素作用的變體。

The variant GRβ is unable to bind glucocorticoids, but it may act as an inhibitor of GRα. The β variant may play a role in glucocorticoid resistance and possibly in autoimmune and inflammatory disorders (Ferguson et al., 2009, Nixon et al., 2013). In the resting (ligand-free) state, GR is located in the cytoplasm, where it exists as a multiprotein complex containing several heat-shock proteins (Hsp90, Hsp70, Hsp56, Hsp40); there is also interaction with other molecules, such as immunophilins and several additional factors (Stahn et al., 2007, Vandevyver et al., 2013). The GR is inactive until bound to a glucocorticoid ligand. Glucocorticoids enter the cell by passive diffusion through the cell membrane, although there may also be an active transport mechanism. After binding of the glucocorticoid, the heat shock proteins dissociate from the GR, resulting in conformational changes that unmask nuclear localization sequences.
變異體 GRβ無法與糖皮質激素結合,但它可能作為 GRα的抑制劑。β變異體可能在糖皮質激素抗性以及可能在自體免疫和炎症性疾病中扮演角色(Ferguson 等人,2009 年;Nixon 等人,2013 年)。在靜止(無配體)狀態下,GR 位於細胞質中,以一個包含多種熱休克蛋白(Hsp90、Hsp70、Hsp56、Hsp40)的多蛋白複合體形式存在;同時也與其他分子如免疫親和素及多種附加因子相互作用(Stahn 等人,2007 年;Vandevyver 等人,2013 年)。GR 在未與糖皮質激素配體結合前處於非活性狀態。糖皮質激素通過細胞膜的被動擴散進入細胞,儘管也可能存在主動運輸機制。糖皮質激素結合後,熱休克蛋白從 GR 上解離,導致構象變化,從而暴露出核定位序列。

Thereafter, the GR/glucocorticoid complex is translocated into the nucleus, where it activates or represses target gene transcription (Nixon et al, 2013). Although the main actions of glucocorticoids are mediated through the GR, some effects are also mediated through another nuclear receptor, the mineralocorticoid receptor (MR). The MR has a high affinity for endogenous glucocorticoids, which are generally present in much higher concentrations than mineralocorticoids.
隨後,GR/糖皮質激素複合物被轉運至細胞核內,在此激活或抑制目標基因的轉錄(Nixon 等,2013)。雖然糖皮質激素的主要作用通過 GR 介導,但部分效應也透過另一種核受體——礦物皮質激素受體(MR)實現。MR 對內源性糖皮質激素具有高親和力,而這些激素的濃度通常遠高於礦物皮質激素。

One of the major mechanism by which the body limits the access of endogenous glucocorticoids to the MR is through the activity of the enzyme 11β-HSD type 2 that converts cortisol to inactive cortisone.
身體限制內源性糖皮質激素接觸 MR 的主要機制之一,是透過 11β-HSD 類型 2 酶的活性,將皮質醇轉化為無活性的皮質酮。

Therefore, when the MR is co-expressed with 11β-HSD type 2, its activation results in mineralocorticoid activity; in the absence of 11β-HSD type 2, the MR is a high-affinity GR (Nixon et al, 2013). The best characterized mechanism of transcriptional activation is the binding of the GR/glucocorticoid complex to specific DNA binding-sites (glucocorticoid response elements [GREs]) in the promoter regions of target genes after entering the nucleus (Vandevyver et al, 2013). Binding to positive GRE induces synthesis of anti-inflammatory proteins as well as regulator proteins that are important for metabolism (e.g., enzymes involved in gluconeogenesis). The process mediated through positive GRE is also called transactivation and is considered to be responsible for numerous side effects of glucocorticoids.
因此,當 MR 與 11β-HSD type 2 共同表達時,其活化會導致礦物皮質素活性;而在缺乏 11β-HSD type 2 的情況下,MR 則是一種高親和力的 GR(Nixon 等人,2013 年)。最為人所知的轉錄活化機制是 GR/糖皮質素複合體進入細胞核後,與目標基因啟動子區域中的特定 DNA 結合位點(糖皮質素反應元件[GREs])結合(Vandevyver 等人,2013 年)。與正向 GRE 結合會誘導抗發炎蛋白質及對代謝重要的調節蛋白質(例如參與糖質新生的酶)的合成。透過正向 GRE 介導的過程亦稱為轉活化,被認為是糖皮質素眾多副作用的原因。

Binding to negative GRE leads to inhibition of gene transcription (transrepression) of the pro-opiomelanocortin (the precursor of adrenocorticotropic hormone—ACTH), α-fetoprotein, and prolactin gene, as well as suppression of inflammatory genes, such as interleukin-1β (IL-1β) and interleukin-2 (IL-2) Löwenberg et al., 2007, Stahn et al., 2007). Besides binding to GRE, other mechanisms for the upregulation and downregulation of genes exist. For instance, suppressed target gene expression can be achieved through direct protein-protein interaction with pro-inflammatory transcription factors, such as activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor of activated T-cells (NFAT), or signal transducers and activator of transcription (STAT; Löwenberg et al, 2007). It takes approximately 30 minutes for the activation of the GR, nuclear transportation of the GR/glucocorticoid complex, binding to promoter regions, and initiation of transcription and translation. Hours to days are required until changes on cellular, tissue or organism level become obvious (Stahn et al, 2007). For many years, it was thought that the undesirable side effects of glucocorticoid therapy are due to dimer-mediated transactivation, whereas its beneficial anti-inflammatory activity is mainly caused by monomer-mediated transrepressive effects.
與負向糖皮質激素反應元件(GRE)結合會抑制前阿片黑皮素(促腎上腺皮質激素—ACTH 的前體)、α-胎兒蛋白及催乳素基因的轉錄(轉錄抑制),並壓制發炎基因如白細胞介素-1β(IL-1β)和白細胞介素-2(IL-2)(Löwenberg 等人,2007;Stahn 等人,2007)。除了與 GRE 結合外,還存在其他調控基因上調與下調的機制。例如,可通過與促炎轉錄因子如激活蛋白-1(AP-1)、核因子κB(NF-κB)、活化 T 細胞核因子(NFAT)或信號轉導及轉錄激活因子(STAT)直接蛋白質相互作用來抑制目標基因表達(Löwenberg 等人,2007)。糖皮質激素受體(GR)的激活、GR/糖皮質激素複合物的核轉運、與啟動子區域的結合及轉錄與轉譯的啟動大約需要 30 分鐘。直到細胞、組織或生物體層面的變化顯現,則需數小時至數天(Stahn 等人,2007)。 多年來,人們認為糖皮質激素治療的不良副作用是由二聚體介導的轉錄激活所引起,而其有益的抗炎活性則主要由單體介導的轉錄抑制效應所導致。

Research was therefore focused on the development of dissociated compounds that only exhibit those actions of glucocorticoids that are monomer-dependent. The dimer/monomer dogma has recently been challenged, because it was demonstrated that the GR dimer-dependent transactivation is essential for the anti-inflammatory actions (Nixon et al., 2013, Vandevyver et al., 2013).
因此,研究重點轉向開發僅表現糖皮質激素單體依賴性作用的解離化合物。然而,二聚體/單體教條最近受到挑戰,因為研究表明 GR 二聚體依賴的轉錄激活對於抗炎作用至關重要(Nixon 等,2013;Vandevyver 等,2013)。

Nongenomic Effects  非基因組效應

In addition to the classic genomic mode of action, glucocorticoids may exert effects through nongenomic mechanisms. It has been recognized that some of the immunosuppressive, anti-inflammatory, anti-allergic effects, and effects when used during shock occur too fast to be regulated via transcription.
除了經典的基因組作用模式外,糖皮質激素還可能通過非基因組機制發揮效應。已認識到某些免疫抑制、抗炎、抗過敏作用以及在休克期間使用時的效果發生過快,無法通過轉錄調控來解釋。

Rapid clinical effects may be seen when glucocorticoids are administered intravenously or intra-articularly at high doses.
當高劑量的糖皮質激素通過靜脈或關節內給藥時,可能會觀察到快速的臨床效果。

Various underlying mechanisms for the nongenomic effects have been described, such as nonspecific interactions of glucocorticoids with cellular membranes, nongenomic effects that are mediated by the cytosolic GR, and specific interactions with a membrane-bound GR (Löwenberg et al., 2007, Stahn et al., 2007).
已描述多種非基因組效應的潛在機制,例如糖皮質激素與細胞膜的非特異性相互作用、由胞質糖皮質激素受體(GR)介導的非基因組效應,以及與膜結合 GR 的特異性相互作用(Löwenberg 等人,2007;Stahn 等人,2007)。
It has been shown that glucocorticoids at high concentrations intercalate into membranes, thereby changing their physiological properties and the activities of membrane-associated proteins. For instance, this results in reduced calcium and sodium cycling across the cell membrane of immune cells, which contributes to rapid immunosuppression and reduction of the inflammatory process.
研究顯示,高濃度的糖皮質激素會嵌入細胞膜,從而改變其生理特性及膜相關蛋白的活性。例如,這導致免疫細胞膜上的鈣和鈉循環減少,從而促進快速免疫抑制和炎症過程的減輕。

Binding of glucocorticoids to the cytosolic GR leads to dissociation of signaling molecules, which mediate rapid responses; the cytosolic GR is also involved in inhibition of the release of arachidonic acid, an essential mediator for cell growth and various metabolic/inflammatory reactions.
糖皮質激素與胞質 GR 的結合導致信號分子的解離,這些分子介導快速反應;胞質 GR 還參與抑制花生四烯酸的釋放,後者是細胞生長及多種代謝/炎症反應的重要介質。

Binding of glucocorticoids to a membrane-bound GR, which may be a variant of the cytosolic GR, seems to be involved in apoptosis and T cell receptor–mediated signal transduction (Stahn et al, 2007). The physiological significance of the nongenomic effects is not totally clear. It is assumed that they play an important role during stress when the concentration of endogenous glucocorticoids is high (Jiang et al, 2014). Fig. 14-4 summarizes genomic and nongenomic mechanisms of glucocorticoids.
糖皮質激素與膜結合型 GR(可能是細胞質 GR 的一種變體)的結合,似乎參與了細胞凋亡和 T 細胞受體介導的信號轉導(Stahn 等,2007)。非基因組效應的生理意義尚未完全明確。據推測,它們在內源性糖皮質激素濃度高的壓力狀態下扮演重要角色(Jiang 等,2014)。圖 14-4 總結了糖皮質激素的基因組與非基因組作用機制。
  1. Download: Download full-size image
    下載:下載全尺寸圖片

FIGURE 14-4. Genomic and nongenomic immunoregulation by glucocorticoids (GCs). GCs passively diffuse into cells and bind to the cytoplasmic glucocorticoid receptor (GR), after which the GC-GR complex translocates into the nucleus for gene regulation. Left: Ligated GR directly inhibits pro-inflammatory transcription factors (i.e., activator protein-1 [AP-1], nuclear factor of activated T-cells [NFAT], nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], and signal transducers and activator of transcription [STAT]) (a) or actively suppresses transcription (transrepression) of inflammatory genes (i.e., interleukin-1β [IL-1β] and IL-2) through binding to negative glucocorticoid response elements (nGRE) (b). Activated GR induces transcription (transactivation) of immunosuppressive genes (i.e., IκB, annexin-1, IL-10, mitogen-activated protein kinase [MAPK] phosphatase-1, lipocortin-1, and annexin-1) via positive GREs (pGRE) (c). GC-induced biological responses, which are based on transrepression, are slow because some time is required before RNA and protein levels of target genes are fully degraded (a,b). GC-dependent transactivation of genes that encode regulator proteins is less slow (“medium slow”) compared with transrepression (c). Right: GCs induce rapid effects (occurring within minutes) on transmembrane currents, signal transduction (e.g., T-cell receptor [TCR] and MAPK signaling pathways), second-messenger cascades or intracellular Ca2+ mobilization. It is currently assumed that nongenomic GC effects are mediated by cytosolic or membrane-bound GRs, or via nonspecific interactions with cell membranes.
圖 14-4. 糖皮質激素(GCs)的基因組與非基因組免疫調節作用。GCs 被動擴散進入細胞後與胞質中的糖皮質激素受體(GR)結合,隨後 GC-GR 複合物轉位至細胞核內進行基因調控。左側:結合後的 GR 直接抑制促炎轉錄因子(如激活蛋白-1 [AP-1]、活化 T 細胞核因子[NFAT]、活化 B 細胞核因子κB [NF-κB]及信號轉導與轉錄激活因子[STAT])(a),或通過結合負向糖皮質激素反應元件(nGRE)主動抑制炎症基因(如白細胞介素-1β [IL-1β]和 IL-2)的轉錄(轉錄抑制)(b)。激活的 GR 通過正向 GREs(pGRE)誘導免疫抑制基因(如 IκB、膜聯蛋白-1、IL-10、絲裂原活化蛋白激酶[MAPK]磷酸酶-1、脂皮素-1 及膜聯蛋白-1)的轉錄(轉錄激活)(c)。基於轉錄抑制的 GC 誘導生物學反應較為緩慢,因為需要一定時間才能使目標基因的 RNA 與蛋白質水平完全降解(a,b)。 糖皮質激素依賴性基因轉活化作用(編碼調節蛋白的基因)相較於轉抑制作用(c)較不緩慢(「中等緩慢」)。右圖:糖皮質激素在跨膜電流、信號傳導(例如 T 細胞受體[TCR]和 MAPK 信號通路)、第二信使級聯反應或細胞內 Ca2+動員上誘導快速效應(發生於數分鐘內)。目前認為非基因組糖皮質激素效應是由胞質或膜結合的糖皮質激素受體介導,或通過與細胞膜的非特異性相互作用實現。

In this simplified scheme, no GR-chaperones are depicted.
在此簡化示意圖中,未描繪 GR-伴護蛋白。

(Reproduced with permission from Loewenberg M, Verhaar AP, van den Brink GR, et al.: Glucocorticoid signaling: a nongenomic mechanism for T-cell immunosuppression, Trends Mol Med 13:158, 2007.) cGR, Cytosolic glucocorticoid receptor; mGR, membrane-bound glucocorticoid receptor; TF, transcription factor.
(經授權複製自 Loewenberg M, Verhaar AP, van den Brink GR 等人:糖皮質激素信號傳導:T 細胞免疫抑制的非基因組機制,《分子醫學趨勢》13:158,2007 年。)cGR,胞質糖皮質激素受體;mGR,膜結合糖皮質激素受體;TF,轉錄因子。

Biologic Effects of Glucocorticoids
糖皮質激素的生物學效應

The name glucocorticoid is derived from the words glucose and cortex, and it relates to the role of glucocorticoids in glucose metabolism and their origin from the adrenal cortex. Glucocorticoids, however, have a much broader spectrum of function, they influence most cells in the body, and without them an individual will not survive a stressful event.
糖皮質激素(glucocorticoid)一詞源自葡萄糖(glucose)和皮質(cortex),這與糖皮質激素在葡萄糖代謝中的作用及其源自腎上腺皮質有關。然而,糖皮質激素的功能範圍遠不止於此,它們影響體內大多數細胞,若缺乏這些激素,個體將無法在壓力事件中存活。

Effects on Carbohydrate, Protein, and Lipid Metabolism
對碳水化合物、蛋白質及脂質代謝的影響

The physiological effects of glucocorticoids in the fed state are small; however, during fasting, they contribute to the maintenance of blood glucose levels by increasing hepatic gluconeogenesis and decreasing uptake of glucose in peripheral tissues (muscle, fat). These effects protect glucose-dependent organs (e.g., brain and heart) from starvation.
糖皮質激素在進食狀態下的生理效應較小;但在禁食期間,它們通過增加肝臟糖質新生作用及減少周邊組織(如肌肉、脂肪)對葡萄糖的攝取,有助於維持血糖水平。這些效應保護了依賴葡萄糖的器官(如大腦和心臟)免受飢餓影響。

Glucocorticoids stimulate glycogen deposition and inhibit glycogen-mobilizing enzymes. This allows other hormones (e.g., glucagon and epinephrine) to mobilize glucose when needed (e.g., between meals).
糖皮質激素刺激肝醣沉積並抑制肝醣動員酶。這使得其他激素(如升糖素和腎上腺素)能在需要時(例如兩餐之間)動員葡萄糖。

Glucocorticoids exert catabolic effects on muscle (i.e., decreased glucose uptake and metabolism), decreased protein synthesis, and increased release of amino acids, providing precursors for gluconeogenesis in the liver.
糖皮質激素對肌肉產生分解代謝效應(即降低葡萄糖攝取與代謝)、減少蛋白質合成,並增加胺基酸的釋放,為肝臟中的糖質新生提供前驅物質。

In adipose tissue, glucocorticoids stimulate lipolysis, which generates free fatty acids and glycerol, thereby providing energy and substrate for gluconeogenesis (Carroll et al., 2011, Hall, 2011).
在脂肪組織中,糖皮質激素刺激脂肪分解,產生游離脂肪酸和甘油,從而為糖質新生提供能量和基質(Carroll 等人,2011;Hall,2011)。
In healthy individuals, the increase in blood glucose is counterbalanced by an increase in insulin secretion. High levels of glucocorticoids (endogenous or exogenous) reduce the sensibility of many tissues, in particular muscle and fat, to the stimulatory effects of insulin on glucose uptake and utilization (i.e., lead to insulin resistance).
在健康個體中,血糖的上升會透過胰島素分泌的增加來平衡。高水平的糖皮質激素(內源性或外源性)會降低許多組織,特別是肌肉和脂肪,對胰島素促進葡萄糖攝取與利用的刺激效應的敏感性(即導致胰島素阻抗)。

In this way, glucocorticoids may induce glucose intolerance and diabetes mellitus or worsen glycemic control in an individual with pre-existing diabetes. Glucocorticoid excess also leads to increased breakdown of protein, clinically seen as muscle wasting, thinning of the skin, and delayed wound healing (Boothe and Mealey, 2012). Although glucocorticoids stimulate lipolysis, increased fat deposition is a common clinical sign. The paradox has been explained by steroid-induced stimulation of appetite and the lipogenic effect of hyperinsulinemia. The reason for the abnormal fat distribution is unknown (Carroll et al, 2011).
如此一來,糖皮質激素可能誘發葡萄糖耐受不良與糖尿病,或使既有糖尿病患者的血糖控制惡化。糖皮質激素過量還會導致蛋白質分解增加,臨床上表現為肌肉萎縮、皮膚變薄及傷口癒合延遲(Boothe 與 Mealey,2012 年)。雖然糖皮質激素會刺激脂肪分解,但脂肪堆積增加仍是常見的臨床徵兆。此矛盾現象可歸因於類固醇誘發的食慾刺激及高胰島素血症的促脂肪生成作用。異常脂肪分佈的原因尚屬未知(Carroll 等人,2011 年)。

Effects on Other Tissues  對其他組織的影響

Growth and Development  生長與發育

Glucocorticoids play an important role in normal fetal development. They stimulate lung maturation through synthesis of surfactant proteins in the near-term fetus, allowing adaption to air breathing.
糖皮質激素在正常胎兒發育過程中扮演重要角色。它們透過促進近足月胎兒合成表面活性蛋白來刺激肺部成熟,使其適應呼吸空氣的環境。

In physiological concentrations, glucocorticoids stimulate gene transcription of growth hormone (GH); glucocorticoid excess, however, inhibits skeletal growth by catabolic effects on bone, muscle, and connective tissue and inhibition of insulin-like growth factor-1 (IGF-1) effects (Ferguson et al, 2009).
在生理濃度下,糖皮質激素會刺激生長激素(GH)的基因轉錄;然而,過量的糖皮質激素則會透過對骨骼、肌肉及結締組織的分解代謝作用,以及抑制類胰島素生長因子-1(IGF-1)的效應,來阻礙骨骼生長(Ferguson 等人,2009 年)。

Bone, Cartilage, and Calcium
骨骼、軟骨與鈣

The effects of glucocorticoids on bone are complex and include direct and indirect effects. Under physiological circumstances, bone formation and bone resorption are tightly coupled; in cases of glucocorticoid excess, those processes are uncoupled (van Brussel et al, 2009). Glucocorticoid excess decreases number and function of osteoblasts, induces apoptosis of osteocytes, and increases the formation of osteoclasts. Indirect effects include disturbed calcium metabolism, muscle weakening, and decrease of GH and gonadotropin secretion (Canalis et al., 2007, van Brussel et al., 2009). In humans, glucocorticoid-induced osteoporosis belongs to the most devastating side effects of long-term glucocorticoid therapy (van Brussel et al, 2009). In dogs and cats, effects of glucocorticoids are rarely described. Recently, the effect of glucocorticoids on mineral density of the vertebral spine was investigated.
糖皮質激素對骨骼的影響是複雜的,包括直接和間接作用。在生理情況下,骨形成與骨吸收緊密耦合;而在糖皮質激素過量的情況下,這些過程會解耦(van Brussel 等,2009 年)。糖皮質激素過量會減少成骨細胞的數量與功能,誘導骨細胞凋亡,並增加破骨細胞的形成。間接影響包括鈣代謝紊亂、肌肉無力,以及生長激素和促性腺激素分泌減少(Canalis 等,2007 年;van Brussel 等,2009 年)。在人類中,糖皮質激素誘導的骨質疏鬆症屬於長期糖皮質激素治療最具破壞性的副作用之一(van Brussel 等,2009 年)。在狗和貓中,糖皮質激素的影響鮮有描述。最近,研究探討了糖皮質激素對脊椎骨礦物密度的影響。

Application of 2 mg/kg prednisone over 30 days led to a significant loss of bone mass (Costa et al, 2010). Pathological fractures were not seen in the study by Costa and colleagues (2010) and also do not occur in dogs with long-standing glucocorticoid excess (e.g., in dogs with endogenous hyperadrenocorticism).
應用每公斤 2 毫克劑量的 prednisone 持續 30 天導致顯著的骨質流失(Costa 等人,2010)。在 Costa 及其同事(2010)的研究中未觀察到病理性骨折,且長期處於糖皮質激素過量的犬隻(例如內源性腎上腺皮質功能亢進的犬隻)也未出現此類骨折。
At physiological concentrations, glucocorticoids stimulate collagen; glucocorticoid excess results in inhibition of collagen synthesis, depression of chondrocyte metabolism, and decrease of the proteoglycan content of cartilage (Boothe and Mealey, 2012).
在生理濃度下,糖皮質激素會刺激膠原蛋白;而糖皮質激素過量則會抑制膠原蛋白合成、降低軟骨細胞代謝並減少軟骨中的蛋白多醣含量(Boothe 和 Mealey,2012)。
Glucocorticoids inhibit calcium absorption from the intestinal tract by antagonizing the effect of active vitamin D3 and by decreasing the expression of specific calcium channels in the duodenum. The inhibition is not due to decreased levels of vitamin D3, as those are normal, or even increased in the presence of glucocorticoid excess. Glucocorticoids also increase renal calcium excretion as well as the excretion of phosphorous. Serum phosphate concentrations are reduced, whereas calcium concentrations are usually maintained normal (Canalis et al., 2007, Carroll et al., 2011). Theoretically, the reduced absorption and increased secretion of calcium would promote secondary hyperparathyroidism. In humans on glucocorticoid therapy, however, increased parathyroid hormone (PTH) levels have not been consistently demonstrated. Glucocorticoids may alter the secretory dynamics of PTH with a decrease in its tonic release and an increase in pulsatile bursts.
糖皮質激素通過拮抗活性維生素 D 3 的作用及減少十二指腸中特定鈣通道的表達,來抑制腸道對鈣的吸收。這種抑制作用並非由於維生素 D 3 水平降低所致,因為在糖皮質激素過量的情況下,這些水平是正常甚至升高的。糖皮質激素還會增加腎臟對鈣及磷的排泄。血清磷酸鹽濃度會下降,而鈣濃度通常維持正常(Canalis 等人,2007 年;Carroll 等人,2011 年)。理論上,鈣吸收減少與分泌增加會促進次發性副甲狀腺功能亢進。然而,在人類接受糖皮質激素治療時,並未一致觀察到副甲狀腺素(PTH)水平的上升。糖皮質激素可能改變 PTH 的分泌動態,使其基礎釋放減少而脈衝式爆發增加。

Additionally, they may enhance sensitivity of skeletal cells to PTH by increasing the number and affinity of PTH receptors (Canalis et al, 2007). So far, no detailed studies on calcium balance in dogs and cats with endogenous or exogenous glucocorticoid excess have been performed. In dogs, the administration of approximately 1 mg/kg prednisolone every other day for 6 weeks did not result in significant changes in concentrations of total and ionized calcium, phosphate, vitamin D metabolites (25(OH)D and 1,25(OH)2D3), and PTH in blood and urinary fractional excretion of calcium and phosphate (Kovalik et al, 2012). The results contrast in part those of Ramsey, et al., (2005) who assessed parameters of calcium metabolism in dogs with endogenous hyperadrenocorticism. Total and ionized calcium concentrations were not different to a matched control group. Different from humans and the study of Kovalik, et al, (2012), phosphate and PTH concentrations were significantly higher. Approximately one third of the dogs had PTH concentrations greater than three times the reference range. No explanation for the increased phosphate concentrations could be given; it was assumed to play a role in the increase in PTH concentrations (Ramsey et al, 2005).
此外,它們可能通過增加 PTH 受體的數量和親和力來增強骨骼細胞對 PTH 的敏感性(Canalis 等,2007 年)。迄今為止,尚未對內源性或外源性糖皮質激素過多的犬貓進行鈣平衡的詳細研究。在犬中,每隔一天給予約 1 毫克/公斤的潑尼松龍,持續 6 週,並未導致血液中總鈣和離子鈣、磷酸鹽、維生素 D 代謝物(25(OH)D 和 1,25(OH)2D)及 PTH 濃度以及尿中鈣和磷酸鹽的分數排泄量出現顯著變化(Kovalik 等,2012 年)。這些結果部分與 Ramsey 等(2005 年)的研究形成對比,後者評估了內源性腎上腺皮質功能亢進犬的鈣代謝參數。總鈣和離子鈣濃度與匹配對照組無差異。與人類及 Kovalik 等(2012 年)的研究不同,磷酸鹽和 PTH 濃度顯著較高。約三分之一的犬其 PTH 濃度超過參考範圍的三倍。 無法對磷酸鹽濃度上升提出解釋;推測其可能在副甲狀腺素(PTH)濃度增加中扮演角色(Ramsey 等人,2005 年)。

Renal Function  腎功能

Glucocorticoids increase the glomerular filtration rate, sodium transport in the proximal tubule, and free water clearance. They have an inhibitory effect on antidiuretic hormone (ADH) and may decrease permeability of the distal tubules to water through a direct effect (Boothe and Mealey, 2012). Cortisol and several synthetic glucocorticoids have mineralocorticoid activity. Depending on the concentration or dose and the activity of the 11β-HSD type 2, they act on the MR and cause sodium retention and potassium loss.
糖皮質激素會增加腎絲球過濾率、近端腎小管的鈉離子運輸以及游離水清除率。它們對抗利尿激素(ADH)具有抑制作用,並可能透過直接效應降低遠端腎小管對水的通透性(Boothe 與 Mealey,2012 年)。皮質醇與數種合成糖皮質激素具有礦物皮質激素活性。依據濃度或劑量以及 11β-HSD 第 2 型酶的活性,它們會作用於礦物皮質素受體(MR)並導致鈉滯留與鉀流失。

The polyuria and polydipsia commonly seen in dogs (infrequently in non-diabetic cats treated with glucocorticoids) is considered to be mainly due to inhibition of ADH release and action.
犬隻常見的多尿與多飲現象(少見於接受糖皮質激素治療的非糖尿病貓)被認為主要源自於 ADH 分泌與作用受到抑制。

Cardiovascular and Respiratory Functions
心血管與呼吸功能

Glucocorticoids have positive inotrope and positive chronotropic actions on the heart. Because glucocorticoids are necessary for maximal catecholamine sensitivity, they contribute to the maintenance of normal vascular tone.
糖皮質激素對心臟具有正性肌力與正性變時作用。由於糖皮質激素是達到最大兒茶酚胺敏感度所必需,它們有助於維持正常的血管張力。

They decrease capillary permeability through inhibition of the activity of kinins and bacterial endotoxins and by decreasing the amount of histamine released by basophils (Ferguson et al, 2009). Refractory shock may occur when individuals deficient in glucocorticoids are exposed to stress (Carroll et al, 2011).
它們通過抑制激肽與細菌內毒素的活性,並減少嗜鹼性粒細胞釋放的組織胺量(Ferguson et al, 2009),從而降低微血管通透性。當缺乏糖皮質激素的個體暴露於壓力時,可能發生難治性休克(Carroll et al, 2011)。
Glucocorticoid excess may lead to hypertension through various mechanisms, such as their intrinsic mineralocorticoid activity, activation of the renin-angiotensin-aldosterone system; enhancement of cardiovascular inotropic and pressor activity of vasoactive substances, including catecholamines, vasopressin and angiotensin II; and suppression of the vasodilatory system, including the nitric oxide (NO) synthase, prostacyclin and kinin-kallikrein systems. The exact mechanisms in dogs and cats have not been elucidated (Reusch et al, 2010). The studies on the potential role of aldosterone revealed conflicting results (Goy-Thollot et al., 2002, Javadi et al., 2003, Wenger et al., 2004). Martinez and colleagues (2005) demonstrated increased vascular reactivity to increasing doses of norepinephrine in dogs with experimentally induced hypercortisolism.
糖皮質激素過量可能透過多種機制導致高血壓,例如其固有的礦物皮質激素活性、激活腎素-血管收縮素-醛固酮系統;增強心血管正性肌力作用及血管活性物質(包括兒茶酚胺、血管加壓素和血管收縮素 II)的升壓活性;以及抑制血管舒張系統,包括一氧化氮(NO)合酶、前列環素和激肽-激肽釋放酶系統。犬貓的確切機制尚未闡明(Reusch 等人,2010 年)。關於醛固酮潛在作用的研究顯示了相互矛盾的結果(Goy-Thollot 等人,2002 年;Javadi 等人,2003 年;Wenger 等人,2004 年)。Martinez 及其同事(2005 年)證實,實驗性誘發高皮質醇症的犬隻對去甲腎上腺素劑量增加表現出血管反應性增強。
Glucocorticoids increase the number and affinity of β2 receptors, thus promoting bronchodilatation (Boothe and Mealey, 2012).
糖皮質激素會增加β受體的數量和親和力,從而促進支氣管擴張(Boothe 和 Mealey,2012 年)。

Gastrointestinal Tract  胃腸道

Glucocorticoids are involved in normal function and integrity of the gastrointestinal tract. Glucocorticoid excess is associated with reduced gastric mucosal cell growth and renewal and decreased mucus production, resulting in impairment of the protective barrier of the gastric mucosa (Boothe and Mealey, 2012). Glucocorticoid therapy in dogs with neurological disease may result in gastrointestinal hemorrhage, ulcers, and colonic perforations. Gastric hemorrhage has also been described in healthy dogs given high doses of methylprednisolone sodium succinate (Rohrer et al, 1999a).
糖皮質激素參與胃腸道的正常功能和完整性維持。糖皮質激素過量會導致胃黏膜細胞生長與更新減緩、黏液分泌減少,進而削弱胃黏膜的保護屏障(Boothe 與 Mealey,2012 年)。對患有神經系統疾病的犬隻進行糖皮質激素治療可能引發胃腸道出血、潰瘍及結腸穿孔。健康犬隻接受高劑量甲基強的松龍琥珀酸鈉注射後亦曾出現胃出血病例(Rohrer 等學者,1999a 年)。

Central Nervous System Function
中樞神經系統功能

Glucocorticoids are involved in maintaining adequate blood glucose concentrations for cerebral functions, maintaining cerebral blood flow, and influencing electrolyte balance in the central nervous system (CNS). They also decrease formation of cerebrospinal fluid, appear to regulate neuronal excitation, and appear to have neuroprotective effects (Boothe and Mealey, 2012). In humans, glucocorticoid excess initially causes euphoria, and prolonged exposure may result in various psychologic abnormalities, including irritability, emotional lability, and depression; impairment in cognitive functions is also common (Carroll et al, 2011). In dogs treated with glucocorticoids, euphoric effects are also commonly seen.
糖皮質激素參與維持足夠的血糖濃度以確保大腦功能、維持腦血流,並影響中樞神經系統(CNS)的電解質平衡。它們還會減少腦脊液的生成,似乎能調節神經元興奮性,並具有神經保護作用(Boothe 和 Mealey,2012 年)。在人類中,糖皮質激素過量最初會引起欣快感,長期暴露可能導致各種心理異常,包括易怒、情緒不穩定和抑鬱;認知功能損害也很常見(Carroll 等人,2011 年)。在接受糖皮質激素治療的狗中,欣快效應也常見。

Blood Cells  血球

Glucocorticoids have only little effects on erythrocytes, although mild polycythemia may be seen. The underlying mechanism may be glucocorticoid-induced enhancement of erythroid progenitor proliferation (von Lindern et al, 1999).
糖皮質激素對紅血球的影響較小,儘管可能觀察到輕度紅血球增多症。其潛在機制可能是糖皮質激素誘導的紅血球前體細胞增殖增強(von Lindern 等人,1999 年)。
Endogenous or exogenous glucocorticoid excess may induce leukocytosis in dogs and cats. The leukogram (“stress leukogram”) is characterized by mature neutrophilia, lymphopenia, and eosinopenia. In dogs, monocytosis may be an additional finding, which is usually not present in cats.
內源性或外源性糖皮質激素過量可能導致犬貓出現白血球增多症。此種白血球像(「壓力性白血球像」)特徵為成熟中性球增多、淋巴球減少及嗜酸性球減少。犬隻可能還伴隨單核球增多,而貓則通常無此現象。

The mature neutrophilia is due to several factors, such as increased release of neutrophils from bone marrow, shift of marginated neutrophils in the circulating neutrophil pool, and decreased movement of neutrophils from blood into tissue.
成熟中性球增多的原因包括多種因素,例如骨髓釋放中性球增加、循環中性球池中邊緣中性球的轉移,以及中性球從血液進入組織的移動減少。

Lymphopenia is the result of a redistribution of circulating lymphocytes; lysis of lymphocytes may occur with high doses of glucocorticoids. Eosinopenia is caused by inhibition of eosinophil release from the bone marrow and sequestration of eosinophils within tissues (Schultze, 2010, Valenciano et al., 2010). In dogs, glucocorticoid excess may provoke thrombocytosis (Neel et al, 2012); knowledge on potential glucocorticoid-induced thrombocytosis in cats is scarce.
淋巴球減少是循環淋巴球重新分布的結果;高劑量糖皮質激素可能導致淋巴球溶解。嗜酸性球減少則是由於骨髓釋放嗜酸性球受到抑制,以及嗜酸性球在組織內的滯留(Schultze, 2010; Valenciano 等, 2010)。犬隻糖皮質激素過量可能引發血小板增多(Neel 等, 2012);關於貓咪潛在糖皮質激素誘發血小板增多的知識則較為缺乏。

Hypothalamic Pituitary Adrenal Axis
下視丘-腦下垂體-腎上腺軸

Glucocorticoids inhibit synthesis and secretion of ACTH from the corticotropic cells in the anterior pituitary and of corticotropin-releasing hormone (CRH) and ADH from neurons in the hypothalamus in a negative feedback fashion. Exogenous glucocorticoids have profound effects on the hypothalamic pituitary adrenal (HPA) axis. Even “physiological” doses of glucocorticoids (0.22 mg/kg prednisolone once daily) may result in suppression of the HPA axis, which is reflected by reduced increase of cortisol after ACTH stimulation and lead to a reduction of the zona fasciculate and reticularis to the zona glomerulosa in the adrenal gland (Ferguson et al, 2009). Generally, the degree and duration of suppression of the HPA axis depends on dose, potency, half-life, and duration of administration of the glucocorticoid preparation. HPA axis suppression can occur with any form of glucocorticoid. Glucocorticoids possessing anti-inflammatory effects but no suppressive effects on the HPA axis have not yet been identified (Ferguson et al, 2009). For more details on HPA axis suppression, see the Adverse Effects section.
糖皮質激素以負反饋方式抑制促腎上腺皮質激素(ACTH)在垂體前葉促皮質細胞中的合成與分泌,以及抑制下丘腦神經元中促腎上腺皮質激素釋放激素(CRH)和抗利尿激素(ADH)的分泌。外源性糖皮質激素對下丘腦-垂體-腎上腺(HPA)軸有深遠影響。即使是「生理」劑量的糖皮質激素(每日一次 0.22 毫克/公斤的潑尼松龍),也可能導致 HPA 軸的抑制,這反映於 ACTH 刺激後皮質醇增加的減少,並導致腎上腺皮質束狀帶和網狀帶縮小至球狀帶(Ferguson 等人,2009 年)。一般而言,HPA 軸抑制的程度和持續時間取決於糖皮質激素製劑的劑量、效力、半衰期及給藥時間長短。任何形式的糖皮質激素都可能引起 HPA 軸抑制。目前尚未發現具有抗炎作用但對 HPA 軸無抑制作用的糖皮質激素(Ferguson 等人,2009 年)。有關 HPA 軸抑制的更多細節,請參閱「不良反應」部分。

Thyroid Function  甲狀腺功能

Glucocorticoids have a major impact on the hypothalamic pituitary thyroid axis and also influence peripheral metabolism of thyroid hormones. Main proposed mechanisms include inhibition of synthesis and release of thyroid-stimulating hormone (also known as thyrotropin; TSH), decrease in thyroxine (T4) binding proteins, and impairment of peripheral 5′-deiodination. Studies in dogs do not point as clearly to a suppressive effect on TSH secretion in dogs as compared to humans. In dogs with hyperadrenocorticism, reduced T4 and triiodothyronine (T3) concentrations were found in more than 50% of cases. The concentrations of both hormones normalized during treatment of the hyperadrenocorticism. The T4 response after TSH administration was also reduced (Peterson et al, 1984). TSH concentrations in dogs with hyperadrenocorticism were not different from that of control dogs in another study (Meij et al, 1997). The effect of exogenous glucocorticoids on thyroid hormones has been evaluated in various studies. The duration and extent of thyroid hormone suppression varies with type, dose, and route of administration, and duration of therapy and is certainly also influenced by individual sensitivity.
糖皮質激素對下丘腦-垂體-甲狀腺軸有重大影響,同時也會影響甲狀腺激素的外周代謝。主要提出的機制包括抑制甲狀腺刺激激素(亦稱為促甲狀腺素;TSH)的合成與釋放、降低甲狀腺素(T 4 )結合蛋白,以及損害外周 5′-脫碘作用。相較於人類,針對狗的研究並未明確指出其對 TSH 分泌的抑制作用。在患有腎上腺皮質功能亢進的狗中,超過 50%的病例發現 T 4 和三碘甲狀腺原氨酸(T 3 )濃度降低。治療腎上腺皮質功能亢進後,兩種激素的濃度均恢復正常。TSH 給藥後的 T 4 反應也有所減弱(Peterson 等人,1984 年)。另一項研究中,患有腎上腺皮質功能亢進的狗其 TSH 濃度與對照組狗無異(Meij 等人,1997 年)。多項研究已評估外源性糖皮質激素對甲狀腺激素的影響。 甲狀腺激素抑制的持續時間與程度會因藥物類型、劑量、給藥途徑、治療持續時間而異,且無疑也受個體敏感性影響。

In dogs, the application of immunosuppressive doses of prednisone/prednisolone (1.1 to 2.0 mg/kg twice a day) for 3 weeks significantly decreased T4; it also decreased free T4, albeit to a lesser extent. The effect on T4 was seen as early as 1 day after start of therapy. Endogenous TSH concentrations were not affected (Torres et al., 1991, Daminet et al., 1999, Daminet and Ferguson, 2003). See Chapter 3 for more details.
在犬隻中,連續 3 週投予免疫抑制劑量的 prednisone/prednisolone(每日兩次,每次 1.1 至 2.0 mg/kg)顯著降低 T 4 ;同時也降低游離 T 4 ,儘管幅度較小。對 T 4 的影響在治療開始後 1 天即可觀察到。內源性 TSH 濃度則未受影響(Torres 等人,1991;Daminet 等人,1999;Daminet 與 Ferguson,2003)。詳見第 3 章。

Growth Hormone and Gonadotropins
生長激素與促性腺激素

Glucocorticoids decrease GH secretion, most likely by increasing somatostatin release. Dogs with hyperadrenocorticism have decreased response of GH after stimulation with xylazine, clonidine, and growth hormone-releasing hormone (GHRH) (Frank, 2005). Exogenous glucocorticoid excess presumably has the same effect.
糖皮質激素會降低 GH 分泌,最可能是透過增加體抑素釋放所致。患有腎上腺皮質功能亢進的犬隻,在受到 xylazine、clonidine 及生長激素釋放激素(GHRH)刺激後,其 GH 反應會降低(Frank,2005)。外源性糖皮質激素過量可能產生相同效應。
Hyperadrenocorticism is also frequently associated with reproductive disturbances, such as testicular atrophy, reduced libido, and persistent anestrus. Similarly, exogenous glucocorticoid (prednisone) leads to a decrease in circulating testosterone concentrations in male dogs.
腎上腺皮質功能亢進症也常與生殖系統紊亂相關,例如睪丸萎縮、性慾減退及持續性無發情期。同樣地,外源性糖皮質激素(如 prednisone)會導致公犬循環中的睪固酮濃度下降。

Prednisone treatment also resulted in a reduction of basal luteinizing hormone (LH) concentration, which suggested that glucocorticoids inhibit the gonadal axis at the hypothalamic or pituitary level (Kemppainen et al., 1983, Kemppainen, 1984). Interestingly, however, basal LH concentrations in dogs with hyperadrenocorticism were not different from controls. It was hypothesized that glucocorticoids have a direct inhibitory effect on gonads and/or on transport and metabolism of their secretory products and influence the sensitivity of the feedback control at the hypothalamic/pituitary level (Meij et al, 1997). Glucocorticoid administration to pregnant dogs may lead to abortion.
Prednisone 治療還導致基礎黃體生成素(LH)濃度降低,這表明糖皮質激素在下丘腦或垂體水平抑制了性腺軸(Kemppainen 等人,1983;Kemppainen,1984)。然而有趣的是,患有腎上腺皮質功能亢進症的犬隻其基礎 LH 濃度與對照組並無差異。據推測,糖皮質激素對性腺和/或其分泌產物的運輸與代謝具有直接抑制作用,並影響下丘腦/垂體水平反饋控制的敏感性(Meij 等人,1997)。對懷孕犬隻施用糖皮質激素可能導致流產。

Anti-Inflammatory and Immunosuppressive Effects
抗炎與免疫抑制效應

Glucocorticoids suppress inflammatory and immune-mediated responses of the body, and this fact has been the stimulus for the development of potent glucocorticoid preparations. The anti-inflammatory and immunosuppressive effects only occur when supraphysiological doses (i.e., pharmacological doses) are given.
糖皮質激素能抑制身體的發炎和免疫介導反應,這一事實促使了強效糖皮質激素製劑的開發。抗炎和免疫抑制效果僅在給予超生理劑量(即藥理劑量)時才會出現。

Both effects are closely related, and which of the two predominates in a clinical situation is a question of the dose given. Many hundreds of glucocorticoid response genes have been identified. Additional to the genomic effects, rapid actions of glucocorticoids on inflammation are mediated by nongenomic mechanisms (Rhen and Cidlowski, 2005). It is important to remember that the encompassing properties render glucocorticoid therapy dangerous, because it can mask severity and progression of the disease and serious side effects may occur.
這兩種效應密切相關,在臨床情況中哪一種效應占主導地位取決於給予的劑量。目前已識別出數百種糖皮質激素反應基因。除了基因組效應外,糖皮質激素對炎症的快速作用還通過非基因組機制介導(Rhen 和 Cidlowski,2005 年)。重要的是要記住,這些廣泛的特性使得糖皮質激素治療具有危險性,因為它可能掩蓋疾病的嚴重程度和進展,並可能出現嚴重的副作用。

Glucocorticoids limit early and late manifestations of inflammation, including edema formation, fibrin deposition, leukocyte migration, phagocytic activity, collagen deposition, and capillary and fibroblast proliferation.
糖皮質激素限制炎症的早期和晚期表現,包括水腫形成、纖維蛋白沉積、白細胞遷移、吞噬活性、膠原沉積以及毛細血管和纖維母細胞增殖。

Many of these processes involve lymphokines, and other soluble mediators of inflammation and glucocorticoids exert their anti-inflammatory effects through those mediators (Boothe and Mealey, 2012).
這些過程中有許多涉及淋巴因子和其他可溶性炎症介質,而糖皮質激素則透過這些介質發揮其抗炎作用(Boothe 和 Mealey,2012 年)。
Generally, due to the fact that GR expression is ubiquitous, glucocorticoids can affect nearly all cells of the immune system. Glucocorticoids inhibit proliferation, growth and differentiation, adhesion, migration, and chemotaxis of monocytes/macrophages, neutrophils, and T cells (Box 14-1). Antigen processing by monocytes/macrophages is suppressed, and antibody production by B cells may be impaired; apoptosis of monocytes/macrophages, T cells, and B cells is increased (Vollmar and Dingermann, 2005). Of note, B cells are thought to have greater resistance to the effects of glucocorticoids, although the inhibition of T-cell help will have indirect consequences for B-cell activation. Glucocorticoids may inhibit the action of complement molecules and interfere with the function of immunoglobulins by down-regulation of Fc receptor expression (Day, 2011). Usually, high doses of glucocorticoid are required to suppress antibody production, and therapeutic doses do not significantly decrease the antibody response to an antigenic challenge (e.g., vaccinations; Boothe and Mealey, 2012, Tizard, 2013).
一般而言,由於糖皮質激素受體(GR)表達具有普遍性,糖皮質激素幾乎能影響所有免疫系統細胞。糖皮質激素會抑制單核細胞/巨噬細胞、中性粒細胞及 T 細胞的增殖、生長與分化、黏附、遷移及趨化作用(見 BOX 14-1)。單核細胞/巨噬細胞的抗原處理功能被抑制,B 細胞的抗體生成可能受損;單核細胞/巨噬細胞、T 細胞與 B 細胞的凋亡則會增加(Vollmar 與 Dingermann,2005 年)。值得注意的是,雖然 B 細胞被認為對糖皮質激素作用具有較強抵抗力,但 T 細胞輔助功能的抑制仍會間接影響 B 細胞活化。糖皮質激素可能抑制補體分子作用,並透過下調 Fc 受體表現來干擾免疫球蛋白功能(Day,2011 年)。通常需要高劑量糖皮質激素才能抑制抗體生成,而治療劑量不會顯著降低對抗原挑戰(如疫苗接種)的抗體反應(Boothe 與 Mealey,2012 年;Tizard,2013 年)。
BOX 14-1
Selected Effects of Glucocorticoids on the Immune System
糖皮質激素對免疫系統的選擇性作用
Modified from Tizard IR, Veterinary immunology, ed 9, St Louis, 2013, Elsevier.
改編自 Tizard IR,《獸醫免疫學》,第 9 版,聖路易斯,2013 年,Elsevier。

Neutrophils  中性粒細胞

  • Neutrophilia  中性粒細胞增多症
  • Depressed chemotaxis  趨化性降低
  • Depressed margination  邊緣化抑制
  • Depressed phagocytosis  吞噬作用抑制
  • Depressed antibody-dependent cellular cytotoxicity
    抗體依賴性細胞毒性抑制
  • Depressed bactericidal activity
    殺菌活性抑制
  • Stabilization of membranes
    膜穩定化
  • Inhibition of phospholipase A2α
    抑制磷脂酶 A 2 α

Macrophages  巨噬細胞

  • Depressed chemotaxis  趨化性抑制
  • Depressed phagocytosis  吞噬作用抑制
  • Depressed bactericidal activity
    殺菌活性抑制
  • Depressed IL-1 and IL-6 production
    IL-1 與 IL-6 生成抑制
  • Depressed antigen processing
    抗原處理抑制

Lymphocytes  淋巴細胞

  • Depressed proliferation  增殖抑制
  • Depressed T-cell responses
    T 細胞反應抑制
  • Impaired T-cell mediated cytotoxicity
    T 細胞介導的細胞毒性受損
  • Depressed IL-2 production
    抑制 IL-2 生成
  • Depressed lymphokine production
    抑制淋巴因子生成

Immunoglobulins  免疫球蛋白

  • Decreased antibody synthesis only after high dose, long-term therapy
    僅在高劑量長期治療後才會減少抗體合成
  • Interference with antibody function
    干擾抗體功能
IL, Interleukin.  IL,白細胞介素。
Inflammatory and immunologic reactions are mediated by various signaling pathways. The pathways that are associated with the activation of NF-κB are of particular importance (Fig. 14-5). In its inactive state, NF-κB is sequestered in the cytoplasm by the inhibitory factor IκB-α. Tumor necrosis factor alpha (TNFα), interleukin-1 (IL-1), microbial pathogens, viral infections, and other inflammatory signals trigger signaling cascades that activate IκB-α kinases, resulting in liberation and translocation of NF-κB into the nucleus.
炎症和免疫反應由多種信號通路介導。其中與 NF-κB 激活相關的通路尤為重要(圖 14-5)。在非活性狀態下,NF-κB 被抑制因子 IκB-α隔離於細胞質中。腫瘤壞死因子α(TNFα)、白細胞介素-1(IL-1)、微生物病原體、病毒感染及其他炎症信號觸發的信號級聯反應會激活 IκB-α激酶,導致 NF-κB 釋放並轉位至細胞核內。

NF-κB stimulates the transcription of cytokines (e.g., IL-1, IL-2, IL-6, and TNFα), chemokines (e.g., IL-8, monocyte chemotactic protein-1 [MCP-1]), cell-adhesion molecules, complement factors, and receptors for these molecules.
NF-κB 刺激多種細胞因子(如 IL-1、IL-2、IL-6 和 TNFα)、趨化因子(如 IL-8、單核細胞趨化蛋白-1 [MCP-1])、細胞黏附分子、補體因子及這些分子受體的轉錄。

After binding to its receptor, glucocorticoids inhibit NF-κB by direct protein-protein interaction; glucocorticoids also induce the synthesis of IκB-α, thereby inhibiting translocation of NF-κB into the nucleus (Rhen and Cidlowski, 2005, Steinfelder and Oetjen, 2009; see also http://www.bu.edu/nf-kb/gene-resources/target-genes/).
與其受體結合後,糖皮質激素通過直接的蛋白質-蛋白質相互作用抑制 NF-κB;糖皮質激素還誘導 IκB-α的合成,從而抑制 NF-κB 轉位進入細胞核(Rhen 和 Cidlowski,2005 年;Steinfelder 和 Oetjen,2009 年;另見 http://www.bu.edu/nf-kb/gene-resources/target-genes/)。
  1. Download: Download full-size image
    下載:下載全尺寸圖片

FIGURE 14-5. Inhibition of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) by glucocorticoids. NF-κB is a dimer and consists of two subunits (p50, p65). In its inactive state, it is sequestered in the cytoplasm by the inhibitory factor IκB-α. Upon stimulation by, for example, cytokines NF-κB is released and translocates into the nucleus.
圖 14-5. 糖皮質激素對轉錄因子核因子κB(NF-κB)的抑制。NF-κB 是一個二聚體,由兩個亞基(p50、p65)組成。在其非活性狀態下,它被抑制因子 IκB-α隔離在細胞質中。受到例如細胞因子的刺激後,NF-κB 被釋放並轉位進入細胞核。

After binding to specific DNA sites, NF-κB increases the transcription of target genes, which include genes of cytokines, chemokines, growth factors, cell adhesion molecules, complement factors, immunoreceptors, and cyclooxygenase 2 (COX2).
與特定的 DNA 位點結合後,NF-κB 增加目標基因的轉錄,這些基因包括細胞因子、趨化因子、生長因子、細胞黏附分子、補體因子、免疫受體和環氧合酶 2(COX2)的基因。

Glucocorticoids inhibit NF-κB after their binding to the glucocorticoid receptor (GR) through direct protein-protein interaction between the GR and the p65 subunit. Glucocorticoids can also stimulate the transcription of the IκB-α gen, thereby augmenting the inhibition of NF-κB.
糖皮質激素在與糖皮質激素受體(GR)結合後,通過 GR 與 p65 亞基之間的直接蛋白質-蛋白質相互作用抑制 NF-κB。糖皮質激素還能刺激 IκB-α基因的轉錄,從而增強對 NF-κB 的抑制作用。

Inhibition of NF-κB is one of the major mechanisms of the anti-inflammatory and immunosuppressive effect of glucocorticoids.
抑制 NF-κB 是糖皮質激素抗炎和免疫抑制作用的主要機制之一。

(Redrawn from Steinfelder HJ, Oetjen E: Nebennierenrindenhormone. In Aktories K, Foerstermann U, Hofmann F, Starke K, editors: Allgemeine und Spezielle Pharmakologie und Toxikologie, ed 10, 2009, Elsevier Urban & Fischer.) mRNA, Messenger ribonucleic acid.
(改編自 Steinfelder HJ, Oetjen E: Nebennierenrindenhormone. 收錄於 Aktories K, Foerstermann U, Hofmann F, Starke K 等編輯: Allgemeine und Spezielle Pharmakologie und Toxikologie, 第 10 版, 2009 年, Elsevier Urban & Fischer 出版社。) mRNA, 信使核糖核酸。
Similar to NF-κB, the transcription factor AP-1 is one of the key mediators of the inflammatory response; AP-1 is inhibited by glucocorticoids as well (Busillo and Cidlowski, 2013). NF-κB also induces the transcription of cyclooxygenase 2 (COX2), an enzyme that is essential for prostaglandin production; glucocorticoids inhibit COX2 through inhibition of NF-κB. Other mechanisms by which glucocorticoids inhibit prostaglandin synthesis are mediated through induction and activation of annexin I (also called lipocortin-1) and through induction of mitogen-activated protein kinase (MAPK) phosphatase 1. Annexin I is an anti-inflammatory protein that inhibits phospholipase A2α, thereby blocking the release of arachidonic acid and its subsequent conversion to eicosanoids. Phospholipase A2α is also inhibited by MAPK phosphatase 1. MAPKs are pivotal in the regulation of immune responses; they are involved in the production of inflammatory mediators (e.g., TNFα, IL-1, IL-6, prostaglandin, NO, and inducible nitric-oxide synthase) and in T-cell development and function. Removal of the phosphatases (which is induced by glucocorticoids) renders MAPK inactive (Rhen and Cidlowski, 2005, Liu et al., 2007). Glucocorticoids reduce local inflammation by preventing the actions of histamine and plasminogen activators (Stewart and Krone, 2011). In summary, the anti-inflammatory and immunosuppressive effects of glucocorticoids are attributed to partial or complete suppression of an extremely complex interplay of cells and cell mediators. The potent effects of glucocorticoids on leukocytes are responsible for most of the anti-inflammatory activity.
與 NF-κB 相似,轉錄因子 AP-1 是炎症反應的關鍵介質之一;AP-1 同樣受到糖皮質激素的抑制(Busillo 與 Cidlowski,2013 年)。NF-κB 還會誘導環氧合酶 2(COX2)的轉錄,該酶對前列腺素的生成至關重要;糖皮質激素通過抑制 NF-κB 來抑制 COX2。糖皮質激素抑制前列腺素合成的其他機制,是通過誘導並激活膜聯蛋白 I(亦稱脂皮素-1)以及誘導絲裂原活化蛋白激酶(MAPK)磷酸酶 1 來實現的。膜聯蛋白 I 是一種抗炎蛋白,能抑制磷脂酶 A 2 α,從而阻斷花生四烯酸的釋放及其後續轉化為類二十烷酸。磷脂酶 A 2 α也受到 MAPK 磷酸酶 1 的抑制。MAPKs 在免疫反應的調節中起著核心作用;它們參與炎症介質(如 TNFα、IL-1、IL-6、前列腺素、NO 及誘導型一氧化氮合酶)的產生,並影響 T 細胞的發育與功能。 移除磷酸酶(這是由糖皮質激素誘導的)會使 MAPK 失去活性(Rhen 和 Cidlowski,2005 年;Liu 等人,2007 年)。糖皮質激素通過阻止組織胺和纖溶酶原激活劑的作用來減輕局部炎症(Stewart 和 Krone,2011 年)。總之,糖皮質激素的抗炎和免疫抑制效應歸因於對極其複雜的細胞和細胞介質相互作用的部份或完全抑制。糖皮質激素對白血球的強效作用是大多數抗炎活性的原因。

These effects are also immunosuppressive, which explains their efficacy in immune-mediated disease. It should be remembered, however, that glucocorticoids can lead to an increased susceptibility to infection (Papich and Davis, 1989).
這些效應也具有免疫抑制作用,這解釋了它們在免疫介導疾病中的有效性。然而,應該記住,糖皮質激素可能導致對感染的易感性增加(Papich 和 Davis,1989 年)。

PharmaCokinetics and Clinical Pharmacology
藥物動力學與臨床藥理學

Duration of Action  作用持續時間

A distinction has to be made between plasma half-life and biological half-life of glucocorticoids. Plasma half-life is the amount of time required for 50% of a drug’s concentration to disappear from plasma, whereas the biological half-life refers to the duration of effect.
必須區分糖皮質激素的血漿半衰期與生物半衰期。血漿半衰期是指藥物濃度從血漿中消失 50%所需的時間,而生物半衰期則是指其作用持續的時間。

The biologic half-life of glucocorticoids is disparate, because many of the biological effects are due to alterations in genetic regulation of protein production; biological effects are delayed and prolonged compared to the drug concentration in plasma (Cohn, 2010). It is the biological half-life that needs to be considered when a treatment protocol is established. Glucocorticoids are usually divided into three groups according to the duration of HPA axis suppression.
糖皮質激素的生物半衰期存在差異,因為許多生物效應是由於基因調控蛋白質生產的改變所致;與血漿中的藥物濃度相比,生物效應會延遲且持續時間更長(Cohn, 2010)。在制定治療方案時,需要考慮的是生物半衰期。根據對 HPA 軸抑制的持續時間,糖皮質激素通常被分為三組。

Cortisol (hydrocortisone) and cortisone are considered short-acting (biologic half-life < 12 hours); prednisolone, prednisone, methylprednisolone, and triamcinolone are intermediate-acting (biologic half-life 12 to 36 hours); and dexamethasone and betamethasone are long-acting drugs (biologic half-life 36 to 72 hours) (see Table 14-1). Duration of action is influenced by factors such as route of administration, the preparation used (e.g., soluble or insoluble steroid ester), and other variables, such as health of the patient and concurrent use of other drugs.
皮質醇(氫化可的松)和可的松被視為短效藥物(生物半衰期 < 12 小時);潑尼松龍、潑尼松、甲基潑尼松龍和曲安西龍屬於中效藥物(生物半衰期 12 至 36 小時);而地塞米松和倍他米松則是長效藥物(生物半衰期 36 至 72 小時)(參見表 14-1)。作用時間受多種因素影響,如給藥途徑、使用的製劑(例如可溶性或不溶性類固醇酯),以及其他變量,如患者的健康狀況和同時使用的其他藥物。

Route of Administration  給藥途徑

Glucocorticoids of varying potency are available in oral, parenteral, and topical formulations.
不同效力的糖皮質激素有口服、腸胃外和局部製劑可供選擇。

Oral  口服

Cortisol (hydrocortisone) and synthetic glucocorticoids are orally effective, and oral administration is the preferred route for systemic application (except in emergency situations). It is the safest, most convenient, and most economical route.
皮質醇(氫化可的松)與合成糖皮質激素可經口服有效,且口服給藥為全身性應用(緊急情況除外)的首選途徑。這是最安全、最方便且最經濟的給藥方式。

The main disadvantages and limitations of the oral route include vomiting as a result of irritation of the gastric mucosa, variable absorption due to many factors (gastrointestinal disease, local blood flow, and/or presence of food or other drugs), and the need for cooperation of the pet.
口服途徑的主要缺點與限制包括vomiting因胃黏膜刺激所致、吸收變異性(受胃腸道疾病、局部血流及/或食物與其他藥物存在影響),以及需要寵物的配合。

The oral bioavailability differs between glucocorticoids; it is generally highest for cortisol, prednisolone, and methylprednisolone and lower for dexamethasone.
不同糖皮質激素的口服生物利用度各異;一般而言,皮質醇、潑尼松龍及甲基潑尼松龍的生物利用度最高,而地塞米松則較低。

Triamcinolone and budesonide have a very low oral bioavailability; in the case of budesonide, the low bioavailability is a desired effect because it is designed for local application (e.g., for treatment of inflammatory bowel disease [IBD]).
曲安西龍與布地奈德的口服生物利用度極低;就布地奈德而言,低生物利用度為其設計目的,因該藥物專為局部應用(如治療炎症性腸病[IBD])而設計。
Previously, it had been thought that prednisolone and the prodrug prednisone are equivalent in terms of dosing when used as oral drugs. However, this belief does not seem to be correct. It was shown in cats that only 21% of orally-administered prednisone appeared in the blood as active prednisolone.
先前,人們認為潑尼松龍(prednisolone)與其前驅藥物潑尼松(prednisone)在口服給藥時的劑量效果是相等的。然而,這種看法似乎並不正確。研究顯示,在貓咪體內,口服潑尼松僅有 21%會以活性形式的潑尼松龍出現在血液中。

It is not clear if the differences are due to decreased gastrointestinal absorption or to decreased hepatic conversion of prednisone to prednisolone (Graham-Mize and Rosser, 2004). According to these data, the dose of prednisone must be three- to fivefold higher than that of prednisolone to achieve equivalent activity (Boothe and Mealey, 2012). Because prednisone is commonly used in cats, its poor absorption (or poor conversion) may contribute to the perceived glucocorticoid resistance in cats (Lowe et al, 2008a). Also in dogs, oral administration of prednisone may not result in systemic prednisolone concentrations, which are achieved with oral prednisolone. The relative bioavailability of prednisolone was only 65% when prednisone was administered compared to the administration of prednisolone (Boothe and Mealey, 2012). These data suggest that prednisolone should be preferred over prednisone.
目前尚不清楚這些差異是由於胃腸道吸收減少,還是肝臟將 prednisone 轉化為 prednisolone 的能力下降所致(Graham-Mize 和 Rosser,2004 年)。根據這些數據,prednisone 的劑量必須比 prednisolone 高出三到五倍才能達到等效活性(Boothe 和 Mealey,2012 年)。由於 prednisone 在貓咪中常用,其吸收不良(或轉化不良)可能是導致貓咪對糖皮質激素產生抗藥性的原因之一(Lowe 等人,2008a)。同樣在狗中,口服 prednisone 可能不會達到口服 prednisolone 所能達到的系統性 prednisolone 濃度。當給予 prednisone 時,prednisolone 的相對生物利用度僅為 65%,而給予 prednisolone 時則更高(Boothe 和 Mealey,2012 年)。這些數據表明,應優先選擇 prednisolone 而非 prednisone。

Parenteral  腸胃外給藥

Most glucocorticoids for parenteral use are synthesized as glucocorticoid esters, which either improves solubility or increases duration of action. Water-soluble esters of cortisol and synthetic glucocorticoids can be given intravenously to achieve high concentrations rapidly. Prolonged effects are obtained by intramuscular (IM) injection of water-insoluble esters (suspensions) of cortisol and its synthetic derivatives (see later). Injection of drugs has certain advantages over oral administration.
大多數用於腸外給藥的糖皮質激素是以糖皮質激素酯的形式合成,這能提高溶解度或延長作用時間。可溶性皮質醇酯及合成糖皮質激素可通過靜脈注射迅速達到高濃度。而通過肌肉注射水不溶性皮質醇酯及其合成衍生物(懸浮液)則可獲得持久效果(詳見後述)。注射給藥相比口服具有特定優勢。

Absorption is usually more predictable than oral application, and therefore, the effective dose can be accurately selected. In particular, intravenous (IV) administration circumvents absorption issues and permits titration of dose. It also allows the administration of large volumes. Disadvantages include the need for asepsis, possible pain and necrosis, and costs. See Table 14-2 for some characteristics of the major routes of glucocorticoids.
吸收通常比口服給藥更可預測,因此能精確選擇有效劑量。特別是靜脈注射能避免吸收問題並實現劑量滴定,同時允許大容量給藥。缺點包括需要無菌操作、可能引起疼痛與組織壞死,以及成本較高。常見糖皮質激素給藥途徑的特性詳見表 14-2。

TABLE 14-2. Some Characteristics of Common Routes of Drug Administration
表 14-2. 常見藥物給藥途徑的部分特性

ROUTEABSORPTION PATTERN  吸收模式SPECIAL UTILITY  特殊用途LIMITATIONS AND PRECAUTIONS
限制與注意事項
Intravenous (IV)  靜脈注射(IV)
  • Absorption circumvented  吸收被繞過
  • Potentially immediate effects
    可能立即產生的效果
  • Valuable for emergency use
    適用於緊急情況
  • Permits titration of dosage
    允許劑量調整
  • Suitable for large volumes and for irritating substances when diluted
    適合大容量及稀釋後的刺激性物質
  • Increased risk of adverse effects
    不良反應風險增加
  • Must inject solutions slowly as a rule
    通常必須緩慢注射溶液
  • Not suitable for oily solutions or insoluble substances
    不適用於油性溶液或不溶性物質
Subcutaneous (SC)  皮下注射(SC)
  • Prompt, from aqueous solution
    迅速,來自水溶液
  • Slow and sustained, from repository preparations
    緩慢且持續,來自貯存製劑
  • Suitable for some insoluble suspensions and for implantation of solid pellets
    適用於某些不溶性懸浮液及固體顆粒植入
  • Not suitable for large volumes
    不適用於大體積
  • Possible pain or necrosis from irritating substances
    可能因刺激性物質引起的疼痛或壞死
Intramuscular (IM)  肌肉注射(IM)
  • Prompt, from aqueous solution
    從水溶液中迅速吸收
  • Slow and sustained, from repository preparations
    從貯存製劑中緩慢且持續釋放
  • Suitable for moderate volumes, oily vehicles, and some irritating substances
    適用於中等劑量、油性載體及某些刺激性物質
  • Precluded during anticoagulant medication
    抗凝血藥物治療期間禁用
  • May interfere with interpretation of certain diagnostic tests (e.g., creatine phosphokinase)
    可能干擾特定診斷測試的判讀(例如肌酸磷酸激酶)
Oral ingestion  口服攝入
  • Variable, depends upon many factors (see text)
    變數,取決於多種因素(見內文)
  • Most convenient and economical; usually safer than other routes
    最方便且經濟;通常比其他途徑更安全
  • Requires patient cooperation
    需要病患配合
  • Absorption potentially erratic and incomplete for drugs that are poorly soluble, slowly absorbed, or unstable
    對於溶解性差、吸收緩慢或不穩定的藥物,吸收可能不穩定且不完全

Topical  局部

Topical steroids for dermatological indications are available in ointments, creams, gels, solutions, shampoos, and rinses. Glucocorticoids for ophthalmological indications come as eye drops (aqueous solutions and suspensions) and ointments; intra-articular application is usually in form of crystal suspensions.
用於皮膚科適應症的局部類固醇有軟膏、乳霜、凝膠、溶液、洗髮精和沖洗劑等形式。眼科適應症的糖皮質激素則以眼藥水(水性溶液和懸浮液)及軟膏形式出現;關節內應用通常以晶體懸浮液形式進行。

Glucocorticoids are also used as inhalants in patients with lung disease. Topical therapy can provide high concentrations of a potent glucocorticoid at a specific site while reducing systemic side effects. However, topical glucocorticoids can be absorbed to a certain extent, exerting the same adverse reaction as systemically administered steroids.
糖皮質激素也作為吸入劑用於肺部疾病患者。局部治療能在特定部位提供高濃度的強效糖皮質激素,同時減少全身性副作用。然而,局部糖皮質激素會在一定程度上被吸收,產生與全身性給藥類固醇相同的不良反應。

The extent of percutaneous absorption depends on various factors, including the preparation vehicle, ester form of the steroid (greater lipid solubility enhances percutaneous absorption), integrity of epidermal barriers (e.g., absorption is increased in case of inflammation), size of treated area, and duration of treatment.
經皮吸收的程度取決於多種因素,包括製劑載體、類固醇的酯形式(較高的脂溶性增強經皮吸收)、表皮屏障的完整性(例如,炎症情況下吸收增加)、治療區域的大小以及治療持續時間。

Absorption is enhanced by use of occlusive wraps and possibly by clipping the skin (Behrend and Kemppainen, 1997, Boothe and Mealey, 2012). Systemic effects (e.g., suppression of the HPA axis) may also occur with inhaled glucocorticoids and in conjunction with intra-articular, intra-lesional, or ocular application.
使用封閉性敷料及可能透過修剪皮膚可增強吸收(Behrend 與 Kemppainen,1997 年;Boothe 與 Mealey,2012 年)。吸入性糖皮質激素以及關節內、病灶內或眼部應用時,也可能出現全身性效應(例如抑制 HPA 軸)。

Distribution, Metabolism, and Excretion
分佈、代謝與排泄

After absorption, cortisol and synthetic glucocorticoids are bound to corticosteroid binding protein (CBP, also called transcortin) and albumin. Only the unbound, free fraction of glucocorticoids is active and can enter cells. CBP is α-globulin secreted by the liver, which has a high affinity for glucocorticoids but a relatively low binding capacity. Albumin, on the other hand, has a low affinity but large binding capacity.
吸收後,皮質醇與合成糖皮質激素會與皮質類固醇結合蛋白(CBP,亦稱為轉皮質素)及白蛋白結合。僅未結合的游離態糖皮質激素具有活性並能進入細胞。CBP 是由肝臟分泌的α-球蛋白,對糖皮質激素具有高親和力但結合容量相對較低。另一方面,白蛋白的親和力低但結合容量大。

Glucocorticoids compete with one another for binding sites and will displace one another at high concentrations (Boothe and Mealey, 2012). Compared to cortisol, binding to CBP is less for synthetic glucocorticoids; they are mainly bound to albumin or circulate as free hormones, thereby diffusing more readily into tissues. Glucocorticoids distribute widely in all tissues of the body, and they pass the blood brain and placental barrier.
糖皮質激素會相互競爭結合位點,在高濃度下會彼此取代(Boothe 和 Mealey,2012 年)。與皮質醇相比,合成糖皮質激素與 CBP 的結合較少;它們主要與白蛋白結合或以游離激素形式循環,因此更容易擴散到組織中。糖皮質激素廣泛分佈於身體的所有組織,並且它們能夠通過血腦屏障和胎盤屏障。

Glucocorticoids are metabolized in the liver and to a lesser extent in the kidney; synthetic drugs are metabolized slower than cortisol. Metabolism is by oxidation or reduction followed by glucuronidation or sulfation, and excretion of the metabolites is mainly via the kidney. Only small amounts of glucocorticoids are excreted in the unmodified form.
糖皮質激素主要在肝臟代謝,腎臟代謝程度較低;合成藥物的代謝速度比皮質醇慢。代謝過程包括氧化或還原,隨後進行葡萄糖醛酸化或硫酸化,代謝產物主要通過腎臟排泄。僅有少量糖皮質激素以未改變的形式排出。

Biliary and fecal elimination do not appear to be significant; enterohepatic cycling takes place to a small extent (Ungemach, 2010, Boothe and Mealey, 2012).
膽汁和糞便排泄似乎不顯著;腸肝循環在一定程度上發生(Ungemach,2010 年,Boothe 和 Mealey,2012 年)。
Synthetic steroids with an 11-ketogroup, such as cortisone and prednisolone, must be enzymatically reduced to the 11-β-hydroxy derivative before they become biologically active. The enzyme 11β-HSD type 1, which catalyzes this reaction, is expressed mainly in the liver but also in other tissues, including adipose tissue, immune system cells, and brain tissue.
具有 11-酮基團的合成類固醇,如可的松和潑尼松龍,必須通過酶促還原為 11-β-羥基衍生物才能具有生物活性。催化此反應的 11β-HSD 類型 1 酶主要在肝臟中表達,但也存在於其他組織中,包括脂肪組織、免疫系統細胞和腦組織。

Similarly, also in natural situations, this enzyme generates active (endogenous) cortisol from inactive (endogenous) cortisone. The isoform 11β-HSD type 2 is predominantly expressed in classic mineralocorticoid targets, such as distal nephron, salivary glands, colon, and placenta.
同樣地,在自然情況下,這種酶也將無活性的(內源性)可的松轉化為有活性的(內源性)皮質醇。11β-HSD 類型 2 同工酶主要表達於典型的礦物皮質激素靶組織,如遠端腎單位、唾液腺、結腸和胎盤。

It inactivates cortisol by mediating the conversion to inactive cortisone and thereby ensures that only aldosterone binds to the MR (Chapman et al, 2013; Fig. 14-6).
它通過介導皮質醇轉化為無活性的可的松來使皮質醇失活,從而確保只有醛固酮能與 MR 結合(Chapman 等人,2013 年;圖 14-6)。
  1. Download: Download full-size image
    下載:下載全尺寸圖片

FIGURE 14-6. Interconversion of cortisol and cortisone by 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 and 2. Similar to the conversion of cortisone to cortisol, prednisone has to be converted to prednisolone to be able to bind to the glucocorticoid receptor (GR). NAD+, Nicotinamide adenine dinucleotide; NADH, nicotinamide adenine dinucleotide plus hydrogen; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide phosphate plus hydrogen.
圖 14-6. 皮質醇與可體松透過 11β-羥基類固醇脫氫酶(11β-HSD)第 1 型與第 2 型相互轉換。類似可體松轉化為皮質醇的過程,潑尼松必須轉化為潑尼松龍才能與糖皮質激素受體(GR)結合。NAD + ,菸鹼醯胺腺嘌呤二核苷酸;NADH,還原型菸鹼醯胺腺嘌呤二核苷酸;NADP+,氧化型菸鹼醯胺腺嘌呤二核苷酸磷酸;NADPH,還原型菸鹼醯胺腺嘌呤二核苷酸磷酸。

Dose Equivalents of Glucocorticoids
糖皮質激素劑量等效值

The glucocorticoid activity is closely related to the anti-inflammatory activity, and the effective anti-inflammatory time usually equals the time of HPA axis suppression (Ferguson et al, 2009). The anti-inflammatory and mineralocorticoid activities of cortisol (hydrocortisone) are used as a baseline for comparison with the synthetic glucocorticoids and are arbitrarily assigned as being 1. Chemical modifications have generated glucocorticoids with greater glucocorticoid/anti-inflammatory activity and less mineralocorticoid activity.
糖皮質激素活性與抗炎活性密切相關,有效抗炎時間通常等同於下視丘-腦垂體-腎上腺軸(HPA 軸)抑制時間(Ferguson 等學者,2009)。以皮質醇(氫化可體松)的抗炎與礦物皮質酮活性作為基準,與合成糖皮質激素進行比較,並將其活性任意設定為 1。化學修飾已開發出具有更高糖皮質激素/抗炎活性及更低礦物皮質酮活性的糖皮質激素。

Some derivatives (e.g., triamcinolone, dexamethasone) have no or negligible mineralocorticoid effects even at high doses. Increased anti-inflammatory potency is also associated with longer duration of action. The latter can be prolonged substantially by esterification. See the Chemistry of Glucocorticoids and Structure-Activity Relationship section and Box 14-1 for more details; the effects of esterification are discussed later.
某些衍生物(如曲安西龍、地塞米松)即使在高劑量下也不具有或僅有可忽略的礦物皮質酮效應。抗炎效力的增強也與作用時間的延長相關。後者可以通過酯化作用顯著延長。詳情請參閱「糖皮質激素的化學結構與活性關係」章節及方框 14-1;酯化作用的影響將在後文討論。
There is a general belief that there are no relevant qualitative differences between the various glucocorticoid preparations because they all bind to the GR. Equipotent amounts of any glucocorticoid exert similar effects, meaning that a higher dose of a less potent glucocorticoid can achieve the same effect as a lower dose of a more potent preparation (Cohn, 2010). When choosing a treatment protocol, the veterinarian has to be aware of the equivalent doses of glucocorticoids. Failure to make dose adjustments for different glucocorticoids will result in the administration of inadequate or excessive doses, leading to either inefficacy or dangerous overdose.
普遍認為各種糖皮質激素製劑之間並無顯著的質性差異,因為它們都與糖皮質激素受體(GR)結合。等效劑量的任何糖皮質激素都會產生相似的效果,這意味著較低效價的糖皮質激素可以通過提高劑量來達到與高效價製劑相同的作用(Cohn, 2010)。在選擇治療方案時,獸醫師必須了解不同糖皮質激素的等效劑量。若未能針對不同糖皮質激素調整劑量,將導致給藥不足或過量,造成治療無效或危險的過量反應。

For instance, a dose of 1 mg/kg prednisolone in a dog is a reasonable anti-inflammatory dose; the equivalent dose of dexamethasone is only approximately 0.14 mg/kg (Calvert and Cornelius, 1990a). Generally, the anti-inflammatory dose is considered to be approximately 10 times the physiological dose, and immunosuppressive doses are roughly twice the anti-inflammatory dose. In contrast to the aforementioned belief of equal effects, it is possible that there are indeed some qualitative differences between the various synthetic steroids.
例如,對狗而言,1 毫克/公斤的潑尼松龍劑量是一個合理的抗炎劑量;而等效的地塞米松劑量僅約為 0.14 毫克/公斤(Calvert 和 Cornelius,1990a)。一般來說,抗炎劑量被認為大約是生理劑量的 10 倍,而免疫抑制劑量則大約是抗炎劑量的兩倍。與前述認為效果相等的觀點相反,實際上各種合成類固醇之間可能存在一些質性差異。

In an in vitro model, it was shown that dexamethasone was more effective than prednisone and cortisol in inhibiting the clearance of immunoglobulin G (IgG)-coated cells by its effect on Fc receptors of splenic macrophages (Ruiz et al, 1991). In healthy cats, dexamethasone showed a greater diabetogenic effect than equipotent doses of prednisolone (Lowe et al, 2009).
在一項體外模型中顯示,地塞米松比潑尼松和皮質醇更有效地抑制免疫球蛋白 G(IgG)包被細胞的清除,這是通過其對脾巨噬細胞 Fc 受體的影響(Ruiz 等,1991)。在健康貓中,地塞米松顯示出比等效劑量的潑尼松龍更大的致糖尿病效應(Lowe 等,2009)。

Galenic Formulations and Steroid Esters
製劑配方與類固醇酯類

Water solubility of glucocorticoids is generally low and can be altered by pharmaceutical manipulations. Esterification and the kind of ester at C-21 of the glucocorticoid base determine to a large extent the lipid/water solubility ratio and the duration of action (Ferguson et al, 2009). The ester moiety also determines if the drug can be given intravenously, intramuscularly, or topically (Fig. 14-7; Table 14-3). Glucocorticoid preparations for oral use are either free alcohols or they are esterified; however, in this case, esterification does not impair bioavailability.
糖皮質激素的水溶性通常較低,可透過藥物製劑技術改變。糖皮質激素基礎結構 C-21 位的酯化程度及酯類種類,在很大程度上決定了其脂溶性/水溶性比例及作用持續時間(Ferguson 等人,2009 年)。酯基團也決定了藥物能否以靜脈注射、肌肉注射或局部給藥方式使用(見圖 14-7;表 14-3)。口服用糖皮質激素製劑要麼是游離醇形式,要麼經過酯化處理;但在此情況下,酯化不會影響生物利用度。
  1. Download: Download full-size image
    下載:下載全尺寸圖片

FIGURE 14-7. Esters of glucocorticoids. Glucocorticoid structure illustrating various esters that may bind to C-21.
圖 14-7. 糖皮質激素酯類。展示可能與 C-21 位結合的各類酯的糖皮質激素結構示意圖。

TABLE 14-3. Duration of Action of Various Steroid Esters after Intramuscular Administration
表 14-3. 肌肉注射後各類固醇酯的作用持續時間

STEROID ESTER  類固醇酯ABSORPTION FOLLOWING INTRAMUSCULAR APPLICATION
肌肉注射後吸收
DURATION OF ACTION  作用持續時間MOST COMMONLY USED GLUCOCORTICOID BASES
最常用的糖皮質激素基礎
Sodium succinate  琥珀酸鈉Minutes to hours  數分鐘至數小時Hours  數小時Hydrocortisone, prednisolone, prednisone, methylprednisolone, dexamethasone, betamethasone
氫化可的松、潑尼松龍、潑尼松、甲基潑尼松龍、地塞米松、倍他米松
Sodium phosphate  磷酸鈉
Acetate  醋酸鹽Days to weeks  數天至數週Days to weeks  數天至數週Methylprednisolone, triamcinolone, betamethasone
甲基強的松龍、曲安西龍、倍他米松
Diacetate  二乙酸酯
Acetonide  丙酮化物Weeks  Weeks  Triamcinolone  曲安西龍
Dipropionate  二丙酸酯
Pivalate  特戊酸酯
For parenteral application, three galenic formulations are available.
對於腸胃外給藥,有三種製劑配方可供使用。

Water-Soluble Ester (Aqueous Solutions)
水溶性酯類(水溶液)

The most commonly used esters are succinate, hemisuccinate, and phosphate; common formulations are hydrocortisone sodium succinate, prednisolone sodium succinate, prednisolone sodium phosphate, methylprednisolone sodium phosphate, and dexamethasone sodium phosphate. Those esters are hydrolyzed within minutes, resulting in immediate availability of the glucocorticoid.
最常用的酯類包括琥珀酸酯、半琥珀酸酯和磷酸酯;常見的製劑有氫化可的松琥珀酸鈉、潑尼松龍琥珀酸鈉、潑尼松龍磷酸鈉、甲基潑尼松龍磷酸鈉和地塞米松磷酸鈉。這些酯類在幾分鐘內即被水解,使糖皮質激素立即釋放。

They can be administered intravenously, as well as intramuscularly and subcutaneously. These characteristics render them ideal for emergency situations. The duration of action of these esterified glucocorticoids is equivalent to that of the unmodified glucocorticoid (Cohn, 2010).
它們可以通過靜脈注射,也可以肌肉注射和皮下注射。這些特性使其成為緊急情況下的理想選擇。這些酯化糖皮質激素的作用持續時間與未修飾的糖皮質激素相當(Cohn, 2010)。

Free Alcohol Solutions  游離醇溶液

These preparations are unique to veterinary medicine as dexamethasone solutions. Dexamethasone is poorly soluble in water, but it is available as an injectable preparation in solution with polyethylene glycol. The glucocorticoid is released within minutes to a few hours. Free alcohol solutions can be administered intramuscularly as well as intravenously.
這些製劑在獸醫領域中作為地塞米松溶液是獨特的。地塞米松在水中溶解度低,但可作為與聚乙二醇混合的注射用溶液製劑使用。糖皮質激素在幾分鐘至幾小時內釋放。游離醇溶液可進行肌肉注射及靜脈注射。

IV application, however, may be associated with CNS side effects. If IV application of larger doses is required, water soluble esters should be used.
然而,靜脈注射可能伴隨中樞神經系統副作用。若需靜脈注射較大劑量,應使用水溶性酯類製劑。

Insoluble Steroid Ester (Suspensions)
不溶性類固醇酯(懸浮液)

Suspensions can be administered intramuscularly, intra-articularly, and intralesionally. They are not to be given intravenously. They are used as depot preparation because of their slow release of the active glucocorticoid from the site of administration.
懸浮液可進行肌肉注射、關節內注射及病灶內注射。不可用於靜脈注射。由於其從注射部位緩慢釋放活性糖皮質激素的特性,被用作長效製劑。

They provide long-term, low level therapy and are not indicated in situations in which a quick effect and high blood levels are needed (Feldman and Nelson, 2004). The duration of action depends on the extent of water-solubility. Water solubility of acetate and diacetate esters is moderate and duration of action ranges from days to weeks. Pivalate, dipropionate, and acetonide esters are the least water soluble and have duration of actions of several weeks.
它們提供長期、低劑量的治療,不適用於需要快速效果和高血藥濃度的情況(Feldman and Nelson, 2004)。作用持續時間取決於水溶性程度。醋酸酯和雙醋酸酯的水溶性中等,作用持續時間從數天到數週不等。特戊酸酯、雙丙酸酯和丙酮縮醇酯的水溶性最低,作用持續時間可達數週。

It is of utmost importance to realize that glucocorticoid preparations esterified with those esters do not compare with the native base with regard to duration of effect. For instance, the duration of effect of methylprednisolone is 12 to 36 hours; the duration of methylprednisolone acetate, however, is 3 to 6 weeks (Cohn et al, 2010). The major advantage of the suspensions is convenience of administration.
最重要的是要認識到,這些酯化的糖皮質激素製劑在作用持續時間上無法與原生基底相比。例如,甲基強的松龍的作用持續時間為 12 至 36 小時;而甲基強的松龍醋酸酯的作用持續時間則為 3 至 6 週(Cohn et al, 2010)。懸浮液的主要優點在於給藥方便。

However, they have major disadvantages, such as unpredictability of blood concentrations, long-term suppression of the HPA axis (may be up to several months after a single dose), possible induction of glucocorticoid resistance, and the fact that the drug cannot be withdrawn in case adverse reactions occur (Boothe and Mealey, 2012). Steroid suspensions should be handled with care, and the guidelines of the manufacturer with regard to storage temperature and shelf life should be followed. The steroid suspensions represent some of the most abused and overused drugs in veterinary medicine. Other than for intralesional and intra-articular therapy, those long-acting preparations are hardly ever needed.
然而,它們具有重大缺點,例如血藥濃度不可預測、長期抑制下丘腦-垂體-腎上腺軸(單次給藥後可能持續數月)、可能誘發糖皮質激素抗性,以及一旦發生不良反應無法停藥(Boothe 和 Mealey,2012 年)。類固醇懸浮液需謹慎處理,並應遵循製造商關於儲存溫度與保存期限的指引。這類懸浮液是獸醫領域最常被濫用與過度使用的藥物之一。除病灶內注射與關節腔內治療外,長效製劑幾乎沒有必要使用。

The exceptions are fractious cats and cats that live outdoors and are only seen occasionally by their owners. The same anti-inflammatory effects can be achieved with much shorter acting oral preparations. Use of short-acting drugs allows the dose to be altered as needed and helps to minimize HPA axis suppression and other adverse effects (Feldman and Nelson, 2004).
例外情況包括兇猛貓隻及戶外散養、主人僅偶爾帶其就診的貓。相同抗炎效果可透過作用時間更短的口服製劑達成。使用短效藥物能隨需調整劑量,有助減輕下丘腦-垂體-腎上腺軸抑制及其他不良反應(Feldman 與 Nelson,2004 年)。

Combination Products  複方製劑

Combination products between glucocorticoids and other pharmaceutical products (e.g., antibiotics) are available. However, their use is associated with various problems, such as dose discrepancies and variable duration of effects of the constituent drugs.
市面上已有糖皮質激素與其他藥品(如抗生素)的複方製劑。然而,其使用伴隨著諸多問題,例如劑量差異及各成分藥物作用時間不一等。

Dose discrepancy means that administrations based on recommended dose for one of the drugs may result in underdosing or overdosing of the other drug in the product. The use of those drugs is discouraged.
劑量差異意指依據其中一種藥物的建議劑量給藥,可能導致複方製劑中另一種藥物的劑量不足或過量。此類藥物的使用應予以避免。

Therapeutic Application and Classes of Glucocorticoid Usage
糖皮質激素的治療應用與使用類別

Goals and General Guidelines
治療目標與一般準則

Except in case of physiological replacement, therapy with glucocorticoids is not directed at the inciting agent. Glucocorticoids are used to reduce the processes that are activated in response to a disease (Boothe and Mealey, 2012).
除生理性替代治療外,糖皮質激素治療並非針對誘發因子。糖皮質激素用於減緩疾病激活的反應過程(Boothe 和 Mealey,2012 年)。

Oftentimes, glucocorticoids are applied, although there is no indication or even a clear contraindication in higher than recommended doses and/or as depot preparations that lead to long-term suppression of the HPA axis. The goal is to bring the disease process under control with the lowest dose necessary. In serious conditions, initial IV application may be required. For this purpose, water-soluble ester preparations should be used. Thereafter, treatment should be continued with oral glucocorticoids (e.g., prednisolone).
通常情況下,糖皮質激素被應用於無明確適應症或甚至存在禁忌症的情況下,且劑量高於建議值及/或使用導致 HPA 軸長期抑制的長效製劑。目標是以最低必要劑量控制疾病進程。在嚴重情況下,可能需要初始靜脈注射。為此目的,應使用水溶性酯類製劑。之後,治療應以口服糖皮質激素(如潑尼松龍)繼續進行。

Parenteral use of depot preparations (insoluble steroid esters) should only be used in exceptional cases (i.e., if application of shorter acting steroids is not possible [fractious cats]). After achieving disease remission, the latter should be maintained with the lowest possible dose; alternate-day regimens using oral prednisolone should be used whenever indicated.
長效製劑(不溶性類固醇酯)的腸胃外使用僅應在特殊情況下(即無法使用短效類固醇時[如難控制的貓])使用。達到疾病緩解後,應以最低可能劑量維持治療;只要適用,應採用隔日口服潑尼松龍的給藥方案。

Cats have fewer GRs than dogs and require higher doses. For the discussion on the preferred use of prednisolone over prednisone, see the Route of Administration section.
貓咪的糖皮質激素受體(GRs)數量較狗少,因此需要更高劑量。關於優先使用潑尼松龍而非潑尼松的討論,請參閱「給藥途徑」章節。
Generally, given dose ranges should be regarded as approximate guidelines, because glucocorticoid sensitivity differs between individuals. Frequent reevaluations of patients treated with glucocorticoids are of utmost importance. It is the predominant opinion that cats require higher doses of glucocorticoids than dogs.
一般而言,所列劑量範圍應視為近似指導原則,因為個體對糖皮質激素的敏感度存在差異。對接受糖皮質激素治療的病患進行頻繁重新評估至關重要。主流觀點認為貓咪需要比狗更高的糖皮質激素劑量。

This belief is supported by a study demonstrating that cats have approximately half the density of GRs in skin and liver as compared to dogs, and the receptors have lower binding affinity (van den Broek and Stafford, 1992, Lowe et al., 2008a). Physiological effects of glucocorticoids occur at much lower doses than do anti-inflammatory and immunosuppressive doses (see Dose Equivalents of Glucocorticoids). Before initiating glucocorticoid therapy, the clinician should identify the goal (e.g., physiological replacement, suppression of inflammation, suppression of the immune system, or other actions like in neurological or neoplastic disorders) (Cohn, 2010). Other questions that should be answered prior to glucocorticoid therapy are (Ferguson et al, 2009):
此觀點得到一項研究的支持,該研究表明貓咪皮膚和肝臟中的糖皮質激素受體(GRs)密度約為狗的一半,且受體結合親和力較低(van den Broek and Stafford, 1992, Lowe et al., 2008a)。糖皮質激素的生理效應發生在遠低於抗炎和免疫抑制劑量的情況下(參見《糖皮質激素劑量當量》)。在開始糖皮質激素治療前,臨床醫師應明確治療目標(例如:生理性替代、抑制炎症、抑制免疫系統,或用於神經系統或腫瘤疾病等其他作用)(Cohn, 2010)。在糖皮質激素治療前應回答的其他問題包括(Ferguson et al, 2009):
  • Has an exact diagnosis been made and specific treatment been initiated?
    是否已確立精確診斷並開始特定治療?
  • Have other types of treatment been explored to minimize glucocorticoid dose and side effects?
    是否已探索其他治療方式以最小化糖皮質激素劑量及副作用?
  • Are there contraindications or known risk factors?
    是否存在禁忌症或已知風險因素?
  • How serious is the disease?
    這種疾病的嚴重程度如何?
  • What is the anticipated length of glucocorticoid therapy?
    糖皮質激素治療的預期療程是多久?

Physiological Replacement Therapy
生理性替代療法

Animals with primary or secondary adrenocortical insufficiency require replacement of glucocorticoids. In case of primary disease (Addison's disease), the majority of patients also need mineralocorticoid replacement. Replacement means to provide glucocorticoids in amounts similar to those of the naturally produced glucocorticoids (mainly cortisol).
患有原發性或繼發性腎上腺皮質功能不全的動物需要進行糖皮質激素替代治療。在原發性疾病(艾迪生病)的情況下,大多數患者還需要礦物皮質激素替代。替代意味著提供與自然產生的糖皮質激素(主要是皮質醇)量相似的糖皮質激素。

Ideal replacement mimics the hormonal output of the adrenal gland under basal conditions, which is roughly 1 mg/kg cortisol per day in dogs and cats. Dose increase is needed in times of stress (Ferguson et al, 2009). A perfect replacement is difficult to reach because of the dynamic function of the adrenal gland with minute-to-minute adaption of cortisol secretion according to the actual requirement. Prednisolone is the glucocorticoid preparation most commonly used for replacement therapy in a dose of 0.1 to 0.25 mg/kg once daily.
理想的替代治療應模擬腎上腺在基礎狀態下的激素分泌量,犬貓每日約需 1 毫克/公斤體重的皮質醇。在壓力時期需增加劑量(Ferguson 等,2009 年)。由於腎上腺具有動態功能,能根據實際需求每分鐘調整皮質醇分泌,因此要達到完美替代相當困難。潑尼松龍是最常用於替代療法的糖皮質激素製劑,每日一次劑量為 0.1 至 0.25 毫克/公斤。

Glucocorticoid sensitivity varies widely between individuals, and therefore, replacement doses have to be curtailed to the patient's need. In some dogs in which the mineralocorticoid deficiency is replaced by fludrocortisone (which also has glucocorticoid activity), additional prednisolone may not be required under normal conditions.
個體對糖皮質激素的敏感度差異極大,因此替代劑量需根據患者需求調整。某些犬隻若已使用氟氫可的松(兼具糖皮質激素活性)替代礦物皮質酮缺乏症,在正常情況下可能無需額外補充潑尼松龍。

During times of stress, the need for glucocorticoid activity increases. As a rough guideline, the replacement dose should be increased two to five times in case of moderate stress, and five to twenty times in case of severe stress (e.g., surgery) (Ferguson et al, 2009). See Chapter 12 for more details.
處於壓力狀態時,對糖皮質激素活性的需求會增加。粗略準則為:中度壓力時替代劑量應增加 2 至 5 倍,重度壓力(如手術)時則需增加 5 至 20 倍(Ferguson 等,2009 年)。詳見第 12 章說明。

Anti-Inflammatory Therapy
抗炎治療

Inflammatory and allergic disorders are the most common reasons for the use of glucocorticoids. If no specific treatment can be initiated or is insufficient, glucocorticoids can help to combat the clinical signs. However, there is a great potential for misuse in this category.
炎症和過敏性疾病是使用糖皮質激素最常見的原因。如果無法開始特定治療或治療不足,糖皮質激素可以幫助對抗臨床症狀。然而,這一類藥物有很大的濫用潛力。

If an infectious disease goes unnoticed, the use of glucocorticoids may have deleterious effects because the disease can progress and the outcome can potentially be fatal.
如果未被發現的感染性疾病使用糖皮質激素,可能會產生有害影響,因為疾病可能進展,結果可能致命。

Due to the general effects of glucocorticoids (e.g., reduction of fever, stimulation of appetite, feeling of euphoria, and suppression of the clinical signs of inflammation), the clinician may have the impression of improvement, while in fact the disease is worsening (Cohn, 2010). Calvert and Cornelius (1990b) described this as, “When glucocorticoids are misused, the patient may walk all the way to the necropsy laboratory.” There are a few exceptions, as in some infectious diseases (e.g., bacterial or Malassezia-induced otitis externa or severe ehrlichiosis), the concurrent administration of glucocorticoids may have beneficial effects.
由於糖皮質激素的一般效果(例如,降低發燒、刺激食慾、產生欣快感以及抑制炎症的臨床症狀),臨床醫生可能會有改善的印象,而實際上疾病正在惡化(Cohn, 2010)。Calvert 和 Cornelius(1990b)將其描述為「當糖皮質激素被濫用時,患者可能會一路走到屍檢室。」有一些例外情況,如在某些感染性疾病(例如細菌或馬拉色菌引起的外耳炎或嚴重的艾利希體病)中,同時使用糖皮質激素可能有益。

It is understood that in the latter disease the application should be limited to a few days (2 to 7 days) (Cohn, 2003, Rougier et al., 2005, Bensignor and Grandemange, 2006). Generally, before using glucocorticoids for their anti-inflammatory effects, information regarding specific conditions should be reviewed.
據了解,在後者疾病中,糖皮質激素的應用應限制在幾天內(2 至 7 天)(Cohn,2003;Rougier 等人,2005;Bensignor 和 Grandemange,2006)。一般而言,在利用糖皮質激素的抗炎作用之前,應複習有關特定條件的資訊。
Except in emergency cases (e.g., acute bronchial disease) in which IV administration of sodium succinate or sodium phosphate esters of prednisolone or methylprednisolone is indicated, oral prednisolone is usually the treatment of choice. In dogs, the anti-inflammatory dose of prednisolone is 0.5 to 1.0 mg/kg per day.
除緊急情況(例如急性支氣管疾病)需要靜脈注射潑尼松龍或甲基潑尼松龍的琥珀酸鈉或磷酸鈉酯外,口服潑尼松龍通常是首選治療方法。對於犬類,潑尼松龍的抗炎劑量為每天每公斤體重 0.5 至 1.0 毫克。

In cats, it is usually recommended to give twice the dose of dogs (e.g., 1.0 to 2.0 mg/kg) (Lowe et al., 2008a, Cohn, 2010). As soon as clinical signs of inflammation are under control, the dose should be reduced to the lowest necessary concentration. The induction period usually ranges between 5 and 7 days (Behrend and Kemppainen, 1997). Prednisolone (or methylprednisolone) enables accurate dose titration and the possibility of withdrawal in case of adverse effect. It is also the glucocorticoid that can be most appropriately used every other day after remission is achieved, thereby allowing the HPA axis to recover to a certain extent (Boothe and Mealey, 2012). There is some controversy as to whether the daily dose of prednisolone should be given at once or divided twice daily. As studies supporting either frequency are lacking, once-daily dosing seems reasonable—in particular in animals that are difficult to medicate (Lowe et al, 2008a).
在貓咪中,通常建議給予狗隻兩倍的劑量(例如 1.0 至 2.0 毫克/公斤)(Lowe 等人,2008a;Cohn,2010)。一旦炎症的臨床症狀得到控制,劑量應降低至所需的最低濃度。誘導期通常介於 5 至 7 天之間(Behrend 和 Kemppainen,1997)。潑尼松龍(或甲基潑尼松龍)能夠進行精確的劑量滴定,並在出現不良反應時可撤藥。它也是達成緩解後最適合隔日使用的糖皮質激素,從而讓 HPA 軸得以某種程度恢復(Boothe 和 Mealey,2012)。關於潑尼松龍的每日劑量應一次給予還是分兩次給予存在一些爭議。由於缺乏支持任一頻率的研究,每日一次給藥似乎更為合理——特別是對於難以給藥的動物(Lowe 等人,2008a)。
Topical instead of systemic glucocorticoids may be useful in inflammatory conditions of the eye, skin, respiratory tract, gastrointestinal tract, and joints. Topical steroids reduce inflammation by their local activity while minimizing systemic effects.
對於眼睛、皮膚、呼吸道、胃腸道及關節的發炎狀況,局部使用而非全身性給予的糖皮質激素可能更為適用。局部類固醇透過其局部活性來減輕發炎,同時將全身性影響降至最低。

Newer generation glucocorticoids (also called “soft glucocorticoids”) were designed specifically for topical use in humans, and some of them have also been investigated in small animals. Inhalant glucocorticoids are used in nebulizers or metered dose inhaler (MDI) in patients with chronic inflammatory airway inflammation.
新一代糖皮質激素(亦稱為「軟性糖皮質激素」)專為人類局部使用而設計,其中部分已在小型動物中進行研究。吸入型糖皮質激素用於霧化器或定量吸入器(MDI)中,治療患有慢性發炎性氣道炎症的病患。

They have relatively low systemic bioavailability because of their poor absorption and extensive first-pass metabolism in the liver into inactive metabolites. Examples are fluticasone and budesonide; their local potencies are extremely high. In the case of budesonide, the potency compared to cortisol is 60, that of fluticasone is 540 (Viviano, 2013). Both have been successfully used as inhaled glucocorticoids in dogs and cats (Bexfield et al., 2006, Padrid, 2006, Cohn et al., 2010, Galler et al., 2013). Budesonide is also available as an oral drug and exerts its inflammatory action locally in the intestinal tract. It is mainly used to treat IBD in dogs (Dye et al., 2013, Pietra et al., 2013). Mometasone is a potent topical glucocorticoid with low systemic effects designed for use in dermatological diseases; it is 25 times more potent than cortisol (Mendelsohn, 2009).
由於吸收不良及在肝臟中經歷廣泛的首過代謝轉化為無活性代謝物,它們的全身生物利用度相對較低。例如氟替卡松和布地奈德;它們的局部效力極高。就布地奈德而言,其效力與皮質醇相比為 60 倍,氟替卡松則為 540 倍(Viviano,2013 年)。兩者均已成功用作犬貓的吸入性糖皮質激素(Bexfield 等人,2006 年;Padrid,2006 年;Cohn 等人,2010 年;Galler 等人,2013 年)。布地奈德也可作為口服藥物使用,並在腸道局部發揮其抗炎作用。主要用於治療犬的炎症性腸病(Dye 等人,2013 年;Pietra 等人,2013 年)。莫米松是一種強效外用糖皮質激素,全身性作用低,專為皮膚病設計使用;其效力是皮質醇的 25 倍(Mendelsohn,2009 年)。

Immunosuppressive Therapy
免疫抑制治療

Glucocorticoids are considered the initial first-line therapy in various immune-mediated diseases, including immune-mediated hemolytic anemia, immune-mediated thrombocytopenia, immune-mediated polyarthritis, systemic lupus erythematosus, and pemphigus complex.
糖皮質激素被視為多種免疫介導疾病的首選初始治療,包括免疫介導性溶血性貧血、免疫介導性血小板減少症、免疫介導性多關節炎、系統性紅斑狼瘡及天疱瘡複合症。

They are also used to prevent organ rejection after transplantation and to reduce immunological reactions associated with some infectious diseases, such as feline infectious peritonitis (FIP) and ehrlichiosis (Cohn, 2003, Gregory et al., 2006, Case et al., 2007, Addie et al., 2009, Hopper et al., 2012). It should be noted, however, that treatment protocols for small animals are mostly empirical and adapted from human medicine. Rigorous evaluations by randomized double-blinded placebo-controlled trials have not been performed (Whitley and Day, 2011).
它們也被用於預防移植後的器官排斥,以及減少與某些傳染病相關的免疫反應,例如貓傳染性腹膜炎(FIP)和艾利希體症(Cohn, 2003; Gregory 等人, 2006; Case 等人, 2007; Addie 等人, 2009; Hopper 等人, 2012)。然而,應該注意的是,小動物的治療方案大多是經驗性的,並從人類醫學中改編而來。尚未進行隨機雙盲安慰劑對照試驗的嚴格評估(Whitley 和 Day, 2011)。
The goal of immune-suppressive therapy is to achieve disease remission quickly, which usually requires high doses; thereafter, the dose is tapered slowly to the lowest level that will maintain remission. Oral application of prednisolone is the preferred modality.
免疫抑制治療的目標是快速達到疾病緩解,這通常需要高劑量;之後,劑量會逐漸減少到能夠維持緩解的最低水平。口服潑尼松龍是首選的治療方式。

In acute or emergency situations, IV application of water-soluble esters of prednisolone or methylprednisolone may be indicated. Depot preparations do not allow dose adjustments and should not be used. The initial oral dose of prednisolone typically is 2 to 4 mg/kg in dogs and 2 to 8 mg/kg in cats per day (Cohn, 1997, Cohn, 2010, Lowe et al., 2008a). The dose is usually divided twice daily, based on the belief that this division will decrease gastrointestinal side effects. Generally, larger dogs should be treated with the lower end of the dose range (Cohn, 2010). In the opinion of the author, the high-end dose in cats should be used with great caution. The recommendation may in part be based on the frequent use of prednisone instead of prednisolone. As mentioned earlier, it is now known that only a small part of oral prednisone appears as prednisolone in the systemic circulation in cats (Graham-Mize and Rosser, 2004). Some clinicians prefer to use dexamethasone for the first few doses and thereafter switch to oral prednisolone. There are no controlled clinical studies to confirm any advantage of this approach. In one experimental study, dexamethasone was more effective than prednisone and cortisol in inhibiting the clearance of IgG-coated cells (Ruiz et al, 1991) (see Dose Equivalents of Glucocorticoids).
在急性或緊急情況下,可能需要靜脈注射水溶性潑尼松龍或甲基潑尼松龍酯類製劑。長效製劑無法調整劑量,因此不應使用。潑尼松龍的初始口服劑量通常為犬隻每日 2 至 4 毫克/公斤,貓咪每日 2 至 8 毫克/公斤(Cohn, 1997; Cohn, 2010; Lowe 等人, 2008a)。基於認為分次給藥可減少胃腸道副作用,通常將每日劑量分為兩次給予。一般而言,體型較大的犬隻應使用劑量範圍的下限(Cohn, 2010)。作者認為,貓咪的高劑量使用應極為謹慎。此建議可能部分基於經常使用潑尼松而非潑尼松龍的情況。如前所述,現已知貓咪口服潑尼松後僅有少量轉化為系統循環中的潑尼松龍(Graham-Mize 與 Rosser, 2004)。部分臨床醫師偏好在前幾劑使用地塞米松,之後再轉換為口服潑尼松龍。目前尚無對照臨床研究證實此方法的任何優勢。 在一項實驗研究中,地塞米松在抑制 IgG 包被細胞的清除方面比潑尼松和皮質醇更有效(Ruiz 等人,1991 年)(見糖皮質激素的劑量等效性)。
If dexamethasone is used, equipotent doses have to be calculated (e.g., 2 mg/kg prednisolone equals approximately 0.3 mg/kg dexamethasone). High doses of prednisolone are continued for several days after remission is achieved; usually, high doses are needed for 1 to 4 weeks.
如果使用地塞米松,則需計算等效劑量(例如,2 毫克/公斤的潑尼松龍大約等於 0.3 毫克/公斤的地塞米松)。在病情緩解後,仍需繼續使用高劑量的潑尼松龍數天;通常,高劑量需要持續 1 至 4 週。
Thereafter, the dose should be tapered slowly over many weeks to months (see Glucocorticoid Reduction Protocol). Adverse effects are commonly seen with immunosuppressive doses, and the owner has to be warned about them. The addition of other immunosuppressive agents may have steroid-sparing effects and may allow disease control at lower glucocorticoid doses and faster tapering of the dose (Cohn, 2010).
之後,劑量應在數週至數月內緩慢遞減(見糖皮質激素減量方案)。免疫抑制劑量常伴隨不良反應,需事先告知飼主。添加其他免疫抑制劑可能具有節省類固醇的效果,並可能在較低的糖皮質激素劑量下控制疾病,以及更快地減少劑量(Cohn,2010 年)。

Antineoplastic Therapy  抗腫瘤治療

Prednisolone is often included in combination chemotherapy protocols for their cytotoxic activity. Additional desired effects of prednisolone are reduction of edema and inflammation, appetite-stimulations, and decrease of nausea and vomiting.
潑尼松龍常被納入聯合化療方案中,因其具有細胞毒性活性。潑尼松龍的其他理想效果包括減輕水腫和炎症、刺激食慾,以及減少噁心和vomiting。

Oral prednisolone is also used for alleviation of chronic cancer pain; the recommended dose in dogs is 0.25 to 1.0 mg/kg, and for cats it is 0.5 to 1.0 mg/kg (Mealey et al., 2003, Lascelles, 2013). Interestingly, in dogs with multicentric lymphoma using a multidrug protocol, the benefit of prednisolone with regard to outcome was recently questioned (Zandvliet et al, 2013). In case of financial or other restrictions, prednisone/prednisolone (initial dose, 2 mg/kg) is sometimes used as a single agent in lymphoma cases with a possible tumor control of 1 to 2 months. Besides the short remission period, other disadvantages include serious side effects and the potential induction of multidrug resistance.
口服潑尼松龍也用於緩解慢性癌症疼痛;犬的推薦劑量為 0.25 至 1.0 毫克/公斤,貓則為 0.5 至 1.0 毫克/公斤(Mealey 等人,2003 年;Lascelles,2013 年)。有趣的是,最近有研究對潑尼松龍在多中心性淋巴瘤犬使用多藥方案中的療效提出了質疑(Zandvliet 等人,2013 年)。在經濟或其他限制條件下,潑尼松/潑尼松龍(初始劑量 2 毫克/公斤)有時會作為單一藥物用於淋巴瘤病例,可能控制腫瘤 1 至 2 個月。除了緩解期短外,其他缺點還包括嚴重的副作用和可能誘導多藥耐藥性。

The latter would limit the success of more aggressive drug therapy in case the owner changes his or her mind (Chun, 2009, Vail et al., 2013). Besides the potential risk of decreased response to later chemotherapy, glucocorticoids induce apoptosis of neoplastic lymphocytes and may interfere with the diagnosis; they should therefore only be used after the diagnosis has been made.
後者將限制在飼主改變心意時採取更積極藥物治療的成功率(Chun, 2009; Vail 等人, 2013)。除了可能降低對後續化療反應的風險外,糖皮質激素還會誘導腫瘤淋巴細胞凋亡,並可能干擾診斷;因此,它們應僅在確診後使用。
Glucocorticoids may also be used in patients with hypercalcemia of malignancy (see Chapter 15) and to increase blood glucose concentrations in cases with insulinoma (see Chapter 9).
糖皮質激素也可用於惡性腫瘤引起的高鈣血症患者(見第 15 章),以及在胰島素瘤病例中提高血糖濃度(見第 9 章)。

Shock  休克

The use of high-dose glucocorticoid therapy for shock has fallen repeatedly in and out of favor (Cohn, 2010). Different from the past, high-dose glucocorticoids are nowadays mentioned only in the treatment protocols of anaphylactic shock. In humans, epinephrine is the first line treatment with a rapid onset of action; and although glucocorticoids are often used, their onset of action is considered quite slow (Lieberman, 2014). A systemic review of databases failed to identify adequately designed studies, and no relevant evidence for the use of glucocorticoids was found. The authors were therefore unable to make any recommendations for the use of glucocorticoids in the treatment of anaphylaxis in humans (Choo et al, 2013). Similarly, in dogs and cats, epinephrine is the drug of choice for treatment of anaphylaxis (Shmuel and Cortes, 2013). Glucocorticoids continue to be frequently used in small animals with anaphylaxis; however, as in humans, no studies support their benefit. Of note, glucocorticoids themselves may cause allergic reaction and even anaphylaxis. The application of methylprednisolone sodium succinate 30 mg/kg intravenously is commonly mentioned for cases with anaphylactic shock (Dowling, 2009).
高劑量糖皮質激素療法用於休克的治療,其受青睞程度時高時低(Cohn,2010 年)。與過去不同,現今高劑量糖皮質激素僅在過敏性休克的治療方案中被提及。在人類中,腎上腺素因其作用迅速而成為首選治療藥物;儘管糖皮質激素常被使用,但其作用起始被認為相當緩慢(Lieberman,2014 年)。一項系統性文獻回顧未能找到設計完善的研究,也未發現支持使用糖皮質激素的相關證據。因此,作者無法對糖皮質激素用於人類過敏性休克的治療提出任何建議(Choo 等人,2013 年)。同樣地,在犬貓中,腎上腺素是治療過敏性休克的首選藥物(Shmuel 和 Cortes,2013 年)。糖皮質激素在小動物過敏性休克的治療中仍頻繁使用;然而,如同在人類中一樣,沒有研究支持其益處。值得注意的是,糖皮質激素本身可能引起過敏反應甚至過敏性休克。 在過敏性休克病例中,靜脈注射 30 毫克/公斤的甲基強的松龍琥珀酸鈉是常見的處置方式(Dowling, 2009)。
In humans with septic shock, relative adrenal insufficiency may be present and low-dose glucocorticoid therapy for a few days appeared to be safe and may have some benefit for shock reversal and short-term survival (Annane et al., 2009, Sligl et al., 2009). Although relative adrenal insufficiency may also exist in dogs and cats, no clinical studies have investigated the use of low-dose glucocorticoid therapy in cases with septic shock. The results of one experimental study using low-dose corticosteroids showed beneficial effects in dogs with severe sepsis; however, results also pointed to reduced bacterial clearance even with short term treatment (Hicks et al, 2012). Therefore, no recommendation can be made for the application of glucocorticoids in septic shock. They should only be used at low doses, if at all, under close monitoring of the patient.
在人類的敗血性休克中,可能出現相對性腎上腺功能不全,而低劑量的糖皮質激素治療數天似乎是安全的,並可能對休克逆轉和短期生存有所助益(Annane 等人,2009;Sligl 等人,2009)。雖然犬貓也可能存在相對性腎上腺功能不全,但目前尚無臨床研究探討低劑量糖皮質激素治療在敗血性休克病例中的應用。一項使用低劑量皮質類固醇的實驗研究顯示,對患有嚴重敗血症的犬隻有積極效果;然而,結果也指出即使短期治療也會降低細菌清除率(Hicks 等人,2012)。因此,無法對糖皮質激素在敗血性休克中的應用提出建議。如果必須使用,應僅在低劑量下並密切監測病患狀況。

Neurological Diseases  神經系統疾病

Previously, glucocorticoids were advocated for the treatment of traumatic brain injury on the basis that they decreased brain edema. However, in humans, high-dose methylprednisolone was associated with an increase in mortality. Their use in humans as well as in small animals with brain injury is no longer recommended (DiFazio and Fletcher, 2013). In acute spinal cord injury, methylprednisolone is considered to reveal free radical-scavenging effects, which other glucocorticoids are lacking. It is suggested that methylprednisolone has a positive effect if administered within 8 hours of the time of insult.
過去,糖皮質激素曾被提倡用於治療創傷性腦損傷,基於其能減少腦水腫的理論。然而,在人體中,高劑量的甲基強的松龍與死亡率上升相關。因此,無論是人類還是小動物,在腦損傷情況下使用此類藥物已不再被建議(DiFazio 與 Fletcher,2013 年)。在急性脊髓損傷中,甲基強的松龍被認為具有清除自由基的效果,這是其他糖皮質激素所缺乏的特性。建議若能在受傷後 8 小時內給予甲基強的松龍,可能產生積極效果。

Suggested initial dose of methylprednisolone sodium succinate is 30 mg/kg followed by repeated boluses of 15 mg/kg at 2 and 6 hours, then every 8 hours up to 48 hours after the trauma (Park et al, 2012). However, these doses are enormous and have the potential of serious side effects (e.g., gastrointestinal ulceration, immunosuppression, and impaired wound healing). Sound data to support the use of this protocol is lacking in small animals, and its use in acute spinal cord injury is currently controversial (Park et al, 2012).
甲基強的松龍琥珀酸鈉的建議初始劑量為 30 毫克/公斤,隨後於 2 小時和 6 小時重複推注 15 毫克/公斤,之後每 8 小時一次,持續至創傷後 48 小時(Park 等人,2012 年)。然而,這些劑量極大,可能導致嚴重副作用(例如胃腸道潰瘍、免疫抑制及傷口癒合受損)。目前缺乏有力數據支持此方案在小動物中的應用,且其在急性脊髓損傷中的使用仍具爭議性(Park 等人,2012 年)。

Adverse Effects  不良反應

Adverse effects are common with glucocorticoid therapy, in particular if the protocol includes high doses and/or long-term application. Severely reduced quality of life and even fatal outcomes are possible. On the other hand, glucocorticoids may be life-saving and have major therapeutic benefits when used adequately.
糖皮質激素治療常見不良反應,尤其是採用高劑量和/或長期用藥方案時。可能嚴重降低生活品質,甚至導致致命後果。另一方面,若使用得當,糖皮質激素可能挽救生命並具有重要治療效益。

As with any therapy, benefits must be weighed against potential adverse effects. Glucocorticoids can also alter the effectiveness or toxicity of other drugs. One of the most important examples is the substantially increased risk of gastric ulceration when glucocorticoids are co-administered with non-steroidal anti-inflammatory agents (Table 14-4). Numerous adverse effects may occur; the most important ones are discussed in the following section.
與任何治療一樣,必須權衡效益與潛在不良反應。糖皮質激素亦可能改變其他藥物的療效或毒性。最重要範例之一是當糖皮質激素與非類固醇抗炎藥併用時,胃潰瘍風險顯著增加(表 14-4)。可能發生眾多不良反應;最重要者將於下節討論。

TABLE 14-4. Potential Drug Interactions of Glucocorticoids
表 14-4. 糖皮質激素潛在藥物相互作用

DRUGPOTENTIAL INTERACTION  潛在相互作用
Antacids  抗酸劑Reduced oral glucocorticoid absorption
口服糖皮質激素吸收減少
Anticholinesterase agents
抗膽鹼酯酶藥物
Muscle weakness  肌肉無力
Aspirin (salicylates)  阿司匹林(水楊酸鹽)Reduced salicylate blood levels
水楊酸血藥濃度降低
Cyclophosphamide  環磷酰胺Inhibition of hepatic metabolism of cyclophosphamide
抑制環磷酰胺的肝臟代謝
Cyclosporine  環孢素Increase blood levels of each, by inhibiting hepatic metabolism of each other
通過抑制彼此的肝臟代謝來增加各自的血液濃度
Digoxin  地高辛Secondary to hypokalemia, increased risk for arrhythmias
繼發於低鉀血症,增加心律不整的風險
Diuretics (furosemide, thiazides)
利尿劑(furosemide,噻嗪類)
Increased risk of hypokalemia
低血鉀風險增加
Ephedrine  麻黃鹼Increased metabolism of glucocorticoids
糖皮質激素代謝增加
Estrogens  雌激素Potentiation of glucocorticoid effect
糖皮質激素效應增強
Insulin  胰島素Decreased insulin effect  胰島素效應降低
Ketoconazole  酮康唑Decreased metabolism of glucocorticoids
糖皮質激素代謝降低
Macrolide antibiotics (erythromycin, clarithromycin)
大環內酯類抗生素(紅黴素、克拉黴素)
Decreased metabolism of glucocorticoids
糖皮質激素代謝降低
Nonsteroidal anti-inflammatory drugs (NSAIDs)
非類固醇抗炎藥(NSAIDs)
Increased risk of gastric ulceration
胃潰瘍風險增加
Phenobarbital  苯巴比妥Increased metabolism of glucocorticoids
糖皮質激素代謝增加
Phenytoin  苯妥英Increased metabolism of glucocorticoids
糖皮質激素代謝增加
Rifampin  利福平Increased metabolism of glucocorticoids
糖皮質激素代謝增加
Vaccines  疫苗Immunosuppressive doses of glucocorticoids may augment virus replication, avoid live-attenuated vaccines
免疫抑制劑量的糖皮質激素可能增強病毒複製,應避免使用減毒活疫苗

Modified from Plumb DC, editor: Plumb’s veterinary drug handbook, ed 7, Ames, IA, 2011, Wiley-Blackwell.
改編自 Plumb DC 主編:《Plumb's 獸醫藥物手冊》,第 7 版,愛荷華州埃姆斯市,2011 年,Wiley-Blackwell 出版

Iatrogenic Hyperadrenocorticism
醫源性腎上腺皮質功能亢進症

In a significant percentage of dogs with hyperadrenocorticism, the disease is in fact caused by exogenous glucocorticoids. Clinical signs and laboratory abnormalities of iatrogenic hyperadrenocorticism are identical to those of the endogenous form of the disease.
在相當比例的犬隻腎上腺皮質功能亢進症病例中,該疾病實際上是由外源性糖皮質激素引起。醫源性腎上腺皮質功能亢進症的臨床症狀和實驗室異常與內源性形式的疾病完全相同。

Polyuria, polydipsia, polyphagia, and panting usually manifest within the first 1 to 2 weeks of therapy in dogs (e.g., with oral prednisolone in anti-inflammatory or immunosuppressive doses). These signs may even occur within hours after the first dose. They dissipate as the dose is tapered or discontinued (Feldman and Nelson, 2004). More severe signs such as cutaneous lesions (thin hair coat, alopecia, hyperpigmentation, pyoderma, calcinosis cutis, and thin skin), poor wound healing, muscle weakness and atrophy, hepatomegaly due to steroid hepatopathy, pendulous abdomen, urinary tract infection, and myotonia usually require a longer time and develop within weeks to months (Behrend and Kemppainen, 1997, Huang et al., 1999, Feldman and Nelson, 2004). Lethargy may be seen either as a short- or long-term effect. Resolution of those signs takes considerably longer than cessation of polyuria, polydipsia, polyphagia, and panting. Improvement may be seen within a few weeks; however, depending on severity, resolution may take up to 6 months or longer.
多尿、多飲、多食及喘息等症狀通常於犬隻治療的頭 1 至 2 週內出現(例如,使用口服潑尼松龍的抗炎或免疫抑制劑量時)。這些徵兆甚至可能在首次給藥後數小時內發生。隨著劑量遞減或停藥,這些症狀會逐漸消退(Feldman 與 Nelson,2004 年)。更嚴重的症狀如皮膚病變(毛髮稀疏、脫毛、色素沉著過度、膿皮病、皮膚鈣質沉著及皮膚變薄)、傷口癒合不良、肌肉無力與萎縮、因類固醇肝病導致的肝腫大、腹部下垂、尿路感染及肌強直,通常需要較長時間才會顯現,並在數週至數月內發展(Behrend 與 Kemppainen,1997 年;Huang 等人,1999 年;Feldman 與 Nelson,2004 年)。嗜睡可能是短期或長期的副作用。這些症狀的消退時間遠比多尿、多飲、多食及喘息的停止來得長。改善可能在幾週內可見;然而,依嚴重程度而定,完全恢復可能需要長達 6 個月或更久。

Resolution may not always be complete; for instance, persistence of calcinosis cutis and of pulmonary mineralization has been reported, and there may be color change in new hair growth (Huang et al., 1999, Blois et al., 2009). Exogenous glucocorticoids lead to atrophy of the adrenal glands, which may be seen ultrasonographically as reduction in length and height of the cranial and caudal pole. The decrease in size is progressive during therapy and percentage change varies between dogs (Pey et al, 2012). Generally, there is a large individual variation with regard to glucocorticoid sensitivity. The same dose may be tolerated well in one dog, whereas substantial side effects are seen in another dog. Even low doses (e.g., suggested for physiological replacement) may induce side effects in sensitive dogs.
症狀的緩解可能並非總是徹底的;例如,已有報告指出皮膚鈣質沉著症和肺部礦化可能持續存在,且新生的毛髮可能出現顏色變化(Huang 等人,1999 年;Blois 等人,2009 年)。外源性糖皮質激素會導致腎上腺萎縮,這在超聲檢查中可表現為腎上腺頭尾極長度和高度的減少。這種尺寸的減小在治療過程中是漸進的,且不同犬隻之間的百分比變化各異(Pey 等人,2012 年)。一般而言,個體對糖皮質激素的敏感度存在很大差異。相同的劑量可能在一隻犬隻中耐受良好,而在另一隻犬隻中則可能出現顯著的副作用。即使是低劑量(例如建議用於生理性替代的劑量)也可能在敏感犬隻中誘發副作用。

In particular, large breed dogs may develop profound weakness and paraparesis when treated with high doses of glucocorticoids.
特別是大型犬種在接受高劑量糖皮質激素治療時,可能會出現嚴重的虛弱和後肢輕癱。
Cats are considered to be more resistant than dogs toward the development of iatrogenic hyperadrenocorticism. Associated signs occur most often after repeated injections of long-acting glucocorticoid preparations; however, occurrence of signs (e.g., polyphagia and weight gain) have also been reported after a single injection of methylprednisolone acetate (Ferasin, 2001). It is often assumed that polyuria and polydipsia do not occur in cats until diabetes mellitus is induced by exogenous glucocorticoids. Although this may be true for the majority of cases, polyuria and polydipsia have also been reported in cats without diabetes (Lien et al., 2006, Lowe et al., 2008a). Other signs of iatrogenic hyperadrenocorticism are similar to those seen in dogs. Unique to the cat is the development of spontaneous tearing and sloughing of the skin and, in rare cases, medial curling of the pinnae (Scott et al., 1982, Lowe et al., 2008a, Lowe et al., 2008b). Steroid hepatopathy does occur in cats, but is considered to be less common than in dogs (Schaer and Ginn, 1999). Of note, signs of iatrogenic hyperadrenocorticism may not only occur with oral or parenteral application but also with topical treatment. Exceptions are the newer generations of topical glucocorticoids (budesonide, fluticasone), which seem to have minimal side effects. There is no treatment for iatrogenic hyperadrenocorticism.
貓被認為比狗更能抵抗醫源性腎上腺皮質功能亢進症的發生。相關症狀最常在反覆注射長效型糖皮質激素製劑後出現;然而,也有報告指出,單次注射甲基強的松龍醋酸酯(Ferasin,2001 年)後會出現症狀(例如多食和體重增加)。通常認為,直到外源性糖皮質激素誘發糖尿病之前,貓不會出現多尿和多飲。雖然這在多數情況下可能是正確的,但也有報告指出,貓在沒有糖尿病的情況下也會出現多尿和多飲(Lien 等,2006 年;Lowe 等,2008a)。醫源性腎上腺皮質功能亢進症的其他症狀與狗所見相似。貓獨特的症狀包括自發性流淚和皮膚脫落,以及在極少數情況下耳廓內捲(Scott 等,1982 年;Lowe 等,2008a;Lowe 等,2008b)。類固醇性肝病確實會在貓身上發生,但被認為比狗少見(Schaer 和 Ginn,1999 年)。 值得注意的是,醫源性腎上腺皮質功能亢進的症狀不僅可能發生於口服或腸外給藥,也可能出現在局部治療中。例外的是新一代的局部性糖皮質激素(布地奈德、氟替卡松),它們似乎副作用極小。目前醫源性腎上腺皮質功能亢進尚無治療方法。

The only measure consists in cessation of glucocorticoid therapy. Because the HPA axis is usually suppressed, adrenocortical insufficiency may develop if therapy is abruptly stopped (see later and Glucocorticoid Reduction Protocol section).
唯一措施在於停止糖皮質激素治療。由於下丘腦-垂體-腎上腺軸通常受到抑制,若突然停藥可能導致腎上腺皮質功能不全(詳見後文及糖皮質激素減量方案部分)。

Alteration of the Hypothalamic Pituitary Adrenal Axis
下丘腦垂體腎上腺軸的改變

Closely related to the development of clinical signs of glucocorticoid excess is the suppression of the HPA axis. Of note, however, suppression of the HPA axis may be present without the animal displaying clinical signs of hyperadrenocorticism. All synthetic glucocorticoids suppress CRH and ACTH secretion, but their effects are not equivalent.
與糖皮質激素過量臨床症狀發展密切相關的是下丘腦-垂體-腎上腺軸的抑制。但需注意,即使動物未表現出腎上腺皮質功能亢進的臨床症狀,HPA 軸的抑制仍可能存在。所有合成糖皮質激素都會抑制 CRH 和 ACTH 的分泌,但它們的效果並不等同。

Generally, the greater the anti-inflammatory potency, the greater is the capacity to suppress the HPA axis. Over time, the glucocorticoid-producing cells of the two inner zones of the adrenal cortex atrophy and the responsiveness of the HPA axis decrease progressively (Behrend and Kemppainen, 1997). Animals with suppression of the HPA lack the ability to secrete cortisol sufficiently in response to stress and may develop signs of acute adrenocortical insufficiency. The zona glomerulosa and its function are preserved, and therefore, electrolyte abnormalities associated with mineralocorticoid deficiency are not seen.
一般而言,抗炎效力越強,抑制下視丘-腦下垂體-腎上腺軸(HPA 軸)的能力也越大。隨著時間推移,腎上腺皮質內兩層區域中負責生產糖皮質激素的細胞會萎縮,HPA 軸的反應性也會逐漸降低(Behrend 與 Kemppainen,1997 年)。HPA 軸受抑制的動物無法在壓力狀態下分泌足夠的皮質醇,可能出現急性腎上腺皮質功能不全的症狀。由於腎小球帶及其功能得以保留,因此不會出現與礦物皮質激素缺乏相關的電解質異常。

Suppression of the HPA axis may occur quite soon after the onset of glucocorticoid therapy.
HPA 軸的抑制可能在糖皮質激素治療開始後不久即發生。
Oral, parenteral, and topical administration all lead to HPA axis suppression, which is most serious and prolonged after repeated injection of long-acting preparations (water-insoluble esters).
口服、腸胃外及局部給藥均會導致 HPA 軸抑制,其中以反覆注射長效製劑(水不溶性酯類)後的情況最為嚴重且持續時間最長。

In experimental dogs, a single dose of methylprednisolone acetate (2.5 mg/kg IM) suppressed the HPA axis, as demonstrated by reduced response of cortisol after ACTH, for at least 5 weeks (Kemppainen et al, 1981). A dog that was treated for pruritus with a similar single dose of methylprednisolone acetate experienced HPA axis suppression for 7 weeks (Meyer, 1982). A single dose of triamcinolone acetonide (0.22 mg/kg IM) suppressed the HPA axis for 2 to 4 weeks (Kemppainen et al, 1982). Single IV doses of 0.01 mg/kg and 0.1 mg/kg dexamethasone (as free alcohol) resulted in reduced cortisol response after ACTH for 16 to 24 hours and 32 hours, respectively. Dexamethasone sodium phosphate was associated with a somewhat shorter suppression compared with the free alcohol with the 0.01 mg/kg dose (Kemppainen and Sartin, 1984). A single dose of prednisone (2.2 mg/kg IM) did not result in adrenocortical suppression (Kemppainen et al, 1982). However, even prednisone/prednisolone given at physiological doses can suppress the HPA axis when given for some time. Oral application of 0.22 mg/kg (physiological dose) or 0.55 mg/kg per day led to a significantly depressed cortisol after ACTH stimulation after 1 week.
在實驗犬中,單次劑量的甲基強的松龍醋酸酯(2.5 毫克/公斤肌肉注射)抑制了 HPA 軸,表現為對 ACTH 後皮質醇反應降低,持續至少 5 週(Kemppainen 等人,1981 年)。一隻因搔癢症接受類似單次甲基強的松龍醋酸酯治療的犬隻,其 HPA 軸抑制持續了 7 週(Meyer,1982 年)。單次劑量的曲安西龍丙酮酸酯(0.22 毫克/公斤肌肉注射)使 HPA 軸抑制持續 2 至 4 週(Kemppainen 等人,1982 年)。單次靜脈注射 0.01 毫克/公斤和 0.1 毫克/公斤的地塞米松(游離醇形式)分別導致對 ACTH 後皮質醇反應降低 16 至 24 小時和 32 小時。與游離醇相比,地塞米松磷酸鈉在 0.01 毫克/公斤劑量下的抑制作用稍短(Kemppainen 和 Sartin,1984 年)。單次劑量的強的松(2.2 毫克/公斤肌肉注射)未導致腎上腺皮質抑制(Kemppainen 等人,1982 年)。然而,即使是生理劑量的強的松/強的松龍,長期使用時也能抑制 HPA 軸。 口服給予 0.22 毫克/公斤(生理劑量)或每天 0.55 毫克/公斤的劑量,一週後會顯著抑制 ACTH 刺激後的皮質醇分泌。

Administration of 1 mg/kg prednisone daily resulted in HPA axis suppression within 2 weeks; administration of 1 mg/kg prednisolone every other day was associated with HPA axis suppression after 3 weeks (Chastain and Graham, 1979, Moore and Hoenig, 1992). Cats are more resistant to the development of clinical signs of iatrogenic hyperadrenocorticism; however, they experience HPA suppression similar to dogs (Behrend and Kemppainen, 1997). The application of a single dose of methylprednisolone acetate (20 mg IM) to healthy cats led to a reduced cortisol response after ACTH within 1 week (Scott et al, 1979). In a cat treated with subcutaneous (SC) methylprednisolone acetate (20 mg) weekly for 4 weeks, complete suppression of the HPA axis was still seen 1 month after the last injection (Ferasin, 2001). Daily oral administration of prednisolone (2 mg/kg) resulted in HPA axis suppression after 1 week and was more pronounced after 2 weeks of daily therapy (Middleton et al, 1987). Similarly, daily oral methylprednisolone (4 mg/kg) was associated with HPA axis suppression within 1 week (Crager et al, 1994).
每日給予 1 毫克/公斤的潑尼松在 2 週內導致 HPA 軸抑制;每隔一天給予 1 毫克/公斤的潑尼松龍則在 3 週後與 HPA 軸抑制相關(Chastain and Graham, 1979, Moore and Hoenig, 1992)。貓對於醫源性腎上腺皮質功能亢進的臨床症狀發展更具抵抗力;然而,它們經歷的 HPA 抑制與狗相似(Behrend and Kemppainen, 1997)。對健康貓單次應用甲基潑尼松龍醋酸酯(20 毫克肌肉注射)在 1 週內導致對 ACTH 的皮質醇反應降低(Scott et al, 1979)。在一隻每週皮下注射甲基潑尼松龍醋酸酯(20 毫克)連續 4 週的貓中,最後一次注射後 1 個月仍觀察到 HPA 軸的完全抑制(Ferasin, 2001)。每日口服潑尼松龍(2 毫克/公斤)在 1 週後導致 HPA 軸抑制,且在每日治療 2 週後更為明顯(Middleton et al, 1987)。同樣地,每日口服甲基潑尼松龍(4 毫克/公斤)在 1 週內與 HPA 軸抑制相關(Crager et al, 1994)。
Any topically applied glucocorticoid can suppress the HPA axis. Application of triamcinolone, fluocinonide, and betamethasone valerate on the skin of healthy dogs (once daily for 5 days) resulted in decreased cortisol after stimulation with ACTH within 5 days. The HPA axis remained suppressed for 3 to 4 weeks after the last treatment (Zenoble and Kemppainen, 1987). Ophthalmic instillation of 1% prednisolone acetate or 0.1% dexamethasone four times daily in both eyes resulted in HPA axis suppression within 2 weeks, intensifying throughout the treatment period (Roberts et al., 1984, Glaze et al., 1988). Ototopical administration of therapeutic doses of dexamethasone-containing ointment daily to healthy dogs resulted in HPA axis suppression within 11 days (Abraham et al, 2005). The new generation of topical steroids cause minimal signs of iatrogenic hyperadrenocorticism but are associated with HPA axis suppression. Oral budesonide in dogs with IBD resulted in significantly lower post-ACTH cortisol concentrations after 30 days of therapy (Tumulty et al, 2004). Inhalant budesonide in cats with chronic bronchial disease resulted in HPA axis suppression in three of 15 cases (Galler et al, 2013). Inhaled fluticasone in healthy dogs and inhaled flunisolide in healthy cats suppressed the HPA axis within 2 to 3 weeks (Reinero et al., 2006, Cohn et al., 2008).
任何局部應用的糖皮質激素都可能抑制 HPA 軸。在健康犬隻皮膚上每日一次連續 5 天應用曲安西龍、氟輕鬆和戊酸倍他米松後,5 天內 ACTH 刺激後的皮質醇水平下降。最後一次治療後,HPA 軸的抑制狀態持續了 3 至 4 週(Zenoble 和 Kemppainen,1987 年)。雙眼每日四次滴注 1%醋酸潑尼松龍或 0.1%地塞米松,兩週內即導致 HPA 軸抑制,且隨治療時間延長而加劇(Roberts 等,1984 年;Glaze 等,1988 年)。健康犬隻每日耳部局部應用含治療劑量地塞米松的軟膏,11 天內即出現 HPA 軸抑制(Abraham 等,2005 年)。新一代局部類固醇雖極少引發醫源性腎上腺皮質功能亢進的症狀,但仍與 HPA 軸抑制相關。口服布地奈德治療 IBD 犬隻 30 天後,其 ACTH 刺激後的皮質醇濃度顯著降低(Tumulty 等,2004 年)。 在患有慢性支氣管疾病的貓中,吸入型布地奈德導致 15 例中有 3 例出現 HPA 軸抑制(Galler 等人,2013 年)。健康犬吸入氟替卡松及健康貓吸入氟尼縮松均在 2 至 3 週內抑制了 HPA 軸(Reinero 等人,2006 年;Cohn 等人,2008 年)。
Diagnosis of HPA axis suppression is made by performing an ACTH stimulation test. Depending on the severity, post-ACTH cortisol concentrations can be below the detection limit of the cortisol assay, low (e.g., 2 to 5 μg/dL, 55 to 138 nmol/L) or low-normal.
HPA 軸抑制的診斷是通過進行 ACTH 刺激試驗來確定的。根據嚴重程度,ACTH 刺激後的皮質醇濃度可能低於皮質醇檢測的檢測限、偏低(例如 2 至 5 μg/dL,55 至 138 nmol/L)或處於正常低值。

Animals with undetectable or low concentrations are at risk for signs of adrenal insufficiency, in particular when encountering a stressful situation. Potentially lethal situations may arise. If clinical signs (e.g., lethargy, anorexia, or vomiting) develop after cessation of steroids, prednisolone administrations should be instituted.
皮質醇濃度無法檢測或偏低的動物面臨腎上腺功能不全症狀的風險,尤其是在遭遇壓力情境時。可能出現致命情況。若在停用類固醇後出現臨床症狀(如嗜睡、厭食或vomiting),應開始給予潑尼松龍治療。

The dose is somewhat arbitrary and depends on the clinical situation. If severity of signs and extent of stress are moderate, prednisolone doses between 0.5 to 1 mg/kg/day may be sufficient; doses up to 2 to 4 mg/kg/day may be needed temporarily in life-threatening situations. The prednisolone dose should then be tapered slowly. Generally, glucocorticoids should be reduced slowly after a longer period of glucocorticoid administration (e.g., > 2 weeks). Suppression of the HPA axis is usually reversible. The length of time required for full axis recovery depends on duration, dose, preparation, and frequency of application of the steroid.
劑量的選擇具有一定隨意性,需視臨床情況而定。若症狀嚴重程度與壓力程度中等,每日 0.5 至 1 毫克/公斤體重的潑尼松龍劑量可能已足夠;在危及生命的情況下,可能需要暫時提高至每日 2 至 4 毫克/公斤體重。隨後應緩慢遞減潑尼松龍劑量。一般而言,長期使用糖皮質激素(如超過兩週)後,應逐步緩慢減少用量。下視丘-腦垂體-腎上腺軸(HPA 軸)的抑制通常可逆,其完全恢復所需的時間取決於類固醇使用的持續時間、劑量、製劑類型及給藥頻率。

Single doses of triamcinolone acetonide or methylprednisolone acetate can suppress adrenal responsiveness for up to 5 weeks (see earlier). Multiple injections of long-acting preparations will aggravate the suppressive effect, and HPA axis malfunction may persist for months. Oral administration of shorter-acting or less-potent preparations may result in quicker normalization (Behrend and Kemppainen, 1997).
單次注射曲安奈德或醋酸甲基潑尼松龍可抑制腎上腺反應達五週之久(見前文)。多次注射長效製劑會加劇此抑制作用,導致 HPA 軸功能異常可能持續數月。口服短效或效力較低的製劑可能使功能更快恢復正常(Behrend 與 Kemppainen,1997 年)。
Abrupt cessation of glucocorticoids may result in a so-called glucocorticoid withdrawal syndrome (Greco and Behrend, 1995). Several subgroups are known in humans; one of them is attributed to the sudden lack of the high concentration of steroids. In this situation, the body perceives the glucocorticoid withdrawal as a relative deficiency. The signs are vague and can easily be mistaken with those of true adrenal insufficiency. The syndrome has been poorly characterized in dogs and cats.
突然停止使用糖皮質激素可能導致所謂的糖皮質激素戒斷綜合症(Greco 和 Behrend,1995 年)。在人類中已知有幾個亞組;其中一個被歸因於突然缺乏高濃度的類固醇。在這種情況下,身體將糖皮質激素的戒斷視為相對缺乏。症狀模糊,容易與真正的腎上腺功能不全混淆。該綜合症在狗和貓中的特徵描述較少。

In questionable cases, an ACTH stimulation test should be performed to differentiate between absolute or relative adrenal insufficiency. Prednisolone administration may be needed in either situation.
在可疑情況下,應進行 ACTH 刺激試驗以區分絕對或相對腎上腺功能不全。無論哪種情況,都可能需要給予潑尼松龍。

Diabetes Mellitus  糖尿病

Glucocorticoids may exert diabetogenic properties thereby inducing hyperglycemia in previously normoglycemic patients, as well as worsening glycemic control in patients already known to have diabetes mellitus.
糖皮質激素可能具有致糖尿病特性,從而在先前血糖正常的患者中誘發高血糖,並使已知患有糖尿病的患者的血糖控制惡化。

Glucocorticoids increase insulin resistance in peripheral tissues (muscle, fat) and increase hepatic glucose production, and they may also inhibit insulin release from the β cells. In humans, overt diabetes or impaired glucose tolerance is seen in 14% to 28% of individuals receiving long-term glucocorticoids.
糖皮質激素會增加周邊組織(肌肉、脂肪)的胰島素阻抗性,並增加肝臟的葡萄糖生成,它們也可能抑制β細胞釋放胰島素。在人類中,長期接受糖皮質激素治療的個體中有 14%至 28%會出現明顯的糖尿病或葡萄糖耐受不良。

Prevalence of diabetes induced by exogenous glucocorticoids has not been systematically studied in dogs and cats. It is well known that cats are more susceptible to the diabetogenic effects of glucocorticoids than dogs. Approximately 80% of cats with endogenous hyperadrenocorticism are diabetic, whereas in dogs, the prevalence is only about 10%.
外源性糖皮質激素誘發糖尿病的盛行率在狗和貓中尚未被系統性研究。眾所周知,貓比狗更容易受到糖皮質激素的致糖尿病效應影響。約有 80%患有內源性腎上腺皮質功能亢進的貓會發展成糖尿病,而在狗中,這一比例僅約 10%。

Steroid diabetes can occur after oral or parenteral, as well as after topical administration of any of the traditional glucocorticoids, but it has not been reported with the newer class of topical drugs (budesonide, fluticasone).
類固醇糖尿病可能發生於口服或非腸道給藥後,也可能在使用任何傳統糖皮質激素的局部給藥後出現,但尚未有報告指出新型局部藥物(布地奈德、氟替卡松)會引起此類情況。

Glucocorticoid sensitivity varies between individuals and therefore dose, duration, and frequency of application that will ultimately lead to hyperglycemia cannot be predicted. Experimental studies have shown that abnormalities may already become apparent after short-term therapy.
個體對糖皮質激素的敏感性存在差異,因此無法預測最終會導致高血糖的劑量、持續時間及用藥頻率。實驗研究顯示,短期治療後可能已經會出現異常情況。

Administration of 2 mg/kg prednisolone once daily for 8 days resulted in reduced glucose tolerance after an IV glucose load in all six cats, and three of the six cats developed hyperglycemia (Middleton and Watson, 1985). Weekly injections of 20 mg methylprednisolone subcutaneously lead to hyperglycemia within 4 weeks in the two cats studied (Scott et al, 1982). Within 1 month of daily administration of immunosuppressive doses of prednisolone or dexamethasone, 29% and 71% of cats developed glucosuria (Lowe et al, 2009). The later study points to a greater diabetogenic effect of dexamethasone than equipotent doses of prednisolone. Steroid-induced diabetes is also seen in dogs but with much lower frequency than in cats (Campbell and Latimer, 1984, Jeffers et al., 1991). Administration of anti-inflammatory/immunosuppressive doses of prednisone (1.1 mg/kg/day) or prednisolone (1 to 2 mg/kg/day) for 28 days to normal dogs has not produced hyperglycemia, glucose intolerance, or insulin resistance (Wolfsheimer et al., 1986, Moore and Hoenig, 1993, Moore et al., 1993).
每日一次給予 2 毫克/公斤的潑尼松龍,連續 8 天後,所有六隻貓在接受靜脈葡萄糖負荷後均顯示葡萄糖耐受性降低,其中三隻貓發展出高血糖(Middleton 和 Watson,1985 年)。在研究的兩隻貓中,每周皮下注射 20 毫克甲基潑尼松龍,4 週內導致高血糖(Scott 等人,1982 年)。每日給予免疫抑制劑量的潑尼松龍或地塞米松後 1 個月內,分別有 29%和 71%的貓出現糖尿(Lowe 等人,2009 年)。後續研究指出,地塞米松比等效劑量的潑尼松龍具有更強的致糖尿病效應。類固醇誘發的糖尿病在狗中也有發現,但發生率遠低於貓(Campbell 和 Latimer,1984 年;Jeffers 等人,1991 年)。對正常狗給予抗炎/免疫抑制劑量的潑尼松(1.1 毫克/公斤/天)或潑尼松龍(1 至 2 毫克/公斤/天)28 天,並未產生高血糖、葡萄糖不耐受或胰島素抵抗(Wolfsheimer 等人,1986 年;Moore 和 Hoenig,1993 年;Moore 等人,1993 年)。
Diagnosis of steroid-induced diabetes should result in cessation of glucocorticoid therapy whenever possible; depending on the disease, alternative drugs (e.g., cyclosporine) or topical use of the new generation of glucocorticoids should be considered.
診斷出類固醇誘發性糖尿病時,應盡可能停止糖皮質激素治療;根據疾病情況,可考慮使用替代藥物(如環孢素)或局部應用新一代糖皮質激素。

In cats, steroid-induced diabetes often goes into remission, provided that the glucocorticoid application is ceased immediately and insulin treatment is initiated. In dogs, diabetic remission has been seen; however, too few data have been published to make a general statement.
在貓咪中,若能立即停用糖皮質激素並開始胰島素治療,類固醇誘發性糖尿病通常會進入緩解期。在狗中雖也有糖尿病緩解的案例,但由於發表數據過少,尚無法做出普遍性結論。

In a dog or cat with known diabetes, glycemic control usually worsens when glucocorticoids are administered. Diabetes mellitus should not be regarded as an absolute contraindication for glucocorticoids, because in some diseases they may be life-saving. The glucocorticoid dose should be as low as possible to control the disease.
對於已知患有糖尿病的犬貓,給予糖皮質激素通常會使血糖控制惡化。糖尿病不應被視為糖皮質激素的絕對禁忌症,因為在某些疾病中它們可能具有救命效果。糖皮質激素的劑量應以能控制疾病的最低量為準。

In short-term glucocorticoid therapy (1 to 2 weeks), the insulin dose may be maintained while awaiting the withdrawal of the drug. If long-term glucocorticoid therapy is needed, an increase in the daily insulin doses is usually necessary to maintain control over the diabetic state. The amount of increase is variable and should follow the guidelines discussed in Chapters 6 and 7Chapter 6Chapter 7. Careful monitoring of blood glucose levels is important. After the effect of the glucocorticoid on insulin sensitivity wears off, the insulin requirement decreases, resulting in the need to also decrease the insulin dose. Remission may fail to appear if treatment is inadequate or if the cat has substantial islet pathology.
在短期糖皮質激素治療(1 至 2 週)期間,可維持胰島素劑量,等待藥物停用。若需長期糖皮質激素治療,通常需增加每日胰島素劑量以維持對糖尿病狀態的控制。增加的劑量因人而異,應遵循第 6 章和第 7 章討論的指導原則。密切監測血糖水平十分重要。當糖皮質激素對胰島素敏感性的影響消退後,胰島素需求會降低,因此也需要相應減少胰島素劑量。若治療不足或貓咪存在顯著的胰島病變,可能無法出現緩解。

If glucocorticoid therapy cannot be terminated and no alternative drug can be used, the insulin dose has to be adjusted based on the severity of the insulin resistance. In those cases, glycemic control oftentimes remains difficult.
若無法終止糖皮質激素治療且無替代藥物可用,則需根據胰島素抵抗的嚴重程度調整胰島素劑量。此類情況下,血糖控制往往仍具挑戰性。

Gastrointestinal Hemorrhage and Ulceration
胃腸道出血與潰瘍形成

In the physiological state, glucocorticoids exert protective effects for the gastrointestinal integrity by various mechanisms. The administration of glucocorticoids in pharmacological doses may alter mucosal defense mechanisms in many ways (e.g., by decreasing mucus production, altering the biochemical structure of mucus, decreasing mucosal cell turnover, increasing acid output, and impairing mucosal blood flow).
在生理狀態下,糖皮質激素通過多種機制對胃腸道完整性發揮保護作用。然而,以藥理劑量給予糖皮質激素可能從多方面改變黏膜防禦機制(例如:減少黏液分泌、改變黏液的生化結構、降低黏膜細胞更新率、增加胃酸分泌,以及損害黏膜血流)。

Other mechanisms are decreased healing rate and promotion of bacterial colonization of ulcers (Hanson et al., 1997, Rohrer et al., 1999a, Feldman and Nelson, 2004). In most situations, it is unlikely that glucocorticoids are the sole factor for gastrointestinal problems. The exception may be when extremely high doses of steroids are used.
其他機制包括降低潰瘍癒合速率及促進潰瘍處細菌定植(Hanson 等人,1997;Rohrer 等人,1999a;Feldman 與 Nelson,2004)。在多數情況下,糖皮質激素不太可能是導致胃腸道問題的唯一因素。例外情況可能發生在使用極高劑量類固醇時。

The application of methylprednisolone sodium succinate (30 mg/kg initially, and then 15 mg/kg 2 and 6 hours later and every 6 hours thereafter for 48 hours) was associated with gastric hemorrhage in all of the 10 dogs and was severe in nine of them (Rohrer et al, 1999a). Similarly, the application of extremely high doses of dexamethasone (4.4 mg/kg/day for 8 days) or prednisone (8.8 mg/kg/day for 7 days) to experimental dogs did result in endoscopic evidence of hemorrhage but not in ulcers (Sorjonen et al., 1983, Behrend and Kemppainen, 1997).
甲基強的松龍琥珀酸鈉的應用(初始劑量 30 毫克/公斤,隨後在 2 小時和 6 小時後以及之後每 6 小時給予 15 毫克/公斤,持續 48 小時)在 10 隻狗中均與胃出血相關,其中九隻情況嚴重(Rohrer 等人,1999a)。同樣,對實驗犬應用極高劑量的地塞米松(每天 4.4 毫克/公斤,持續 8 天)或強的松(每天 8.8 毫克/公斤,持續 7 天)確實導致了內窺鏡下的出血證據,但未形成潰瘍(Sorjonen 等人,1983;Behrend 和 Kemppainen,1997)。
In clinical patients, the most striking gastrointestinal side effects have been reported in dogs with neurological disease.
在臨床病患中,最顯著的胃腸道副作用被報告於患有神經系統疾病的狗隻中。

However, because a neurological problem can result in gastrointestinal lesions itself, it is difficult to say how much glucocorticoids contributed to the development of the problems. In one study, 23 of 155 dogs with intervertebral disk herniation had gastrointestinal problems, and 10 of them had not received glucocorticoids (Moore and Withrow, 1982). More than 75% of dogs with acute intervertebral disc disease treated with glucocorticoids had gastric mucosal lesions as detected by endoscopy. In 8% of dogs, gastric ulcers developed during the treatment period. Only 24% of the dogs had clinical signs such as vomiting or melena (Neiger et al, 2000). The most catastrophic of the gastrointestinal complications is colon perforation. Colonic perforation in 13 dogs treated with glucocorticoids was uniformly fatal (Toombs et al, 1986). Ten of the 13 dogs were neurosurgical patients, one was treated for head-trauma and non-ambulatory paresis, and two others had undergone major surgery for other reasons. Dexamethasone was the most frequently used steroid and was given in a mean cumulative dose of 6.4 mg/kg/day over a period of 5 days. The most common clinical signs were depression, anorexia, and vomiting.
然而,由於神經系統問題本身也可能導致胃腸道病變,因此難以斷定糖皮質激素在問題發展中扮演了多少角色。一項研究中,155 隻患有椎間盤突出的犬隻裡有 23 隻出現胃腸道問題,其中 10 隻並未接受糖皮質激素治療(Moore 與 Withrow,1982 年)。超過 75%接受糖皮質激素治療的急性椎間盤疾病犬隻,經內窺鏡檢查發現胃黏膜病變。8%的犬隻在治療期間發展出胃潰瘍,僅 24%表現出如vomiting或黑便等臨床症狀(Neiger 等人,2000 年)。胃腸道併發症中最嚴重者為結腸穿孔。13 隻接受糖皮質激素治療後發生結腸穿孔的犬隻全數死亡(Toombs 等人,1986 年)。這 13 隻犬隻中有 10 隻是神經外科病例,1 隻因頭部創傷及非行走性輕癱接受治療,另 2 隻則因其他原因接受重大手術。地塞米松是最常使用的類固醇,平均累積劑量為每日 6.4 毫克/公斤,持續 5 天。 最常見的臨床症狀包括抑鬱、食慾不振及vomiting。

Signs became evident 3 to 8 days after surgery and preceded death by an average of 22 hours (Toombs et al, 1986).
症狀在手術後 3 至 8 天內顯現,並在死亡前平均 22 小時出現(Toombs 等人,1986 年)。
Because of the potential association between glucocorticoids and gastrointestinal side effects, certain precautions should be taken, in particular in patients with neurological disease. Non-ambulatory patients certainly have an increased risk (Behrend and Kemppainen, 1997).
由於糖皮質激素可能與胃腸道副作用有關,應採取特定預防措施,尤其是對神經系統疾病患者。非行動不便患者無疑具有更高的風險(Behrend 與 Kemppainen,1997 年)。

The following recommendations have been made: to use prednisolone or methylprednisolone instead of the more potent dexamethasone, limit treatment to the lowest possible dose and duration, avoid concurrent or successive use of other drugs with known ulcerogenic potential (in particular non-steroidal anti-inflammatory drugs), avoid urinary retention by closed urine drainage, and correct fecal retention problems prior to surgery (Toombs et al, 1986).
已提出以下建議:使用潑尼松龍或甲基潑尼松龍替代效力更強的地塞米松,將治療限制在最低有效劑量與最短持續時間,避免同時或連續使用其他已知具有致潰瘍潛力的藥物(特別是非類固醇抗炎藥),通過閉式尿液引流避免尿滯留,並在手術前解決糞便滯留問題(Toombs 等人,1986 年)。
Misoprostol, cimetidine, or sucralfate were evaluated for their potential preventative role for gastrointestinal hemorrhage but did not show any effect (Hanson et al., 1997, Rohrer et al., 1999b).
針對米索前列醇、西咪替丁或硫糖鋁在預防胃腸道出血方面的潛在作用進行了評估,但未顯示任何效果(Hanson 等人,1997 年;Rohrer 等人,1999b 年)。

Laboratory Abnormalities  實驗室異常

The most common biochemical abnormalities in dogs receiving exogenous glucocorticoids are elevation of liver enzymes. Any glucocorticoid and any form of application (oral, parenteral, or topical) can lead to an increase of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma glutamyl transferase (GGT).
接受外源性糖皮質激素治療的犬隻最常見的生化異常是肝臟酶升高。任何糖皮質激素及任何給藥形式(口服、腸胃外或局部)都可能導致鹼性磷酸酶(ALP)、丙氨酸氨基轉移酶(ALT)和γ-谷氨酰轉移酶(GGT)的升高。

However, there is a tremendous amount of variation between individual dogs; in some, the elevation may reach several-fold of normal, whereas others only have minor increase or even no change. In part, the changes may be dose-related.
然而,個體犬隻之間存在極大的變異性;有些犬隻的酶值可能升高至正常值的數倍,而其他犬隻僅有輕微升高甚至無變化。部分變化可能與劑量相關。

The administration of 1.1 mg/kg/day prednisone by mouth for 35 days did not result in a significant increase of ALP and the glucocorticoid-induced ALP isoenzyme. Only five of the 18 healthy dogs had ALP activities above the reference range (Moore et al, 1992). A prednisone dose of 4.4 mg/kg/day IM for 14 days was associated with a significant increase in ALP activity within 2 days, in ALT activity within 3 days, and in GGT activity within 6 days. Six weeks after the end of the study, the enzyme activities were still slightly to moderately increased (Badylak and Van Vleet, 1981).
口服 1.1 毫克/公斤/天的潑尼松持續 35 天並未導致 ALP 及糖皮質激素誘導型 ALP 同工酶顯著上升。18 隻健康犬中僅有 5 隻的 ALP 活性超出參考範圍(Moore 等,1992 年)。肌肉注射 4.4 毫克/公斤/天的潑尼松連續 14 天,則在 2 天內顯著提升 ALP 活性、3 天內提升 ALT 活性、6 天內提升 GGT 活性。研究結束後六週,這些酶活性仍呈現輕度至中度升高(Badylak 與 Van Vleet,1981 年)。
The application of other glucocorticoids, such as dexamethasone, methylprednisolone (acetate), and triamcinolone, has similar effects. The contributory role of the glucocorticoid induced isoenzyme of ALP to the increase of total ALP activity seems to be inconsistent. In the study of Moore and colleagues (1992), it contributed only to a small extent to the total ALP activity. In a study by Solter and colleagues (1994), the initial increase of ALP was mainly due to the liver ALP isoenzyme, followed by the glucocorticoid and bone isoenzyme 7 and 10 days after initiating treatment with prednisone. Serum bile acids may also increase during glucocorticoid therapy, whereas ammonia tolerance test does not seem to be affected (Meyer, 1982, DeNovo and Prasse, 1983, Solter et al., 1994). For effects on blood glucose and lipase activity, see the Diabetes Mellitus section and the Pancreatitis section. Otic medications containing triamcinolone or dexamethasone were also associated with an increase in ALP, ALT, and GGT (Meyer et al., 1990, Abraham et al., 2005). Increase in liver enzyme activities may also be seen with the new generation of glucocorticoids. A short term (30 days) oral application of budesonide was associated with an increase in ALP activity in dogs, but the difference to pretreatment levels was not significant (Tumulty et al, 2004). Cats are generally considered more resistant to the effects of glucocorticoids and do not have a glucocorticoid induced isoenzyme. Increases in liver enzyme activities after administration of glucocorticoids do occur, and the most consistent increase is seen in ALT activity. The ALP activity may also increase; however, it often still remains within the normal range (Scott et al., 1982, Sharkey et al., 2007, Lowe et al., 2008b). As in dogs, glucocorticoid administration in cats may result in steroid (vacuolar) hepatopathy, although the frequency is lower (Schaer and Ginn, 1999). Increase in serum lipids (cholesterol, triglycerides) may be seen in both species.
其他糖皮質激素(如地塞米松、甲基強的松龍(醋酸酯)和曲安西龍)的應用具有相似效果。糖皮質激素誘導的 ALP 同工酶對總 ALP 活性增加的貢獻似乎不一致。在 Moore 及其同事(1992 年)的研究中,其對總 ALP 活性的貢獻僅占很小比例。Solter 及其同事(1994 年)的研究顯示,ALP 的初始升高主要歸因於肝臟 ALP 同工酶,隨後在使用強的松治療 7 天和 10 天後,糖皮質激素和骨骼同工酶才顯著增加。血清膽酸在糖皮質激素治療期間也可能升高,而氨耐受性測試似乎不受影響(Meyer, 1982 年; DeNovo 和 Prasse, 1983 年; Solter 等, 1994 年)。關於對血糖和脂肪酶活性的影響,請參閱「糖尿病」章節和「胰腺炎」章節。含有曲安西龍或地塞米松的耳科藥物也與 ALP、ALT 和 GGT 的升高相關(Meyer 等, 1990 年; Abraham 等, 2005 年)。新一代糖皮質激素也可能觀察到肝酶活性的增加。 短期(30 天)口服布地奈德與狗隻 ALP 活性上升有關,但與治療前水平相比差異並不顯著(Tumulty 等,2004 年)。貓通常被認為對糖皮質激素的作用更具抵抗力,且不具糖皮質激素誘導的同功酶。糖皮質激素給藥後確實會出現肝酶活性上升,其中最一致的上升見於 ALT 活性。ALP 活性也可能增加;然而,其數值往往仍維持在正常範圍內(Scott 等,1982 年;Sharkey 等,2007 年;Lowe 等,2008b 年)。與狗類似,貓隻給予糖皮質激素可能導致類固醇(空泡性)肝病變,儘管發生頻率較低(Schaer 與 Ginn,1999 年)。兩種物種均可能觀察到血清脂質(膽固醇、三酸甘油酯)上升。
Glucocorticoids also affect hematological parameters. In dogs with iatrogenic hyperadrenocorticism, eosinopenia was seen in 18 out of 28 dogs and was the most frequent finding. Other constituents of the “stress leukogram” were also found, but to a lesser extent (Huang et al, 1999). In 14 cats treated with glucocorticoids (4.4 mg/kg prednisolone or 0.55 mg/kg dexamethasone for 56 days), neutrophils were significantly higher, and lymphocytes and eosinophils were significantly lower after treatment (Lowe et al, 2008b). In this study, monocytes were also increased, which is usually considered not a typical finding in steroid-treated cats.
糖皮質激素也會影響血液學參數。在患有醫源性腎上腺皮質功能亢進的狗中,28 隻狗中有 18 隻出現嗜酸性粒細胞減少,這是最常見的發現。其他「壓力性白血球圖」的組成部分也有發現,但程度較輕(Huang 等,1999)。在 14 隻接受糖皮質激素治療的貓(每天 4.4 毫克/公斤的潑尼松龍或 0.55 毫克/公斤的地塞米松,持續 56 天)中,治療後中性粒細胞顯著增加,而淋巴細胞和嗜酸性粒細胞顯著減少(Lowe 等,2008b)。在這項研究中,單核細胞也有所增加,這通常不被認為是類固醇治療貓的典型發現。

Pancreatitis  胰臟炎

More than 500 drugs have been reported to the World Health Organization (WHO) because they were suspected to induce pancreatitis in humans. In many of them, evidence of causality is weak, and for only 31 of those drugs a definitive causality has been established. Among them are steroids, but they do not belong to the group of high risk drugs (Nitsche et al, 2010). Previously, glucocorticoids were also assumed to cause pancreatitis in small animals. Much of the evidence regarding this association, however, is related to an increased viscosity of pancreatic secretion shown in rabbits.
世界衛生組織(WHO)已收到超過 500 種藥物的報告,這些藥物被懷疑會引發人類胰腺炎。其中許多藥物的因果關係證據薄弱,僅有 31 種藥物確立了明確的因果關係。類固醇雖列於其中,但不屬於高風險藥物群(Nitsche 等人,2010 年)。過去,糖皮質激素也被認為會導致小動物胰腺炎。然而,有關此關聯的大部分證據與兔子胰腺分泌物黏稠度增加有關。

In dogs, increased viscosity of pancreatic secretions has been shown only when isolated pancreases were perfused with a huge dose of methylprednisolone (400 mg); a lower dose (200 mg) did not change the viscosity (Kimura et al., 1979, Behrend and Kemppainen, 1997). Pancreatitis has also been seen in dogs treated with glucocorticoids. However, these were sporadic cases, and the dogs suffered from intervertebral disc disease, which may alone be a risk factor (Behrend and Kemppainen, 1997). The administration of dexamethasone to healthy dogs in various doses for up to 3 weeks did not cause pancreatitis. However, it increased lipase activity without any histological damage to the pancreas (Parent, 1982). In a more recent study, evaluating the canine pancreatic lipase immunoreactivity (cPLI), immunosuppressive doses of prednisone (2.2 mg/kg once daily) given for 6 weeks did not result in an increase in cPLI (Steiner et al, 2009).
在狗隻中,僅當以極高劑量的甲基強的松龍(400 毫克)灌注離體胰腺時,才會顯示胰腺分泌物黏度增加;較低劑量(200 毫克)則未改變黏度(Kimura 等人,1979 年;Behrend 與 Kemppainen,1997 年)。接受糖皮質激素治療的狗隻也曾出現胰腺炎。然而,這些均為零星案例,且這些狗隻本身患有椎間盤疾病,此病症本身可能就是一個風險因素(Behrend 與 Kemppainen,1997 年)。對健康狗隻給予不同劑量的地塞米松長達三週,並未引發胰腺炎。不過,它確實提高了脂肪酶活性,但未對胰腺造成任何組織學損傷(Parent,1982 年)。在一項較近期的研究中,評估犬胰腺脂肪酶免疫反應性(cPLI)時,給予免疫抑制劑量的強的松(每日一次,每公斤 2.2 毫克)持續六週,並未導致 cPLI 上升(Steiner 等人,2009 年)。
In dogs and cats, the early concerns that glucocorticoids could cause pancreatitis have now largely been dismissed. Steroids are no longer included in the list of drugs suspected of being associated with pancreatitis (Armstrong and Williams, 2012, Mansfield, 2012). It is possible, however, that glucocorticoids are a contributing factor in sick animals or that only a subset of patients is susceptible for steroid-induced pancreatitis.
在犬貓中,早期關於糖皮質激素可能引發胰臟炎的擔憂現已大致被排除。類固醇不再被列為與胰臟炎相關的懷疑藥物名單中(Armstrong 和 Williams,2012 年;Mansfield,2012 年)。然而,糖皮質激素可能對患病動物是一個促成因素,或者僅有特定患者群體對類固醇誘發的胰臟炎具有易感性。

Miscellaneous  其他

Glucocorticoids may have numerous other adverse effects, including growth retardation in young animals, induction or worsening of hypertension, disposing the animal to infections due to immunosuppression (e.g., urinary tract infection), interference with fertility, induction of abortion, and behavior changes.
糖皮質激素可能具有多種其他不良影響,包括幼年動物的生長遲緩、誘發或加劇高血壓、因免疫抑制(例如泌尿道感染)而使動物易受感染、干擾生育能力、誘發流產以及行為改變。

Glucocorticoid Reduction Protocol
糖皮質激素減量方案

There are various ways to taper an animal from glucocorticoids, and there are no studies demonstrating that one way is better than the other. Several principles, however, are widely accepted. Tapering of the glucocorticoid dose should always be done if therapy was longer than or equal to 2 weeks, or if high doses have been used (> 1 mg/kg prednisolone/day or its equivalent) (Ferguson et al, 2009). In the latter case (i.e., short duration of high dose), tapering can be done quickly over a few days. Tapering of the steroid dose should be started after the disease being addressed is in remission (e.g., normalized hematocrit in immune-mediated anemia, and/or absence of gastrointestinal signs in IBD).
有多種方法可以逐漸減少動物使用糖皮質激素的劑量,但目前沒有研究顯示哪種方法優於其他方法。然而,有幾項原則被廣泛接受。如果治療時間超過或等於 2 週,或使用了高劑量(>1 毫克/公斤體重的潑尼松龍/天或其等效劑量),則應始終進行糖皮質激素劑量的逐漸減少(Ferguson 等人,2009 年)。在後一種情況下(即高劑量短期使用),可以在幾天內快速完成劑量的逐漸減少。應在治療的疾病進入緩解期後開始減少類固醇劑量(例如,免疫介導性貧血中的血細胞比容正常化,和/或炎症性腸病中無胃腸道症狀)。

Inflammatory diseases usually require 5 to 7 days of induction therapy, whereas immunosuppressive diseases may need 10 to 28 days (Behrend and Kemppainen, 1997). Worsening of the disease soon after the start of tapering suggests that the tapering was done too fast. If an immune-mediated disease recrudesces, a second remission is more difficult to obtain than previously. If recrudescence occurs, the glucocorticoid dose should be increased immediately to a dose equivalent even higher than the initial dose.
炎症性疾病通常需要 5 至 7 天的誘導治療,而免疫抑制性疾病可能需要 10 至 28 天(Behrend 和 Kemppainen,1997 年)。在開始減量後病情迅速惡化,表明減量速度過快。如果免疫介導性疾病復發,第二次緩解比之前更難獲得。若復發發生,應立即將糖皮質激素劑量增加至相當於甚至高於初始劑量的水平。

If remission is lost in an inflammatory disease, the dose should be increased to the last dose that kept the animal disease free (Behrend and Kemppainen, 1997). In general, the longer the induction phase and/or the greater the induction dose, the more stepwise and longer the period between dose reductions has to be. Glucocorticoids used for life-threatening diseases should be tapered more slowly than glucocorticoids used for other diseases (Cohn, 2010). Tapering for immune-mediated disease can take several months; some cases may even need life-long therapy.
如果炎症性疾病失去緩解,應將劑量增加至最後一次使動物無病症的劑量(Behrend 和 Kemppainen,1997 年)。一般而言,誘導期越長和/或誘導劑量越大,劑量減少的步驟間隔需越長且越逐步。用於危及生命疾病的糖皮質激素應比其他疾病的糖皮質激素減量更慢(Cohn,2010 年)。免疫介導性疾病的減量可能需要數月;某些病例甚至可能需要終身治療。
The initial dose reduction step may be done by consolidating the dose, thereby achieving longer dosing intervals; this might spare the HPA axis suppression while the desired effects are maintained. For instance, if prednisolone is administered twice daily, the daily dose is given at once (e.g., 10 mg prednisolone once daily instead of 5 mg prednisolone twice daily).
初始劑量減少的步驟可以通過合併劑量來實現,從而延長給藥間隔;這可能在維持所需效果的同時,避免下丘腦-垂體-腎上腺軸(HPA 軸)的抑制。例如,如果潑尼松龍每日兩次給藥,則可以將每日總劑量一次性給予(例如,每日一次給予 10 毫克潑尼松龍,而非每日兩次各 5 毫克)。

The daily dose is then reduced incrementally (Cohn, 2010). Usually, when the daily prednisolone dose has been reduced to 0.25 to 0.5 mg/kg/day, the dose interval is switched to alternate-day therapy. The latter should allow the HPA axis to recover on the “off-days” and is assumed to provide greater safety than if therapy is suddenly discontinued.
隨後每日劑量會逐步遞減(Cohn, 2010)。通常當每日潑尼松龍劑量降至 0.25 至 0.5 毫克/公斤/天時,給藥間隔會轉換為隔日療法。後者應能讓 HPA 軸在「停藥日」得以恢復,並被認為比突然停藥提供更高的安全性。

Successful alternate-day therapy depends upon the therapeutic effects lasting longer than the suppressive effects on the HPA axis (Ferguson et al, 2009). Alternate-day therapy should not be applied during the initial phase of glucocorticoid therapy because it will not be effective to bring the disease under control. Prednisolone is the preferred glucocorticoid for alternate-day therapy; the action of cortisol (hydrocortisone) is too short and that of dexamethasone is too long for this approach.
成功的隔日療法取決於治療效果的持續時間長於對 HPA 軸的抑制作用(Ferguson 等人,2009 年)。在糖皮質激素治療的初始階段不應採用隔日療法,因為它無法有效控制疾病。潑尼松龍是隔日療法的首選糖皮質激素;氫化可的松的作用時間太短,而地塞米松的作用時間太長,不適合此方法。

When changing to alternate-dose therapy, the same daily dose of prednisolone can be given every other day (e.g., change from 5 mg every day to 5 mg every other day), which results in a 50% reduction of dose. Alternatively, the same dose can be maintained by doubling the dose on the “on-days” (e.g., change from 5 mg every day to 10 mg every other day) (Behrend and Kemppainen, 1997). In case of serious immune-mediated diseases, this latter approach for moving from daily to alternate-day therapy is preferred. If alternate-dose therapy is successful to maintain the disease in remission, further reduction to every third day can be attempted (Behrend and Kemppainen, 1997).
當轉換為隔日劑量療法時,可以每隔一天給予相同日劑量的潑尼松龍(例如,從每天 5 毫克改為每隔一天 5 毫克),這將導致劑量減少 50%。或者,可以通過在「用藥日」加倍劑量來維持相同劑量(例如,從每天 5 毫克改為每隔一天 10 毫克)(Behrend 和 Kemppainen,1997 年)。在嚴重的免疫介導疾病情況下,這種從每日療法轉換為隔日療法的方法更為可取。如果隔日劑量療法能成功維持疾病緩解,可以嘗試進一步減少至每三天一次(Behrend 和 Kemppainen,1997 年)。
Tapering of oral prednisolone used for immune-mediated disease in dogs could be done as follows (Behrend and Kemppainen, 1997):
用於犬隻自體免疫疾病的口服 prednisolone 可依以下方式逐步減量(Behrend 與 Kemppainen,1997 年):
Induction:2.0 mg/kg divided b.i.d. for 10 to 28 days
Tapering:1.5 mg/kg divided b.i.d. or once daily for 10 to 28 days
1.0 mg/kg divided b.i.d. or once daily for 10 to 28 days
0.5 mg/kg divided b.i.d. or once daily for 10 to 28 days
0.25 mg/kg once daily for 10 to 28 days
0.25 mg/kg every other day, for 21 days or more
It should be understood that the animal should be reevaluated before every reduction step to ensure that the disease is still in remission. The glucocorticoid dose used for induction in inflammatory diseases is substantially lower (0.5 to 1.0 mg/kg/day in dogs) and the induction period is shorter (5 to 7 days).
需注意的是,在每次降低劑量前都應重新評估動物狀況,以確認疾病仍處於緩解期。用於炎症性疾病的糖皮質激素誘導劑量顯著較低(犬隻為每日 0.5 至 1.0 毫克/公斤),且誘導期較短(5 至 7 天)。

Tapering, therefore, can be done faster, usually within 10 to 14 days. Tapering of the higher anti-inflammatory and immune-suppressive doses in cats should be done accordingly.
因此,減量過程可更快完成,通常於 10 至 14 天內完成。貓咪使用較高抗炎與免疫抑制劑量時,其減量方式應相應調整。

References

Cited by (23)

  • Epidemiology of massive hepatocellular carcinoma in dogs: A 4-year retrospective study
    犬隻巨大肝細胞癌的流行病學:一項 4 年回溯性研究

    2019, Veterinary Journal  2019 年,《獸醫期刊》
    Citation Excerpt :  引用摘錄:

    To characterize the clinical features of HCC, one-to-one propensity score matching combined with covariate adjustment was used to select a pair of dogs with and without HCC in the same conditions, resulting in no differences in age, sex, breed, and comorbidities for the case-control analysis.
    為描述肝細胞癌(HCC)的臨床特徵,研究採用一對一傾向評分配對結合協變量調整,在相同條件下選取患有與未患 HCC 的犬隻配對,確保年齡、性別、品種及共病症於病例對照分析中無差異。

    For both HCC cases and controls, data extracted from the medical records included signalment (age, sex, breed, and bodyweight); history of long-term steroid use in anti-inflammatory or immunosuppressive doses (0.5–2.0 mg/kg/day; ≥2 weeks; Reusch et al., 2015); clinicopathologic findings, including hematologic and serum biochemical analyses, endocrine test results, imaging results and concurrent diseases.
    針對 HCC 病例與對照組,從病歷中提取的數據包括基本資料(年齡、性別、品種及體重);長期使用抗炎或免疫抑制劑量類固醇的病史(0.5–2.0 毫克/公斤/天;≥2 週;Reusch 等人,2015 年);臨床病理學發現,含血液學與血清生化分析、內分泌檢測結果、影像學結果及併發疾病。

    Hematological abnormalities were defined as follows: leucocytosis, white blood cell (WBC) count >17 × 103 cells/μL (reference range, 6–17 × 103 cells/μL); anaemia, hematocrit (HCT) <37% (reference range, 37–55%); and thrombocytosis, platelet (PLT) count >500 × 103 cells/μL (reference range, 200–500 × 103 cells/μL).
    血液學異常定義如下:白血球增多症,白血球(WBC)計數>17 × 10³細胞/μL(參考範圍,6–17 × 10³細胞/μL);貧血,血球容積比(HCT)<37%(參考範圍,37–55%);以及血小板增多症,血小板(PLT)計數>500 × 10³細胞/μL(參考範圍,200–500 × 10³細胞/μL)。

  • An update on the treatment of canine monocytic ehrlichiosis (Ehrlichia canis)
    犬單核球埃里希體症(Ehrlichia canis)治療的最新進展

    2019, Veterinary Journal  2019 年,獸醫期刊
    Citation Excerpt :  引用摘錄:

    Importantly, in a retrospective study, glucocorticoids did not seem to be beneficial in a cohort of dogs with pancytopenic CME (Shipov et al., 2008).
    重要的是,在一項回顧性研究中,糖皮質激素似乎對一群患有全血細胞減少性 CME 的犬隻並無益處(Shipov 等人,2008 年)。

    In addition, administration of immunosuppressive drugs to a dog with pancytopenic CME could further predispose to secondary infections or potentiate the possibility for gastrointestinal bleeding, both of which are costly and potentially life-threatening complications (Reusch, 2015).
    此外,對患有全血細胞減少性 CME 的犬隻給予免疫抑制藥物,可能進一步增加繼發性感染的風險或加劇胃腸道出血的可能性,這兩者都是成本高昂且可能危及生命的併發症(Reusch,2015 年)。

    Dogs with acute CME experience rapid clinical improvement within 24–48 h of the initiation of doxycycline treatment, whereas resolution of hematological abnormalities generally takes 1–3 weeks (Breitschwerdt et al., 1998; Neer et al., 2002; Harrus et al., 2004; Eddlestone et al., 2007; Theodorou et al., 2013).
    患有急性 CME 的犬隻在開始多西環素治療後的 24 至 48 小時內會經歷快速的臨床改善,而血液學異常的恢復通常需要 1 至 3 週(Breitschwerdt 等人,1998 年;Neer 等人,2002 年;Harrus 等人,2004 年;Eddlestone 等人,2007 年;Theodorou 等人,2013 年)。

View all citing articles on Scopus
檢視 Scopus 上的所有引用文章
View Abstract  檢視摘要