Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing
利用新浪微博 POI 数据分析城市空间格局和功能区——以北京为例
ESI学科分类:环境/生态学简介JCI 0.68IF(5) 3.6SCU 环境科学与生态学ESCI升级版 环境科学与生态学3区SCI基础版 环境科学与生态学3区SSCI Q2SCI Q2IF 3.3CUG 环境研究T3XJU 三区HHU C类
上海交通大学 媒体与传播学院, 上海 200240
华东师范大学 地理科学学院, 地理信息科学教育部重点实验室, 上海 200241
复旦大学 中国历史地理研究所, 上海 200433
应向其发送信件的作者。
可持续性 2021, 13(2), 647;https://doi.org/10.3390/su13020647
收到意见书:2020 年 12 月 28 日 / 修订日期:2021 年 1 月 7 日 / 接受日期:2021 年 1 月 8 日 / 发布时间:2021 年 1 月 12 日
Abstract 抽象
随着 Web2.0 和移动互联网的发展,城市居民这种新型的“传感器”为我们提供了大量的自愿地理信息(VGI)。量化 VGI 的空间模式在理解和发展城市空间功能方面发挥着越来越重要的作用。利用 VGI 和社交媒体活动数据,本文开发了一种自动提取和识别城市空间模式和功能区的方法。该方法基于中国北京的案例提出,包括以下三个步骤:(1)获取多源城市空间数据,如微博数据(相当于中文的 Twitter)、OpenStreetMap、人口数据等;(2) 使用分层聚类算法、术语频率-逆文档频率 (TF-IDF) 方法和改进的 k-means 聚类算法来识别功能区;(3) 将确定的结果与实际城市土地用途进行比较,并验证其准确性。实验结果证明,该方法能够有效识别城市功能区,为城市空间格局研究提供了新思路,对优化城市空间规划具有重要意义。
关键词:城市空间格局;城市功能区;新浪微博 POI;聚类分析;VGI
1. Introduction 1. 引言
在 Web2.0 和移动互联网时代,人们经常使用微博(相当于中文的 Twitter)、在线评论、照片分享、旅行记录和社交媒体来生成、处理和分享大量信息 [ 1, 2, 3]。随着全球定位系统 (GPS) 和无线蜂窝定位技术在移动设备中的普及,用户自发创建的大部分信息都自动携带了空间信息 [ 4]。这种空间信息在学术界被称为自愿地理信息(VGI) [ 5]。VGI 的实时性、多样性和内容创意在时空分析、城市规划、环境监测、灾害预警和公共信息服务等领域具有巨大的应用潜力 [ 6, 7, 8, 9]。这些海量数据正在逐渐被挖掘和分析,人们也因此真正进入了大数据时代。Goodchild 还指出,我们正在迅速进入一个普通公民既是地理信息的消费者又是生产者的时代 [ 1]。
大数据时代的到来为城市空间格局的研究提出了新的思路。目前,基于位置服务(LBS)技术的数据是城市研究中应用最广泛的数据,如公交卡记录、出租车轨迹数据、手机通话记录和基于社交媒体的登录数据 [ 10, 11, 12, 13, 14]。这些数据可以被解释为对城市的描述,它们的挖掘和分析可以导致一个更加以人为本的城市空间格局 [ 1, 2]。传统的基于视觉和统计数据的调查方法在研究过程中存在一些局限性,例如成本高、不对所有人开放、实时性不足以及数据准确性受环境影响较大 [ 15, 16]。它们通常需要更多的时间和成本,但更准确,特别是对于小城镇,并且由研究城市模式的积极参与的人完成时 [ 17, 18]。使用易于获取的大数据和位置信息可以快速获得能够描述城市的及时信息,因此是城市规划中一个有意义的研究领域。特别是,详细的城市功能区分类对于城市空间结构景观具有重要意义。使用 VGI 数据进行精细的城市功能勾划可以描绘未来城市的预规划布局,这为城市的长期经济发展提供了有价值的见解 [ 19]。以尚未开发的地区为例,目前,它们可能配备了良好的公共交通和工业用地,但是,平衡就业和住房之间的供应以促进健康的多中心增长对于可持续和高效的城市发展至关重要 [ 20, 21]。
许多城市研究人员使用多源 VGI 数据完成了相关工作。Patrick Lüscher et al. [ 22] 使用迭代在线问卷构建了城市中心认知模型,并使用核密度分析方法对从英国陆军调查中获得的兴趣点 (POI) 数据将城市划分为不同的功能区。Jameson L. et al. [ 23] 使用手机数据分析了人口的时空动态,并基于机器学习分类算法分析了土地利用模式。John Steenbruggen 等 [ 24] 全面回顾了对移动电话数据的研究,强调了利用数字数据优化城市管理的可行性。Vincent Blondel [ 25] 使用了超过 2 亿条通信数据来研究相应的区域和边界,最终根据通信频率及其平均持续时间提出了地理移动通信。Yang 使用 [ 26] 百度 POI 数据分析了城市网络的空间构成,并将其划分为 12 个功能区来分析其聚合模式。Liu 等[27]利用上海一周的出租车轨迹数据,使用源-汇模型量化了日常交通特征,然后发现了城市土地利用功能。Long et al. [ 28] 使用 OpenStreetMap 路网数据和众包 POI 数据来区分城市居民区,然后他们使用人口普查数据来整合人口属性。Rao et al. [ 29] 使用深圳手机数据为期一周来分析用户的时空属性,并提出了一个模型来识别深圳不同的就业区域。
可以看出,利用手机数据、出租车数据和其他 POI 数据,对城市空间格局和功能区进行了大量研究。与传统数据集相比,这类 VGI 数据体积大、易获取、省时且更以人为本,在城市功能区划定中的应用可以提供更详细的信息。因此,以北京(中国首都)为研究区域,本研究的重点是利用新浪微博数据、OpenStreetMap 等数据自动提取和识别北京的城市空间格局和功能带。通过本文的理论和实验研究,做出了以下贡献:首先,验证了使用用户生成的社交媒体数据研究城市空间结构的可行性;其次,利用路网划分研究单位,得到北京的自然区域;最后,使用社交媒体数据自动识别的城市功能区提供了比一般定义的住宅或就业区更多的信息。本研究的结果可以帮助人们更好地理解大城市和特大城市的空间构成,也可以帮助城市规划者使用 POI 数据规划城市功能区。本研究对城市规划具有新的参考价值,也可为不同城市功能区的开发和改进提供参考。
本文的提醒组织如下:材料和方法部分描述了研究区域、我们收集的数据以及用于分析城市空间结构的方法。Results and Discussion 部分介绍了实验和结果,并讨论了后续步骤。最后,本文以结论部分结束。
2. Materials and Methods 2. 材料和方法
在本节中,我们将介绍我们的研究领域并介绍我们收集的数据(包括数据预处理)。然后,我们展示了如何基于这些数据进行热点分析,并使用聚类方法来识别城市功能区。具体的研究过程如图 1 所示。
图 1.我们的研究流程图。(API 是应用程序编程接口的缩写;POI 是 Point of Interest 的缩写;OSM 是 OpenStreetMap 的缩写;TF-IDF 是 Term Frequency-Inverse Document Frequency 的缩写。
2.1. Study Area 2.1. 研究区域
研究区域为中国北京(115°24′39“–117°30′37” E,39°26′9“–41°3′32” N,如图 2 所示)。北京是中国的首都,也是典型的特大城市。随着城市化进程的快速发展,其城市规模在 55 年间扩大了 12 倍[ 30]。总面积 16,410.54 公里 2 ,常住人口 2153 万。考虑到城市空间的复杂性、庞大的人口(可以充当传感器),甚至日益突出的大城市疾病问题,北京是一个理想的研究区域。
2.2. Data Collection 2.2. 数据收集
2.2.1. Sina Weibo POIs and Data Categorization
2.2.1. 新浪微博 POI 和数据分类
作为中国最受欢迎的社交媒体平台之一,新浪微博具有更新速度快、参与者人数多、用户分布广等特点 [ 3, 9]。新浪微博上的大部分信息都与城市生活息息相关。由于微博 POI 的内容和类型非常丰富,因此最好在获取之前确定其类别。结合研究内容和北京的特殊背景,我们将微博 POI 数据分为 15 类 ( 表 1,根据 [ 31 ] 修改)。
根据编码分类,收集了不同类别的数据。收集时间为 2015 年 4 月 13 日至 4 月 17 日,共收集了 335,234 条数据。其中,代码 01 到 15 的数据量为 12,491 个;12,152;29,001;13,405;60,863;113,206;10,725;34,175;658;5341;4017;14,036;1696;6690;和 16,778 例(如图 3 所示)。但是,存在数据记录重复和地名歧义等问题,需要进一步清理数据。接下来,我们删除了重复记录和不符合特定分类的记录。
可以看出,在分类过程中,一些公园也被归类为旅游景区。这是因为北京游客众多,他们经常去公园。因此,这些公园被归类为旅游景点而不是公共设施。北京的公司数量很多(113,206 栋建筑中有 73,224 家公司)。因此,在下面的研究中,公司没有被考虑在建筑类别中,而是单独研究了公司的分布。经过数据清洗和处理,最终获得 51,916 个公司数据点和 115,616 个分类数据点(公司被归类为 06*)。每个类别的 POI 数据如图 3 所示。
2.2.2. OpenStreetMap and Map Segmentation
2.2.2. OpenStreetMap 和地图分割
我们从 OpenStreetMap ( https://www.openstreetmap.org) 收集了 2015 年 4 月 14 日北京市的道路网络数据。道路数据集包括 50,816 条道路,总长度为 24,877,717 m,以及一条铁路,共有 5121 个路段,总长度为 3,699,118 m。然后,结合 OpenStreetMap 的路网分类,选取高速公路 (motorway_link)、主干 (trunk_link) 和主要 (primary_link) 三个级别作为研究对象。共有 9655 条线路,总长度为 6,077,240 m,如图 4a 所示。这三种不同的道路类型构成了北京的自然划分。直观地可以看出,北京路网大纲符合实验要求。
图 4.OpenStreetMap 和北京人口数据:(a) 选定的 OSM 数据;(b) 地图分割结果;(c) 北京市人口空间分布密度。
为了更好地将研究区域划分为不同的区域,我们需要去除不必要的细节并确保道路的拓扑关系,包括多车道合并、双车道道路中心线提取、立交桥删除和拓扑关系校正。检查数据后,我们根据路网的中心线对区域进行分割(图 4b)。
2.2.3. Population Data 2.2.3. 人口数据
中国的 1 km 网格人口数据集基于土地利用类型数据和遥感数据获得的人口统计数据。利用该数据集,利用地理信息系统的空间分析功能对统计人口数据进行空间化,建立种群空间分布模型 [ 32]。我们从中国的 1 公里网格人口数据集 (2010) 中提取了北京境内的人口分布数据。生成的人口密度分布图如图 4c 所示。
从以上分析可以看出,北京市中心的人口密度最高。随着城市中心的扩大,人口密度逐渐降低。而郊区人口密度呈现小区域高密度配送中心,表现出明显的郊区化特征。此外,郊区县城核心区的人口密度仍然很高。一般来说,东部地区的人口密度高于西部地区,尤其是在东南部和廊坊地区人口密度分布不断扩大的地区。
2.3. Analysis of Urban Spatial Structure
2.3. 城市空间结构分析
2.3.1. Analyzing Urban Hot Spots Based on Weibo POI Data
2.3.1. 基于微博 POI 数据分析城市热点
微博 POI 数据可以通过志愿者的位置信息更好地描述一个城市中的人口分布。为了进一步分析分布特征,我们在微博中选取了大量签入的 POI 进行分析,并使用每个 POI 点的 checkin_num 作为权重来分析核密度。
核密度估计 (KDE) 算法主要使用移动单元(相当于一个窗口)来估计点或线型的密度 [ 33]。它被定义为 x 1 ...x n 和 是从分布密度函数 () 的总体中提取的独立且同分布的样本。为了估计 () 在某个 x 处的值,通常使用 Rosenblatt-Parzen 核估计:
其中 k () 是内核函数;h > 0 是变量;和 (x − x) 表示从估计点到样本 x 的距离。在 KDE 估计中,变量 h 的确定或选择对计算结果有很大影响。当 h 增加时,点密度在空间上变化更平滑,但会隐藏密度结构;当 h 减小时,估计的点密度会突然且不均匀地变化 [ 34]。
在 ArcGIS 的 KDE 模块中,默认带宽是自动生成的。搜索半径值越大,生成的密度格网越平滑,泛化程度越高;因此,值越小,生成的网格中显示的信息就越详细。为了获得更详细的结果,我们将默认搜索半径更改为 1500 m,并将栅格图像的输出像元大小更改为 100 m。
2.3.2. Identifying Urban Functional Zones
2.3.2. 识别城市功能区
在本节中,我们使用新浪微博 POI 数据来分析城市功能区。
聚类分析是研究分类问题的一种统计分析方法,也是数据挖掘的重要算法。在这项研究中,我们主要使用了 k-means 算法和分层聚类算法。
- K-means: For a given data set, we made the following provisions: the set of n d-dimensional points was X = {xi}, i = 1, …, n; the set of k clusters was C = {ck}, k = 1, …, k; the mean value of ck was μk; and the squared error was . Therefore, the goal of K-means can be understood as a solution that minimizes .
K-means:对于给定的数据集,我们做出了以下规定:n 个 d 维点的集合是 X = {x}, = 1, ..., n;k 个集群的集合是 C = {c k }, k = 1, ..., k;c k 的平均值为 μ k ;平方误差为 。因此,K-means 的目标可以理解为最小化 的解。 - Hierarchical clustering algorithm: A hierarchical clustering method is used to construct and maintain a clustering tree formed by clusters and sub-clusters according to a given distance measurement criterion between clusters until a certain end condition is met. Hierarchical clustering algorithm is divided into condensed and split, from bottom-up and top-down, according to hierarchical decomposition. The default discussed in this article is cohesive.
分层聚类算法:使用分层聚类方法,根据聚类之间给定的距离测量标准,构建和维护由聚类和子聚类形成的聚类树,直到满足一定的结束条件。分层聚类算法根据分层分解分为压缩和拆分,从下到上和自上而下。本文讨论的默认值是 cohesive。
TF-IDF(词频-逆文档频率)是一种统计方法,用于评估一个词对文档集或语料库中的某个文档的重要性 [ 35]。单词的重要性与它在文档中出现的次数成正比,但它的减少与其在语料库中出现的频率成反比。TF-IDF 是 TF × IDF,其中 TF 是词频(词频),IDF 是逆向文档频率(逆向文档频率)。在给定文档中,TF 是指给定单词在文档中的频率,
其中 n 是单词在文件 d 中出现的次数,分母是文件 d 中所有单词的出现次数之和。
IDF 用于衡量单词的普遍重要性。一个特定词的 IDF 可以通过将研究中的文档总数除以包含该词的文档数,然后取所得商的对数来获得,
其中 是语料库中的文档总数, 是包含 Word 的文档数。
然后,根据 ,在特定文件中具有较高的字频,而该词在整个文件集中的出现频率较低,可以生成高权重的 TF-IDF。
3. Results and Discussion
3. 结果与讨论
3.1. Weibo Hot Spots Analysis Results
3.1. 微博热点分析结果
我们选取了大量的微博 POI(每个类别)进行分析,并使用每个 POI 点的 checkin_num 核密度分析权重进行核密度分析,得到以下结果。
从图 5 可以看出,北京的微博用户空间分布较大。在市区,主要集中在科学和教育领域、商业和娱乐领域以及外交和政治领域。不难理解,科学和教育领域有大量的大学。大学生是 Weibo 用户的活跃群体。同时,上班族在通勤时也喜欢使用微博。在外交和政治领域,热点主要集中在以天安门广场为中心的具有政治意义的旅游景区。在商业和娱乐领域,人们主要在休闲娱乐活动中使用微博分享信息。除了市区,首都国际机场区和昌平区也是微博用户活动的热点。在昌平区,一些高校的校园比较集中,也是长城(八达岭长城)所在的区域。它是人们在微博上登录的热点。对于核密度分析的结果,数据可用于进一步解释。我们选择了签到数较高的 POI 点进行显示,如表 2 所示。
3.2. Identifying Urban Functional Zones
3.2. 识别城市功能区
对于我们分类的 15 类 POI 数据,我们首先使用 ArcGIS 中的空间连接工具来计算每个分割区域中的 POI 点数量。此外,热点发现工具用于检测集群中心。我们选择了八类典型的 POI 数据来确定聚类中心(如图 6 所示)以及 ArcGIS 获得的热点分布。
图 6.八类 POI 热点:(a) 政府机构;(b) 科学和教育;(c) 建筑物;(d) 公共交通;(e) 购物;(f) 住宅;(g) 旅游景点;(h) 体育和娱乐。
在具体的实验中,我们主要使用了三种方法,分层聚类方法(图 7a)、TD-IDF 方法(图 7b)和改进的 k-means 聚类方法(图 7c)。改进的 k-means 方法以上述热点分析结果作为初始聚类中心,从而期待更好的聚类结果。TF-IDF 方法将其探索的城市功能作为文本主题发现进行比较,并使用普通的 k-means 方法进一步探索这种城市功能相似性。我们分析并比较了这些聚类结果。
图 7.聚类结果: (a) 层次聚类;(b) TF-IDF;(c) 自定义 K-Means 聚类。
通过对每个功能区的 POI 数据进行计数,我们对功能区中各种类别的 POIs 数量进行排序,如表 3 所示。然后,我们对 3 个聚类结果和统计数据进行综合分析,最终确定了 8 类功能区,包括外交政治中心、科教区、成熟住宅区、新建住宅区、商业娱乐区、旅游景区、待开发区和未分类区。
- Diplomatic and political zone
外交和政治区
在这些地区聚集了大量大使馆,旅游景点、体育和娱乐以及建筑物的 POI 数量很大。结合北京也是首都的事实,该地区不仅是大使馆的聚集地,也是天安门广场、紫禁城和人民大会堂等的所在地。
- Science and education zone
科教区
在这些区域中,科教、文化、宣传的 POI 数据最高,结合该地区的位置,可以看出该区域有大量的高校,比如北京大学和清华大学。同时,中关村作为中国最早的高新技术开发中心,在这些地区拥有大量的高科技公司和科研院所。因此,这些地区有大量的建筑和公司。
- Mature residential zone 成熟住宅区
在这些地区,住宅 POI 的数量最多,餐厅、公共设施、购物中心、金融和保险、旅游景点、体育和娱乐以及医疗保健 POI 的数量也最高。由此可见,在成熟的住宅小区,各类服务设施最为齐全。它们分布在城市的核心功能区域。与此同时,郊区极少数地区已发展成为成熟的住宅区。
- New residential zone 新住宅区
从成熟住宅区可以看出,新建住宅区的住宅 POI 是所有类别中最大的,但该功能区其他类别的数量大多低于成熟住宅区。公路服务、工业场所、公共交通和政府机构的 POI 数量最多。这是因为该区域由许多子区域组成,拥有大量的政府机构。此外,它位于郊区,拥有更多的高速公路服务和公共交通。
- Commercial and entertainment zone
商业和娱乐区
这个功能区位于外交和政治区附近,紧邻成熟住宅区,展示了人们的购物习惯。但是,该区域的各个品类数量均衡,同品类数量不多,这主要是由于子区域数量较少。
- Tourist attractions zone 旅游景点区
在这个功能区,有许多公共交通 POI。从子区域分布可以看出,功能区基本分布在郊区,但旅游景点 POI 数量并不是特别大。
- Area to be developed 待开发区域
在这些地区,所有类型的 Checkin_num 都很小,但公共交通和工业场所的数量很大。同时,从分布中可以看出,他们毗邻新建住宅区,位于偏远县城。
- Unclassified area 未分类区域
由于微博 POI 签到数据本质上是志愿者地理信息,因此部分地区的 POI 数量不够多,没有分类。
3.3. Verifying the Results
3.3. 验证结果
对于通过聚类获得的功能区结果,我们使用以下三个指标对其进行评估。
首先,我们将聚类结果与北京市总体规划(2004-2020 年,如图 8a 所示)进行了比较,主要比较了市中心区域。从规划图中可以清楚地看出,A 区是商业和金融用途的土地,B 区是科学、教学和研究用地,这与本文的结果完全吻合。此外,从规划图中可以看出,市区是居民区,与我们衍生的外交、政治区等功能区并不矛盾。因为住宅区在城市中具有主导功能,而功能是由人类在居住环境中的活动建立的。
图 8.验证结果:(a) 北京市城市总体规划(2004-2020 年);(b) 验证初始集群中心;(c) 典型区域的验证。
其次,我们将聚类结果与 k-means 的初始聚类中心进行了比较(如图 8b 所示)。因为 k-means 方法本身的聚类结果取决于初始聚类中心,所以我们从聚类方法开始进行比较验证。从上面可以看出,这里选择的 8 个初始聚类都落在了对应的 local 区域内,这可以从初始聚类中心的选择中看出。这里的方法是有效的,结果也是可靠的。
最后,我们选择了一些典型区域来验证结果(没有选择外部区域进行比较,因为它们主要是未分类区域和待开发区域)。结果(如图 8c 所示)显示,象山公园是随机选择的几个典型区域的旅游景点。永乐区位于成熟住宅区;北京大学和中国科学院中关村校区位于科教文化区。法国大使馆和天安门广场位于外交和政治中心。三里屯酒吧街位于商业和娱乐区。
结合上述三种验证方法,并考虑到北京市土地利用高度混合的现状,可以看出该方法得到的北京市功能分区结果具有很高的准确率。
3.4. Discussion 3.4. 讨论
这项工作的意义在于开发一种自动识别详细空间功能区的方法。成熟住宅区和新住宅区之间的细微区分以及待开发区域的划分更为重要,除了易于区分的区域(外交和政治、科学和教育、商业和娱乐)。以成熟的住宅区为参考,新住宅区需要加大力度推广与服务相关的设施,包括购物、金融和保险、体育和娱乐以及医疗保健设施。至于待开发的地区,它们以排名靠前的公共交通和工业用地而著称,而且它们也毗邻郊区的新住宅区。这种功能区具有巨大的潜力,如果那里的基础设施逐渐得到改善,靠近中心区的地方将得到更好的发展。
然后,我们将研究区域的特征和研究结果结合起来进行进一步分析。
(1)北京中心城区呈现郊区化趋势,空间分布结构呈现主中心-副中心-城镇三级结构。然而,尽管郊区人口密度显著增加,但该地区各种基础设施的建设尚未完成,城市化水平有待提高。
其次,北京正在向东南方向发展。由此可见,京津连接区(廊坊,位于北京东南部)人口和空间分布密度较大。同时,微博 POI 的分布也表明,东南方向的区域分布密度较大。
最后,外交和政治;商业和娱乐;以及科学、教育和文化是主要城市地区的主要服务功能。成熟的住宅区位于市中心附近。在北京的郊区和县城,有新的住宅区和待开发的区域。商业和娱乐区在郊区县的分布较少。
随着城市化进程,北京的建成区越来越大,越来越多的人居住在郊区。一方面,郊区化进程缓解了大城市的人口、交通和住房压力,但与此同时也出现了许多新问题。例如,许多人住在郊区,但在市中心工作,这需要很长时间才能通勤。另一方面,从分析结果可以看出,郊区的基础设施仍然不健全,以至于儿童的学业和医疗问题无法得到很好的解决。
应该怎么做?在保证中心城区稳定发展的过程中,新兴城区的发展也要均衡,注重教育、医疗和其他配套设施等资源的均衡分配。此外,在优化城市内部结构的同时,要整合北京整体资源进行外部发展,积极带动周边地区,努力实现京津冀都市圈的协调发展。
4. Conclusions 4. 结论
当前,城市居民提供了大量的 VGI,对城市空间格局的理解在推动城市空间发展方面发挥着越来越重要的作用。利用 VGI 和社交媒体活动数据,本文开发了一种自动提取和识别城市空间模式和功能区的方法。我们获得了 2015 年 4 月 13 日至 4 月 17 日北京共 167,532 个微博 POI 数据点、2015 年 4 月 14 日的 OpenStreetMap 路网数据以及中国 1 公里网格人口数据集。然后,我们使用分层聚类算法、 TF-IDF 方法和改进的 k-means 聚类算法并确定了 8 个功能区。功能区包括外交政治区、科教区、成熟住宅区、新住宅区、商业娱乐区、旅游景区、待开发区和非分类区。最后,结合北京市城市总体规划和典型区域对研究结果进行验证,对比结果表明聚类结果具有较高的准确率。
这项工作的贡献在于三个方面。首先,验证了使用用户生成的社交媒体数据调查城市空间结构的可行性。与传统数据集相比,这类 VGI 数据体积大、易获取、更省时、更以人为本,在城市功能区划定中的应用可以提供更详细的信息。其次,通过使用路网划分研究单位,我们得到了北京的自然区域。这种街道地图分割方法与城市功能划分更一致,并且在描绘城市异质性方面比城市统一格网更有效。最后,使用社交媒体数据自动识别的城市功能区比一般定义的住宅或就业区提供了更多的信息。成熟住宅区相对于新住宅区的优势为我们新开发区和待开发区域的未来规划提供了有用的信息,以便利用可持续发展来创建发达的中心区。总体上,利用微博 POI 数据和 OpenStreetMap 路网数据结合空间聚类方法分析城市空间结构,探索功能区,为城市空间结构研究提供了新思路。
Author Contributions 作者贡献
概念化、R.M.、Y.W. 和 SL;方法论,Y.W.;软件,Y.W. 和 S.L.;验证、R.M.、Y.W. 和 S.L.;形式分析,Y.W.;调查,R.M.;资源,S.L.;数据管理,Y.W.;写作 — 原始草稿准备,R.M.;写作——审查和编辑,R.M. 和 S.L.;可视化,R.M.;监督,Y.W.;项目管理,SL;资金收购, S.L.所有作者均已阅读并同意手稿的已发表版本。
Funding 资金
本研究由首都地区空间发展北京市重点实验室资助,国家自然科学基金面上项目(42001184)和“用友基金会商业长城”面上项目(2020-Y01)。
Institutional Review Board Statement
机构审查委员会声明
Informed Consent Statement
知情同意书
Data Availability Statement
数据可用性声明
本研究中提供的数据可应通讯作者的要求提供。
Conflicts of Interest 利益冲突
作者声明没有利益冲突。
References 引用
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
Goodchild, M.F. 作为传感器的公民:志愿地理的世界。地理杂志 2007, 69, 211–221。[ 谷歌学术搜索][ 交叉引用][ 绿色版] - Marti, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Social Media data: Challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 2019, 74, 161–174. [Google Scholar] [CrossRef]
马蒂,P.;Serrano-Estrada, L.;Nolasco-Cirugeda, A. 社交媒体数据:城市研究的挑战、机遇和局限性。计算。环境。城市系统,2019,74,161-174。[ 谷歌学术搜索][ 交叉引用] - Weibo. Available online: https://www.weibo.com (accessed on 28 December 2020).
微博。在线获取:https://www.weibo.com(2020 年 12 月 28 日访问)。 - Peng, X.; Bao, Y.; Huang, Z. Perceiving Beijing’s “city image” across different groups based on geotagged social media data. IEEE Access 2020, 8, 93868–93881. [Google Scholar] [CrossRef]
彭 X.;鲍 Y.;Huang, Z. 根据地理标记的社交媒体数据在不同群体中感知北京的“城市形象”。IEEE 访问 2020, 8, 93868–93881。[ 谷歌学术搜索][ 交叉引用] - Jonietz, D.; Antonio, V.; See, L.; Zipf, A. Highlighting current trends in Volunteered Geographic Information. ISPRS Int. J. Geo-Inf. 2017, 6, 202. [Google Scholar] [CrossRef] [Green Version]
乔尼茨,D.;安东尼奥,V.;见 L.;Zipf, A. 强调志愿地理信息的当前趋势。ISPRS 国际地理信息杂志 2017, 6, 202.[ 谷歌学术搜索][ 交叉引用][ 绿色版] - Noulas, A.; Scellato, S.; Lathia, N.; Mascolo, C. A Random Walk around the City: New Venue Recommendation in Location-Based Social Networks. In Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, Amsterdam, The Netherlands, 3–5 September 2012; IEEE: New York, NY, USA, 2012; pp. 144–153. [Google Scholar]
努拉斯,A.;斯凯拉托,S.;拉西亚,N.;马斯科洛 C.城市随机漫步:基于位置的社交网络中的新场所推荐。2012 年隐私、安全、风险和信任国际会议和 2012 年社会计算国际会议论文集,荷兰阿姆斯特丹,2012 年 9 月 3 日至 5 日;IEEE:美国纽约州纽约市,2012 年;第 144-153 页。[ 谷歌学术搜索] - Khan, N.U.; Wan, W.; Yu, S. Location-based social network’s data analysis and spatio-temporal modeling for the mega city of Shanghai, China. ISPRS Int. J. Geo-Inf. 2020, 9, 76. [Google Scholar] [CrossRef] [Green Version]
汗,N.U.;万,W.;Yu, S. 中国上海特大城市基于位置的社交网络数据分析和时空建模。ISPRS 国际地理信息杂志 2020, 9, 76.[ 谷歌学术搜索][ 交叉引用][ 绿色版] - Sun, Y.; Fan, H.; Li, M.; Zipf, A. Identifying the city center using human travel flows generated from location-based social networking data. Environ. Plan. B Plan. Des. 2015, 43, 480–498. [Google Scholar] [CrossRef]
孙 Y.;范,H.;李 M.;Zipf, A. 使用基于位置的社交网络数据生成的人类出行流来识别市中心。环境。计划。B 计划。Des. 2015, 43, 480–498.[ 谷歌学术搜索][ 交叉引用] - Zhang, X.; Sun, Y.; Zheng, A.; Wang, Y. A new approach to refining land use types: Predicting Point-of-Interest categories Using Weibo check-in data. ISPRS Int. J. Geo-Inf. 2020, 9, 124. [Google Scholar] [CrossRef] [Green Version]
张 X.;孙 Y.;郑 A.;王彦优化土地利用类型的新方法:使用微博签到数据预测兴趣点类别。ISPRS 国际地理信息杂志 2020, 9, 124.[ 谷歌学术搜索][ 交叉引用][ 绿色版] - Chen, W.; Liu, W.; Ke, W. The spatial structures and organization patterns of China’s city networks based on the highway passenger flows. Acta Geogr. Sin. 2017, 72, 224–241. [Google Scholar]
陈 W.;刘 W.;柯 W.基于高速公路客流的中国城市网络的空间结构和组织格局。Geogr 学报。罪。2017, 72, 224–241.[ 谷歌学术搜索] - Consterdine, E.; Everton, A. European migration network: Immigration of international students to the EU: Empirical evidence and current policy practice. Science 2012, 290, 1768–1771. [Google Scholar]
康斯特丁,E.;Everton, A. 欧洲移民网络:国际学生移民到欧盟:实证和当前政策实践。科学 2012, 290, 1768–1771。[ 谷歌学术搜索] - Fonte, C.C.; Minghini, M.; Patriarca, J.; Antoniou, V.; See, L.; Skopeliti, A. Generating up-to-date and detailed land use and land cover maps using OpenStreetMap and GlobeLand30. ISPRS Int. J. Geo-Inf. 2017, 6, 125. [Google Scholar] [CrossRef]
丰特,CC;明吉尼,M.;帕特里亚卡,J.;Antoniou, V.;见 L.;Skopeliti, A. 使用 OpenStreetMap 和 GlobeLand30 生成最新和详细的土地利用和土地覆盖地图。ISPRS 国际地理信息杂志 2017, 6, 125.[ 谷歌学术搜索][ 交叉引用] - Liu, W.; Hou, Q.; Xie, Z.; Mai, X. Urban network and regions in China: An analysis of daily migration with Complex Networks Model. Sustainability 2020, 12, 3208. [Google Scholar] [CrossRef] [Green Version]
刘 W.;侯 Q.;谢 Z.;Mai, X. 中国的城市网络和区域:使用复杂网络模型分析每日迁移。可持续发展 2020, 12, 3208。[ 谷歌学术搜索][ 交叉引用][ 绿色版] - Liu, Y.; Sui, Z.; Kang, C.; Gao, Y. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE 2014, 9, e86026. [Google Scholar] [CrossRef] [PubMed]
刘 Y.;隋,Z.;康 C.;从社交媒体签到数据中发现城际旅行和空间交互的模式。公共科学图书馆一号 2014, 9, e86026。[ 谷歌学术搜索][ 交叉引用][ 公共医学] - Yang, G.; Han, Y.; Gong, H.; Zhang, T. Spatial-temporal response patterns of tourist flow under real-time tourist flow diversion scheme. Sustainability 2020, 12, 3478. [Google Scholar] [CrossRef] [Green Version]
杨 G.;韩 Y.;龚,H.;Zhang, T. 实时旅游流改道方案下旅游流的时空响应模式.可持续发展 2020, 12, 3478。[ 谷歌学术搜索][ 交叉引用][ 绿色版] - Long, Y.; Shen, Z.J.; Mao, Q.Z. An urban containment planning support system for Beijing. Comput. Environ. Urban Syst. 2011, 35, 297–307. [Google Scholar] [CrossRef]
朗,Y.;沈 Z.J.;毛,Q.Z.北京市城市围护规划支持系统。计算。环境。城市系统,2011,35,297-307。[ 谷歌学术搜索][ 交叉引用] - Lucchi, E.; Alonzo, V.D.; Exner, D.; Zambelli, P.; Garegnani, G. A density-based spatial cluster analysis supporting the Building Stock Analysis in Historical Towns. In Proceedings of the 16th IBPSA International Conference and Exhibition, Rome, Italy, 2–4 September 2019; pp. 3831–3838. [Google Scholar]
卢奇,E.;阿朗佐,V.D.;埃克斯纳,D.;赞贝利,P.;加雷尼亚尼,G.基于密度的空间聚类分析,支持 Building Stock Analysis in Historical Towns。第 16 届 IBPSA 国际会议和展览论文集,意大利罗马,2019 年 9 月 2 日至 4 日;第 3831-3838 页。[ 谷歌学术搜索] - Wang, J.H.; Deng, Y.; Song, C.; Tian, D.J. Measuring time accessibility and its spatial characteristics in the urban areas of Beijing. J. Geog. Sci. 2016, 26, 1754–1768. [Google Scholar] [CrossRef] [Green Version]
王,JH;邓,Y.;宋 C.;Tian, D.J. 北京市区时间可达性测量及其空间特征.J. Geog. Sci. 2016, 26, 1754–1768.[ 谷歌学术搜索][ 交叉引用][ 绿色版] - Alex, A.; Richard, A.; Kenneth, A. Urban spatial structure. J. Econ. Lit. 1998, 36, 1426–1464. [Google Scholar]
亚历克斯,A.;理查德,A.;Kenneth, A. 城市空间结构。J. Econ. Lit. 1998, 36, 1426–1464.[ 谷歌学术搜索] - Yang, T.; Jin, Y.; Yan, L.; Pei, P. Aspirations and realities of polycentric development: Insights from multi-source data into the emerging urban form of Shanghai. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1264–1280. [Google Scholar] [CrossRef]
杨 T.;金 Y.;严,L.;Pei, P. 多中心发展的愿望和现实:从多源数据中洞察上海新兴城市形态。环境。计划。城市科学 2019, 46, 1264–1280。[ 谷歌学术搜索][ 交叉引用] - Zhong, C.; Arisona, S.M.; Huang, X.F.; Batty, M.; Schmitt, G. Detecting the dynamics of urban structure through spatial network analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
钟 C.;Arisona, SM;黄 X.F.;巴蒂,M.;Schmitt, G. 通过空间网络分析检测城市结构的动态。国际 J. Geogr.Inf. Sci. 2014, 28, 2178–2199.[ 谷歌学术搜索][ 交叉引用] - Patrick, L.; Robert, W.; Semantics, M. Cognitively Plausible Delineation of City Centres from Point of Interest Data. In Proceedings of the 13th Workshop of the ICA commission on Generalisation and Multiple Representation, Zürich, Switzerland, 12–13 September 2010; pp. 1–12. [Google Scholar]
帕特里克,L.;罗伯特,W.;语义学,M. 从兴趣点数据中对城市中心的认知合理描述。2010 年 9 月 12 日至 13 日,瑞士苏黎世,ICA 委员会第 13 届研讨会论文集;第 1-12 页。[ 谷歌学术搜索] - Toole, J.L.; Ulm, M.; Bauer, D.; Gonzalez, M.C. Inferring Land Use from Mobile Phone Activity. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 12 August 2012; pp. 1–8. [Google Scholar]
图尔,JL;乌尔姆,M.;鲍尔,D.;Gonzalez, M.C. 从手机活动推断土地使用。ACM SIGKDD 城市计算国际研讨会论文集,中国北京,2012 年 8 月 12 日;第 1-8 页。[ 谷歌学术搜索] - John, S.; Emmanouil, T.; Peter, N. Data from mobile phone operators: A tool for smarter cities? Telecomm. Policy 2015, 39, 335–346. [Google Scholar]
约翰,S.;埃马努伊,T.;Peter, N. 来自移动电话运营商的数据:打造更智能城市的工具?电信政策 2015, 39, 335–346。[ 谷歌学术搜索] - Vincent, B.; Gautier, K.; Thomas, I. Regions and borders of mobile telephony in Belgium and in the Brussels metropolitan zone. Brussels Stud. 2010, 42, 1–12. [Google Scholar]
文森特,B.;戈蒂埃,K.;Thomas, I. 比利时和布鲁塞尔大都会区移动电话的区域和边界。布鲁塞尔梭哈。2010, 42, 1–12.[ 谷歌学术搜索] - Yang, T. A study on spatial structure and functional location based on big data. City Plan Rev. 2018, 42, 28–38. [Google Scholar]
杨 T.基于大数据的空间结构和功能定位研究.城市规划修订版 2018, 42, 28–38。[ 谷歌学术搜索] - Liu, Y.; Wang, F.H.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai. Landsc. Urban Plan 2012, 106, 73–87. [Google Scholar] [CrossRef]
刘 Y.;王 F.H.;肖 Y.;Gao, S. 城市土地利用和交通“源汇区”:来自上海 GPS 出租车数据的证据。兰斯克。城市规划 2012, 106, 73-87。[ 谷歌学术搜索][ 交叉引用] - Long, Y.; Shen, Z.J. Disaggreating heterogeneous agent attributes and location. Comput. Environ. Urban Syst. 2013, 42, 14–25. [Google Scholar] [CrossRef]
朗,Y.;Shen, Z.J. 分解异构代理属性和位置。计算。环境。城市系统,2013,42,14-25。[ 谷歌学术搜索][ 交叉引用] - Rao, Z.H.; Yang, D.Y.; Duan, Z.Y. Resident mobility analysis based on mobile-phone billing data. Procedia Soc. Behav. Sci. 2013, 96, 2032–2041. [Google Scholar]
饶,ZH;杨,D.Y.;Duan, Z.Y. 基于移动电话计费数据的居民移动性分析。Procedia Soc. 行为。科学 2013, 96, 2032–2041。[ 谷歌学术搜索] - Wang, Y.; Xie, X.; Liang, S.; Zhu, B.; Yao, Y.; Meng, S.; Lu, C. Quantifying the response of potential flooding risk to urban growth in Beijing. Sci. Total Environ. 2019, 705, 135868. [Google Scholar] [CrossRef]
王 Y.;谢 X.;梁 S.;朱 B.;姚 Y.;孟, S.;Lu, C. 量化潜在洪水风险对北京城市发展的响应。Sci. Total Environ.2019, 705, 135868.[ 谷歌学术搜索][ 交叉引用] - Get Points of Interest Data. Available online: https://lbs.amap.com/api/ios-sdk/guide/map-data/poi/ (accessed on 31 December 2020).
获取目标点数据。在线获取:https://lbs.amap.com/api/ios-sdk/guide/map-data/poi/(2020 年 12 月 31 日访问)。 - Gao, Z.; Deng, X. Analysis on spatial features of LUCC based on remote sensing and GIS in China. Chin. Geogr. Sci. 2002, 12, 107–113. [Google Scholar] [CrossRef]
高,Z.;邓, X. 基于遥感和 GIS 的中国 LUCC 空间特征分析.下巴。Geogr.科学 2002, 12, 107–113。[ 谷歌学术搜索][ 交叉引用] - Okabe, A.; Satoh, T.; Sugihara, K. A kernel density estimation method for networks, its computational method and a GIS-based tool. Int. J. Geogr. Inf. Sci. 2009, 23, 7–32. [Google Scholar] [CrossRef]
冈部,A.;Satoh, T.;杉原 K.一种网络核密度估计方法、其计算方法和基于 GIS 的工具。国际 J. Geogr.Inf. Sci. 2009, 23, 7–32.[ 谷歌学术搜索][ 交叉引用] - Xie, Z.; Yan, J. Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: An integrated approach. J. Transp. Geogr. 2013, 31, 64–71. [Google Scholar] [CrossRef]
谢 Z.;Yan, J. 使用网络核密度估计和局部空间统计检测交通事故集群:一种综合方法.J. Transp. Geogr.2013, 31, 64–71.[ 谷歌学术搜索][ 交叉引用] - Seo, Y.; Lim, D.; Son, W.; Kwon, Y.; Kim, J.; Kim, H. Deriving mobility service policy issues based on text mining: A case study of Gyeonggi Province in South Korea. Sustainability 2020, 12, 10482. [Google Scholar] [CrossRef]
徐,Y.;林 D.;儿子,W.;权,Y.;金,J.;Kim, H. 基于文本挖掘推导移动服务政策问题:韩国京畿道的案例研究。可持续发展 2020, 12, 10482。[ 谷歌学术搜索][ 交叉引用]
Code | POI Category | Description |
---|---|---|
01 | Hotel | Hotels, guesthouses, inns, etc. |
02 | Restaurants and drinking | Restaurants, KFCs, McDonald’s, Pizza Huts, cafes, etc. |
03 | Shopping | Shopping malls, shopping centers, shops, convenience stores, supermarkets, specialty stores, pedestrian streets, etc. |
04 | Tourist attraction | Scenic spots, resorts, parks, squares, zoos, botanical gardens, churches, etc. |
05 | Healthcare | Hospitals, clinics, emergency centers, pharmacies, etc. |
06 | Building (including but not limited to companies) | Office buildings, villas, industrial parks, enterprises, companies, etc. |
07 | Financial and insurance | Banks, ATMs (Automated Teller Machine), insurance offices, security offices, finance offices, etc. |
08 | Residential | Residential, bathing, laundry, beauty salons, car washes, business halls, express services, etc. |
09 | Public facility | Newsstands, public telephones, public toilets, post offices, etc. |
10 | Government agency | Government agencies, embassies, institutions, procuratorates, courts, offices, etc. |
11 | Industrial site | Factories, farms, fisheries, forest farms, pastures, etc. |
12 | Public transport | Airports, railway stations, bus stations, subway stations, parking lots, etc. |
13 | Highway | Expressways, toll stations, gas stations, service areas, etc. |
14 | Sport and entertainment | Stadiums, football fields, tennis courts, basketball courts, badminton courts, fitness centers, entertainment centers, KTV (Karaoke TV), discotheques, bars, chess rooms, Internet cafes, movie theaters, etc. |
15 | Science and education | Universities, schools, libraries, research institutes, science and technology museums, historical museums, exhibition halls, conference centers, art galleries, cultural palaces, archives, television stations, newspapers, publishing houses, magazines, theaters, etc. |
Checkin_num (Number of Checkin Points) | Title |
---|---|
150255 | Capital Airport T3 Terminal |
90515 | Capital Airport T2 Terminal |
76175 | Weigong Village |
69227 | Beijing Normal University |
67681 | Beijing University |
64146 | Wangfujing |
64146 | Beijing University of Aeronautics and Astronautics |
63287 | Beijing Jiaotong University |
62810 | Tsinghua University |
58960 | Xidan |
58136 | University of Science and Technology |
56575 | Tiananmen Square |
51035 | Changxindian District |
49570 | Capital Airport |
47521 | Communication University of China |
POI Category | 1 (Functional Zone) | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Restaurants and drinking | 3 | 7 | 1 | 2 | 5 | 4 | 6 |
Highway | 6 | 5 | 4 | 1 | 7 | 2 | 3 |
Industrial site | 6 | 7 | 4 | 1 | 3 | 5 | 2 |
Public transport | 5 | 7 | 3 | 1 | 6 | 4 | 2 |
Public facility | 6 | 4 | 1 | 3 | 5 | 2 | 7 |
Shopping | 3 | 4 | 1 | 2 | 7 | 5 | 6 |
Financial and insurance | 3 | 6 | 1 | 2 | 5 | 4 | 7 |
Residential | 4 | 7 | 1 | 2 | 5 | 3 | 6 |
Science and education | 6 | 1 | 2 | 3 | 5 | 4 | 7 |
Tourist attraction | 2 | 3 | 1 | 4 | 5 | 6 | 7 |
Sport and entertainment | 2 | 6 | 1 | 3 | 5 | 4 | 7 |
Healthcare | 3 | 7 | 1 | 2 | 5 | 4 | 6 |
Government agency | 4 | 7 | 2 | 1 | 6 | 3 | 5 |
Hotel | 3 | 6 | 1 | 2 | 5 | 4 | 7 |
Buildings (including but not limited to companies) | 2 | 3 | 1 | 5 | 4 | 6 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 出版商注:MDPI 对已发布地图和机构隶属关系中的管辖权主张保持中立。 |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
© 2021 年由作者。被许可人 MDPI,瑞士巴塞尔。本文是根据知识共享署名 (CC BY) 许可 ( http://creativecommons.org/licenses/by/4.0/) 的条款和条件分发的开放获取文章。
Share and Cite 分享和引用
Miao, R.; Wang, Y.; Li, S.
Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability 2021, 13, 647.
https://doi.org/10.3390/su13020647
苗,R.;王 Y.;使用新浪微博 POI 数据分析城市空间格局和功能区:以北京为例。可持续发展 2021, 13, 647。https://doi.org/10.3390/su13020647
Miao R, Wang Y, Li S.
Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability. 2021; 13(2):647.
https://doi.org/10.3390/su13020647
Miao R, Wang Y, Li S. 使用新浪微博 POI 数据分析城市空间格局和功能区:以北京为例。可持续性。2021;13(2):647.https://doi.org/10.3390/su13020647
Miao, Ruomu, Yuxia Wang, and Shuang Li.
2021. "Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing" Sustainability 13, no. 2: 647.
https://doi.org/10.3390/su13020647
Miao, Ruomu, Yuxia Wang, 和 Shuang Li. 2021.“使用新浪微博 POI 数据分析城市空间格局和功能区:以北京为例”,可持续性 13,第 2 期:647。https://doi.org/10.3390/su13020647
Miao, R., Wang, Y., & Li, S.
(2021). Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability, 13(2), 647.
https://doi.org/10.3390/su13020647
Miao, R., Wang, Y., & Li, S. (2021 年)。使用新浪微博 POI 数据分析城市空间格局和功能区:以北京为例。可持续性, 13(2), 647.https://doi.org/10.3390/su13020647
请注意,从 2016 年第一期开始,本期刊使用文章编号而不是页码。在此处查看更多详细信息。
Article Metrics 文章指标
Citations 引文
Article Access Statistics
文章访问统计
有关期刊统计的更多信息,请单击此处。
来自同一 IP 地址的多个请求计为一次查看。