这是用户在 2024-3-25 17:22 为 https://pubs.acs.org/doi/full/10.1021/acs.est.3c10429 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Excessive Ozonation Stress Triggers Severe Membrane Biofilm Accumulation and Fouling
过度的臭氧应激会引发严重的膜生物膜堆积和结垢
CONTENT TYPES

Figure 1Loading Img
RETURN TO ARTICLES ASAPPREVBioremediation and B...Bioremediation and BiotechnologyNEXT
返回文章 ASAPPREV 生物修复和 B...下一个

Excessive Ozonation Stress Triggers Severe Membrane Biofilm Accumulation and Fouling
过度的臭氧应激会引发严重的膜生物膜堆积和结垢
IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top

  • Li Zhang 张丽
    Li Zhang
    State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    More by Li Zhang
  • Nigel Graham 奈杰尔·格雷厄姆
    Nigel Graham
    Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
    More by Nigel Graham
  • Guibai Li 李贵柏
    Guibai Li
    State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
    More by Guibai Li
  • Yongguan Zhu 朱永官
    Yongguan Zhu
    State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    More by Yongguan Zhu
  • , and  
  • Wenzheng Yu* 俞文正*
    Wenzheng Yu
    State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    *Email: wzyu@rcees.ac.cn
    More by Wenzheng Yu
Cite this: Environ. Sci. Technol. 2024, XXXX, XXX, XXX-XXX
引用: Environ.Sci. Technol.2024, XXXX, XXX, XXX-XXX
Publication Date (Web):March 19, 2024
发布日期 :2024年3月19日
https://doi.org/10.1021/acs.est.3c10429
© 2024 American Chemical Society
© 2024 美国化学学会
  • Subscribed

Article Views 文章浏览量

69

Altmetric

-

Citations 引文

-
LEARN ABOUT THESE METRICS
了解这些指标
PDF (6 MB)  PDF格式 (6 MB)
Supporting Info (1)» 配套信息 (1)»
SUBJECTS: 科目:

Abstract 抽象

The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.
臭氧对微生物病原体灭活、天然有机物降解和无机/有机污染物氧化的既定益处有利于其在饮用水处理中的应用。然而,原水臭氧化后仍然存在活菌,给膜过滤系统带来了生物膜积聚和结垢的潜在风险。在这项研究中,我们阐明了特定臭氧剂量(0.5 mg-O 3 / mg-C)在长期膜超滤过程中生物膜积累中的作用。结果表明,臭氧化改变了进水溶解有机物(DOM)的分子结构,在特定臭氧剂量为0.5时产生了具有高度生物利用度的馏分,这被认为是一个转折点。随着特定臭氧剂量的增加,生物膜微生物群落发生了显著变化,显示出丰富度和多样性的下降。出乎意料的是,机会性病原体军团菌受到刺激,在较高的特定臭氧剂量 1 下,相对丰度约为 40%。因此,与特定臭氧剂量为1的膜过滤系统相比,特定臭氧剂量为0.5的膜过滤系统具有较低的生物膜厚度,较弱的荧光强度,较低的多糖和蛋白质浓度以及较低的拉曼活性,导致较低的水力阻力。我们的研究结果突出了分子水平DOM组成、生物膜微生物联合体和膜过滤性能之间的相互作用机制,从而深入了解了臭氧对生物膜积累的影响。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据机构订阅条款获得许可。请求重用权限。

Synopsis 概要

Excessive ozonation stress triggers severe membrane biofilm accumulation
过度的臭氧化应激会引发严重的膜生物膜积累

1. Introduction 1. 引言

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

Membrane fouling continues to be a major concern in the application of membrane filtration technology in which the biofilm layer plays a critical role. Various oxidants or disinfectants are commonly used for pretreatment upstream of conventional processes, including membrane separation, and these have been intensively investigated in recent years. (1−4) In terms of the relative benefits of alternative pretreatment methods, involving the inactivation of microbial pathogens, decomposition of natural dissolved organic matter (DOM), oxidation of inorganic contaminants, and the removal of taste-, odor-, and color-causing compounds, ozone is commonly preferred in water treatment. (5) Although microbial levels are difficult to detect due to the rapid reactivity of ozone, viable microbes have been reported to remain present after the ozonation of raw water, (6) offering an opportunity for the formation of biofilm on the surface of subsequent membranes. Several studies have investigated the effect of ozonation on membrane fouling, (7−10) but for the long-term operation of a membrane filtration system, the role of ozone in the biofilm accumulation remains unclear.
膜污染仍然是膜过滤技术应用中的主要问题,其中生物膜层起着关键作用。各种氧化剂或消毒剂通常用于常规工艺的上游预处理,包括膜分离,近年来这些都得到了深入的研究。(1−4) 就替代预处理方法的相对效益而言,包括灭活微生物病原体、分解天然溶解有机物(DOM)、氧化无机污染物以及去除引起味道、气味和颜色的化合物,臭氧在水处理中通常是首选。(5)尽管由于臭氧的快速反应性而难以检测微生物水平,但据报道,在原水臭氧化后,活微生物仍然存在,(6)为在随后的膜表面形成生物膜提供了机会。一些研究已经调查了臭氧化对膜污染的影响(7−10),但对于膜过滤系统的长期运行,臭氧在生物膜积累中的作用尚不清楚。
In the process of ozonation, DOM, a highly complex mixture composed of multiple natural and anthropogenic organic molecules, is the major ozone consumer. (11,12) Ozone is able to react with electrophilic functional groups and activated aromatic substances, breaking double bonds, thereby splitting molecules and adding oxygen atoms to molecules. (13,14) Thus, ozone has been shown to lower the aromaticity of DOM by reacting with phenolic moieties found commonly in DOM. (15) Remucal et al. studied molecular-level transformation of two DOM isolates using Orbitrap mass spectrometry and found that, as well as reducing aromaticity, ozonation also decreased the apparent molecular weight and electron donating capacity of DOM with large changes. (16) In addition, ozonation was demonstrated to make organic compounds more hydrophilic and susceptible to biodegradation. (17,18) However, some research studies have shown that ozone may produce reaction byproducts that are less biodegradable and potentially detrimental. (19−21) Therefore, the biodegradability of ozonized DOM, and its potential influence on the subsequent formation and accumulation of biofilm on membrane surfaces, requires further evaluation.
在臭氧化过程中,DOM是一种由多种天然和人为有机分子组成的高度复杂的混合物,是臭氧的主要消耗者。(11,12) 臭氧能够与亲电官能团和活化的芳香族物质发生反应,破坏双键,从而分裂分子并向分子中添加氧原子。(13,14) 因此,臭氧已被证明通过与 DOM 中常见的酚类部分反应来降低 DOM 的芳香性。 (15) Remucal 等人使用 Orbitrap 质谱法研究了两种 DOM 分离物的分子水平转化,发现除了降低芳香性外,臭氧还降低了 DOM 的表观分子量和电子供体能力,并发生了很大的变化。(16) 此外,臭氧化作用被证明使有机化合物更亲水且易生物降解。(17,18) 然而,一些研究表明,臭氧可能产生反应副产物,这些副产物的生物降解性较差,并且可能有害。(19−21) 因此,臭氧DOM的生物降解性及其对膜表面生物膜随后形成和积累的潜在影响需要进一步评估。
As a disinfectant, ozone is highly effective in inactivating bacteria in water, (22) but ozone-resistant bacteria can remain after ozonation, which can enhance the accumulation of biofilm on the surface of membranes subsequently. The actively growing microbial species were reported to secrete secondary metabolites that could alter ambient conditions, thus influencing the growth of other microorganisms and shifting relative abundance levels. (23) The variation in the bacterial community is suspected to further affect the biofilm structure and properties, owing to the discrepant extracellular polymeric substances (EPS) secreted. (1,24−26) At present, detailed information regarding the shift of biofilm bacterial community by ozone remains deficient and, moreover, the influence of specific ozone dose, defined as the ratio of ozone dose to dissolved organic carbon in raw water (mg-O3/mg-C), on the microbial composition is also largely unknown.
作为一种消毒剂,臭氧在灭活水中的细菌方面非常有效,(22)但臭氧作用后仍会残留耐臭氧细菌,从而增强膜表面生物膜的积累。据报道,活跃生长的微生物物种会分泌可以改变环境条件的次级代谢物,从而影响其他微生物的生长并改变相对丰度水平。(23)由于分泌的细胞外聚合物(EPS)不同,怀疑细菌群落的变化会进一步影响生物膜的结构和性质。(1,24−26) 目前,关于臭氧对生物膜细菌群落的转移的详细信息仍然不足,此外,特定臭氧剂量(定义为臭氧剂量与原水中溶解有机碳的比率(mg-O 3 /mg-C))对微生物组成的影响也在很大程度上是未知的。
The DOM provides substrates serving as niches for the biofilm microbes and they are major energy sources supporting microbial growth. (27) The variation in the molecular composition of DOM has been reported to affect the diversity, structure, and functioning of microbial communities. (28,29) In turn, microbial consortia produce chemo-diversity by degrading larger molecules into smaller structures and releasing new molecules into the water. (30) The interactions between chemo-diversity and biodiversity are complex but vitally important. Several previous studies have investigated natural ecosystems and endeavored to disclose the interaction mechanisms. In a pelagic marine system, Osterholz et al. found that the active microbial community correlated with specific DOM molecular formulas and the trend was most pronounced at the species level. (31) Tanentzap and co-workers focused on a fresh water system and they discovered that the chemical and microbial diversities were positively correlated, with DOM having a stronger effect on microbes than vice versa. (27) However, less attention has been paid to the engineering system, and the interactions between DOM and biofilm microbial consortia remain unknown, which are of particular importance since they likely have a pronounced effect on biofilm accumulation and membrane filtration performance.
DOM为生物膜微生物提供了作为生态位的基质,它们是支持微生物生长的主要能源。(27)据报道,DOM分子组成的变化会影响微生物群落的多样性、结构和功能。(28,29) 反过来,微生物联盟通过将较大的分子降解为较小的结构并将新分子释放到水中来产生化学多样性。(30)化学多样性与生物多样性之间的相互作用是复杂的,但至关重要。之前的几项研究已经调查了自然生态系统,并试图揭示其相互作用机制。在远洋海洋系统中,Osterholz等人发现,活跃的微生物群落与特定的DOM分子式相关,并且这种趋势在物种水平上最为明显。(31)Tanentzap及其同事专注于淡水系统,他们发现化学和微生物多样性呈正相关,DOM对微生物的影响比反之亦然。(27)然而,对工程系统的关注较少,DOM与生物膜微生物联盟之间的相互作用仍然未知,因为它们可能对生物膜积累和膜过滤性能有显著影响,因此特别重要。
In this paper, we present new information that sheds light on the molecular-level DOM composition at varying specific ozone doses, the biofilm microbial structure, interactions between DOM chemo-diversity and biofilm biodiversity and, importantly, decipher the associated influencing mechanism on membrane filtration performance. Here, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), the state-of-the-art analytical tool for molecular-level DOM characterization, was employed in the experiments, owing to its high resolution, sensitivity, and mass accuracy. (31) We hypothesize that the composition of DOM is substantially transformed, depending on the value of the specific ozone dose. With the increase of the specific ozone dose, the biofilm biodiversity presents a declining trend. The synergistic effect of DOM and biofilm microbial consortia may contribute to the differences in the membrane filtration performance. The objective of the study, described subsequently, was to provide in-depth insight into the role of specific ozone dose in biofilm formation and the interactions between DOM, biofilm bacterial community, and membrane filtration performance.
在本文中,我们提出了新的信息,揭示了不同特定臭氧剂量下的分子水平DOM组成,生物膜微生物结构,DOM化学多样性与生物膜生物多样性之间的相互作用,重要的是,破译了膜过滤性能的相关影响机制。在这里,傅里叶变换离子回旋共振质谱(FT-ICR-MS)因其高分辨率、高灵敏度和质量精度而被用于实验,这是用于分子水平DOM表征的最先进的分析工具。(31)我们假设DOM的组成发生了实质性的变化,这取决于特定臭氧剂量的值。随着特定臭氧剂量的增加,生物膜生物多样性呈现下降趋势。DOM和生物膜微生物联盟的协同作用可能导致膜过滤性能的差异。随后描述的这项研究的目的是深入了解特定臭氧剂量在生物膜形成中的作用以及 DOM、生物膜细菌群落和膜过滤性能之间的相互作用。

2. Materials and Methods 2. 材料与方法

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

2.1. Experiment setup and Operation
2.1. 实验设置和操作

Water samples were collected from River Jingmi (Beijing, China), which serves as the source of the drinking water supply for the large majority of the citizens living in Beijing. Polyvinylidene fluoride ultrafiltration membrane (Beijing Separate Equipment Co., Ltd., China), with a nominal molecular cutoff of 100 kDa, and an area of approximately 78.5 cm2, was selected for the experiments. A gravity-driven membrane filtration system, with a constant transmembrane pressure of 35 mbar (35 cm water head), was adopted as the experimental model due to its advantages in terms of biofilm robustness. Further detailed information concerning the surface water characteristics and filtration system is given in the Supporting Information (SI, Table S1 and Figure S1).
水样采集自京密河(中国北京),京密河是北京绝大多数市民的饮用水供应来源。选取标称分子截止值为100 kDa,面积约78.5 cm 2 的聚偏氟乙烯超滤膜(中国北京分离设备有限公司)。采用重力驱动的膜过滤系统,其恒定跨膜压力为35 mbar(35 cm水头),因其在生物膜鲁棒性方面的优势而作为实验模型。有关地表水特性和过滤系统的更多详细信息,请参阅支持信息(SI,表S1和图S1)。
Surface water was ozonized with fresh gaseous ozone generated from pure oxygen by a laboratory ozone generator (ZA-10G-C, HangMu, China). The gas contacting apparatus was operated under 0.1 kPa pressure and the ozone was added under vigorous mixing on the basis of bubble size, to yield specific doses of 0.5 mg-O3/mg-C and 1 mg-O3/mg-C, which were ratios representative of practical applications and verified using the standard indigo method. (32) The ozonized samples were stored at room temperature for 20 h to allow for complete ozone consumption and decay. Thereafter, water samples serving as feed waters were added to the filtration systems. For convenience, the filtration systems with specific ozone doses of 0.5 mg-O3/mg-C and 1 mg-O3/mg-C were denoted as ratio 0.5 and ratio 1, respectively.
地表水由实验室臭氧发生器(ZA-10G-C,中国杭木)用纯氧产生的新鲜气态臭氧进行臭氧处理。气体接触装置在0.1 kPa压力下运行,根据气泡大小在剧烈混合下加入臭氧,得到比剂量0.5 mg-O 3 /mg-C和1 mg-O 3 /mg-C,这是代表实际应用的比例,并使用标准靛蓝方法进行验证。(32)将臭氧样品在室温下储存20小时,以允许臭氧完全消耗和衰变。此后,作为给水的水样被添加到过滤系统中。为方便起见,臭氧比剂量为0.5 mg-O 3 /mg-C和1 mg-O 3 /mg-C的过滤系统分别表示为比率0.5和比率1。

2.2. DOM Preparation for ESI-FT-ICR-MS Measurement and Data Analyses
2.2. ESI-FT-ICR-MS测量和数据分析的DOM准备

To desalinate and concentrate DOM, solid phase extraction was performed on all of the influent samples using Bond Elute PPL cartridges (200 mg, 3 mL; Agilent Technologies, USA) according to the method of Dittmar et al. (33) Briefly, the cartridges were rinsed with 3 mL of methanol (MS grade) prior to use. An acidified sample was passed through the cartridge, rinsed with three cartridge volumes of 0.01 M HCl, dried with ultrapure N2, and immediately extracted with two cartridge volumes of methanol (MS grade). The eluates were blow-dried with ultrapure N2 and redissolved in a 1 mL mixture of 1:1 (v/v) methanol/ultrapure water. The samples were re-filtered with 0.2 μm PTFE syringe filters pre-rinsed with a 1:1 mixture of methanol to ultrapure water. All samples were adjusted to an equal mass concentration of 100 mg-C·L–1, to eliminate the influence of concentration on the ionization efficiency of molecules detected. (34,35) The extraction efficiency exceeded 75% using this method. (36) Each sample was examined in duplicate according to the methods reported previously. (37,38) A blank sample for the sorbent was obtained by extracting ultrapure water with the same procedures and volumes as those for the samples.
为了淡化和浓缩 DOM,使用 Bond Elute PPL 小柱(200 mg,3 mL;Agilent Technologies,USA)根据Dittmar等人的方法(33)简言之,在使用前用3 mL甲醇(MS级)冲洗滤芯。将酸化的样品通过滤芯,用三个滤芯体积的0.01 M HCl冲洗,用超纯氮 2 干燥,并立即用两个滤芯体积的甲醇(MS级)萃取。洗脱液用超纯氮 2 吹干,并重新溶解在1 mL 1:1 (v/v)甲醇/超纯水的混合物中。用0.2μmPTFE注射器过滤器重新过滤样品,并用甲醇与超纯水的1:1混合物预冲洗。将所有样品调节至等量浓度100 mg-C·L –1 ,以消除浓度对被检测分子电离效率的影响。(34,35) 使用该方法提取效率超过75%。(36) 根据先前报告的方法,对每个样品进行一式两份的检查。(37,38)通过提取超纯水,以与样品相同的程序和体积获得吸附剂的空白样品。
Ultrahigh resolution mass spectra were obtained using a solariX FT-ICR-MS instrument (Bruker Daltonik GmbH, Germany) equipped with a 15.0 T superconducting magnet and an ESI ion source under negative ion mode. The details for mass spectra acquirement, calibration, and peak assignment can be found in Supporting Information. Ratios O/C ≤ 1.2 and 0.2 ≤ H/C ≤ 2.3 were used as the further restrictions for the formula calculation. (39) Seven compound groups were delineated by the H/C and O/C cutoffs in the van Krevelen diagrams, according to a previous publication. (40) To further characterize the molecular properties of DOM, aromaticity index (AI), which indicates the fraction of aromatic and condensed aromatic structures, (41) and nominal oxidation state of carbon (NOSC), which is related to the bioavailability of the molecule, (42) were calculated by the following equations
使用配备 15.0 T 超导磁体和 ESI 离子源的 solariX FT-ICR-MS 仪器(Bruker Daltonik GmbH,德国)在负离子模式下获得超高分辨率质谱。有关质谱采集、校准和峰分配的详细信息,请参阅支持信息。比率 O/C ≤ 1.2 和 0.2 ≤ H/C ≤ 2.3 被用作公式计算的进一步限制。(39) 根据先前的出版物,van Krevelen 图中的 H/C 和 O/C 截止值描绘了七个化合物基团。(40)为了进一步表征DOM的分子性质,通过以下公式计算了表示芳香族和缩合芳香族结构比例的芳香指数(AI)(41)和与分子生物利用度相关的碳的标称氧化态(NOSC)(42)
AI=1+c0.5o0.5hsc0.5ons
(1)
NOSC=4(4c+h3n2o2sc)
(2)
where c, h, o, n, and s refer to the stoichiometric number of carbon, hydrogen, oxygen, nitrogen, and sulfur atoms per formula, respectively. Significant differences were determined using the Kruskal–Wallis test.
其中 C、H、O、N 和 S 分别表示每个公式中碳、氢、氧、氮和硫原子的化学计量数。使用 Kruskal-Wallis 检验确定显着差异。

2.3. DOM Physicochemical Properties
2.3. DOM理化性质

2.3.1. Fluorescence Characteristic
2.3.1. 荧光特性

An excitation–emission matrix (EEM) fluorescence spectrometer (F-4600, Hitachi, Japan) was employed for the analysis of the fluorescence properties of samples (water and biofilm). A volume of 15 mL of 0.1 M NaCl solution was used to rinse the biofilm from the membrane surface. The sample EEM spectra were blank subtracted, and the intensities were normalized by the ultrapure water Raman peak at an excitation of 350 nm (386–410 nm emission), converting fluorescence data to Raman units (R.U.). (43) First- and second-order Rayleigh scatters were removed from the EEM spectra. Each sample was measured in triplicate, and the results were averaged.
使用激发发射矩阵(EEM)荧光光谱仪(F-4600,日立,日本)分析样品(水和生物膜)的荧光特性。使用体积为 15 mL 的 0.1 M NaCl 溶液冲洗膜表面的生物膜。将样品EEM光谱减去空白,在350 nm激发(386–410 nm发射)下通过超纯水拉曼峰对强度进行归一化,将荧光数据转换为拉曼单位(R.U.)。(43)从EEM光谱中去除了一阶和二阶瑞利散射。每个样本一式三份,并对结果进行平均。

2.3.2. Apparent Molecular Weight Distribution
2.3.2. 表观分子量分布

The apparent molecular weight of the sample organic matter was determined using a high-performance size exclusion chromatography, with an operating wavelength of 254 nm. Based on the apparent molecular weight profile obtained using sodium polystyrenesulfonate as a standard, the correlation between retention time and apparent molecular weight was determined. Accordingly, the apparent molecular weight distribution profiles of the sample were ascertained. All samples were pre-filtered by a 0.22 μm syringe filter before being injected into the instrument.
使用高效尺寸排阻色谱法测定样品有机物的表观分子量,工作波长为254 nm。基于以聚苯乙烯磺酸钠为标准品获得的表观分子量曲线,确定了保留时间与表观分子量之间的相关性。因此,确定了样品的表观分子量分布曲线。所有样品在进样到仪器之前都经过 0.22 μm 注射器过滤器的预过滤。

2.3.3. Chemical Bonds Linking the Molecules
2.3.3. 连接分子的化学键

X-ray photoelectron spectroscopy (XPS; PHI Quantera II, ULVAC, Japan) measurements were conducted with a Thermo Escalab 250 electron spectrometer using 150 W Al-Kα radiation, yielding the identification of chemical compositions and oxidation states of elements on the freeze-dried biofilm surface. A Fourier transform infrared (FTIR) spectrometer (Spectrum Two, PerkinElmer, USA) with an attenuated total reflectance accessory was used to analyze the functional groups of freeze–dried biofilm. A Raman spectrometer (inVia-Reflex, Renishaw, UK) was employed to reveal the Raman activity of the freeze-dried biofilm, with a wavelength of 532 nm and a 50× ultra-long working distance objective lens. At least five randomized locations were selected for the measurement. The XPS spectra were further fitted by XPSPEAK software, and all the spectral curves were plotted with Origin 2021 software.
X射线光电子能谱(XPS;PHI Quantera II, ULVAC, Japan)使用 Thermo Escalab 250 电子能谱仪使用 150 W Al-Kα 辐射进行测量,从而鉴定了冻干生物膜表面元素的化学成分和氧化态。使用带有衰减全反射附件的傅里叶变换红外 (FTIR) 光谱仪(Spectrum Two,PerkinElmer,USA)分析冻干生物膜的官能团。采用拉曼光谱仪(inVia-Reflex,Renishaw,UK)揭示了冻干生物膜的拉曼活性,波长为532 nm,超长工作距离物镜为50×。至少选择了五个随机位置进行测量。XPS光谱通过XPSPEAK软件进一步拟合,所有光谱曲线均使用Origin 2021软件绘制。

2.4. Biofilm Morphological Structure
2.4. 生物膜形态结构

At the end of the experiments, the biofilms together with the membranes were gently taken out of the filtration apparatus and were then cut into several pieces. Sections of pieces were directly freeze-dried using a lyophilizer (Scientz-18N, China). Both surface and cross-sectional images were captured using a high-resolution field emission gun scanning electron microscope (SEM; S-4800, Hitachi, Japan). Fresh biofilms were analyzed with InfiniteFocus (G5, Alicona, Austria), which is a flexible optical 3D measurement instrument, yielding information on the optical micrographs and roughness data simultaneously.
在实验结束时,将生物膜和膜一起轻轻地从过滤装置中取出,然后切成几块。使用冻干机(Scientz-18N,中国)直接冻干切片。使用高分辨率场发射枪扫描电子显微镜(SEM;S-4800,日立,日本)。使用InfiniteFocus(G5,Alicona,Austria)分析新鲜生物膜,这是一种灵活的光学3D测量仪器,可同时产生光学显微照片和粗糙度数据的信息。

2.5. Biofilm DNA Extraction, Sequencing, and Statistical Analyses
2.5. 生物膜DNA提取、测序和统计分析

The biofilm DNA was extracted from an area of ∼2 cm2, using proteinase K and SDS-based lysis, and purified with DNA Clean & Concentrator-25 Kit (ZYMO RESEARCH, USA) according to the manufacturer’s protocol. Three areas were selected for each sample in the microbial consortium analysis. Universal primers, containing 515 forward (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806 reverse (5′-GGACTACHVGGGTWTCTAAT-3′), were used to amplify the V4 region of bacterial 16S rRNA genes. Three areas of the same size were selected for each biofilm. All amplified genes were sequenced by an Illumina MiSeq sequencer. Further detailed information concerning the amplification methods and data processing procedures is given in Supporting Information. The raw sequencing data were deposited to the sequence read archive database of the National Center of Biotechnology Information (NCBI) under accession number PRJNA970303.
使用基于蛋白酶K和SDS的裂解从∼2厘米 2 的区域提取生物膜DNA,并根据制造商的方案用DNA Clean&Concentrator-25试剂盒(ZYMO RESEARCH,USA)纯化。在微生物联盟分析中,为每个样品选择了三个区域。使用含有 515 个正向 (5′-GTGCCAGCMGCCGCGGTAA-3′) 和 806 个反向 (5′-GGACTACHVGGGTWTCTAAT-3′) 的通用引物扩增细菌 16S rRNA 基因的 V4 区域。为每个生物膜选择三个相同大小的区域。所有扩增的基因均由Illumina MiSeq测序仪测序。有关扩增方法和数据处理程序的更多详细信息,请参阅支持信息。原始测序数据被存入美国国家生物技术信息中心(NCBI)的序列读取存档数据库,登录号为PRJNA970303。
To reveal the commonness and discrepancy in the bacterial communities of different biofilms, an UpSet plot was drawn based on the ASVs data with the R package {UpSetR}. To investigate the changes in the relative abundance of bacterial taxa under different conditions, we deciphered the taxonomic composition at the phylum and genus levels. The chord chart was delineated with R packages {circlize} and {statnet}, and the bar plot was completed by Origin 2021. To evaluate whether differences existed in the bacterial communities under different conditions, principal coordinate analysis (PCoA) was performed (R package {vegan}). To quantify the discrepancies between bacterial communities, a boxplot was drawn based on the Bray–Curtis dissimilarity matrix using Origin 2021. Significant differences were determined using the Kruskal–Wallis test.
为了揭示不同生物膜细菌群落的共性和差异性,基于 R 包 {UpSetR} 的 ASV 数据绘制了 UpSet 图。为了研究不同条件下细菌类群相对丰度的变化,我们破译了门和属水平的分类组成。弦图用 R 包 {circlize} 和 {statnet} 描绘,条形图由 Origin 2021 完成。为了评估不同条件下细菌群落是否存在差异,进行了主坐标分析(PCoA)(R 包 {vegan})。为了量化细菌群落之间的差异,使用 Origin 2021 根据 Bray-Curtis 差异矩阵绘制了一个箱线图。使用 Kruskal-Wallis 检验确定显着差异。

2.6. Hydraulic Resistance of Filtration System
2.6. 过滤系统的液压阻力

The total hydraulic resistance (Rt, [m–1]) was calculated as
总水力阻力(R t ,[m –1 ])计算公式为:
Rt=TMPμ·J
(3)
where μ is the dynamic viscosity of water at a given temperature [Pa·s], TMP is the transmembrane pressure [Pa], and J is the permeate flux of the membrane filtration system [L·m–2·h–1] and was calculated using the following equation
其中μ是给定温度下水的动态粘度[Pa·s],TMP是跨膜压力[Pa],J是膜过滤系统的渗透通量[L·m –2 ·h –1 ],使用以下公式计算
J=ΔVA·ΔT
(4)
where ΔV is the change of permeate volume [L], A is the filtration area [m2], and ΔT is the change of time [h].
其中ΔV是渗透体积的变化[L],A是过滤面积[m 2 ],ΔT是时间的变化[h]。

3. Results and Discussion
3. 结果与讨论

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

3.1. Molecular-level Transformation of DOM by Ozonation
3.1. DOM的臭氧分子转化

To investigate the molecular-level composition and variation of DOM, a van Krevelen diagram was plotted according to the acquired ESI-FT-ICR spectra (Supporting Information Figure S2). As displayed by the van Krevelen diagram, based on the element ratios of O/C and H/C (Figure 1A), the DOM was categorized into seven molecular classes. According to the differential distribution profiles of molecular formulas, the variation in DOM molecules across different influents can be seen visually (Figure 1B–D). Regionally, as a function of increasing specific ozone dose, the molecules with lipid-, unsaturated hydrocarbon-, and lignin-like structures showed a decreased, but then increased, tendency (Figure 1E). In contrast, for the aliphatic-like, carbohydrate-like, tannin-like, and condensed aromatic molecules, an opposite trend was observed (Figure 1E). The selective transformation of compounds by ozone through electrophilic substitution and hydroxylation was suspected to be the principal contributor to the observed effects. (12,44) In addition, the transformation between the molecules could also account for the generated differences. The conversion from lipid- and lignin-like compounds to condensed aromatic substances provided a convincing explanation for the contrary variation behavior during ozonation. (45)
为了研究DOM的分子水平组成和变化,根据采集的ESI-FT-ICR谱图绘制了van Krevelen图(支持信息图S2)。如van Krevelen图所示,根据O / C和H / C的元素比率(图1A),DOM分为七个分子类别。根据分子式的差异分布曲线,可以直观地看到不同进水剂中DOM分子的变化(图1B-D)。从区域上看,作为增加特定臭氧剂量的函数,具有脂质、不饱和碳氢化合物和木质素样结构的分子显示出下降的趋势,但随后增加(图1E)。相反,对于脂肪族分子、碳水化合物族分子、单宁族分子和缩合芳香族分子,观察到相反的趋势(图1E)。臭氧通过亲电取代和羟基化对化合物的选择性转化被怀疑是观察到效应的主要贡献者。(12,44)此外,分子之间的转化也可以解释产生的差异。从脂质和木质素样化合物向缩合芳香物质的转化为臭氧化过程中的相反变化行为提供了令人信服的解释。(45)

Figure 1 图1

Figure 1. Molecular-level DOM compositional patterns of the influents. (A) Regions of the van Krevelen diagram based on ratios of O/C and H/C. (B–D) Van Krevelen diagrams of influent DOM in the control, ratio 0.5, and ratio 1 membrane filtration systems, respectively. (E) Regional proportion of the DOM molecules. (F) Venn diagram of the molecular DOM formulas shared in the different samples. (G) Proportion of CHO, CHON, CHOS, and CHONS molecules in control, ratio 0.5, and ratio 1 influents. (H,I) Distribution of AI and NOSC values for molecular formulas of the influent DOM, respectively. Significant differences were investigated using the Kruskal–Wallis test. The marks a, b, and c in bold indicate statistical significance at P < 0.05.
图 1.进水物的分子水平DOM组成模式。(A) 基于 O/C 和 H/C 比率的 van Krevelen 图的区域。 (b–D) 分别是控制、比率 0.5 和比率 1 膜过滤系统中进水 DOM 的 Van Krevelen 图。(E) DOM分子的区域比例。(F) 不同样品中共享的分子DOM分子式的维恩图。(G) 对照组 CHO、CHON、CHOS 和 CHONS 分子的比例,比例为 0.5,比例为 1。(H,I)进水DOM分子式AI和NOSC值的分布。使用 Kruskal-Wallis 检验研究了显着差异。粗体标记 a、b 和 c 表示 P < 0.05 时的统计学显著性。

As shown by the Venn diagram (Figure 1F), a total of 256 formulas were unaffected by specific ozone dose and presented in all the samples. Interestingly, the number of formulas shared by the control/ratio 1 group (1784) was larger than that by the control/ratio 0.5 (369) and ratio 0.5/ratio 1 groups (488). Moreover, for the classified CHO, CHON, CHOS, and CHONS molecules, CHO species appeared more dominant in both the control and ratio 1 cases than other species; whereas for the ratio 0.5 case, the CHOS compound occupied the largest percentage (Figure 1G). These results imply that the specific ozone dose of 0.5 may be a turning point in the ozonation process.
如维恩图(图1F)所示,共有256个配方不受特定臭氧剂量的影响,并出现在所有样品中。有趣的是,对照/比率 1 组 (1784) 共享的公式数量大于对照/比率 0.5 (369) 和比率 0.5/比率 1 组 (488) 的公式数量。此外,对于分类的CHO、CHON、CHOS、CHONS分子,CHO物种在对照和比例1病例中均比其他物种更显明显;而对于比率为0.5的情况,CHOS化合物占据了最大的百分比(图1G)。这些结果表明,0.5的特定臭氧剂量可能是臭氧化过程的一个转折点。
With regard to the calculated AI value, it also demonstrated a significantly lower median for the ratio 0.5 case (0.179) than for other ozonation treatments (0.313 and 0.281 for control and ratio 1 cases, respectively), which further indicated the transitional role of the specific ozone dose at 0.5 in the variation of DOM molecules. More importantly, according to the NOSC value, the ratio 0.5 case exhibited a significantly higher median (−0.263) than the other two cases (−0.553 and −0.379 for control and ratio 1 cases, respectively), implying that molecules formed by the specific ozone dose of 0.5 were more bioavailable since the NOSC value reflected the bioavailability of molecules. (42,46) On the basis of the aforementioned findings, we constructed a series of membrane filtration systems fed with the ozonized waters to investigate the biofilm formation and associated mechanisms, which warrant special attention for the long-term membrane operation in water treatment.
关于计算出的AI值,比率0.5的中位数(0.179)明显低于其他臭氧处理的中位数(对照组和比率1病例分别为0.313和0.281),这进一步表明了0.5时的特定臭氧剂量在DOM分子变化中的过渡作用。更重要的是,根据NOSC值,比率0.5的中位数(-0.263)明显高于其他两种情况(对照组和比率1病例的中位数分别为-0.553和-0.379),这意味着由0.5的特定臭氧剂量形成的分子具有更高的生物利用度,因为NOSC值反映了分子的生物利用度。(42,46)基于上述研究结果,我们构建了一系列以臭氧水为食源的膜过滤系统,以研究生物膜的形成及其相关机制,这对于水处理中膜的长期运行需要特别关注。

3.2. Shifts in Biofilm Bacterial Community
3.2. 生物膜细菌群落的变化

As revealed by high-throughput sequencing data (Figure 2), the biofilm bacterial composition varied as a function of specific ozone dose. Specifically, a total of 49 amplicon sequence variants (ASVs) were presented in all the biofilms, and the number of shared ASVs was 44 for the ratio 0.5 and ratio 1 biofilms, which was larger than that for the control/ratio 0.5 and control/ratio 1 biofilms (both 27 ASVs; Figure 2A). This implied the commonness and otherness of the bacterial species in the course of ozonation. In addition, it was noted that the ASVs unique to the control biofilm possessed the highest number of 229, as compared to the number of 105 and 57 for the ratio 0.5 and ratio 1 biofilms, respectively. That is, some of the bacterial species were maladaptive to the increased specific ozone dose and disappeared or died. For detailed information about the bacteria, the bacterial community was taxonomically unveiled. The phylum Proteobacteria consistently occurred in very high members in all the biofilms, while differences can be seen clearly in Figure 2B. For the control biofilm, the occupied percentage was 52.9% but reached 67.9% in the biofilm of ratio 1. Consistent with this, Ribeirinho-Soares et al. discovered that ozonation promoted alteration of the microbial community, leading to the predominance of Proteobacteria. (47) The flagella were reported to assist Proteobacteria in resisting unfavorable external conditions (e.g., ozonation) by means of movement and thus contributed to the proliferation of Proteobacteria, which may be the reason for the increase in the relative abundance. (48) Furthermore, with regard to the sub-dominant phylum Planctomycetes, the increase in specific ozone dose varied its proportion from ∼7.6% (control) to ∼25.3% (ratio 0.5) and ∼19.6% (ratio 1), reflecting the influence of ozone treatment on the bacterial community. (49) It was discovered that the members of Planctomycetes played an important role in degrading DOM and the different proportion of Planctomycetes may lead to the formation of varying biofilms, which will be evaluated in the following discussion. (50)
正如高通量测序数据(图2)所揭示的那样,生物膜细菌组成随特定臭氧剂量的变化而变化。具体而言,所有生物膜共呈现49个扩增子序列变异(ASV),比值0.5和比值1的生物膜共用ASV数为44个,大于对照/比值0.5和对照/比值1生物膜(均为27个ASV;图2A)。这意味着细菌物种在臭氧化过程中的共同性和他者性。此外,值得注意的是,对照生物膜特有的ASV数量最多,为229,而比例为0.5和比例1的生物膜分别为105和57。也就是说,一些细菌物种对增加的特定臭氧剂量不适应,消失或死亡。有关细菌的详细信息,细菌群落在分类学上被揭示出来。变形菌门在所有生物膜中始终出现在非常高的成员中,而在图2B中可以清楚地看到差异。对于对照生物膜,占率为52.9%,但在比率为1的生物膜中达到67.9%。与此一致,Ribeirinho-Soares等人发现臭氧作用促进了微生物群落的改变,导致变形菌占主导地位。(47)据报道,鞭毛有助于变形菌通过运动抵抗不利的外部条件(例如臭氧化),从而促进变形菌的增殖,这可能是相对丰度增加的原因。(48)此外,对于亚优势门浮游菌门,特定臭氧剂量的增加比例从∼7.6%(对照)到∼25.3%(比率0.5)和∼19。6%(比率1),反映了臭氧处理对细菌群落的影响。(49)研究发现,浮游菌的成员在DOM降解中起着重要作用,浮游菌的不同比例可能导致不同生物膜的形成,这将在下文的讨论中进行评估。 (50)

Figure 2 图2

Figure 2. Compositional and diversity patterns of biofilm microbial consortium. (A) Upset plot of the average number of bacterial ASVs shared in the control, ratio 0.5, and ratio 1 biofilms. (B,C) Average relative abundance of bacterial taxa at phylum and genus levels, respectively. (D–G) Shannon, Simpson, Chao 1, and Pielou evenness indexes of the biofilm microbial consortium, respectively. (H) PCoA plot of the biofilm bacterial communities based on the Bray–Curtis distance matrix. (I) Bray–Curtis dissimilarity of bacterial community across different biofilms. Significant differences were investigated using the Kruskal–Wallis test. The marks a, b, and c in bold indicate statistical significance at P < 0.05.
图2.生物膜微生物联盟的组成和多样性模式。(A) 对照中共享的细菌 ASV 平均数量的扰动图,比率 0.5 和比率 1 生物膜。(乙、丙)细菌类群在门和属水平上的平均相对丰度。(D-G)Shannon、Simpson、Chao 1 和 Pielou 分别是生物膜微生物联盟的均匀度指数。(H) 基于Bray-Curtis距离矩阵的生物膜细菌群落PCoA图。(I)不同生物膜上细菌群落的Bray-Curtis差异。使用 Kruskal-Wallis 检验研究了显着差异。粗体标记 a、b 和 c 表示 P < 0.05 时的统计学显著性。

To provide further insights into the shifts in the community, we analyzed the microorganisms at the genus level. As demonstrated by Figure 2C, genera Gemmata and Bradythizobium dominated the control biofilm and the relative abundance outnumbered 25%. When the specific ozone dose increased to 0.5, the most abundant species shifted to Gemmata, reaching an average proportion of 42.3%. It should be noted that when the specific ozone dose increased to one, the opportunistic pathogen, Legionella, occurred in ∼40.0% abundance, which was much greater than that for the control (∼4.9%) and ratio of 0.5 biofilms (∼8.4%). The genus Legionella is a Gram-negative facultative intracellular bacterium widely distributed in the natural environment as well as in engineering water systems. (51) It was reported that biofilm was considered as one of the main reservoirs of Legionella, (52) where protozoa represented a key factor on the survival of Legionella by providing amino acids for intracellular growth and acting as shelter against hostile environmental conditions and disinfection agents. (53) Importantly, Legionella is able to regrow after exposure to ozone in the absence of residual ozone, (54) which may explain why Legionella occupied a high relative abundance in the biofilms formed with ozonized water.
为了进一步了解群落的变化,我们在属水平上分析了微生物。如图2C所示,Gemmata属和Bradythizobium属在对照生物膜中占主导地位,相对丰度超过25%。当臭氧比剂量增加到0.5时,最丰富的物种转移到Gemmata,平均比例达到42.3%。应该注意的是,当特定臭氧剂量增加到1时,机会性病原体军团菌的丰度约为40.0%,远高于对照组(∼4.9%)和0.5个生物膜的比例(∼8.4%)。军团菌属是一种革兰氏阴性兼性细胞内细菌,广泛分布在自然环境和工程水系统中。(51)据报道,生物膜被认为是军团菌的主要宿主之一,(52)其中原生动物通过为细胞内生长提供氨基酸并作为抵御恶劣环境条件和消毒剂的庇护所,是军团菌生存的关键因素。(53)重要的是,军团菌在没有残留臭氧的情况下暴露于臭氧后能够再生,(54)这可以解释为什么军团菌在臭氧水形成的生物膜中占据了较高的相对丰度。
To decipher the induced disparities in the diversity patterns of communities, attention was paid to biodiversity. As revealed by diversity indexes, such as the Shannon and Simpson indexes, the values significantly declined with the increase of specific ozone dose (Kruskal–Wallis test, P < 0.05; Figure 2D,E). Also, the richness and evenness decreased significantly in the course of increasing specific ozone dose, as witnessed by the declining trend of the Chao 1 (Kruskal–Wallis test, P < 0.05; Figure 2F) and Pielou evenness indexes (Kruskal–Wallis test, P < 0.05; Figure 2G). These implied that the higher specific ozone dose contributed to the lower biodiversity of microbial community and the findings by Gerrity et al. also supported this. (55)
为了破译群落多样性格局的诱发差异,人们关注了生物多样性。正如多样性指数(如Shannon指数和Simpson指数)所揭示的那样,随着特定臭氧剂量的增加,这些值显著下降(Kruskal-Wallis检验,P < 0.05;图2D,E)。此外,在增加特定臭氧剂量的过程中,丰富度和均匀度显著下降,正如Chao 1的下降趋势所证明的那样(Kruskal-Wallis检验,P < 0.05;图2F)和Pielou均匀度指数(Kruskal-Wallis检验,P < 0.05;图2G)。这些都表明,较高的特定臭氧剂量导致微生物群落的生物多样性较低,Gerrity等人的研究结果也支持了这一点。(55)
In terms of community β-diversity, the PCoA plot based on the Bray–Curtis distance matrix revealed that the bacterial communities were clearly separated from each other under different treatments (Figure 2H), which further corroborated that the specific ozone dose affected the biofilm bacterial community. As quantified by Bray–Curtis dissimilarity, it was seen that the discrepancy between the control and ratio 1 communities was significantly high (Kruskal–Wallis test, P < 0.05), as evidenced by the greatest value (median ∼87.0%; Figure 2I). Comparatively, there was less difference between the control and ratio 0.5 bacterial communities (median ∼80.6%) and the Bray–Curtis dissimilarity was pronouncedly low for the group of ratio 0.5/ratio 1 (median ∼71.2%). Thus, the specific ozone dose played a substantial role in the alteration of the microbial community, and a larger differential resulted from the increase in the specific ozone dose. In contrast to the previous results for the molecular-level DOM, the turning point did not appear for the bacterial community. This indicated that the specific ozone dose had divergent influences on the water DOM and biofilm bacterial composition. While the DOM chemical composition affected the bacterial species less in comparison to the specific ozone dose, it may play a paramount role in biofilm accumulation. Therefore, the subsequent results were concerned with the properties of accumulated biofilms and the associated filtration performance.
在群落β多样性方面,基于Bray-Curtis距离矩阵的PCoA图显示,在不同处理下,细菌群落彼此分离明显(图2H),进一步证实了特定臭氧剂量对生物膜细菌群落的影响。通过 Bray-Curtis 差异量化,可以看出对照组和比率 1 群落之间的差异显著高(Kruskal-Wallis 检验,P < 0.05),最大值证明了这一点(中位数 ∼87.0%;图2I)。相比之下,对照组和比率 0.5 细菌群落之间的差异较小(中位数 ∼80.6%),比率 0.5/比率 1 组(中位数 ∼71.2%)的 Bray-Curtis 差异明显较低。因此,特定臭氧剂量在微生物群落的改变中起着重要作用,并且特定臭氧剂量的增加导致了更大的差异。与之前分子水平DOM的结果相比,细菌群落没有出现转折点。这表明特定臭氧剂量对水DOM和生物膜细菌组成有不同影响。虽然与特定臭氧剂量相比,DOM化学成分对细菌种类的影响较小,但它可能在生物膜积累中起着至关重要的作用。因此,随后的结果与积累的生物膜的性质和相关的过滤性能有关。

3.3. Morphological Structure of Biofilm
3.3. 生物膜的形态结构

According to the images captured by SEM in the cross section, discrepancies were evident in the thickness of different biofilms (Figure 3A). Unexpectedly, the ratio 0.5 biofilm possessed the least thickness, yielding 70.7 ± 2.8 μm, which was only 14.2% of the control biofilm (496.2 ± 44.9 μm). In contrast, when the specific ozone dose increased to one (ratio 1), the biofilm thickness was approximately 227.9 μm, 3.2 times that of the ratio 0.5 biofilm, but only 45.9% of the control biofilm. This showed that ozonation of the feedwater indeed decreased the thickness of the biofilm, but the decline was not proportional to the increase of specific ozone dose. This discrepancy was probably caused by the different bioavailability of the feedwater DOM (Figure 1I) and the ability of intercepted bacteria to secrete EPS, wherein the former may play a more significant role and could be interpreted as follows. As deciphered on the molecular level, the DOM molecules formed under a specific ozone dose of 0.5 were more bioavailable in comparison to the other treatments (Figure 1I), contributing to the reduced accumulation in the biofilm. Apart from the differences in biofilm thickness, all the biofilms demonstrated network structures with a variety of pore sizes when viewed from the top (Figure 3B), which was unrelated to the specific ozone dose employed, suggesting the commonness of the biofilm in physical structure. (1,26,56,57)
根据SEM在横截面上捕获的图像,不同生物膜的厚度存在明显差异(图3A)。出乎意料的是,比例为0.5的生物膜具有最小的厚度,产生70.7±2.8μm,仅为对照生物膜(496.2±44.9μm)的14.2%。相反,当特定臭氧剂量增加到1(比率1)时,生物膜厚度约为227.9μm,是比率0.5生物膜的3.2倍,但仅为对照生物膜的45.9%。这表明给水的臭氧确实减少了生物膜的厚度,但这种下降与特定臭氧剂量的增加不成比例。这种差异可能是由于给水DOM的生物利用度不同(图1I)和截获的细菌分泌EPS的能力造成的,其中前者可能起着更重要的作用,可以解释如下。正如在分子水平上所破译的那样,与其他处理相比,在0.5的特定臭氧剂量下形成的DOM分子具有更高的生物利用度(图1I),有助于减少生物膜中的积累。除了生物膜厚度的差异外,从顶部观察时,所有生物膜都显示出具有不同孔径的网络结构(图3B),这与所采用的特定臭氧剂量无关,表明生物膜在物理结构中的共性。(1,26,56,57)

Figure 3 图3

Figure 3. Morphological and chemical structure of biofilms. (A,B) SEM images of biofilms captured in cross-section and top surface, respectively. (C,D) XPS spectra of the biofilms based on elements C and O, respectively.
图3.生物膜的形态和化学结构。(甲、乙)分别在横截面和顶面捕获的生物膜的SEM图像。(C,D)分别基于元素 C 和 O 的生物膜的 XPS 光谱。

With regard to the chemical structure of the biofilms, the XPS full spectra revealed that elements C and O occurred in comparatively high intensity (Supporting Information Figure S3) and accordingly, we deciphered these elements with fine spectra (Figure 3C,D). As demonstrated in Figure 3C, the XPS spectra of biofilms showed three types of C peaks, being C–C (284.8 eV), C–O–C (286.6 eV), and O–CO (288.1, 288.3, and 288.4 eV), respectively. (58) While the species of C peaks were the same, there were discernible differences in terms of proportion (Figure 3C). For the C–C bond, the area percent increased from 43.0% (control) to 64.7% (ratio 0.5) and then decreased to 29.6% (ratio 1). In contrast, the C–O–C and the O–CO bonds showed a reverse variation trend. The area percents of C–O–C and O–CO bonds in the control biofilm were 41.3 and 15.7%, respectively. Then, they declined to 27.8 and 7.5% for the ratio 0.5 biofilm, but thereafter, increased to 49.9 and 20.5% as the specific ozone dose increased to one (Figure 3C). With respect to the XPS spectra of element O, the peaks (532.1/532.2 and 532.9/533.0 eV) assigned to CO and C–O species (Figure 3D) (58) presented a different variation trend with the increase of specific ozone dose. The C–O species had a tendency to decrease (from 49.5 to 44.6%) and then increase (73.4%) in the course of increasing specific ozone dose, in concordance with that for the C–O–C species deciphered from element C (Figure 3C). These observations provided further evidence to explain the turning point of the specific ozone dose at 0.5 and implied that the molecular-level DOM composition of the feedwater could exert an influence on the biofilm chemical bonds.
关于生物膜的化学结构,XPS全光谱显示元素C和O以相对较高的强度出现(支持信息图S3),因此,我们用精细光谱破译了这些元素(图3C,D)。如图3C所示,生物膜的XPS谱图显示了三种类型的C峰,分别是C-C(284.8 eV)、C-O-C(286.6 eV)和O-CO(288.1、288.3和288.4 eV)。(58)虽然C峰的种类相同,但在比例方面存在明显差异(图3C)。对于C-C键,面积百分比从43.0%(对照)增加到64.7%(比率0.5),然后下降到29.6%(比率1)。相比之下,C-O-C键和O-CO键呈现出相反的变化趋势。对照生物膜中C-O-C和O-CO键的面积百分比分别为41.3%和15.7%。然后,对于0.5生物膜的比率,它们下降到27.8%和7.5%,但此后,随着特定臭氧剂量增加到1,它们增加到49.9%和20.5%(图3C)。关于元素O的XPS光谱,分配给CO和C-O物种的峰(532.1/532.2和532.9/533.0 eV)(图3D)(58)随着特定臭氧剂量的增加而呈现出不同的变化趋势。在增加特定臭氧剂量的过程中,C-O物种有减少(从49.5%到44.6%)然后增加(73.4%)的趋势,这与从C元素中破译的C-O-C物种一致(图3C)。这些观察结果为解释0.5时特定臭氧剂量的转折点提供了进一步的证据,并暗示给水的分子水平DOM组成可能对生物膜化学键产生影响。

3.4. Physicochemical Property of Biofilm Matrix
3.4. 生物膜基质的理化性质

As shown by fluorescence spectra (Figure 4A), two main peaks appeared for all the biofilm DOM, tyrosine- and tryptophan-like substances in regions I and IV, respectively. According to the demonstrated colors, the ratio 0.5 biofilm exhibited a discernably lower fluorescence intensity in comparison to that for the ratio 1 and control biofilms, which was inversely proportional to the bioavailability of feedwater DOM. That is, the greater the bioavailability of feedwater DOM the less fluorescent the DOM accumulated in the biofilm. In terms of the functional groups in the biofilm matrix, the representative FTIR spectra indicated abundant peaks with varied absorption intensities, such as −OH–, CO, amide I, amide II, amide III, C–O–C, and C–O (Figure 4B). Although there was only a little difference in the intensity for different biofilms, the absorption of −OH– was obviously strong, which was beneficial for the biofilm to remove undesired pollutants from the influent flow.
如荧光光谱所示(图4A),所有生物膜DOM,酪氨酸和色氨酸样物质分别在I区和IV区出现两个主峰。根据所展示的颜色,与比例 1 和对照生物膜相比,比例 0.5 生物膜的荧光强度明显较低,这与给水 DOM 的生物利用度成反比。也就是说,给水DOM的生物利用度越高,DOM在生物膜中积累的荧光就越少。就生物膜基质中的官能团而言,具有代表性的FTIR光谱显示出具有不同吸收强度的丰富峰,例如-OH–,CO,酰胺I,酰胺II,酰胺III,C-O-C和C-O(图4B)。虽然不同生物膜的强度差异不大,但−OH-的吸收明显较强,有利于生物膜去除进水流中不需要的污染物。

Figure 4 图4

Figure 4. Physicochemical properties of the biofilm matrix. (A) Representative fluorescence spectra of the DOM extracted in the biofilm matrix with phosphate buffer solution. (B) Representative FTIR spectra. (C) Representative optical micrographs and the corresponding surface roughness. (D) Concentrations of polysaccharides and proteins. (E) Representative Raman spectra. Significant differences were assessed by the Kruskal–Wallis test and * represents P < 0.05.
图4.生物膜基质的物理化学性质。(A)用磷酸盐缓冲溶液在生物膜基质中提取的DOM的代表性荧光光谱。(B) 具有代表性的傅里叶变换红外光谱。(C)具有代表性的光学显微照片和相应的表面粗糙度。(D) 多糖和蛋白质的浓度。(E) 具有代表性的拉曼光谱。通过 Kruskal-Wallis 检验评估显著差异,* 表示 P < 0.05。

With regard to surface morphology, divergent aggregation states of the biofilm matrix were induced by the varying specific ozone dose as revealed by InfiniteFocus G5, which tended to be sparser with the increase of the specific ozone dose (Figure 4C). Meanwhile, the surface roughness was reduced, as indicated by the Sq value (Figure 4C and Supporting Information Table S2), giving values in the sequence of, the control (2.516 μm) > ratio 0.5 (1.540 μm) > ratio 1 (0.873 μm), which was suspected to be the co-effect generated by the bacteria and DOM. Interestingly, according to the quantified results, the ratio 1 sample yielded about 2.5 times greater concentrations of polysaccharides (173.52 ± 3.77 μg·cm–2) and proteins (30.41 ± 1.53 μg·cm–2) than those for the ratio 0.5 sample (50.60 ± 2.22 and 8.05 ± 0.92 μg·cm–2 for polysaccharides and proteins, respectively), in line with the observed greater biofilm thickness (Figure 3A) and stronger fluorescence intensity (Figure 4A). This further implied the role of the bioavailability of the feedwater DOM in the influence of accumulated matter.
在表面形态方面,生物膜基质的不同聚集状态是由InfiniteFocus G5揭示的比臭氧剂量的变化引起的,随着比臭氧剂量的增加,生物膜基质趋于稀疏(图4C)。同时,表面粗糙度降低,如Sq值(图4C和支持信息表S2)所示,按对照(2.516μm)>比0.5(1.540μm)>比1(0.873μm)的顺序给出值,怀疑这是细菌和DOM产生的共同效应。 有趣的是,根据量化结果, 比例1样品的多糖浓度(173.52 ± 3.77 μg·cm –2 )和蛋白质(30.41 ± 1.53 μg·cm –2 )的浓度是比例0.5样品(多糖和蛋白质分别为50.60±2.22和8.05 ± 0.92 μg·cm –2 )的2.5倍,与观察到的更大的生物膜厚度(图3A)和更强的荧光强度(图4A)一致。这进一步暗示了给水DOM的生物利用度在累积物质的影响中的作用。
The representative Raman spectra displayed three major peaks in all the biofilms at 1004 (α), 1155 (β), and 1512 cm–1 (γ), which were associated with the vibrations of P–O–P, C–O–C, and −COO, respectively, (59) providing valuable complementary information to the FTIR spectra. The P–O–P groups constitute the phosphate backbone of the DNA molecules and the presence of −COO groups implies a connection between neighboring anionic polymers through electrostatic interactions. (59,60) In addition, the Raman activity of the control biofilm was evidently the highest, followed by the ratio 1 and ratio 0.5 biofilms, which also indicated the turning point of the specific ozone dose at 0.5.
具有代表性的拉曼光谱在所有生物膜中分别在1004(α)、1155(β)和1512 cm –1 (γ)处显示出三个主要峰,分别与P-O-P、C-O-C和-COO 的振动有关(59),为FTIR光谱提供了有价值的补充信息。P-O-P基团构成DNA分子的磷酸盐骨架,−COO 基团的存在意味着相邻阴离子聚合物之间通过静电相互作用进行连接。(59,60)此外,对照生物膜的拉曼活性明显最高,其次是比值1和比值0.5的生物膜,这也表明比臭氧剂量的转折点为0.5。
Collectively, the detailed investigation of the biofilm matrix properties provided further information about the role of specific ozone dose in biofilm formation and, moreover, the multifaceted features of the biofilm were found to be mutually corroborated. Therein, the feedwater DOM and biofilm bacteria jointly acted on the formation of biofilm, but their respective contribution was difficult to ascertain due to the experimental limitations.
总的来说,对生物膜基质特性的详细研究提供了关于特定臭氧剂量在生物膜形成中的作用的进一步信息,此外,生物膜的多方面特征被发现是相互印证的。其中,给水DOM和生物膜细菌共同作用于生物膜的形成,但由于实验的局限性,它们各自的贡献难以确定。

3.5. Filtration Performance of Membrane System
3.5. 膜系统的过滤性能

The experiments showed that all of the filtration systems displayed excellent removal performance of fluorescent substances, especially tyrosine- and tryptophan-like substances in regions I and IV, respectively (Figure 5A). It should be noted that the effluent of the ratio 1 system presented an extremely low fluorescence intensity, which was around zero R.U. This implied that a specific ozone dose of 1 was sufficient to produce a high-quality effluent and that there would be no significant benefit in increasing the specific ozone dose further, which is an important factor for moderating costs in practical applications.
实验表明,所有过滤系统均表现出优异的荧光物质去除性能,尤其是I区和IV区的酪氨酸和色氨酸样物质(图5A)。应该注意的是,比率1系统的流出物呈现出极低的荧光强度,约为零R.U。这意味着1的特定臭氧剂量足以产生高质量的流出物,而进一步增加特定臭氧剂量不会有显着的好处,这是在实际应用中降低成本的重要因素。

Figure 5 图5

Figure 5. Filtration performance of membrane systems. (A) Representative fluorescence spectra of DOM in the influents and effluents of membrane filtration systems. (B) Regional removal rate of fluorescence intensity by the membrane filtration systems. (C) Apparent molecular weight distribution profile of the DOM in the influents and effluents. (D) Hydraulic resistance of the membrane system in the course of filtration.
图5.膜系统的过滤性能。(A)DOM在膜过滤系统进水和出水中的代表性荧光光谱。(B)膜过滤系统对荧光强度的区域去除率。(C) DOM在进水和出水中的表观分子量分布曲线。(D)过滤过程中膜系统的水力阻力。

Regionally, according to the data in Figure 5B, the ratio 1 filtration system exhibited the best performance in removing substances in regions I, II, IV, and V, yielding 64.9 ± 6.6, 43.6 ± 7.0, 59.4 ± 9.0, and 12.6 ± 1.0%, respectively. This could be ascribed to the comparatively greater thickness of biofilm (in comparison to the ratio 0.5 sample) and, more importantly, the low richness of the microbial consortium, since abundant microbes would secrete amounts of fluorescent substances. Interestingly, in terms of fulvic acid- (region III) and humic acid-like substances (region V), the removal rate presented a trend consistent with that of biofilm thickness, meaning that the thickness of the biofilm played an important role in removing these two kinds of substances.
从区域来看,根据图5B中的数据,比率1过滤系统在去除I、II、IV和V区域的物质方面表现最佳,分别产生64.9%±6.6%、43.6±7.0%、59.4±9.0%和12.6%±1.0%。这可能归因于生物膜的厚度相对较大(与0.5样品的比例相比),更重要的是,微生物联盟的丰富度较低,因为丰富的微生物会分泌大量的荧光物质。有趣的是,在富里酸(III区)和腐殖酸样物质(V区)方面,去除率呈现出与生物膜厚度一致的趋势,这意味着生物膜的厚度在去除这两种物质中起着重要作用。
From the perspective of apparent molecular weight (Figure 5C), ozonation effectively lowered the intensity of substances ranging from 600 to 10,000 Da, as demonstrated by the influent intensities of ratio 0.5 and ratio 1 samples. The intensity disparity was greater for the influent of control/ratio 0.5 samples than that of ratio 0.5/ratio 1 samples, suggesting that a further increase of specific ozone dose (>0.5) may lead to the limited improvement of removal efficiency.
从表观分子量(图5C)的角度来看,臭氧化有效地降低了600至10,000 Da范围内物质的强度,如比率0.5和比率1样品的进水强度所示。对照/比率0.5样品的进水强度差异大于比率0.5/比率1样品的强度差异,表明进一步增加比臭氧剂量(>0.5)可能导致去除效率的有限提高。
Furthermore, the hydraulic resistance was investigated to evaluate the membrane filtration efficiency. As a function of filtration time, the control system always possessed the greatest hydraulic resistance, but the impact of ozone, while being beneficial in dramatically reducing the resistance, was unexpected, where the ratio 1 system exhibited a greater resistance value than the ratio 0.5 system. In the pseudo-stable period, the hydraulic resistance reached (2.32 ± 0.05) × 1012 m–1 and (5.16 ± 0.34) × 1012 m–1 for the ratio 0.5 and ratio 1 systems, respectively, which accounted for only about 13.5 and 30.0% percentage of the control system ((17.23 ± 1.21) × 1012 m–1). The corresponding permeate flux was 0.76 ± 0.05, 5.33 ± 0.10, and 2.49 ± 0.15 L·m–2·h–1 for the control, ratio 0.5, and ratio 1 filtration systems, respectively (Supporting Information Figure S4). These results have shown clearly that ozonation of the feedwater can improve membrane filtration efficiency, but the ozone dose needs to be optimized and excess ozonation avoided.
此外,还研究了水力阻力,以评估膜过滤效率。作为过滤时间的函数,控制系统始终具有最大的水力阻力,但臭氧的影响虽然有利于显着降低阻力,但出乎意料,其中比率 1 系统表现出比比率 0.5 系统更大的阻力值。在伪稳定期,比值0.5和比值1系统的水±力阻力分别达到10 12 12 m和(5.16 ± 0.34)××10 m –1 –1 和(5.16 0.34),仅占控制系统((17.23 ± 1.21)×10 12 m –1 的13.5%和30.0%左右。对照、比率0.5和比率1过滤系统的渗透通量分别为0.76±0.05、5.33±0.10和2.49±0.15 L·m –2 ·h –1 (支持信息图S4)。这些结果清楚地表明,给水的臭氧化可以提高膜过滤效率,但臭氧剂量需要优化,避免过多的臭氧。

3.6. Synergistic Driving Mechanism of DOM and Biofilm Microbial Consortium on Membrane Filtration Efficiency
3.6. DOM和生物膜微生物联盟对膜过滤效率的协同驱动机制

3.6.1. Variation in DOM Molecules and Bacterial Community Triggered Discrepancy in Biofilm Morphology and Properties
3.6.1. DOM分子和细菌群落的变化引发了生物膜形态和性质的差异

The dosed ozone induced the transformation of molecular-level DOM in the feedwater, as deciphered by the ESI-FT-ICR data, but the variation in DOM molecules was contingent on the value of the specific ozone dose (Figure 1). The specific ozone dose of 0.5 was inferred to be a turning point in the DOM transformation, whereby the lowest AI value was obtained. Importantly, the molecules were highly bioavailable, indicating that they were readily accessible to the bacteria and thus easily degraded, which was beneficial in reducing the accumulation of water organic matter in the biofilm, as witnessed by the lower biofilm thickness (Figure 3A).
正如ESI-FT-ICR数据所揭示的那样,剂量臭氧诱导了给水中分子水平DOM的转变,但DOM分子的变化取决于特定臭氧剂量的值(图1)。据推测,0.5的比臭氧剂量是DOM转型的转折点,从而获得了最低的AI值。重要的是,这些分子具有很高的生物利用度,表明它们很容易被细菌接近,因此很容易降解,这有利于减少生物膜中水有机物的积累,正如较低的生物膜厚度所证明的那样(图3A)。
In addition, the biofilm microbial community also led to the variation of membrane filtration efficiency through secreting EPS. For the mature biofilms, the succession in the microbial community was influenced by both the specific ozone dose and influent DOM. Therein, the specific ozone dose played a selective role in the biofilm microbes due to the differential sensitivity and tolerance of microorganisms to the ozone dose. For example, Legionella was drastically stimulated by the high specific ozone dose of one (Figure 2C) as demonstrated in this study, and the microbial consortium shifted with the increase of the specific ozone dose (Figure 2B,C). The similarity between the ozonized and control bacterial communities decreased as the specific ozone dose increased, while the ratio 0.5/ratio 1 group exhibited a comparatively high similarity (Figure 2I), verifying the significant role of the specific ozone dose in altering the biofilm bacterial community. Consistent with this, Sun et al. also discovered that ozone oxidation affected the bacterial community in the biofilms. (22)
此外,生物膜微生物群落还通过分泌EPS导致膜过滤效率的变化。对于成熟的生物膜,微生物群落的演替受特定臭氧剂量和进水DOM的影响。 其中,由于微生物对臭氧剂量的敏感性和耐受性不同,特定臭氧剂量在生物膜微生物中起选择性作用。例如,如本研究所证明的那样,军团菌受到高比臭氧剂量的强烈刺激(图2C),微生物联盟随着特定臭氧剂量的增加而移动(图2B,C)。臭氧菌群落和对照细菌群落之间的相似性随着特定臭氧剂量的增加而降低,而比率0.5/比率1组表现出相对较高的相似性(图2I),验证了特定臭氧剂量在改变生物膜细菌群落方面的重要作用。与此一致,Sun等人还发现臭氧氧化影响了生物膜中的细菌群落。(22)
Meanwhile, the influent DOM provided substrates that acted as niches for the biofilm microbes, which could also affect the microbial species. (27,28) In this study, even though the biofilm microbial community presented an inconsistent variation with the influent DOM, owing to the weaker role of influent DOM in comparison to the specific ozone dose, the contribution of influent DOM to the biofilm microbial composition should not be neglected. As a consequence of the influences of the specific ozone dose and influent DOM, the biofilm microbial community varied, resulting in changes in the presence of EPS.
同时,进水DOM提供了基质,作为生物膜微生物的生态位,这也可能影响微生物物种。(27,28) 在这项研究中,尽管生物膜微生物群落与进水 DOM 呈现出不一致的变化,但由于进水 DOM 的作用与特定臭氧剂量相比较弱,但不应忽视进水 DOM 对生物膜微生物组成的贡献。由于特定臭氧剂量和进水DOM的影响,生物膜微生物群落各不相同,导致EPS的存在发生变化。

3.6.2. Induced Changes in Biofilm Drove Disparity in Membrane Filtration Performance
3.6.2. 生物膜的诱导变化导致膜过滤性能的差异

The generated variation in the accumulated influent DOM and EPS produced changes in the structures and properties of the biofilms, which further affected the membrane filtration efficiency. As revealed in this study, the ratio 0.5 filtration system demonstrated a reduced biofilm thickness (Figure 3A), weaker fluorescence intensity (Figure 4A), smaller concentrations of polysaccharides and proteins (Figure 4D), and lower Raman activity (Figure 4E). Accordingly, this resulted in a lower hydraulic resistance (Figure 5D) and higher permeate flux (Supporting Information Figure S4), as compared to the zero ozone and the higher (excessive) ratio 1 membrane filtration systems. The findings by Desmond et al. also supported this, revealing that the composition of EPS could determine the meso-scale physical structure of membrane biofilms and in turn its hydraulic resistance. (24)
累积进水DOM和EPS的变化导致生物膜的结构和性质发生变化,进一步影响了膜过滤效率。正如本研究所揭示的那样,比率为0.5的过滤系统显示出生物膜厚度减小(图3A),荧光强度减弱(图4A),多糖和蛋白质浓度降低(图4D)和拉曼活性降低(图4E)。因此,与零臭氧和较高(过量)比率 1 的膜过滤系统相比,这导致了较低的水力阻力(图 5D)和更高的渗透液通量(支持信息图 S4)。Desmond等人的研究结果也支持了这一点,揭示了EPS的组成可以决定膜生物膜的介观物理结构,进而决定其水力阻力。(24)

Supporting Information 支持信息

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.3c10429.
支持信息可在 https://pubs.acs.org/doi/10.1021/acs.est.3c10429 免费获得。

  • The Supporting Information includes 4 figures and 3 tables, which supplement the results in the manuscript. These comprise the following: schematic diagram of membrane filtration system (Figure S1), FT-ICR mass spectra of influent DOM in membrane filtration systems (Figure S2), XPS full spectra of biofilms (Figure S3), variation in permeate flux of membrane filtration systems in the course of each experiment (Figure S4), principal water quality parameters of surface water (Table S1), area percent of XPS spectral peaks (Table S2), and biofilm surface texture of roughness data set (Table S3) (PDF)
    支持信息包括 4 个图表和 3 个表格,补充了手稿中的结果。这些包括以下内容:膜过滤系统的示意图(图S1),膜过滤系统中进水DOM的FT-ICR质谱图(图S2),生物膜的XPS全谱图(图S3),膜过滤系统在每个实验过程中渗透通量的变化(图S4),地表水的主要水质参数(表S1), XPS光谱峰的面积百分比(表S2)和粗糙度数据集的生物膜表面纹理(表S3)(PDF)

Excessive Ozonation Stress Triggers Severe Membrane Biofilm Accumulation and Fouling
过度的臭氧应激会引发严重的膜生物膜堆积和结垢

1 views  视图

0 shares  股票

0 downloads  下载

S1
Supporting Information 支持信息
1
Excessive ozonation stress triggers severe membrane biofilm
过度的臭氧化应激会引发严重的生物膜膜
2
accumulation and fouling 堆积和结垢
3
Li Zhang  张丽
a
, Nigel Graham  , 奈杰尔·格雷厄姆
b
, Guibai Li  , 李桂白
c
, Yongguan Zhu  , 朱永官
d
, Wenzheng Yu  , 俞文正
a, * 一个*
a
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for
环境水产化学国家重点实验室,水产环境化学研究中心
Eco–Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
中国科学院生态环境科学,北京100085,中国
b
Department of Civil and Environmental Engineering, Imperial College London,
伦敦帝国理工学院土木与环境工程系
South Kensington Campus, London SW7 2AZ, United Kingdom
South Kensington Campus, 伦敦 SW7 2AZ, 英国
c
State Key Laboratory of Urban Water Resource and Environment (SKLUWRE),
城市水资源与环境国家重点实验室,
School of Environment, Harbin Institute of Technology, Harbin 150090, China
哈尔滨工业大学环境学院, 黑龙江 哈尔滨 150090
d
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco–
城市与区域生态国家重点实验室,生态研究中心
Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
中国科学院环境科学, 北京100085, 中国
*Corresponding author: wzyu@rcees.ac.cn
*通讯作者:wzyu@rcees.ac.cn
4
5
6
7
8
9
10
Summary:  总结:
11
11 pages 共 11 页
12
4 figures 4 图
13
3 tables 3桌
14
15
16
17
S2
18
This file includes: 此文件包括:
19
Figure S1.  图 S1.
Schematic diagram of membrane filtration system.
膜过滤系统示意图。
20
Figure S2.  图 S2.
FT-ICR mass spectra of influent DOM in membrane filtration systems.
膜过滤系统中进水DOM的FT-ICR质谱图。
21
Figure S3.  图 S3.
XPS full spectra of biofilms.
XPS生物膜全谱。
22
Figure S4. 图 S4.
Variation in permeate flux of membrane filtration systems in the course of
膜过滤系统渗透通量的变化
23
each experiment. 每个实验。
24
Table S1.  表 S1.
Principal water quality parameters of surface water.
地表水的主要水质参数。
25
Table S2.  表 S2.
Area percent of XPS spectral peaks.
XPS光谱峰的面积百分比。
26
Table S3.  表 S3.
Biofilm surface texture of roughness dataset.
粗糙度数据集的生物膜表面纹理。
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Supplementary Materials and Methods
补充材料和方法

Terms & Conditions  条款及细则

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web Editions 即可获得。此类文件可以按文章下载用于研究用途(如果有与相关文章相关的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求从 ACS 获得用于其他用途的许可:http://pubs.acs.org/page/copyright/permissions.html。

Author Information 作者信息

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

  • Corresponding Author 通讯作者
    • Wenzheng Yu - State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaOrcidhttps://orcid.org/0000-0001-9776-8021 Email: wzyu@rcees.ac.cn
      俞文正 - 中国科学院生态环境科学研究中心,环境水产化学国家重点实验室,中国北京100085; Orcid https://orcid.org/0000-0001-9776-8021;电子邮件: wzyu@rcees.ac.cn
  • Authors 作者
    • Li Zhang - State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
      张莉 - 中国科学院生态环境科学研究中心,环境水产化学国家重点实验室,北京100085
    • Nigel Graham - Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
      奈杰尔·格雷厄姆 - 伦敦帝国理工学院土木与环境工程系,英国伦敦SW7 2AZ南肯辛顿校区
    • Guibai Li - State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
      李桂白 - 哈尔滨工业大学环境学院, 城市水资源与环境国家重点实验室, 黑龙江 哈尔滨 150090
    • Yongguan Zhu - State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaOrcidhttps://orcid.org/0000-0003-3861-8482
      朱永冠 - 中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京100085; Orcid https://orcid.org/0000-0003-3861-8482
  • Author Contributions 作者贡献

    Dr. Li Zhang did the experiments; Dr. Li Zhang, Professor Nigel Graham, and Wenzheng Yu exchanged research ideas, discussed the work, and contributed to the interpretation of the results. Professor Yongguan Zhu was involved in the design of the experiment and discussed the results of the research. Professor Guibai Li, Professor Nigel Graham, and Wenzheng Yu made the final version of the manuscript.
    张李博士做了实验;张力博士、奈杰尔·格雷厄姆教授和俞文正交流了研究思路,讨论了工作,并对结果的解释做出了贡献。朱永冠教授参与了实验的设计,并讨论了研究成果。李桂白教授、奈杰尔·格雷厄姆教授和俞文正制作了手稿的最终版本。

  • Notes 笔记
    The authors declare no competing financial interest.
    作者声明没有相互竞争的经济利益。

Acknowledgments 确认

ARTICLE SECTIONS
Jump To
 文章章节JUMP to

This research was supported financially by the Beijing Natural Science Fund for Distinguished Young Scholars (Grant no. JQ21032) and the National Natural Science Foundation of China (Grant no. 52370184).
本研究由北京市自然科学杰出青年基金资助。JQ21032)和国家自然科学基金(批准号:52370184)。

This article references 60 other publications.
本文引用了60篇其他出版物。

  1. 1
    Zhang, L.; Graham, N.; Kimura, K.; Li, G.; Yu, W. Targeting membrane fouling with low dose oxidant in drinking water treatment: Beneficial effect and biological mechanism. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 209, 117953,  DOI: 10.1016/j.watres.2021.117953

    1张,L.;格雷厄姆,N.;木村,K.;李,G.;Yu, W.在饮用水处理中用低剂量氧化剂靶向膜污染:有益效果和生物学机制。水研究 2022, 209, 117953, DOI: 10.1016/j.watres.2021.117953
  2. 2
    Yu, W.; Graham, N. J. D. Application of Fe(II)/K2MnO4 as a pre-treatment for controlling UF membrane fouling in drinking water treatment. J. Membr. Sci.
    IF 9.5SCIEJCI 1.85Q1工程技术1区Top
    2015, 473, 283291,  DOI: 10.1016/j.memsci.2014.08.060

    2余,W.;Graham, N. J. D.Fe(II)/K 2 MnO 4 作为预处理在饮用水处理中控制超滤膜污垢的应用。J.门布尔。Sci.2015, 473, 283– 291, DOI: 10.1016/j.memsci.2014.08.060
  3. 3
    Yu, W.; Xu, L.; Graham, N.; Qu, J. Pre-treatment for ultrafiltration: Effect of pre-chlorination on membrane fouling. Sci. Rep.
    IF 4.6SCIEJCI 1.06Q2综合性期刊2区
    2014, 4, 6513,  DOI: 10.1038/srep06513

    3余,W.;徐,L.;格雷厄姆,N.;曲,J.超滤预处理:预氯化对膜结垢的影响。Sci. Rep.2014, 4, 6513, DOI: 10.1038/srep06513
  4. 4
    Liu, T.; Chen, Z.-L.; Yu, W.-Z.; You, S.-J. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2011, 45 (5), 21112121,  DOI: 10.1016/j.watres.2010.12.023

    4刘T.;陈志麟;俞,W.-Z.;You, S.-J.使用三维激发发射基质荧光光谱表征浸没式膜生物反应器中的有机膜污染物,并进行预臭氧化。水研究 2011, 45 (5), 2111– 2121, DOI: 10.1016/j.watres.2010.12.023
  5. 5
    Kotlarz, N.; Rockey, N.; Olson, T. M.; Haig, S. J.; Sanford, L.; LiPuma, J. J.; Raskin, L. Biofilms in full-scale drinking water ozone contactors contribute viable bacteria to ozonated water. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2018, 52 (5), 26182628,  DOI: 10.1021/acs.est.7b04212

    5科特拉兹,N.;罗基,N.;奥尔森,TM;黑格,SJ;桑福德,L.;利彪马,J.J.;Raskin, L.全尺寸饮用水臭氧接触器中的生物膜为臭氧水提供了活细菌。环境。科学技术.2018, 52 (5), 2618– 2628, DOI: 10.1021/acs.est.7b04212
  6. 6
    Hammes, F.; Berney, M.; Wang, Y.; Vital, M.; Koster, O.; Egli, T. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2008, 42 (1–2), 269277,  DOI: 10.1016/j.watres.2007.07.009

    6哈姆斯,F.;伯尼,M.;王彦;维塔尔,M.;科斯特,O.;Egli, T.流式细胞术总细菌细胞计数作为饮用水处理过程的描述性微生物参数。水研究 2008, 42 (1–2), 269– 277, DOI: 10.1016/j.watres.2007.07.009
  7. 7
    Jiang, T.; Tian, T.; Guan, Y.-F.; Yu, H.-Q. Contrasting behaviors of pre-ozonation on ceramic membrane biofouling: Early stage vs late stage. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 220, 118702,  DOI: 10.1016/j.watres.2022.118702

    7蒋婷婷;田,T.;关永芳;Yu, H.-Q.陶瓷膜生物污损预臭氧化的对比行为:早期与晚期。水研究 2022, 220, 118702, DOI: 10.1016/j.watres.2022.118702
  8. 8
    Du, J. Y.; Wang, C.; Zhao, Z. W.; Chen, R.; Zhang, P. F.; Cui, F. Y. Effect of vacuum ultraviolet/ozone pretreatment on alleviation of ultrafiltration membrane fouling caused by algal extracellular and intracellular organic matter. Chemosphere
    IF 8.8SCIEJCI 1.55Q1环境科学与生态学2区Top
    2022, 305, 135455,  DOI: 10.1016/j.chemosphere.2022.135455

    8杜,J.Y.;王,C.;赵志伟;陈,R.;张,P.F.;真空紫外/臭氧预处理对缓解藻类细胞外和细胞内有机物引起的超滤膜污染的影响.化学圈2022, 305, 135455, DOI: 10.1016/j.chemosphere.2022.135455
  9. 9
    Yu, W.; Liu, T.; Crawshaw, J.; Liu, T.; Graham, N. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2018, 139, 353362,  DOI: 10.1016/j.watres.2018.04.025

    9余,W.;刘婷婷;克劳肖,J.;刘婷婷;Graham, N.天然有机物的超滤和纳滤膜污染:预臭氧和pH值的机制和缓解。水研究 2018, 139, 353– 362, DOI: 10.1016/j.watres.2018.04.025
  10. 10
    Wang, L.; Song, S.; Xu, L.; Graham, N. J. D.; Yu, W. Z. Beneficial role of pre- and post-ozonation in a low rate biofiltration-ultrafiltration process treating reclaimed water. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 226, 119284,  DOI: 10.1016/j.watres.2022.119284

    10王玲玲;宋,S.;徐,L.;格雷厄姆,新泽西州;Yu, W. Z.臭氧化前和臭氧后在处理再生水的低速率生物过滤-超滤过程中的有益作用。水研究 2022, 226, 119284, DOI: 10.1016/j.watres.2022.119284
  11. 11
    Jennings, E.; Kremser, A.; Han, L. M.; Reemtsma, T.; Lechtenfeld, O. J. Discovery of polar ozonation byproducts via direct injection of effluent organic matter with online LC-FT-ICR-MS. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2022, 56 (3), 18941904,  DOI: 10.1021/acs.est.1c04310

    11詹宁斯,E.;克雷姆瑟,A.;韩,L.M.;雷姆茨玛,T.;Lechtenfeld, O. J.通过在线LC-FT-ICR-MS直接注入废水有机物发现极性臭氧化副产物。环境。科学技术.2022, 56 (3), 1894– 1904, DOI: 10.1021/acs.est.1c04310
  12. 12
    Phungsai, P.; Kurisu, F.; Kasuga, I.; Furumai, H. Changes in dissolved organic matter composition and disinfection byproduct precursors in advanced drinking water treatment processes. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2018, 52 (6), 33923401,  DOI: 10.1021/acs.est.7b04765

    12Phungsai,P.;栗树,F.;春日,I.;Furumai, H.先进饮用水处理工艺中溶解有机物组成和消毒副产物前体的变化。环境。科学技术.2018, 52 (6), 3392– 3401, DOI: 10.1021/acs.est.7b04765
  13. 13
    von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2003, 37 (7), 14431467,  DOI: 10.1016/S0043-1354(02)00457-8

    13von Gunten,U.饮用水的臭氧作用:第一部分,氧化动力学和产物形成。水研究 2003, 37 (7), 1443– 1467, DOI: 10.1016/S0043-1354(02)00457-8
  14. 14
    von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2003, 37 (7), 14691487,  DOI: 10.1016/S0043-1354(02)00458-X

    14von Gunten,U.饮用水臭氧化:第二部分。在溴化物、碘化物或氯存在下进行消毒和副产物形成。水研究 2003, 37 (7), 1469– 1487, DOI: 10.1016/S0043-1354(02)00458-X
  15. 15
    Wenk, J.; Aeschbacher, M.; Salhi, E.; Canonica, S.; von Gunten, U.; Sander, M. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: Effects on its optical and antioxidant properties. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2013, 47 (19), 1114711156,  DOI: 10.1021/es402516b

    15温克,J.;埃施巴赫,M.;萨利希,E.;卡诺尼卡,S.;von Gunten,美国;Sander, M.二氧化氯、氯和臭氧对溶解有机物的化学氧化:对其光学和抗氧化性能的影响。环境。Sci. Technol.2013, 47 (19), 11147– 11156, DOI: 10.1021/es402516b
  16. 16
    Remucal, C. K.; Salhi, E.; Walpen, N.; von Gunten, U. Molecular-level transformation of dissolved organic matter during oxidation by ozone and hydroxyl radical. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54 (16), 1035110360,  DOI: 10.1021/acs.est.0c03052

    16雷穆卡尔,C.K.;萨利希,E.;沃尔彭,N.;von Gunten,U.臭氧和羟基自由基氧化过程中溶解有机物的分子水平转化。环境。科学技术.2020, 54 (16), 10351– 10360, DOI: 10.1021/acs.est.0c03052
  17. 17
    Camel, V.; Bermond, A. The use of ozone and associated oxidation processes in drinking water treatment. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    1998, 32 (11), 32083222,  DOI: 10.1016/S0043-1354(98)00130-4

    17骆驼,V.;Bermond, A.臭氧和相关氧化过程在饮用水处理中的应用。水研究 1998, 32 (11), 3208– 3222, DOI: 10.1016/S0043-1354(98)00130-4
  18. 18
    Headley, J. V.; Kumar, P.; Dalai, A.; Peru, K. M.; Bailey, J.; McMartin, D. W.; Rowland, S. M.; Rodgers, R. P.; Marshall, A. G. Fourier transform ion cyclotron resonance mass spectrometry characterization of treated Athabasca oil sands processed waters. Energy Fuels
    IF 5.3SCIEJCI 0.66Q1工程技术3区
    2015, 29 (5), 27682773,  DOI: 10.1021/ef502007b

    18海德利,J.V.;库马尔,P.;达赖,A.;秘鲁,K.M.;贝利,J.;麦克马丁,DW;罗兰,SM;罗杰斯,RP;Marshall, A. G.傅里叶变换离子回旋共振质谱表征处理过的阿萨巴斯卡油砂加工水。能源燃料2015, 29 (5), 2768– 2773, DOI: 10.1021/ef502007b
  19. 19
    Scholes, R. C.; King, J. F.; Mitch, W. A.; Sedlak, D. L. Transformation of trace organic contaminants from reverse osmosis concentrate by open-water unit-process wetlands with and without ozone pretreatment. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54 (24), 1617616185,  DOI: 10.1021/acs.est.0c04406

    19斯科尔斯,R.C.;金,J.F.;米奇,WA;Sedlak, D. L.通过开放水域单元工艺湿地在有和没有臭氧预处理的情况下转化反渗透浓缩物中的痕量有机污染物。环境。科学技术.2020, 54 (24), 16176– 16185, DOI: 10.1021/acs.est.0c04406
  20. 20
    Hubner, U.; von Gunten, U.; Jekel, M. Evaluation of the persistence of transformation products from ozonation of trace organic compounds: A critical review. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2015, 68, 150170,  DOI: 10.1016/j.watres.2014.09.051

    20Hubner,美国;von Gunten,美国;Jekel, M.微量有机化合物臭氧转化产物的持久性评估:批判性综述。水研究 2015, 68, 150– 170, DOI: 10.1016/j.watres.2014.09.051
  21. 21
    Papageorgiou, A.; Voutsa, D.; Papadakis, N. Occurrence and fate of ozonation by-products at a full-scale drinking water treatment plant. Sci. Total Environ.
    IF 9.8SCIEJCI 1.68Q1环境科学与生态学1区Top
    2014, 481, 392400,  DOI: 10.1016/j.scitotenv.2014.02.069

    21帕帕乔吉乌,A.;武察,D.;Papadakis,N.全尺寸饮用水处理厂臭氧化副产物的发生和归宿。Sci. Total Environ.2014, 481, 392– 400, DOI: 10.1016/j.scitotenv.2014.02.069
  22. 22
    Sun, W.; Lu, Z.; Zhang, Z.; Zhang, Y.; Shi, B.; Wang, H. Ozone and fenton oxidation affected the bacterial community and opportunistic pathogens in biofilms and effluents from GAC. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 218, 118495,  DOI: 10.1016/j.watres.2022.118495

    22日,W.;卢,Z.;张志强;张勇;石,B.;Wang、H.Ozone和Fenton氧化影响了GAC生物膜和废水中的细菌群落和机会性病原体。水研究 2022, 218, 118495, DOI: 10.1016/j.watres.2022.118495
  23. 23
    Ratzke, C.; Barrere, J.; Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol.
    IF 16.8SCIEJCI 3.93Q1生物学1区Top
    2020, 4, 376383,  DOI: 10.1038/s41559-020-1099-4

    23拉茨克,C.;巴雷尔,J.;Gore, J.物种相互作用的强度决定了微生物群落的生物多样性和稳定性。Nat. Ecol. Evol.2020, 4, 376– 383, DOI: 10.1038/s41559-020-1099-4
  24. 24
    Desmond, P.; Best, J. P.; Morgenroth, E.; Derlon, N. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2018, 132, 211221,  DOI: 10.1016/j.watres.2017.12.058

    24德斯蒙德,P.;最佳,J.P.;摩根罗斯,E.;Derlon, N.将细胞外聚合物物质(EPS)的组成与膜生物膜的物理结构和水力阻力联系起来。水研究 2018, 132, 211– 221, DOI: 10.1016/j.watres.2017.12.058
  25. 25
    Desmond, P.; Morgenroth, E.; Derlon, N. Physical structure determines compression of membrane biofilms during gravity driven membrane (GDM) ultrafiltration. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2018, 143, 539549,  DOI: 10.1016/j.watres.2018.07.008

    25德斯蒙德,P.;摩根罗斯,E.;Derlon, N.物理结构决定了重力驱动膜 (GDM) 超滤过程中膜生物膜的压缩。水研究 2018, 143, 539– 549, DOI: 10.1016/j.watres.2018.07.008
  26. 26
    Zhang, L.; Graham, N.; Derlon, N.; Tang, Y.; Siddique, M. S.; Xu, L.; Yu, W. Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers. J. Membr. Sci.
    IF 9.5SCIEJCI 1.85Q1工程技术1区Top
    2021, 640, 119740,  DOI: 10.1016/j.memsci.2021.119740

    26张,L.;格雷厄姆,N.;德隆,N.;唐彦;西迪克,MS;徐,L.;Yu, W.通过地表水的超低压过滤进行生物污染:初始可用生物聚合物的首要作用。J.门布尔。Sci.2021, 640, 119740, DOI: 10.1016/j.memsci.2021.119740
  27. 27
    Tanentzap, A. J.; Fitch, A.; Orland, C.; Emilson, E. J. S.; Yakimovich, K. M.; Osterholz, H.; Dittmar, T. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A.
    IF 11.1SCIEJCI 2.52Q1综合性期刊1区Top
    2019, 116 (49), 2468924695,  DOI: 10.1073/pnas.1904896116

    27Tanentzap,AJ;惠誉,A.;奥兰,C.;埃米尔森,EJ S.;亚基莫维奇,KM;奥斯特霍尔茨,H.;Dittmar, T.淡水中的化学和微生物多样性协同变化影响生态系统功能。美国科学院院刊 2019, 116 (49), 24689– 24695, DOI: 10.1073/pnas.1904896116
  28. 28
    Judd, K. E.; Crump, B. C.; Kling, G. W. Variation in dissolved organic matter controls bacterial production and community composition. Ecology
    IF 4.8SCIEJCI 1.3Q1环境科学与生态学2区Top
    2006, 87 (8), 20682079,  DOI: 10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2

    28贾德,K.E.;克伦普,不列颠哥伦比亚省;Kling, G. W.溶解有机物的变化控制细菌的产生和群落组成。生态学2006, 87 (8), 2068– 2079, DOI: 10.1890/0012-9658(2006)87 [2068:VIDOMC]2.0.CO;2
  29. 29
    Logue, J. B.; Stedmon, C. A.; Kellerman, A. M.; Nielsen, N. J.; Andersson, A. F.; Laudon, H.; Lindstrom, E. S.; Kritzberg, E. S. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J.
    IF 11.0SCIEJCI 2.59Q1环境科学与生态学1区Top
    2016, 10 (3), 533545,  DOI: 10.1038/ismej.2015.131

    29洛格,J.B.;斯特德蒙,CA;凯勒曼,AM;尼尔森,新泽西州;安德森,AF;劳登,H.;林德斯特罗姆,ES;Kritzberg, E. S.对水生细菌群落组成对溶解有机物降解的重要性的实验见解。ISME J.2016, 10 (3), 533– 545, DOI: 10.1038/ismej.2015.131
  30. 30
    Kujawinski, E. B. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci.
    IF 17.3SCIEJCI 2.47Q1地球科学1区Top
    2011, 3, 567599,  DOI: 10.1146/annurev-marine-120308-081003

    30Kujawinski, E. B.微生物代谢对海洋溶解有机物的影响。年。Rev. Mar. Sci.2011, 3, 567– 599, DOI: 10.1146/annurev-marine-120308-081003
  31. 31
    Osterholz, H.; Singer, G.; Wemheuer, B.; Daniel, R.; Simon, M.; Niggemann, J.; Dittmar, T. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. ISME J.
    IF 11.0SCIEJCI 2.59Q1环境科学与生态学1区Top
    2016, 10 (7), 17171730,  DOI: 10.1038/ismej.2015.231

    31奥斯特霍尔茨,H.;歌手,G.;Wemheuer,B.;丹尼尔,R.;西蒙,M.;尼格曼,J.;Dittmar, T.破译中上层海洋系统中溶解有机分子与细菌群落之间的关联。ISME J.2016, 10 (7), 1717– 1730, DOI: 10.1038/ismej.2015.231
  32. 32
    Bader, H. Determination of ozone in water by the indigo method: A submitted standard method. Ozone: Sci. Eng.
    IF 2.7SCIEJCI 0.32Q3环境科学与生态学4区
    1982, 4 (4), 169176,  DOI: 10.1080/01919518208550955

    32Bader, H.用靛蓝法测定水中的臭氧:提交的标准方法。臭氧: Sci. Eng.1982, 4 (4), 169– 176, DOI: 10.1080/01919518208550955
  33. 33
    Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr.: Methods
    IF 2.7SCIEJCI 0.84Q2地球科学3区
    2008, 6, 230235,  DOI: 10.4319/lom.2008.6.230

    33迪特玛,T.;科赫,B.;牧谷物,N.;Kattner, G.一种简单有效的海水中溶解有机物固相萃取方法(SPE-DOM)。利姆诺尔。Oceanogr.: 方法2008, 6, 230– 235, DOI: 10.4319/lom.2008.6.230
  34. 34
    Li, F.; Tang, S.; Lv, J.; He, A.; Wang, Y.; Liu, S.; Cao, H.; Zhao, L.; Wang, Y.; Jiang, G. Molecular-scale investigation on the formation of brown carbon aerosol via iron-phenolic compound reactions in the dark. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2023, 57 (30), 1117311184,  DOI: 10.1021/acs.est.3c04263

    34李,F.;唐,S.;吕J.;他,A.;王彦;刘,S.;曹浩;赵玲玲;王彦;江, G.黑暗中铁酚化合物反应形成褐碳气溶胶的分子尺度研究.环境。科学技术.2023, 57 (30), 11173– 11184, DOI: 10.1021/acs.est.3c04263
  35. 35
    Zherebker, A.; Shirshin, E.; Rubekina, A.; Kharybin, O.; Kononikhin, A.; Kulikova, N. A.; Zaitsev, K. V.; Roznyatovsky, V. A.; Grishin, Y. K.; Perminova, I. V.; Nikolaev, E. N. Optical properties of soil dissolved organic matter are related to acidic functions of its components as revealed by fractionation, selective deuteromethylation, and ultrahigh resolution mass spectrometry. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54 (5), 26672677,  DOI: 10.1021/acs.est.9b05298

    35泽列布克,A.;希尔辛,E.;鲁贝金娜,A.;哈里宾,O.;科诺尼欣,A.;库利科娃,N.A.;扎伊采夫,K.V.;罗兹尼亚托夫斯基,V.A.;格里申,Y.K.;佩尔米诺娃,I.V.;Nikolaev, E. N.土壤溶解有机物的光学特性与其组分的酸性功能有关,如分馏、选择性去甲基化和超高分辨率质谱法所揭示的那样。环境。科学技术.2020, 54 (5), 2667– 2677, DOI: 10.1021/acs.est.9b05298
  36. 36
    Lv, J. T.; Zhang, S. Z.; Wang, S. S.; Luo, L.; Cao, D.; Christie, P. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2016, 50 (5), 23282336,  DOI: 10.1021/acs.est.5b04996

    36Lv,J.T.;张S.Z.;王淑娟;罗玖;曹,D.;Christie, P.使用ESI-FT-ICR-MS进行分子尺度研究,研究吸附在氢氧化铁上诱导的溶解有机物的分馏。环境。科学技术.2016, 50 (5), 2328– 2336, DOI: 10.1021/acs.est.5b04996
  37. 37
    Yu, S.; Lv, J.; Jiang, L.; Geng, P.; Cao, D.; Wang, Y. Changes of soil dissolved organic matter and its relationship with microbial community along the Hailuogou Glacier forefield chronosequence. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2023, 57 (9), 40274038,  DOI: 10.1021/acs.est.2c08855

    37余,S.;吕J.;江,L.;耿,P.;曹,D.;Wang, Y.海螺沟冰川前场年代序列土壤溶解有机质变化及其与微生物群落的关系.环境。科学技术.2023, 57 (9), 4027– 4038, DOI: 10.1021/acs.est.2c08855
  38. 38
    Lv, J.; Miao, Y.; Huang, Z.; Han, R.; Zhang, S. Facet-mediated adsorption and molecular fractionation of humic substances on hematite surfaces. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2018, 52 (20), 1166011669,  DOI: 10.1021/acs.est.8b03940

    38Lv,J.;苗,Y.;黄志强;韩,R.;Zhang, S.Facet介导的赤铁矿表面腐殖质物质的吸附和分子分馏.环境。科学技术.2018, 52 (20), 11660– 11669, DOI: 10.1021/acs.est.8b03940
  39. 39
    Koch, B. P.; Dittmar, T.; Witt, M.; Kattner, G. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal. Chem.
    IF 7.4SCIEJCI 1.71Q1化学1区Top
    2007, 79 (4), 17581763,  DOI: 10.1021/ac061949s

    39科赫,BP;迪特玛,T.;威特,M.;Kattner, G.天然有机物超高分辨率质量数据分子式分配的基础。分析化学.2007, 79 (4), 1758– 1763, DOI: 10.1021/ac061949s
  40. 40
    Sun, K.; Han, L. F.; Yang, Y.; Xia, X. H.; Yang, Z. F.; Wu, F. C.; Li, F. B.; Feng, Y. F.; Xing, B. S. Application of hydrochar altered soil microbial community composition and the molecular structure of native soil organic carbon in a paddy soil. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54 (5), 27152725,  DOI: 10.1021/acs.est.9b05864

    40孙,K.;韩,L.F.;杨,Y.;夏旭华;杨志芳;吴,F.C.;李,F.B.;冯永芳;Xing, B. S.水炭改变水稻土壤微生物群落组成及天然土壤有机碳分子结构的应用.环境。科学技术.2020, 54 (5), 2715– 2725, DOI: 10.1021/acs.est.9b05864
  41. 41
    Koch, B. P.; Dittmar, T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom.
    IF 2.0SCIEJCI 0.65Q3化学3区
    2006, 20 (5), 926932,  DOI: 10.1002/rcm.2386

    41科赫,BP;Dittmar, T.从质量到结构:天然有机物高分辨率质量数据的芳香指数。快速通信。质谱.2006, 20 (5), 926– 932, DOI: 10.1002/rcm.2386
  42. 42
    Ding, Y.; Shi, Z. Q.; Ye, Q. T.; Liang, Y. Z.; Liu, M. Q.; Dang, Z.; Wang, Y. J.; Liu, C. X. Chemodiversity of soil dissolved organic matter. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2020, 54 (10), 61746184,  DOI: 10.1021/acs.est.0c01136

    42丁,Y.;石志Q.;叶,Q.T.;梁玉璧;刘明问;邓,Z.;王玉杰;Liu, C. X.土壤溶解有机质的化学多样性.大约。Sci. Technol.2020, 54 (10), 6174–6184, DOI: 10.1021/acs.est.0c01136
  43. 43
    Lawaetz, A. J.; Stedmon, C. A. Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc.
    IF 3.5SCIEJCI 0.91Q1化学3区
    2009, 63 (8), 936940,  DOI: 10.1366/000370209788964548

    43拉瓦茨,AJ;Stedmon, C. A.使用水的拉曼散射峰进行荧光强度校准。应用光谱.2009, 63 (8), 936– 940, DOI: 10.1366/000370209788964548
  44. 44
    Gong, J.; Liu, Y.; Sun, X. O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2008, 42 (4–5), 12381244,  DOI: 10.1016/j.watres.2007.09.020

    44龚,J.;刘彦;生物处理城市废水中有机成分的太阳、X.O 3 和 UV/O 3 氧化。水研究 2008, 42 (4–5), 1238– 1244, DOI: 10.1016/j.watres.2007.09.020
  45. 45
    Ohno, T.; He, Z.; Sleighter, R. L.; Honeycutt, C. W.; Hatcher, P. G. Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil- and plant biomass- derived organic matter fractions. Environ. Sci. Technol.
    IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
    2010, 44 (22), 85948600,  DOI: 10.1021/es101089t

    45大野,T.;他,Z.;斯莱特,RL;霍尼卡特,CW;Hatcher, P. G.超高分辨率质谱和指示物物种分析,用于识别土壤和植物生物质衍生有机质组分的标记成分。环境。科学技术.2010, 44 (22), 8594– 8600, DOI: 10.1021/es101089t
  46. 46
    LaRowe, D. E.; Van Cappellen, P. Degradation of natural organic matter: A thermodynamic analysis. Geochim. Cosmochim. Acta
    IF 5.0SCIEJCI 1.52Q1地球科学1区Top
    2011, 75 (8), 20302042,  DOI: 10.1016/j.gca.2011.01.020

    46拉罗,D.E.;Van Cappellen, P.天然有机物的降解:热力学分析。Geochim。科斯莫奇姆。学报2011, 75 (8), 2030– 2042, DOI: 10.1016/j.gca.2011.01.020
  47. 47
    Ribeirinho-Soares, S.; Moreira, N. F. F.; Graca, C.; Pereira, M. F. R.; Silva, A. M. T.; Nunes, O. C. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 209, 117932,  DOI: 10.1016/j.watres.2021.117932

    47里贝里尼奥-苏亚雷斯;莫雷拉,NFF;格拉卡,C.;佩雷拉,MFR;席尔瓦,AMT;Nunes, O. C.通过自然竞争在臭氧处理废水储存过程中对潜在有害细菌的过度生长控制。水研究 2022, 209, 117932, DOI: 10.1016/j.watres.2021.117932
  48. 48
    Rehman, Z. U.; Ali, M.; Iftikhar, H.; Leiknes, T. Genome-resolved metagenomic analysis reveals roles of microbial community members in full-scale seawater reverse osmosis plant. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2019, 149, 263271,  DOI: 10.1016/j.watres.2018.11.012

    48拉赫曼,Z.U.;阿里,M.;伊夫蒂哈尔,H.;基因组分辨的宏基因组分析揭示了微生物群落成员在全尺寸海水反渗透工厂中的作用。水研究 2019, 149, 263– 271, DOI: 10.1016/j.watres.2018.11.012
  49. 49
    Wang, H.; Zhang, C.; Wang, Y.-N.; Sun, Y.; Fu, Y.; Gong, Z.; Liu, K. Simultaneous degradation of refractory organics, antibiotics and antibiotic resistance genes from landfill leachate concentrate by GAC/O3. J. Cleaner Prod.
    IF 11.1SCIEJCI 1.53Q1环境科学与生态学1区Top
    2022, 380, 135016,  DOI: 10.1016/j.jclepro.2022.135016

    49王斌;张,C.;王彦娥;孙,Y.;傅彦;龚,Z.;Liu, K.GAC/O 3 对垃圾渗滤液浓缩物中难治性有机物、抗生素和抗生素抗性基因的同步降解.J. Cleaner Prod.2022, 380, 135016, DOI: 10.1016/j.jclepro.2022.135016
  50. 50
    Tadonléké, R. D. Strong coupling between natural Planctomycetes and changes in the quality of dissolved organic matter in freshwater samples. FEMS Microbiol. Ecol.
    IF 4.2SCIEJCI 0.8Q2生物学3区
    2007, 59 (3), 543555,  DOI: 10.1111/j.1574-6941.2006.00222.x

    50Tadonléké, R. D.天然浮游菌与淡水样品中溶解有机物质量变化之间的强耦合。FEMS微生物。生态学2007, 59 (3), 543– 555, DOI: 10.1111/j.1574-6941.2006.00222.x
  51. 51
    Nichols, G. L.; McLauchlin, J. Microbiology and the investigation of waterborne outbreaks: The use of Cryptosporidium typing in the investigation of waterborne disease. In Drinking Water and Infectious Disease: Establishing the Links; CRC Press, 2002, pp 8795. DOI: 10.1201/9781420040524.ch8 .

    51尼科尔斯,GL;McLauchlin, J.微生物学和水传播暴发的调查:隐孢子虫分型在水传播疾病调查中的应用。在饮用水和传染病:建立联系;CRC出版社,2002年,第87-95页。DOI: 10.1201/9781420040524.ch8 .
  52. 52
    Lau, H. Y.; Ashbolt, N. J. The role of biofilms and protozoa in Legionella pathogenesis: Implications for drinking water. J. Appl. Microbiol.
    IF 4.0SCIEJCI 0.68Q2生物学3区
    2009, 107 (2), 368378,  DOI: 10.1111/j.1365-2672.2009.04208.x

    52刘汉彦;生物膜和原生动物在军团菌发病机制中的作用:对饮用水的影响。应用微生物学杂志.2009, 107 (2), 368– 378, DOI: 10.1111/j.1365-2672.2009.04208.x
  53. 53
    Scheikl, U.; Sommer, R.; Kirschner, A.; Rameder, A.; Schrammel, B.; Zweimuller, I.; Wesner, W.; Hinker, M.; Walochnik, J. Free-living amoebae (FLA) co-occurring with legionellae in industrial waters. Eur. J. Protistol.
    IF 2.9SCIEJCI 0.69Q3生物学2区
    2014, 50 (4), 422429,  DOI: 10.1016/j.ejop.2014.04.002

    53Scheikl,美国;索默,R.;基什纳,A.;拉梅德,A.;施拉梅尔,B.;茨魏穆勒,I.;韦斯纳,W.;欣克,M.;Walochnik, J.自由生活的变形虫 (FLA) 与工业水域中的军团菌共生。Eur. J. Protistol.2014, 50 (4), 422– 429, DOI: 10.1016/j.ejop.2014.04.002
  54. 54
    Caicedo, C.; Rosenwinkel, K.-H.; Exner, M.; Verstraete, W.; Suchenwirth, R.; Hartemann, P.; Nogueira, R. Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2019, 149, 2134,  DOI: 10.1016/j.watres.2018.10.080

    54凯塞多,C.;罗森温克尔,K.-H.;埃克斯纳,M.;韦斯特雷特,W.;Suchenwirth,R.;哈特曼,P.;Nogueira, R.军团菌在市政和工业废水处理厂中的发生以及回收废水再利用的风险:综述。水研究2019, 149, 21– 34, DOI: 10.1016/j.watres.2018.10.080
  55. 55
    Gerrity, D.; Arnold, M.; Dickenson, E.; Moser, D.; Sackett, J. D.; Wert, E. C. Microbial community characterization of ozone-biofiltration systems in drinking water and potable reuse applications. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2018, 135, 207219,  DOI: 10.1016/j.watres.2018.02.023

    55杰里蒂,D.;阿诺德,M.;狄更生,E.;莫泽,D.;萨克特,法学博士;Wert, E. C.饮用水和饮用水再利用应用中臭氧生物过滤系统的微生物群落表征。水研究 2018, 135, 207– 219, DOI: 10.1016/j.watres.2018.02.023
  56. 56
    Zhang, L.; Graham, N.; Li, G.; Yu, W. Divergent accumulation of membrane biofouling by slight elevation of nitrogen and phosphorus in drinking water treatment: Performances and mechanisms. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 222, 118898,  DOI: 10.1016/j.watres.2022.118898

    56张,L.;格雷厄姆,N.;李,G.;Yu, W.饮用水处理中氮磷略微升高的膜生物污垢发散积累:性能和机制。水研究 2022, 222, 118898, DOI: 10.1016/j.watres.2022.118898
  57. 57
    Desmond, P.; Huisman, K. T.; Sanawar, H.; Farhat, N. M.; Traber, J.; Fridjonsson, E. O.; Johns, M. L.; Flemming, H.-C.; Picioreanu, C.; Vrouwenvelder, J. S. Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure. Water Res.
    IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
    2022, 210, 118031,  DOI: 10.1016/j.watres.2021.118031

    57德斯蒙德,P.;豪氏威马,K.T.;萨纳瓦尔,H.;新墨西哥州法哈特;特拉伯,J.;弗里琼森,EO;约翰斯,ML;弗莱明,HC;皮西奥雷阿努,C.;Vrouwenvelder, J. S.通过工程生物膜物理结构控制膜生物膜的水力阻力。水研究 2022, 210, 118031, DOI: 10.1016/j.watres.2021.118031
  58. 58
    Abada, B.; Safarik, J.; Ishida, K. P.; Chellam, S. Surface characterization of end-of-life reverse osmosis membranes from a full-scale advanced water reuse facility: Combined role of bioorganic materials and silicon on chemically irreversible fouling. J. Membr. Sci.
    IF 9.5SCIEJCI 1.85Q1工程技术1区Top
    2022, 653, 120511,  DOI: 10.1016/j.memsci.2022.120511

    58阿巴达,B.;萨法里克,J.;石田,K.P.;Chellam, S.来自全尺寸先进水回用设施的报废反渗透膜的表面表征:生物有机材料和硅对化学不可逆污染的综合作用。J.门布尔。Sci.2022, 653, 120511, DOI: 10.1016/j.memsci.2022.120511
  59. 59
    Ivleva, N. P.; Wagner, M.; Horn, H.; Niessner, R.; Haisch, C. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal. Bioanal. Chem.
    IF 4.3SCIEJCI 0.93Q1化学2区
    2009, 393 (1), 197206,  DOI: 10.1007/s00216-008-2470-5

    59伊夫列瓦,N.P.;瓦格纳,M.;霍恩,H.;尼斯纳,R.;Haisch, C.通过拉曼显微镜对生物膜基质进行无损化学表征。肛门。 生物肛门。Chem.2009, 393 (1), 197– 206, DOI: 10.1007/s00216-008-2470-5
  60. 60
    Laue, H.; Schenk, A.; Li, H.; Lambertsen, L.; Neu, T. R.; Molin, S.; Ullrich, M. S. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiolology 2006, 152 (10), 29092918,  DOI: 10.1099/mic.0.28875-0

    60劳厄,H.;申克,A.;李旭;兰伯特森,L.;诺伊,TR;莫林,S.;Ullrich, M. S.丁香假单胞菌对海藻酸盐和莱万生产对生物膜形成的贡献。微生物学 2006, 152 (10), 2909– 2918, DOI: 10.1099/mic.0.28875-0

Cited By 施引文献

ARTICLE SECTIONS
Jump To

文章章节 跳转到

This article has not yet been cited by other publications.
本文尚未被其他出版物引用。

  • Abstract 抽象

    Figure 1 图1

    Figure 1. Molecular-level DOM compositional patterns of the influents. (A) Regions of the van Krevelen diagram based on ratios of O/C and H/C. (B–D) Van Krevelen diagrams of influent DOM in the control, ratio 0.5, and ratio 1 membrane filtration systems, respectively. (E) Regional proportion of the DOM molecules. (F) Venn diagram of the molecular DOM formulas shared in the different samples. (G) Proportion of CHO, CHON, CHOS, and CHONS molecules in control, ratio 0.5, and ratio 1 influents. (H,I) Distribution of AI and NOSC values for molecular formulas of the influent DOM, respectively. Significant differences were investigated using the Kruskal–Wallis test. The marks a, b, and c in bold indicate statistical significance at P < 0.05.
    图 1.进水物的分子水平DOM组成模式。(A) 基于 O/C 和 H/C 比率的 van Krevelen 图的区域。 (b–D) 分别是控制、比率 0.5 和比率 1 膜过滤系统中进水 DOM 的 Van Krevelen 图。(E) DOM分子的区域比例。(F) 不同样品中共享的分子DOM分子式的维恩图。(G) 对照组 CHO、CHON、CHOS 和 CHONS 分子的比例,比例为 0.5,比例为 1。(H,I)进水DOM分子式AI和NOSC值的分布。使用 Kruskal-Wallis 检验研究了显着差异。粗体标记 a、b 和 c 表示 P < 0.05 时的统计学显著性。

    Figure 2 图2

    Figure 2. Compositional and diversity patterns of biofilm microbial consortium. (A) Upset plot of the average number of bacterial ASVs shared in the control, ratio 0.5, and ratio 1 biofilms. (B,C) Average relative abundance of bacterial taxa at phylum and genus levels, respectively. (D–G) Shannon, Simpson, Chao 1, and Pielou evenness indexes of the biofilm microbial consortium, respectively. (H) PCoA plot of the biofilm bacterial communities based on the Bray–Curtis distance matrix. (I) Bray–Curtis dissimilarity of bacterial community across different biofilms. Significant differences were investigated using the Kruskal–Wallis test. The marks a, b, and c in bold indicate statistical significance at P < 0.05.
    图2.生物膜微生物联盟的组成和多样性模式。(A) 对照中共享的细菌 ASV 平均数量的扰动图,比率 0.5 和比率 1 生物膜。(乙、丙)细菌类群在门和属水平上的平均相对丰度。(D-G)Shannon、Simpson、Chao 1 和 Pielou 分别是生物膜微生物联盟的均匀度指数。(H) 基于Bray-Curtis距离矩阵的生物膜细菌群落PCoA图。(I)不同生物膜上细菌群落的Bray-Curtis差异。使用 Kruskal-Wallis 检验研究了显着差异。粗体标记 a、b 和 c 表示 P < 0.05 时的统计学显著性。

    Figure 3 图3

    Figure 3. Morphological and chemical structure of biofilms. (A,B) SEM images of biofilms captured in cross-section and top surface, respectively. (C,D) XPS spectra of the biofilms based on elements C and O, respectively.
    图3.生物膜的形态和化学结构。(甲、乙)分别在横截面和顶面捕获的生物膜的SEM图像。(C,D)分别基于元素 C 和 O 的生物膜的 XPS 光谱。

    Figure 4 图4

    Figure 4. Physicochemical properties of the biofilm matrix. (A) Representative fluorescence spectra of the DOM extracted in the biofilm matrix with phosphate buffer solution. (B) Representative FTIR spectra. (C) Representative optical micrographs and the corresponding surface roughness. (D) Concentrations of polysaccharides and proteins. (E) Representative Raman spectra. Significant differences were assessed by the Kruskal–Wallis test and * represents P < 0.05.
    图4.生物膜基质的物理化学性质。(A)用磷酸盐缓冲溶液在生物膜基质中提取的DOM的代表性荧光光谱。(B) 具有代表性的傅里叶变换红外光谱。(C)具有代表性的光学显微照片和相应的表面粗糙度。(D) 多糖和蛋白质的浓度。(E) 具有代表性的拉曼光谱。通过 Kruskal-Wallis 检验评估显著差异,* 表示 P < 0.05。

    Figure 5 图5

    Figure 5. Filtration performance of membrane systems. (A) Representative fluorescence spectra of DOM in the influents and effluents of membrane filtration systems. (B) Regional removal rate of fluorescence intensity by the membrane filtration systems. (C) Apparent molecular weight distribution profile of the DOM in the influents and effluents. (D) Hydraulic resistance of the membrane system in the course of filtration.
    图5.膜系统的过滤性能。(A)DOM在膜过滤系统进水和出水中的代表性荧光光谱。(B)膜过滤系统对荧光强度的区域去除率。(C) DOM在进水和出水中的表观分子量分布曲线。(D)过滤过程中膜系统的水力阻力。

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 60 other publications.

    1. 1
      Zhang, L.; Graham, N.; Kimura, K.; Li, G.; Yu, W. Targeting membrane fouling with low dose oxidant in drinking water treatment: Beneficial effect and biological mechanism. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2022, 209, 117953,  DOI: 10.1016/j.watres.2021.117953
    2. 2
      Yu, W.; Graham, N. J. D. Application of Fe(II)/K2MnO4 as a pre-treatment for controlling UF membrane fouling in drinking water treatment. J. Membr. Sci.
      IF 9.5SCIEJCI 1.85Q1工程技术1区Top
      2015, 473, 283291,  DOI: 10.1016/j.memsci.2014.08.060
    3. 3
      Yu, W.; Xu, L.; Graham, N.; Qu, J. Pre-treatment for ultrafiltration: Effect of pre-chlorination on membrane fouling. Sci. Rep.
      IF 4.6SCIEJCI 1.06Q2综合性期刊2区
      2014, 4, 6513,  DOI: 10.1038/srep06513
    4. 4
      Liu, T.; Chen, Z.-L.; Yu, W.-Z.; You, S.-J. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2011, 45 (5), 21112121,  DOI: 10.1016/j.watres.2010.12.023
    5. 5
      Kotlarz, N.; Rockey, N.; Olson, T. M.; Haig, S. J.; Sanford, L.; LiPuma, J. J.; Raskin, L. Biofilms in full-scale drinking water ozone contactors contribute viable bacteria to ozonated water. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2018, 52 (5), 26182628,  DOI: 10.1021/acs.est.7b04212
    6. 6
      Hammes, F.; Berney, M.; Wang, Y.; Vital, M.; Koster, O.; Egli, T. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2008, 42 (1–2), 269277,  DOI: 10.1016/j.watres.2007.07.009
    7. 7
      Jiang, T.; Tian, T.; Guan, Y.-F.; Yu, H.-Q. Contrasting behaviors of pre-ozonation on ceramic membrane biofouling: Early stage vs late stage. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2022, 220, 118702,  DOI: 10.1016/j.watres.2022.118702
    8. 8
      Du, J. Y.; Wang, C.; Zhao, Z. W.; Chen, R.; Zhang, P. F.; Cui, F. Y. Effect of vacuum ultraviolet/ozone pretreatment on alleviation of ultrafiltration membrane fouling caused by algal extracellular and intracellular organic matter. Chemosphere
      IF 8.8SCIEJCI 1.55Q1环境科学与生态学2区Top
      2022, 305, 135455,  DOI: 10.1016/j.chemosphere.2022.135455
    9. 9
      Yu, W.; Liu, T.; Crawshaw, J.; Liu, T.; Graham, N. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2018, 139, 353362,  DOI: 10.1016/j.watres.2018.04.025
    10. 10
      Wang, L.; Song, S.; Xu, L.; Graham, N. J. D.; Yu, W. Z. Beneficial role of pre- and post-ozonation in a low rate biofiltration-ultrafiltration process treating reclaimed water. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2022, 226, 119284,  DOI: 10.1016/j.watres.2022.119284
    11. 11
      Jennings, E.; Kremser, A.; Han, L. M.; Reemtsma, T.; Lechtenfeld, O. J. Discovery of polar ozonation byproducts via direct injection of effluent organic matter with online LC-FT-ICR-MS. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2022, 56 (3), 18941904,  DOI: 10.1021/acs.est.1c04310
    12. 12
      Phungsai, P.; Kurisu, F.; Kasuga, I.; Furumai, H. Changes in dissolved organic matter composition and disinfection byproduct precursors in advanced drinking water treatment processes. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2018, 52 (6), 33923401,  DOI: 10.1021/acs.est.7b04765
    13. 13
      von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2003, 37 (7), 14431467,  DOI: 10.1016/S0043-1354(02)00457-8
    14. 14
      von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2003, 37 (7), 14691487,  DOI: 10.1016/S0043-1354(02)00458-X
    15. 15
      Wenk, J.; Aeschbacher, M.; Salhi, E.; Canonica, S.; von Gunten, U.; Sander, M. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: Effects on its optical and antioxidant properties. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2013, 47 (19), 1114711156,  DOI: 10.1021/es402516b
    16. 16
      Remucal, C. K.; Salhi, E.; Walpen, N.; von Gunten, U. Molecular-level transformation of dissolved organic matter during oxidation by ozone and hydroxyl radical. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2020, 54 (16), 1035110360,  DOI: 10.1021/acs.est.0c03052
    17. 17
      Camel, V.; Bermond, A. The use of ozone and associated oxidation processes in drinking water treatment. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      1998, 32 (11), 32083222,  DOI: 10.1016/S0043-1354(98)00130-4
    18. 18
      Headley, J. V.; Kumar, P.; Dalai, A.; Peru, K. M.; Bailey, J.; McMartin, D. W.; Rowland, S. M.; Rodgers, R. P.; Marshall, A. G. Fourier transform ion cyclotron resonance mass spectrometry characterization of treated Athabasca oil sands processed waters. Energy Fuels
      IF 5.3SCIEJCI 0.66Q1工程技术3区
      2015, 29 (5), 27682773,  DOI: 10.1021/ef502007b
    19. 19
      Scholes, R. C.; King, J. F.; Mitch, W. A.; Sedlak, D. L. Transformation of trace organic contaminants from reverse osmosis concentrate by open-water unit-process wetlands with and without ozone pretreatment. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2020, 54 (24), 1617616185,  DOI: 10.1021/acs.est.0c04406
    20. 20
      Hubner, U.; von Gunten, U.; Jekel, M. Evaluation of the persistence of transformation products from ozonation of trace organic compounds: A critical review. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2015, 68, 150170,  DOI: 10.1016/j.watres.2014.09.051
    21. 21
      Papageorgiou, A.; Voutsa, D.; Papadakis, N. Occurrence and fate of ozonation by-products at a full-scale drinking water treatment plant. Sci. Total Environ.
      IF 9.8SCIEJCI 1.68Q1环境科学与生态学1区Top
      2014, 481, 392400,  DOI: 10.1016/j.scitotenv.2014.02.069
    22. 22
      Sun, W.; Lu, Z.; Zhang, Z.; Zhang, Y.; Shi, B.; Wang, H. Ozone and fenton oxidation affected the bacterial community and opportunistic pathogens in biofilms and effluents from GAC. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2022, 218, 118495,  DOI: 10.1016/j.watres.2022.118495
    23. 23
      Ratzke, C.; Barrere, J.; Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol.
      IF 16.8SCIEJCI 3.93Q1生物学1区Top
      2020, 4, 376383,  DOI: 10.1038/s41559-020-1099-4
    24. 24
      Desmond, P.; Best, J. P.; Morgenroth, E.; Derlon, N. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2018, 132, 211221,  DOI: 10.1016/j.watres.2017.12.058
    25. 25
      Desmond, P.; Morgenroth, E.; Derlon, N. Physical structure determines compression of membrane biofilms during gravity driven membrane (GDM) ultrafiltration. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2018, 143, 539549,  DOI: 10.1016/j.watres.2018.07.008
    26. 26
      Zhang, L.; Graham, N.; Derlon, N.; Tang, Y.; Siddique, M. S.; Xu, L.; Yu, W. Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers. J. Membr. Sci.
      IF 9.5SCIEJCI 1.85Q1工程技术1区Top
      2021, 640, 119740,  DOI: 10.1016/j.memsci.2021.119740
    27. 27
      Tanentzap, A. J.; Fitch, A.; Orland, C.; Emilson, E. J. S.; Yakimovich, K. M.; Osterholz, H.; Dittmar, T. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A.
      IF 11.1SCIEJCI 2.52Q1综合性期刊1区Top
      2019, 116 (49), 2468924695,  DOI: 10.1073/pnas.1904896116
    28. 28
      Judd, K. E.; Crump, B. C.; Kling, G. W. Variation in dissolved organic matter controls bacterial production and community composition. Ecology
      IF 4.8SCIEJCI 1.3Q1环境科学与生态学2区Top
      2006, 87 (8), 20682079,  DOI: 10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2
    29. 29
      Logue, J. B.; Stedmon, C. A.; Kellerman, A. M.; Nielsen, N. J.; Andersson, A. F.; Laudon, H.; Lindstrom, E. S.; Kritzberg, E. S. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J.
      IF 11.0SCIEJCI 2.59Q1环境科学与生态学1区Top
      2016, 10 (3), 533545,  DOI: 10.1038/ismej.2015.131
    30. 30
      Kujawinski, E. B. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci.
      IF 17.3SCIEJCI 2.47Q1地球科学1区Top
      2011, 3, 567599,  DOI: 10.1146/annurev-marine-120308-081003
    31. 31
      Osterholz, H.; Singer, G.; Wemheuer, B.; Daniel, R.; Simon, M.; Niggemann, J.; Dittmar, T. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. ISME J.
      IF 11.0SCIEJCI 2.59Q1环境科学与生态学1区Top
      2016, 10 (7), 17171730,  DOI: 10.1038/ismej.2015.231
    32. 32
      Bader, H. Determination of ozone in water by the indigo method: A submitted standard method. Ozone: Sci. Eng.
      IF 2.7SCIEJCI 0.32Q3环境科学与生态学4区
      1982, 4 (4), 169176,  DOI: 10.1080/01919518208550955
    33. 33
      Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr.: Methods
      IF 2.7SCIEJCI 0.84Q2地球科学3区
      2008, 6, 230235,  DOI: 10.4319/lom.2008.6.230
    34. 34
      Li, F.; Tang, S.; Lv, J.; He, A.; Wang, Y.; Liu, S.; Cao, H.; Zhao, L.; Wang, Y.; Jiang, G. Molecular-scale investigation on the formation of brown carbon aerosol via iron-phenolic compound reactions in the dark. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2023, 57 (30), 1117311184,  DOI: 10.1021/acs.est.3c04263
    35. 35
      Zherebker, A.; Shirshin, E.; Rubekina, A.; Kharybin, O.; Kononikhin, A.; Kulikova, N. A.; Zaitsev, K. V.; Roznyatovsky, V. A.; Grishin, Y. K.; Perminova, I. V.; Nikolaev, E. N. Optical properties of soil dissolved organic matter are related to acidic functions of its components as revealed by fractionation, selective deuteromethylation, and ultrahigh resolution mass spectrometry. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2020, 54 (5), 26672677,  DOI: 10.1021/acs.est.9b05298
    36. 36
      Lv, J. T.; Zhang, S. Z.; Wang, S. S.; Luo, L.; Cao, D.; Christie, P. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2016, 50 (5), 23282336,  DOI: 10.1021/acs.est.5b04996
    37. 37
      Yu, S.; Lv, J.; Jiang, L.; Geng, P.; Cao, D.; Wang, Y. Changes of soil dissolved organic matter and its relationship with microbial community along the Hailuogou Glacier forefield chronosequence. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2023, 57 (9), 40274038,  DOI: 10.1021/acs.est.2c08855
    38. 38
      Lv, J.; Miao, Y.; Huang, Z.; Han, R.; Zhang, S. Facet-mediated adsorption and molecular fractionation of humic substances on hematite surfaces. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2018, 52 (20), 1166011669,  DOI: 10.1021/acs.est.8b03940
    39. 39
      Koch, B. P.; Dittmar, T.; Witt, M.; Kattner, G. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal. Chem.
      IF 7.4SCIEJCI 1.71Q1化学1区Top
      2007, 79 (4), 17581763,  DOI: 10.1021/ac061949s
    40. 40
      Sun, K.; Han, L. F.; Yang, Y.; Xia, X. H.; Yang, Z. F.; Wu, F. C.; Li, F. B.; Feng, Y. F.; Xing, B. S. Application of hydrochar altered soil microbial community composition and the molecular structure of native soil organic carbon in a paddy soil. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2020, 54 (5), 27152725,  DOI: 10.1021/acs.est.9b05864
    41. 41
      Koch, B. P.; Dittmar, T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom.
      IF 2.0SCIEJCI 0.65Q3化学3区
      2006, 20 (5), 926932,  DOI: 10.1002/rcm.2386
    42. 42
      Ding, Y.; Shi, Z. Q.; Ye, Q. T.; Liang, Y. Z.; Liu, M. Q.; Dang, Z.; Wang, Y. J.; Liu, C. X. Chemodiversity of soil dissolved organic matter. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2020, 54 (10), 61746184,  DOI: 10.1021/acs.est.0c01136
    43. 43
      Lawaetz, A. J.; Stedmon, C. A. Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc.
      IF 3.5SCIEJCI 0.91Q1化学3区
      2009, 63 (8), 936940,  DOI: 10.1366/000370209788964548
    44. 44
      Gong, J.; Liu, Y.; Sun, X. O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2008, 42 (4–5), 12381244,  DOI: 10.1016/j.watres.2007.09.020
    45. 45
      Ohno, T.; He, Z.; Sleighter, R. L.; Honeycutt, C. W.; Hatcher, P. G. Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil- and plant biomass- derived organic matter fractions. Environ. Sci. Technol.
      IF 11.4SCIEJCI 1.44Q1环境科学与生态学1区Top
      2010, 44 (22), 85948600,  DOI: 10.1021/es101089t
    46. 46
      LaRowe, D. E.; Van Cappellen, P. Degradation of natural organic matter: A thermodynamic analysis. Geochim. Cosmochim. Acta
      IF 5.0SCIEJCI 1.52Q1地球科学1区Top
      2011, 75 (8), 20302042,  DOI: 10.1016/j.gca.2011.01.020
    47. 47
      Ribeirinho-Soares, S.; Moreira, N. F. F.; Graca, C.; Pereira, M. F. R.; Silva, A. M. T.; Nunes, O. C. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2022, 209, 117932,  DOI: 10.1016/j.watres.2021.117932
    48. 48
      Rehman, Z. U.; Ali, M.; Iftikhar, H.; Leiknes, T. Genome-resolved metagenomic analysis reveals roles of microbial community members in full-scale seawater reverse osmosis plant. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2019, 149, 263271,  DOI: 10.1016/j.watres.2018.11.012
    49. 49
      Wang, H.; Zhang, C.; Wang, Y.-N.; Sun, Y.; Fu, Y.; Gong, Z.; Liu, K. Simultaneous degradation of refractory organics, antibiotics and antibiotic resistance genes from landfill leachate concentrate by GAC/O3. J. Cleaner Prod.
      IF 11.1SCIEJCI 1.53Q1环境科学与生态学1区Top
      2022, 380, 135016,  DOI: 10.1016/j.jclepro.2022.135016
    50. 50
      Tadonléké, R. D. Strong coupling between natural Planctomycetes and changes in the quality of dissolved organic matter in freshwater samples. FEMS Microbiol. Ecol.
      IF 4.2SCIEJCI 0.8Q2生物学3区
      2007, 59 (3), 543555,  DOI: 10.1111/j.1574-6941.2006.00222.x
    51. 51
      Nichols, G. L.; McLauchlin, J. Microbiology and the investigation of waterborne outbreaks: The use of Cryptosporidium typing in the investigation of waterborne disease. In Drinking Water and Infectious Disease: Establishing the Links; CRC Press, 2002, pp 8795. DOI: 10.1201/9781420040524.ch8 .
    52. 52
      Lau, H. Y.; Ashbolt, N. J. The role of biofilms and protozoa in Legionella pathogenesis: Implications for drinking water. J. Appl. Microbiol.
      IF 4.0SCIEJCI 0.68Q2生物学3区
      2009, 107 (2), 368378,  DOI: 10.1111/j.1365-2672.2009.04208.x
    53. 53
      Scheikl, U.; Sommer, R.; Kirschner, A.; Rameder, A.; Schrammel, B.; Zweimuller, I.; Wesner, W.; Hinker, M.; Walochnik, J. Free-living amoebae (FLA) co-occurring with legionellae in industrial waters. Eur. J. Protistol.
      IF 2.9SCIEJCI 0.69Q3生物学2区
      2014, 50 (4), 422429,  DOI: 10.1016/j.ejop.2014.04.002
    54. 54
      Caicedo, C.; Rosenwinkel, K.-H.; Exner, M.; Verstraete, W.; Suchenwirth, R.; Hartemann, P.; Nogueira, R. Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2019, 149, 2134,  DOI: 10.1016/j.watres.2018.10.080
    55. 55
      Gerrity, D.; Arnold, M.; Dickenson, E.; Moser, D.; Sackett, J. D.; Wert, E. C. Microbial community characterization of ozone-biofiltration systems in drinking water and potable reuse applications. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2018, 135, 207219,  DOI: 10.1016/j.watres.2018.02.023
    56. 56
      Zhang, L.; Graham, N.; Li, G.; Yu, W. Divergent accumulation of membrane biofouling by slight elevation of nitrogen and phosphorus in drinking water treatment: Performances and mechanisms. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2022, 222, 118898,  DOI: 10.1016/j.watres.2022.118898
    57. 57
      Desmond, P.; Huisman, K. T.; Sanawar, H.; Farhat, N. M.; Traber, J.; Fridjonsson, E. O.; Johns, M. L.; Flemming, H.-C.; Picioreanu, C.; Vrouwenvelder, J. S. Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure. Water Res.
      IF 12.8SCIEJCI 2.15Q1环境科学与生态学1区Top
      2022, 210, 118031,  DOI: 10.1016/j.watres.2021.118031
    58. 58
      Abada, B.; Safarik, J.; Ishida, K. P.; Chellam, S. Surface characterization of end-of-life reverse osmosis membranes from a full-scale advanced water reuse facility: Combined role of bioorganic materials and silicon on chemically irreversible fouling. J. Membr. Sci.
      IF 9.5SCIEJCI 1.85Q1工程技术1区Top
      2022, 653, 120511,  DOI: 10.1016/j.memsci.2022.120511
    59. 59
      Ivleva, N. P.; Wagner, M.; Horn, H.; Niessner, R.; Haisch, C. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal. Bioanal. Chem.
      IF 4.3SCIEJCI 0.93Q1化学2区
      2009, 393 (1), 197206,  DOI: 10.1007/s00216-008-2470-5
    60. 60
      Laue, H.; Schenk, A.; Li, H.; Lambertsen, L.; Neu, T. R.; Molin, S.; Ullrich, M. S. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiolology 2006, 152 (10), 29092918,  DOI: 10.1099/mic.0.28875-0
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.3c10429.

    • The Supporting Information includes 4 figures and 3 tables, which supplement the results in the manuscript. These comprise the following: schematic diagram of membrane filtration system (Figure S1), FT-ICR mass spectra of influent DOM in membrane filtration systems (Figure S2), XPS full spectra of biofilms (Figure S3), variation in permeate flux of membrane filtration systems in the course of each experiment (Figure S4), principal water quality parameters of surface water (Table S1), area percent of XPS spectral peaks (Table S2), and biofilm surface texture of roughness data set (Table S3) (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts. 配对您的帐户。

Export articles to Mendeley
将文章导出到 Mendeley

Get article recommendations from ACS based on references in your Mendeley library.
根据 Mendeley 库中的参考文献从 ACS 获取文章推荐。

Pair your accounts. 配对您的帐户。

Export articles to Mendeley
将文章导出到 Mendeley

Get article recommendations from ACS based on references in your Mendeley library.
根据 Mendeley 库中的参考文献从 ACS 获取文章推荐。

You’ve supercharged your research process with ACS and Mendeley!
您已经通过ACS和Mendeley增强了您的研究过程!

STEP 1: 步骤1:
Click to create an ACS ID
单击以创建 ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.
请注意:如果您切换到其他设备,系统可能会要求您仅使用您的 ACS ID 重新登录。

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.
请注意:如果您切换到其他设备,系统可能会要求您仅使用您的 ACS ID 重新登录。

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.
请注意:如果您切换到其他设备,系统可能会要求您仅使用您的 ACS ID 重新登录。

MENDELEY PAIRING EXPIRED MENDELEY 配对已过期
Your Mendeley pairing has expired. Please reconnect
您的 Mendeley 配对已过期。请重新连接