这是用户在 2024-7-8 11:18 为 https://www.uptodate.cn/contents/zh-Hans/fish-oil-physiologic-effects-and-administration?search=%E9%... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Learn how UpToDate can help you.

Select the option that best describes you

鱼油的生理作用与用法
鱼油的生理作用与用法
所有专题都会依据新发表的证据和同行评议过程而更新。
文献评审有效期至: 2024-06.
专题最后更新日期: 2023-12-05.
There is a newer version of this topic available in English.
该专题有一个更新版本英文版本

引言 — 

1970年代的生态学研究发现,食用大量海产品的格陵兰岛因纽特人的冠状动脉性心脏病(coronary heart disease, CHD)死亡率较低[1]。这使人们广泛研究食用海产品的健康作用,结果发现此类益处主要来自鱼油中的长链ω-3多不饱和脂肪酸(polyunsaturated fatty acid, PUFA),即二十碳五烯酸(eicosapentaenoic acid, EPA,即20:5n-3)和二十二碳六烯酸(docosahexaenoic acid, DHA,即22:6n-3) ()[2-22]。

本专题将讨论鱼油对心血管和代谢系统的生理作用,以及鱼油的使用问题,包括制剂、用法用量和安全性。

鱼油补充对妊娠和婴儿结局以及对痴呆的影响参见其他专题:

(参见 “妊娠期摄入鱼类和补充海洋性ω-3脂肪酸”)

(参见 “长链多不饱和脂肪酸对早产儿和足月儿的意义”)

(参见 “痴呆的预防”,关于‘ω-3脂肪酸’一节)

命名 — 

根据脂肪酸链中第1个双键的位置,PUFA主要分为2类:ω-3(又称n-3)脂肪酸和ω-6(n-6)脂肪酸。3种主要的膳食ω-3脂肪酸分别为EPA、DHA和α-亚麻酸(alpha-linolenic acid, ALA)。EPA和DHA为长链ω-3 PUFA,存在于鱼类、甲壳类和软体动物以及其他一些动物性食品(含量低很多)中,两者均为鱼油补充剂的主要成分。ALA是一种中链ω-3 PUFA,存在于某些植物及其油中,例如亚麻籽和核桃。提及EPA和DHA时,常用术语包括“长链ω-3脂肪酸”、“海产品来源的ω-3脂肪酸”和“海洋性ω-3脂肪酸”。本专题中,除非另有说明,否则所有ω-3脂肪酸均假定为长链脂肪酸[23]。

概述 — 

由于科学文献和大众媒体对海洋性ω-3(n-3)脂肪酸潜在益处的广泛讨论,患者可能会询问有关鱼油补充剂的问题,特别是其能否减少心血管疾病(cardiovascular disease, CVD)。与许多其他几乎没有观察到生理作用的膳食补充剂相比,纳入临床试验的meta分析表明,通过膳食或补充剂摄入海洋性ω-3脂肪酸对心血管和代谢有多种作用 ()[24]。如下所述,这些作用通常较弱且呈剂量依赖性,但为许多观察性研究和一些临床试验所见的摄入ω-3脂肪酸后CVD风险下降提供了生物学解释[24]。

美国FDA认为,对于某些轻度高甘油三酯血症患者,降低心血管风险是开具ω-3脂肪酸制剂的超适应证指征。FDA还认定,食品标签上关于摄入食品或膳食补充剂中的海洋性ω-3脂肪酸可降低高血压和冠心病风险的说法符合合格健康声明(qualified health claim)所需的“可靠证据”标准,但不符合授权健康声明(authorized health claim)所需的“明确科学共识”标准[25,26]。

这些问题见以下专题:

(参见 “心血管疾病的一级预防概述”,关于‘ω-3脂肪酸’一节)

(参见 “心血管疾病患者(二级预防)或极高危人群的心血管事件预防”,关于‘海洋来源ω-3脂肪酸’一节)

(参见 “成人高甘油三酯血症的管理”,关于‘治疗目标’一节)

(参见 “利用膳食或膳食补充剂进行血脂管理”)

对心血管和代谢系统的潜在作用 — 

对心血管和代谢系统的具体作用见下文,这些作用因剂量和时间而异 ()[21]。

系统效应

心血管结局–鱼油对预防心血管结局(如脑卒中、心肌梗死)的作用不明。关于摄入ω-3脂肪酸能否降低心血管事件或死亡的风险,几项纳入高甘油三酯血症患者的大型临床试验结果不一,参见其他专题。(参见 “成人高甘油三酯血症的管理”,关于‘对心血管结局的作用’一节)

脂类–摄入大剂量ω-3脂肪酸可将血清甘油三酯浓度降低25%-50%,该效应达到了其他降甘油三酯药物的疗效范围[27-29]。剂量反应呈线性关系,膳食剂量或小剂量(<1g/d)的EPA和DHA几乎不会降低甘油三酯,而大剂量(3-4g/d)则会显著降低甘油三酯 ()[30]。鱼油降血脂的临床应用,包括在高甘油三酯血症患者中的应用,详见其他专题。(参见 “成人高甘油三酯血症的管理”,关于‘治疗目标’一节“利用膳食或膳食补充剂进行血脂管理”,关于‘ω-3脂肪酸’一节)

EPA和DHA主要通过减少肝脏产生VLDL-C以及促进VLDL向中间密度脂蛋白(intermediate-density lipoprotein, IDL)和LDL的转化,从而降低空腹和餐后的甘油三酯[31,32]。

心房颤动–观察性研究提示,膳食中的EPA+DHA与心房颤动发生率降低有关,但干预性研究表明,小剂量或大剂量鱼油补充剂均不能预防复发性或术后心房颤动[33-38]。而meta分析通过试验发现,补充大剂量EPA和/或DHA与心房颤动发生率轻微增加相关[39-42],这些内容参见其他专题。(参见 “成人高甘油三酯血症的管理”,关于‘安全性’一节)

血压和体循环血管阻力–食用鱼油可以降低收缩压和舒张压,包括未经治疗的高血压患者。

一篇meta分析纳入70项针对成人的随机试验(排除了高血压经治患者,以及既已存在CVD、其他重大疾病或继发性高血压的患者),发现补充EPA和DHA使收缩压降低1.52mmHg,舒张压降低0.99mmHg[43]。在血压正常和高血压患者中均出现了血压降低。在未治疗的高血压患者中血压降幅最大,收缩压和舒张压分别降低了4.51mmHg和3.05mmHg。

一篇meta分析纳入12项随机对照试验、共1028例超重或肥胖的儿童/青少年,发现补充鱼油使收缩压降低2.46mmHg,但对舒张压没有显著影响[44]。

动物研究和人体观察性研究表明,鱼油的降血压作用来自于体循环血管阻力降低(即小动脉阻力降低),而心输出量并未改变[45,46]。体外研究提示,ω-3 PUFA(n-3 PUFA)可诱导一氧化氮合成,调节内皮活化,并改变包括内皮一氧化氮合酶(endothelial nitric oxide synthase, eNOS)在内的细胞膜小窝蛋白的位置及功能[47-50]。

短期人体试验显示,摄入EPA和DHA增加了一氧化氮合成的生物标志物,降低了外周血管对去甲肾上腺素和血管紧张素Ⅱ的血管收缩反应,改善了动脉壁顺应性,并增强了血管舒张反应[51-55]。一篇meta分析纳入14项随机对照试验,发现补充鱼油降低了脉搏波传导速度(动脉僵硬度指标)[56]。这些因素单独或协同作用都可导致体循环血管阻力降低。

心率和心率变异性

鱼油似乎可以降低心率。一篇纳入30项随机试验的meta分析表明,补充鱼油(中位剂量3.5g/d,中位持续8周)将静息心率降低了1.6次/分(beats per minute, bpm)[57],而一篇纳入51项试验的最新meta分析发现静息心率降低了2.2bpm[58]。这些试验显示,在所用的鱼油剂量范围内(1-15g/d),心率下降似乎没有剂量依赖性。相比之下,如果使用观察性研究中的较低剂量(膳食剂量),剂量似乎具有重要影响,至少在EPA+DHA剂量不超过约300mg/d的阈值时是这样 ()[45,57,59]。

动物实验提示,心率下降可能是鱼油对心脏电生理的直接影响所致[18,19,60]。EPA和DHA也可能通过较为间接的作用来降低人类心率,例如改善左心室舒张期充盈或增强迷走神经张力[61]。

鱼油对心率变异性(heart rate variability, HRV)的作用不明。HRV受基础静息心率、自主神经功能、昼夜节律和基础心脏健康状况的影响。目前评估补充鱼油与HRV的试验结果不一,这可能是由于样本量小,所用的鱼油剂量不同,鱼油摄入的持续时间较短(数周至数月),或HRV评估时间有限[62-65]。

尽管动物研究和体外研究表明了ω-3脂肪酸对心肌细胞电生理学的影响,但由于缺乏可靠且易于检测的生物标志物,故难以确认其对人类心脏的直接抗心律失常作用[17-19,66-68]。

心脏功能–一些证据提示,鱼油可能影响多种心脏功能。

左心室舒张期充盈由2个时相组成:早期主动(能量依赖性)舒张相和晚期被动(顺应性依赖性)充盈相(伴有心房收缩导致的一个终末短暂时相)。早期舒张异常是缺血性心脏病的最早征象之一,而被动充盈异常(顺应性降低)常由长期高血压性心脏病或缺血性心脏病导致。一项针对健康男性的小型试验发现,摄入7周的鱼油(4g/d)改善了早期舒张期充盈[69]。这种相对急性的改善提示,鱼油对能量依赖性充盈有功能性或代谢性作用,但无结构性作用。一项针对缺血性心力衰竭患者的小型试验发现,摄入8周鱼油(2g/d)的E/e'比率(舒张期充盈异常指标)降低了9.47%,而安慰剂组仅降低了2.1%[70]。

鱼油也可通过增强心室顺应性或防止心室顺应性下降,从而改善舒张期充盈的第2时相(心室顺应性依赖性充盈相)。一项关于年龄较大成人的队列研究显示,习惯性适量摄入鱼类使心电图定义的左室质量(反映左心室大小和肥大程度)趋于降低,且E/A比值升高(说明舒张期充盈更正常)[45]。

对于健康成人,除了降低静息心率(充盈时间增加)和改善舒张期充盈导致的心脏每搏输出量增加外,来自膳食或补充剂的鱼油似乎不会影响心脏收缩功能[45,69,71][45,72]。然而,确诊心力衰竭的患者摄入鱼油可以改善左室射血分数[73,74]。一项纳入16例运动员的随机试验发现,摄入鱼油可改善心肌效率,从而降低心肌需氧量且不会降低运动表现[75]。另一项纳入31例缺血性心力衰竭患者的试验发现,补充鱼油8周使左室射血分数提高了4.7%,而安慰剂组提高了1.7%[70]。

这些关于鱼油与心脏收缩和舒张功能的初步发现都需要更大型研究来证实。

内皮功能–部分人体随机试验表明,食用鱼油可以降低循环中内皮功能障碍的标志物,例如E-选择素、血管细胞黏附分子1、胞间黏附分子1[76,77]。一篇meta分析纳入16项安慰剂对照随机试验、共901例受试者,与安慰剂相比,鱼油增加了血流介导的血管舒张(一种检测内皮功能的无创替代指标);血流介导的血管舒张增加提示内皮功能改善[78]。这些试验采用不同剂量的鱼油(剂量范围:0.45-4.5g/d),治疗的中位持续时间为56日。

出血/血小板功能–以最高4g/d的常用剂量食用鱼油对出血没有明显的临床影响。大剂量摄入EPA(3-15g/d)会增加出血时间,但不会提高临床出血率[79]。体外实验显示ω-3脂肪酸可抑制血小板活化因子,但人体试验并未可靠地发现食用鱼油对血小板聚集有显著影响[29]。尚未观察到鱼油对出血的临床效果。(参见下文‘出血’)

炎症–EPA和DHA是特定类花生酸、其他炎症介质以及消退素(resolvin)、保护素(protectin)和巨噬素(maresin)的前体,这些物质对炎症的积极消退具有重要影响,因此鱼油可能有多种抗炎作用[80,81]。

纳入随机试验的meta分析发现,补充鱼油能降低CRP、IL-6和TNF-α[82-84]。一些meta分析纳入了针对鱼油补充的随机试验,受试者存在终末期肾病[85]、HIV感染[86]和多囊卵巢综合征[87],结果也发现CRP显著降低。

对于高敏CRP(high-sensitivity CRP, hs-CRP)升高(≥2μg/mL)和存在代谢危险因素的成人,EPA和DHA(分别补充,3g/d,各持续10周)均降低了炎症标志物水平,两者既有共同的作用,又有各自不同的效应,与独特的下游脂类介质相关,包括特异性促炎症消退脂类介质(specialized pro-resolving lipid mediator, SPM)[88]。

一篇网状meta分析分别评估了EPA和DHA,发现两者对降低CRP、IL-6和TNF-α的效果相近[89]。

鱼油用于关节炎的内容参见其他专题。(参见 “风湿性疾病的补充和替代疗法”,关于‘鱼油和植物油’一节)

葡萄糖和胰岛素–尽管鱼油改善了代谢综合征的标志物,但尚未证明这些改善对2型糖尿病患者有显著临床益处[90]。

一篇meta分析纳入了评估鱼油对成人胰岛素敏感性影响的试验,发现ω-3脂肪酸对一般人群或2型糖尿病患者的胰岛素敏感性似乎没有太大影响[91,92]。相比之下,另一篇纳入13项试验、共1132例儿童的meta分析发现,ω-3脂肪酸显著改善了胰岛素敏感性[93]。

一篇meta分析纳入了评估鱼油对血浆脂联素影响的试验,与安慰剂相比,补充ω-3脂肪酸轻度提高了脂联素水平[94]。多篇meta分析纳入了针对鱼油补充剂的随机试验,受试者存在糖尿病[95]和多囊卵巢综合征[87],结果也发现脂联素水平上升。一篇网状meta分析分别评估了EPA和DHA,发现两者对提高血浆脂联素的效果相近[89]。

肥胖症和身体成分–鱼油可能会改变体重和身体成分。

一篇meta分析纳入11项随机对照试验、共617例超重或肥胖的受试者,发现补充鱼油使腰围缩小了0.53cm,但对BMI没有显著影响[96]。相比之下,另一篇meta分析纳入12项随机对照试验、共1028例超重或肥胖的儿童和青少年,发现补充鱼油使BMI降低0.96kg/m2,但腰围没有显著缩小[44]。22项随机对照试验纳入1366例代谢功能障碍相关脂肪性肝病(旧称非酒精性脂肪性肝病)患者,与安慰剂相比,补充鱼油减少了肝脏脂肪(汇总RR 1.52,95%CI 1.09-2.13),还使BMI降低了0.46kg/m2[97]。

补充ω-3脂肪酸在肝脂肪变患者中的临床作用参见其他专题。(参见 “成人代谢相关脂肪性肝病(非酒精性脂肪肝病)的治疗”,关于‘效果不确定的疗法’一节)

药动学及药效学 — 与其他膳食脂肪酸一样,EPA和DHA在消化道被吸收,主要以乳糜微粒中甘油三酯的形式被转运至肝脏。然后,EPA和DHA以脂蛋白微粒(如LDL-C和HDL-C)中甘油三酯以及血浆磷脂的形式,从肝脏释放进入血液循环。较少量以游离脂肪酸的形式存在于循环系统中,主要与白蛋白相结合。

EPA和DHA作为细胞膜磷脂的一部分遍及全身,尤其富集于心脏和脑部,并以甘油三酯的形式储存在脂肪组织中。摄入鱼油会在数日内增加血浆脂质或细胞膜磷脂中EPA和DHA的浓度,并在约2周时达到最大浓度[98]。浓度增长呈剂量依赖性,但非线性,即较低剂量时浓度增量较大,之后随剂量增加浓度增量较小[98]。

ω-3脂肪酸生理效应的产生原因可能包括:这些脂肪酸整合入细胞膜后,细胞膜流动性和功能发生了改变,然后调节蛋白质受体反应;ω-3脂肪酸与调节基因转录的细胞质脂质结合蛋白相结合,例如过氧化物酶体增殖物活化受体γ;ω-3脂肪酸与膜通道和G蛋白偶联受体等蛋白质直接发生相互作用并对其产生影响;生成了ω-3脂肪酸的代谢产物,例如类花生酸和SPM,包括消退素或保护素 ()。

停止摄入后,血浆中的脂质部分会在1-3日内洗脱,但细胞膜中的脂质部分需要更长时间(1-2个月)才能洗脱[98]。不同口服剂型的鱼油(如甘油三酯 vs 乙酯)之间的药动学差异相对较小[99]。

与EPA和DHA相比,其他ω-3脂肪酸[如二十二碳五烯酸(docosapentaenoic acid, DPA),即22:5n-3]在鱼油中的含量远远更少,但可能也有生物活性,且在摄入后可生成重要的代谢产物[100]。组织和血液中的DPA似乎大部分来自膳食EPA的内源性合成,而非直接摄入。EPA也可被代谢产生前列腺素E3,前列腺素E3是一种介导炎症和血栓形成的类花生酸。极少量EPA(<5%)可转化成DHA,但这种转化在女性中程度更大,特别是妊娠期女性[101]。

对于大部分健康作用,除了DHA对早期脑部发育可能更加重要以外,尚未完全确定EPA、DHA及其相关代谢产物的相对生物学重要性[102-105]。

摄入剂量及持续时间的作用 — 一般来说,习惯性食用鱼油数周至数月内就会产生生理作用。观察性研究表明,与很少摄入或不摄入鱼油的人群相比,常规膳食摄入鱼油(<300-500mg/d)的人群发生致命性CHD和猝死的风险更低,这提示鱼油主要起抗心律失常作用。使用低剂量(约1g/d)补充剂时,上述额外的生理作用可能对其他临床结果产生轻微影响。使用大剂量(>2-3g/d)补充剂时,其他生理作用(如降低甘油三酯)会变得更明显,可能在数月至数年内使总体心血管事件轻度减少[20,21,40,106-110]。

用法用量

制剂 — ω-3酸乙酯有处方制剂,也有营养补充剂(不受美国FDA监管)。这些补充剂所含EPA和DHA的剂量远低于治疗高甘油三酯血症的剂量,也远低于鱼油减少心血管终点研究中的剂量[111]。(参见 “成人高甘油三酯血症的管理”,关于‘海洋ω-3脂肪酸’一节)

这些制剂通常为ω-3 PUFA(n-3 PUFA)的乙酯形式,源自用作鱼饲料的小型远洋鱼类。ω-3脂肪酸补充剂也可从海藻制剂中提取。磷虾油由小型甲壳类动物磷虾制成,也含有n-3 PUFA,但以磷脂和游离脂肪酸的形式存在,而不是乙酯形式。

处方制剂包括[112]:

ω-3酸乙酯(Lovaza)–每粒1g的胶囊含取自鱼油的ω-3脂肪酸乙酯,包括约465mg的EPA和375mg的DHA。

乙基二十碳五烯酸(Vascepa)–每粒1g的胶囊含有约878mg的高纯度EPA乙酯(也有0.5g的胶囊)。

ω-3磷脂(CaPre,在研)–每粒1g的胶囊含取自磷虾油的ω-3脂肪酸,以磷脂形式(约60%)和游离脂肪酸形式(约40%)存在,其中EPA和DHA的总量约310mg。

ω-3-羧酸(Epanova)–每粒1g的胶囊含有游离ω-3脂肪酸,包括约550mg的EPA和200mg的DHA。由于Ⅲ期STRENGTH试验未能表明Epanova减少心血管终点的效果优于安慰剂,美国已停止生产Epanova[113]。(参见 “成人高甘油三酯血症的管理”,关于‘对心血管结局的作用’一节)

关于治疗高甘油三酯血症的特定制剂选择参见其他专题。(参见 “成人高甘油三酯血症的管理”,关于‘药物选择’一节)

通常大型药店或保健食品店销售的补充剂产品均标注了EPA和DHA含量[114]。不同制剂的鱼油补充剂含有不同量的EPA和DHA。大多数制剂中,EPA+DHA总含量占20%-40%,还含有其他ω-3脂肪酸、单不饱和脂肪、饱和脂肪、明胶或甘油[115,116]。因此,一粒1g的胶囊补充剂通常含200-400mg的EPA和/或DHA。

有关这些制剂的更多信息参阅UpToDate中有关ω-3-酸乙酯(鱼油)的药物专论。

吸收 — 鱼油补充剂应与含脂肪的膳食一同摄入,因为与高脂膳食同服时,ω-3脂肪酸的乙酯和甘油三酯制剂在消化道内的吸收率最高。而以游离脂肪酸(如Epanova)或磷脂(如CaPre)为主的制剂,吸收率不太依赖于随餐服用或与高脂饮食同服。虽然吸收率可能因制剂种类而异,但与不摄入这些补充剂相比,所有制剂均可增加血液及组织中ω-3脂肪酸的水平。

副作用 — 一篇针对随机临床试验的汇总分析显示,摄入鱼油最常见的副作用为消化道功能紊乱(如恶心),当摄入量低于3g/d时,发生率约为4%,而当摄入量≥4g/d时,发生率约为20%[20]。

患者停用鱼油补充剂的最常见原因可能为嗳气(打嗝)后的“鱼腥味”。在部分患者中,冰冻鱼油、换用其他制剂、随餐摄入或更改每日摄入鱼油的时间可能极大地减少这种症状。

安全性 — 

小型试验显示,使用高达12g/d的鱼油胶囊(ω-3脂肪酸含量为6g/d)超过2年未发生严重不良事件[117,118]。

尽管使用如此超大剂量的鱼油似乎也没有危险,但美国FDA推荐,在没有医生指导的情况下,一般人群每日摄入EPA和DHA合计不超过3g,其中每日最多2g来自膳食补充剂[119,120]。而FDA准许在医生指导下使用更大剂量。

美国FDA批准将鱼油4g/d用于高甘油三酯血症的处方治疗[115]。使用该制剂的REDUCE-IT试验发现,治疗组与安慰剂组的总体不良事件和严重不良事件的发生率基本相近,仅有一些很小的差异[121]。应谨慎解读这些差异,因为试验开展了多重比较,且未对这些作用做出预先假设或合理的生物学解释。

出血 — 2020年一篇针对ω-3脂肪酸用于心血管疾病一级和二级预防的系统评价发现,增加长链ω-3脂肪酸的摄入量并未增加出血风险[122]。

针对OPERA试验的详细二次分析显示,在多国招募的1516例接受心脏手术的一般人群患者中,摄入大剂量ω-3脂肪酸(术前给予负荷剂量8-10g,持续2-5日,术后2g/d)并未增加出血风险[123]。根据出血学术研究联合会(Bleeding Academic Research Consortium, BARC)的出血定义,与安慰剂组相比,鱼油组的出血风险并未增高(OR 0.81,95%CI 0.53-1.24;绝对风险差异降低1.1%,95%CI -3.0至1.8),且红细胞输注总单位显著减少(1.61U vs 1.92U,注:中美对1个单位/1个治疗量的血液制品量定义不同)。上述结果表明,心脏手术前基本无需停用鱼油或延迟手术。

污染物 — 市售鱼油胶囊的汞含量甚微,汞与鱼类蛋白质紧密结合,而不存在于脂质中[21,124]。

临床上不用担心大量接触鱼油中的污染物[21]。鱼油胶囊中含有少量多氯联苯(polychlorinated biphenyl, PCB;0-450ng/g)[125,126]和二噁英(毒性当量为0.2-11pg/g)[127,128],这些化合物的浓度与鱼油胶囊原料鱼中的浓度成正比。需注意,考虑到鱼油的绝对摄入量较少(1-4g/d),故通过补充鱼油摄入体内的PCB或二噁英的绝对量极低。

母亲在妊娠期及哺乳期的鱼类摄入详见其他专题。(参见 “妊娠期摄入鱼类和补充海洋性ω-3脂肪酸”“哺乳期母亲的营养”,关于‘鱼类摄入’一节)

癌症风险 — 总体而言,暂无证据表明食用鱼类或鱼油对癌症风险有重大影响。针对多项大型前瞻性观察研究的系统评价/meta分析普遍发现,食用鱼类不会对任何类型的癌症风险产生显著影响[129,130],针对鱼油的随机试验也得出同样结果[9,22,121]。部分研究显示[131-133],较高水平的ω-3脂肪酸与前列腺癌风险增加相关,但也有研究得出不一致的结果[134];纳入所有研究的meta分析发现,膳食或血液中ω-3脂肪酸的生物标志物水平与前列腺癌之间没有一致的关联[135,136]。

学会指南链接 — 

部分国家及地区的学会指南和政府指南的链接参见其他专题。(参见 “Society guideline links: Healthy diet in adults”)

总结与推荐

鱼油的活性成分–动物及人体研究发现,长链ω-3多不饱和脂肪酸(n-3 PUFA)是鱼类/海产品和鱼油的主要活性成分;n-3 PUFA包括二十碳五烯酸(EPA,即20:5n-3)和二十二碳六烯酸(DHA,即22:6n-3)。(参见上文‘对心血管和代谢系统的潜在作用’)

潜在临床作用

甘油三酯血症患者–每日摄入大剂量的EPA和/或DHA(3-4g/d)可将血清甘油三酯水平降低25%-50%。鱼油在治疗高甘油三酯血症中的作用参见其他专题。(参见 “成人高甘油三酯血症的管理”,关于‘海洋ω-3脂肪酸’一节)

其他患者–补充ω-3脂肪酸在非高甘油三酯血症患者血脂管理中的作用参见其他专题。(参见 “心血管疾病的一级预防概述”,关于‘ω-3脂肪酸’一节“利用膳食或膳食补充剂进行血脂管理”)

心房颤动–ω-3脂肪酸似乎不能降低复发性心房颤动的风险,而大剂量补充鱼油可能增加心房颤动的风险(参见上文‘系统效应’“成人高甘油三酯血症的管理”,关于‘安全性’一节)

对心血管的其他影响–由于试验结果不一,补充鱼油对降低心血管死亡率、心肌梗死、脑卒中等临床心血管结局的疗效仍不明确。虽然一些研究表明ω-3脂肪酸(膳食或补充剂)对心血管和代谢可能有益 (),但此类效果轻微且呈剂量依赖性。(参见上文‘概述’“成人高甘油三酯血症的管理”,关于‘对心血管结局的作用’一节)

制剂–鱼油制剂有处方制剂,也有营养补充剂,成分和剂量各异。这些制剂一般源自用作鱼饲料的小型远洋鱼类或从海藻制剂中提取。(参见上文‘制剂’)

安全性–现有证据表明鱼油补充剂没有危险。其与出血或癌症风险增加无关,大量接触鱼油中的污染物并不构成主要问题。美国FDA建议,在没有医生指导的情况下,一般人群每日摄入EPA和DHA合计不超过3g,其中每日最多2g来自膳食补充剂。(参见上文‘概述’‘安全性’)

使用 UpToDate 必须遵守订阅与许可证协议.
参考文献
  1. Bang HO, Dyerberg J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. In: Advances in nutrition research, Draper H (Ed), Plenum Press, New York 1980. p.1–22.
  2. Kromhout D, Bosschieter EB, de Lezenne Coulander C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med 1985; 312:1205.
  3. Burr ML, Fehily AM, Gilbert JF, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 1989; 2:757.
  4. Dolecek TA, Granditis G. Dietary polyunsaturated fatty acids and mortality in the Multiple Risk Factor Intervention Trial (MRFIT). World Rev Nutr Diet 1991; 66:205.
  5. Siscovick DS, Raghunathan TE, King I, et al. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA 1995; 274:1363.
  6. Kromhout D, Feskens EJ, Bowles CH. The protective effect of a small amount of fish on coronary heart disease mortality in an elderly population. Int J Epidemiol 1995; 24:340.
  7. Daviglus ML, Stamler J, Orencia AJ, et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N Engl J Med 1997; 336:1046.
  8. Albert CM, Hennekens CH, O'Donnell CJ, et al. Fish consumption and risk of sudden cardiac death. JAMA 1998; 279:23.
  9. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet 1999; 354:447.
  10. Oomen CM, Feskens EJ, Räsänen L, et al. Fish consumption and coronary heart disease mortality in Finland, Italy, and The Netherlands. Am J Epidemiol 2000; 151:999.
  11. Yuan JM, Ross RK, Gao YT, Yu MC. Fish and shellfish consumption in relation to death from myocardial infarction among men in Shanghai, China. Am J Epidemiol 2001; 154:809.
  12. Hu FB, Bronner L, Willett WC, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA 2002; 287:1815.
  13. Albert CM, Campos H, Stampfer MJ, et al. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 2002; 346:1113.
  14. Lemaitre RN, King IB, Mozaffarian D, et al. n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am J Clin Nutr 2003; 77:319.
  15. Mozaffarian D, Lemaitre RN, Kuller LH, et al. Cardiac benefits of fish consumption may depend on the type of fish meal consumed: the Cardiovascular Health Study. Circulation 2003; 107:1372.
  16. Mozaffarian D, Ascherio A, Hu FB, et al. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 2005; 111:157.
  17. Kang JX, Leaf A. Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. Am J Clin Nutr 2000; 71:202S.
  18. McLennan PL. Myocardial membrane fatty acids and the antiarrhythmic actions of dietary fish oil in animal models. Lipids 2001; 36 Suppl:S111.
  19. Leaf A, Kang JX, Xiao YF, Billman GE. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation 2003; 107:2646.
  20. Wang C, Harris WS, Chung M, et al. n-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 2006; 84:5.
  21. Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 2006; 296:1885.
  22. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 2007; 369:1090.
  23. Omega-3 fatty acids: Fact sheet for health professionals. National Institutes of Health Office of Dietary Supplements. https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/.
  24. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 2011; 58:2047.
  25. FDA announces new qualified health claims for EPA and DHA omega-3 consumption and the risk of hypertension and coronary heart disease. US Food and Drug Administration, 2019. https://www.fda.gov/food/cfsan-constituent-updates/fda-announces-new-qualified-health-claims-epa-and-dha-omega-3-consumption-and-risk-hypertension-and.
  26. Questions and answers on health claims in food labeling. US Food and Drug Administration. https://www.fda.gov/food/food-labeling-nutrition/questions-and-answers-health-claims-food-labeling (Accessed on December 02, 2019).
  27. Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 1997; 65:1645S.
  28. Balk EM, Lichtenstein AH, Chung M, et al. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis 2006; 189:19.
  29. Wang C, Chung M, Lichtenstein A, et al. Effects of omega-3 fatty acids on cardiovascular disease. Evid Rep Technol Assess (Summ) 2004; :1.
  30. Brinton EA, Ballantyne CM, Guyton JR, et al. Lipid Effects of Icosapent Ethyl in Women with Diabetes Mellitus and Persistent High Triglycerides on Statin Treatment: ANCHOR Trial Subanalysis. J Womens Health (Larchmt) 2018; 27:1170.
  31. Harris WS, Bulchandani D. Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol 2006; 17:387.
  32. Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis 2017; 16:149.
  33. Mariani J, Doval HC, Nul D, et al. N-3 polyunsaturated fatty acids to prevent atrial fibrillation: updated systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 2013; 2:e005033.
  34. Nigam A, Talajic M, Roy D, et al. Fish oil for the reduction of atrial fibrillation recurrence, inflammation, and oxidative stress. J Am Coll Cardiol 2014; 64:1441.
  35. Kowey PR, Reiffel JA, Ellenbogen KA, et al. Efficacy and safety of prescription omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: a randomized controlled trial. JAMA 2010; 304:2363.
  36. Macchia A, Grancelli H, Varini S, et al. Omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: results of the FORWARD (Randomized Trial to Assess Efficacy of PUFA for the Maintenance of Sinus Rhythm in Persistent Atrial Fibrillation) trial. J Am Coll Cardiol 2013; 61:463.
  37. Darghosian L, Free M, Li J, et al. Effect of omega-three polyunsaturated fatty acids on inflammation, oxidative stress, and recurrence of atrial fibrillation. Am J Cardiol 2015; 115:196.
  38. Mozaffarian D, Wu JH, de Oliveira Otto MC, et al. Fish oil and post-operative atrial fibrillation: a meta-analysis of randomized controlled trials. J Am Coll Cardiol 2013; 61:2194.
  39. Gencer B, Djousse L, Al-Ramady OT, et al. Effect of Long-Term Marine ɷ-3 Fatty Acids Supplementation on the Risk of Atrial Fibrillation in Randomized Controlled Trials of Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Circulation 2021; 144:1981.
  40. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med 2019; 380:11.
  41. Kalstad AA, Myhre PL, Laake K, et al. Effects of n-3 Fatty Acid Supplements in Elderly Patients After Myocardial Infarction: A Randomized, Controlled Trial. Circulation 2021; 143:528.
  42. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020; 324:2268.
  43. Miller PE, Van Elswyk M, Alexander DD. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens 2014; 27:885.
  44. Wu S, Zhu C, Wang Z, et al. Effects of Fish Oil Supplementation on Cardiometabolic Risk Factors in Overweight or Obese Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials. Front Pediatr 2021; 9:604469.
  45. Mozaffarian D, Gottdiener JS, Siscovick DS. Intake of tuna or other broiled or baked fish versus fried fish and cardiac structure, function, and hemodynamics. Am J Cardiol 2006; 97:216.
  46. Demaison L, Blet J, Sergiel JP, et al. Effect of dietary polyunsaturated fatty acids on contractile function of hearts isolated from sedentary and trained rats. Reprod Nutr Dev 2000; 40:113.
  47. Omura M, Kobayashi S, Mizukami Y, et al. Eicosapentaenoic acid (EPA) induces Ca(2+)-independent activation and translocation of endothelial nitric oxide synthase and endothelium-dependent vasorelaxation. FEBS Lett 2001; 487:361.
  48. De Caterina R, Liao JK, Libby P. Fatty acid modulation of endothelial activation. Am J Clin Nutr 2000; 71:213S.
  49. Li Q, Zhang Q, Wang M, et al. Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie 2007; 89:169.
  50. Li Q, Zhang Q, Wang M, et al. Docosahexaenoic acid affects endothelial nitric oxide synthase in caveolae. Arch Biochem Biophys 2007; 466:250.
  51. Kenny D, Warltier DC, Pleuss JA, et al. Effect of omega-3 fatty acids on the vascular response to angiotensin in normotensive men. Am J Cardiol 1992; 70:1347.
  52. Chin JP, Gust AP, Nestel PJ, Dart AM. Marine oils dose-dependently inhibit vasoconstriction of forearm resistance vessels in humans. Hypertension 1993; 21:22.
  53. Harris WS, Rambjør GS, Windsor SL, Diederich D. n-3 fatty acids and urinary excretion of nitric oxide metabolites in humans. Am J Clin Nutr 1997; 65:459.
  54. Mori TA, Watts GF, Burke V, et al. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation 2000; 102:1264.
  55. McVeigh GE, Brennan GM, Cohn JN, et al. Fish oil improves arterial compliance in non-insulin-dependent diabetes mellitus. Arterioscler Thromb 1994; 14:1425.
  56. Chu Z, Wei Y, Hao Y, et al. Clinical effectiveness of fish oil on arterial stiffness: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2021; 31:1339.
  57. Mozaffarian D, Geelen A, Brouwer IA, et al. Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials. Circulation 2005; 112:1945.
  58. Hidayat K, Yang J, Zhang Z, et al. Effect of omega-3 long-chain polyunsaturated fatty acid supplementation on heart rate: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2018; 72:805.
  59. Mozaffarian D, Prineas RJ, Stein PK, Siscovick DS. Dietary fish and n-3 fatty acid intake and cardiac electrocardiographic parameters in humans. J Am Coll Cardiol 2006; 48:478.
  60. Billman GE, Kang JX, Leaf A. Prevention of ischemia-induced cardiac sudden death by n-3 polyunsaturated fatty acids in dogs. Lipids 1997; 32:1161.
  61. O'Keefe JH Jr, Abuissa H, Sastre A, et al. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol 2006; 97:1127.
  62. Rantanen JM, Riahi S, Johansen MB, et al. Effects of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability and Heart Rate in Patients on Chronic Dialysis: A Randomized Controlled Trial. Nutrients 2018; 10.
  63. Kristensen S, Schmidt EB, Schlemmer A, et al. The effect of marine n-3 polyunsaturated fatty acids on cardiac autonomic and hemodynamic function in patients with psoriatic arthritis: a randomised, double-blind, placebo-controlled trial. Lipids Health Dis 2016; 15:216.
  64. Sauder KA, Skulas-Ray AC, Campbell TS, et al. Effects of omega-3 fatty acid supplementation on heart rate variability at rest and during acute stress in adults with moderate hypertriglyceridemia. Psychosom Med 2013; 75:382.
  65. Xin W, Wei W, Li XY. Short-term effects of fish-oil supplementation on heart rate variability in humans: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2013; 97:926.
  66. Zhang YW, Morita I, Yao XS, Murota S. Pretreatment with eicosapentaenoic acid prevented hypoxia/reoxygenation-induced abnormality in endothelial gap junctional intercellular communication through inhibiting the tyrosine kinase activity. Prostaglandins Leukot Essent Fatty Acids 1999; 61:33.
  67. Sarrazin JF, Comeau G, Daleau P, et al. Reduced incidence of vagally induced atrial fibrillation and expression levels of connexins by n-3 polyunsaturated fatty acids in dogs. J Am Coll Cardiol 2007; 50:1505.
  68. Mozaffarian D. Fish oil and prevention of atrial fibrillation. J Am Coll Cardiol 2007; 50:1513.
  69. Grimsgaard S, Bønaa KH, Hansen JB, Myhre ES. Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on hemodynamics in humans. Am J Clin Nutr 1998; 68:52.
  70. Oikonomou E, Vogiatzi G, Karlis D, et al. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin Nutr 2019; 38:1188.
  71. McLennan PL, Barnden LR, Bridle TM, et al. Dietary fat modulation of left ventricular ejection fraction in the marmoset due to enhanced filling. Cardiovasc Res 1992; 26:871.
  72. Charnock JS, McLennan PL, Abeywardena MY. Dietary modulation of lipid metabolism and mechanical performance of the heart. Mol Cell Biochem 1992; 116:19.
  73. Ghio S, Scelsi L, Latini R, et al. Effects of n-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: a substudy of GISSI-HF trial. Eur J Heart Fail 2010; 12:1345.
  74. Nodari S, Triggiani M, Campia U, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol 2011; 57:870.
  75. Peoples GE, McLennan PL, Howe PR, Groeller H. Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol 2008; 52:540.
  76. Robinson JG, Stone NJ. Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. Am J Cardiol 2006; 98:39i.
  77. Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association. Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002; 106:2747.
  78. Wang Q, Liang X, Wang L, et al. Effect of omega-3 fatty acids supplementation on endothelial function: a meta-analysis of randomized controlled trials. Atherosclerosis 2012; 221:536.
  79. Knapp HR, Reilly IA, Alessandrini P, FitzGerald GA. In vivo indexes of platelet and vascular function during fish-oil administration in patients with atherosclerosis. N Engl J Med 1986; 314:937.
  80. James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 2000; 71:343S.
  81. Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res 2010; 107:1170.
  82. O'Mahoney LL, Matu J, Price OJ, et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol 2018; 17:98.
  83. Xu T, Sun Y, Sun W, et al. Effect of omega-3 fatty acid supplementation on serum lipids and vascular inflammation in patients with end-stage renal disease: a meta-analysis. Sci Rep 2016; 6:39346.
  84. Li K, Huang T, Zheng J, et al. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis. PLoS One 2014; 9:e88103.
  85. Zhou J, Tang G, Tang S, Yuan W. The effect of fish oil on inflammation markers in adult patients undergoing hemodialysis: A meta-analysis. Semin Dial 2022; 35:6.
  86. Morvaridzadeh M, Sepidarkish M, Yavari M, et al. The effects of omega-3 fatty acid supplementation on inflammatory factors in HIV-infected patients: A systematic review and meta-analysis of randomized clinical trials. Cytokine 2020; 136:155298.
  87. Tosatti JAG, Alves MT, Cândido AL, et al. Influence of n-3 fatty acid supplementation on inflammatory and oxidative stress markers in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Br J Nutr 2021; 125:657.
  88. So J, Wu D, Lichtenstein AH, et al. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. Atherosclerosis 2021; 316:90.
  89. Vors C, Allaire J, Mejia SB, et al. Comparing the Effects of Docosahexaenoic and Eicosapentaenoic Acids on Inflammation Markers Using Pairwise and Network Meta-Analyses of Randomized Controlled Trials. Adv Nutr 2021; 12:128.
  90. Wu JH, Micha R, Imamura F, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr 2012; 107 Suppl 2:S214.
  91. Akinkuolie AO, Ngwa JS, Meigs JB, Djoussé L. Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clin Nutr 2011; 30:702.
  92. Gao C, Liu Y, Gan Y, et al. Effects of fish oil supplementation on glucose control and lipid levels among patients with type 2 diabetes mellitus: a Meta-analysis of randomized controlled trials. Lipids Health Dis 2020; 19:87.
  93. Hou M, Zhou W, Sun L, et al. Effect of Fish Oil on Insulin Sensitivity in Children: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Can J Diabetes 2021; 45:531.
  94. Wu JH, Cahill LE, Mozaffarian D. Effect of fish oil on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 2013; 98:2451.
  95. Bahreini M, Ramezani AH, Shishehbor F, Mansoori A. The Effect of Omega-3 on Circulating Adiponectin in Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can J Diabetes 2018; 42:553.
  96. Zhang YY, Liu W, Zhao TY, Tian HM. Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health Aging 2017; 21:187.
  97. Lee CH, Fu Y, Yang SJ, Chi CC. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients 2020; 12.
  98. Masson S, Latini R, Tacconi M, Bernasconi R. Incorporation and washout of n-3 polyunsaturated fatty acids after diet supplementation in clinical studies. J Cardiovasc Med (Hagerstown) 2007; 8 Suppl 1:S4.
  99. Nordøy A, Barstad L, Connor WE, Hatcher L. Absorption of the n-3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans. Am J Clin Nutr 1991; 53:1185.
  100. US Department of Agriculture. USDA National Nutrient Database for Standard Reference: Release 18 (2005). US Department of Agriculture, Agricultural Research Service, 2006.
  101. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 2005; 45:581.
  102. Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 1992; 120:S129.
  103. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Micronutrients). The National Academies Press; Washington, DC 2002/2005.
  104. McCann JC, Ames BN. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr 2005; 82:281.
  105. Lewin GA, Schachter HM, Yuen D, et al. Effects of omega-3 fatty acids on child and maternal health. Evid Rep Technol Assess (Summ) 2005; :1.
  106. León H, Shibata MC, Sivakumaran S, et al. Effect of fish oil on arrhythmias and mortality: systematic review. BMJ 2008; 337:a2931.
  107. Marik PE, Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin Cardiol 2009; 32:365.
  108. He K, Song Y, Daviglus ML, et al. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation 2004; 109:2705.
  109. Saravanan P, Davidson NC, Schmidt EB, Calder PC. Cardiovascular effects of marine omega-3 fatty acids. Lancet 2010; 376:540.
  110. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med 2009; 169:659.
  111. Assadourian JN, Peterson ED, McDonald SA, et al. Health Claims and Doses of Fish Oil Supplements in the US. JAMA Cardiol 2023; 8:984.
  112. Ito MK. A Comparative Overview of Prescription Omega-3 Fatty Acid Products. P T 2015; 40:826.
  113. Drugs@FDA: FDA-approved drugs. US Food and Drug Administration. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (Accessed on October 24, 2023).
  114. Santerre C, November 9, 2007, personal communication.
  115. Omacor: Consumer drug information sheet - Approval label. US Food and Drug Administration, Center for Drug Evaluation and Research. www.fda.gov/cder/foi/label/2004/21654lbl.pdf (Accessed on December 21, 2007).
  116. Chee KM, Gong JX, Rees DM, et al. Fatty acid content of marine oil capsules. Lipids 1990; 25:523.
  117. Villani AM, Crotty M, Cleland LG, et al. Fish oil administration in older adults: is there potential for adverse events? A systematic review of the literature. BMC Geriatr 2013; 13:41.
  118. Lien EL. Toxicology and safety of DHA. Prostaglandins Leukot Essent Fatty Acids 2009; 81:125.
  119. Letter responding to a request to reconsider the qualified claim for a dietary supplement health claim for omega-3 fatty acids and coronary heart disease. Office of Nutritional Products, Labeling, and Dietary Supplements, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 2002. www.cfsan.fda.gov/~dms/ds-ltr28.html (Accessed on December 21, 2007).
  120. Substances affirmed as Generally Recognized As Safe: Menhaden oil. Department of Health and Human Services, US Food and Drug Administration. www.fda.gov/OHRMS/DOCKETS/98fr/05-5641.htm (Accessed on June 30, 2008).
  121. Manson JE, Cook NR, Lee IM, et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N Engl J Med 2019; 380:23.
  122. Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177.
  123. Akintoye E, Sethi P, Harris WS, et al. Fish Oil and Perioperative Bleeding. Circ Cardiovasc Qual Outcomes 2018; 11:e004584.
  124. Foran SE, Flood JG, Lewandrowski KB. Measurement of mercury levels in concentrated over-the-counter fish oil preparations: is fish oil healthier than fish? Arch Pathol Lab Med 2003; 127:1603.
  125. Jacobs MN, Covaci A, Schepens P. Investigation of selected persistent organic pollutants in farmed Atlantic salmon (Salmo salar), salmon aquaculture feed, and fish oil components of the feed. Environ Sci Technol 2002; 36:2797.
  126. Storelli MM, Storelli A, Marcotrigiano GO. Polychlorinated biphenyls, hexachlorobenzene, hexachlorocyclohexane isomers, and pesticide organochlorine residues in cod-liver oil dietary supplements. J Food Prot 2004; 67:1787.
  127. Jimenez B, Wright C, Kelly M, Startin JR. Levels of PCDDs, PCDFs and non-ortho PCBs in dietary supplement fish oil obtained in Spain. Chemosphere 1996; 32:461.
  128. Summary of investigation of dioxins, furans, and PCBs in farmed salmon, wild salmon, farmed trout and fish oil capsules. Food Safety Authority of Ireland., March 2002.
  129. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008; 67:253.
  130. Sala-Vila A, Calder PC. Update on the relationship of fish intake with prostate, breast, and colorectal cancers. Crit Rev Food Sci Nutr 2011; 51:855.
  131. Brasky TM, Till C, White E, et al. Serum phospholipid fatty acids and prostate cancer risk: results from the prostate cancer prevention trial. Am J Epidemiol 2011; 173:1429.
  132. Park SY, Wilkens LR, Henning SM, et al. Circulating fatty acids and prostate cancer risk in a nested case-control study: the Multiethnic Cohort. Cancer Causes Control 2009; 20:211.
  133. Brasky TM, Darke AK, Song X, et al. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J Natl Cancer Inst 2013; 105:1132.
  134. Chavarro JE, Stampfer MJ, Li H, et al. A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 16:1364.
  135. Alexander DD, Bassett JK, Weed DL, et al. Meta-Analysis of Long-Chain Omega-3 Polyunsaturated Fatty Acids (LCω-3PUFA) and Prostate Cancer. Nutr Cancer 2015; 67:543.
  136. Fu YQ, Zheng JS, Yang B, Li D. Effect of individual omega-3 fatty acids on the risk of prostate cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. J Epidemiol 2015; 25:261.
专题 5365 版本 77.0.zh-Hans.1.0
加载
请耐心等待