这是用户在 2024-11-4 12:10 为 https://app.immersivetranslate.com/pdf-pro/159964e1-6592-4596-b2b9-e11f54846244 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

The Palace Leas Grassland Plots
皇宫里阿斯草原地块

Cockle Park Farm, Northumberland
诺森伯兰科克尔公园农场

The Palace Leas Plots is the world’s longest-running grazing and hay cutting experiment, and one of the world’s oldest fertilisation experiments. Palace Leas originated in 1896 as one of a group of long-term experiments at Newcastle University’s Cockle Park experimental farm. The management of Palace Leas has continued to the present with only minor modifications. The large unreplicated plots are treated with a variety of fertilisation treatments each year and the hay in each is cut and weighed annually. Livestock then grazes the aftermath regrowth.
宫殿地块(Palace Leas Plots)是世界上历史最悠久的放牧和割草实验,也是世界上历史最悠久的施肥实验之一。宫殿田园(Palace Leas)起源于 1896 年,是纽卡斯尔大学鸡冠公园实验农场的长期实验项目之一。Palace Leas 的管理一直延续至今,只做了些许修改。大面积的非重复地块每年都要进行各种施肥处理,每块地里的干草每年都要切割称重。然后,牲畜在收割后重新生长的草地上吃草。
The original objectives were to improve old grassland (Palace Leas was probably last ploughed during the Napoleonic Wars ending in 1815) at low cost and without resowing. This was to be achieved by the efficient use of combinations of liming materials, fertilisers and animal manures. Both increased yield of hay and aftermath regrowth were primary targets, though the latter has received little quantitative assessment, but the botanical composition of the sward was also of interest to the originators. Allied to this was testing of the digestibility and feeding value of the hay.
最初的目标是以低成本改良老草地(Palace Leas 最后一次犁地可能是在 1815 年结束的拿破仑战争期间),并且无需重新播种。要实现这一目标,必须有效地结合使用石灰材料、肥料和动物粪便。增加干草产量和草后再生都是主要目标,虽然后者很少得到量化评估,但草地的植物成分也是发起人感兴趣的。与此同时,还对干草的消化率和饲用价值进行了测试。
Subsequent research has ranged widely over the fauna, microbial population and soil properties. Changes to the soil organic matter content, form and distribution, as well as the effect of climate change (there is also a weather station at Cockle Park with a continuous record extending back into the 19th century) on hay yield, through to changes in objects buried in the soil on differently treated plots has also received detailed research. The last has been part of a range of assessment of diagenesis of archaeological material in different soil conditions; a use that the originators could never have envisaged.
随后的研究广泛涉及动物群、微生物群和土壤特性。从土壤有机质含量、形态和分布的变化,到气候变化(科克尔公园还有一个气象站,其连续记录可追溯到 19 世纪)对干草产量的影响,再到不同处理地块上埋藏在土壤中的物品的变化,都进行了详细的研究。最后一项研究是对考古材料在不同土壤条件下的成岩作用进行评估的一部分;这是最初的设计者从未想到过的用途。
The plots are in continuous use for research and are available to researchers from outside The School of Agriculture, Food and Rural Development by arrangement with Dr Simon Peacock.
这些地块一直用于研究,农业、食品和农村发展学院以外的研究人员可通过西蒙-皮科克博士的安排使用这些地块。

Plot Layout 地块布局

The field at Palace Leas was described as old grassland in 1896 and had been previously manured more generously than many of the other fields on the farm due to its proximity to the farm buildings. It was decided to place the most extractive of the experiments on this site; the untreated control has had hay cut annually since 1896 with no manure or fertiliser applied, and continues to crop!
1896 年,Palace Leas 的田地被描述为老草地,由于靠近农场建筑,以前的肥料施用比农场的许多其他田地都要多。因此决定在这块田地上进行萃取性最强的试验;未经处理的对照组自 1896 年以来每年都要割一次干草,没有施用任何粪肥或化肥,而且一直在收割!
The field was laid out as a series of long parallelogram shaped plots parallel to the public road. The plots were subsequently shortened and other plots, below plot 14, were disestablished. 13 of the original plots remain and the treatments applied to these consist of 5 receiving farmyard manure, either with or without fertiliser, and 8 forming a 2 3 2 3 2^(3)2^{3} factorial of all combinations of plus/minus nitrogen, phosphorus and potassium fertilisers. A 14th plot was established in 1976 with inputs of nitrogen, phosphorus and potassium comparable with that of one of the plots treated with farmyard manure.
这块田地由一系列平行于公共道路的长条形地块组成。后来,这些地块被缩短,14 号地块以下的其他地块也被取消。最初的 13 个地块保留了下来,这些地块的处理方法包括 5 个地块施用农家肥,施肥或不施肥;8 个地块施用氮肥、磷肥和钾肥的所有加/减组合,形成 2 3 2 3 2^(3)2^{3} 因子。第 14 块地于 1976 年建成,氮、磷、钾的投入量与其中一块施用农家肥的地块相当。
The field was cultivated at one time, probably during the Napoleonic wars of 1795-1815 and the ridge and furrow cultivation strips can still be seen as the stripes running across the plots at an acute angle to the public road. The variation in vegetation within the plots is also clearly visible.
这片田地曾经被开垦过,可能是在 1795-1815 年的拿破仑战争期间,现在仍然可以看到田埂和犁沟的耕作条纹,这些条纹以锐角横穿地块与公共道路。地块内植被的变化也清晰可见。

The Manure and Fertiliser Treatments
粪肥和化肥处理

The treatments used were based on what was considered forward-thinking best practice in 1896 and represent a range of the materials and application rates in use at that time. Hence the nitrogen fertilisers are ammonium sulphate and sodium nitrate (Chile nitre). There has only been one change in the applied treatments. In 1976, it was considered that the phosphate-containing basic slag was becoming too variable so it was replaced by triple superphosphate supplying the same amount of phosphorus.
所使用的处理方法是基于 1896 年被认为具有前瞻性的最佳做法,代表了当时使用的各种材料和施肥量。因此,氮肥是硫酸铵和硝酸钠(智利硝酸盐)。施用的处理方法只发生过一次变化。1976 年,人们认为含磷酸盐的碱渣变化太大,因此用提供相同磷含量的三过磷酸钙取代。
The organic manure is straw-based farmyard manure from the cattle operation at Cockle Park. Its composition may have changed with changing animal diets over the century; the manured plots do not all receive manure annually; there is a sequence of annual, biennial and quadrennial application with various or no fertilisers used in the other years.
有机肥是鸡冠公园养牛场的秸秆农家肥。有机肥料的成分可能随着一个世纪以来动物饮食的变化而改变;施肥地块并非每年都施肥;施肥顺序为一年、两年和四年,其他年份使用各种肥料或不使用肥料。
Table 1. Fertiliser and manure applied to each of the plots
表 1.每块地施用的肥料和粪肥
Plot 情节 Year of Cycle 周期年份 Farmyard manure t ha 1 1 ^(-1){ }^{-1}
农家肥 1 1 ^(-1){ }^{-1}
Fertilizer (kg nutrient h a 1 h a 1 ha^(-1)\mathbf{~ h a}^{-1} )
肥料(千克养分 h a 1 h a 1 ha^(-1)\mathbf{~ h a}^{-1} )
N P 2 O 5 P 2 O 5 P_(2)O_(5)\mathrm{P}_{2} \mathrm{O}_{5} K 2 O K 2 O K_(2)O\mathrm{K}_{2} \mathrm{O}
1 20 17 30 34
2 20
3 1 20
2 17 30 34
4 1 20
2
5 1 40
2 17 30 34
3 17 30 34
4 17 30 34
6
7 35
8 60
9 67
10 35 60
11 35 67
12 60 67
13 35 60 67
14 100 66 100
Plot Year of Cycle Farmyard manure t ha ^(-1) Fertilizer (kg nutrient ha^(-1) ) N P_(2)O_(5) K_(2)O 1 20 17 30 34 2 20 3 1 20 2 17 30 34 4 1 20 2 5 1 40 2 17 30 34 3 17 30 34 4 17 30 34 6 7 35 8 60 9 67 10 35 60 11 35 67 12 60 67 13 35 60 67 14 100 66 100| Plot | Year of Cycle | Farmyard manure t ha ${ }^{-1}$ | Fertilizer (kg nutrient $\mathbf{~ h a}^{-1}$ ) | | | | :---: | :---: | :---: | :---: | :---: | :---: | | | | | N | $\mathrm{P}_{2} \mathrm{O}_{5}$ | $\mathrm{K}_{2} \mathrm{O}$ | | 1 | | 20 | 17 | 30 | 34 | | 2 | | 20 | | | | | 3 | 1 | 20 | | | | | | 2 | | 17 | 30 | 34 | | 4 | 1 | 20 | | | | | | 2 | | | | | | 5 | 1 | 40 | | | | | | 2 | | 17 | 30 | 34 | | | 3 | | 17 | 30 | 34 | | | 4 | | 17 | 30 | 34 | | 6 | | | | | | | 7 | | | 35 | | | | 8 | | | | 60 | | | 9 | | | | | 67 | | 10 | | | 35 | 60 | | | 11 | | | 35 | | 67 | | 12 | | | | 60 | 67 | | 13 | | | 35 | 60 | 67 | | 14 | | | 100 | 66 | 100 |

Hay Yield 干草产量

The grass is cut each year, usually at the end of June, and hay is made on the plots. Samples are taken for dry matter determination and the yield calculated; this is currently based on 4 samples per plot, each of 10 m 2 10 m 2 10m^(2)10 \mathrm{~m}^{2}. Although there are trends in the long-term yield which differ between treatments, the relative order of treatments has remained constant throughout. Note the instantaneous effect of manure and complete fertiliser, which increased yield by about 50 % 50 % 50%50 \% in the first year of treatment, while the phosphate-only fertiliser increased yield by only 9 % 9 % 9%9 \%. The cumulative effect of the manure become clear with it quickly giving a larger yield than the compound fertiliser as nitrogen residues accumulate in the soil
每年通常在 6 月底割草,并在地块上制作干草。取样测定干物质并计算产量;目前的计算方法是每个地块取样 4 次,每次 10 m 2 10 m 2 10m^(2)10 \mathrm{~m}^{2} 。虽然不同处理的长期产量趋势不同,但处理的相对顺序始终保持不变。请注意粪肥和全套肥料的瞬时效应,在处理的第一年,粪肥和全套肥料的产量增加了约 50 % 50 % 50%50 \% ,而仅使用磷肥的产量只增加了 9 % 9 % 9%9 \% 。肥料的累积效应非常明显,随着氮残留物在土壤中的积累,肥料的产量很快就超过了复合肥。

There is clearly a very large variation in yield from year to year. The hay yield is closely related to the input of nitrogen, and as a result the farmyard manure plots have consistently given the best yields (Table 2).
显然,每年的产量差异很大。干草产量与氮的投入密切相关,因此农家肥地块的产量一直最高(表 2)。
Table 2. The effect of manurial treatment on hay yield (average of 1897-1984).
表 2.粪肥处理对干草产量的影响(1897-1984 年平均值)。
Plot 情节 Hay yield kg ha- 干草产量公斤/公顷 SD CV %
1 1 1\mathbf{1} 6496 2063 32
2 2 2\mathbf{2} 5920 1714 29
3 3 3\mathbf{3} 5142 1419 28
4 4 4\mathbf{4} 4824 1558 32
5 5 5\mathbf{5} 5120 1584 31
6 6 6\mathbf{6} 2554 1072 42
7 7 7\mathbf{7} 3049 1179 39
8 8 8\mathbf{8} 3463 1014 29
9 9 9\mathbf{9} 2317 1028 44
1 0 1 0 10\mathbf{1 0} 4113 1331 32
1 1 1 1 11\mathbf{1 1} 2928 1231 42
1 2 1 2 12\mathbf{1 2} 3873 1287 33
1 3 1 3 13\mathbf{1 3} 4415 1271 29
Plot Hay yield kg ha- SD CV % 1 6496 2063 32 2 5920 1714 29 3 5142 1419 28 4 4824 1558 32 5 5120 1584 31 6 2554 1072 42 7 3049 1179 39 8 3463 1014 29 9 2317 1028 44 10 4113 1331 32 11 2928 1231 42 12 3873 1287 33 13 4415 1271 29| Plot | Hay yield kg ha- | SD | CV % | | :--- | :---: | :---: | :---: | | $\mathbf{1}$ | 6496 | 2063 | 32 | | $\mathbf{2}$ | 5920 | 1714 | 29 | | $\mathbf{3}$ | 5142 | 1419 | 28 | | $\mathbf{4}$ | 4824 | 1558 | 32 | | $\mathbf{5}$ | 5120 | 1584 | 31 | | $\mathbf{6}$ | 2554 | 1072 | 42 | | $\mathbf{7}$ | 3049 | 1179 | 39 | | $\mathbf{8}$ | 3463 | 1014 | 29 | | $\mathbf{9}$ | 2317 | 1028 | 44 | | $\mathbf{1 0}$ | 4113 | 1331 | 32 | | $\mathbf{1 1}$ | 2928 | 1231 | 42 | | $\mathbf{1 2}$ | 3873 | 1287 | 33 | | $\mathbf{1 3}$ | 4415 | 1271 | 29 |
The yields can be seen to fall into three groups - farmyard manure plots 1-5 plus plot 13, which have a large yield, plots 8,10 and 12 , which have a moderate yield and plots 6 , 7 , 9 6 , 7 , 9 6,7,96,7,9 and 11 , which have low yield. Plot 13 receives all three major plant nutrients while plots 8 , 10 and 12 only receive phosphorus plus nitrogen (plot 12) or potassium (plot 10); clearly the lack of balance in nutrients is reducing the yield of these plots. None of the low yielding plots receive phosphorus and this can be seen as a major limitation to growth - even the same amount of nitrogen as plot 13 but without phosphorus clearly has a severe constraint on yield. This discovery led to Gilchrist’s promotion of basic slag (Pawson, 1960) as the key fertiliser to improving grassland - he linked the effect of the phosphorus to the increase in nitrogen fixation by clovers; basic slag also raised the pH of more-acid soils.
产量可以分为三组:1-5 号农家肥地块和 13 号地块产量较高,8、10 和 12 号地块产量中等, 6 , 7 , 9 6 , 7 , 9 6,7,96,7,9 和 11 号地块产量较低。13 号地块获得了所有三种主要植物养分,而 8 号、10 号和 12 号地块只获得了磷加氮(12 号地块)或钾(10 号地块);显然,养分不平衡降低了这些地块的产量。低产地块都没有得到磷,这可以看作是生长的一个主要限制因素--即使与 13 号地块相同数量的氮,但没有磷,显然也会严重限制产量。这一发现促使吉尔克里斯特将碱性矿渣(Pawson,1960 年)作为改良草地的关键肥料加以推广--他将磷的作用与三叶草固氮作用的增加联系起来;碱性矿渣还能提高酸性土壤的 pH 值。
It is also salutary to note the large variability of yield from year to year (measured as the coefficient of variation (CV%) which is inversely related to the yield - this is dealt with more fully in the section on the effect of weather variation on yield.
同样值得注意的是,年与年之间的产量变化很大(以变异系数(CV%)来衡量),而变异系数与产量成反比,这一点将在 "天气变化对产量的影响 "一节中详细论述。
There have been few measurements of the aftermath growth (based on the use of exclosure cages), but where these are available (Shiel & Batten, 1988) they show that the farmyard manure treatment produced the greatest regrowth and that the stock were very selective as to which herbage they ate (Table 3). The species-rich plots, which are fertilised with phosphorus, are grazed more efficiently than any others.
对牧草生长(以围栏为基础)的测量结果很少,但从已有的测量结果(Shiel 和 Batten,1988 年)来看,农家肥处理的牧草生长量最大,而且牧草的选择性很强(表 3)。物种丰富、施磷肥的地块比其他地块的放牧效率更高。
Table 3. Aftermath regrowth and consumption by stock
表 3.按存量分列的善后再生和消耗量
Plot 情节 Growth tha 1 1 ^(-1){ }^{-1}  1 1 ^(-1){ }^{-1} 增长 Grazed tha 1 1 ^(-1){ }^{-1} 蹂躏 1 1 ^(-1){ }^{-1} Ungrazed tha 1 1 ^(-1){ }^{-1} 解除诅咒 1 1 ^(-1){ }^{-1} Proportion of regrowth eaten %
重新生长的食物所占比例 %
2 2.91 2.22 0.69 77
6 1.94 1.23 0.71 65
7 2.14 1.06 1.08 32
8 2.56 2.06 0.5 78
10 2.19 1.43 0.76 61
13 2.32 1.53 0.79 67
Plot Growth tha ^(-1) Grazed tha ^(-1) Ungrazed tha ^(-1) Proportion of regrowth eaten % 2 2.91 2.22 0.69 77 6 1.94 1.23 0.71 65 7 2.14 1.06 1.08 32 8 2.56 2.06 0.5 78 10 2.19 1.43 0.76 61 13 2.32 1.53 0.79 67| Plot | Growth tha ${ }^{-1}$ | Grazed tha ${ }^{-1}$ | Ungrazed tha ${ }^{-1}$ | Proportion of regrowth eaten % | | :---: | :---: | :---: | :---: | :---: | | 2 | 2.91 | 2.22 | 0.69 | 77 | | 6 | 1.94 | 1.23 | 0.71 | 65 | | 7 | 2.14 | 1.06 | 1.08 | 32 | | 8 | 2.56 | 2.06 | 0.5 | 78 | | 10 | 2.19 | 1.43 | 0.76 | 61 | | 13 | 2.32 | 1.53 | 0.79 | 67 |
Plant species composition
植物物种组成

There have been 15 botanical surveys of the Palace Leas plots, spread unevenly over the life of the experiment. There was, unfortunately, a long gap between 1907 and 1947, in which no full analysis was undertaken, though the plots were assessed visually. A variety of methods of assessment have been used and not on all occasions have all the plots been analysed.
宫殿绿地共进行过 15 次植物学调查,这些调查分布在实验的不同时期。遗憾的是,从 1907 年到 1947 年之间有很长一段时间没有进行全面分析,尽管对地块进行了目测评估。使用了多种评估方法,但并非所有地块都进行了分析。

The reason for the loss of interest after 1907 was undoubtedly due in part to the lack of change that had occurred over the 10 years from the initial analysis. When analysis recommenced there was a noticeable patterning in the plant composition and this has been maintained over the period to the present. The botanical diversity has evolved strongly, with the greatest diversity now being found on the farmyard manure and phosphatetreated plots. These plots also have the largest number of broadleaf species (and the acid plots ( 7 and 11 ) the fewest). The differences in the mineral content of the broadleaf and grass species may help to explain the differences noted in the willingness of the stock to eat the herbage.
1907 年之后,人们对该地区失去了兴趣,部分原因无疑是由于自最初分析以来的 10 年间没有发生变化。当重新开始分析时,植物组成出现了明显的模式化,这种模式化一直保持到现在。植物多样性发生了很大变化,目前在农家肥和磷酸盐处理过的地块上发现的植物多样性最多。这些地块上的阔叶树种数量也最多(而酸性地块(7 号和 11 号)上的阔叶树种数量最少)。阔叶和禾本科物种矿物质含量的差异可能有助于解释牲畜吃草意愿的差异。

The soil is a clay loam over clay (Hallsworth Series, pelo stagnogley (typic ochraqualf)). As a result of the use of ammonium sulphate, the pH of several of the plots have decreased to low values, farmyard manure has tended to maintain pH , as did the basic slag applied until 1976 (Table 4). All of the nutrients vary strongly between plots and the extractable contents are closely related to the balance between long term application and offtake.
土壤为粘土上的粘壤土(Hallsworth 系列,pelo stagnogley (typic ochraqualf))。由于使用了硫酸铵,一些地块的 pH 值下降到了很低的水平,而农家肥则倾向于保持 pH 值,1976 年之前使用的碱渣也是如此(表 4)。所有养分在不同地块之间差异很大,可提取的含量与长期施用和吸收之间的平衡密切相关。
Table 4. The extractable phosphorus (Olsen method, mg kg 1 mg kg 1 mgkg^(-1)\mathrm{mg} \mathrm{kg}^{-1} ), extractable cation content (ammonium acetate extractable Ca , Mg , K , m mol c kg 1 Ca , Mg , K , m mol c kg 1 Ca,Mg,K,mmol_(c)kg^(-1)\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{m} \mathrm{mol}_{\mathrm{c}} \mathrm{kg}^{-1} ) and pH (measured in water).
表 4.可萃取磷(奥尔森法, mg kg 1 mg kg 1 mgkg^(-1)\mathrm{mg} \mathrm{kg}^{-1} )、可萃取阳离子含量(乙酸铵可萃取 Ca , Mg , K , m mol c kg 1 Ca , Mg , K , m mol c kg 1 Ca,Mg,K,mmol_(c)kg^(-1)\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{m} \mathrm{mol}_{\mathrm{c}} \mathrm{kg}^{-1} )和 pH 值(在水中测量)。
Plot 情节 K april K april  K_("april ")\mathbf{K}_{\text {april }} K oct K oct  K_("oct ")\mathbf{K}_{\text {oct }} P P P\mathbf{P} M g M g Mg\mathbf{M g} C a C a Ca\mathbf{C a} p H p H pH\mathbf{p H}
1 1 1\mathbf{1} 6.91 5.22 134 26.8 125 5.5
2 2 2\mathbf{2} 5.1 3.89 126 14.1 113.6 5.4
3 3 3\mathbf{3} 5.61 4.52 54 14.7 116.3 5.3
4 4 4\mathbf{4} 4.9 3.9 47 14 92.6 5.1
5 5 5\mathbf{5} 5.32 4.44 58 21.6 117.1 5.3
6 6 6\mathbf{6} 4.01 3.83 3 13.6 45.5 5
7 7 7\mathbf{7} 4.13 3.83 0 6.9 36.5 3.8
8 8 8\mathbf{8} 3.94 3.78 23 17.2 112.5 5.2
9 9 9\mathbf{9} 7.44 6.13 3 13.4 72.5 4.9
1 0 1 0 10\mathbf{1 0} 4.31 4.14 32 13.6 75.8 4.7
1 1 1 1 11\mathbf{1 1} 6.72 5.77 0 6.2 22 3.7
1 2 1 2 12\mathbf{1 2} 6.54 5.86 26 13.4 138.7 5.2
1 3 1 3 13\mathbf{1 3} 5.69 4.81 51 13.7 63.6 5.0
Plot K_("april ") K_("oct ") P Mg Ca pH 1 6.91 5.22 134 26.8 125 5.5 2 5.1 3.89 126 14.1 113.6 5.4 3 5.61 4.52 54 14.7 116.3 5.3 4 4.9 3.9 47 14 92.6 5.1 5 5.32 4.44 58 21.6 117.1 5.3 6 4.01 3.83 3 13.6 45.5 5 7 4.13 3.83 0 6.9 36.5 3.8 8 3.94 3.78 23 17.2 112.5 5.2 9 7.44 6.13 3 13.4 72.5 4.9 10 4.31 4.14 32 13.6 75.8 4.7 11 6.72 5.77 0 6.2 22 3.7 12 6.54 5.86 26 13.4 138.7 5.2 13 5.69 4.81 51 13.7 63.6 5.0| Plot | $\mathbf{K}_{\text {april }}$ | $\mathbf{K}_{\text {oct }}$ | $\mathbf{P}$ | $\mathbf{M g}$ | $\mathbf{C a}$ | $\mathbf{p H}$ | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\mathbf{1}$ | 6.91 | 5.22 | 134 | 26.8 | 125 | 5.5 | | $\mathbf{2}$ | 5.1 | 3.89 | 126 | 14.1 | 113.6 | 5.4 | | $\mathbf{3}$ | 5.61 | 4.52 | 54 | 14.7 | 116.3 | 5.3 | | $\mathbf{4}$ | 4.9 | 3.9 | 47 | 14 | 92.6 | 5.1 | | $\mathbf{5}$ | 5.32 | 4.44 | 58 | 21.6 | 117.1 | 5.3 | | $\mathbf{6}$ | 4.01 | 3.83 | 3 | 13.6 | 45.5 | 5 | | $\mathbf{7}$ | 4.13 | 3.83 | 0 | 6.9 | 36.5 | 3.8 | | $\mathbf{8}$ | 3.94 | 3.78 | 23 | 17.2 | 112.5 | 5.2 | | $\mathbf{9}$ | 7.44 | 6.13 | 3 | 13.4 | 72.5 | 4.9 | | $\mathbf{1 0}$ | 4.31 | 4.14 | 32 | 13.6 | 75.8 | 4.7 | | $\mathbf{1 1}$ | 6.72 | 5.77 | 0 | 6.2 | 22 | 3.7 | | $\mathbf{1 2}$ | 6.54 | 5.86 | 26 | 13.4 | 138.7 | 5.2 | | $\mathbf{1 3}$ | 5.69 | 4.81 | 51 | 13.7 | 63.6 | 5.0 |

Soil Carbon 土壤碳

There is a strong variation in the organic matter content and distribution between the plots (Table 5) that can be related to the effects of pH changes on the microbial activity and earthworm population (Shiel & Rimmer, 1984). Much of the change has occurred in the coarser organic matter fraction (Shiel, 1986) which has accumulated near the surface of the more acid plots (Plot 7) while the carbon content at depth on plot 7 has decreased - the upper 6 cm of plot 7 in Table 1 is an organic matter mat and is above the original surface level, so that plot 8 at 12 15 cm 12 15 cm 12-15cm12-15 \mathrm{~cm} is equivalent to plot 7 at 18 21 cm 18 21 cm 18-21cm18-21 \mathrm{~cm}. This surface mat was visible 50 years ago (Pawson, 1960) and now is apparent both to human and bovine visitors: the cattle prefer to lie on the plots with the thick surface organic mats.
不同地块之间的有机物含量和分布差异很大(表 5),这可能与 pH 值变化对微生物活动和蚯蚓数量的影响有关(Shiel 和 Rimmer,1984 年)。大部分变化发生在较粗的有机质部分(Shiel,1986 年),这些有机质在酸性较强的地块(第 7 号地块)表面附近积累,而第 7 号地块深处的碳含量则有所下降--表 1 中第 7 号地块的上部 6 厘米是有机质垫层,高于原来的地表水平,因此 12 15 cm 12 15 cm 12-15cm12-15 \mathrm{~cm} 处的第 8 号地块相当于 18 21 cm 18 21 cm 18-21cm18-21 \mathrm{~cm} 处的第 7 号地块。这种表面垫层在 50 年前就可见(Pawson,1960 年),现在人和牛都能明显看到:牛更喜欢躺在表面有厚厚有机物垫层的地块上。
Table 5. Effect of treatment on the volumetric carbon content ( mgC cm 3 ) mgC cm 3 (mgCcm^(-3))\left(\mathrm{mgC} \mathrm{cm}^{-3}\right) by depth and the total carbon content ( mg C cm 2 mg C cm 2 mg^(C)cm^(-2)\mathrm{mg}^{\mathrm{C}} \mathrm{cm}^{-2} ) to 27 cm .
表 5.处理对不同深度体积碳含量 ( mgC cm 3 ) mgC cm 3 (mgCcm^(-3))\left(\mathrm{mgC} \mathrm{cm}^{-3}\right) 和 27 厘米总碳含量 ( mg C cm 2 mg C cm 2 mg^(C)cm^(-2)\mathrm{mg}^{\mathrm{C}} \mathrm{cm}^{-2} ) 的影响。
Depth -cm 深度-厘米 Plot 情节
4 4 4\mathbf{4} 6 6 6\mathbf{6} 7 7 7\mathbf{7} 8 8 8\mathbf{8}
0 3 0 3 0-3\mathbf{0 - 3} 51 42 101 50
3 6 3 6 3-6\mathbf{3 - 6} 53 46 105 45
6 9 6 9 6-9\mathbf{6 - 9} 49 40 59 40
9 1 2 9 1 2 9-12\mathbf{9 - 1 2} 39 39 33 35
1 2 1 5 1 2 1 5 12-15\mathbf{1 2 - 1 5} 37 34 27 30
1 5 1 8 1 5 1 8 15-18\mathbf{1 5 - 1 8} 34 29 31 27
1 8 2 1 1 8 2 1 18-21\mathbf{1 8 - 2 1} 26 27 25 26
2 1 2 4 2 1 2 4 21-24\mathbf{2 1 - 2 4} 25 22 22 21
2 4 2 7 2 4 2 7 24-27\mathbf{2 4 - 2 7} 22 20 17 16
Total (0-27) 共计 (0-27) 1002 903 1262 863
Depth -cm Plot 4 6 7 8 0-3 51 42 101 50 3-6 53 46 105 45 6-9 49 40 59 40 9-12 39 39 33 35 12-15 37 34 27 30 15-18 34 29 31 27 18-21 26 27 25 26 21-24 25 22 22 21 24-27 22 20 17 16 Total (0-27) 1002 903 1262 863| Depth -cm | Plot | | | | | :--- | :---: | :---: | :---: | :---: | | | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | | $\mathbf{0 - 3}$ | 51 | 42 | 101 | 50 | | $\mathbf{3 - 6}$ | 53 | 46 | 105 | 45 | | $\mathbf{6 - 9}$ | 49 | 40 | 59 | 40 | | $\mathbf{9 - 1 2}$ | 39 | 39 | 33 | 35 | | $\mathbf{1 2 - 1 5}$ | 37 | 34 | 27 | 30 | | $\mathbf{1 5 - 1 8}$ | 34 | 29 | 31 | 27 | | $\mathbf{1 8 - 2 1}$ | 26 | 27 | 25 | 26 | | $\mathbf{2 1 - 2 4}$ | 25 | 22 | 22 | 21 | | $\mathbf{2 4 - 2 7}$ | 22 | 20 | 17 | 16 | | Total (0-27) | 1002 | 903 | 1262 | 863 |
Both organic nitrogen and carbon have been affected. The change in organic matter with treatment is associated with a considerable change in soil bulk density and in the breakdown and accumulation rate of carbon in the soil (Table 6); this variation in breakdown suggests major variations in microbial activity (Shiel & Rimmer, 1984).
有机氮和碳都受到了影响。有机物随处理方法的变化与土壤容重以及土壤中碳的分解和积累率的巨大变化有关(表 6);分解的变化表明微生物活动存在重大变化(Shiel 和 Rimmer,1984 年)。
Table 6. The breakdown rate of endogenous and exogenous C , the change in C relative to plot 6 and the change in bulk density (BD) with depth.
表 6.内源和外源 C 的分解率、相对于 6 号地块的 C 变化以及容重(BD)随深度的变化。
Plot 情节
4 6 7 8
HgCO 2 C cm 3 d 1 HgCO 2 C cm 3 d 1 HgCO_(2)-Ccm^(-3)d^(-1)\mathrm{HgCO}_{2}-\mathrm{C} \mathrm{cm}^{-3} \mathrm{~d}^{-1} 77.8 70.3 61.5 75
HgCO 2 CgC 1 d 1 HgCO 2 CgC 1 d 1 HgCO_(2)-CgC^(-1)d^(-1)\mathrm{HgCO}_{2}-\mathrm{CgC}^{-1} \mathrm{~d}^{-1} 1490 1590 590 1580
μ g 14 CO 2 C cm 3 d 1 μ g 14 CO 2 C cm 3 d 1 mu g^(14)CO_(2)-Ccm^(-3)d^(-1)\mathrm{\mu g}^{14} \mathrm{CO}_{2}-\mathrm{C} \mathrm{cm}^{-3} \mathrm{~d}^{-1} - 1090 360 980
0.11 0 0.41 -0.05
BD (0-6 cm) g cm 3 g cm 3 gcm^(-3)\mathrm{g} \mathrm{cm}^{-3} BD(0-6 厘米) g cm 3 g cm 3 gcm^(-3)\mathrm{g} \mathrm{cm}^{-3} 0.76 0.75 0.41 0.84
BD (7-12 cm) g cm 3 3 ^(-3){ }^{-3} 1.02 1.18 1.21 1.14
BD (13-18 cm) g cm 3 g cm 3 gcm^(-3)\mathrm{g} \mathrm{cm}^{-3} BD(13-18 厘米) g cm 3 g cm 3 gcm^(-3)\mathrm{g} \mathrm{cm}^{-3} 1.25 1.3 1.38 1.33
BD (19-24 cm) g cm 3 3 ^(-3){ }^{-3} 1.4 1.38 1.38 1.42
Plot 4 6 7 8 HgCO_(2)-Ccm^(-3)d^(-1) 77.8 70.3 61.5 75 HgCO_(2)-CgC^(-1)d^(-1) 1490 1590 590 1580 mu g^(14)CO_(2)-Ccm^(-3)d^(-1) - 1090 360 980 https://cdn.mathpix.com/cropped/2024_11_03_1d3239587028ce04eb41g-10.jpg?height=55&width=451&top_left_y=2377&top_left_x=236 0.11 0 0.41 -0.05 BD (0-6 cm) gcm^(-3) 0.76 0.75 0.41 0.84 BD (7-12 cm) g cm ^(-3) 1.02 1.18 1.21 1.14 BD (13-18 cm) gcm^(-3) 1.25 1.3 1.38 1.33 BD (19-24 cm) g cm ^(-3) 1.4 1.38 1.38 1.42| | Plot | | | | | :---: | :---: | :---: | :---: | :---: | | | 4 | 6 | 7 | 8 | | $\mathrm{HgCO}_{2}-\mathrm{C} \mathrm{cm}^{-3} \mathrm{~d}^{-1}$ | 77.8 | 70.3 | 61.5 | 75 | | $\mathrm{HgCO}_{2}-\mathrm{CgC}^{-1} \mathrm{~d}^{-1}$ | 1490 | 1590 | 590 | 1580 | | $\mathrm{\mu g}^{14} \mathrm{CO}_{2}-\mathrm{C} \mathrm{cm}^{-3} \mathrm{~d}^{-1}$ | - | 1090 | 360 | 980 | | ![](https://cdn.mathpix.com/cropped/2024_11_03_1d3239587028ce04eb41g-10.jpg?height=55&width=451&top_left_y=2377&top_left_x=236) | 0.11 | 0 | 0.41 | -0.05 | | BD (0-6 cm) $\mathrm{g} \mathrm{cm}^{-3}$ | 0.76 | 0.75 | 0.41 | 0.84 | | BD (7-12 cm) g cm ${ }^{-3}$ | 1.02 | 1.18 | 1.21 | 1.14 | | BD (13-18 cm) $\mathrm{g} \mathrm{cm}^{-3}$ | 1.25 | 1.3 | 1.38 | 1.33 | | BD (19-24 cm) g cm ${ }^{-3}$ | 1.4 | 1.38 | 1.38 | 1.42 |

Microbial Flora 微生物菌群

The different chemical and physical condition of the soil on different plots has led to substantial changes in the population and activity of micro-organisms that transform carbon, nitrogen, sulphur and phosphorus compounds. These microbial changes have themselves led to differences in the soils’ chemical properties and to the growth and chemical composition of the herbage on the plots. Some of these changes are outlined below.
不同地块土壤的化学和物理条件不同,导致转化碳、氮、硫和磷化合物的微生物数量和活动发生了巨大变化。这些微生物的变化本身也导致了土壤化学性质的不同,以及地块上草本植物生长和化学成分的不同。下文概述了其中的一些变化。
The differences in soil carbon content and distribution could be due to differences in carbon addition associated with dry matter production and grazing or to differences in the rate of carbon breakdown and redistribution by micro-organisms or mesofauna, or to some combination of these. Glucose induced respiration ( V max V max V_(max)\mathrm{V}_{\max } ) was much smaller on the fertilisertreated plots, and particularly small on the acid plot 7 (Table 7). The glucose concentration at half V max ( K m ) V max  K m V_("max ")(K_(m))\mathrm{V}_{\text {max }}\left(\mathrm{K}_{\mathrm{m}}\right) was also smaller on these same plots and this is reflected in the variation in biomass C C CC.
土壤碳含量和分布的差异可能是由于与干物质生产和放牧相关的碳添加量的差异,也可能是由于微生物或中生动物对碳的分解和再分配速率的差异,或者是这些因素的某种组合。在施肥处理的地块上,葡萄糖诱导的呼吸作用( V max V max V_(max)\mathrm{V}_{\max } )要小得多,尤其是在酸性地块 7 上(表 7)。在这些相同的地块上,葡萄糖半浓度 V max ( K m ) V max  K m V_("max ")(K_(m))\mathrm{V}_{\text {max }}\left(\mathrm{K}_{\mathrm{m}}\right) 也较小,这反映在生物量 C C CC 的变化上。
The ratio of microbial to organic carbon was however only substantially depressed on plot 7 . When expressed on a gravimetric basis there is no clear pattern in the production of carbon dioxide per gram of soil, though that from plot 7 is very large. When the variation in carbon content is taken into account the specific respiration ( qCO 2 ) qCO 2 (qCO_(2))\left(\mathrm{qCO}_{2}\right) is much higher on this plot. It appears the micro-organisms on plot 7 are particularly stressed by their environment, for both K m K m K_(m)K_{m} and V max V max V_(max)\mathrm{V}_{\max } are much smaller than for the other plots. The biomass C and the ratio of biomass to soil carbon are both much smaller on plot 7 suggesting that the microbial population is being stressed by the environment on this plot; this reduced biological activity is responsible for the accumulation of C on plot 7 .
不过,只有第 7 号地块的微生物碳与有机碳的比例大幅下降。如果按重量计,每克土壤产生的二氧化碳量没有明显的规律,但 7 号地块的二氧化碳量非常大。如果考虑到碳含量的变化,该地块的特定呼吸 ( qCO 2 ) qCO 2 (qCO_(2))\left(\mathrm{qCO}_{2}\right) 要高得多。看来 7 号地块上的微生物受到环境的压力特别大,因为 K m K m K_(m)K_{m} V max V max V_(max)\mathrm{V}_{\max } 都比其他地块小得多。7 号地块上的生物量碳和生物量与土壤碳的比率都要小得多,这表明该地块上的微生物种群受到了环境的压力;生物活性的降低是 7 号地块上碳积累的原因。
Table 7. Measures of microbial activity on a selection of the plots.
表 7.部分地块上微生物活动的测量值。
1 1 1\mathbf{1} 2 2 2\mathbf{2} 6 6 6\mathbf{6} 7 7 7\mathbf{7} 1 3 1 3 13\mathbf{1 3}
V max V max V_(max)\mathbf{V}_{\max } 0.81 1.09 0.66 0.25 0.59
Biomass C C C\mathbf{C} 生物质 C C C\mathbf{C} 0.73 0.98 0.59 0.22 0.53
C mic : C org C mic  : C org  C_("mic "):C_("org ")\mathbf{C}_{\text {mic }}: \mathbf{C}_{\text {org }} 0.013 0.017 0.014 0.003 0.014
K m K m K_(m)\mathbf{K}_{\mathbf{m}} 0.65 0.65 0.45 0.03 0.27
C O 2 C O 2 CO_(2)\mathbf{C O}_{\mathbf{2}} 0.21 0.26 0.22 0.27 0.18
q C O 2 q C O 2 qCO_(2)\mathbf{q} \mathbf{C O}_{\mathbf{2}} 0.29 0.27 0.37 1.23 0.34
1 2 6 7 13 V_(max) 0.81 1.09 0.66 0.25 0.59 Biomass C 0.73 0.98 0.59 0.22 0.53 C_("mic "):C_("org ") 0.013 0.017 0.014 0.003 0.014 K_(m) 0.65 0.65 0.45 0.03 0.27 CO_(2) 0.21 0.26 0.22 0.27 0.18 qCO_(2) 0.29 0.27 0.37 1.23 0.34| | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{1 3}$ | | :--- | :---: | :---: | :---: | :---: | :---: | | $\mathbf{V}_{\max }$ | 0.81 | 1.09 | 0.66 | 0.25 | 0.59 | | Biomass $\mathbf{C}$ | 0.73 | 0.98 | 0.59 | 0.22 | 0.53 | | $\mathbf{C}_{\text {mic }}: \mathbf{C}_{\text {org }}$ | 0.013 | 0.017 | 0.014 | 0.003 | 0.014 | | $\mathbf{K}_{\mathbf{m}}$ | 0.65 | 0.65 | 0.45 | 0.03 | 0.27 | | $\mathbf{C O}_{\mathbf{2}}$ | 0.21 | 0.26 | 0.22 | 0.27 | 0.18 | | $\mathbf{q} \mathbf{C O}_{\mathbf{2}}$ | 0.29 | 0.27 | 0.37 | 1.23 | 0.34 |
The differences in aftermath growth also indicate that activity of nitrogen mineralisers varies between plots. The lack of significant difference in hay yield on biennially and quadrennially manured plots in the manuring and non-manuring years also indicates considerable excess nitrogen mineralisation on these plots compared to those not receiving manure, even in years when manure is not applied. The population of micro-organisms responsible for nitrogen transformation varies between plots and is closely related to the inputs of ammonium ions. The short term nitrifier (SNA) population is however strongly influenced by the pH of the plot and hence is low on plots 7 and 11 than 6 and 9 (Table 8).
茎后生长的差异还表明,不同地块的氮矿化器的活性不同。在施肥和不施肥的年份,施肥两年期和四年期的地块在干草产量上没有明显差异,这也表明与不施肥的地块相比,即使在不施肥的年份,这些地块上的氮矿化度也相当高。负责氮转化的微生物数量因地块而异,与铵离子的输入量密切相关。不过,短期硝化细菌(SNA)数量受地块 pH 值的影响很大,因此 7 号和 11 号地块的数量比 6 号和 9 号地块少(表 8)。
Table 8. log 10 log 10 log_(10)\log _{10} of the most probable number g 1 g 1 g^(-1)\mathrm{g}^{-1} and short term nitrifier activity (SNA, μ g μ g mug\mu \mathrm{g} NO 2 Ng 1 h 1 NO 2 Ng 1 h 1 NO_(2)-Ng^(-1)h^(-1)\mathrm{NO}_{2}-\mathrm{Ng}^{-1} \mathrm{~h}^{-1} )
表 8. log 10 log 10 log_(10)\log _{10} 最可能的数量 g 1 g 1 g^(-1)\mathrm{g}^{-1} 和短期硝化细菌活性 (SNA, μ g μ g mug\mu \mathrm{g} NO 2 Ng 1 h 1 NO 2 Ng 1 h 1 NO_(2)-Ng^(-1)h^(-1)\mathrm{NO}_{2}-\mathrm{Ng}^{-1} \mathrm{~h}^{-1} )
Plot 情节 N H 4 N H 4 NH_(4)\mathbf{N H}_{4} oxidisers  N H 4 N H 4 NH_(4)\mathbf{N H}_{4} 氧化剂 NO 2 2 _(2)_{\mathbf{2}} oxidisers NO 2 2 _(2)_{\mathbf{2}} 氧化剂 SNA
1 1 1\mathbf{1} 4.23 2.16 0.167
2 2 2\mathbf{2} 4.23 2.34 0.715
6 6 6\mathbf{6} 1.9 0.45 0.0043
7 7 7\mathbf{7} 0.89 0.45 0.0023
9 9 9\mathbf{9} 1.69 0.02 0.0043
1 1 1 1 11\mathbf{1 1} 1.9 -0.1 0.0009
Plot NH_(4) oxidisers NO _(2) oxidisers SNA 1 4.23 2.16 0.167 2 4.23 2.34 0.715 6 1.9 0.45 0.0043 7 0.89 0.45 0.0023 9 1.69 0.02 0.0043 11 1.9 -0.1 0.0009| Plot | $\mathbf{N H}_{4}$ oxidisers | NO $_{\mathbf{2}}$ oxidisers | SNA | | :---: | :---: | :---: | :---: | | $\mathbf{1}$ | 4.23 | 2.16 | 0.167 | | $\mathbf{2}$ | 4.23 | 2.34 | 0.715 | | $\mathbf{6}$ | 1.9 | 0.45 | 0.0043 | | $\mathbf{7}$ | 0.89 | 0.45 | 0.0023 | | $\mathbf{9}$ | 1.69 | 0.02 | 0.0043 | | $\mathbf{1 1}$ | 1.9 | -0.1 | 0.0009 |
One might also expect that there are comparable differences in activity of micro-organisms involved in soil phosphorus and sulphur transformation, comparable to the changes described above for carbon and nitrogen. The modification to all of these could also have implications for loss of nutrients to the atmosphere (some in the form of greenhouse gases) or to ground water, where they may lead to eutrophication.
我们还可以预期,参与土壤磷和硫转化的微生物的活动也会出现类似的差异,与上述碳和氮的变化相当。所有这些变化还可能影响养分向大气(有些以温室气体的形式)或地下水的流失,从而导致富营养化。

Invertebrates 无脊椎动物

The major study that has been completed involves the population of enchytraeidae. There have also been studies of ground beetles.