这是用户在 2024-6-7 11:33 为 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841346/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
跳到主要内容
U.S. flag

An official website of the United States government

Access keys 访问密钥 NCBI Homepage NCBI主页 MyNCBI Homepage MyNCBI主页 Main Content 事由 Main Navigation 主导航
2023 Feb; 88: 104432.
电子生物医学。2023年2月;88: 104432.
Published online 2023 Jan 10. doi: 10.1016/j.ebiom.2022.104432
PMCID: PMC9841346 PMCID:PMC9841346
PMID: 36634566 PMID:36634566

Mitochondrial related genome-wide Mendelian randomization identifies putatively causal genes for multiple cancer types
线粒体相关全基因组孟德尔随机化可识别多种癌症类型的假定致病基因

Yanni Li,a, Kristina Sundquist,a,b,c,d Naiqi Zhang,a Xiao Wang,a Jan Sundquist,a,b,c,d and Ashfaque A. Memona
Yanni Li、 a, Kristina Sundquist、 a, b, c, d Naiqi Zhang、 a Xiao Wang、 a Jan Sundquist a, b, c, d 和 Ashfaque A. Memon a

Associated Data 相关数据

Supplementary Materials 补充材料

Summary 总结

Background 背景

Mitochondrial dysfunction is a hallmark of cancer. However, it is unclear whether it is a cause of cancer. This two-sample Mendelian randomization (MR) analyses, uses genetic instruments to proxy the exposure of mitochondrial dysfunction and cancer summary statistics as outcomes, allowing for causal inferences.
线粒体功能障碍是癌症的标志。然而,目前尚不清楚它是否是癌症的原因。这种双样本孟德尔随机化 (MR) 分析使用遗传仪器将线粒体功能障碍的暴露和癌症汇总统计数据代理为结果,从而可以进行因果推断。

Methods 方法

Summary statistics from 18 common cancers (2107–491,974 participants), gene expression, DNA methylation and protein expression quantitative trait loci (eQTL, mQTL and pQTL, respectively, 1000–31,684 participants) on individuals of European ancestry, were included. Genetic variants located within or close to the 1136 mitochondrial-related genes (in cis) and robustly associated with the mitochondrial molecular alterations were used as instrumental variables, and their causal associations with cancers were examined using summary-data-based MR (SMR) analyses. An additional five MR methods were used as sensitivity analyses to confirm the casual associations. A Bayesian test for colocalization between mitochondrial molecular QTLs and cancer risk loci was performed to provide insights into the potential regulatory mechanisms of risk variants on cancers.
包括来自18种常见癌症(2107-491,974名受试者)、基因表达、DNA甲基化和蛋白质表达数量性状位点(分别为eQTL、mQTL和pQTL,1000-31,684名受试者)的汇总统计数据。位于 1136 个线粒体相关基因(顺式)内或附近的遗传变异与线粒体分子改变密切相关,用作工具变量,并使用基于汇总数据的 MR (SMR) 分析检查它们与癌症的因果关系。另外五种MR方法被用作敏感性分析,以确认偶然关联。对线粒体分子QTL和癌症风险位点之间的共定位进行了贝叶斯检验,以深入了解癌症风险变异的潜在调控机制。

Findings 发现

We identified potential causal relationships between mitochondrial-related genes and breast, prostate, gastric, lung cancer and melanoma by primary SMR analyses. The sensitivity and the colocalization analyses further refined four genes that have causal effects on three types of cancer. We found strong evidence of positive association of FDPS expression level with breast cancer risk (OR per SD, 0.66; 95% CI, 0.49–0.83; P = 9.77 × 10−7), NSUN4 expression level with both breast cancer risk (OR per SD, 1.05; 95% CI, 1.03–1.07; P = 5.24 × 10−6) and prostate cancer risk (OR per SD, 1.06; 95% CI, 1.03–1.09; P = 1.01 × 10−5), NSUN4 methylation level with both breast and prostate cancer risk, and VARS2 methylation level with lung cancer risk.
我们通过初级SMR分析确定了线粒体相关基因与乳腺癌、前列腺癌、胃癌、肺癌和黑色素瘤之间的潜在因果关系。敏感性和共定位分析进一步完善了对三种癌症有因果关系的四个基因。我们发现了FDPS表达水平与乳腺癌风险呈正相关的有力证据(OR标准差,0.66;95%CI,0.49-0.83;P = 9.77 × 10 −7 ),NSUN4 表达水平与乳腺癌风险(OR per SD,1.05;95% CI,1.03–1.07;P = 5.24 × 10 −6 ) 和前列腺癌风险(OR 根据 SD,1.06;95% CI,1.03–1.09;P = 1.01 × 10 −5 ),NSUN4 甲基化水平与乳腺癌和前列腺癌风险相关,VARS2 甲基化水平与肺癌风险相关。

Interpretations 解释

This data-driven MR study demonstrated the causal role of mitochondrial dysfunction in multiple cancers. Furthermore, this study identified candidate genes that can be the targets of potential pharmacological agents for cancer prevention.
这项数据驱动的 MR 研究证明了线粒体功能障碍在多种癌症中的因果作用。此外,这项研究还确定了候选基因,这些候选基因可以作为预防癌症的潜在药物的靶标。

Funding 资金

This work was supported by Styrelsen för Allmänna Sjukhusets i Malmö Stiftelse för bekämpande av cancer (20211025).
这项工作得到了马尔默总医院癌症预防基金会(20211025)董事会的支持。

Keywords: Mendelian randomization, Mitochondrial dysfunction, Cancers, Colocalization, Pharmaceutical targets
关键词:孟德尔随机化, 线粒体功能障碍, 癌症, 共定位, 药物靶点
Abbreviations: MR, Mendelian randomization; SMR, Summary-data-based MR; MtDNA, Mitochondrial DNA; IVs, Instrumental variables; GWAS, Genome-wide association studies; SNPs, Single nucleotide polymorphisms; eQTL, Expression quantitative trait loci; mQTL, Methylation quantitative trait loci; pQTL, Protein quantitative trait loci; HEIDI, Heterogeneity independent instruments; LD, Linkage disequilibrium; CpG, Cytosine-guanine dinucleotides; IVW, Inverse variance weighting; MR-PRESSO, MR Pleiotropy Residual Sum and Outlier
缩写:MR,孟德尔随机化;SMR,基于汇总数据的MR;MtDNA,线粒体DNA;IVs, 工具变量;GWAS,全基因组关联研究;SNPs, 单核苷酸多态性;eQTL: 表达数量性状位点;mQTL, 甲基化数量性状位点;pQTL: 蛋白质数量性状位点;HEIDI,异质性独立仪器;LD: 联动不平衡;CpG,胞嘧啶-鸟嘌呤二核苷酸;IVW, 反方差加权;MR-PRESSO, MR 多效性残差和异常值

Research in context 情境研究

Evidence before this study
本研究前的证据

Previous studies have shown associations between dysfunctions in mitochondrial DNA (mtDNA), mtDNA copy number or mitochondrial-related nuclear genes and different cancer risks. However, these studies did not investigate causal inferences between mitochondrial dysfunction and cancers. We searched PubMed for studies in any language using the search terms “mitochondrion OR mitochondria OR mitochondrial dysfunction” AND “Mendelian randomization OR Mendelian randomisation” AND “cancer OR cancers”. Of the yielded 4 studies, three studies’ outcomes were COVID-19, dementia and type 2 diabetes, respectively. The other study was a meta-analysis study that presented heterogeneous estimates for the effect of mtDNA copy numbers on different cancer risks and suggested applying Mendelian randomization for unraveling the casual correlation of mtDNA copy number with cancer risk.
先前的研究表明,线粒体DNA(mtDNA)、mtDNA拷贝数或线粒体相关核基因的功能障碍与不同的癌症风险之间存在关联。然而,这些研究没有调查线粒体功能障碍与癌症之间的因果推断。我们使用检索词“线粒体或线粒体或线粒体功能障碍”和“孟德尔随机化”和“癌症或癌症”检索了PubMed的任何语言的研究。在产生的4项研究中,有3项研究的结局分别是COVID-19、痴呆和2型糖尿病。另一项研究是一项荟萃分析研究,该研究对mtDNA拷贝数对不同癌症风险的影响进行了异质性估计,并建议应用孟德尔随机化来揭示mtDNA拷贝数与癌症风险的偶然相关性。

Added value of this study
本研究的附加值

This data-driven study fills the gap by using Mendelian randomization to examine the potential causal relationship between mitochondrial dysfunction characterized by genetic predisposition in all mitochondrial-related genes and common cancer risks. Our findings provide evidence for the potential causal effect of mitochondrial dysfunction on breast, prostate and lung cancer, after sensitivity and colocalization analyses. In addition, we identified a shared putative causal gene, NSUN4, for both breast and prostate cancer. All associations underscore the importance of mitochondrial dysfunction in the pathogenesis of multiple cancer types.
这项数据驱动的研究通过使用孟德尔随机化来检查线粒体功能障碍(以所有线粒体相关基因的遗传易感性为特征)与常见癌症风险之间的潜在因果关系,从而填补了这一空白。我们的研究结果为线粒体功能障碍对乳腺癌、前列腺癌和肺癌的潜在因果效应提供了证据,经过敏感性和共定位分析。此外,我们还鉴定了乳腺癌和前列腺癌的共同推定致病基因NSUN4。所有关联都强调了线粒体功能障碍在多种癌症类型发病机制中的重要性。

Implications of all the available evidence
所有现有证据的意义

Our data-driven analyses support the increasing values in the application of publicly accessible datasets to inform public health. To date, our European population-based large-scale study and the available evidence, indicate that individuals with mitochondrial dysfunction have a higher risk of a certain type of cancer, and point to the necessity of objective measurement of mitochondrial function in epidemiologic studies. For the identified putative causal genes, it is feasible to be added to the genetic screening project for better cancer prevention. True causal effects of mitochondrial dysfunction on cancers might be more complex and need larger genetic datasets and sophisticated experimental studies to further confirm.
我们的数据驱动分析支持在应用可公开访问的数据集为公共卫生提供信息方面日益增长的价值。迄今为止,我们基于欧洲人群的大规模研究和现有证据表明,线粒体功能障碍患者患某种类型癌症的风险更高,并指出在流行病学研究中客观测量线粒体功能的必要性。对于已确定的推定致病基因,可以将其添加到基因筛查项目中,以更好地预防癌症。线粒体功能障碍对癌症的真正因果影响可能更加复杂,需要更大的遗传数据集和复杂的实验研究来进一步证实。

Introduction 介绍

Mitochondria are the essential organelles that regulate cellular energy production, metabolism, proliferation and apoptosis. An altered mitochondrial function is a well-known hallmark of cancer, which is commonly characterized by abnormal mitochondrial morphology, deficient mitochondrial copy numbers, aberrant energetic metabolism, accumulation of reactive oxygen species (ROS), imbalanced biogenesis and mitophagy. A mild mitochondrial dysfunction may enhance the amplification and invasion of cancer cells while a severe level of dysfunction may cause cell death to inhibit tumorigenesis. Thus, understanding the roles of mitochondrial dysfunction is essential for cancer research. Mitochondrial dysfunction is a complex cellular process that exhibits a spectrum of pathological conditions although there is no specific biomarker/s to define mitochondrial dysfunction., With the exception of the 37 critical bioenergetic genes encoded by the mitochondrion itself, the mitochondrial-related genome encompasses more than 1000 additional nuclear genes, and the genetic predisposition in those genes will potentially cause mitochondrial dysfunction. Many experimental and epidemiological studies have attempted to infer the causal relationship between mitochondrial dysfunction and cancer by exploring the selective mitochondrial DNA (mtDNA) and mitochondrial-related nuclear DNA mutations that affect mitochondrial function and are associated with the risk of specific cancer types., However, the results generated from those studies are inconsistent and one of the reasons is the methodologies used in these studies, which do not consider the effect of confounders to differentiate between cause and consequence. Therefore, a comprehensive analysis of all genes related to mitochondrial dysfunction in multiple cancer types by a robust method is required to determine whether mitochondrial dysfunction per se is a cause or consequence of cancer.
线粒体是调节细胞能量产生、代谢、增殖和凋亡的重要细胞器。线粒体功能改变是癌症的一个众所周知的标志,其通常特征是线粒体形态异常、线粒体拷贝数不足、能量代谢异常、活性氧 (ROS) 积累、生物发生和线粒体自噬失衡。 1 轻度线粒体功能障碍可能会增强癌细胞的扩增和侵袭,而严重的功能障碍可能会导致细胞死亡以抑制肿瘤发生。因此,了解线粒体功能障碍的作用对于癌症研究至关重要。线粒体功能障碍是一个复杂的细胞过程,尽管没有特定的生物标志物来定义线粒体功能障碍,但它表现出一系列病理状况。 2 3 除了线粒体本身编码的 37 个关键生物能量基因外,线粒体相关基因组包含 1000 多个额外的核基因,这些基因的遗传易感性可能会导致线粒体功能障碍。 4 许多实验和流行病学研究试图通过探索影响线粒体功能的选择性线粒体 DNA (mtDNA) 和线粒体相关核 DNA 突变来推断线粒体功能障碍与癌症之间的因果关系,这些突变与特定癌症类型的风险相关。 5 6 然而,这些研究产生的结果不一致,原因之一是这些研究中使用的方法,这些方法没有考虑混杂因素对区分原因和结果的影响。 因此,需要通过稳健的方法对多种癌症类型中与线粒体功能障碍相关的所有基因进行全面分析,以确定线粒体功能障碍本身是癌症的原因还是后果。

Mendelian randomization (MR) is a method that uses genetic variants as instrumental variables (IVs) to explore the potential causal association between lifetime exposure and outcome. In MR, the use of the conceptional random allocation of alleles avoids bias from unobserved confounders such as lifestyle and environmental factors and the problem with reverse causality. The two-sample MR allows for the assessment of the IVs-exposure association and IVs-outcome association generated from different populations. Genome-wide association studies (GWAS) exploit the genetic associations with traits based on single nucleotide polymorphisms (SNPs) and integration of the GWAS data with gene expression and methylation GWAS have allowed for the identification of expression or methylation quantitative trait loci (eQTL or mQTL)., A summary-data-based MR (SMR) has extended and developed the conception of MR that can utilize the independent GWAS summary statistics data and QTL data to prioritize potential causal genes from hits identified in GWAS. By applying this method followed by a heterogeneity independent instruments (HEIDI) test, the potential causal associations were distinguished from the widespread linkage disequilibrium (LD) in the genome.
孟德尔随机化 (MR) 是一种使用遗传变异作为工具变量 (IV) 来探索终生暴露与结果之间潜在因果关系的方法。在MR中,使用等位基因的概念随机分配可以避免来自未观察到的混杂因素的偏差,例如生活方式和环境因素以及反向因果关系问题。 7 双样本 MR 允许评估来自不同人群的 IVs 暴露关联和 IV s-结果关联。 8 全基因组关联研究 (GWAS) 利用基于单核苷酸多态性 (SNP) 的性状的遗传关联,并将 GWAS 数据与基因表达和甲基化 GWAS 整合,从而可以鉴定表达或甲基化数量性状位点(eQTL 或 mQTL)。 9 10 基于汇总数据的 MR (SMR) 扩展并发展了 MR 的概念,该概念可以利用独立的 GWAS 汇总统计数据和 QTL 数据来确定 GWAS 中确定的命中的潜在致病基因的优先级。 9 通过应用这种方法,然后进行异质性独立仪器 (HEIDI) 检验,将潜在的因果关联与基因组中广泛的连锁不平衡 (LD) 区分开来。

To our knowledge, there has been no MR study investigating the potential causal relationship between mitochondrial dysfunction and the risk of common types of cancer. Therefore, in this study, we aimed to investigate the causal relationship between mitochondrial dysfunction characterized by genetic predisposition in mitochondrial-related genes and multiple cancer types by the comprehensive two-sample MR analysis.
据我们所知,目前还没有MR研究调查线粒体功能障碍与常见类型癌症风险之间的潜在因果关系。因此,本研究旨在通过全面的双样本MR分析,探讨以线粒体相关基因遗传易感性为特征的线粒体功能障碍与多种癌症类型之间的因果关系。

Methods 方法

This study was conducted following the reporting guideline of the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE, Supplementary STROBE-MR checklist table).
本研究是按照加强流行病学观察性研究报告的报告指南(STROBE,补充 STROBE-MR 清单表)进行。 11

Study design 研究设计

Fig. 1 summarizes the design of the present study and the workflow of the selection of genetic variants and analytical methods. To determine the mitochondrial dysfunction characterized by the genetic predisposition in the mitochondrial-related genome constituting from both mitochondrion and nuclear, we extracted the inventory of 1136 known mitochondrial-related genes from the human MitoCarta3.0 database.
图1总结了本研究的设计以及遗传变异选择和分析方法的工作流程。为了确定线粒体功能障碍的特征,以线粒体和核构成的线粒体相关基因组的遗传易感性为特征,我们从人类 MitoCarta3.0 数据库中提取了 1136 个已知线粒体相关基因的库存。 4

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

Flowchart of the analyses performed.
所执行分析的流程图。

To generate eQTL instruments for mitochondrial genes, genetic variants located within 1000 kb on either side of the coding sequence (in cis) that are robustly associated with gene expression were extracted using eQTLs summary statistics obtained from the eQTLGen Consortium (https://www.eqtlgen.org/cis-eqtls.html). The eQTLGen Consortium contains information on 10,317 trait-associated single nucleotide polymorphisms (SNPs) from 31,684 individuals. However, the eQTLGen did not include variants associated with the expression level of genes located on the X and Y chromosomes and mtDNA. From cis-eQTL, 662,968 SNPs associated with the expression of 1013 mitochondrial-related transcripts were selected. MR cis-mQTL instruments for genetic variants robustly associated with mitochondrial gene methylation were extracted using summary data from a meta-analysis of two cohorts (n = 1980). In total, 931,304 SNPs were selected corresponding to 2550 mitochondrial-related DNA methylation CpG sites. MR cis-pQTL instruments for genetic variants associated with the expression of mitochondrial-related proteins were selected from five proteome datasets,, , , , and 23 SNPs that were robustly associated with 23 mitochondrial-related protein expressions were selected. All SNPs included in the initial analysis had at least a suggestive Psnp-mitodys <5 × 10−8.
为了生成线粒体基因的 eQTL 工具,使用从 eQTLGen 联盟 (https://www.eqtlgen.org/cis-eqtls.html) 获得的 eQTL 汇总统计提取位于编码序列两侧(顺式)两侧 1000 kb 以内且与基因表达密切相关的遗传变异。eQTLGen 联盟包含来自 31,684 个个体的 10,317 个性状相关单核苷酸多态性 (SNP) 的信息。 12 然而,eQTLGen不包括与位于X和Y染色体和mtDNA上的基因表达水平相关的变异。从cis-eQTL中,筛选出662,968个与1013个线粒体相关转录本表达相关的SNP。使用来自两个队列 (n = 1980) 的荟萃分析的汇总数据提取与线粒体基因甲基化密切相关的遗传变异的 MR cis-mQTL 工具。 10 总共选择了 931,304 个 SNP,对应于 2550 个线粒体相关 DNA 甲基化 CpG 位点。从5个蛋白质组数据集中选取与线粒体相关蛋白表达相关的遗传变异的MR顺式-pQTL仪器,选择13、14、15、16、17和23个SNPs,这些SNPs与23个线粒体相关蛋白表达密切相关。初始分析中包含的所有 SNP 都至少具有提示性 snp-mitodys P <5 × 10 −8

GWAS summary statistics for cancer outcomes were obtained from publicly available databases. A total of 18 types of cancers were included. The details of all QTL and GWAS datasets for this study are presented in Supplementary Table S1 and Supplementary methods.
GWAS癌症结局的汇总统计数据来自公开可用的数据库。共纳入18种癌症。本研究的所有QTL和GWAS数据集的详细信息在补充表S1和补充方法中列出。

Statistical analysis 统计分析

The main analyses involved three stages: primary SMR analyses, sensitivity analyses and colocalization analyses.
主要分析涉及三个阶段:初级SMR分析、敏感性分析和共定位分析。

Mendelian randomization requires meeting three core assumptions (Supplementary methods). As an extension of the MR concept, SMR was developed to estimate the pleiotropic association between genetically determined traits (e.g., gene expression, DNA methylation, or protein abundance as exposure) and complex traits of interest (e.g., disease phenotype as outcome). To meet MR assumptions in our study, the causal association was calculated as:
孟德尔随机化需要满足三个核心假设(补充方法)。作为 MR 概念的扩展,开发了 SMR 来估计遗传决定性状(例如,基因表达、DNA 甲基化或作为暴露的蛋白质丰度)与感兴趣的复杂性状(例如,疾病表型作为结果)之间的多效性关联。 9 为了满足我们研究中的 MR 假设,因果关联计算如下:

βmitodyscancer=βSNPcancer/βSNPmitodys.

βmitodys-cancer is calculated as the estimated effect size of mitochondrial dysfunction on cancer, where βSNP-mitodys is the estimated effect size of SNP on mitochondrial dysfunction (a genetic variant—exposure trait association) and βSNP-cancer is the estimated effect size of SNP on cancer (the same genetic variant—outcome trait association).
mitodys-cancer β 计算为线粒体功能障碍对癌症的估计效应大小,其中 β SNP-mitodys 是 SNP 对线粒体功能障碍的估计效应大小(遗传变异 - 暴露性状关联),β SNP-cancer 是 SNP 对癌症的估计效应量(相同的遗传变异 - 结果性状关联)。

Here, we performed SMR using the Linux version 1.0.3 of SMR software in the command line using default options (https://yanglab.westlake.edu.cn/software/smr/#Overview). Odds ratio (OR) estimates of mitochondrial dysfunction on the risk of cancer were obtained as follows: ORmitodys-cancer = exp (βmitodys-cancer), where OR is the odds ratio estimate per 1-ln increment in mitochondrial genome levels and exp is the base of the natural logarithm.
在这里,我们使用默认选项 ( https://yanglab.westlake.edu.cn/software/smr/#Overview) 在命令行中使用 SMR 软件的 Linux 版本 1.0.3 执行 SMR。线粒体功能障碍对癌症风险的比值比 (OR) 估计值如下:OR mitodys-cancer = exp (β mitodys-cancer ),其中 OR 是线粒体基因组水平每 1-ln 增量的比值比估计值,exp 是自然对数的底数。

Sensitivity analyses were conducted after completing the primary SMR analyses with 5 additional MR methods, including MR Egger, weighted median, inverse variance weighting (IVW), simple mode and weighted mode by using the TwoSampleMR R package. Each of these methods calculates the estimates of the causal effect based on slightly different assumptions about the instrument validity and therefore provide robust evidence of our findings (Supplementary methods). All analyses in this part were performed using R software (version 4.1.2, www.r-project.org).
使用TwoSampleMR R软件包,使用MR Egger、加权中位数、逆方差加权(IVW)、简单模式和加权模式等5种额外的MR方法完成主要SMR分析后,进行灵敏度分析。这些方法中的每一种都基于对工具有效性的略有不同的假设来计算因果效应的估计值,因此为我们的发现提供了强有力的证据(补充方法)。本部分的所有分析均使用 R 软件(版本 4.1.2、www.r-project.org)执行。

HEIDI test is one of the colocalization methods that use external reference to estimate the LD. To refine the results, we performed another Bayesian test for the colocalization of two traits using the coloc R package (https://chr1swallace.github.io/coloc/, version 5.1.0) to estimate the posterior probability of shared variants. For each leading SNP in the investigated cancer GWAS database, all SNPs within 100 kb up and downstream of the leading SNPs were retrieved for colocalization analysis to analyze the posterior probability of H4 (PP.H4), and PP.H4 > 0.8 is the well-applied cut-off for the evidence of colocalization of the GWAS and QTL association (Supplementary methods).
HEIDI检验是使用外部参考来估计LD的共定位方法之一。为了完善结果,我们使用 coloc R 包(https://chr1swallace.github.io/coloc/,5.1.0 版)对两个性状的共定位进行了另一次贝叶斯检验,以估计共享变异的后验概率。 18 对于所研究的癌症GWAS数据库中的每个前导SNP,检索前导SNP上下游100 kb范围内的所有SNP进行共定位分析,以分析H4(PP.H4)和PP。H4 > 0.8 是 GWAS 和 QTL 关联共定位证据的良好应用临界值(补充方法)。

Role of the funding source
资金来源的作用

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
该研究的资助者在研究设计、数据收集、数据分析、数据解释或报告撰写方面没有任何作用。

Ethics 伦理学

All summarized statistics utilized in the MR analyses were generated by previous studies, for which ethical approval and individual consent were obtained for all original studies.
MR分析中使用的所有汇总统计数据均由先前的研究生成,所有原始研究均获得伦理批准和个人同意。

Results 结果

MR analysis of mitochondrial genome-wide cis-eQTLs and cancer outcomes
线粒体全基因组顺式-eQTLs和癌症结局的MR分析

After SMR testing, the associations of 662,968 SNPs from blood representing mitochondrial-related gene expression and cancer outcomes were obtained (Fig. 1). To control the genome-wide type I error, we performed multiple testing corrections, with the results showing strong evidence of an association (PSMR<4.936 × 10−5 [Bonferroni correction, P < 0.05/1013]) followed by the HEIDI test (PHEIDI>0.01) implemented in SMR software to investigate if the association was due to a shared causal variant and not pleiotropy. We thus identified 7 association signals across 7 unique genetic loci for breast cancer, 4 association signals across 4 unique genetic loci for prostate cancer and one association signal for gastric cancer. We found no significant genetic correlation for the other cancer types. Sensitivity analysis using additional MR methods relying on similar assumptions was conducted and shown to support our findings (Supplementary Table S2, Supplementary Figure S1 and S2). We further performed colocalization analysis to rule out confounding by LD; strong evidence of colocalization between cancer GWAS and eQTL exists if the posterior probability of shared causal variant across gene expression and cancer (PP.H4) is >0.80. The causal estimates are expressed as β coefficients, and the odds ratios (OR) for 1 standard deviation (SD) change in mitochondrial gene expression level was calculated by the expectation of the β coefficient, as presented in Fig. 2 and Supplementary Table S3.
经过SMR测试,获得了代表线粒体相关基因表达和癌症结果的血液中662,968个SNP的关联(图1)。为了控制全基因组的I型错误,我们进行了多次测试校正,结果显示了关联的有力证据(P SMR <4.936 × 10 −5 [Bonferroni校正,P < 0.05/1013]),然后在SMR软件中实施HEIDI检验(P HEIDI >0.01),以调查这种关联是否是由于共同的因果变异而不是多效性。因此,我们在乳腺癌的 7 个独特遗传位点上鉴定了 7 个关联信号,在前列腺癌的 4 个独特遗传位点上鉴定了 4 个关联信号,在胃癌的 1 个关联信号中鉴定了 1 个关联信号。我们发现其他癌症类型没有显着的遗传相关性。使用依赖于类似假设的其他 MR 方法进行了敏感性分析,并显示支持我们的发现(补充表 S2、补充图 S1 和 S2)。我们进一步进行了共定位分析,以排除LD的混杂因素;如果基因表达和癌症之间共享因果变异的后验概率 (PP.H4)为>0.80。因果估计值表示为β系数,线粒体基因表达水平 1 个标准差 (SD) 变化的比值比 (OR) 通过β系数的期望值计算,如图 2 和补充表 S3 所示。

An external file that holds a picture, illustration, etc.
Object name is gr2.jpg

Mendelian randomization results for the association between the expression of mitochondrial genes and cancer risk.aRepresents the effect size (β) of a variant on mRNA expressions. β > 0 means positive association, and β < 0 means negative association. bOdd ratios were calculated by the expectation of causal estimate (β coefficient). c‘Colocalization’ indicates PP.H4 between eQTLs and cancer outcomes. PP.H4 > 0.8 is the well-applied cut-off for the evidence of colocalization.
孟德尔随机化结果表明线粒体基因表达与癌症风险之间的关联。 a 表示变体对 mRNA 表达的影响大小 (β)。β > 0 表示正关联,β < 0 表示负关联。 b 奇数比是通过因果估计的期望值(β系数)计算的。 c “共定位”表示 PP。eQTL 与癌症结果之间的 H4。PP的。H4 > 0.8 是共定位证据的良好应用临界值。

For breast cancer, one SD decrease of FDPS expression was associated with 34% lower risk (OR: 0.66, 95% CI: 0.49–0.83, PSMR = 9.77 × 10−7) while 1 SD increase of NSUN4 expression was associated with 5% higher risk (OR: 1.05, 95% CI: 1.03–1.07, PSMR = 5.24 × 10−6). When sub-grouping breast cancer according to the intrinsic molecular subtypes, the causal associations showed a similar trend only with luminal A-like breast cancer. Interestingly, we found a robust causal association (OR per SD, 1.17; 95% CI: 1.12–1.23, PSMR = 1.85 × 10−8) between MTX1 expression and luminal A-like breast cancer, specifically. We also found a strong causal association (OR per SD, 1.26; 95% CI: 1.15–1.37, PSMR = 2.94 × 10−5) between COX11 expression and luminal B-like/HER2-negative cancer (Supplementary Table S4, Supplementary Fig. S3). For prostate cancer, one SD increase of NSUN4 expression was associated with 6% higher risk of cancer (OR: 1.06, 95% CI: 1.03–1.09, PSMR = 1.01 × 10−5).
对于乳腺癌,FDPS 表达降低 1 SD 与风险降低 34% 相关 (OR: 0.66, 95% CI: 0.49–0.83, P SMR = 9.77 × 10 −7 ),而 NSUN4 表达增加 1 SD 与风险增加 5% 相关 (OR: 1.05, 95% CI: 1.03–1.07, P SMR = 5.24 × 10 −6 )。当根据内在分子亚型对乳腺癌进行亚组时,因果关系仅与管腔 A 样乳腺癌表现出相似的趋势。有趣的是,我们发现MTX1表达与管腔A样乳腺癌之间存在强大的因果关系(OR标准差,1.17;95%CI:1.12–1.23,P SMR =1.85×10 −8 )。我们还发现COX11表达与管腔B样/HER2阴性癌症之间存在很强的因果关系(OR per SD,1.26;95%CI:1.15–1.37,P SMR = 2.94 × 10 −5 )(补充表S4,补充图S3)。对于前列腺癌,NSUN4 表达的 SD 增加与癌症风险增加 6% 相关 (OR: 1.06, 95% CI: 1.03–1.09, P SMR = 1.01 × 10 −5 )。

Most importantly, our results show that the expression level of NSUN4 increased by rs41293273 is associated with higher risk of both breast cancer and prostate cancer.
最重要的是,我们的研究结果表明,NSUN4 的表达水平增加 rs41293273 与乳腺癌和前列腺癌的风险增加有关。

MR analysis of mitochondrial genome-wide cis-mQTLs and cancer outcomes
线粒体全基因组顺式-mQTLs和癌症结局的MR分析

For the causal association between the DNA methylation of the mitochondrial-related genome and cancer outcomes, Bonferroni correction (PSMR < 1.961 × 10−5) and HEIDI test were performed. We identified a total of 15 association signals across 14 unique genetic loci for breast cancer, 11 association signals across 10 unique genetic loci for prostate cancer, one association signal for gastric cancer, 4 association signals across 3 unique genetic loci for lung cancer and 2 association signals across one unique genetic locus for melanoma (Fig. 3 and Supplementary Table S5). The sensitivity analysis supported the same associations (Supplementary Table S6, Supplementary Fig. S4 and S5).
对于线粒体相关基因组的DNA甲基化与癌症结局之间的因果关系,进行了Bonferroni校正(P SMR < 1.961 × 10 −5 )和HEIDI检验。我们在乳腺癌的 14 个独特遗传位点中共鉴定了 15 个关联信号,在前列腺癌的 10 个独特遗传位点中鉴定了 11 个关联信号,在胃癌的 1 个关联位点中鉴定了 1 个关联信号,在肺癌的 3 个独特遗传位点中鉴定了 4 个关联信号,在黑色素瘤的一个独特遗传位点上鉴定了 2 个关联信号(图 3 和补充表 S5)。敏感性分析支持相同的关联(补充表S6,补充图S4和S5)。

An external file that holds a picture, illustration, etc.
Object name is gr3.jpg

Mendelian randomization results for the association between mitochondrial gene methylations and cancer risk.aRepresents the effect size (β) of a variant on DNA methylation. β > 0 means positive association, and β < 0 means negative association. bOdd ratios were calculated by the expectation of causal estimate (β coefficient). c‘Colocalization’ indicates PP.H4 between mQTLs and cancer outcomes. PP.H4 > 0.8 is the well-applied cut-off for the evidence of colocalization.
线粒体基因甲基化与癌症风险之间关联的孟德尔随机化结果。 a 表示变体对 DNA 甲基化的影响大小 (β)。β > 0 表示正关联,β < 0 表示负关联。 b 奇数比是通过因果估计的期望值(β系数)计算的。 c “共定位”表示 PP。mQTL 之间的 H4 与癌症结果。PP的。H4 > 0.8 是共定位证据的良好应用临界值。

The colocalization analysis showed that different genetic variants regulating NSUN4 had different effects on methylation levels, hence the outcome. For example, one SD decrease of NSUN4 methylation by rs6682266 was associated with 9% lower risk of breast cancer (OR: 0.91, 95% CI: 0.87–0.96, PSMR = 1.50 × 10−5), and conversely, one SD increase of NSUN4 methylation by rs6681857 was associated with 7% higher risk of breast cancer (OR: 1.07, 95% CI: 1.04–1.10, PSMR = 5.81 × 10−6). Here, in total, we found 6 unique loci that regulated the methylation level of 7 different CpG sites in NUSU4, and were positively associated with the risk of breast cancer (Fig. 3). Analysis on breast cancer molecular subtypes with NSUN4 methylation showed a similar causal association but only for luminal A-like breast cancer (Supplementary Table S7 and Supplementary Fig. S6). Out of these 6 loci, two were also positively associated with risk of prostate cancer. Furthermore, an increase of 1 SD of NUDT5 methylation was associated with 4% lower risk of prostate cancer (OR: 0.96, 95% CI: 0.95–0.98, PSMR = 1.15 × 10−5) (Fig. 3). For lung cancer, one SD increase of VARS2 methylation was associated with more than 20% higher risk of cancer depending on different methylation CpG sites (Fig. 3). We found no significant causal associations between mitochondrial genome methylation and other cancer risks.
共定位分析表明,调节NSUN4的不同遗传变异对甲基化水平的影响不同,因此结果不同。例如,rs6682266 将 NSUN4 甲基化降低 1 个 SD 与乳腺癌风险降低 9% 相关 (OR: 0.91, 95% CI: 0.87–0.96, P SMR = 1.50 × 10 −5 ),相反,rs6681857 使 NSUN4 甲基化 SD 增加一个 SD 与乳腺癌风险增加 7% 相关 (OR: 1.07, 95% CI: 1.04–1.10, P SMR = 5.81 × 10 −6 ).在这里,我们总共发现了 6 个独特的位点,它们调节 NUSU4 中 7 个不同 CpG 位点的甲基化水平,并且与乳腺癌风险呈正相关(图 3)。对具有 NSUN4 甲基化的乳腺癌分子亚型的分析显示出类似的因果关系,但仅适用于管腔 A 样乳腺癌(补充表 S7 和补充图 S6)。在这 6 个位点中,有 2 个位点也与前列腺癌风险呈正相关。此外,NUDT5 甲基化增加 1 SD 与前列腺癌风险降低 4% 相关 (OR: 0.96, 95% CI: 0.95–0.98, P SMR = 1.15 × 10 −5 ) (图 3)。对于肺癌,根据不同的甲基化 CpG 位点,VARS2 甲基化的一个 SD 增加与癌症风险增加 20% 以上相关(图 3)。我们发现线粒体基因组甲基化与其他癌症风险之间没有显着的因果关系。

Furthermore, gene methylation is known to influence gene expression. Here, we also performed SMR analysis on the causal association between mitochondrial-related gene methylation and expression by mapping the gene methylation to expression through shared genetic variants. After multiple testing corrections and the HEIDI test, we obtained the gene list for the mitochondrial gene expression regulated by DNA methylation CpG sites (Supplementary Table S8). For the putative causal genes that we identified above, SMR results showed that the methylation of NSUN4, which was regulated by rs6682266, rs5013329, rs56063031 and rs6681857, was associated with NSUN4 expression, and VARS2 methylation by rs2596495 was also associated with VARS2 expression (Supplementary Table S8).
此外,已知基因甲基化会影响基因表达。在这里,我们还通过将基因甲基化映射到通过共享遗传变异的表达,对线粒体相关基因甲基化和表达之间的因果关系进行了 SMR 分析。经过多次测试校正和HEIDI测试,我们获得了由DNA甲基化CpG位点调控的线粒体基因表达的基因列表(补充表S8)。对于我们上面确定的推定致病基因,SMR结果显示,受rs6682266、rs5013329、rs56063031和rs6681857调控的NSUN4的甲基化与NSUN4表达相关,rs2596495的VARS2甲基化也与VARS2表达相关(补充表S8)。

MR analysis of mitochondrial genome-wide cis-pQTLs and cancer outcomes
线粒体全基因组顺式-pQTLs和癌症结局的MR分析

Only 23 proposed mitochondrial-related SNPs were extracted from cis-pQTLs and no causal association was found based on our suggested threshold after the SMR analyses. One possible explanation could be that the pQTL datasets are not comprehensively developed, and very few genetic variants that are robustly associated with protein levels were identified.
仅从顺式-pQTL中提取了23个拟议的线粒体相关SNP,并且在SMR分析后根据我们建议的阈值未发现因果关联。一种可能的解释可能是pQTL数据集没有得到全面开发,并且很少发现与蛋白质水平密切相关的遗传变异。

Phenome-wide scan of identified genetic variants
对已识别的遗传变异进行全表型扫描

To exclude possible pleiotropy of investigated cancers, we performed phenome-wide scan analysis on the identified variants, using both GWASATLAS and PhenoScanner databases. The databases enable the investigation of genetic variants across multiple disease traits. The Manhattan plots were used to show phenome-wide scan results of identified genetic variants on different disease traits with any possible effect allele obtained from GWASATLAS (Supplementary Fig. S8–S10). The phenome-wide scan of all identified genetic variants with disease traits from PhenoScanner was also listed according to the following selection criteria: 1) the SNPs shared the same effect allele with our results, 2) the association reached GWAS significance (P < 5 × 10−8) and 3) the absolute value of size effect (β) >0.01 Supplementary Table S9). Interestingly, variants related to the gene expression and DNA methylation of NSUN4 that were causally associated with both breast and prostate cancer were not found to be associated with all available secondary traits (Supplementary Fig. S7 and S8). This further suggests that the causal relationship between NSUN4 and breast and prostate cancer identified in this study is robust. However, rs6677385 (FDPS expression associated) was associated with secondary traits such as metabolic-related blood urea nitrogen and Crohn's disease (Supplementary Fig. S9a). The rs4750175 (NUDT5 methylation associated) was also associated with endocrine-related traits (risk of type 2 diabetes, Supplementary Fig. S9b). Three SNPs associated with VARS2 methylation were further associated with multiple traits such as metabolic, skeletal, respiratory, psychiatric, immunological and endocrine-related traits (Supplementary Fig. S10). The genetic variants that are associated with the secondary traits may potentially introduce horizontal pleiotropy, further investigations to rule out pleiotropy are needed.
为了排除所研究癌症可能的多效性,我们使用 GWASATLAS 19 和 PhenoScanner 20 数据库对已识别的变异进行了全表型组扫描分析。这些数据库能够研究多种疾病性状的遗传变异。曼哈顿图用于显示不同疾病性状上已鉴定的遗传变异的全表型扫描结果,以及从GWASATLAS获得的任何可能的影响等位基因(补充图S8-S10)。还根据以下选择标准列出了来自PhenoScanner的所有具有疾病特征的已鉴定遗传变异的全表组扫描:1)SNP与我们的结果具有相同的效应等位基因,2)关联达到GWAS显着性(P < 5 × 10 −8 )和3)大小效应的绝对值(β)>0.01补充表S9)。有趣的是,与乳腺癌和前列腺癌有因果关系的 NSUN4 基因表达和 DNA 甲基化相关的变异并未被发现与所有可用的次要性状相关(补充图 S7 和 S8)。这进一步表明,本研究中确定的 NSUN4 与乳腺癌和前列腺癌之间的因果关系是稳健的。然而,rs6677385(FDPS表达相关)与代谢相关的血尿素氮和克罗恩病等次要性状相关(补充图S9a)。rs4750175(NUDT5甲基化相关)也与内分泌相关性状(2型糖尿病的风险,补充图S9b)相关。与VARS2甲基化相关的3个SNP进一步与代谢、骨骼、呼吸、精神、免疫和内分泌相关性状等多个性状相关(补充图S10)。 与次要性状相关的遗传变异可能会引入水平多效性,需要进一步研究以排除多效性。

Bi-directional MR analysis of mitochondrial dysfunction and cancers
线粒体功能障碍和癌症的双向MR分析

GWAS summary statistics were available only for mtDNA copy number variation, which has been suggested as a surrogate biomarker for mitochondrial dysfunction. Currently, a GWAS dataset specifically containing genetic variant association with mtDNA copy number has been published. We used this dataset to explore whether mitochondrial dysfunction is a consequence of cancer and conducted bidirectional MR analyses on mtDNA copy number and cancers. Results showed that the directions of causal association were cancer type-specific; here mtDNA copy number variation has causal effects on cervical cancer, specific subtype of ovarian cancer (Supplementary Table S10), while triple-negative breast cancer, head and neck cancer were causally associated with mtDNA copy number variation (Supplementary Table S11).
GWAS汇总统计仅适用于mtDNA拷贝数变异,这被认为是线粒体功能障碍的替代生物标志物。目前,已经发布了专门包含与mtDNA拷贝数相关的遗传变异的GWAS数据集。 21 我们使用该数据集来探索线粒体功能障碍是否是癌症的结果,并对mtDNA拷贝数和癌症进行了双向MR分析。结果显示,因果关系的方向与癌症类型不同;这里,mtDNA拷贝数变异对宫颈癌、卵巢癌的特定亚型有因果关系(补充表S10),而三阴性乳腺癌、头颈癌与mtDNA拷贝数变异有因果关系(补充表S11)。

Discussion 讨论

In this study, we demonstrate that mitochondrial dysfunction characterized by genetic predisposition has causal effect on cancers, and identified important putative causal mitochondrial-related genes as follows: 1) FDPS for breast cancer; 2) NUDT5 for prostate cancer; 3) VARS2 for lung cancer and 4) NSUN4 for both breast and prostate cancers. Our results show that genetic determinants of mitochondrial dysfunction were associated with the risk of cancer in a cancer type-specific manner, which provides robust evidence for underlying mechanisms linking the genetic loci, gene expression, and methylation with multiple cancers.
在这项研究中,我们证明了以遗传易感性为特征的线粒体功能障碍对癌症具有因果作用,并确定了重要的推定因果线粒体相关基因如下:1)乳腺癌的FDPS;2)NUDT5用于前列腺癌;3) VARS2 用于肺癌,4) NSUN4 用于乳腺癌和前列腺癌。我们的结果表明,线粒体功能障碍的遗传决定因素以癌症类型特异性的方式与癌症风险相关,这为将遗传位点、基因表达和甲基化与多种癌症联系起来的潜在机制提供了强有力的证据。

The FDPS is a key enzyme that is involved in the mevalonate pathway to catalyze the biosynthesis of cholesterol and sterol, and to isoprenylate cellular metabolites such as Ras, Rac, Rab and Rho for membrane anchorage and cellular signaling. FDPS has been investigated over decades for its physiological function and was found to be associated with leukemia growth, the progression of prostate cancer, the poor breast cancer prognosis, and directly involved in glioblastoma drug resistance and pancreatic cancer radioresistance. However, its causal relationship with cancer is unclear. In this study, we show that gene expression of FDPS has a causal relationship with breast cancer. Studies have shown that knockdown FDPS enhanced apoptosis and ectopic overexpression of FDPS promoted cancer colony growth and proliferation by affecting STAT3, AKT and ERK pathways. Prenylation is important for exerting the activity of oncogenic proteins, thus prenylation inhibitors have been widely applied in clinical trials for cancer treatment. FDPS was shown to be a key target of nitrogen-containing bisphosphonates and it is already a clinical drug target by Zoledronic acid. According to the DRUGBANK database (https://go.drugbank.com/), more drugs have been investigated such as Ibandronate, Minodronic acid and Incadronic acid that target FDPS.
FDPS 是一种关键酶,参与甲羟戊酸途径,催化胆固醇和甾醇的生物合成,并异异戊二烯化细胞代谢物(如 Ras、Rac、Rab 和 Rho)以进行膜锚定和细胞信号传导。 22 FDPS的生理功能已经研究了几十年,发现它与白血病的生长、 23 前列腺癌的进展、 24 乳腺癌预后不良有关, 25 并直接参与胶质母细胞瘤耐药 26 性和胰腺癌放射耐药性。 27 然而,它与癌症的因果关系尚不清楚。在这项研究中,我们发现FDPS的基因表达与乳腺癌有因果关系。研究表明,敲低FDPS通过影响STAT3、AKT和ERK通路来增强FDPS的细胞凋亡和异位过表达,促进癌症集落的生长和增殖。 24 异戊二烯化对于发挥致癌蛋白的活性很重要,因此异戊二烯化抑制剂已广泛应用于癌症治疗的临床试验中。 28 FDPS被证明是含氮双膦酸盐的关键靶点,并且已经是唑来膦酸的临床药物靶点。 29 根据DRUGBANK数据库(https://go.drugbank.com/),已经研究了更多的药物,如针对FDPS的伊班膦酸、米诺膦酸和耷加膦酸。

NSUN4 is an rRNA m5C methyltransferase that can induce the methylation of the 12S rRNA of the small ribosomal subunit joining in mitochondria and promote rRNA rearrangements to form peptidyl transferase center., A previous study showed that breast cancer and prostate cancer shared a common risk locus (rs5013329) and indicated that NSUN4 is the strongest shared functional candidate at 1p34. However, our results showed that rs5013329 related to NSUN4 methylation was associated with decreased risk of breast cancer only. Importantly, we identified additional 1 genetic locus related to NSUN4 expression and 2 loci related to NSUN4 methylation that were causally associated with both breast and prostate cancer (Supplementary Fig. S7). Furthermore, our phenome-wide scan analysis showed that the causal relationship between NSUN4 and both breast and prostate cancers was not caused by horizontal pleiotropy. Together, these results emphasize the potentially important role of NSUN4 in carcinogenesis.
NSUN4 是一种 rRNA m 5 C 甲基转移酶,可诱导连接线粒体的小核糖体亚基的 12S rRNA 甲基化,并促进 rRNA 重排形成肽基转移酶中心。 30 31 之前的一项研究表明,乳腺癌和前列腺癌具有共同的风险位点 (rs5013329),并表明 NSUN4 是 1p34 最强的共享功能候选者。 32 然而,我们的结果表明,与 NSUN4 甲基化相关的 rs5013329 仅与乳腺癌风险降低相关。重要的是,我们确定了另外 1 个与 NSUN4 表达相关的遗传位点和 2 个与 NSUN4 甲基化相关的基因位点,它们与乳腺癌和前列腺癌有因果关系(补充图 S7)。此外,我们的全表型扫描分析表明,NSUN4与乳腺癌和前列腺癌之间的因果关系不是由水平多效性引起的。总之,这些结果强调了NSUN4在致癌作用中的潜在重要作用。

NUDT5 is differentially expressed in different types of cancer and positively correlated with aggressive cancer disease phenotype, knockdown of which can suppress the proliferation of cancer cells without inducing DNA oxidative lesion. In our study, we show that the methylation level of NUDT5 has a strong causal effect on prostate cancer. Those findings highlight that NUDT5 may represent a promising drug target for cancer prevention and treatment. More studies now focus on the identification of NUDT5 inhibitors from approved drugs and small molecules, and a potent TH5427 was tested and shown to block hormone signaling and disrupt the proliferation of breast cancer cells.
NUDT5 在不同类型的癌症中差异表达,并与侵袭性癌症疾病表型呈正相关,敲低该表型可以抑制癌细胞的增殖而不诱导 DNA 氧化损伤。 33 在我们的研究中,我们发现NUDT5的甲基化水平对前列腺癌有很强的因果关系。这些发现强调,NUDT5可能代表了癌症预防和治疗的有前途的药物靶点。现在更多的研究集中在从批准的药物和小分子中鉴定NUDT5抑制剂,并且测试了一种有效的TH5427,并显示可以阻断激素信号传导并破坏乳腺癌细胞的增殖。 34

Several mutations in VARS2 have been associated with mitochondrial diseases such as complex I defect, early onset of mitochondrial encephalomyopathies and encephalocardiomyopathies, and cancer risks including breast cancer, colon and lung cancer., , Here, we propose VARS2 as a causal gene only for lung cancer. The mechanisms of VARS2 in lung cancer carcinogenesis need further evaluation by experimental studies.
VARS2 中的几种突变与线粒体疾病有关,例如复合体 I 缺陷、线粒体脑肌病和脑心肌病的早期发作, 35 以及包括乳腺癌、结肠癌和肺癌在内的癌症风险。36, 37, 38 在这里,我们提出 VARS2 仅作为肺癌的致病基因。VARS2在肺癌发生中的机制需要通过实验研究进一步评估。

The main strength of the present study is that we performed a comprehensive MR analysis between mitochondrial dysfunction, characterized by genetic predisposition in all known mitochondrial-related genes, and their causal relationship with cancers. The inclusion of all genes related to mitochondria eliminates the selection bias in previous studies and might be able to address mitochondrial dysfunction directly. Secondly, we have included a very large sample size and 18 different cancer outcomes from GWAS summarized statistics, which allowed us to gain sufficient power to elucidate causal relationships and make conclusive estimations for several cancer types. Thirdly, we used SMR as the primary analysis and performed a sensitivity analysis using 5 additional MR approaches and colocalization analysis, which shows the robustness of our findings. Finally, we only included samples of European ancestry, thus, we minimized the biases caused by different genetic backgrounds.
本研究的主要优势在于,我们对线粒体功能障碍(以所有已知线粒体相关基因的遗传易感性为特征)及其与癌症的因果关系进行了全面的 MR 分析。包含所有与线粒体相关的基因消除了先前研究中的选择偏差,并且可能能够直接解决线粒体功能障碍。其次,我们从GWAS汇总统计数据中纳入了非常大的样本量和18种不同的癌症结果,这使我们能够获得足够的力量来阐明因果关系,并对几种癌症类型做出结论性估计。第三,我们使用SMR作为主要分析,并使用5种额外的MR方法和共定位分析进行了敏感性分析,这表明了我们研究结果的稳健性。最后,我们只纳入了欧洲血统的样本,因此,我们最大限度地减少了不同遗传背景引起的偏差。

This study has several limitations as well. Although we drew on the large available GWAS data sources, no genetic variants were obtained that represent the mitochondrial protein expression and the available eQTL and mQTL datasets did not have information on genetic variants that were associated with gene expression or methylation level in the X chromosome, Y chromosome and mitochondrial genome; the mitochondrial genome-wide associated genetic variants in this study mainly laid on the mitochondrial-related nuclear genome rather than the mitochondrial genome itself because a mitochondrial genome-specific QTL dataset has not yet been developed. Moreover, GWAS dataset that directly reflected on mitochondrial dysfunction is not available, hence we cannot assess the direction of causal relationship by using bi-directional MR based on current software resources. In this study, we showed that causal effects of mtDNA copy number variations and cancers were bi-directional in a cancer-specific manner. However, GWAS summary statistics of mtDNA copy number variation are potentially underpowered to detect the direction of causal association between mitochondrial dysfunction and cancers. Furthermore, univariable MR estimates the total effect of exposure on the outcome. As an extension, multivariable MR simultaneously estimates several potentially related exposures with a shared set of SNPs on the outcome using GWAS summary statistics, allowing for the assessment of the direct causal effect of a single exposure on the outcome. In this study, the exposure was mitochondrial dysfunction characterized by predisposition in the mitochondrial-related gene, which only can be retrieved from the QTL datasets other than the GWAS dataset. Thus, we are unable to perform multivariable MR to estimate the direct causal effects of mitochondrial dysfunction on cancers. Further studies should be conducted on the question of whether mitochondrial dysfunction is causally associated with cancer when GWAS or more advanced methods are available.
这项研究也有一些局限性。尽管我们利用了大量可用的GWAS数据源,但没有获得代表线粒体蛋白表达的遗传变异,并且可用的eQTL和mQTL数据集没有与X染色体、Y染色体和线粒体基因组中的基因表达或甲基化水平相关的遗传变异的信息;由于尚未开发线粒体基因组特异性QTL数据集,本研究中线粒体全基因组相关遗传变异主要基于线粒体相关核基因组,而不是线粒体基因组本身。此外,没有直接反映线粒体功能障碍的GWAS数据集,因此我们无法基于当前软件资源使用双向MR来评估因果关系的方向。在这项研究中,我们发现mtDNA拷贝数变异和癌症的因果效应是双向的。然而,mtDNA拷贝数变异的GWAS汇总统计可能不足以检测线粒体功能障碍与癌症之间的因果关系。此外,单变量 MR 估计暴露对结果的总体影响。作为扩展,多变量 MR 使用 GWAS 汇总统计同时估计具有一组共享 SNP 的多个潜在相关暴露对结果的影响,从而可以评估单次暴露对结果的直接因果影响。在这项研究中,暴露是线粒体功能障碍,其特征是线粒体相关基因的易感性,只能从GWAS数据集以外的QTL数据集中检索。 因此,我们无法进行多变量 MR 来估计线粒体功能障碍对癌症的直接因果影响。当GWAS或更先进的方法可用时,应进一步研究线粒体功能障碍是否与癌症有因果关系的问题。

This study leverages MR to examine the potential causal relationship between mitochondrial dysfunction characterized by genetic predisposition in mitochondrial-related genes and cancer, and demonstrates the importance of mitochondrial dysfunction in the pathogenesis of multiple cancer types. The identified putative genes can function as potential pharmacological targets for cancer treatment and prevention, further research could explore details of the underlying biological mechanisms.
本研究利用MR研究了以线粒体相关基因遗传易感性为特征的线粒体功能障碍与癌症之间的潜在因果关系,并证明了线粒体功能障碍在多种癌症类型发病机制中的重要性。鉴定的推定基因可以作为癌症治疗和预防的潜在药理学靶点,进一步的研究可以探索潜在生物学机制的细节。

Contributors 贡献

YL designed the study and performed the statistical analysis; YL, KS, NZ, XW and AAM participated in data interpretation; YL and AAM wrote the first draft, and KS, NZ, XW and JS revised the article. YL and NZ had direct access and responsibility for verifying all data reported in the manuscript. All authors read and approved the submitted version of the manuscript.
YL设计了这项研究并进行了统计分析;YL、KS、NZ、XW 和 AAM 参与了数据解释;YL 和 AAM 撰写了初稿,KS、NZ、XW 和 JS 修改了文章。YL和NZ可以直接访问并负责验证手稿中报告的所有数据。所有作者都阅读并批准了提交的稿件版本。

Data sharing statement 数据共享声明

Data used in this study are available from the referenced peer-reviewed studies and listed in Supplementary Table S1. Summary statistics for GWAS are publicly available for download. The statistical code needed to reproduce the results in the article is available upon request.
本研究中使用的数据来自参考的同行评审研究,并列在补充表S1中。GWAS的汇总统计数据可公开下载。可根据要求提供在文章中重现结果所需的统计代码。

Declaration of interests 利益申报

The authors declare that there is no conflict of interest associated with this manuscript.
作者声明,本手稿不存在任何利益冲突。

Acknowledgments 确认

We would like to thank Patrick O'Reilly for proofreading the article. This work was supported by Styrelsen för Allmänna Sjukhusets i Malmö Stiftelse för bekämpande av cancer (20211025).
我们要感谢 Patrick O'Reilly 校对本文。这项工作得到了 Styrelsen för Allmänna Sjukhusets i Malmö Stiftelse för bekämpande av cancer (20211025) 的支持。

Footnotes 脚注

Appendix ASupplementary data related to this article can be found at https://doi.org/10.1016/j.ebiom.2022.104432 .

Appendix A. Supplementary data
附录 A. 补充数据

Supplementary Material: 补充材料:
Click here to view.(4.7M, docx)
点击这里查看。 (4.7M, docx)

References 引用

1. Bao X., Zhang J., Huang G., et al. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis. 2021;12(2):215. [PMC free article] [PubMed] []
1. Bao X., Zhang J., Huang G., 等.HIFs与癌症发展中线粒体功能障碍之间的串扰。细胞死亡 Dis. 2021;12(2):215.[ PMC免费商品][ 出版][ 谷歌学术搜索]
2. Diaz-Vegas A., Sanchez-Aguilera P., Krycer J.R., et al. Is mitochondrial dysfunction a common root of noncommunicable chronic diseases? Endocr Rev. 2020;41(3) [PMC free article] [PubMed] []
2. Diaz-Vegas A.、Sanchez-Aguilera P.、Krycer J.R. 等人。线粒体功能障碍是非传染性慢性病的常见根源吗?内分泌修订版 2020;41(3)[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
3. Miwa S., Kashyap S., Chini E., von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 2022;132(13) [PMC free article] [PubMed] []
3. Miwa S., Kashyap S., Chini E., von Zglinicki T. 细胞衰老和衰老中的线粒体功能障碍。J 临床投资。2022;132(13)[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
4. Rath S., Sharma R., Gupta R., et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541–D1547. [PMC free article] [PubMed] []
4. Rath S.、Sharma R.、Gupta R. 等人。MitoCarta3.0:更新的线粒体蛋白质组,现在具有亚细胞器定位和通路注释。核酸研究 2021;49(D1):D 1541–D1547。[ PMC免费商品][ 出版][ 谷歌学术搜索]
5. Peduzzi G., Gentiluomo M., Tavano F., et al. Genetic polymorphisms involved in mitochondrial metabolism and pancreatic cancer risk. Cancer Epidemiol Biomarkers Prev. 2021;30(12):2342–2345. [PubMed] []
5. Peduzzi G., Gentiluomo M., Tavano F., et al.参与线粒体代谢和胰腺癌风险的遗传多态性。癌症流行病学生物标志物 Prev. 2021;30(12):2342–2345.[ 出版][ 谷歌学术搜索]
6. Moro L. Mitochondrial DNA and MitomiR variations in pancreatic cancer: potential diagnostic and prognostic biomarkers. Int J Mol Sci. 2021;22(18) [PMC free article] [PubMed] []
6. Moro L. 胰腺癌中的线粒体 DNA 和 MitomiR 变异:潜在的诊断和预后生物标志物。国际分子科学杂志 2021;22(18)[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
7. Davies N.M., Holmes M.V., Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. [PMC free article] [PubMed] []
7. Davies N.M., Holmes M.V., Davey Smith G. 阅读孟德尔随机化研究:临床医生指南、词汇表和清单。英国医学杂志。2018;362:K601。[ PMC免费商品][ 出版][ 谷歌学术搜索]
8. Lawlor D.A. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45(3):908–915. [PMC free article] [PubMed] []
8. Lawlor D.A. 评论:双样本孟德尔随机化:机遇与挑战。国际流行病学杂志。2016;45(3):908–915.[ PMC免费商品][ 出版][ 谷歌学术搜索]
9. Zhu Z., Zhang F., Hu H., et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–487. [PubMed] []
9. 朱志, 张福, 胡 H., et al.整合GWAS和eQTL研究的汇总数据可预测复杂的性状基因靶标。纳特·热内特。2016;48(5):481–487.[ 出版][ 谷歌学术搜索]
10. McRae A.F., Marioni R.E., Shah S., et al. Identification of 55,000 replicated DNA methylation QTL. Sci Rep. 2018;8(1) [PMC free article] [PubMed] []
10. McRae A.F.、Marioni R.E.、Shah S. 等人。鉴定 55,000 个复制的 DNA 甲基化 QTL。科学代表 2018;8(1)[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
11. Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13(Suppl 1):S31–S34. [PMC free article] [PubMed] []
11. 库斯基耶里 S.STROBE 指南。沙特 J 麻醉。2019;13(增刊 1):S31–S34。[ PMC免费商品][ 出版][ 谷歌学术搜索]
12. Vosa U., Claringbould A., Westra H.J., et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300–1310. [PMC free article] [PubMed] []
12. Vosa U.、Claringbould A.、Westra HJ 等人。大规模顺式和反式eQTL分析可识别数千个调节血液基因表达的遗传位点和多基因评分。纳特·热内特。2021;53(9):1300–1310.[ PMC免费商品][ 出版][ 谷歌学术搜索]
13. Ahmad A., Sundquist K., Zoller B., et al. Evaluation of expression level of apolipoprotein M as a diagnostic marker for primary venous thromboembolism. Clin Appl Thromb Hemost. 2018;24(3):416–422. [PMC free article] [PubMed] []
13. Ahmad A.、Sundquist K.、Zoller B. 等人。评估载脂蛋白 M 的表达水平作为原发性静脉血栓栓塞的诊断标志物。Clin Appl 血栓 Hemost。2018;24(3):416–422.[ PMC免费商品][ 出版][ 谷歌学术搜索]
14. Emilsson V., Ilkov M., Lamb J.R., et al. Co-regulatory networks of human serum proteins link genetics to disease. Science. 2018;361(6404):769–773. [PMC free article] [PubMed] []
14. Emilsson V.、Ilkov M.、Lamb J.R. 等人。人类血清蛋白的共调控网络将遗传学与疾病联系起来。科学。2018;361(6404):769–773.[ PMC免费商品][ 出版][ 谷歌学术搜索]
15. Suhre K., Arnold M., Bhagwat A.M., et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8 [PMC free article] [PubMed] []
15. Suhre K.、Arnold M.、Bhagwat AM 等人。通过人类血浆蛋白质组将遗传风险与疾病终点联系起来。国家公社。2017;8[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
16. Yao C., Chen G., Song C., et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun. 2018;9(1):3268. [PMC free article] [PubMed] []
16. Yao C., Chen G., Song C., 等.血浆蛋白QTL的全基因组定位可识别心血管疾病的假定致病基因和通路。国家公社。2018;9(1):3268.[ PMC免费商品][ 出版][ 谷歌学术搜索]
17. Folkersen L., Gustafsson S., Wang Q., et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2(10):1135–1148. [PMC free article] [PubMed] []
17. Folkersen L., Gustafsson S., Wang Q., et al.对 30,931 名个体的 90 种心血管蛋白进行基因组和药物靶点评估。纳特·梅塔布。2020;2(10):1135–1148.[ PMC免费商品][ 出版][ 谷歌学术搜索]
18. Giambartolomei C., Vukcevic D., Schadt E.E., et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5) [PMC free article] [PubMed] []
18. Giambartolomei C., Vukcevic D., Schadt E.E., et al.使用汇总统计量对遗传关联研究之间的共定位的贝叶斯检验。PLoS 基因。2014;10(5)[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
19. Watanabe K., Stringer S., Frei O., et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51(9):1339–1348. [PubMed] []
19. Watanabe K., Stringer S., Frei O., et al.复杂性状中多效性和遗传结构的全球概述。纳特·热内特。2019;51(9):1339–1348.[ 出版][ 谷歌学术搜索]
20. Kamat M.A., Blackshaw J.A., Young R., et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35(22):4851–4853. [PMC free article] [PubMed] []
20. Kamat M.A., Blackshaw J.A., Young R., et al. PhenoScanner V2:一种用于搜索人类基因型-表型关联的扩展工具。生物信息学。2019;35(22):4851–4853.[ PMC免费商品][ 出版][ 谷歌学术搜索]
21. Pillalamarri V., Shi W., Say C., et al. Whole-exome sequencing in 415,422 individuals identifies rare variants associated with mitochondrial DNA copy number. HGG Adv. 2022;4(1) [PMC free article] [PubMed] []
21. Pillalamarri V., Shi W., Say C., et al.对 415,422 名个体进行的全外显子组测序确定了与线粒体 DNA 拷贝数相关的罕见变异。HGG Adv. 2022;4(1)[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
22. Sun S., McKenna C.E. Farnesyl pyrophosphate synthase modulators: a patent review (2006 - 2010) Expert Opin Ther Pat. 2011;21(9):1433–1451. [PMC free article] [PubMed] []
22. Sun S., McKenna C.E. 法呢基焦磷酸合酶调节剂:专利审查 (2006 - 2010) Expert Opin Ther Pat. 2011;21(9):1433–1451.[ PMC免费商品][ 出版][ 谷歌学术搜索]
23. Zhang F., Dai X., Wang Y. 5-Aza-2'-deoxycytidine induced growth inhibition of leukemia cells through modulating endogenous cholesterol biosynthesis. Mol Cell Proteomics. 2012;11(7) M111.016915. [PMC free article] [PubMed] []
23. Zhang F., Dai X., Wang Y. 5-氮杂-2'-脱氧胞苷通过调节内源性胆固醇生物合成诱导白血病细胞生长抑制.分子细胞蛋白质组学。2012;11(7)M111.016915。[ PMC免费商品][ 出版][ 谷歌学术搜索]
24. Seshacharyulu P., Rachagani S., Muniyan S., et al. FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis. Oncogene. 2019;38(26):5265–5280. [PMC free article] [PubMed] []
24. Seshacharyulu P., Rachagani S., Muniyan S., et al. FDPS 与 PTEN 缺失合作,通过调节小 GTP 酶/AKT 轴促进前列腺癌进展。基因。2019;38(26):5265–5280.[ PMC免费商品][ 出版][ 谷歌学术搜索]
25. Clendening J.W., Pandyra A., Boutros P.C., et al. Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A. 2010;107(34):15051–15056. [PMC free article] [PubMed] []
25. Clendening JW、Pandyra A.、Boutros PC 等人。甲羟戊酸途径失调促进转化。美国国家科学院院刊,2010 年;107(34):15051–15056.[ PMC免费商品][ 出版][ 谷歌学术搜索]
26. Woo I.S., Eun S.Y., Kim H.J., et al. Farnesyl diphosphate synthase attenuates paclitaxel-induced apoptotic cell death in human glioblastoma U87MG cells. Neurosci Lett. 2010;474(2):115–120. [PubMed] []
26. Woo I.S., Eun S.Y., Kim H.J., et al.法呢基二磷酸合酶可减轻紫杉醇诱导的人胶质母细胞瘤 U87MG 细胞中凋亡细胞死亡。神经科学杂志 2010 年;474(2):115–120.[ 出版][ 谷歌学术搜索]
27. Souchek J.J., Baine M.J., Lin C., et al. Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation. Br J Cancer. 2014;111(6):1139–1149. [PMC free article] [PubMed] []
27. Souchek J.J., Baine M.J., Lin C., et al.对胰腺癌辐射抵抗性的无偏倚分析揭示了胆固醇生物合成是放射增敏的新靶标。Br J 癌症。2014;111(6):1139–1149.[ PMC免费商品][ 出版][ 谷歌学术搜索]
28. Berndt N., Hamilton A.D., Sebti S.M. Targeting protein prenylation for cancer therapy. Nat Rev Cancer. 2011;11(11):775–791. [PMC free article] [PubMed] []
28. Berndt N., Hamilton A.D., Sebti S.M. 靶向蛋白质异戊二烯化用于癌症治疗。Nat Rev 癌症。2011;11(11):775–791.[ PMC免费商品][ 出版][ 谷歌学术搜索]
29. Gritzalis D., Park J., Chiu W., et al. Probing the molecular and structural elements of ligands binding to the active site versus an allosteric pocket of the human farnesyl pyrophosphate synthase. Bioorg Med Chem Lett. 2015;25(5):1117–1123. [PubMed] []
29. Gritzalis D., Park J., Chiu W., et al.探测与活性位点结合的配体的分子和结构元件与人法尼基焦磷酸合酶的变构口袋。Bioorg Med Chem Lett. 2015 年;25(5):1117–1123.[ 出版][ 谷歌学术搜索]
30. Camara Y., Asin-Cayuela J., Park C.B., et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 2011;13(5):527–539. [PubMed] []
30. Camara Y., Asin-Cayuela J., Park C.B., et al. MTERF4 通过将甲基转移酶 NSUN4 靶向哺乳动物线粒体核糖体来调节翻译。细胞代谢。2011;13(5):527–539.[ 出版][ 谷歌学术搜索]
31. Spahr H., Habermann B., Gustafsson C.M., Larsson N.G., Hallberg B.M. Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proc Natl Acad Sci U S A. 2012;109(38):15253–15258. [PMC free article] [PubMed] []
31. Spahr H., Habermann B., Gustafsson C.M., Larsson N.G., Hallberg B.M. 调节线粒体核糖体生物发生的人 MTERF4-NSUN4 蛋白复合物的结构。美国国家科学院院刊,2012 年;109(38):15253–15258.[ PMC免费商品][ 出版][ 谷歌学术搜索]
32. Kar S.P., Beesley J., Amin Al Olama A., et al. Genome-wide meta-analyses of breast, ovarian, and prostate cancer association studies identify multiple new susceptibility loci shared by at least two cancer types. Cancer Discov. 2016;6(9):1052–1067. [PMC free article] [PubMed] []
32. Kar S.P.、Beesley J.、Amin Al Olama A. 等人。乳腺癌、卵巢癌和前列腺癌关联研究的全基因组荟萃分析确定了至少两种癌症类型共有的多个新易感位点。癌症迪斯科夫。2016;6(9):1052–1067.[ PMC免费商品][ 出版][ 谷歌学术搜索]
33. Pickup K.E., Pardow F., Carbonell-Caballero J., et al. Expression of oncogenic drivers in 3D cell culture depends on nuclear ATP synthesis by NUDT5. Cancers. 2019;11(9) [PMC free article] [PubMed] []
33. Pickup K.E.、Pardow F.、Carbonell-Caballero J. 等人。3D 细胞培养中致癌驱动因素的表达取决于 NUDT5 的核 ATP 合成。癌症。2019;11(9)[ PMC 免费文章] [ PubMed] [ Google 学术搜索]
34. Tong X.Y., Liao X., Gao M., et al. Identification of NUDT5 inhibitors from approved drugs. Front Mol Biosci. 2020;7:44. [PMC free article] [PubMed] []
34. Tong X.Y., Liao X., Gao M., 等.从批准的药物中鉴定 NUDT5 抑制剂。前分子生物科学。2020;7:44.[ PMC免费商品][ 出版][ 谷歌学术搜索]
35. Bruni F., Di Meo I., Bellacchio E., et al. Clinical, biochemical, and genetic features associated with VARS2-related mitochondrial disease. Hum Mutat. 2018;39(4):563–578. [PMC free article] [PubMed] []
35. Bruni F., Di Meo I., Bellacchio E., et al.与 VARS2 相关线粒体疾病相关的临床、生化和遗传特征。嗡39(4):563–578.[ PMC免费商品][ 出版][ 谷歌学术搜索]
36. Chae Y.S., Lee S.J., Moon J.H., et al. VARS2 V552V variant as prognostic marker in patients with early breast cancer. Med Oncol. 2011;28(4):1273–1280. [PubMed] []
36. Chae Y.S., Lee S.J., Moon J.H., et al. VARS2 V552V 变体作为早期乳腺癌患者的预后标志物。Med Oncol.2011;28(4):1273–1280.[ 出版][ 谷歌学术搜索]
37. Zhu Z., Hou Q., Wang B., et al. A novel mitochondria-related gene signature for controlling colon cancer cell mitochondrial respiration and proliferation. Hum Cell. 2022;35(4):1126–1139. [PubMed] []
37. 朱志, 侯婷, 王斌, 等.一种用于控制结肠癌细胞线粒体呼吸和增殖的新型线粒体相关基因特征。嗡嗡声细胞。2022;35(4):1126–1139.[ 出版][ 谷歌学术搜索]
38. van Kooij M., de Groot K., van Vugt H., Aten J., Snoek M. Genotype versus phenotype: conflicting results in mapping a lung tumor susceptibility locus to the G7c recombination interval in the mouse MHC class III region. Immunogenetics. 2001;53(8):656–661. [PubMed] []
38. van Kooij M., de Groot K., van Vugt H., Aten J., Snoek M. 基因型与表型:将肺肿瘤易感位点映射到小鼠 MHC III 类区域的 G7c 重组间隔的矛盾结果。免疫遗传学。2001;53(8):656–661.[ 出版医学 ][ 谷歌学术搜索]

Articles from eBioMedicine are provided here courtesy of Elsevier
eBioMedicine的文章由爱思唯尔提供