这是用户在 2024-9-4 21:08 为 https://app.immersivetranslate.com/pdf-pro/a75046f2-7b2e-4d31-8ca5-4ad32cfe83cd 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_09_04_98bc765b9f8bd2ef2a66g
ELSEVIER 埃尔塞维尔

Review  评论

The role and mechanism of platelet-rich fibrin in alveolar bone regeneration
富血小板纤维蛋白在牙槽骨再生中的作用和机制

Ming Liu , Yu Liu , Feng Luo
明 , 刘宇 , 罗峰
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology,
口腔疾病国家重点实验室、国家口腔医学中心、国家口腔疾病临床研究中心、华西口腔医院、
Sichuan University, Chengdu 610041, Sichuan, China
四川大学,中国四川成都 610041

A R T I C L E I N F O

Keywords: 关键词:

Platelet-rich fibrin 富血小板纤维蛋白
Alveolar bone regeneration
牙槽骨再生

Osteogenesis 骨生成
Signaling pathways 信号通路
Scaffold 脚手架

Abstract 摘要

A B S T R A C T Platelet-rich fibrin (PRF), as an autologous blood preparation, has been receiving increasing attention in recent years and has been successfully applied in various clinical treatments for alveolar bone regeneration in the oral field. This review focuses on analyzing and summarizing the role and mechanism of PRF in alveolar bone regeneration. We first provide a brief introduction to PRF, then summarize the mechanisms by which PRF promotes alveolar bone regeneration from three aspects: osteogenesis mechanism, bone induction mechanism, and bone conduction mechanism, involving multiple signaling pathways such as Smad, ERK1/2, PI3K/Akt, and Wnt/ -catenin. We also explore the various roles of PRF as a scaffold, filler, and in combination with bone graft materials, detailing how PRF promotes alveolar bone regeneration and provides a wealth of experimental evidence. Finally, we summarize the current applications of PRF in various oral fields. The role of PRF in alveolar bone regeneration is becoming increasingly important, and its role and mechanism are receiving more and more research and understanding. This article will provide a reference of significant value for research in related fields. The exploration of the role and mechanism of PRF in alveolar bone regeneration may lead to the discovery of new therapeutic targets and the development of more effective and efficient treatment strategies.
A B S T R A C T 富血小板纤维蛋白(PRF)作为一种自体血液制剂,近年来受到越来越多的关注,并已成功应用于口腔领域牙槽骨再生的各种临床治疗中。本综述重点分析和总结 PRF 在牙槽骨再生中的作用和机制。我们首先简要介绍了PRF,然后从成骨机制、骨诱导机制和骨传导机制三个方面总结了PRF促进牙槽骨再生的机制,涉及Smad、ERK1/2、PI3K/Akt和Wnt/ -catenin等多种信号通路。我们还探讨了 PRF 作为支架、填充物以及与骨移植材料结合的各种作用,详细介绍了 PRF 如何促进牙槽骨再生,并提供了大量实验证据。最后,我们总结了 PRF 目前在各个口腔领域的应用。PRF 在牙槽骨再生中的作用越来越重要,其作用和机制也得到了越来越多的研究和认识。本文将为相关领域的研究提供重要的参考价值。通过对 PRF 在牙槽骨再生中的作用和机制的探讨,可能会发现新的治疗靶点,并开发出更有效、更高效的治疗策略。

1. Introduction 1.导言

Due to internal or external factors, including oral trauma, periodontal disease, or congenital malformations, human alveolar bone is sometimes absent or lacking, which leads to plaque and food debris accumulation in the oral and further increases the risk of developing periodontal disease risk. Moreover, the substantial loss of alveolar bone may also result in tooth loss, jaw atrophy, and changes to the patient's facial appearance, impacting their quality of life and sense of self-worth [1]. According to relevant literature reports, approximately 10-43.7 % of periodontitis patients in adults or older experience periodontal tissue destruction, alveolar bone resorption, and tooth loss. Therefore, there is a significant burden on the overall oral health, chewing function, aesthetics, and psychological and social well-being of the general population in the world because of alveolar bone loss [2]. Currently, the primary strategies for treating alveolar bone loss involve autologous, allogeneic, and artificial bone material transplantation. However, autogenous bone transplantation surgery may cause significant trauma and potentially affect the function of the patient's original tissue structure. On the other hand, allogeneic transplantation surgery may result in rejection reactions, leading to transplant failure [3]. Additionally, artificial bone materials may have poor fixation and are susceptible to mechanical forces, which can result in detachment or displacement [4].
由于口腔创伤、牙周病或先天畸形等内外因素,人体牙槽骨有时会缺失或缺乏,导致牙菌斑和食物残渣在口腔内堆积,进一步增加了患牙周病的风险。此外,牙槽骨的大量缺失还可能导致牙齿脱落、颌骨萎缩以及患者面部外观的改变,影响患者的生活质量和自我价值感[1]。根据相关文献报道,约有 10-43.7 % 的成年人或老年人牙周炎患者会出现牙周组织破坏、牙槽骨吸收和牙齿脱落。因此,牙槽骨缺失对全世界普通人群的整体口腔健康、咀嚼功能、美观、心理和社会福祉造成了巨大的负担[2]。目前,治疗牙槽骨缺失的主要策略包括自体、异体和人工骨材料移植。然而,自体骨移植手术可能会造成重大创伤,并可能影响患者原有组织结构的功能。另一方面,异体移植手术可能会导致排斥反应,导致移植失败[3]。此外,人工骨材料的固定性可能较差,容易受到机械力的影响,导致脱落或移位[4]。
To overcome those problems, platelet-rich fibrin (PRF) has been proposed to address these issues as a potentially superior solution for alveolar bone loss. PRF is a biomaterial derived from the patient's blood and rich in growth factors and cytokines that promote tissue regeneration and wound healing [5]. This material can be easily obtained through a simple blood draw and processed into a membrane [6] or a gel-like substance [7] that can be used to fill bone defects. PRF has been shown to have excellent biocompatibility and osteogenic potential, making it an attractive alternative to traditional bone grafting techniques. In existing research, PRF has been shown to promote alveolar bone regeneration, including osteoblast proliferation and differentiation, angiogenesis, reduction of an inflammatory response, and soft tissue healing.
为了克服这些问题,有人提出了富血小板纤维蛋白(PRF)来解决这些问题,认为它可能是治疗牙槽骨缺失的最佳方案。富血小板纤维蛋白是从患者血液中提取的一种生物材料,富含促进组织再生和伤口愈合的生长因子和细胞因子[5]。通过简单的抽血就能轻松获得这种材料,并将其加工成膜[6]或凝胶状物质[7],用于填充骨缺损。研究表明,PRF 具有极佳的生物相容性和成骨潜能,是传统骨移植技术的理想替代品。现有研究表明,PRF 可促进牙槽骨再生,包括成骨细胞增殖和分化、血管生成、减少炎症反应和软组织愈合。
Furthermore, PRF contains a variety of growth factors, such as Platelet-Derived Growth Factors (PDGFs), Transforming Growth Factor (TGF- ), Bone Morphogenic Proteins (BMPs), and Vascular Endothelial Growth Factors (VEGFs), among others [8]. PDGFs can stimulate the migration and proliferation of mesenchymal stem cells. At the same time, TGF- can induce the synthesis of matrix molecules such as type I collagen and fibronectin through osteoblasts or fibroblasts. VEGFs can promote angiogenesis and provide nutrients and oxygen for new bone formation. Other components of PRF, such as lipids [9] and fibrin, can reduce inflammation and promote soft tissue regeneration and repair. S. Yang et al. [10] used rabbit blood to prepare PRF and cultured rabbit bone marrow mesenchymal stem cells. Western blotting analysis and qRT-PCR detection results found that PRF can accelerate the osteogenic differentiation of bone marrow stromal cells (BMSCs) through the classical Wnt/ -catenin signaling pathway. Su-Mi Woo et al. [11] studied the effect of combining mineral trioxide aggregate (MTA) and PRF on the maturation of odontoblasts of human dental pulp cells. By evaluating the alkaline phosphatase activity and the strength of mineralized nodules, they found that the combination could induce the activation of the BMP/Smad signaling pathway. Additionally, Wang Jia et al. [12] confirmed that I-PRF can regulate the molecular mechanism of osteogenic differentiation of human bone marrow stem cells (hBMSCs) in vitro by activating the MAPK/ERK signaling pathway. Overall, the development of PRF provides a promising solution for treating alveolar bone defects. Moreover, PRF has been found to have other potential applications in dentistry, such as in treating periodontal disease and implantology. Its ability to promote tissue regeneration and wound healing has been shown to improve the success rates of dental implant procedures and reduce the risk of complications.
此外,PRF还含有多种生长因子,如血小板衍生生长因子(PDGFs)、转化生长因子 (TGF- )、骨形态发生蛋白(BMPs)和血管内皮生长因子(VEGFs)等[8]。PDGFs可刺激间充质干细胞的迁移和增殖。同时,TGF- 可通过成骨细胞或成纤维细胞诱导基质分子(如I型胶原和纤维连接蛋白)的合成。血管内皮生长因子可促进血管生成,为新骨形成提供营养和氧气。PRF 的其他成分,如脂类[9]和纤维蛋白,可减少炎症,促进软组织再生和修复。S. Yang 等人[10]使用兔血制备 PRF 并培养兔骨髓间充质干细胞。Western印迹分析和qRT-PCR检测结果发现,PRF可通过经典的Wnt/ -catenin信号通路加速骨髓基质细胞(BMSCs)的成骨分化。Su-Mi Woo 等人[11]研究了三氧化物矿物质聚合体(MTA)和 PRF 联合使用对人牙髓细胞趾骨母细胞成熟的影响。通过评估碱性磷酸酶活性和矿化结节的强度,他们发现两者的结合可诱导 BMP/Smad 信号通路的激活。此外,王佳等人[12]证实,I-PRF 可通过激活 MAPK/ERK 信号通路,调节体外人骨髓干细胞(hBMSCs)成骨分化的分子机制。总之,PRF 的开发为治疗牙槽骨缺损提供了一种前景广阔的解决方案。 此外,人们还发现 PRF 在牙科领域有其他潜在用途,如治疗牙周病和种植牙。其促进组织再生和伤口愈合的能力已被证明可以提高植牙手术的成功率,降低并发症的风险。
Based on the studies mentioned above, it can be concluded that PRF plays a significant role in promoting alveolar bone regeneration, but further research is needed to fully understand its mechanisms and potential clinical applications. By providing a comprehensive review of the current research, this paper can guide future studies and contribute to developing new treatments for bone defects. Moreover, the exploration of signaling pathways may lead to the discovery of new therapeutic targets and the development of more effective and efficient treatment strategies.
根据上述研究可以得出结论,PRF 在促进牙槽骨再生方面发挥着重要作用,但要全面了解其机制和潜在的临床应用,还需要进一步的研究。通过对当前研究的全面回顾,本文可以指导未来的研究,并为开发治疗骨缺损的新方法做出贡献。此外,对信号通路的探索可能会发现新的治疗靶点,并开发出更有效、更高效的治疗策略。

2. PRF: the role and mechanism of platelet-rich fibrin in alveolar bone regeneration
2.PRF:富血小板纤维蛋白在牙槽骨再生中的作用和机制

PRF is a promising alternative to the first generation of platelet concentrate, platelet-rich plasma (PRP). Unlike PRP, PRF does not require the addition of anticoagulants or other exogenous substances during the preparation process, making it less susceptible to contamination and infection [13]. PRF also has a more stable biological composition and activity, as well as a three-dimensional structure that can be used in various regenerative medicine applications, including bone and soft tissue regeneration in oral and maxillofacial surgery, skin repair, and plastic surgery (Fig. 1).
PRF 是第一代血小板浓缩物--富血小板血浆(PRP)的替代品,前景广阔。与 PRP 不同,PRF 在制备过程中无需添加抗凝剂或其他外源性物质,因此不易受到污染和感染 [13]。PRF 还具有更稳定的生物成分和活性,以及三维结构,可用于各种再生医学应用,包括口腔颌面外科的骨和软组织再生、皮肤修复和整形外科(图 1)。
As shown in Table 1, there are mainly six categories of PRF distinguished by their preparation methods and equipment, namely leukocyte and platelet-rich fibrin (L-PRF), advanced platelet-rich fibrin (A-PRF), advanced platelet-rich fibrin plus (A-PRF+), injectable platelet-rich fibrin (I-PRF), titanium platelet-rich fibrin (T-PRF) and horizontal platelet-rich fibrin (H-PRF) [14]. The middle four are commonly regarded as third-generation platelet-rich fibrin technologies. L-PRF can be obtained through centrifugation at for 12 min [15, 16]. The preparation of A-PRF also does not require an anticoagulant and it can be obtained by centrifugation at for 14 min . Additionally, it contains a higher number of viable cells compared to L-PRF. And A-PRF+ is prepared by reducing the centrifugation speed and time based on A-PRF, at 200 g (1300 rpm) and 8 min , respectively [15], resulting in a significant increase in the release of growth factors. I-PRF is a convenient liquid formulation designed for clinicians and is prepared by centrifugation at for 3 min [15]. T-PRF is a clot obtained by collecting blood using titanium tubes (grade IV titanium) instead of plain glass tubes and then undergoes at 400 g (2800 rpm) for can be collected by a horizontal centrifuge at a -force of 700 for 8 min [18]. In comparison to fixed-angle centrifugation, PRF obtained through horizontal centrifugation yields a greater concentration and quantity of platelets and leukocytes [19].
如表 1 所示,根据制备方法和设备的不同,富血小板纤维蛋白主要分为六类,即白细胞和富血小板纤维蛋白(L-PRF)、高级富血小板纤维蛋白(A-PRF)、高级富血小板纤维蛋白+(A-PRF+)、可注射富血小板纤维蛋白(I-PRF)、钛富血小板纤维蛋白(T-PRF)和水平富血小板纤维蛋白(H-PRF)[14]。中间四种通常被视为第三代富血小板纤维蛋白技术。L-PRF可通过 离心12分钟获得[15, 16]。A-PRF的制备也不需要抗凝剂,可在 条件下离心14分钟获得。此外,与 L-PRF 相比,它含有更多的存活细胞。而 A-PRF+ 是在 A-PRF 的基础上降低离心速度和时间制备而成的,离心速度和时间分别为 200 g(1300 rpm)和 8 分钟[15],从而使生长因子的释放量显著增加。I-PRF 是为临床医生设计的一种方便的液体制剂,通过在 下离心 3 分钟制备而成 [15]。T-PRF是用钛管(IV级钛管)代替普通玻璃管收集血液后得到的凝块,然后在 转速为400 g(2800 rpm)下离心8分钟,可通过 力为700的水平离心机收集[18]。与固定角度离心法相比,通过水平离心法获得的 PRF 能产生更高浓度和更多数量的血小板和白细胞[19]。
Obviously, the relative centrifugal force (RCF) required for the preparation of different types of PRF varies. RCF is a physical quantity that denotes the strength of the centrifugal force, expressed as a multiplication of the gravity's acceleration, . Its magnitude is determined by the centrifugal radius and the speed of the centrifuge. The calculation formula is as follows: , where r represents the radius in millimeters and N is the number of revolutions per minute [20]. RPM is a physical quantity that represents the rotational speed of a centrifuge per minute.
显然,制备不同类型的 PRF 所需的相对离心力(RCF)各不相同。RCF 是一个物理量,表示离心力的强度,用重力加速度 的乘积表示。其大小由离心半径和离心机速度决定。计算公式如下 ,其中 r 代表半径(单位:毫米),N 代表每分钟转数 [20]。转速是一个物理量,表示离心机每分钟的旋转速度。
In addition to the differences in RCF, the centrifugation times and centrifuge tubes for different types of PRF also differ. In fact, the selection of centrifugation protocol holds immense significance in determining the impact of PRF on enhancing bone formation. The diverse RCF and centrifugation times can influence the cell count, growth factor concentration, and fibrin structure within platelet concentrates, which are intricately linked to bone formation (described later) [21].
除了 RCF 的差异,不同类型 PRF 的离心时间和离心管也各不相同。事实上,离心方案的选择对决定 PRF 对促进骨形成的影响具有重大意义。不同的 RCF 和离心时间会影响血小板浓缩物中的细胞数、生长因子浓度和纤维蛋白结构,而这些都与骨形成密切相关(详见下文)[21]。
Most of the traditional centrifugation schemes are fixed angle centrifugation, which presents a drawback in terms of accurately separating based on cell density [22]. To address this, enhanced centrifugation schemes, such as horizontal centrifugation and C-PRF protocols, have been developed. Horizontal centrifugation optimizes PRF matrix centrifugation by utilizing a swing-out rotor centrifuge. This approach
大多数传统离心方案都是固定角度离心,这在根据细胞密度进行精确分离方面存在缺陷[22]。为解决这一问题,人们开发了增强型离心方案,如水平离心和 C-PRF 方案。水平离心通过使用摆动式转子离心机来优化 PRF 基质离心。这种方法
Fig. 1. PRF can be obtained by centrifuging blood extracted from the patient's own body and can be used independently in several ways or in combination with other bone graft materials to promote alveolar bone regeneration.
图 1.PRF 可通过离心分离从患者体内提取的血液获得,可通过多种方式单独使用或与其他骨移植材料结合使用,以促进牙槽骨再生。

improves the biological activity of the PRF matrix and enables a more controlled and gentle separation of cell types, resulting in a richer final blood layer containing a higher concentration of platelets and white blood cells .
提高了 PRF 基质的生物活性,使细胞类型的分离更可控、更温和,最终形成的血液层更丰富,含有更高浓度的血小板和白细胞
The C-PRF protocol is centrifuged at a higher RCF value, specifically collecting higher concentrations of platelets and leukocytes in the buffy coat. In comparison to the traditional I-PRF protocol, concentrations of platelets and leukocytes are approximately 10 times higher [23], with a 3 -fold increase in the release of growth factors [24].
C-PRF 方案以更高的 RCF 值进行离心,特别是在缓冲液中收集更高浓度的血小板和白细胞。与传统的 I-PRF 方案相比,血小板和白细胞的浓度高出约 10 倍[23],生长因子的释放量也增加了 3 倍[24]。
During the centrifugation process, the type of centrifuge tube used can affect the quality of the final PRF obtained [25]. Research [26] has shown that PRF films produced with glass tubes (BD-Salvin and Process for PRF) tend to be larger in size than those produced with IntraSpin plastic tubes. If silica-coated plastic tubes or silicone-coated glass tubes are used, the PRF clots generated are still smaller compared to those obtained with plain chemical-free glass tubes. It should be noted that the use of silica-coated plastic tubes may result in the penetration of silica particles into the PRF matrix and subsequently into human tissues. These particles have been identified as cytotoxic to human periosteal cells, leading to cell apoptosis and reduced cell proliferation [27]. It has also been observed that the presence of silica particles initiates the coagulation reaction. Therefore, it is recommended to obtain PRF using plain chemical free dry glass tubes [28].
在离心过程中,使用的离心管类型会影响最终获得的 PRF 的质量 [25]。研究[26]表明,使用玻璃管(BD-Salvin 和 Process for PRF)生产的 PRF 膜往往比使用 IntraSpin 塑料管生产的大。如果使用硅涂层塑料管或硅涂层玻璃管,生成的 PRF 凝块仍比使用普通无化学成分玻璃管生成的凝块小。需要注意的是,使用硅涂层塑料管可能会导致二氧化硅颗粒渗入 PRF 基质,进而进入人体组织。这些微粒已被确认对人类骨膜细胞具有细胞毒性,导致细胞凋亡和细胞增殖减少[27]。另据观察,二氧化硅颗粒的存在会引发凝血反应。因此,建议使用不含化学物质的普通干玻璃管获取 PRF [28]。
Moreover, PRF can be used as a single graft material or in combination with other bone substitute materials. Combining PRF with other materials can enhance its regenerative potential and provide a more favorable environment for bone formation. For example, PRF can be combined with three calcium phosphate (TCP) to repair the alveolar socket after tooth extraction, and the expression of osteogenic genes increased significantly [29].
此外,PRF 可作为单一移植材料使用,也可与其他骨替代材料结合使用。将 PRF 与其他材料结合使用可增强其再生潜力,并为骨形成提供更有利的环境。例如,PRF 可与三种磷酸钙(TCP)结合用于修复拔牙后的牙槽窝,其成骨细胞基因的表达量显著增加[29]。

3. The mechanism of PRF
3.PRF 的机制

3.1. Osteogenesis mechanism
3.1.成骨机制

Currently, in addition to bone grafting, the main treatment methods for alveolar bone loss include the use of biofilm to guide bone regeneration [30] and the use of growth factors [31] or proteins [32] for
目前,除骨移植外,治疗牙槽骨缺失的主要方法还包括使用生物膜引导骨再生[30],以及使用生长因子[31]或蛋白质[32]治疗牙槽骨缺失。
Table 1 表 1
The types of PRF. PRF 的类型。
Abbreviation 缩写 Full name 全名 Explanation 说明
L-PRF

白细胞和富血小板纤维蛋白
Leukocyte and
platelet-rich fibrin

第二代血小板浓缩物,制备时无需抗凝剂
Second-generation platelet concentrate, no
anticoagulant required for preparation
I-PRF

注射用富血小板纤维蛋白
Injectable platelet-
rich fibrin

制备时间短[14],液体制备使成纤维细胞迁移更快,并含有更多的 PDGF、 TGF- 和胶原蛋白 I [108] 。
The preparation time is short [14], the
liquid preparation makes the fibroblast
migrate faster and contains more PDGF,
TGF- and collagen I [108]
A-PRF

高级富血小板纤维蛋白
Advanced platelet-
rich fibrin

转速低于 L-PRF,但比 L-PRF 更快。 PDGF、VEGF、TGF- , IGF, 更多血小板
Lower rotational speed than L-PRF, more
PDGF, VEGF, TGF- , IGF, more platelets
A-PRF+

高级富血小板纤维蛋白加
Advanced platelet-
rich fibrin plus

离心时间比 A 型 PRF 短,TGF、VEGF、PDGF、EGF 和 IGF 含量比 A 型 PRF 高 [14] 。
The centrifugation time is shorter than A-
PRF, and there are more TGF, VEGF, PDGF,
EGF, and IGF than A-PRF [14]
T-PRF

富血小板钛纤维蛋白
Titanium platelet-
rich fibrin

钛会诱导血小板活化、纤维蛋白网状结构变密、生长因子释放时间延长[15],以及血管内皮生长因子、生长促进因子、生长激素、IGF-I 和肝脏生长因子(HGF)浓度升高[14]。
Titanium induces platelet activation, denser
fibrin reticular structure, prolonged growth
factor release time [15], and higher
concentrations of VEGF, PDGF, TGF, IGF-I
and hepatic growth factor (HGF) [14]
H-PRF

水平富血小板纤维蛋白
Horizontal platelet-
rich fibrin

血小板和白细胞的产量更高,数量更多,更多细胞均匀地分布在 PRF 血块中 [110]
Higher production and more platelets and
white blood cells, more cells were evenly
distributed in the PRF clot [110]
repair. As a platelet concentrate, PRF contains various growth factors that can affect the expression of osteogenic genes, promote the metastasis and differentiation of mesenchymal stem cells, inhibit the generation of osteoclasts [33], and promote angiogenesis to achieve bone regeneration.
修复。作为一种血小板浓缩物,PRF含有多种生长因子,可影响成骨基因的表达,促进间充质干细胞的转移和分化,抑制破骨细胞的生成[33],促进血管生成,从而实现骨再生。
Bone regeneration involves different stages of differentiation, the interaction of various signaling pathways, and transcription factors. It requires the participation of stem cells and angiogenesis to provide the energy and nutrition required for osteogenesis. The transcription factor Runx2 is a critical transcription factor for osteoblast differentiation, which can regulate the differentiation of mesenchymal stem cells into osteoblasts and subsequently stimulates the synthesis of bone matrix proteins. Li Tiancheng et al. [34] demonstrated that PRF can significantly enhance the expression of the osteoblast differentiation transcription factor RUNX2 by comparing the experimental results of periodontal stem cells treated with PRF and osteogenic medium (OM).
骨再生涉及不同阶段的分化、各种信号通路和转录因子的相互作用。它需要干细胞和血管生成的参与,以提供成骨所需的能量和营养。转录因子Runx2是成骨细胞分化的关键转录因子,可调控间充质干细胞向成骨细胞分化,进而刺激骨基质蛋白的合成。李天成等[34]通过比较用PRF和成骨培养基(OM)处理牙周干细胞的实验结果,证明PRF能显著增强成骨细胞分化转录因子RUNX2的表达。
ALP is the main early marker of osteogenic differentiation. Most studies have shown that PRF can increase the activity of alkaline phosphatase in mesenchymal cells isolated from dental pulp cells [35]. Li Tiancheng et al. [34] reported that BMSCs and periodontal ligament stem cells (PDLSCs) are the most used cell types for alveolar bone regeneration. In the study by Wang Jia et al. [12], it was found that I-PRF could promote the proliferation and migration of hBMSCs and regulate the molecular mechanism of osteogenic differentiation of hBMSCs in vitro by activating the MAPK/ERK signaling pathway to form mineralized nodules. Additionally, Li Xiaoyu et al.'s [36] cell experiments confirmed that PRF could significantly increase the migration and proliferation of periodontal stem cells in vitro. Overall, PRF has the potential to promote bone regeneration through the activation of various signaling pathways and the regulation of gene expression, making it a promising candidate for alveolar bone regeneration.
ALP 是成骨分化的主要早期标志物。大多数研究表明,PRF 能提高从牙髓细胞中分离出来的间充质细胞中碱性磷酸酶的活性[35]。李天成等[34]报道,BMSCs 和牙周韧带干细胞(PDLSCs)是牙槽骨再生中使用最多的细胞类型。王佳等[12]的研究发现,I-PRF 可促进 hBMSCs 的增殖和迁移,并通过激活 MAPK/ERK 信号通路调控 hBMSCs 体外成骨分化的分子机制,从而形成矿化结节。此外,李晓宇等人[36]的细胞实验证实,PRF能显著增加牙周干细胞在体外的迁移和增殖。总之,PRF 具有通过激活各种信号通路和调控基因表达促进骨再生的潜力,因此是牙槽骨再生的理想候选物质。
Angiogenesis is a crucial process in bone regeneration, providing the necessary blood vessels to deliver oxygen and nutrients to the regenerating tissue. It involves endothelial cell proliferation, migration, and tube formation. In Eva Dohle's [37] study, I-PRF was mixed with outgrowth endothelial cells (OECs) and primary osteoblasts (pOBs) co-culture complexes, and after a week, lumen and microvascular-like structures were observed in the medium. This suggests that I-PRF has the potential to promote angiogenesis and facilitate tissue regeneration. Jason E. Fish et al. [38] also confirmed that VEGF can regulate angiogenesis by activating the MAPK/ERK signaling pathway. Through the angiogenesis mechanism initiated by platelets, fibroblasts, and immune cells can be attracted to the site of injury to achieve the purpose of wound healing and tissue repair. The promotion of angiogenesis by PRF can enhance the regenerative potential of bone grafts and improve the overall success of the treatment.
血管生成是骨再生的关键过程,它提供必要的血管,为再生组织输送氧气和营养物质。它涉及内皮细胞的增殖、迁移和管道形成。在 Eva Dohle[37]的研究中,将 I-PRF 与生长内皮细胞(OECs)和原代成骨细胞(pOBs)共培养复合物混合,一周后,在培养基中观察到管腔和微血管样结构。这表明 I-PRF 具有促进血管生成和促进组织再生的潜力。Jason E. Fish 等人[38]也证实,血管内皮生长因子可通过激活 MAPK/ERK 信号通路调控血管生成。通过血小板启动的血管生成机制,成纤维细胞和免疫细胞可被吸引到损伤部位,从而达到伤口愈合和组织修复的目的。PRF 对血管生成的促进作用可增强骨移植的再生潜力,提高治疗的整体成功率。

3.2. Osteopromotive mechanism
3.2.骨动力机制

The osteopromotive mechanism refers to a series of biological processes and molecular signal pathways which can stimulate and promote the formation and regeneration of bone tissue. It has been demonstrated that certain growth factors, including TGF- , PDGF-BB, BMP, and IGF-1, can regulate the proliferation and differentiation of stem cells and osteocytes via distinct signaling pathways, promoting bone tissue regeneration and repair. For instance, PDGF-BB can promote the osteogenic differentiation of periodontal ligament stem cells by activating the Wnt/ -catenin signaling pathway [39]. At the same time, PRF and IGF-1 can up-regulate the expression of numerous osteogenic-related genes and proteins, such as Runx2, OSX, OCN, and ERK, and prompt the proliferation of alveolar osteoblasts via activation of the MAPK signaling pathway [36]. In the study conducted by Jing Bi and colleagues [40], it was found that PRF can also enhance the phosphorylation of ERK, stimulate a significant increase of stem cells from the apical papilla (SCAPs), and boost SCAPs proliferation. While several studies have shown that PRF can activate signal pathways to achieve alveolar bone regeneration, the specific molecular signal transduction process or mechanism has not been fully elucidated. Hence, further research is still necessary to explore the osteopromotive mechanism of PRF. Here are some signaling pathways closely associated with PRF growth factors.
骨动力机制是指一系列能够刺激和促进骨组织形成和再生的生物过程和分子信号通路。研究表明,某些生长因子,包括 TGF- 、PDGF-BB、BMP 和 IGF-1,可以通过不同的信号通路调节干细胞和骨细胞的增殖和分化,促进骨组织的再生和修复。例如,PDGF-BB可通过激活Wnt/ -catenin信号通路促进牙周韧带干细胞的成骨分化[39]。同时,PRF和IGF-1可上调大量成骨相关基因和蛋白的表达,如Runx2、OSX、OCN和ERK,并通过激活MAPK信号通路促使牙槽骨成骨细胞增殖[36]。毕晶及其同事的研究[40]发现,PRF还能增强ERK的磷酸化,刺激根尖乳头干细胞(SCAPs)的显著增加,并促进SCAPs的增殖。虽然多项研究表明,PRF可激活信号通路,实现牙槽骨再生,但具体的分子信号转导过程或机制尚未完全阐明。因此,仍有必要进一步研究探讨 PRF 的骨质促进机制。以下是一些与 PRF 生长因子密切相关的信号通路。
The most classic about TGF- and BMP is the SMAD signal pathway (Fig. 2). Their SMAD pathways are similar, following the classical signal transduction process where their respective ligands bind to heterotetrameric receptor complexes and phosphorylate specific receptor Smads (R-Smads). These R-Smads then combine with co-chaperone Smad (Co-Smad) to form complexes that regulate related transcription factors in the nucleus [41]. The heterotetramer receptor complex consists of two transmembrane type I receptors and two transmembrane type II receptors, mainly composed of serine/threonine kinase [42]. To initiate signal transduction, the ligands of TGF- and BMP need to bind to the type II receptor first, and then the type II receptor binds to the type I receptor for signal transduction so that the type I receptor can bind to the ligand. This is due to a "GS sequence" [43], rich in glycine/serine, in the structure of the type I receptor, which cannot be phosphorylated by ligand but can be induced by the type II receptor. Subsequently, this region of the type I receptor can bind to downstream Smad proteins [43]. The R-Smads involved in the BMP pathway include Smad1, Smad5, and Smad8, which are phosphorylated by the type I receptor upon ligand binding. The phosphorylated R-Smads then form a complex with Smad4, which can enter the nucleus to recruit cofactors and Runx2 to activate the expression of some osteogenic genes (Runx2, Osx, etc.) [44]. The phosphorylated R-Smads of type I receptor of TGF- is Smad2 and Smad3, forming a trimeric complex with Smad4. This complex translocates to the nucleus to regulate the expression of related target genes [45]. In this pathway, inhibitory Smads (Smad6, Smad7) prevent the signal transduction of BMP and TGF- by inhibiting R-Smads phosphorylation or nuclear translocation [46].
关于 TGF- 和 BMP,最经典的是 SMAD 信号途径(图 2)。它们的 SMAD 途径相似,都遵循经典的信号转导过程,即各自的配体与异源四聚体受体复合物结合,并磷酸化特定的受体 Smads(R-Smads)。然后,这些 R-Smads 与辅助伴侣 Smad(Co-Smad)结合形成复合物,调节细胞核中的相关转录因子 [41]。异质四聚体受体复合物由两个跨膜 I 型受体和两个跨膜 II 型受体组成,主要由丝氨酸/苏氨酸激酶构成 [42]。要启动信号转导,TGF- 和BMP的配体需要先与II型受体结合,然后II型受体与I型受体结合进行信号转导,这样I型受体才能与配体结合。这是由于 I 型受体结构中有一个富含甘氨酸/丝氨酸的 "GS 序列"[43],它不能被配体磷酸化,但可以被 II 型受体诱导。随后,I 型受体的这一区域可与下游 Smad 蛋白结合 [43]。参与 BMP 通路的 R-Smads 包括 Smad1、Smad5 和 Smad8,它们在与配体结合后被 I 型受体磷酸化。磷酸化的 R-Smads 随后与 Smad4 形成复合物,后者可进入细胞核招募辅助因子和 Runx2,从而激活某些成骨基因(Runx2、Osx 等)的表达 [44]。TGF- I型受体的磷酸化R-Smads是Smad2和Smad3,与Smad4形成三聚体复合物。该复合物转位到细胞核,调节相关靶基因的表达 [45]。 在这一途径中,抑制性 Smads(Smad6、Smad7)通过抑制 R-Smads 磷酸化或核转位来阻止 BMP 和 TGF- 的信号转导 [46]。
TGF- and BMP can also trigger some Smad-independent pathways to regulate the expression of alkaline phosphatase (ALP) and osteocalcin (OC) in osteoblasts (Fig. 3). After the ligands of TGF- and BMP bind to their respective receptors, TGF- activated kinase 1 (TAK1) is activated, activating the ERK/MAPK signal pathway. TAK1 phosphorylates the tyrosine of ShcA [44] and then binds with Grb2 and Sos in turn to form a polymer, leading to the activation of Ras, Raf, MEK1/2, and finally ERK1/2 245,47 TAK1 can also interact with TRAF6 to make it ubiquitin and then phosphorylate MKK4 and MKK3/6 to activate downstream kinases JNK, and p38MAPK [47,48]. Activated ERK1/2, JNK, and p38MAPK can phosphorylate the downstream target transcription factors (TF) in the nucleus to regulate the corresponding transcription
TGF- 和BMP还能触发一些不依赖于Smad的途径来调节成骨细胞中碱性磷酸酶(ALP)和骨钙素(OC)的表达(图3)。TGF- 和BMP的配体与各自的受体结合后,TGF- 活化激酶1(TAK1)被激活,激活ERK/MAPK信号通路。TAK1使ShcA的酪氨酸磷酸化[44],然后依次与Grb2和Sos结合形成聚合物,导致Ras、Raf、MEK1/2和ERK1/2被激活245,47 TAK1还能与TRAF6相互作用,使其泛素化,然后使MKK4和MKK3/6磷酸化,激活下游激酶JNK和p38MAPK[47,48]。活化的 ERK1/2、JNK 和 p38MAPK 可使细胞核中的下游目标转录因子(TF)磷酸化,从而调节相应的转录
Fig. 2. Classical SMAD signaling pathway. Two growth factors, TGF- and BMP, bind to their respective type II receptors, initiating the activation of type I receptors. Consequently, the activated type I receptors go on to phosphorylate their corresponding R-Smads individually. The phosphorylated R-Smads then associate with CoSmads (Smad4), forming complexes that traverse the nuclear membrane and enter the nucleus. Inside the nucleus, these complexes recruit Runx2 and co-factors to regulate the expression of osteogenic genes. Notably, inhibitory Smads (Smad6 and Smad7) are also involved in this process. These inhibitory Smads can impede the transduction of the signal pathway by preventing the phosphorylation of R-Smads.
图 2.经典的 SMAD 信号通路。两种生长因子 TGF- 和 BMP 与各自的 II 型受体结合,启动 I 型受体的激活。因此,活化的 I 型受体会使相应的 R-Smads 单独磷酸化。磷酸化的 R-Smads 随后与 CoSmads(Smad4)结合,形成复合物,穿过核膜进入细胞核。在细胞核内,这些复合物招募 Runx2 和辅助因子来调节成骨基因的表达。值得注意的是,抑制性 Smads(Smad6 和 Smad7)也参与了这一过程。这些抑制性 Smads 可通过阻止 R-Smads 的磷酸化来阻碍信号通路的转导。

.

Moreover, these Smad-independent and Smad-dependent pathways do not interfere with one another but exhibit a synergistic effect. TAK1 in the Smad-independent pathway and activated ERK1/2, JNK, and p38MAPK can directly phosphorylate R-Smads to increase their activity [49]. In contrast, Smad7, as a scaffold protein of TAK1, MKK3, and p38MAPK, can promote the activation of the p38MAPK signal pathway . Regarding these Smad-independent signaling pathways, other growth factors, such as PDGF, IGF and FGF, can also activate [50]. These signaling pathways activated by TGF- and BMP promote osteoblast differentiation and formation, facilitate bone development, and maintain bone stability through crosstalk with Hedgehog, FGF, Notch, and other signaling pathways [44].
此外,这些独立于 Smad 的途径和依赖 Smad 的途径不会相互干扰,而是会产生协同效应。Smad 非依赖性途径中的 TAK1 和活化的 ERK1/2、JNK 和 p38MAPK 可直接磷酸化 R-Smads,从而提高其活性 [49]。相反,Smad7作为TAK1、MKK3和p38MAPK的支架蛋白,可以促进p38MAPK信号通路 的激活。关于这些不依赖于 Smad 的信号通路,其他生长因子,如 PDGF、IGF 和 FGF 也能激活 [50]。TGF- 和BMP激活的这些信号通路可促进成骨细胞的分化和形成,促进骨发育,并通过与刺猬、FGF、Notch和其他信号通路的串联作用维持骨的稳定性[44]。
In addition, the PI3K-Akt signal pathway (Fig. 4) can also be activated by TGF- and BMP [47]. This is a signaling pathway axis involving PI3K/Akt/GSK-3 -catenin protein [51]. After specifically binding to its receptor, the growth factor interacts with the P85 subunit of PI3K to activate phosphatidylinositol-3 kinase (PI3K). PI3K can recruit PDK1 (a serine/threonine kinase) to phosphorylate and activate protein kinase (AKT) [52]. It then inhibits the activity of GSK-3 by phosphorylating Ser9 of GSK-3 [51], resulting in the gradual accumulation of -catenin in the cytoplasm. Finally, -catenin translocates into the nucleus and acts on downstream transcription factors to promote osteoblast differentiation [52].
此外,PI3K-Akt 信号通路(图 4)也可被 TGF- 和 BMP 激活 [47]。这是一个涉及 PI3K/Akt/GSK-3 -catenin 蛋白的信号通路轴[51]。生长因子与其受体特异性结合后,与 PI3K 的 P85 亚基相互作用,激活磷脂酰肌醇-3 激酶(PI3K)。PI3K 可招募 PDK1(一种丝氨酸/苏氨酸激酶),使蛋白激酶 (AKT) 磷酸化并激活 [52]。然后,它通过磷酸化 GSK-3 的 Ser9 来抑制 GSK-3 的活性 [51],导致 -catenin 逐渐在细胞质中积累。最后, -catenin转位到细胞核,作用于下游转录因子,促进成骨细胞分化 [52]。
Furthermore, the Wnt/ -catenin signaling pathway (Fig. 4) also plays a pivotal role in bone formation [53]. There are two types of signal transduction pathways of the Wnt/ -catenin signal transduction pathway: canonical and non-canonical pathways. Among them, the canonical pathway promotes bone formation, which plays a crucial role by regulating the amount of transcriptional coactivator -catenin. In the canonical signal pathway of Wnt/ -catenin, the Wnt ligand binds to seven-pass transmembrane Frizzled (FZD) receptors and low-density LRP5/6 receptors to form a complex, which phosphorylates Dsh protein in the cytoplasm, releasing a signal that inhibits the activity of GSK- and prevents it from phosphorylating -catenin. Consequently, -catenin accumulates gradually without ubiquitination and proteasome degradation in the cytoplasm and ultimately enters the nucleus, binds to TCF/LEF transcription factors, and activates a series of target gene expressions [52,54,55], such as Runx2. Additionally, a study [56] has discovered an intricate interplay between the Wnt/ -catenin signaling pathway and the PI3K-Akt signaling pathway.
此外,Wnt/ -catenin 信号转导途径(图 4)在骨形成过程中也起着至关重要的作用 [53]。Wnt/ -catenin信号转导通路有两种类型:规范通路和非规范通路。其中,典型通路促进骨形成,通过调节转录辅激活因子 -catenin的数量发挥关键作用。在Wnt/ -catenin的典型信号通路中,Wnt配体与七孔跨膜Frizzled(FZD)受体和低密度LRP5/6受体结合形成复合物,使细胞质中的Dsh蛋白磷酸化,释放出抑制GSK- 活性的信号,阻止其磷酸化 -catenin。因此, -catenin 在细胞质中逐渐积累而不被泛素化和蛋白酶体降解,最终进入细胞核,与 TCF/LEF 转录因子结合,激活一系列靶基因的表达 [52,54,55],如 Runx2。此外,一项研究[56]发现,Wnt/ -catenin 信号通路与 PI3K-Akt 信号通路之间存在着错综复杂的相互作用。
Currently, the research on the signal pathway of PRF osteogenesis is mainly focused on the TGF- signal pathway, BMP/Smad, Wnt/ -catenin, and PI3K/Akt signal pathway. In the future, the signal pathway of PRF promoting alveolar bone regeneration may be more in-depth, and continue to explore the regulatory mechanism of PRF on osteocyte proliferation and differentiation. At the same time, researchers may also explore the potential role of PRF in new signaling pathways and their interaction with other growth factors.
目前,关于PRF成骨信号通路的研究主要集中在TGF- 信号通路、BMP/Smad、Wnt/ -catenin和PI3K/Akt信号通路。未来,PRF促进牙槽骨再生的信号通路可能会更加深入,并继续探索PRF对骨细胞增殖和分化的调控机制。同时,研究人员还可能探索 PRF 在新的信号通路中的潜在作用及其与其他生长因子的相互作用。

3.3. Osteoconduction mechanism
3.3.骨传导机制

Bone conduction is a critical process in bone regeneration, where the graft guides blood vessels and osteoblasts to grow into the transplanted bone and along its surface by providing a biological scaffold. With its highly biocompatible three-dimensional fiber network structure due to
骨传导是骨再生的关键过程,移植物通过提供生物支架引导血管和成骨细胞沿着移植骨表面生长。骨传导材料具有高度生物相容性的三维纤维网络结构,可在骨移植过程中提供生物支架。
Fig. 3. Smad-independent Signaling Pathways. When tyrosine residues in type I or type II receptors undergo phosphorylation, the Smad-independent pathway is triggered. Upon successful activation of TAK1, downstream proteins are phosphorylated, thereby activating the ERK1/2, JNK, and p38MAPK signal pathways individually. TAK1, once activated, phosphorylates MKK3/6 and MKK4, which in turn activate downstream kinases p38MAPK and JNK, respectively. These kinases then regulate the transcription of transcription factors (TF) within the nucleus. Additionally, TAK1 phosphorylates ShcA, leading to the formation of a trimer involving Grb2 and Sos. This trimer subsequently activates Ras, Raf, MEK1/2, and ERK1/2 in sequence. The activated ERK1/2 can also phosphorylate TF within the nucleus to regulate their corresponding transcription. Smad7, a component of the Smad signal pathway, can promote the activation of the p38MAPK signal pathway, while p38MAPK, JNK, and ERK1/2, which are non-Smad-dependent pathways, can phosphorylate R-Smads to enhance their activity.
图 3.Smad 依赖性信号途径。当 I 型或 II 型受体中的酪氨酸残基发生磷酸化时,就会触发 Smad 依赖性途径。TAK1 成功激活后,下游蛋白被磷酸化,从而激活 ERK1/2、JNK 和 p38MAPK 信号通路。TAK1 一旦被激活,就会磷酸化 MKK3/6 和 MKK4,进而分别激活下游激酶 p38MAPK 和 JNK。然后,这些激酶会调节细胞核内转录因子(TF)的转录。此外,TAK1 还会磷酸化 ShcA,从而形成包括 Grb2 和 Sos 的三聚体。该三聚体随后依次激活 Ras、Raf、MEK1/2 和 ERK1/2。活化的 ERK1/2 还能使细胞核内的 TF 磷酸化,从而调节其相应的转录。Smad7 是 Smad 信号通路的一个组成部分,可促进 p38MAPK 信号通路的激活,而 p38MAPK、JNK 和 ERK1/2 这些非 Smad 依赖性通路则可磷酸化 R-Smads 以增强其活性。

its fibrin component, PRF can support and stabilize cells, thereby playing a scaffolding role in bone regeneration (Fig. 5). The threedimensional reticular cross structure of fibrin in PRF enhances its affinity for biological surfaces [57]. The spaces within this structure are filled with a large number of aggregated platelets, which can increase the rigidity of the reticular structure [58]. Furthermore, the scaffold-like structure not only encapsulates a significant number of platelets and growth factors, but also retains various types of cells, creating an optimal environment that prevents rapid degradation [58]. As a result, PRF prolongs its effectiveness in cell chemotaxis, proliferation, and osteogenesis, while also promoting osteoblast differentiation and aiding in the regeneration of new bone. Numerous studies have shown that PRF can promote the proliferation and differentiation of osteoblasts and periodontal ligament stem cells [59,60]. Furthermore, researchers have attempted to improve the performance of PRF scaffolds by introducing natural crosslinking agents to make them have slower biodegradability, better biomechanical properties, and biocompatibility [61]. In a biochemical analysis of PRF by David M. Dohan et al. [8], the structural glycoproteins contained in PRF were found to be embedded in the fibrin network and had a synergistic effect on the tissue healing process. Kang YH's [62] study mentioned that combining cytokines and fibrin in PRF can form an integrated growth factor library, where multiple factors work together to achieve tissue regeneration. Therefore, the fibrin component of PRF also plays a crucial role in alveolar bone regeneration.
PRF 中的纤维蛋白成分可支撑和稳定细胞,从而在骨再生中发挥支架作用(图 5)。PRF 中纤维蛋白的三维网状交叉结构增强了其对生物表面的亲和力[57]。该结构内的空间由大量聚集的血小板填充,可增加网状结构的刚性[58]。此外,这种类似于支架的结构不仅能包裹大量血小板和生长因子,还能保留各种类型的细胞,创造一个最佳环境,防止快速降解 [58]。因此,PRF 可延长其在细胞趋化、增殖和成骨方面的功效,同时还能促进成骨细胞分化,帮助新骨再生。大量研究表明,PRF 可促进成骨细胞和牙周韧带干细胞的增殖和分化 [59,60]。此外,研究人员还试图通过引入天然交联剂来改善 PRF 支架的性能,使其具有更慢的生物降解性、更好的生物机械性能和生物相容性[61]。David M. Dohan 等人[8]对 PRF 进行生化分析时发现,PRF 所含的结构糖蛋白嵌入纤维蛋白网络中,对组织愈合过程具有协同作用。Kang YH 的研究[62]提到,将 PRF 中的细胞因子和纤维蛋白结合在一起可形成一个综合生长因子库,多种因子共同作用,实现组织再生。因此,PRF 中的纤维蛋白成分在牙槽骨再生中也起着至关重要的作用。

4. How does PRF promote alveolar bone regeneration
4.PRF 如何促进牙槽骨再生

PRF offers various mechanisms to support alveolar bone regeneration. Its unique fibrous reticular structure serves as a natural biological scaffold, facilitating the enrichment of growth factors, cytokines, and cells. PRF can be employed as a standalone filling material to address bone defects, or as a complement to other bone graft materials, to enhance new bone formation (Table 2).
PRF 具有支持牙槽骨再生的各种机制。其独特的纤维网状结构可作为天然生物支架,促进生长因子、细胞因子和细胞的富集。PRF 可以作为一种独立的填充材料来解决骨缺损问题,也可以作为其他骨移植材料的补充,以促进新骨的形成(表 2)。

4.1. As a scaffold material
4.1.作为支架材料

Through promoting alveolar bone regeneration, the structure of PRF itself acts as a biological scaffold, attracting and enriching various types of cells to migrate here and proliferate and can accommodate them for extended periods [63], gradually promoting bone regeneration. The fibrin grid in PRF has an incredibly uniform three-dimensional structure due to its natural and gradual polymerization process during centrifugation. The alcian blue staining results confirmed the fibrin grid's uniformity, as Dohan et al. demonstrated [8]. Because of this unique polymerization process, the cells and factors gathered here can exist for an extended period and play a corresponding role when the time is ripe. Kang et al. [62] observed the cross-linked reticular structure of many kinds of cells by H&E-stained and found that fibrin was connected by fluorescence immunohistochemical analysis. The scanning electron microscope revealed the fibrin grid's microscopic structure, which could support the transplanted cells. It is concluded that PRF possesses the
通过促进牙槽骨再生,PRF 本身的结构就像一个生物支架,吸引和丰富各种类型的细胞在此迁移和增殖,并能长期容纳它们[63],逐渐促进骨再生。PRF 中的纤维蛋白网格在离心过程中自然逐渐聚合,因此具有非常均匀的三维结构。阿尔金山蓝染色结果证实了纤维蛋白网格的均匀性,Dohan 等人也证明了这一点[8]。由于这种独特的聚合过程,聚集在这里的细胞和因子可以长期存在,并在时机成熟时发挥相应的作用。Kang 等人[62]通过 H&E 染色观察多种细胞的交联网状结构,并通过荧光免疫组化分析发现纤维蛋白相连。扫描电子显微镜显示了纤维蛋白网格的微观结构,它可以支撑移植细胞。由此得出结论,PRF 具有
Fig. 4. Wnt and PI3K signaling pathways. Wnt Signaling Pathway: The Wnt ligand binds to the FZD receptor and its coreceptor low-density lipoprotein receptorrelated protein (LRP5/6), forming a complex. This complex can phosphorylate Dsh, inhibiting the phosphorylation of -Catenin by GSK-3 . Consequently, -Catenin accumulates in cells without undergoing ubiquitination and degradation. PI3K Signaling Pathway: Ligands like TGF- and BMP bind to type I and type II receptors. Then it initially binds to the p85 subunit of PI3K, leading to the phosphorylation of PI3K. Subsequently, PI3K phosphorylates Akt, which in turn inhibits the phosphorylation of -Catenin by GSK-3 . This mechanism also results in the accumulation of -Catenin within cells without undergoing ubiquitination and degradation. The accumulated -Catenin can then translocate to the nucleus and bind to TCF/LEF, thereby regulating the expression of target genes.
图 4.Wnt 和 PI3K 信号通路。Wnt 信号途径:Wnt 配体与 FZD 受体及其核心受体低密度脂蛋白受体相关蛋白(LRP5/6)结合,形成复合物。该复合物可使 Dsh 磷酸化,从而抑制 GSK-3 -Catenin 的磷酸化。因此, -Catenin 在细胞中积累,而不会发生泛素化和降解。PI3K 信号途径:配体如 TGF- 和 BMP 与 I 型和 II 型受体结合。然后,它首先与 PI3K 的 p85 亚基结合,导致 PI3K 磷酸化。随后,PI3K 磷酸化 Akt,而 Akt 又抑制 GSK-3 -Catenin在细胞内积累,而不进行泛素化和降解。积聚的 -Catenin可转位到细胞核并与TCF/LEF结合,从而调节靶基因的表达。

characteristics of a biological scaffold. Fibrin in PRF is a natural and perfect 3D scaffold, and its sizeable porous structure provides excellent external conditions for cell adhesion, bone healing, and vascularization [57].
生物支架的特性。PRF 中的纤维蛋白是一种天然完美的三维支架,其巨大的多孔结构为细胞粘附、骨愈合和血管化提供了良好的外部条件[57]。

4.2. As a filler 4.2.作为填料

PRF can be used as a filling material to promote bone regeneration by being directly implanted into the alveolar fossa. Although there are no other bone graft materials, the structure of PRF itself can conduct osteoblasts [63], and various applications in surgery have achieved satisfactory results. Castro et al. [64] conducted a study where 20 patients had at least 3 teeth extracted in the esthetic zone. They were randomly assigned to the L-PRF filling group, A-PRF filling group, or the untreated control group. The results obtained from CBCT imaging and bone biopsy after 3 months showed that both the L-PRF and A-PRF groups had more new bone formation. PRF can accelerate the formation of new bone. In another clinical experiment, Azangookhiavi et al. [65] randomly assigned 32 patients requiring tooth extraction into two groups, and compared the effects of freeze-dried bone allografts (FDBA) and PRF filling on the alveolar fossa following tooth extraction. The study findings revealed that there was a minimal disparity in the width and height of the alveolar bone between PRF and FDBA at the 12-week mark post-operation, with no statistically significant differences observed. Finally, it was concluded that only PRF filling alveolar fossa could obtain good alveolar ridge preservation. In the pilot study conducted by Gulsen et al. [66], a follow-up was conducted on 12 patients who exclusively received I-PRF as a filling material for maxillary sinus lifting surgery, at the 6 -month mark. The imaging results showed a noteworthy occurrence of new bone formation in both the mesial and distal regions of the inserted implants, with no implant loss. Similarly, Molemans et al. [67] also performed lateral and transalveolar maxillary sinus lifting surgery with PRF as the only biomaterial in 26 patients, and the imaging images showed apparent new bone formation around the implant, with a high implant survival rate. In a case report by Dhote et al. [68], only PRF was used to fill the cavity after the second deciduous molar was extracted to treat the apical cyst. Two years later, the imaging results showed that the cavity was occupied by newborn bone, and the second premolar erupted normally. Shah et al. [69] also compared the treatment of intraosseous defects with PRF and demineralized freeze-dried bone allograft (DFDBA), respectively. Six months later, paired t-test was used to analyze the probing depth (PD) and other related parameters. The results showed no significant difference between the two groups, indicating that PRF can promote periodontal tissue regeneration.
PRF 可作为填充材料直接植入牙槽窝,促进骨再生。虽然没有其他骨移植材料,但 PRF 本身的结构可以引导成骨细胞[63],在外科手术中的各种应用都取得了令人满意的效果。Castro 等人[64]进行了一项研究,20 名患者在美学区拔除了至少 3 颗牙齿。他们被随机分配到 L-PRF 填充组、A-PRF 填充组或未经处理的对照组。3 个月后的 CBCT 成像和骨活检结果显示,L-PRF 组和 A-PRF 组都有更多的新骨形成。PRF可以加速新骨的形成。在另一项临床实验中,Azangookhiavi 等人[65] 将 32 名需要拔牙的患者随机分为两组,比较了冻干骨异体移植(FDBA)和 PRF 填充物对拔牙后牙槽窝的影响。研究结果显示,在拔牙后 12 周,PRF 和 FDBA 在牙槽骨宽度和高度上的差异很小,在统计学上没有显著差异。最后得出的结论是,只有填充牙槽窝的 PRF 才能获得良好的牙槽嵴保护。在 Gulsen 等人[66]进行的试验性研究中,对 12 名完全使用 I-PRF 作为上颌窦提升手术填充材料的患者进行了为期 6 个月的随访。成像结果显示,植入种植体的中轴和远轴区域都有值得注意的新骨形成,且没有种植体脱落。同样,Molemans 等人的研究也发现,种植体的骨质在上颌窦提升手术后的 6 个月内发生了明显的变化。 [67]也在 26 例患者中使用 PRF 作为唯一的生物材料进行了侧方和跨牙槽上颌窦提升手术,成像图像显示种植体周围有明显的新骨形成,种植体存活率很高。在 Dhote 等人的病例报告中[68],在拔除第二颗臼齿治疗根尖囊肿后,仅使用 PRF 填充空腔。两年后的成像结果显示,龋洞被新生骨占据,第二前磨牙正常萌出。Shah 等人[69] 也分别比较了 PRF 和去矿化冻干骨异体移植(DFDBA)治疗骨内缺损的效果。六个月后,采用配对 t 检验分析探诊深度(PD)和其他相关参数。结果显示,两组间无明显差异,表明 PRF 能促进牙周组织再生。

4.3. Combined application of bone graft material
4.3.骨移植材料的综合应用

In addition to using PRF alone as a standalone filling material for alveolar bone regeneration, it is often combined with other bone graft
除了将 PRF 单独用作牙槽骨再生的填充材料外,它还经常与其他骨移植材料结合使用。
Fig. 5. Schematic of the three-dimensional fiber network scaffold. A plethora of protein fibers constitute a complex three-dimensional scaffold structure that is abundant in growth factors, platelets, and diverse cells. This intricate architecture plays a pivotal role in facilitating the formation of new blood vessels and promoting bone regeneration within the alveolar bone defect.
图 5.三维纤维网络支架示意图。大量的蛋白纤维构成了一个复杂的三维支架结构,其中富含生长因子、血小板和各种细胞。这种错综复杂的结构在促进新血管的形成和促进牙槽骨缺损处的骨再生方面起着至关重要的作用。

materials to enhance bone mass proliferation, with better results. Numerous studies [70,71] have shown that when PRF is applied with other bone grafts, such as Bio-oss, the osteogenic effect is similar to that of the control group without PRF treatment. This suggests that PRF can accelerate the rate of bone regeneration and improve the quality of new bone so that it can reach the standard of putting related implants faster. In order to confirm the therapeutic effect of PRF combined with DFDBA on intraosseous periodontal tissue defects, Agarwal et al. [72] compared the effect of PRF combined with DFDBA and DFDBA alone. The results showed that the related indexes of the PRF and DFDBA combined group were better than those of the DFDBA alone group. Elgendy et al. [73] also compared the efficacy of nanocrystalline hydroxyapatite (NcHA) with or without PRF in treating intraosseous periodontal defects. They found that the bag depth of patients treated with PRF and NcHA was significantly reduced, and clinical attachment was significantly improved.
材料来增强骨量增殖,效果更好。大量研究[70,71]表明,当 PRF 与其他骨移植物(如 Bio-oss)一起应用时,其成骨效果与未进行 PRF 处理的对照组相似。这表明,PRF 可以加快骨再生的速度,提高新骨的质量,使其更快地达到植入相关种植体的标准。为了证实 PRF 联合 DFDBA 对骨内牙周组织缺损的治疗效果,Agarwal 等人[72] 比较了 PRF 联合 DFDBA 和单独使用 DFDBA 的效果。结果显示,PRF 和 DFDBA 联合组的相关指标优于单用 DFDBA 组。Elgendy 等人[73] 也比较了纳米结晶羟基磷灰石(NcHA)联合或不联合 PRF 治疗骨内牙周缺损的疗效。他们发现,接受 PRF 和 NcHA 治疗的患者牙袋深度明显降低,临床附着明显改善。

5. The role of PRF in alveolar bone regeneration
5.PRF 在牙槽骨再生中的作用

During the process of alveolar bone regeneration, the formation of new blood vessels plays a crucial role in bone regeneration and wound healing [74]. PRF, which contains growth factors and cytokines, has the dual function of promoting bone regeneration and forming new blood vessels (Table 3). As a result, PRF can accelerate the healing and regeneration of alveolar bone.
在牙槽骨再生过程中,新血管的形成对骨再生和伤口愈合起着至关重要的作用 [74]。PRF 含有生长因子和细胞因子,具有促进骨再生和形成新血管的双重功能(表 3)。因此,PRF 可以加速牙槽骨的愈合和再生。

5.1. Bone regeneration 5.1.骨再生

PRF plays a supportive role in bone morphogenetic proteins essential for bone formation in the new alveolar bone formation [75]. PRF achieves this by releasing a variety of cytokines and growth factors that promote the production of new bone. These factors activate cells related to osteogenesis, stimulating their proliferation and differentiation, ultimately leading to the formation of new bone. These platelet cytokines primarily consist of PDGF, TGF- and IGF [76]. PDGF, in particular, facilitates the migration of fibroblasts and osteocytes within the tissue, resulting in a significant increase in the content of osteoblast-like cells and synthetic collagen, which forms the primary extracellular components of bone. Furthermore, PDGF enhances the mitotic activity of fibroblasts [77]. TGF- , a type of fibrinogen, readily stimulates the proliferation of osteoblasts and facilitates the synthesis of numerous matrix molecules, such as collagen I, by acting on osteoblasts or fibroblasts[15]. As a mitotic protein, IGF also enhances the ability of fibroblasts to differentiate into bone [36]. With the continuous joint efforts of these growth factors, new bones are formed.
在新牙槽骨形成过程中,PRF 对骨形成所必需的骨形态发生蛋白起着支持作用 [75]。PRF 通过释放各种细胞因子和生长因子来促进新骨的生成。这些因子可激活与成骨相关的细胞,刺激其增殖和分化,最终导致新骨的形成。这些血小板细胞因子主要包括 PDGF、TGF- 和 IGF [76]。其中,PDGF 可促进组织内成纤维细胞和成骨细胞的迁移,从而显著增加成骨细胞样细胞和合成胶原蛋白的含量,而合成胶原蛋白是骨的主要细胞外成分。此外,PDGF 还能增强成纤维细胞的有丝分裂活性 [77]。TGF- 是一种纤维蛋白原,通过作用于成骨细胞或成纤维细胞,可促进成骨细胞的增殖,并促进胶原蛋白I等多种基质分子的合成[15]。作为一种有丝分裂蛋白,IGF 还能增强成纤维细胞向骨分化的能力[36]。在这些生长因子的不断共同努力下,新骨得以形成。
Dohle et al. [37] conducted an in vitro study to investigate the effect of related growth factors on tissue healing by co-culturing PRF. After 24 h , the expression of BMP-2 and ALP, which indicates early osteogenic differentiation, was significantly higher in PRF co-culture group than that in other groups. In another in vitro study by Kyyak et al. [78], they investigated the effects of allogeneic bone substitute material (ABSM) and xenogenic bone substitute material (XBSM) in combination with I-PRF on human osteoblasts in vitro and compared with the control group without I-PRF. The results revealed that the group treated with I-PRF exhibited higher values in terms of cell survival, migration, and proliferation compared to the non-I-PRF group, and the value of ABSM/I-PRF was the highest. Additionally, RT-PCR analysis of ALP, BMP-2, and OCN revealed significant differences between the I-PRF and non-I-PRF groups. Specifically, the differences in ALP and OCN were statistically significant, indicating that PRF has the potential to enhance the proliferation, migration, and differentiation of human osteoblasts, potentially facilitating faster bone healing. Mu et al. [79]used DBBM with I-PRF and DBBM without I-PRF to study the effect of PRF on maxillary sinus floor lifting in rabbits. MicroCT, histology, and immunofluorescence analysis were carried out after a healing period of 4 and 8 weeks. The results revealed that the new bone formation in the PRF group was significantly higher than that in the control group, and I-PRF could stimulate bone remodeling during the initial stages of healing. In addition, the experiments of Du J et al. [80] on periodontal defects in rats demonstrated that PRF could effectively promote the formation of new bone, and the effect was even better when combined with drugs. This study randomly divided fifteen rats with periodontal defects into
Dohle等人[37]进行了一项体外研究,通过共培养PRF来探讨相关生长因子对组织愈合的影响。24 h后,PRF共培养组的BMP-2和ALP(表示早期成骨分化)的表达明显高于其他组。在 Kyyak 等人的另一项体外研究中[78],他们研究了异体骨替代材料(ABSM)和异种骨替代材料(XBSM)与 I-PRF 结合使用对体外人成骨细胞的影响,并与未使用 I-PRF 的对照组进行了比较。结果显示,与未使用 I-PRF 的对照组相比,使用 I-PRF 的对照组在细胞存活、迁移和增殖方面表现出更高的数值,其中 ABSM/I-PRF 的数值最高。此外,ALP、BMP-2 和 OCN 的 RT-PCR 分析显示,I-PRF 组和非 I-PRF 组之间存在显著差异。具体来说,ALP 和 OCN 的差异具有统计学意义,这表明 PRF 有可能促进人类成骨细胞的增殖、迁移和分化,从而加快骨愈合。Mu 等人[79]使用含 I-PRF 的 DBBM 和不含 I-PRF 的 DBBM 研究 PRF 对兔子上颌窦底提升的影响。在 4 周和 8 周的愈合期后进行了显微 CT、组织学和免疫荧光分析。结果显示,PRF 组的新骨形成明显高于对照组,I-PRF 可在愈合初期刺激骨重塑。此外,Du J 等人的实验也证明了这一点。 [80]对大鼠牙周缺损的研究表明,PRF 能有效促进新骨的形成,与药物联合使用时效果更好。这项研究将 15 只牙周缺损的大鼠随机分为以下几组
Table 2 表 2
The ways of PRF to promote alveolar bone regeneration.
PRF 促进牙槽骨再生的方法。
Authors 作者 Way 方式 Method 方法 Result 结果 Conclusion 结论
Dohan et al. [8] 多汉等人[8] Scaffold 脚手架 Alcian blue staining 阿尔新蓝染色

PRF 组织学上的纤维结构
PRF histologically follow fibrous
structure

PRF 中的细胞因子缠结在缓慢聚合的纤维蛋白网格中
Cytokines in PRF are entangled in a
slowly polymerized fibrin grid
Kang et al. [62] Kang 等人 [62] Scaffold 脚手架

H&E染色、荧光免疫组化分析和扫描电子显微镜检查
H&E staining, fluorescent immunohistochemical
analysis, and scanning electron microscopy

细胞呈网状,纤维蛋白相互连接。在扫描电子显微镜下,PRF 显示出纤维蛋白网格结构
The cells were reticulated, and the fibrins
were connected with each other. The PRF
showed a fibrin grid structure under
scanning electron microscope

PRF 具有生物支架的特性
PRF has the characteristics of being a
biological scaffold
Castro et al. [64] 卡斯特罗等人[64] Filler 填料

在美学区拔除至少 3 颗牙齿的 20 名患者在拔牙后被随机分配到 L-PRF 组、A-PRF 组和对照组。 拔牙后和 3 个月后进行 CBCT 扫描,并进行骨活检以评估骨愈合情况。
20 patients with at least 3 teeth extracted in the
aesthetic district were randomly assigned to L-
PRF, A-PRF and control group after extraction.
CBCT was taken after extraction and 3 months
later, and bone biopsy was performed to evaluate
bone healing

成像和活检分析表明,L-PRF 组和 A-PRF 组有更多新骨形成,但两组之间没有显著差异
Imaging and biopsy analysis showed that
there was more new bone formation in L -
PRF and A-PRF groups, but there was no
significant difference between the two
groups

PRF 可加速新骨的形成
PRF can accelerate the formation of new
bone

Azangookhiavi 等人[65]
Azangookhiavi
et al. [65]
Filler 填料

将 32 名拔牙后的患者随机分为两组,分别使用 PRF 填料和 FDBA 填料进行治疗。12 周后,评估骨量在垂直和水平方向上的变化。
32 patients after tooth extraction were randomly
divided into two groups and treated with PRF
filling and FDBA filling respectively. After 12
weeks, the changes of bone size in vertical and
horizontal direction were evaluated.

两组患者的牙槽骨宽度均明显小于治疗前,两组患者的牙槽骨高度和宽度无明显差异。
The width of alveolar bone in both groups
was significantly smaller than that before
treatment, and there was no significant
difference in height and width between
the two groups.

无骨移植的 PRF 填充物对牙槽骨的保存效果良好,其结果与 FDBA 相似
PRF filling without bone graft has a good
effect on the preservation of alveolar
bone, and the result is similar to that of
FDBA
Gulsen et al. Gulsen 等人
Filler 填料

为 12 名接受上颌窦提升术的患者植入了 18 个种植体,并使用 I- PRF 填充窦下腔。
A total of 18 implants were implanted in 12
patients undergoing maxillary sinus lifting, and I-
PRF was used to fill the subsinus cavity.

术后 6 个月,植入物没有松动和脱落,X 光检查显示植入物周围有明显的新骨形成。
The implants were not loosened and lost 6
months after operation, and there was
obvious new bone formation around the
implant by X-ray examination

在同时进行的上颌窦提升术和种植体植入术中,使用 I-PRF 作为填充材料似乎是促进骨再生的可靠手术选择
The use of I-PRF as a filling material in
simultaneous maxillary sinus lifting and
implant implantation seems to be a
reliable surgical option to promote bone
regeneration
Molemans et al.
Filler 填料

对 6 名患者进行了上颌窦外侧提升术,对 22 名患者进行了经牙槽骨上颌窦提升术。植入的 L-PRF 是唯一的填充材料。6 个月后进行临床和影像学检查。
Lateral maxillary sinus lifting was performed in 6
patients and transalveolar maxillary sinus lifting
in 22 patients. L-PRF was implanted as the only
filling material. Clinical and imaging
examination was performed 6 months later.

成像结果显示,骨增量明显,植入物存活率高。
The imaging results showed that the bone
increment was obvious and the implant
survival rate was high.

在上颌窦提升术和种植体植入术中,L-PRF 是一种实用、安全的植骨材料。
L-PRF is a practical and safe bone graft
material during maxillary sinus lifting
and implant implantation at the same
time.
Dhote et al. [68] Dhote 等人[68] Filler 填料

用 PRF 填充因治疗根尖囊肿而拔除第二颗臼齿后留下的空腔
Filling the cavity left by the extraction of the
second deciduous molar due to the treatment of
apical cyst with PRF

两年后,全景照片显示有大量新骨形成,第二前臼齿正常萌出
Two years later, the panorama showed a
large number of new bone formation and
normal eruption of the second premolars

使用自体 PRF 作为辅助手术是促进骨愈合的一种创新而经济的方法
Using autologous PRF as an auxiliary
operation is an innovative and
economical method to promote bone
healing
Shah et al. [69] 沙阿等人[69] Filler 填料

将 40 例牙周骨内缺损患者分为两组,实验组采用 PRF 治疗,对照组采用 DFDBA 治疗。6 个月后,对实验组的 PD、RAL 和 GML 参数进行配对 t 检验。
The 40 periodontal intraosseous defects were
divided into two groups, the experimental group
was treated with PRF, and the control group was
treated with DFDBA. After 6 months, the
parameters of PD, RAL and GML were paired t-
test

实验组和对照组在 PD、RAL 和 GML 方面没有明显的统计学差异
There were no statistically significant
differences in PD, RAL, and GML between
the experimental and control groups

PRF 的牙周再生能力与 DFDBA 相似,可用于治疗骨内缺损
The periodontal regeneration ability of
PRF is similar to that of DFDBA and can
be used for the treatment of intraosseous
defects
Pichotano et al. Pichotano 等人

骨移植材料的综合应用
Combined
application of
bone graft
material

对于一名需要上颌窦提升术的患者,右侧填充 L-PRF、去蛋白牛骨矿物质(DBBM)和 CM,左侧填充 DBBM 和 CM。4 个月和 8 个月后,取骨进行活检,并进行 CBCT 检查以评估骨量的变化。
For 1 patient who needed maxillary sinus lifting,
the right side was filled with L-PRF,
deproteinized bovine bone mineral (DBBM) and
CM, and the left side was filled with DBBM and
CM. Four months and eight months later, bone
was taken for biopsy, and CBCT was taken to
evaluate the changes of bone mass

CBCT 结果显示,右上颌窦的吸收率更高,活组织检查结果显示,L-PRF 组显示出更多的新骨
The CBCT results showed that the
absorption rate of the right maxillary
sinus was higher, and the biopsy results
showed that the L-PRF group showed
more new bone

在骨移植中加入 L-PRF 可实现早期植入并加速骨愈合
Adding L-PRF to the bone graft can
achieve early implant implantation and
accelerate bone healing
Soni et al. [71] 索尼等人[71]

骨移植材料的综合应用
Combined
application of
bone graft
material

将四名患有颊骨壁缺损、需要立即植入假牙的患者分为两组:一组使用 PRF 膜和骨替代物,另一组使用胶原膜和骨替代物。四个月后,比较两组患者的平均颊面缺损、平均 ISQ 和牙槽嵴水平,并取出骨进行活检
Four patients with buccal bone wall defects
requiring immediate implantation were divided
into two groups: one group was treated with PRF
membrane and bone substitute, and the other
group was treated with collagen membrane and
bone substitute. Four months later, the average
buccal defect, average ISQ and alveolar ridge
levels were compared between the two groups,
and the bone was removed for biopsy

两组患者的平均颊面缺损值、平均 ISQ 和牙槽嵴水平均无明显差异。骨活检分析表明,两组的骨量几乎相等
There was no significant difference in
average buccal defect value, average ISQ
and alveolar ridge level between the two
groups. Bone biopsy analysis showed that
the bone mass of the two groups was
almost equal

可以单独使用 PRF 膜进行骨移植
It is possible to use PRF membrane alone
for bone transplantation
Agarwal et al. Agarwal 等人

骨移植材料的综合应用
Combined
application of
bone graft
material

将 12 例骨间近端缺损患者分为两组,分别接受 PRF/DFDBA 和 DFDBA/ 生理盐水治疗。四个月后,比较临床附着水平(CAL)、PD、REC 和影像学参数的变化。
Twelve patients with proximal interosseous
defect were divided into two groups and treated
with PRF/DFDBA and DFDBA/ saline
respectively. Four months later, the changes of
clinical attachment level (CAL), PD, REC and
imaging parameters were compared

与 DFDBA/盐水组相比,PRP/DFDBA 组的各项参数变化更大,治疗效果更好
Compared with the DFDBA/saline group,
the PRP/DFDBA group showed greater
changes in each parameter and better
treatment effect

在治疗牙周缺损方面,PRF 与 DFDBA 的组合比 DFDBA 与生理盐水的组合更有效
The combination of PRF and DFDBA is
more effective than DFDBA with saline
in the treatment of periodontal defects
Elgendy et al.

骨移植材料的综合应用
Combined
application of
bone graft
material

将 20 名具有相同骨内缺损的患者随机分为两组。分别在NcHA和PRF/NcHA进行粘骨膜瓣隆起和放置6个月后,比较PD、CAL和影像学参数的变化。
20 patients with the same intraosseous defects
were randomly divided into two groups. The
changes of PD, CAL and imaging parameters
were compared after the mucoperiosteal flap was
raised and placed in NcHA and PRF/NcHA,
respectively, over a period of 6 months.

在 PRF/NcHA 组中,PD 下降更多,CAL 改善更明显,骨矿物质密度显著增加
In PRF/NcHA group, PD decreased more,
CAL improved more obviously, and bone
mineral density increased significantly

与单独使用 NcHA 相比,NcHA 骨移植和 PRF 的组合具有更大的临床优势
The combination of NcHA bone grafting
and PRF has greater clinical advantages
than NcHA alone
three groups. The control group received no treatment, while the other two were filled with PRF and PRF/aspirin compounds, respectively. Three weeks later, a significant amount of new bones were observed through microscopic computed tomography in the PRF group, and the amount of new bone formed in the PRF/ aspirin complex group was twice as much as that in the PRF group, which was consistent with the results of HE staining and Masson trichrome staining.
三组。对照组未接受任何治疗,而另外两组则分别填充了 PRF 和 PRF/阿司匹林复合物。三周后,PRF 组通过显微计算机断层扫描观察到大量新骨,PRF/阿司匹林复合物组的新骨量是 PRF 组的两倍,这与 HE 染色和 Masson 三色染色的结果一致。

In a clinical experiment conducted by Yajamanya et al. [81] on 90 patients with severe periodontitis, the patients were randomly divided into three groups. The control group only received open flap debridement (OFD), the experimental group received PRF combined with OFD, and the other group received bioactive glass (PerioGlas) combined with OFD. After treatment, the clinical parameters related to periodontal defects in the experimental group showed improvement and obvious
在 Yajamanya 等人[81] 对 90 名严重牙周炎患者进行的临床实验中,患者被随机分为三组。对照组只接受开放瓣清创术(OFD),实验组接受 PRF 联合开放瓣清创术,另一组接受生物活性玻璃(PerioGlas)联合开放瓣清创术。治疗后,实验组牙周缺损的相关临床指标有明显改善,并出现了明显的瘢痕增生。
Table 3 表 3
The major growth factors in PRF.
PRF 的主要生长因子。
Abbreviation 缩写 Full name 全名 Effect 效果
PDGF

血小板衍生生长因子
Platelet-derived
growth factor

刺激成纤维细胞和神经胶质细胞的趋化和有丝分裂,调节间充质细胞和成骨细胞分泌胶原酶 [77]、 增强 TGF- 的释放。 [111],促进成纤维细胞、成骨细胞和破骨细胞的增殖 [76] 。
stimulate both the chemotaxis and mitosis
of fibroblasts and glial cells regulate the
secretion of collagenase from
mesenchymal cells and osteoblasts [77],
enhance the release of TGF- [111],
promote the growth of fibroblasts,
osteocytes, and osteoclasts cell
proliferation [76]
TGF-

转变增长方式 系数
Transforming growth
factor

促进成纤维细胞和成骨细胞的增殖,对内皮细胞和成纤维细胞有趋化作用,刺激血管生成,调节其他生长过程 因素 、并刺激大量胶原蛋白的形成
Promote the proliferation of fibroblasts
and osteoblasts, have chemotaxis to
endothelial cells and fibroblasts, stimulate
angiogenesis, regulate other growth
factors , and stimulate the
formation of a large amount of collagen
IGF

胰岛素样生长因子
Insulin-like growth
factor

刺激成骨细胞、I 型胶原蛋白、骨钙素和碱性磷酸酶的生成[76,84],增强成纤维细胞的骨分化能力[36]。
Stimulate the production of osteoblasts,
type I collagen, osteocalcin and alkaline
phosphatase [76,84], enhance the bone
differentiation ability of fibroblasts [36]
BMP-2

骨形态发生蛋白 2
Bone morphogenetic
protein 2

诱导成骨细胞分化 [112],促进骨形成和骨整合 [113]
Induce osteoblast differentiation [112]
and promote bone formation and
osseointegration [113]
FGF

成纤维细胞生长因子
Fibroblast growth
factor

间充质细胞和成骨细胞的有丝分裂原 [86],刺激其生长和分化 [114],并促进成纤维细胞产生胶原酶和刺激血管生成 [76] 。
The mitogen of mesenchymal cells and
osteoblasts [86], stimulate their growth
and differentiation [114], and promote
fibroblasts to produce collagenase and
stimulate angiogenesis [76]
VEGF

血管内皮生长因子
Vascular endothelial
growth factor

刺激内皮细胞的增殖和迁移,刺激血管生成 [76,84],增加血管通透性 [84].
Stimulate the proliferation and migration
of endothelial cells and stimulate
angiogenesis [76,84], increase vascular
permeability [84]
Ang Angiopoietin 血管生成素

重塑血管的形成,保持血管形态的完整性 [115]
Reshape the formation of blood vessels
and maintain the morphological integrity
of blood vessels [115]
new bone filling was observed in the imaging results. Another clinical trial [82] evaluated the effect of PRF on bone regeneration after extraction. In this study, 30 patients were treated with extraction of bilateral mandibular molars other than the third molar, with one side untreated as a control and the other filled with PRF in the extraction socket and sutured. After 16 weeks, the Panoramic Radiograph showed that the bone mineral density of the side treated with PRF was more visible than that of the control side, which supported the positive effect of PRF on bone regeneration. Whether treated with PRF alone or combined with other bone grafts or drugs, many experiments have shown that PRF can promote bone regeneration.
在成像结果中观察到了新的骨填充。另一项临床试验[82]评估了 PRF 对拔牙后骨再生的影响。在这项研究中,30 名患者接受了除第三磨牙以外的双侧下颌磨牙拔除治疗,其中一侧未经治疗作为对照,另一侧在拔牙窝内填充 PRF 并缝合。16 周后,全景 X 光片显示,接受 PRF 治疗的一侧的骨矿物质密度比对照侧更明显,这证明了 PRF 对骨再生的积极作用。许多实验表明,无论是单独使用 PRF 还是与其他骨移植材料或药物联合使用,PRF 都能促进骨再生。

5.2. Vascular regeneration
5.2.血管再生

The unique three-dimensional fibrin network structure of PRF plays a vital role in promoting vascular regeneration. It not only plays the role of scaffold to provide a place for accumulating vascular soluble factors but also controls the speed and degree of cell degradation of related proteins [83]. Angiogenesis requires all relevant cellular elements and various components conducive to blood formation, and the fibrin matrix in PRF meets this condition. It has the property of angiogenesis because its reticular structure contains a variety of cytokines and growth factors that promote angiogenesis. For example, FGF, VEGF, angiopoietin and PDGF [84], which are released after platelet activation, accelerate the healing of defective tissue by regulating mitosis, chemotaxis, differentiation and metabolism [85]. Furthermore, PRF can also induce inflammation during angiogenesis, and the released vascular growth factor can interact with inflammatory cells, activating the function of endothelial cells [83], promoting their migration to related sites [86], and forming new blood vessels. However, the initiation of this reaction requires certain conditions. The white blood cells in PRF can regulate the expression of related factors during tissue healing and secrete angiogenic factors such as VEGF to aid in new angiogenesis [37]. At the same time, in the process of tissue recovery, fibrin clots automatically attract and accumulate stem cells, which are also involved in new angiogenesis [87].
PRF 独特的三维纤维蛋白网络结构在促进血管再生方面发挥着重要作用。它不仅起到支架的作用,为血管可溶性因子的积聚提供场所,还能控制相关蛋白的细胞降解速度和程度[83]。血管生成需要所有相关的细胞元素和各种有利于血液形成的成分,而 PRF 中的纤维蛋白基质符合这一条件。它之所以具有血管生成的特性,是因为其网状结构中含有多种促进血管生成的细胞因子和生长因子。例如,血小板活化后释放的 FGF、VEGF、血管生成素和 PDGF [84],可通过调节有丝分裂、趋化、分化和新陈代谢加速缺损组织的愈合 [85]。此外,PRF 还可在血管生成过程中诱导炎症,释放的血管生长因子可与炎症细胞相互作用,激活内皮细胞的功能[83],促进其向相关部位迁移[86],形成新血管。不过,这种反应的启动需要一定的条件。PRF 中的白细胞可在组织愈合过程中调节相关因子的表达,并分泌血管生成因子(如血管内皮生长因子),帮助新血管生成[37]。同时,在组织恢复过程中,纤维蛋白凝块会自动吸引和积聚干细胞,而干细胞也参与新血管生成[87]。
In Dohle et al.'s [37] experiment on I-PRF in vitro, PRF was co-cultured with OECs and pOBs. After 7 days, immunofluorescent staining showed many new angiogenesis, and microangiogenesis was visually observed by a confocal laser scanning microscope. Additionally, the expression of VEGF was particularly prominent in PRF co-culture group. In the experiment of Elsherbini et al. [88] to explore the effect of I-PRF on wound healing in diabetic rats, H&E-stained results demonstrated that the PRF treatment group had a substantial amount of angiogenesis at the defect site and exhibited the strongest expression of VEGF compared to the melatonin treatment group and control group. Mu et al. [79] also used I-PRF combined with DBBM to evaluate the angiogenesis ability in rabbit maxillary sinus. Compared with the DBBM group without immersion in I-PRF, QRT-PCR results indicated that the vascular endothelial growth factor and other mRNA expression levels were significantly higher in the PRF group. Furthermore, the angiogenesis experiment revealed that the number of tubes and tubercles in the PRF group was more significant than those in the DBBM group. These findings demonstrate that PRF possesses excellent angiogenesis capabilities. In a clinical trial by Sclafani et al. [89], four healthy adult volunteers were injected with platelet-rich fibrin matrix prepared from autologous blood below the deep dermis of their upper arms, and 5 mm deep skin was collected for biopsy. Histological examination showed significant neovascularization at one week, and the area of neovascularization was wider at 3 weeks, remaining conspicuous until 10 weeks.
在 Dohle 等人[37]的 I-PRF 体外实验中,PRF 与 OECs 和 pOBs 共同培养。7 天后,免疫荧光染色显示出许多新的血管生成,共聚焦激光扫描显微镜可直观地观察到微血管生成。此外,PRF 共培养组的血管内皮生长因子表达尤为突出。在 Elsherbini 等人[88]探讨 I-PRF 对糖尿病大鼠伤口愈合影响的实验中,H&E 染色结果表明,与褪黑素处理组和对照组相比,PRF 处理组缺损部位有大量血管生成,VEGF 表达最强。Mu 等人[79] 也使用 I-PRF 结合 DBBM 评估了兔上颌窦的血管生成能力。与未浸泡 I-PRF 的 DBBM 组相比,QRT-PCR 结果表明,PRF 组的血管内皮生长因子和其他 mRNA 表达水平明显更高。此外,血管生成实验表明,PRF 组的小管和小瘤数量明显多于 DBBM 组。这些研究结果表明,PRF 具有出色的血管生成能力。在 Sclafani 等人的一项临床试验中[89],四名健康的成年志愿者在上臂真皮深层下方注射了由自体血液制备的富血小板纤维蛋白基质,并采集了 5 毫米深的皮肤进行活检。组织学检查显示,一周后出现明显的新生血管,三周后新生血管面积扩大,直到十周后仍很明显。

6. Application of PRF in oral cavity
6.PRF 在口腔中的应用

PRF has been extensively researched due to its abundance of growth factors and cytokines, as well as its ability to act as a structural scaffold, promoting the healing and regeneration of damaged tissues. Its development has progressed from in vitro experiments to animal studies and formal clinical applications. In stomatology, PRF is widely utilized in various areas, including implants, periodontics, surgery, orthodontics, and more (Fig. 6).
由于 PRF 含有丰富的生长因子和细胞因子,并且能够作为结构支架,促进受损组织的愈合和再生,因此受到了广泛的研究。其发展已从体外实验发展到动物研究和正式临床应用。在口腔医学中,PRF 被广泛应用于各个领域,包括种植、牙周病学、外科、正畸等(图 6)。

6.1. Implants 6.1.植入物

Due to its exceptional ability to promote bone healing and regeneration, PRF is commonly used in conjunction with other bone graft materials to guide bone regeneration and achieve the required bone wall thickness or enhance implant adhesion to surrounding bone tissue. Following tooth extraction, a socket is left in the alveolar ridge, and preventing its absorption is crucial for subsequent implantation. PRF can effectively slow down the vertical and horizontal absorption of the alveolar ridge within 3 months [90] while alleviating post-extraction discomfort [91]. A substantial amount of clinical trials [92] has demonstrated that PRF can enhance the initial stability of implants and thus can be placed at the implantation site in advance to improve the success rate of surgery. PRF can also be combined with other bone grafts in a membrane to guide bone regeneration, resulting in a new bone that exhibits favorable speed and density [93], even for patients who require immediate implants [94,95]. Furthermore, for patients requiring maxillary sinus floor lifting, combining bone graft and PRF can increase the amount of new bone formation and shorten the healing period [96]. However, the advantages of combining PRF with bone grafts are not always obvious compared to using bone grafts alone. Thus, more comprehensive and reasonable clinical trials are needed to determine whether such a combination is necessary [96].
由于 PRF 具有促进骨愈合和再生的特殊能力,因此通常与其他骨移植材料一起使用,以引导骨再生,达到所需的骨壁厚度,或增强种植体与周围骨组织的粘附性。拔牙后,牙槽嵴会留下牙槽窝,防止牙槽窝被吸收对后续种植至关重要。PRF 可以在 3 个月内有效减缓牙槽嵴的垂直和水平吸收[90],同时减轻拔牙后的不适[91]。大量临床试验[92]表明,PRF 可以增强种植体的初期稳定性,因此可以提前放置在种植部位,以提高手术的成功率。PRF 还可以与其他骨移植物结合成膜,引导骨再生,从而获得速度快、密度高的新骨[93],即使对于需要即刻种植的患者也是如此[94,95]。此外,对于需要上颌窦底提升术的患者,将骨移植和 PRF 结合使用可增加新骨形成量,缩短愈合期 [96]。然而,与单独使用植骨相比,将 PRF 与植骨结合使用的优势并不总是很明显。因此,需要进行更全面、更合理的临床试验,以确定是否有必要联合使用 PRF [96]。
Fig. 6. Applications of PRF in the field of dentistry. PRF has clinical applications in various oral fields, including periodontics, implantology, oral and maxillofacial surgery, and orthodontics.
图 6.PRF 在牙科领域的应用。PRF 在牙周病学、种植学、口腔颌面外科和正畸学等多个口腔领域都有临床应用。

6.2. Periodontics 6.2.牙周病学

PRF has been widely used in the field of regenerative medicine for the treatment of periodontal regeneration. Because PRF is rich in various growth factors, especially I-PRF [97], it can significantly promote the regeneration of both soft tissue and bone tissue quickly, making it a common therapy in periodontal treatment. Csifo-Nagy et al. [98] investigated the therapeutic effect of A-PRF on patients with chronic periodontitis. After six months, the results showed a significant improvement in CAL and a significant decrease in transgingival bone sounding (BS). In addition, Lei et al. [20]used A-PRF and I-PRF in combination with bone graft to treat a male patient with severe chronic periodontitis. 3 months later, the clinical examination found that the depth of the periodontal pocket was significantly reduced, and the imaging results showed a large amount of new bone formation filling the defect.
PRF 在再生医学领域已被广泛用于牙周再生治疗。由于 PRF 富含多种生长因子,尤其是 I-PRF [97],因此能显著促进软组织和骨组织的快速再生,成为牙周治疗的常用疗法。Csifo-Nagy 等人[98] 研究了 A-PRF 对慢性牙周炎患者的治疗效果。结果显示,6 个月后,CAL 明显改善,跨龈骨声(BS)明显降低。此外,Lei 等人[20]使用 A-PRF 和 I-PRF 联合植骨治疗一名男性重度慢性牙周炎患者。3 个月后,临床检查发现牙周袋深度明显减小,影像学结果显示大量新骨形成填补了缺损。

6.3. Oral and maxillofacial surgery
6.3.口腔颌面外科

PRF is also widely used in various oral and maxillofacial surgery. The clinical study conducted by Bilginaylar [99] aimed to compare the effectiveness of PRF and buccal advancement flap (BAF) as standalone treatments for oroantral communication (OAC). The study included 21 patients in the PRF group and 15 patients in the BAF group. Pain levels between the two groups were evaluated using the Visual Analogue Scale
PRF 也广泛应用于各种口腔颌面外科手术。Bilginaylar [99] 进行的临床研究旨在比较 PRF 和颊推进瓣(BAF)作为口腔外沟通(OAC)独立治疗方法的有效性。该研究包括 PRF 组 21 名患者和 BAF 组 15 名患者。使用视觉模拟量表评估了两组患者的疼痛程度。

(VAS) score on the 1 st, 2nd, 3rd, and 7th day post-operation, along with the amount of painkillers used within the first 7 days. The VAS results indicated that the PRF group required significantly lower doses of analgesics compared to the BAF group, particularly within the first 48 h after the operation. Consequently, the PRF group exhibited a significant decrease in painkiller dosage throughout the first 7 days compared to the BAF group. These findings demonstrate that PRF effectively reduces pain during the process of closing OAC. In another study, Parise et al. [100] evaluated PRF's efficacy in treating Medication-related osteonecrosis of the jaws (MRONJ). 20 patients diagnosed with MRONJ were treated with PRF. More than half of the patients fully recovered after 6 months, the rest had no signs of osteonecrosis, and their wounds had healed slowly.
(术后第 1 天、第 2 天、第 3 天和第 7 天的 VAS 评分,以及头 7 天的止痛药用量。VAS 结果显示,与 BAF 组相比,PRF 组所需的止痛药剂量明显较低,尤其是在术后 48 小时内。因此,与 BAF 组相比,PRF 组在最初 7 天内的止痛药用量明显减少。这些研究结果表明,PRF 能有效减轻 OAC 关闭过程中的疼痛。在另一项研究中,Parise 等人[100] 评估了 PRF 治疗药物相关性颌骨坏死(MRONJ)的疗效。20 名确诊为 MRONJ 的患者接受了 PRF 治疗。超过一半的患者在 6 个月后完全康复,其余患者没有骨坏死的迹象,伤口愈合缓慢。

6.4. Other 6.4.其他

Tissue regeneration is also involved in orthodontics. Although there is limited research and application of PRF in orthodontics, it is undeniable that PRF plays a positive role in orthodontics and can effectively shorten the entire treatment cycle [101]. Erdur et al. [102] conducted clinical trials on the efficiency of PRF in accelerating canine movement. The maxillary first premolars of 20 patients with Class II Division 1 malocclusion were extracted, and then each side moved distally with 150 g force through a closed-coil spring. One side was treated with I-PRF twice, with an interval of two weeks, while the other was left untreated
组织再生也与正畸有关。虽然 PRF 在正畸学中的研究和应用有限,但不可否认的是,PRF 在正畸学中发挥着积极作用,可以有效缩短整个治疗周期 [101]。Erdur 等人[102] 对 PRF 在加速犬齿移动方面的效率进行了临床试验。他们拔除了 20 名 II 类 1 型错颌畸形患者的上颌第一前磨牙,然后通过闭合卷簧以 150 g 的力使每侧上颌第一前磨牙向远端移动。一侧接受两次 I-PRF 治疗,每次间隔两周,而另一侧则不接受治疗。

as a control, and the distance of maxillary canine movement was measured at five time points. The results showed that there was a significant difference in canine movement distance between the two sides, and I-PRF could significantly increase the canine movement speed. For patients with dental pulp disease, PRF also showed excellent therapeutic effects. Karan et al. [103] conducted a randomized assignment of 40 patients with periapical disease into four groups: control group, PRF treatment group, MTA treatment group, and MTA+PRF treatment group. The control group received no treatment apart from root-end resection. Subsequently, X-ray films were taken at 3-, 6-, and 12-months post-operation, allowing for comparison and statistical analysis of the changes in volume and density of the diseased tissue before and after the procedure. The findings revealed a significant decrease in volume and increase in density during each post-operative period in the MTA+PRF group. Moreover, compared to the other groups, the treatment of periapical lesions with PRF and MTA in combination exhibited a statistically significant difference, indicating a superior recovery effect. In addition, some clinical studies have shown that PRF can also be used to treat gingival atrophy [104], oral mucosal diseases [105], temporomandibular joint disorders [106], and other oral diseases.
作为对照,在五个时间点测量上颌犬齿移动的距离。结果表明,双方的犬齿移动距离存在显著差异,而 I-PRF 能显著提高犬齿移动速度。对于牙髓疾病患者,PRF 也显示出良好的治疗效果。Karan 等人[103]将 40 名根尖周病患者随机分为四组:对照组、PRF 治疗组、MTA 治疗组和 MTA+PRF 治疗组。对照组除根端切除术外未接受任何治疗。随后,在手术后 3 个月、6 个月和 12 个月分别拍摄 X 光片,对手术前后病变组织的体积和密度变化进行比较和统计分析。研究结果表明,MTA+PRF 组在术后每个阶段的体积都明显减少,密度则明显增加。此外,与其他组相比,PRF 和 MTA 联合治疗根尖周病变在统计学上有显著差异,表明其恢复效果更佳。此外,一些临床研究表明,PRF 还可用于治疗牙龈萎缩 [104]、口腔粘膜疾病 [105]、颞下颌关节紊乱 [106] 及其他口腔疾病。

7. Conclusions 7.结论

Through an overview of the PRF family, we can gain a better understanding of its mode of action, mechanism for promoting alveolar bone regeneration, and its application in the oral field. This article mainly summarizes the Smad, ERK1/2, PI3K/Akt, and Wnt/ -catenin signal pathways of bone regeneration from various growth factors. However, it is important to note that this article does not cover the hemostatic and healing functions of PRF, and interested readers are encouraged to explore other relevant reviews. While it is clear that PRF can promote alveolar bone regeneration, further research is needed to fully understand its effects. Currently, there is no standardized method for preparing PRF, which makes it difficult to directly compare and evaluate experimental results due to variations in composition and quality. Therefore, in future research, it is important to emphasize the numerical value of relative centrifugal force, which can better standardize and replicate further studies in this field. Additionally, the use of PRF made from a patient's own blood raises safety and side effects concerns. In terms of alveolar bone regeneration, PRF has been shown to modulate the expression of osteogenic genes by releasing various growth factors and activating signaling pathways. However, the exact interactions between these pathways are not yet fully understood. The three-dimensional network structure of PRF also serves as a biological scaffold, providing a temporary environment enriched with cells and factors. The ability of PRF to promote angiogenesis, proper cell organization, and bone formation requires further study. Regarding clinical applications, PRF production primarily relies on individual preparation processes, limiting large-scale production. However, recent studies have indicated that optimization of clinical treatment through the production of PRF can be achieved by reducing centrifugation speed and time, utilizing horizontal centrifugation equipment, and maintaining appropriate temperature after preparation. In the future, improvement of the performance of horizontal centrifugation equipment and temperaturecontrolled devices, as well as the development of dedicated tubes for PRF production, may facilitate large-scale production of PRF and enhance its tissue repair efficacy [22]. In the oral field, PRF finds application in various areas, including implant dentistry, periodontal disease treatment, maxillofacial surgery, and orthodontic treatment, among others. As research progresses, it is foreseeable that PRF will have expanded use in the treatment of orthodontic conditions, temporomandibular joint disorders, dental pulp issues, mucous membrane problems, and more.
通过对 PRF 家族的概述,我们可以更好地了解其作用模式、促进牙槽骨再生的机制及其在口腔领域的应用。本文主要总结了各种生长因子在骨再生过程中的Smad、ERK1/2、PI3K/Akt和Wnt/ -catenin信号通路。不过,需要注意的是,本文并未涉及 PRF 的止血和愈合功能,感兴趣的读者可参考其他相关综述。虽然 PRF 可以促进牙槽骨再生是显而易见的,但要充分了解其作用还需要进一步的研究。目前,还没有制备 PRF 的标准化方法,因此由于成分和质量的差异,很难直接比较和评估实验结果。因此,在今后的研究中,必须强调相对离心力的数值,这样才能更好地规范和复制该领域的进一步研究。此外,使用患者自身血液制成的 PRF 还会引发安全性和副作用方面的问题。在牙槽骨再生方面,PRF 已被证明能通过释放各种生长因子和激活信号通路来调节成骨基因的表达。然而,这些通路之间的确切相互作用尚未完全明了。PRF 的三维网络结构还可作为生物支架,提供一个富含细胞和因子的临时环境。PRF 促进血管生成、细胞正常组织和骨形成的能力还需要进一步研究。在临床应用方面,PRF 的生产主要依赖于单个制备过程,限制了大规模生产。 然而,最近的研究表明,通过降低离心速度和时间、利用水平离心设备以及在制备后保持适当温度,可以通过生产 PRF 实现临床治疗的优化。未来,改进水平离心设备和温控装置的性能,以及开发生产 PRF 的专用试管,可促进 PRF 的大规模生产,并提高其组织修复功效[22]。在口腔领域,PRF 可应用于多个方面,包括种植牙、牙周病治疗、颌面外科手术和正畸治疗等。随着研究的深入,可以预见 PRF 将在正畸治疗、颞下颌关节疾病、牙髓问题、粘膜问题等方面得到更广泛的应用。

Funding 资金筹措

This study was supported by the National Natural Science Foundation of China Youth Science Fund Project (Grant number 82001107) and the Applied Basic Research Project of Sichuan Province (Grant number 2022NSFSC1345).
本研究得到了国家自然科学基金青年科学基金项目(批准号:82001107)和四川省应用基础研究项目(批准号:2022NSFSC1345)的支持。

CRediT authorship contribution statement
CRediT 作者贡献声明

Ming Liu: Conceptualization, Writing - original draft, Visualization. Yu Liu: Conceptualization, Writing - original draft, Visualization. Feng Luo: Conceptualization, Supervision, Writing - review & editing, and Funding acquisition. All authors have read and agreed to the final version of the manuscript.
Ming Liu:概念化、写作--原稿、可视化。Yu Liu:概念化、写作--原稿、可视化。罗锋构思、指导、写作--审阅和编辑、获取资金。所有作者均已阅读并同意手稿的最终版本。

Declaration of Competing Interest
竞争利益声明

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
作者声明,他们没有任何可能会影响本文所报告工作的已知经济利益或个人关系。

Data availability 数据可用性

No data was used for the research described in the article.
文章所述研究未使用任何数据。

References 参考资料

[1] M. Nazir, A. Al-Ansari, K. Al-Khalifa, M. Alhareky, B. Gaffar, K. Almas, Global prevalence of periodontal disease and lack of its surveillance, Sci. World J. 2020 (2020) 2146160, https://doi.org/10.1155/2020/2146160.
[2] X. Liu, B. Dai, Y. Chuai, M. Hu, H. Zhang, Associations between vitamin D levels and periodontal attachment loss, Clin. Oral Investig. (2023), https://doi.org/ 10.1007/s00784-023-05100-4.
[2] X. Liu, B. Dai, Y. Chuai, M. Hu, H. Zhang, Associations between vitamin D levels and periodontal attachment loss, Clin.Oral Investig.(2023),https://doi.org/ 10.1007/s00784-023-05100-4。

[3] S. Zhang, X. Zhang, Y. Li, X. Mao, R. Liu, Y. Qi, E.S. Lee, H.B. Jiang, Clinical reference strategy for the selection of treatment materials for maxillofacial bone transplantation: a systematic review and network meta-analysis, Tissue Eng. Regen. Med. 19 (2022) 437-450, https://doi.org/10.1007/s13770-022-00445-5.
[3] S. Zhang, X. Zhang, Y. Li, X. Mao, R. Liu, Y. Qi, E.S. Lee, H.B. Jiang, Clinical reference strategy for the selection of treatment materials for maxillofacial bone transplantation: a systematic review and network meta-analysis, Tissue Eng.Regen.Med.19 (2022) 437-450, https://doi.org/10.1007/s13770-022-00445-5.

[4] D. Zhao, T. Zhu, J. Li, L. Cui, Z. Zhang, X. Zhuang, J. Ding, Poly (lactic-co-glycolic acid)-based composite bone-substitute materials, Bioact. Mater. 6 (2021) 346-360, https://doi.org/10.1016/j.bioactmat.2020.08.016.
[4] D. Zhao, T. Zhu, J. Li, L. Cui, Z. Zhang, X. Zhuang, J. Ding, Poly (lactic-co-glycolic acid) -based composite bone-substitute materials, Bioact.Mater.6 (2021) 346-360, https://doi.org/10.1016/j.bioactmat.2020.08.016.

[5] S.K. El, E.S.H. F, E.G.H. A, Evaluation of the effect of Moringa oleifera gel and autologo platelet-rich fibrin in the treatment of rabbit intra bony defects. (Radio graphic and Histological study), J. Oral Maxillofac. Pathol. 27 (2023) 89-97, https://doi.org/10.4103/jomfp.jomfp_153_22.
[5] S.K. El,E.S.H. F,E.G.H. A,Moringa oleifera 凝胶和自体富血小板纤维蛋白治疗兔骨内缺损的效果评估。(放射图像和组织学研究),J. Oral Maxillofac.病理学27 (2023) 89-97, https://doi.org/10.4103/jomfp.jomfp_153_22.

[6] S. Li, Q. Xie, A. Mo, A biphasic material combined with injectable platelet-rich fibrin for the potential regeneration of oral soft and hard tissues, J. Mater. Sci. (2022) 57.
[6] S. Li, Q. Xie, A. Mo, A biphasic material combined with injectable platelet-rich fibrin for the potential regeneration of oral soft and hard tissues, J. Mater.(2022) 57.

[7] M.B. Rajan, S. Singh, Utility of platelet rich fibrin gel therapy in nonhealing ulcer secondary to ecthyma gangrenosum, Dermatol. Ther. 32 (2019), e12887, https:// doi.org/10.1111/dth. 12887.
[7] M.B. Rajan,S. Singh,富血小板纤维蛋白凝胶疗法在继发于外皮藓的不愈合溃疡中的效用,Dermatol.Ther.32 (2019), e12887, https:// doi.org/10.1111/dth.12887.

[8] D.M. Dohan, J. Choukroun, A. Diss, S.L. Dohan, A.J. Dohan, J. Mouhyi, B. Gogly, Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101 (2006) e45-e50, https://doi.org/10.1016/j. tripleo.2005.07.009.
[8] D.M. Dohan、J. Choukroun、A. Diss、S.L. Dohan、A.J. Dohan、J. Mouhyi、B. Gogly,富血小板纤维蛋白(PRF):第二代血小板浓缩物。第二部分:血小板相关生物特征,Oral Surg. Oral Med.Oral Med.Oral Pathol.Oral Radiol.Endod.101 (2006) e45-e50, https://doi.org/10.1016/j. tripleo.2005.07.009.

[9] Z. Kargarpour, L. Panahipour, M. Mildner, R.J. Miron, R. Gruber, Lipids of platelet-rich fibrin reduce the inflammatory response in mesenchymal cells and macrophages, Cells (2023) 12, https://doi.org/10.3390/cells12040634.
[9] Z. Kargarpour, L. Panahipour, M. Mildner, R.J. Miron, R. Gruber, Lipids of platelet-rich fibrin reduce the inflammatory response in the mesenchymal cells and macrophages, Cells (2023) 12, https://doi.org/10.3390/cells12040634.

[10] S. Yang, L. En, G. Yanwei, W. Mingguo, Platelet-rich fibrin promotes osteogenic differentiation of bone marrow mesenchymal stem cells through canonical Wnt/ -catenin signaling pathway, Int. J. Oral Maxillofac. Surg. 44 (2015), e310.
[10] S. Yang, L. En, G. Yanwei, W. Mingguo, Platelet-rich fibrin promotes osteogenic differentiation of bone marrow mesenchymal stem cells through canonical Wnt/ -catenin signaling pathway, Int.J. Oral Maxillofac.Surg.44 (2015), e310.

[11] S.M. Woo, W.J. Kim, H.S. Lim, N.K. Choi, S.H. Kim, S.M. Kim, J.Y. Jung, Combination of mineral trioxide aggregate and platelet-rich fibrin promotes the odontoblastic differentiation and mineralization of human dental pulp cells via bmp/smad signaling pathway, J. Endod. 42 (2016) 82-88, https://doi.org/ 10.1016/j.joen. 2015.06.019.
[11] S.M. Woo, W.J. Kim, H.S. Lim, N.K. Choi, S.H. Kim, S.M. Kim, J.Y. Jung, Combination of mineral trioxide aggregate and platelet-rich fibrin promotes the odontoblastic differentiation and mineralization of human dental pulp cells via bmp/smad signaling pathway, J. Endod.42 (2016) 82-88, https://doi.org/ 10.1016/j.joen.2015.06.019.

[12] J. Wang, W. Li, X. He, S. Li, H. Pan, L. Yin, Injectable platelet-rich fibrin positively regulates osteogenic differentiation of stem cells from implant hole via the ERK1/ 2 pathway, Platelets 34 (2023), 2159020, https://doi.org/10.1080/ 09537104.2022 .2159020.
[13] D.M. Dohan, J. Choukroun, A. Diss, S.L. Dohan, A.J. Dohan, J. Mouhyi, B. Gogly, Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution, Oral Surg. Ora. Med. Oral Pathol. Oral Radiol. Endod. 101 (2006) e37-e44, https://doi.org/10.1016/j. tripleo.2005.07.008.
[13] D.M. Dohan、J. Choukroun、A. Diss、S.L. Dohan、A.J. Dohan、J. Mouhyi、B. Gogly,富血小板纤维蛋白(PRF):第二代血小板浓缩物。第一部分:技术概念和演变,Oral Surg. Ora.Ora.Med.口腔病理学Oral Radiol.Endod.101 (2006) e37-e44, https://doi.org/10.1016/j. tripleo.2005.07.008.

[14] U. Shirbhate, P. Bajaj, Third-generation platelet concentrates in periodontal regeneration: gaining ground in the field of regeneration, Cureus 14 (2022), e28072, https://doi.org/10.7759/cureus. 28072.
[14] U. Shirbhate, P. Bajaj, 第三代血小板浓缩物在牙周再生中的应用:在再生领域取得进展,Cureus 14 (2022), e28072, https://doi.org/10.7759/cureus.28072.

[15] V. Pavlovic, M. Ciric, V. Jovanovic, M. Trandafilovic, P. Stojanovic, Platelet-rich fibrin: basics of biological actions and protocol modifications, Open Med. 16 (2021) 446-454, https://doi.org/10.1515/med-2021-0259.
[15] V. Pavlovic, M. Ciric, V. Jovanovic, M. Trandafilovic, P. Stojanovic, Platelet-rich fibrin: basics of biological actions and protocol modifications, Open Med.16 (2021) 446-454, https://doi.org/10.1515/med-2021-0259.

[16] A.Z. Makki, A.M. Alsulami, A.S. Almatrafi, M.Z. Sindi, S.N. Sembawa, The effectiveness of advanced platelet-rich fibrin in comparison with leukocyteplatelet-rich fibrin on outcome after dentoalveolar surgery, Int. J. Dent. 2021 (2021), 6686857, https://doi.org/10.1155/2021/6686857.
[16] A.Z. Makki、A.M. Alsulami、A.S. Almatrafi、M.Z. Sindi、S.N. Sembawa,高级富血小板纤维蛋白与富含白细胞血小板的纤维蛋白相比对牙槽外科手术后效果的影响,Int.J. Dent.2021 (2021),6686857,https://doi.org/10.1155/2021/6686857

[17] M. Tunali, H. Ozdemir, Z. Kucukodaci, S. Akman, E. Yaprak, H. Toker, E. Firatli, A novel platelet concentrate: titanium-prepared platelet-rich fibrin, Biomed. Res. Int. 2014 (2014), 209548, https://doi.org/10.1155/2014/209548.
[17] M. Tunali, H. Ozdemir, Z. Kucukodaci, S. Akman, E. Yaprak, H. Toker, E. Firatli, A novel platelet concentrate: titanium-prepared platelet-rich fibrin, Biomed.2014(2014),209548,https://doi.org/10.1155/2014/209548

[18] R.J. Miron, J. Chai, S. Zheng, M. Feng, A. Sculean, Y. Zhang, A novel method for evaluating and quantifying cell types in platelet rich fibrin and an introduction to horizontal centrifugation, J. Biomed. Mater. Res. A 107 (2019) 2257-2271, https://doi.org/10.1002/jbm.a. 36734.
[18] R.J. Miron、J. Chai、S. Zheng、M. Feng、A. Sculean、Y. Zhang,评估和量化富血小板纤维蛋白中细胞类型的新方法及水平离心法简介,J. Biomed.Mater.Res. A 107 (2019) 2257-2271, https://doi.org/10.1002/jbm.a.36734.

[19] M. Feng, Y. Wang, P. Zhang, Q. Zhao, S. Yu, K. Shen, R.J. Miron, Y. Zhang, Antibacterial effects of platelet-rich fibrin produced by horizontal centrifugation, Int. J. Oral Sci. 12 (2020) 32, https://doi.org/10.1038/s41368-020-00099-w.
[19] M. Feng, Y. Wang, P. Zhang, Q. Zhao, S. Yu, K. Shen, R.J. Miron, Y. Zhang, Antibacterial effects of platelet-rich fibrin produced by horizontal centrifugation, Int. J. Oral Sci.12 (2020) 32, https://doi.org/10.1038/s41368-020-00099-w.

[20] L. Lei, Y. Yu, T. Ke, W. Sun, L. Chen, The application of three-dimensional printing model and platelet-rich fibrin technology in guided tissue regeneration surgery for severe bone defects, J. Oral Implantol. 45 (2019) 35-43, https://doi. org/10.1563/aaid-joi-D-17-00231.
[20] L. Lei, Y. Yu, T. Ke, W. Sun, L. Chen, The application of three-dimensional printing model and platelet-rich fibrin technology in guided tissue regeneration surgery for severe bone defects, J. Oral Implantol.45 (2019) 35-43, https://doi. org/10.1563/aaid-joi-D-17-00231.

[21] E.D. Dohan, N.R. Pinto, A. Pereda, P. Jimenez, M.D. Corso, B.S. Kang, M. Nally, N. Lanata, H.L. Wang, M. Quirynen, The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane, Platelets 29 (2018) 171-184, https://doi.org/10.1080/09537104.2017.1293812.
[21] E.D. Dohan、N.R. Pinto、A. Pereda、P. Jimenez、M.D. Corso、B.S. Kang、M. Nally、N. Lanata、H.L. Wang、M.Quirynen, The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane, Platelets 29 (2018) 171-184, https://doi.org/10.1080/09537104.2017.1293812.

[22] R.J. Miron, M. Fujioka-Kobayashi, A. Sculean, Y. Zhang, Optimization of platelet rich fibrin, Periodontol 2000 (2023), https://doi.org/10.1111/prd.12521.
[22] R.J. Miron、M. Fujioka-Kobayashi、A. Sculean、Y. Zhang,富血小板纤维蛋白的优化,Periodontol 2000(2023),https://doi.org/10.1111/prd.12521

[23] 23 R.J. Miron, J. Chai, P. Zhang, Y. Li, Y. Wang, C. Mourao, A. Sculean, K. M. Fujioka, Y. Zhang, A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10 -fold increase in platelet and leukocyte yields, Clin. Oral Investig. 24 (2020) 2819-2828, https://doi.org/10.1007/s00784-019-03147-w.
[23] 23 R.J. Miron, J. Chai, P. Zhang, Y. Li, Y. Wang, C. Mourao, A. Sculean, K. M. Fujioka, Y. Zhang, A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10 -fold increase in platelet and leukocyte yield, Clin.Oral Investig.24 (2020) 2819-2828, https://doi.org/10.1007/s00784-019-03147-w.

[24] M. Fujioka-Kobayashi, H. Katagiri, M. Kono, B. Schaller, Y. Zhang, A. Sculean, R. J. Miron, Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols, Clin. Oral Investig. 24 (2020) 4373-4383, https:// doi.org/10.1007/s00784-020-03303-7.
[24] M. Fujioka-Kobayashi、H. Katagiri、M. Kono、B. Schaller、Y. Zhang、A. Sculean、R. J. Miron, Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols, Clin.Oral Investig.24 (2020) 4373-4383, https:// doi.org/10.1007/s00784-020-03303-7.

[25] R.J. Miron, T. Kawase, A. Dham, Y. Zhang, M. Fujioka-Kobayashi, A. Sculean, A technical note on contamination from PRF tubes containing silica and silicone BMC Oral Health 21 (2021) 135, https://doi.org/10.1186/s12903-021-01497-0.
[26] R.J. Miron, H. Xu, J. Chai, J. Wang, S. Zheng, M. Feng, X. Zhang, Y. Wei, Y. Chen, C. Mourao, et al., Comparison of platelet-rich fibrin (PRF) produced using 3 commercially available centrifuges at both high ( ) and low ( ) relative centrifugation forces, Clin. Oral Investig. 24 (2020) 1171-1182, https:// doi.org/10.1007/s00784-019-02981-2.
[26] R.J. Miron, H. Xu, J. Chai, J. Wang, S. Zheng, M. Feng, X. Zhang, Y. Wei, Y. Chen, C. Mourao, et al.Oral Investig.24 (2020) 1171-1182, https:// doi.org/10.1007/s00784-019-02981-2.

[27] H. Masuki, K. Isobe, H. Kawabata, T. Tsujino, S. Yamaguchi, T. Watanabe, A. Sato, H. Aizawa, C.F. Mourao, T. Kawase, Acute cytotoxic effects of silica microparticles used for coating of plastic blood-collection tubes on human periosteal cells, Odontology 108 (2020) 545-552, https://doi.org/10.1007/ s10266-020-00486-z.
[27] H. Masuki, K. Isobe, H. Kawabata, T. Tsujino, S. Yamaguchi, T. Watanabe, A. Sato, H. Aizawa, C.F. Mourao, T. Kawase, Acute cytotoxic effects of silica microparticles used for coating of plastic blood-collection tubes on human periosteal cells, Odontology 108 (2020) 545-552.Kawase, Acute cytotoxic effects of silica microparticles used for coating of plastic blood-collection tubes on human periosteal cells, Odontology 108 (2020) 545-552, https://doi.org/10.1007/ s10266-020-00486-z.

[28] V.K. Bains, J. Mahendra, M. Mittal, M. Bedi, L. Mahendra, Technical considerations in obtaining platelet rich fibrin for clinical and periodontal research, J. Oral Biol. Craniofac. Res. 13 (2023) 714-719, https://doi.org/ 10.1016/j.jobcr.2023.09.003.
[28] V.K. Bains、J. Mahendra、M. Mittal、M. Bedi、L. Mahendra,为临床和牙周研究获取富血小板纤维蛋白的技术考虑,J. Oral Biol. Craniofac.Craniofac.13 (2023) 714-719, https://doi.org/ 10.1016/j.jobcr.2023.09.003.

[29] F. Parsaee, A. Alizadeh, M. Rezaee, O. Alavi, H. Alipour, Evaluation of the osteoconductive properties of scaffold containing platete-enriched-fibrin (PRF) with three calcium phosphate (TCP) in the alveolar socket repair after tooth extraction: an animal study, J. Biomater. Appl. 37 (2023) 1789-1800, https:// doi.org/10.1177/08853282231170346.
[29] F. Parsaee, A. Alizadeh, M. Rezaee, O. Alavi, H. Alipour, Evaluation of the osteoconductive properties of scaffold containing platete-enriched-fibrin (PRF) with three calcium phosphate (TCP) in the alveolar socket repair after tooth extraction: an animal study, J. Biomater.37 (2023) 1789-1800, https:// doi.org/10.1177/08853282231170346.

[30] A. Tai, E. Landao-Bassonga, Z. Chen, M. Tran, B. Allan, R. Ruan, D. Calder, M. Goonewardene, H. Ngo, M.H. Zheng, Systematic evaluation of three porcine derived collagen membranes for guided bone regeneration, Biomater. Transl. 4 (2023) 41-50, https://doi.org/10.12336/biomatertransl.2023.01.006.
[30] A. Tai, E. Landao-Bassonga, Z. Chen, M. Tran, B. Allan, R. Ruan, D. Calder, M. Goonewardene, H. Ngo, M.H. Zheng, Systematic evaluation of three porcine derived collagen membranes for guided bone regeneration, Biomater.4 (2023) 41-50, https://doi.org/10.12336/biomatertransl.2023.01.006.

[31] L. Zhang, C. Hu, W. Xu, D. Wu, S. Lei, Advances in wound repair and regeneration: systematic comparison of cell free fat extract and platelet rich plasma, Front. Chem. 10 (2022), 1089277, https://doi.org/10.3389/ fchem.2022.1089277.
[31] L. Zhang, C. Hu, W. Xu, D. Wu, S. Lei, Advances in wound repair and regeneration: systematic comparison of cell free fat extract and platelet rich plasma, Front.Chem.10 (2022), 1089277, https://doi.org/10.3389/ fchem.2022.1089277.

[32] V.G. Garcia, V.S. Calil, J.M. Cardoso, M. Hinz, R.T. Da, E. Ervolino, D.M. Miessi, L.F. Toro, D.A. Brandini, L.H. Theodoro, In vivo comparative study of the effects of using the enamel matrix derivative and/or photobiomodulation on the repair of bone defects, J. Clin. Exp. Dent. 14 (2022) e114-e122, https://doi.org/ jced.59179.
[32] V.G. Garcia、V.S. Calil、J.M. Cardoso、M. Hinz、R.T. Da、E. Ervolino、D.M. Miessi、L.F. Toro、D.A. Brandini、L.H. Theodoro,使用釉基质衍生物和/或光生物调节对骨缺损修复效果的体内比较研究,J. Clin.Exp.Dent.14 (2022) e114-e122, https://doi.org/ jced.59179.

[33] Z. Kargarpour, J. Nasirzade, F.J. Strauss, F. Di Summa, S. Hasannia, H.D. Muller, R. Gruber, Platelet-rich fibrin suppresses in vitro osteoclastogenesis, J. Periodontol. 91 (2020) 413-421, https://doi.org/10.1002/JPER.19-0109.
[33] Z. Kargarpour, J. Nasirzade, F.J. Strauss, F. Di Summa, S. Hasannia, H.D. Muller, R. Gruber, Platelet-rich fibrin suppresses in vitro osteoclastogenesis, J. Periodontol.91 (2020) 413-421, https://doi.org/10.1002/JPER.19-0109.

[34] T. Li, X. Zeng, S. Zou, Y. Xu, P. Duan, Recent advances in horizontal alveolar bone regeneration, Biomed. Mater. (2023), https://doi.org/10.1088/1748-605X/ acd672.
[34] T. Li, X. Zeng, S. Zou, Y. Xu, P. Duan, Recent advances in horizontal alveolar bone regeneration, Biomed.Mater.(2023), https://doi.org/10.1088/1748-605X/ acd672.

[35] F.J. Strauss, J. Nasirzade, Z. Kargarpoor, A. Stahli, R. Gruber, Effect of platelet rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies, Clin. Oral Investig. 24 (2020) 569-584, https://doi.org/10.1007/s00784-019-03156-9.
[35] F.J. Strauss, J. Nasirzade, Z. Kargarpoor, A. Stahli, R. Gruber, Effect of platelet rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies, Clin. Oral Investig.Oral Investig.24 (2020) 569-584, https://doi.org/10.1007/s00784-019-03156-9.

[36] X. Li, J. Yao, J. Wu, X. Du, W. Jing, L. Liu, Roles of PRF and IGF-1 in promoting alveolar osteoblast growth and proliferation and molecular mechanism, Int. J. Clin. Exp. Pathol. 11 (2018) 3294-3301.
[36] X. Li, J. Yao, J. Wu, X. Du, W. Jing, L. Liu, Roles of PRF and IGF-1 in promoting alveolar osteoblast growth and proliferation and molecular mechanism, Int. J. Clin.J. Clin.Exp.Pathol.11 (2018) 3294-3301.

[37] E. Dohle, B.K. El, R. Sader, J. Choukroun, K.C. James, S. Ghanaati, Platelet-rich fibrin-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering, J. Tissue Eng. Regen. Med. 12 (2018) 598-610, https:// doi.org/10.1002/term. 2475.
[37] E. Dohle, B.K. El, R. Sader, J. Choukroun, K.C. James, S. Ghanaati, Platelet-rich fibrin-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering, J. Tissue Eng.Regen.Med.12 (2018) 598-610, https:// doi.org/10.1002/term.2475.

[38] J.E. Fish, G.M. Cantu, L.T. Dang, N. Khyzha, Z. Chen, S. Veitch, H.S. Cheng, M. Khor, L. Antounians, M.S. Njock, et al., Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network, Development 144 (2017) 2428-2444, https://doi.org/10.1242/dev. 146050.
[38] J.E. Fish, G.M. Cantu, L.T. Dang, N. Khyzha, Z. Chen, S. Veitch, H.S. Cheng, M. Khor, L. Antounians, M.S. Njock, et al., Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network, Development 144 (2017) 2428-2444, https://doi.org/10.1242/dev.146050.

[39] J. Deng, J. Pan, Y. Luo, L. Yu, W. Zhang, X. Liu, Y. Liu, The platelet derived growth factor BB promotes osteogenic differentiation of periodontal ligament stem cells via the Wnt/beta-catenin signaling pathway, Arch. Oral Biol. 129 (2021), 105162, https://doi.org/10.1016/j.archoralbio.2021.105162.
[39] J. Deng, J. Pan, Y. Luo, L. Yu, W. Zhang, X. Liu, Y. Liu, The platelet derived growth factor BB promotes osteogenic differentiation of periodontal ligament stem cells via the Wnt/beta-catenin signaling pathway, Arch.129 (2021), 105162, https://doi.org/10.1016/j.archoralbio.2021.105162.

[40] J. Bi, Y. Liu, X.M. Liu, S. Lei, X. Chen, Platelet-rich fibrin improves the osteo-/ odontogenic differentiation of stem cells from apical papilla via the extracellular signal-regulated protein kinase signaling pathway, J. Endod. 46 (2020) 648-654, https://doi.org/10.1016/j.joen.2020.02.004.
[40] J. Bi, Y. Liu, X.M. Liu, S. Lei, X. Chen, Platelet-rich fibrin improves the osteo-/ odontogenic differentiation of stem cells from apical papilla via the extracellular signal-regulated protein kinase signaling pathway, J. Endod.46 (2020) 648-654, https://doi.org/10.1016/j.joen.2020.02.004.

[41] H.Y. Loh, B.P. Norman, K.S. Lai, W.H. Cheng, A.R.N. Nik, A.N. Mohamed, M A. Osman, Post-transcriptional regulatory crosstalk between microRNAs and canonical TGF-beta/BMP signalling cascades on osteoblast lineage: a comprehensive review, Int. J. Mol. Sci. (2023) 24, https://doi.org/10.3390/ ijms24076423.
[41] H.Y. Loh、B.P. Norman、K.S. Lai、W.H. Cheng、A.R.N. Nik、A.N. Mohamed、M A. Osman,microRNA 与 TGF-beta/BMP 信号级联对成骨细胞系的转录后调控串扰:全面综述,Int.J. Mol.(2023) 24, https://doi.org/10.3390/ ijms24076423.

[42] A.A. Vander, J. Cao, X. Li, TGF-beta receptors: in and beyond TGF-beta signaling, Cell. Signal. 52 (2018) 112-120, https://doi.org/10.1016/j.cellsig.2018.09.002.
[42] A.A. Vander、J. Cao、X. Li,TGF-beta 受体:TGF-beta 信号内外,《细胞。Signal.52 (2018) 112-120, https://doi.org/10.1016/j.cellsig.2018.09.002.

[43] R.F. Abarca-Buis, E.A. Mandujano-Tinoco, A. Cabrera-Wrooman, E. Krotzsch, The complexity of TGFbeta/activin signaling in regeneration, J. Cell Commun. Signal. 15 (2021) 7-23, https://doi.org/10.1007/s12079-021-00605-7.
[43] R.F. Abarca-Buis、E.A. Mandujano-Tinoco、A. Cabrera-Wrooman、E. Krotzsch,再生中 TGFbeta/activin 信号的复杂性,J. Cell Commun.Signal.15 (2021) 7-23, https://doi.org/10.1007/s12079-021-00605-7.

[44] M. Wu, G. Chen, Y.P. Li, TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease, Bone Res. 4 (2016) 16009, https://doi.org/10.1038/boneres.2016.9.
[45] K. Tzavlaki, A. Moustakas, TGF- signaling, Biomolecules 10 (2020) 487.
[45] K. Tzavlaki, A. Moustakas, TGF- 信号转导,《生物分子》10 (2020) 487。

[46] S. Aashaq, A. Batool, S.A. Mir, M.A. Beigh, K.I. Andrabi, Z.A. Shah, TGF-beta signaling: a recap of SMAD-independent and SMAD-dependent pathways, J. Cell. Physiol. 237 (2022) 59-85, https://doi.org/10.1002/jcp.30529.
[46] S. Aashaq、A. Batool、S.A. Mir、M.A. Beigh、K.I. Andrabi、Z.A. Shah,TGF-beta 信号传导:SMAD 依赖性和非依赖性途径回顾,J. Cell.237 (2022) 59-85, https://doi.org/10.1002/jcp.30529.

[47] Y.E. Zhang, Non-Smad signaling pathways of the TGF-beta Family, Cold Spring Harb. Perspect. Biol. (2017) 9, https://doi.org/10.1101/cshperspect.a022129.
[47] Y.E. Zhang,Non-Smad signaling pathways of the TGF-beta Family,Cold Spring Harb.Perspect.Biol. (2017) 9, https://doi.org/10.1101/cshperspect.a022129.

[48] H. Yang, Y. Guo, D. Wang, X. Yang, C. Ha, Effect of TAK1 on osteogenic differentiation of mesenchymal stem cells by regulating BMP-2 via Wnt/betacatenin and MAPK pathway, Organogenesis 14 (2018) 36-45, https://doi.org/
[49] J. Massague, TGFbeta signalling in context, Nat. Rev. Mol. Cell Biol. 13 (2012) 616-630, https://doi.org/10.1038/nrm3434.
[49] J. Massague,TGFbeta 信号的来龙去脉,Nat.Rev. Mol.13 (2012) 616-630, https://doi.org/10.1038/nrm3434.

[50] K. Arvidson, B.M. Abdallah, L.A. Applegate, N. Baldini, E. Cenni, E. GomezBarrena, D. Granchi, M. Kassem, Y.T. Konttinen, K. Mustafa, et al., Bone regeneration and stem cells, J. Cell. Mol. Med. 15 (2011) 718-746, https://doi org/10.1111/j.1582-4934.2010.01224.x.
[50] K. Arvidson、B.M. Abdallah、L.A. Applegate、N. Baldini、E. Cenni、E. Gomez-Barrena、D. Granchi、M. Kassem、Y.T. Konttinen、K. Mustafa 等,《骨再生与干细胞》,J. Cell.Mol.Med.15 (2011) 718-746, https://doi org/10.1111/j.1582-4934.2010.01224.x.

[51] X. Wu, S. Zheng, Y. Ye, Y. Wu, K. Lin, J. Su, Enhanced osteogenic differentiation and bone regeneration of poly (lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3beta/beta-catenin signal circuit, Biomater. Sci. 6 (2018) 1147-1158, https://doi.org/10.1039/C8BM00127H.
[51] X. Wu, S. Zheng, Y. Ye, Y. Wu, K. Lin, J. Su, Enhanced osteogenic differentiation and bone regeneration of poly (lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3beta/beta-catenin signal circuit, Biomater.Sci. 6 (2018) 1147-1158, https://doi.org/10.1039/C8BM00127H.

[52] T. Wang, X. Zhang, D.D. Bikle, Osteogenic differentiation of periosteal cells during fracture healing, J. Cell. Physiol. 232 (2017) 913-921, https://doi.org/ 10.1002 /jcp. 25641.
[52] T. Wang, X. Zhang, D.D. Bikle, Osteogenic differentiation of periosteal cells during fracture healing, J. Cell. Physiol.232 (2017) 913-921, https://doi.org/ 10.1002 /jcp.25641.

[53] X. Yu, P.Z. Rong, M.S. Song, Z.W. Shi, G. Feng, X.J. Chen, L. Shi, C.H. Wang, Q. J. Pang, lncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway, Mol. Med. 27 (2021) 141, https://doi.org/10.1186/s10020-021-003922.
[53] X. Yu, P.Z. Rong, M.S. Song, Z.W. Shi, G. Feng, X.J. Chen, L. Shi, C.H. Wang, Q. J. Pang, lncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway, Mol. Med.Med.27 (2021) 141, https://doi.org/10.1186/s10020-021-003922.

[54] C.C. Anthony, D.J. Robbins, Y. Ahmed, E. Lee, Nuclear regulation of Wnt/betacatenin signaling: it's a complex situation, Genes 11 (2020) doi:10.3390/ genes11080886.
[55] K. Maeda, Y. Kobayashi, M. Koide, S. Uehara, M. Okamoto, A. Ishihara, T. Kayama, M. Saito, K. Marumo, The regulation of bone metabolism and disorders by Wnt signaling, Int. J. Mol. Sci. (2019) 20, https://doi.org/10.3390/ ijms20225525.
[55] K. Maeda,Y. Kobayashi,M. Koide,S. Uehara,M. Okamoto,A. Ishihara,T. Kayama,M. Saito,K. Marumo,The regulation of bone metabolism and disorders by Wnt signaling,Int.J. Mol.Sci. (2019) 20, https://doi.org/10.3390/ ijms20225525.

[56] J. Dong, X. Xu, Q. Zhang, Z. Yuan, B. Tan, The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wnt/beta-catenin, Exp. Cell Res. 394 (2020), 112137, https://doi.org/10.1016/j.yexcr.2020.112137.
[56] J. Dong, X. Xu, Q. Zhang, Z. Yuan, B. Tan, The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wnt/beta-catenin, Exp.394 (2020), 112137, https://doi.org/10.1016/j.yexcr.2020.112137.

[57] S. Jasmine, A. Thangavelu, R. Krishnamoorthy, A.A. Alshatwi, Platelet concentrates as biomaterials in tissue engineering: a review, Regen. Eng. Transl. Med. 7 (2021) 419-431, https://doi.org/10.1007/s40883-020-00165-z.
[57] S. Jasmine, A. Thangavelu, R. Krishnamoorthy, A.A. Alshatwi, Platelet concentrates as biomaterials in tissue engineering: a review, Regen.Eng.Transl.Med.7 (2021) 419-431, https://doi.org/10.1007/s40883-020-00165-z.

[58] E. Shojafar, M.S. Mehranjani, S.M. Shariatzadeh, Utilizing platelet-rich fibrin bioscaffold at the graft site improves the structure and function of mice ovarian grafts, Regen. Med. 14 (2019) 409-422, https://doi.org/10.2217/rme-20180050 .
[58] E. Shojafar, M.S. Mehranjani, S.M. Shariatzadeh, Utilizing platelet-rich fibrin bioscaffold at the graft site improves the structure and function of mice ovarian grafts, Regen.Med.14 (2019) 409-422, https://doi.org/10.2217/rme-20180050 .

[59] J. Zhang, J. Wu, X. Lin, X. Liu, Platelet-rich fibrin promotes the proliferation and osteo-/odontoblastic differentiation of human dental pulp stem cells, Curr. Stem Cell Res Ther. 18 (2023) 560-567, https://doi.org/10.2174/ .
[59] J. Zhang, J. Wu, X. Lin, X. Liu, Platelet-rich fibrin promotes the proliferation and osteo-/odontoblastic differentiation of human dental pulp stem cells, Curr.Stem Cell Res Ther.18 (2023) 560-567, https://doi.org/10.2174/ .

[60] P. Thanasrisuebwong, S. Kiattavorncharoen, R. Surarit, C. Phruksaniyom, N. Ruangsawasdi, Red and yellow injectable platelet-rich fibrin demonstrated differential effects on periodontal ligament stem cell proliferation, migration, and osteogenic differentiation, Int. J. Mol. Sci. (2020) 21, https://doi.org/10.3390/ ijms21145153.
[60] P. Thanasrisuebwong、S. Kiattavorncharoen、R. Surarit、C. Phruksaniyom、N. Ruangsawasdi,红色和黄色可注射富血小板纤维蛋白对牙周韧带干细胞增殖、迁移和成骨分化的不同影响,Int.J. Mol.Sci. (2020) 21, https://doi.org/10.3390/ ijms21145153.

[61] X. Liu, M. Yin, Y. Li, J. Wang, J. Da, Z. Liu, K. Zhang, L. Liu, W. Zhang, P. Wang, et al., Genipin modified lyophilized platelet-rich fibrin scaffold for sustained release
[61] X. Liu, M. Yin, Y. Li, J. Wang, J. Da, Z. Liu, K. Zhang, L. Liu, W. Zhang, P. Wang, et al.

of growth factors to promote bone regeneration, Front. Physiol. 13 (2022) 1007692, https://doi.org/10.3389/fphys.2022.1007692
生长因子促进骨再生,Front.13 (2022) 1007692, https://doi.org/10.3389/fphys.2022.1007692

[62] Y.H. Kang, S.H. Jeon, J.Y. Park, J.H. Chung, Y.H. Choung, H.W. Choung, E.S. Kim, P.H. Choung, Platelet-rich fibrin is a Bioscaffold and reservoir of growth factors for tissue regeneration, Tissue Eng. Part A 17 (2011) 349-359, https://doi.org/ 10.1089/ten.TEA. 2010.0327
[62] Y.H. Kang, S.H. Jeon, J.Y. Park, J.H. Chung, Y.H. Choung, H.W. Choung, E.S. Kim, P.H. Choung, Platelet-rich fibrin is a B