The state of the electron can be fully determined. For example, physical quantities such as the total energy, angular momentum, spatial orientation of the orbital, and spatial orientation of the spin can all be determined by this set of quantum numbers. 电子的状态可以完全确定。例如,总能量、角动量、轨道的空间方向和自旋的空间方向等物理量都可以由这组量子数来确定。
(n,l,m_(l),m_(s))\left(n, l, m_{l}, m_{s}\right)
2.Pauli exclusion principle 2.泡利排除原则
In an atom,it is impossible for two or more electrons to have completely identical four quantum numbers.In other words,each state in the atom can only accommodate one electron.( n,l,m_(l),m_(s)n, l, m_{l}, m_{s} ) 在一个原子中,两个或多个电子不可能具有完全相同的四个量子 numbers.In 换句话说,原子中的每个状态只能容纳一个电子。 n,l,m_(l),m_(s)n, l, m_{l}, m_{s}
If only 2 isoelectronic electrons,L+S=L+S= even(偶数)exist L+S=Odd(奇数)not fit Pauli exclusion principle 如果只有 2 个等电子电子, L+S=L+S= 偶数存在 L+S=奇数(奇数)不符合泡利排除原则
Only for 2 isoelectronic electrons,can not judge N>2 仅对 2 个等电子电子,不能判断 N>2
例: initial ^(3)P_(2,1,0){ }^{3} \mathbf{P}_{2,1,0} add 1d electron, find possible atomic state 例: initial ^(3)P_(2,1,0){ }^{3} \mathbf{P}_{2,1,0} add 1d electron, find possible atomic state
initial: quadl^(')=1quads^(')=1\quad l^{\prime}=1 \quad s^{\prime}=1 初: quadl^(')=1quads^(')=1\quad l^{\prime}=1 \quad s^{\prime}=1
d electron: quad l=2quad s=1//2\quad l=2 \quad s=1 / 2 d 电子: quad l=2quad s=1//2\quad l=2 \quad s=1 / 2
L-S: L-S: