这是用户在 2025-1-27 22:22 为 https://app.immersivetranslate.com/pdf-pro/dac745ea-486d-4cd5-b7df-f3fb317217a2 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

A Multi-link Based Seamless Handoff Scheme for Next Generation Wi-Fi Networks
基于多链路的下一代 Wi-Fi 网络无缝切换方案

Cong Ma 1 1 ^(1){ }^{1}, Li Yan 1 1 ^(1){ }^{1}, Rong He 1 He 1 He^(1)\mathrm{He}^{1}, Xuming Fang 1 1 ^(1){ }^{1}, Liuming Lu 2 Lu 2 Lu^(2)\mathrm{Lu}^{2}, Chaoming Luo 2 Luo 2 Luo^(2)\mathrm{Luo}^{2} 1 1 ^(1){ }^{1} Southwest Jiaotong University, Chengdu 610031, China
1 1 ^(1){ }^{1} 西南交通大学,中国成都 610031
2 2 ^(2){ }^{2} Guangdong OPPO Mobile Telecommunications Corp., Ltd, GuangDong 523859, China
2 2 ^(2){ }^{2} 广东 OPPO 移动通信有限公司,中国广东 523859
Email: congma1999@163.com; liyan@swjtu.edu.cn; ronghe@swjtu.edu.cn; xmfang@swjtu.edu.cn; luliuming@oppo.com; luochaoming@oppo.com
电子邮件:congma1999@163.com; liyan@swjtu.edu.cn; ronghe@swjtu.edu.cn; xmfang@swjtu.edu.cn; luliuming@oppo.com; luochaoming@oppo.com

Abstract  摘要

In this paper, to avoid communication interruptions when moving between APs in WLANs, we propose a multilink based seamless handoff scheme for next generation Wi-Fi networks, in which the power of target AP is adjusted to facilitate the connection establishment of STAs in advance. Furthermore, to mitigate extra energy consumption and overlapping basic service set (OBSS) interference to other STAs, we develop a dynamic power adjustment (DPA) algorithm inspired by the PSO (particle swarm optimization) algorithm. The DPA algorithm determines the optimal period of power adjustment and power levels during the handoff process. In the scheme, we also employ three metrics including throughput, power consumption, and OBSS interference to evaluate the system performance. Compared with the traditional AP handoff scheme, our proposed scheme effectively reduces OBSS interference and energy consumption while avoiding communication interruptions.
在本文中,为了避免在 WLAN 中移动 AP 时的通信中断,我们提出了一种基于多链路的无缝切换方案,适用于下一代 Wi-Fi 网络,其中目标 AP 的功率被调整,以便提前促进 STA 的连接建立。此外,为了减轻额外的能量消耗和对其他 STA 的重叠基本服务集(OBSS)干扰,我们开发了一种受粒子群优化(PSO)算法启发的动态功率调整(DPA)算法。DPA 算法确定了切换过程中功率调整的最佳周期和功率水平。在该方案中,我们还采用了包括吞吐量、功耗和 OBSS 干扰在内的三个指标来评估系统性能。与传统的 AP 切换方案相比,我们提出的方案有效地减少了 OBSS 干扰和能量消耗,同时避免了通信中断。

Index Terms-Seamless handoff, Multi-link, Dynamic power adjustment, OBSS interference.
索引词-无缝切换,多链路,动态功率调整,OBSS 干扰。

I. Introduction  I. 引言

Nowadays, Wi-Fi has evolved to its eighth generation aiming to provide highly reliable and mobile communication services. Within dense wireless local area networks (WLANs), wireless Stations (STAs) often undergo frequent handoffs due to the restricted coverage of Access Points (APs), leading to large numbers of communication interruptions. This issue poses a significant threat to the transmission reliability and mobility support capability of WLAN. Thus, communication interruptions during AP handoff become an urgent problem to be solved.
如今,Wi-Fi 已发展到第八代,旨在提供高度可靠和移动的通信服务。在密集的无线局域网(WLAN)中,无线站(STA)由于接入点(AP)的覆盖范围有限,常常经历频繁的切换,导致大量的通信中断。这个问题对 WLAN 的传输可靠性和移动支持能力构成了重大威胁。因此,AP 切换期间的通信中断成为一个亟待解决的问题。
The IEEE 802.11 standard outlines the operation of AP handoff in three steps [1]: 1) scanning, 2) authentication, and 3) re-association, all of which prolong the duration of communication interruptions. In scanning, an STA searches for available APs on each available channel. In authentication, the identity of the STA is authenticated by target AP to obtain privileges of network access. And the STA establishes connection with target AP in re-association. Among the three steps of 802.11 handoff operation, scanning consumes the majority of time [2]. For this reason, many researches pay attention to reduce the scanning time. Tseng introduced a fast handoff scheme, which allows a mobile station acquiring its current location and the information of AP topology to reduce the time
IEEE 802.11 标准将 AP 切换的操作概述为三个步骤[1]:1)扫描,2)认证,3)重新关联,这些步骤都会延长通信中断的持续时间。在扫描中,STA 在每个可用频道上搜索可用的 AP。在认证中,目标 AP 对 STA 的身份进行认证,以获得网络访问权限。STA 在重新关联中与目标 AP 建立连接。在 802.11 切换操作的三个步骤中,扫描消耗了大部分时间[2]。因此,许多研究关注于减少扫描时间。Tseng 提出了一种快速切换方案,允许移动站获取其当前位置和 AP 拓扑信息,以减少时间。

of AP scanning [3]. To reduce the AP selection complexity, Yu proposed an Adaptive Neighbor Caching scheme to reduce the number of candidate APs [4]. Waharte proposed an algorithm based on selective channel scanning, so that only part of channels are scanned to reduce the scanning time [5].
AP 扫描[3]。为了降低 AP 选择的复杂性,Yu 提出了一种自适应邻居缓存方案,以减少候选 AP 的数量[4]。Waharte 提出了一种基于选择性信道扫描的算法,仅扫描部分信道以减少扫描时间[5]。
Most of the prior researches concentrate on simplifying specific steps within the entire AP handoff operation, especially the scanning process.In contrast to the above works, we aim to guarantee that at least one link is available for communication throughout the entire AP handoff process. In [6], it is discussed that the future IEEE 802.11 standards will all support multi-link technology. Thus, we utilize multilink technology and power control technology to introduce a seamless handoff scheme. Specifically, in our design, an STA can establish connection with a target AP before breaking its connection with source AP. We refer to the process as prehandoff in this paper. In this way, there are consistently at least one communication link available, even if the STA disconnects from the source AP.
大多数先前的研究集中在简化整个 AP 切换操作中的特定步骤,特别是扫描过程。与上述工作相比,我们的目标是确保在整个 AP 切换过程中至少有一个可用于通信的链接。在[6]中讨论了未来的 IEEE 802.11 标准将全部支持多链接技术。因此,我们利用多链接技术和功率控制技术引入无缝切换方案。具体而言,在我们的设计中,STA 可以在与源 AP 断开连接之前与目标 AP 建立连接。我们在本文中将这一过程称为预切换。通过这种方式,即使 STA 与源 AP 断开连接,始终至少有一个可用的通信链接。
Moreover, our proposed seamless handoff scheme requires adjusting the power of target AP to facilitate the STA’s connection establishment in advance. In order to mitigate extra energy consumption and OBSS (overlapping basic service set)interference to other STAs, we also develop a dynamic power adjustment algorithm (DPA) to select the optimal power adjustment and power levels for seamless handoff process. Our primary contributions are as follows:
此外,我们提出的无缝切换方案需要提前调整目标接入点(AP)的功率,以便于 STA 的连接建立。为了减少额外的能量消耗和对其他 STA 的 OBSS(重叠基本服务集)干扰,我们还开发了一种动态功率调整算法(DPA),以选择无缝切换过程的最佳功率调整和功率水平。我们的主要贡献如下:
  1. We design a seamless handoff scheme based on multilink technology and power control technology, which can ensure that at least one link is available for communication throughout the entire AP handoff process;
    我们设计了一种基于多链路技术和功率控制技术的无缝切换方案,能够确保在整个 AP 切换过程中至少有一个链路可用于通信;
  2. Comprehensively taking throughput, energy consumption, and OBSS interference into consideration, we design a DPA algorithm to determine the optimal period of power adjustment and power levels for seamless handoff process;
    综合考虑吞吐量、能耗和 OBSS 干扰,我们设计了一种 DPA 算法,以确定无缝切换过程中的最佳功率调整周期和功率水平;
  3. We evaluate the proposed scheme based on three performance metrics, including throughput, energy consumption, and area of OBSS interference. Compared to traditional AP handoff scheme, our proposed scheme effec-
    我们根据三个性能指标评估所提出的方案,包括吞吐量、能耗和 OBSS 干扰的面积。与传统的 AP 切换方案相比,我们提出的方案有效地

    tively enhances throughput and reduces communication interruptions. In contrast to seamless handoff schemes without using DPA algorithm, our proposed scheme alleviates energy consumption and OBSS interference issues.
    有效地提高了吞吐量并减少了通信中断。与不使用 DPA 算法的无缝切换方案相比,我们提出的方案缓解了能耗和 OBSS 干扰问题。

    The rest of this paper is organized as follows. In Section II, we introduce the proposed AP handoff scheme and the DPA algorithm. We evaluate the performances of throughput, energy consumption, and OBSS interference of different schemes in Section III. Finally, we conclude our work in Section IV.
    本文的其余部分组织如下。在第二节中,我们介绍了提出的 AP 切换方案和 DPA 算法。在第三节中,我们评估了不同方案在吞吐量、能耗和 OBSS 干扰方面的性能。最后,我们在第四节中总结了我们的工作。

II. Proposed Seamless Handoff Scheme
II. 提议的无缝切换方案

In this section, we describe the design details of our proposed seamless handoff scheme. For clarity, this section is divided into two subsections, in which the first one outlines the process of the proposed seamless handoff scheme, while the second one introduces the DPA algorithm.
在本节中,我们描述了我们提出的无缝切换方案的设计细节。为清晰起见,本节分为两个小节,第一个小节概述了所提出的无缝切换方案的过程,而第二个小节介绍了 DPA 算法。

A. Seamless handoff scheme
A. 无缝切换方案

Different from the traditional AP handoff process, as shown in Fig. 1, our proposed scheme increases the transmit power of target AP on a new frequency band, which enables STAs to establish a new connection with the target AP before disconnecting from the source AP. Consequently, in our scheme, there is consistently at least one available link throughout the entire process of AP handoff, guaranteeing the transmission reliability. For instance, as shown in Fig. 1, during the handoff, the STA keeps a connection with the source AP in the 2.4 GHz band and concurrently establishes a new connection with the target AP in the 5 GHz band.
不同于传统的 AP 切换过程,如图 1 所示,我们提出的方案在新的频段上增加目标 AP 的发射功率,这使得 STA 能够在与源 AP 断开之前与目标 AP 建立新的连接。因此,在我们的方案中,在整个 AP 切换过程中始终至少有一个可用链接,保证了传输的可靠性。例如,如图 1 所示,在切换过程中,STA 保持与 2.4 GHz 频段的源 AP 的连接,同时在 5 GHz 频段与目标 AP 建立新的连接。

Fig. 1. Flowchart of seamless handoff
图 1. 无缝切换流程图

To provide an intuitive description of the proposed scheme, we take the scenario depicted in Fig. 1 as a case study.
为了对所提议的方案提供直观的描述,我们以图 1 所示的场景作为案例研究。
  1. Initially, we assume that the STA has established a multilink connection with the source AP ( 2.4 GHz ( 2.4 GHz (2.4GHz(2.4 \mathrm{GHz} and 5 GHz ) ) )). As the STA progressively moves away from the source AP, it will first disconnect the link on the 5 GHz band, since 5 GHz signals experience severe propagation loss. As the STA continues to move, the seamless handoff process will be initiated to maintain the communicational quality.
    最初,我们假设 STA 已经与源 AP ( 2.4 GHz ( 2.4 GHz (2.4GHz(2.4 \mathrm{GHz} 建立了多链路连接,并且在 5 GHz ) ) )) 上。随着 STA 逐渐远离源 AP,它将首先断开 5 GHz 频段的连接,因为 5 GHz 信号会经历严重的传播损失。随着 STA 继续移动,将启动无缝切换过程以保持通信质量。
  2. The seamless handoff process is illustrated in Fig. 2. The STA selects a suitable AP as the target AP based on RSSI values. Then, the STA employs the DPA algorithm proposed in this paper to determine the optimal period of power adjustment and power levels { P t s , P t a , d e , d r } P t s , P t a , d e , d r {Pt_(s),Pt_(a),d_(e),d_(r)}\left\{P t_{s}, P t_{a}, d_{e}, d_{r}\right\}. P t s P t s Pt_(s)P t_{s} and P t a P t a Pt_(a)P t_{a} respectively represent the transmit power of STA and AP during the period of power adjustment, while d e d e d_(e)d_{e} and d r d r d_(r)d_{r} respectively represent the distance between the STA and the target AP at the beginning and end of the power adjustment period.
    无缝切换过程如图 2 所示。STA 根据 RSSI 值选择合适的 AP 作为目标 AP。然后,STA 采用本文提出的 DPA 算法来确定最佳的功率调整周期和功率水平 { P t s , P t a , d e , d r } P t s , P t a , d e , d r {Pt_(s),Pt_(a),d_(e),d_(r)}\left\{P t_{s}, P t_{a}, d_{e}, d_{r}\right\} P t s P t s Pt_(s)P t_{s} P t a P t a Pt_(a)P t_{a} 分别表示功率调整期间 STA 和 AP 的发射功率,而 d e d e d_(e)d_{e} d r d r d_(r)d_{r} 分别表示功率调整开始和结束时 STA 与目标 AP 之间的距离。
  3. When the distance d d dd between the STA and the target AP satisfies the condition d r < d < d e d r < d < d e d_(r) < d < d_(e)d_{r}<d<d_{e}, the transmit power of both STA and AP are increased. The STA adjusts its transmit power to P t s P t s Pt_(s)P t_{s}. The source AP sends a power adjustment request to the target AP during the period of power adjustment, and adjusts the transmit power of the target AP to P t a P t a Pt_(a)P t_{a}. Then, the STA establishes a connection with the target AP on the 5 GHz band in advance.
    当 STA 与目标 AP 之间的距离 d d dd 满足条件 d r < d < d e d r < d < d e d_(r) < d < d_(e)d_{r}<d<d_{e} 时,STA 和 AP 的发射功率都会增加。STA 将其发射功率调整为 P t s P t s Pt_(s)P t_{s} 。源 AP 在功率调整期间向目标 AP 发送功率调整请求,并将目标 AP 的发射功率调整为 P t a P t a Pt_(a)P t_{a} 。然后,STA 提前在 5 GHz 频段与目标 AP 建立连接。
  4. The STA maintains a connection with the source AP on the 2.4 GHz band while simultaneously establishing a connection with the target AP on the 5 GHz band. Upon leaving the 2.4 GHz coverage of the source AP, the 2.4 GHz link with the source AP is broken. However, communication remains uninterrupted due to the remaining link with the target AP.
    STA 在 2.4 GHz 频段与源 AP 保持连接,同时在 5 GHz 频段与目标 AP 建立连接。当离开源 AP 的 2.4 GHz 覆盖范围时,与源 AP 的 2.4 GHz 链接被断开。然而,由于与目标 AP 的链接仍然存在,通信保持不间断。
  5. When d < d r d < d r d < d_(r)d<d_{r}, the transmit power of the target AP in the 5 GHz band is restored to the original level. The STA terminates the link with the target AP in the 5 GHz band.
    d < d r d < d r d < d_(r)d<d_{r} 时,目标 AP 在 5 GHz 频段的发射功率恢复到原始水平。STA 与目标 AP 在 5 GHz 频段的链接终止。
  6. When the STA enters the coverage of restored 5 GHz band, it reconnects with the target AP in the 5 GHz band.
    当 STA 进入恢复的 5 GHz 频段覆盖范围时,它会在 5 GHz 频段与目标 AP 重新连接。

Fig. 2. Flowchart of seamless handoff
图 2. 无缝切换流程图

B. DPA algorithm  B. DPA 算法

In order to mitigate increased energy consumption and OBSS interference caused by power adjustment, it becomes imperative to design a power adjustment algorithm that selects the optimal power adjustment period and power levels for the AP and STA. The target parameters are denoted as Tar = { P t s , P t a , d e , d r } = P t s , P t a , d e , d r ={Pt_(s),Pt_(a),d_(e),d_(r)}=\left\{P t_{s}, P t_{a}, d_{e}, d_{r}\right\}.
为了减轻因功率调整导致的能耗增加和 OBSS 干扰,设计一个选择最佳功率调整周期和 AP 与 STA 的功率水平的功率调整算法变得至关重要。目标参数表示为 Tar = { P t s , P t a , d e , d r } = P t s , P t a , d e , d r ={Pt_(s),Pt_(a),d_(e),d_(r)}=\left\{P t_{s}, P t_{a}, d_{e}, d_{r}\right\}
In this paper, the DPA algorithm needs to consider the communicational quality, the energy consumption and the OBSS interference during the seamless handoff process. Thus, the optimization objective of our problem is
在本文中,DPA 算法需要考虑在无缝切换过程中通信质量、能耗和 OBSS 干扰。因此,我们问题的优化目标是
f = w 1 P L + w 2 S I + w 3 T H + k = 1 n G c ( k ) f = w 1 P L ¯ + w 2 S I ¯ + w 3 T H ¯ + k = 1 n G c ( k ) f=w_(1) bar(P_(L))+w_(2) bar(S_(I))+w_(3) bar(TH)+sum_(k=1)^(n)G**c(k)f=w_{1} \overline{P_{L}}+w_{2} \overline{S_{I}}+w_{3} \overline{T H}+\sum_{k=1}^{n} G * c(k)
where, w 1 , w 2 , w 3 w 1 , w 2 , w 3 w_(1),w_(2),w_(3)w_{1}, w_{2}, w_{3} represent the values of weight, P L P L ¯ bar(P_(L))\overline{P_{L}} represents the average power consumption during AP handoff, S I S I ¯ bar(S_(I))\overline{S_{I}} signifies the average OBSS interference area of target AP during AP handoff, T H T H ¯ bar(TH)\overline{T H} symbolizes the average throughout of STA and AP during AP handoff. G G GG stands for the penalty factor, c ( k ) c ( k ) c(k)c(k) stands for constraints, and n n nn represents the number of constraints.
其中, w 1 , w 2 , w 3 w 1 , w 2 , w 3 w_(1),w_(2),w_(3)w_{1}, w_{2}, w_{3} 代表权重值, P L P L ¯ bar(P_(L))\overline{P_{L}} 代表 AP 切换期间的平均功耗, S I S I ¯ bar(S_(I))\overline{S_{I}} 表示 AP 切换期间目标 AP 的平均 OBSS 干扰区域, T H T H ¯ bar(TH)\overline{T H} 象征 AP 切换期间 STA 和 AP 的平均吞吐量。 G G GG 代表惩罚因子, c ( k ) c ( k ) c(k)c(k) 代表约束, n n nn 代表约束的数量。
Different target parameter sets produce different f f ff values. The problem addressed in this section is simplified as selecting the optimal target parameter set Tar to minimize the value of f f ff function. We introduce a DPA algorithm to select the best set of target parameters.
不同的目标参数集会产生不同的 f f ff 值。本节所讨论的问题简化为选择最佳目标参数集 Tar,以最小化 f f ff 函数的值。我们引入了一种 DPA 算法来选择最佳的目标参数集。
DPA algorithm draws inspiration from the particle swarm optimization algorithm [7]-[11]. We assume that there are n n nn particles in a swarm. Each particle possesses two properties: the velocity vector v i v i v_(i)v_{i} and the position vector s i s i s_(i)s_{i}. In this paper, s i s i s_(i)s_{i} represents a set of target parameters. In order to find the optimal set of target parameters, we initially randomize v i v i v_(i)v_{i} and s i s i s_(i)s_{i} of each particle in the swarm. v i v i v_(i)v_{i} and s i s i s_(i)s_{i} are iteratively updated with iteration through the interaction of particles in the swarm.
DPA 算法从粒子群优化算法中获得灵感[7]-[11]。我们假设群体中有 n n nn 个粒子。每个粒子具有两个属性:速度向量 v i v i v_(i)v_{i} 和位置向量 s i s i s_(i)s_{i} 。在本文中, s i s i s_(i)s_{i} 表示一组目标参数。为了找到最佳目标参数集,我们最初随机化群体中每个粒子的 v i v i v_(i)v_{i} s i s i s_(i)s_{i} v i v i v_(i)v_{i} s i s i s_(i)s_{i} 通过群体中粒子的相互作用进行迭代更新。

{ v i ( k + 1 ) = w v i ( k ) + c 1 r 1 ( B i s i ( k ) ) + c 2 r 2 ( g B s i ( k ) ) + w c 3 r 3 ( R B s i ( k ) ) s i ( k + 1 ) = s i ( k ) + v i ( k + 1 ) v i ( k + 1 ) = w v i ( k ) + c 1 r 1 B i s i ( k ) + c 2 r 2 g B s i ( k ) + w c 3 r 3 R B s i ( k ) s i ( k + 1 ) = s i ( k ) + v i ( k + 1 ) {[v_(i)(k+1)=wv_(i)(k)+c_(1)r_(1)(B_(i)-s_(i)(k))+c_(2)r_(2)(g_(B)-s_(i)(k))],[+wc_(3)r_(3)(R_(B)-s_(i)(k))],[s_(i)(k+1)=s_(i)(k)+v_(i)(k+1)]:}\left\{\begin{aligned} v_{i}(k+1) & =w v_{i}(k)+c_{1} r_{1}\left(B_{i}-s_{i}(k)\right)+c_{2} r_{2}\left(g_{B}-s_{i}(k)\right) \\ & +w c_{3} r_{3}\left(R_{B}-s_{i}(k)\right) \\ s_{i}(k+1) & =s_{i}(k)+v_{i}(k+1)\end{aligned}\right.
where k k kk represents the current number of iterations, w w ww is the inertia factor. c 1 , c 2 c 1 , c 2 c_(1),c_(2)c_{1}, c_{2} and c 3 c 3 c_(3)c_{3} represent cognition of particle, social influence of swarm and passive congregation coefficient, respectively. r 1 , r 2 r 1 , r 2 r_(1),r_(2)r_{1}, r_{2} and r 3 r 3 r_(3)r_{3} are random numbers between 0 and 1. B i B i B_(i)B_{i} is the optimal position vector of the i i ii-th particle. g B g B g_(B)g_{B} is the global optimal position vector of the entire swarm. R B R B R_(B)R_{B} is a particle selected randomly from the swarm.
其中 k k kk 代表当前的迭代次数, w w ww 是惯性因子。 c 1 , c 2 c 1 , c 2 c_(1),c_(2)c_{1}, c_{2} c 3 c 3 c_(3)c_{3} 分别代表粒子的认知、群体的社会影响和被动聚集系数。 r 1 , r 2 r 1 , r 2 r_(1),r_(2)r_{1}, r_{2} r 3 r 3 r_(3)r_{3} 是介于 0 和 1 之间的随机数。 B i B i B_(i)B_{i} 是第 i i ii 个粒子的最优位置向量。 g B g B g_(B)g_{B} 是整个群体的全局最优位置向量。 R B R B R_(B)R_{B} 是从群体中随机选择的粒子。
We choose formula (1) as the fitness function of DPA algorithm. In formula (1), P L P L ¯ bar(P_(L))\overline{P_{L}} is given by:
我们选择公式 (1) 作为 DPA 算法的适应度函数。在公式 (1) 中, P L P L ¯ bar(P_(L))\overline{P_{L}} 由以下内容给出:
P L = P L u + P L d 2 P L ¯ = P L u ¯ + P L d ¯ 2 bar(P_(L))=( bar(P_(Lu))+ bar(P_(Ld)))/(2)\overline{P_{L}}=\frac{\overline{P_{L \mathrm{u}}}+\overline{P_{L d}}}{2}
P L u = ( d e d r v ) P t s + ( T d e d r v ) P t o T P L d = ( d e d r v ) P t a + ( T d e d r v ) P t o T P L u ¯ = d e d r v P t s + T d e d r v P t o T P L d ¯ = d e d r v P t a + T d e d r v P t o T {:[ bar(P_(Lu))=(((d_(e)-d_(r))/(v))Pt_(s)+(T-(d_(e)-d_(r))/(v))Pt_(o))/(T)],[ bar(P_(Ld))=(((d_(e)-d_(r))/(v))Pt_(a)+(T-(d_(e)-d_(r))/(v))Pt_(o))/(T)]:}\begin{aligned} & \overline{P_{L u}}=\frac{\left(\frac{d_{e}-d_{r}}{v}\right) P t_{s}+\left(T-\frac{d_{e}-d_{r}}{v}\right) P t_{o}}{T} \\ & \overline{P_{L d}}=\frac{\left(\frac{d_{e}-d_{r}}{v}\right) P t_{a}+\left(T-\frac{d_{e}-d_{r}}{v}\right) P t_{o}}{T} \end{aligned}
where, the average power consumption P L P L ¯ bar(P_(L))\overline{P_{L}} is calculated by averaging the uplink power consumption P L u P L u ¯ bar(P_(Lu))\overline{P_{L u}} and the downlink power consumption P L d P L d ¯ bar(P_(Ld))\overline{P_{L d}}. The velocity of STA is represented as v v vv and P t o P t o Pt_(o)P t_{o} represents the initial transmit power of AP and STA. During the period of power adjustment, the total power consumption of uplink is represented as ( d e d r v ) P t s d e d r v P t s ((d_(e)-d_(r))/(v))Pt_(s)\left(\frac{d_{e}-d_{r}}{v}\right) P t_{s}, the total power consumption of downlink is ( d e d r v ) P t a d e d r v P t a ((d_(e)-d_(r))/(v))Pt_(a)\left(\frac{d_{e}-d_{r}}{v}\right) P t_{a}. In the rest time of seamless handoff, power consumption of uplink and downlink are both represented as ( T d e d r v ) P t o T d e d r v P t o (T-(d_(e)-d_(r))/(v))Pt_(o)\left(T-\frac{d_{e}-d_{r}}{v}\right) P t_{o}.
其中,平均功耗 P L P L ¯ bar(P_(L))\overline{P_{L}} 通过对上行功耗 P L u P L u ¯ bar(P_(Lu))\overline{P_{L u}} 和下行功耗 P L d P L d ¯ bar(P_(Ld))\overline{P_{L d}} 进行平均计算得出。STA 的速度表示为 v v vv ,而 P t o P t o Pt_(o)P t_{o} 表示 AP 和 STA 的初始发射功率。在功率调整期间,上行的总功耗表示为 ( d e d r v ) P t s d e d r v P t s ((d_(e)-d_(r))/(v))Pt_(s)\left(\frac{d_{e}-d_{r}}{v}\right) P t_{s} ,下行的总功耗为 ( d e d r v ) P t a d e d r v P t a ((d_(e)-d_(r))/(v))Pt_(a)\left(\frac{d_{e}-d_{r}}{v}\right) P t_{a} 。在无缝切换的剩余时间内,上行和下行的功耗均表示为 ( T d e d r v ) P t o T d e d r v P t o (T-(d_(e)-d_(r))/(v))Pt_(o)\left(T-\frac{d_{e}-d_{r}}{v}\right) P t_{o}
In formula (1), the average OBSS interference area S I S I ¯ bar(S_(I))\overline{S_{I}}