Infrastructure digital twin technology: A new paradigm for future construction industry
基础设施数字孪生技术:未来建筑业的新范式
Highlights 亮点
- • ·Identify factors affecting digital twins' implications in construction industry.
确定影响数字孪生在建筑业中的影响的因素。 - • ·Evaluate and synthesise the evidence.
评估和综合证据。 - • ·Suggest a strategic plan for implementation of digital twins in construction industry.
为建筑业实施数字孪生提出战略计划。 - • ·Identify the digital twins and construction 4.0 theory and BIM application.
识别数字孪生和建筑4.0理论和BIM应用。 - • ·The article outlines the research philosophy and plan.
本文概述了研究思路和计划。
Abstract 摘要
传统上,建筑行业采用数字技术的速度缓慢,导致工作流程效率低下,经常出现成本超支和延误。此外,市场动态所固有的分散结构加剧了这些挑战。拥抱数字化和向工业4.0过渡可以通过增加创新和改善协作来大幅提高建筑的效率和生产力,最终减少信息差距和数据差异。该研究旨在评估数字孪生技术在各个建设阶段的潜在集成,从初始设计到项目交付。现有文献强调了数字孪生技术在推进建筑创新和环境可持续性方面的变革力量。这些虚拟复制品对于通过协调生产流程和社会互动来优化工业制造至关重要。 对数字孪生技术在建筑业中的应用进行了重点研究,突出了其简化协调和促进利益相关者之间数据共享的能力。业主越来越认识到数字孪生技术在当地环境中的价值,推动了建筑设计和协作方法的数字化。从项目一开始就集成数字孪生技术,并将其扩展到整个设计阶段,可优化项目交付,提高资产质量,并有助于社会可持续发展。随着数字化与可持续发展目标之间的联系不断加强,建筑业正处于重大变革之旅的尖端。
Keywords 关键词
1. Introduction 1.介绍
近年来技术的快速发展体现在工业4.0的出现及其在各个领域的相应举措,包括智慧城市,工程和建筑[1]。SCEC中的例子包括建筑4.0 [2]、建筑4.0 [3,4]、真实的房地产4.0 [5]、采矿4.0 [6]、教育4.0 [7]、大规模个性化[8]和制造4.0 [9]。工业4.0概念的核心是将物理环境与数字生态系统相结合。 尽管取得了这些进展,但建筑业仍面临着众多挑战,特别是迫切需要加强环境可持续性以及提高运营效率和生产力。近几十年来,信息技术和数字化在推动各行各业的扩张方面发挥了关键作用。然而,建筑行业面临着一系列独特的障碍,需要创新的解决方案来充分利用工业4.0提供的潜在优势。在这种情况下,解决环境问题和提高整体运营效率成为建筑业务持续增长和可持续性的关键。 它是工业革命最新一步的组成部分,工业革命建立在技术发展的基础上,其规模与之前的机械化,电气化和自动化革命性进步相当[11]。建筑部门的特点是生产过程的脱节,这导致了采用技术的缓慢。这两个特点都导致该部门总体上缺乏竞争力[12]。根据哥伦布[13]的说法,该行业尚未采用需要初始投资的新数字技术,尽管这些技术将带来相当大的长期优势。 通过数字化和信息技术,可以在项目执行的所有阶段改进建筑流程、学科、执行者和利益相关者的集成。根据Love&马修斯[14]的说法,行为、程序、期望、关系和业务战略的变化必须涉及技术提供价值和优势。
Gunderson [15]总结说,技术是组织与社会之间共生关系的关键催化剂,特别是在塑造自然环境方面。因此,技术必须在这些复杂的相互作用的框架内进行审查[16,17]。在数字化转型的背景下,建筑信息建模(BIM)已成为建筑行业的重要工具。当代的研究主要集中在旨在增强这一技术的各种方法上。根据Boje et al. [18],今天产生的3D模型不仅仅是一个模型;它还包括组件级别的特定信息和数字化工具,便于数据挖掘和许多利益相关者之间的沟通。根据Lim等人[19]的说法,术语“数字孪生”是指一种已经广泛用于工业领域的数学建模,仿真和优化的技术。在智能制造的背景下,它促进了从内部到外部利益相关者的信息流[20]。
数字孪生技术的概念--在给定的基础设施中集成组件、机械和系统--在全球城市规划对话中获得了越来越多的关注。越来越多的共识是,将数字孪生技术应用于城市和国家景观可以彻底改变建筑行业。这需要在物理实现之前对复杂系统进行实时数据分析和虚拟测试[22]。 这项研究的主要目标是严格审查数字孪生技术作为提高生产力、优化运营效率和促进建筑过程和建筑环境可持续性的工具的有效性和可靠性。这项调查的动机是建筑业面临的基本问题,以改善和整合数字化[12]。现在,数字孪生技术在建筑所涉及的整个制造过程中的研究有一个漏洞。本研究旨在弥合分析城市规划、建筑工地和现场物流的数字孪生技术与研究建筑环境、智能建筑和智慧城市的数字孪生技术之间的差距。
2. Methodology 2.方法
正如Saieg et al. [23]所述,本研究遵循严格的系统评价标准。系统性综述方法使研究团队能够识别,策划和评估与指定质量阈值相关的所有现存文献,Booth Papaioannou强调了这一过程(2012)。采用这一程序框架的一个突出优点是,它能够对重点领域的主题实施连贯和标准化的调查协议。李等人[24]强调。因此,这种方法提供了透明的结果,没有主观偏见,这一主张得到了Rehon等人的证实。[25]。技术上有一些问题。 由于期刊倾向于发表具有重大影响力的研究结果的出版物,因此结果不显著的有价值的研究以及以英语以外的语言撰写的文章将被忽略[24]。这一全面系统性综述的概要见图1。

Fig. 1. Methodology framework.
Fig. 1.方法框架。
根据系统评价指南[23,24],本综述:(1)利用系统的方法分析一定质量和数量的关于数字孪生技术和构建4.0主题的研究;(2)为读者提供客观、透明和标准化的技术路线图,包括数据库选择、研究检索和目标研究选择标准等信息;(3)可复制和可更新;这一系统策略的主要组成部分如下:(1)问题的框架;(2)收集相关研究;(3)选择和评估相关研究;(4)相关研究的内容分析;(5)报告结果和结论[24]。
2.1. Search strategy and the selection of studies
2.1.检索策略和研究选择
2.1.1. Source database selection
2.1.1.源数据库选择
研究人员使用Scopus数据库检索相关文献,因为一些代表新西兰数字孪生技术和建设4.0状况的优秀研究已在国际出版物上发表。因此,我们的研究工作旨在阐述数字孪生技术的差距。我们特别感兴趣的是描绘他们的贡献和潜在的影响。因此,S.李等人[24]被认为是我们调查中特别突出的,因为他们的全面范围和学术庄严。决定使用Scopus作为我们的主要资源并不是武断的。 它在摘要和引文收集方面无与伦比,拥有来自4000家不同出版商的惊人的15,000种期刊-其中一些是学术中坚力量,如Elsevier,Emerald,Taylor和弗朗西斯,电气工程师学会,John Wiley,Springer,Nature和美国化学学会。我们策划的文献涵盖了从2018年到2023年7月出版的作品,提供了一个信息语料库,该语料库在数量上是广泛的,在学术严谨性上是典范,从而确保了对建筑行业数字孪生技术实施的全面审查。
2.1.2. Paper retrieval 2.1.2.论文检索
从2023年1月开始至2023年7月,使用相同的检索技术每月对数据库进行检索。术语“标题”、“摘要”和“关键词”被用作Scopus的标准,键盘为“数字孪生”和“建筑业”或“BIM”。
在任何学术调查中,必须全面探索现存文献,以获取最广泛的相关研究。最初,我们的数据检索阶段涉及从三个不同的数据库中进行详尽的收集,特别是针对阐明数字孪生技术在建筑行业中实施的研究。随后,我们明智地应用选择过滤器来过滤最相关的结果。这项研究强调了一个明显的差距,在我们完善的检索过程中:一个明显的缺乏研究,强调精益建设在新西兰的背景下,强调一个途径成熟,进一步的学术研究。两名独立研究人员在双阶段数据检索后仔细评估了剩余文章,以确保严谨性并减轻偏倚。这需要对论文的标题、摘要、关键词和主要内容进行粒度分析。
为了缩小所考虑的出版物数量,我们采用了纳入和排除标准[24]。要求如下:(1)应删除任何重复的文献;(2)应删除任何与在建筑行业实施数字孪生技术的主题无关的文献;(3)应删除任何提及数字孪生技术概念但未对其进行深入研究的文献。评价结果按照这些标准分为三组:相关、合理相关和不相关。两位研究者首先讨论了被归类为相关和不相关且评价结果不一致的文献以及被归类为中度相关的文献。然后,他们试图就研究中应该包括和排除的内容达成一致。 关于他们无法达成共识的文献,精益建设团队的成员对此进行了辩论,最终达成了谅解。Scopus数据库中首次检索的介绍见表1。
Table 1. Initial search results and the number of papers that appeared for Insight.
表1. Insight的初始搜索结果和出现的论文数量。
Search Engines and Database 搜索引擎和数据库 | Keywords 关键词 | Results (no. of articles) 结果(文章数量) | Limit to 限于 | Document Type 文档类型 |
---|---|---|---|---|
Initial search result 初始检索结果 | ||||
Scopus | "Digital Twin" AND "Construction industry" OR "BIM" “数字孪生”与“建筑业”或“BIM” | 244 | Title, abstract, and the keywords 标题、摘要和关键词 | Conference papers, books, book chapters, and articles 会议论文、书籍、书籍章节和文章 |
Deleting duplicates 删除重复项 | ||||
Scopus | 130 | Title, abstract, and the keywords 标题、摘要和关键词 | Articles 文章 |
文章、书籍章节和会议论文的列表是第一次搜索的结果。随后,除条款外,删除了上述项目。因此,检索仅限于文章。因此,244篇出版物在初始纯化程序后作为文章保留,如图2所示。

Fig. 2. Publications by Year.
图二.按年份出版。
2.2. Content analysis 2.2.内容分析
研究小组研究了主题组,以检查文章对新西兰增长的贡献和未来可行的内容趋势。该团队通过阅读130份选定的出版物发现,该研究涵盖了各种各样的主题,包括以下内容:一些研究了数字孪生技术在建筑4.0,供应链管理和其他研究领域的应用,而另一些则提出了与精益建筑相关的概念,原则,技术和方法[24,26]。虽然其他人研究了数字孪生的功效,但有些人讨论了影响数字孪生技术在建筑行业应用的因素[12,27]。 通过阅读130篇文章的标题、摘要和关键词列表,得出了它们的编码。如果不能从文章的标题、摘要或关键词中收集到必要的信息,就必须阅读全文并进行编码。这些文章使用Microsoft Word管理[28,29]。与同一副主题相关的文章被汇编到一个页面上,文章的副主题根据它们所属的类别用颜色编码。在对所有130篇文章进行深入分析之后,我们确定了四个不同的主题组。编码主要集中在文献的内容和信息的基本方面。(1)论文标题,(2)作者姓名,(3)发表日期,(4)发表论文的期刊名称是编码的基本信息。 研究文献中讨论的主题分为以下四组:(1)数字孪生技术理论和应用;(2)数字孪生技术在建筑业研究领域的实施;(3)数字孪生技术的影响因素;(4)数字孪生的效果评估。每个主题组包括几个副主题。编码和分类的一致性对于保证内容分析的准确性至关重要[[29],[30]]。因此,在这项研究中,一位在建筑行业实施数字孪生技术方面具有丰富研究专长的学者领导了一次培训课程,其中包括两名编码员的系统培训和编码活动。
3. Findings
3.1. Industry 4.0 and construction 4.0
3.2. Role of technology in construction
3.3. Digitalization level in the construction industry
3.4. The idea of digital twins

Fig. 3. Digital twin technology.
Sources: Structville.comTable 2. Modelling and simulation in Construction industry.
Technology | Construction Applications | References |
---|---|---|
Building Information Modelling (BIM) | To enhance structural health monitoring (SHM), it is vital to incorporate disaster planning and damage inspection capabilities. By integrating these aspects, the SHM system can better predict and respond to potential structural issues, ensuring safety and mitigating the impact of disasters. | [63,64] |
Building lifecycle management (BLM), comfort, and energy efficiency are all improved via facility management. Include decision support systems, maintenance work, and anomaly detection. | [50,52] | |
Designing and optimizing assets. Automate construction-related productions by using configure-to-order and lean manufacturing strategies. Maximize the output of precast components. Establish sustainable behaviours. | [76,77] | |
Virtual/Augmented Reality | The partnership between humans and robots. Makes job planning and supervision easier through two-way communication and asset management. | [38] |
Design and planning of cities. Several perspectives and usability testing from individuals participating in the construction process who are not experts. | [38] | |
Point cloud | Visualization and design of assets. Creates city and building models utilizing as-built reconstruction techniques, gestalt design principles, and LiDAR. ML/DL-based point cloud interpretation is used to categorize models. | [54,68] |
It examines how well-established a structure is, predicts possible damage that may occur in a structure, and inspects services for digitized structures in a VR environment. | [53,54] | |
Simulation | Optimizing the design of a structure. Using parametric geometric modelling and high-resolution analysis, prototype development time and cost may decrease. | [65,66] |
Optimizing building performance. Activate infrastructure visualizations for monitoring electricity and the environment. | [53] |
Table 3. Data processing in the Construction industry.
Technology | Construction Applications | References |
---|---|---|
Data Mining | Management of projects. The development of greater automation and intelligence | [78] |
Optimizing building performance. Enhance the energy effectiveness for both old and new structures. | [79] | |
Blockchain | Create sustainable habits. Creates a blockchain-integrated intelligent platform to sustain built-up residential structures. | [80] |
Management of projects. Enhance efficiency by implementing contracts, stakeholder cooperation, and improved service. | [55] | |
Semantic Modelling | Designing and optimizing assets. Re-/configuration of equipment should be permitted for managing any form of interference. Locate a panorama with a localization error of not less than 1 m. Boost the representation of assets. | [48] |
Table 4. Decision support enablers in the Construction industry.
Technology | Construction Applications | References |
---|---|---|
Machine Learning | Monitoring of construction equipment. Analyze how an asset performs under various circumstances. | [81] |
Maximizing on-site construction. Optimize building component structures and the construction process timetable. | [82] | |
Control over safety. Create a DT-based interior safety management system as well as a security system for an elevator with three floors in a commercial building. | [83] | |
Computer Vision | Management of facilities such as the renovation of structures of the 3D structure from CAD sketches and street view pictures, as well as movement recognition for maintenance activities. | [40] |
System for maintaining bridges. Image recognition is used to improve inspection procedures. | [84] |
Table 5. Data acquisition in construction industry.
Technology | Construction Applications | References |
---|---|---|
Internet of Things (IoT) | Improving structural health monitoring (SHM). Infrastructure preventive maintenance should be included. | [85] |
Optimizing building performance. Include interior safety management, sustainability evaluation, energy efficiency, and an improved FM system in the BLM process. | [86] | |
Wireless Sensor Network | Enhance lifetime management and energy saving to reduce building costs. | [87] |
It uses cyber-physical systems in order to improve structural health monitoring (SHM) | [88] | |
Social Media | Boost the management of the construction lifecycle. Plan, design, construction, and usage elements are included. | [89] |
3.5. The transition from BIM to digital twins
3.6. Smart construction site
3.7. Built environment
3.7.1. Buildings
3.7.2. Cities
3.8. Project delivery
Table 6. Benefits of digital twin technology applications categorised based on construction lifecycle stages.
Applications categorised | Lifecycle Stage | Construction Function | DT-Enabled Benefits | Reference |
---|---|---|---|---|
Method |
|
|
| [98,116,118] |
Milieu |
|
|
| [128,134,135] |
Measurement |
|
|
| [117,120,122] |
Material | Operations and maintenance
|
|
| [[125], [126], [127]] |
Machine |
|
|
| [[129], [130], [131],136] |
Manpower |
|
|
| [132,133,137] |
4. Conclusion
CRediT authorship contribution statement
Acknowledgments
References
- [1]Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environmentBuildings, 11 (4) (2021), p. 151
- [2]Dynamic model of implementation efficiency of Building Information Modelling (BIM) in relation to the complexity of buildings and the level of their safetyMATEC Web of Conferences, 146 (2018), p. 1010
- [3]Implications of Construction 4.0 to the workforce and organizational structuresInternational Journal of Construction Management, 22 (2) (2022), pp. 205-217
- [4]Appraisal of stakeholders' willingness to adopt construction 4.0 technologies for construction projectsBuilt. Environ. Proj. Asset. Manag., 10 (4) (2020), pp. 547-565
- [5]The rise of PropTech: emerging industrial technologies and their impact on real estateJ. Property Invest. Finance, 39 (2) (2020), pp. 157-169
- [6]Mining 4.0—the impact of new technology from a work place perspectiveMining, Metallurgy & Exploration, 36 (2019), pp. 701-707
- [7]Engineering education 4.0:—proposal for a new Curricula2018 IEEE Global Engineering Education Conference (EDUCON) (2018), pp. 1273-1282
- [8]Digital Twin enabled mass personalization: a case study of a smart wetland maintenance systemInternational Manufacturing Science and Engineering Conference, vol. 84263 (2020), Article V002T07A025
- [9]A maturity model for manufacturing 4.0 in emerging countriesOperations Management for Social Good: 2018 POMS International Conference in Rio (2020), pp. 393-402
- [10]Information technology investment and digital transformation: the roles of digital transformation strategy and top managementBus. Process Manag. J., 29 (2) (2023), pp. 528-549
- [11]An investigation for integration of deep learning and digital twins towards Construction 4.0Smart and Sustainable Built Environment, 12 (3) (2023), pp. 461-487
- [12]Digital twin and industry 4.0 enablers in building and construction: a SurveyBuildings, 12 (11) (2022), p. 2004
- [13]McKinsey's state of machine learning and AI, 2017Forbes (2017)Forbes. Com/Sites/Louiscolumbus/2017/07/09/Mckinseys-State-of-Machine-Learning-and-Ai-2017Accessed 17th Dec 2020
- [14]The ‘how’of benefits management for digital technology: from engineering to asset managementAutom. ConStruct., 107 (2019), Article 102930
- [15]The sociology of technology before the turn to technologyTechnol. Soc., 47 (2016), pp. 40-48
- [16]10 sociomateriality: challenging the separation of technology, work and organizationAcad. Manag. Ann., 2 (1) (2008), pp. 433-474
- [17]Adoption of blockchain technology through digital twins in the construction industry 4.0: a PESTELS approachBuildings, 11 (12) (2021), p. 670
- [18]A 4D BIM system architecture for the semantic webProceedings of the 18th International Conference on Computing in Civil and Building Engineering: ICCCBE 2020 (2021), pp. 561-573
- [19]Home sharing in marketing and tourism at a tipping point: what do we know, how do we know, and where should we be heading?J. Bus. Res., 122 (2021), pp. 534-566
- [20]A review of the roles of digital twin in CPS-based production systemsProcedia Manuf., 11 (2017), pp. 939-948
- [21]Designing a unique Digital Twin for linear infrastructures lifecycle managementProcedia CIRP, 84 (2019), pp. 545-549
- [22]Digital twins for cities: a state of the art reviewBuilt. Environ., 46 (4) (2020), pp. 547-573
- [23]Interactions of building information modeling, lean and sustainability on the architectural, engineering and construction industry: a systematic reviewJ. Clean. Prod., 174 (2018), pp. 788-806
- [24]A systematic review of lean construction in Mainland ChinaJ. Clean. Prod., 257 (2020), Article 120581
- [25]Doing Your Literature Review: Traditional and Systematic Techniques(2011)
- [26]Digital twins driven supply chain Visibility within logistics: a new paradigm for future logisticsApplied System Innovation, 4 (2) (2021), 10.3390/asi4020029
- [27]Sustainable system for supply chain management in the Malaysian manufacturing industries: a review and research directionInternational Journal of Supply Chain and Operations Resilience, 5 (1) (2021), pp. 79-98
- [28]Barriers and benefits of ICT adoption in the Nigerian construction industry. A comprehensive literature reviewApplied System Innovation, 3 (4) (2020), p. 46
- [29]An integrated paradigm for managing efficient knowledge transfer: towards a more comprehensive philosophy of Transferring knowledge in the construction industryConstruction Economics and Building, 22 (3) (2022), pp. 65-98, 10.5130/AJCEB.v22i3.8050
- [30]Knowledge transfer and management in the construction industry: trends and future challengesInternational Journal of Construction Supply Chain Management, 12 (1) (2022), pp. 72-102, 10.14424/ijcscm120122-72-102
- [31]Priorities of training of digital personnel for industry 4.0: social competencies vs technical competenciesHorizon, 27 (3/4) (2019), pp. 138-144
- [32]Big data challenges and opportunities in the hype of Industry 4.02017 IEEE International Conference on Communications (ICC) (2017), pp. 1-6
- [33]The new elements of digital transformationMIT Sloan Manag. Rev., 62 (2) (2020)
- [34]Enabling technologies and tools for digital twinJ. Manuf. Syst., 58 (2021), pp. 3-21
- [35]A. Sawhney, M. Riley, J. Irizarry (Eds.), Construction 4.0 (2020)
- [36]Integrating construction 4.0 technologies: a four-layer implementation planFrontiers in Built Environment, 144 (2021)
- [37]Engineering Optimization: Theory and PracticeJohn Wiley & Sons (2019)
- [38]Interactive and immersive process-level digital twin for collaborative human–robot construction workJ. Comput. Civ. Eng., 35 (6) (2021), Article 4021023
- [39]Cognitive digital twins for facilitating construction 4.0: challenges and opportunities for implementationFrontiers in Built Environment, 9 (2023), Article 1130115
- [40]Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawingsAutom. ConStruct., 115 (2020), Article 103183
- [41]The Advent of the Internet(2012)12th April, Courses
- [42]Internet of things (IoT): a literature reviewJ. Comput. Commun., 3 (5) (2015), p. 164
- [43]Big Data in the construction industry: a review of present status, opportunities, and future trendsAdv. Eng. Inf., 30 (3) (2016), pp. 500-521
- [44]Big data: a review2013 International Conference on Collaboration Technologies and Systems (CTS) (2013), pp. 42-47
- [45]BIM implementation throughout the UK construction project lifecycle: an analysisAutom. ConStruct., 36 (2013), pp. 145-151
- [46]Integration of digital technologies in the field of construction in the Russian FederationEngineering Management in Production and Services, 11 (3) (2019), pp. 38-47
- [47]Industry 4.0 and the digital twin for building industryIndustry 4.0, 5 (1) (2020), pp. 29-32
- [48]Multi-level voxel representations for digital twin models of tunnel geological environmentInt. J. Appl. Earth Obs. Geoinf., 112 (2022), Article 102887
- [49]An adapted model of cognitive digital twins for building lifecycle managementAppl. Sci., 11 (9) (2021), p. 4276
- [50]Bim and iot sensors integration: a framework for consumption and indoor conditions data monitoring of existing buildingsSustainability, 13 (8) (2021), p. 4496
- [51]Construction 4.0–digital transformation of one of the oldest industriesEcon. Bus. Rev., 21 (3) (2019), p. 4
- [52]Aproximación inicial al enfoque basado en BIM-based Digital Twinning en la toma de decisiones sobre Seguridad y Salud Laboral en la industria de la construcciónDirección y Organización, 76 (2022), pp. 5-12
- [53]A parametric scan-to-FEM framework for the digital twin generation of historic masonry structuresSustainability, 13 (19) (2021), Article 11088
- [54]Mapping the urban forest in detail: from LiDAR point clouds to 3D tree modelsUrban For. Urban Green., 74 (2022), Article 127637
- [55]Integrated digital twin and blockchain framework to support accountable information sharing in construction projectsAutom. ConStruct., 127 (2021), Article 103688
- [56]The Entanglement of Technology and Work in Organizations(2008)
- [57]Technological paradigms and complex technical systems—the case of smart homesRes. Pol., 37 (3) (2008), pp. 508-529
- [58]Paradigm Shift in Technologies and Innovation SystemsSpringer (2019)
- [59]Bridging the digital divide gap in BIM technology adoptionEng. Construct. Architect. Manag., 25 (10) (2018), pp. 1398-1416
- [60]Barriers and facilitators for BIM use among Swedish medium-sized contractors-“We wait until someone tells us to use it.”Visualization in Engineering, 5 (2017), pp. 1-12
- [61]BIM and the small construction firm: a critical perspectiveBuild. Res. Inf., 45 (6) (2017), pp. 696-709
- [62]Implementing ‘Site BIM’: a case study of ICT innovation on a large hospital projectAutom. ConStruct., 30 (2013), pp. 15-24
- [63]BIM based cyber-physical systems for intelligent disaster preventionJournal of Industrial Information Integration, 20 (2020), Article 100171
- [64]Methods for the automated assignment and comparison of building damage geometriesAdv. Eng. Inf., 47 (2021), Article 101186
- [65]Numerical simulation and evaluation of the world's first metal additively manufactured bridgeStructures, 42 (2022), pp. 405-416
- [66]Coupled simulation of thermally active building systems to support a digital twinEnergy Build., 202 (2019), Article 109298
- [67]Comparing project complexity across different industry sectorsComplexity, 2018 (2018)
- [68]From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principlesISPRS J. Photogrammetry Remote Sens., 167 (2020), pp. 418-431
- [69]Digital twin-based smart production management and control framework for the complex product assembly shop-floorInt. J. Adv. Des. Manuf. Technol., 96 (2018), pp. 1149-1163
- [70]Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systemsTransdisciplinary Perspectives on Complex Systems, Springer (2017), pp. 85-113
- [71]The digital twin paradigm for future NASA and US Air Force vehicles53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, vol. 1818 (2012)
- [72]Digital twin data modeling with automationml and a communication methodology for data exchangeIFAC-PapersOnLine, 49 (30) (2016), pp. 12-17
- [73]Digital twins-based remote semi-physical commissioning of flow-type smart manufacturing systemsJ. Clean. Prod., 306 (2021), Article 127278
- [74]A socio-technical perspective on urban analytics: the case of city-scale digital twinsJ. Urban Technol., 28 (1–2) (2021), pp. 263-287
- [75]Integration of industry 4.0 related technologies in construction industry: a framework of cyber-physical systemIEEE Access, 8 (2020), pp. 122908-122922
- [76]Automating construction manufacturing procedures using BIM digital objects (BDOs) Case study of knowledge transfer partnership project in UKConstruct. Innovat., 20 (3) (2020), pp. 345-377
- [77]BIM4D-based scheduling for assembling and lifting in precast-enabled constructionAutom. ConStruct., 133 (2022), Article 103999
- [78]A BIM-data mining integrated digital twin framework for advanced project managementAutom. ConStruct., 124 (2021), Article 103564
- [79]Optimizing legacy building operation: the evolution into data-driven predictive cyber-physical systemsEnergy Build., 148 (2017), pp. 257-279
- [80]A blockchain-and IoT-based smart product-service system for the sustainability of prefabricated housing constructionJ. Clean. Prod., 286 (2021), Article 125391
- [81]Applications of deep learning in intelligent constructionStructural Health Monitoring Based on Data Science Techniques (2022), pp. 227-245
- [82]Intelligent action planning for well construction operations demonstrated for hole Cleaning optimization and automationEnergies, 15 (15) (2022), p. 5749
- [83]Digital triplet approach for real-time monitoring and control of an elevator security systemDesigns, 4 (2) (2020), p. 9
- [84]Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin modelStructure and Infrastructure Engineering, 15 (10) (2019), pp. 1319-1332
- [85]Structural health monitoring and prognostic of industrial plants and civil structures: a sensor to cloud architectureIEEE Instrum. Meas. Mag., 23 (9) (2020), pp. 21-27
- [86]A framework for an indoor safety management system based on digital twinSensors, 20 (20) (2020), p. 5771
- [87]Dense Indoor Sensor Networks: towards passively sensing human presence with LORAWANPervasive Mob. Comput., 84 (2022), Article 101640
- [88]Survey and study on intelligent monitoring and health management for large civil structureInternational Journal of Intelligent Robotics and Applications, 3 (2019), pp. 239-254
- [89]A social–product–process framework for constructionBuild. Res. Inf., 48 (7) (2020), pp. 747-762
- [90]Understanding adoption and use of BIM as the creation of actor networksAutom. ConStruct., 19 (1) (2010), pp. 66-72
- [91]Towards a semantic 3D model of Sofia cityComputational Science and its Applications–ICCSA 2021: 21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part IV, vol. 21 (2021), pp. 230-241
- [92]Seven metaphors to understand digital twins of built assetsIEEE Access, 9 (2021), pp. 27167-27181
- [93]Towards a semantic construction digital twin: directions for future researchAutom. ConStruct., 114 (2020), Article 103179
- [94]Digital twin research in the AECO-FM industryJ. Build. Eng., 40 (2021), Article 102730
- [95]A conceptual digital business model for construction logistics consultants, featuring a sociomaterial blockchain solution for integrated economic, material and information flowsJ. Inf. Technol. Constr., 25 (29) (2020), pp. 500-521
- [96]Technologies for safety and health management in construction: current use, implementation benefits and limitations, and adoption barriersJ. Build. Eng., 29 (2020), Article 101212
- [97]BIM-based fall hazard identification and prevention in construction safety planningSaf. Sci., 72 (2015), pp. 31-45
- [98]Peeking into the void: digital twins for construction site logisticsComput. Ind., 121 (2020), Article 103264
- [99]Towards a digital twin-based smart built environmentBIM-Enabled Cognitive Computing for Smart Built Environment (2021), pp. 21-44
- [100]Digital twins in built environments: an investigation of the characteristics, applications, and challengesBuildings, 12 (2) (2022), p. 120
- [101]From BIM to digital twins: a systematic review of the evolution of intelligent building representations in the AEC-FM industryJ. Inf. Technol. Construct., 26 (2021)
- [102]From smart construction objects to cognitive facility ManagementCyber-Physical Systems in the Built Environment (2020), pp. 273-296
- [103]Digital twin of a city: review of technology serving city needsInt. J. Appl. Earth Obs. Geoinf. (2022), Article 102915
- [104]Digital Twins for the built environment: learning from conceptual and process models in manufacturingAdv. Eng. Inf., 49 (2021), Article 101332
- [105]Digital twin-enabled built environment sensing and monitoring through semantic enrichment of BIM with SensorMLAutom. ConStruct., 144 (2022), Article 104625
- [106]Digital twinning of the built environment–an interdisciplinary topic for innovation in didacticsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4 (2020), pp. 231-237
- [107]Automated generation of digital twin for a built environment using scan and object detection as input for production planningJournal of Industrial Information Integration, 33 (2023), Article 100462
- [108]Digital twins for performance management in the built environmentJournal of Industrial Information Integration, 33 (2023), Article 100445
- [109]Digital twin for sustainability evaluation of railway station buildingsFrontiers in Built Environment, 4 (2018), p. 77
- [110]A mixed activity-based costing and resource constraint optimal decision model for IoT-oriented intelligent building management system portfoliosSustain. Cities Soc., 60 (2020), Article 102142
- [111]Digital construction: from point solutions to IoT ecosystemAutom. ConStruct., 93 (2018), pp. 35-46
- [112]Appropriate technology and energy security: from the perspective of biased technological changeTechnol. Forecast. Soc. Change, 177 (2022), Article 121530
- [113]Digital geoTwin Vienna: towards a Digital Twin City as Geodata HubSpringer (2020)
- [114]Smart city based on digital twinsComputational Urban Science, 1 (2021), pp. 1-11
- [115]Digital twins and blockchain–proof of conceptProcedia Cirp, 93 (2020), pp. 251-255
- [116]Cyber physical system for safety management in smart construction siteEng. Construct. Architect. Manag., 28 (3) (2021), pp. 788-808
- [117]Carbon emission reduction in prefabrication construction during materialization stage: a BIM-based life-cycle assessment approachSci. Total Environ., 723 (2020), Article 137870
- [118]Digital twin-based safety risk coupling of prefabricated building hoistingSensors, 21 (11) (2021), p. 3583
- [119]Blockchain technology: emerging applications and use cases for secure and trustworthy smart systemsJournal of Cybersecurity and Privacy, 1 (1) (2020), pp. 4-18
- [120]Structural digital twin framework: Formulation and technology integrationAutom. ConStruct., 140 (2022), Article 104333
- [121]Framework for decentralised architectural design BIM and Blockchain integrationInt. J. Architect. Comput., 19 (2) (2021), pp. 157-173
- [122]Development of digital twin for intelligent maintenance of civil infrastructureSustainability, 14 (14) (2022), p. 8664
- [123]Barriers to Building Information Modeling (BIM) deployment in small construction projects: Malaysian construction industrySustainability, 15 (3) (2023), p. 2477
- [124]Is it just too good to be true? Unearthing the benefits of disruptive technologyInt. J. Inf. Manag., 52 (2020), Article 102096
- [125]City Regeneration through modular phase change materials (PCM) Envelopes for Climate Neutral buildingsSustainability, 14 (14) (2022), p. 8902
- [126]Digital twins and road construction using secondary raw materialsJ. Adv. Transport., 2021 (2021), pp. 1-12
- [127]BIM-enabled computerized design and digital fabrication of industrialized buildings: a case studyJ. Clean. Prod., 278 (2021), Article 123505
- [128]The digital twin of the city of Zurich for urban planningPFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88 (1) (2020), pp. 99-112
- [129]Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic constructionAdv. Eng. Inf., 53 (2022), Article 101710
- [130]Towards fully BIM-enabled building automation and robotics: a perspective of lifecycle information flowComput. Ind., 135 (2022), Article 103570
- [131]A cyber–physical system (CPS) for planning and monitoring mobile cranes on construction sitesProceedings of the Institution of Civil Engineers-Management, Procurement and Law, 171 (6) (2018), pp. 240-250
- [132]Digital twin and web-based virtual gaming technologies for online education: a case of construction management and engineeringAppl. Sci., 10 (13) (2020), p. 4678
- [133]Cyber-physical postural training system for construction workersAutom. ConStruct., 117 (2020), Article 103272
- [134]Digital twins and artificial intelligence in transportation infrastructure: classification, application, and future research directionsComput. Electr. Eng., 101 (2022), Article 107983
- [135]Digital twins for construction sites: concepts, LoD definition, and applicationsJ. Manag. Eng., 38 (2) (2022), Article 4021094
- [136]Digital twin-driven virtual sensor approach for safe construction operations of trailing suction hopper dredgerAutom. ConStruct., 132 (2021), Article 103961
- [137]Real-time mixed reality-based visual warning for construction workforce safetyAutom. ConStruct., 139 (2022), Article 104252
- [138]The transformative business modelHarv. Bus. Rev., 94 (10) (2016), pp. 91-98
Cited by (14)
Enhancing asset management: Integrating digital twins for continuous permitting and compliance - A systematic literature review
2025, Journal of Building Engineering3D laser scanning for automated structural modeling and deviation monitoring of multi-section prefabricated cable domes
2024, Automation in ConstructionCitation Excerpt :Therefore, substantial efforts have been made to develop better solutions for more efficient, thorough, and precise inspection [16]. The development of digital-twin technology has provided new insight into this issue [17–20]. The digital-twin technology involves creating precise digital replicas of real-world entities and incorporating real-world data into models for various applications [21].
Sustainable locating of petroleum refinery projects
2024, Technology in SocietyCitation Excerpt :Another applicable technology potentially can be digital twins, which also can be used in locating problems through real-time simulation. In this regard, a recent study researched the application of digital twins in future construction projects [26]. Finally, sustainability frameworks integrating the triple bottom line assessment are proposed in the literature, such as the quantitative sustainability assessment framework for petroleum refinery projects proposed by Hasheminasab et al. [27], providing a systematic approach to evaluating environmental and social impacts.
Challenges of Robotic Technology in Sustainable Construction Practice
2024, Sustainability (Switzerland)