- Journal List 期刊列表
- Biosensors (Basel) 生物传感器(巴塞尔) CPU 理学学科重要ESI学科分类:化学简介JCI 0.85IF(5) 5.2SCI升级版 工程技术3区SCI基础版 工程技术2区SCI Q1IF 4.9
-
PMC10046225IF: 4.9 Q1 B3
PMC10046225如果:4.9 Q1 B3
作为一个图书馆,NLM 提供科学文献的访问。纳入 NLM 数据库并不意味着认可或同意, NLM 或国立卫生研究院的内容。
Learn more: PMC Disclaimer | PMC Copyright Notice
了解更多: 免责声明 | PMC版权声明
2023 年 3 月 17 日在线发布。doi : 10.3390/bios13030395如果:4.9 Q1 B3
PMCID: PMC10046225如果:4.9 Q1 B3
Recent Progress in Long-Term Sleep Monitoring Technology
长期睡眠监测技术的最新进展
Jiaju Yin
1School of Integrated Circuits, Tsinghua University, Beijing 100084, China
2Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
Jiandong Xu
1School of Integrated Circuits, Tsinghua University, Beijing 100084, China
2Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
Tian-Ling Ren
1School of Integrated Circuits, Tsinghua University, Beijing 100084, China
2Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
3Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
作者信息文章注释版权和许可信息PMC 免责声明
Associated Data 相关数据
- Data Availability Statement
数据可用性声明 Not applicable.
Abstract 抽象的
Sleep is an essential physiological activity, accounting for about one-third of our lives, which significantly impacts our memory, mood, health, and children’s growth. Especially after the COVID-19 epidemic, sleep health issues have attracted more attention. In recent years, with the development of wearable electronic devices, there have been more and more studies, products, or solutions related to sleep monitoring. Many mature technologies, such as polysomnography, have been applied to clinical practice. However, it is urgent to develop wearable or non-contacting electronic devices suitable for household continuous sleep monitoring. This paper first introduces the basic knowledge of sleep and the significance of sleep monitoring. Then, according to the types of physiological signals monitored, this paper describes the research progress of bioelectrical signals, biomechanical signals, and biochemical signals used for sleep monitoring. However, it is not ideal to monitor the sleep quality for the whole night based on only one signal. Therefore, this paper reviews the research on multi-signal monitoring and introduces systematic sleep monitoring schemes. Finally, a conclusion and discussion of sleep monitoring are presented to propose potential future directions and prospects for sleep monitoring.
睡眠是一项重要的生理活动,约占我们生命的三分之一,显着影响我们的记忆力、情绪、健康和儿童的成长。尤其是在COVID-19疫情之后,睡眠健康问题受到更多关注。近年来,随着可穿戴电子设备的发展,与睡眠监测相关的研究、产品或解决方案越来越多。许多成熟的技术,例如多导睡眠图,已应用于临床实践。然而,迫切需要开发适合家庭连续睡眠监测的可穿戴或非接触式电子设备。本文首先介绍了睡眠的基本知识以及睡眠监测的意义。然后,根据监测的生理信号类型,介绍了用于睡眠监测的生物电信号、生物力学信号和生化信号的研究进展。然而,仅根据一个信号来监测整晚的睡眠质量并不理想。因此,本文回顾了多信号监测的研究,并介绍了系统的睡眠监测方案。最后,对睡眠监测进行了总结和讨论,提出了睡眠监测未来的潜在方向和前景。
关键词:生物传感器,睡眠监测,多导睡眠图,快速眼动睡眠
1. Introduction 一、简介
1.1. Sleep 1.1.睡觉
Sleep takes up about one-third of our lives. As shown in Figure 1, the COVID-19 outbreak has affected people’s sleep in many ways [1,2,3,4,5]. In the wake of the COVID-19 outbreak, it has been reported that many people’s sleep duration has increased, but at the same time, the sleep quality has declined, and the sleep time has changed [1]. Statistics have shown that 18.2% of people have poor sleep quality [2]. There was a general increase in the impact of sleep deficits and mental health burdens on healthcare workers. Sleep deprivation has increased prevalence in patients with acute and long-term COVID-19. Dreams under the epidemic [6] and post-vaccine effects [4] also impact sleep.
睡眠占据了我们生命的大约三分之一。如图1所示, COVID- 19疫情从多个方面影响了人们的睡眠[ 1,2,3,4,5 ]。据报道,随着COVID-19的爆发,许多人的睡眠时间增加了,但与此同时,睡眠质量却下降了,睡眠时间也发生了变化[ 1 ]。统计显示,18.2%的人睡眠质量较差[ 2 ]。睡眠不足和心理健康负担对医护人员的影响普遍增加。睡眠不足增加了急性和长期 COVID-19 患者的患病率。流行病下的梦[ 6 ]和疫苗后的影响[ 4 ]也会影响睡眠。
We should pay more attention to how people can achieve good quality sleep, including restful sleep, no daytime sleepiness, and adequate objective sleep depth [7]. Sleep duration and quality are the core indicators to evaluate whether a person has healthy sleep. Where sleep duration is easier to measure, evaluating sleep quality needs to find an easier metric. The microstructural sleep analysis of the cyclic alternating pattern may be related to self-reported sleep quality, that is, the measurement of the total duration of sleep and the analysis of sleep cycles are normally the most important for analyzing sleep quality (this will be specified in Section 2.2) [8].
我们应该更加关注人们如何获得良好的睡眠质量,包括安宁的睡眠、白天无困倦以及足够的客观睡眠深度[ 7 ]。睡眠时间和质量是评价一个人睡眠是否健康的核心指标。在睡眠持续时间更容易测量的情况下,评估睡眠质量需要找到更简单的指标。循环交替模式的微观结构睡眠分析可能与自我报告的睡眠质量有关,即睡眠总时长的测量和睡眠周期的分析通常是分析睡眠质量最重要的(这将在下文中具体说明)参见第 2.2 节)[ 8 ]。
1.2. Sleep Problems 1.2.睡眠问题
Inadequate, irregular, or poor-quality sleep is common in modern society. Factors contributing to sleep deprivation include occupation, social demands, mental illness, physical illness, sleep disorders, race, age, marital status, gender, and hospitalization [10,11]. Sleep deprivation or sleep disorders can lead to low cognition, poor alertness, poor mood, cardiovascular disease, diabetes, metabolic and immune disorders, and even death [12,13].
睡眠不足、不规律或质量差在现代社会很常见。导致睡眠不足的因素包括职业、社会需求、精神疾病、身体疾病、睡眠障碍、种族、年龄、婚姻状况、性别和住院治疗[ 10 , 11 ]。睡眠不足或睡眠障碍会导致认知低下、警觉性差、情绪不佳、心血管疾病、糖尿病、代谢和免疫紊乱,甚至死亡[ 12、13 ]。
For particular groups, sleep problems also have their own unique manifestations. Adolescents tend to sleep late, wake up early during school days, and catch up on sleep on weekends [14], leading to differences in their sleep on weekdays and days off [14,15]. Some older adults also experience sleep disturbances because the circadian system and sleep balance mechanisms become less robust with normal aging [16]. Finally, women with severe premenstrual syndrome (PMS) have poorer sleep quality, which may be related to altered melatonin rhythms [17]. There are also a variety of sleep disorders that may affect patients’ quality of life, such as obstructive sleep apnea, chronic insomnia, narcolepsy, delayed sleep–wake phase disorder, and Kleine–Levin syndrome [3].
对于特定群体来说,睡眠问题也有其独特的表现形式。青少年在上学期间往往晚睡早起,周末补觉[ 14 ],导致工作日和休息日的睡眠情况存在差异[ 14 , 15 ]。一些老年人也会出现睡眠障碍,因为随着正常衰老,昼夜节律系统和睡眠平衡机制变得不那么健全[ 16 ]。最后,患有严重经前综合症(PMS)的女性睡眠质量较差,这可能与褪黑激素节律改变有关[ 17 ]。还有多种睡眠障碍可能影响患者的生活质量,如阻塞性睡眠呼吸暂停、慢性失眠、发作性睡病、睡眠-觉醒时相延迟障碍、克莱恩-莱文综合征等[ 3 ]。
For people with neurological and metabolic disorders, sleep quality is critical to health and even life. A classic example is people with depression. Antidepressant medications may affect sleep structure. Persistent sleep problems can, in turn, increase depression relapse or increased drug dependence and even potentially cause suicide in patients [18,19]. Attention to sleep problems can help determine the best medication regimen for depressed patients. In addition, for pregnant women, clinical pregnancy and live birth have occurred in 35% of women with sleep-disordered breathing (SDB) compared to 58% of women without SDB [20]. Sleep impairment is also a common comorbid and debilitating symptom for persons with opioid use disorder (OUD). Research into underlying mechanisms and efficacious treatment interventions for OUD-related sleep problems requires both precise and physiologic measurements of sleep-related outcomes and impairment [21].
对于患有神经和代谢疾病的人来说,睡眠质量对健康乃至生命至关重要。一个典型的例子是抑郁症患者。抗抑郁药物可能会影响睡眠结构。持续的睡眠问题反过来会增加抑郁症复发或增加药物依赖性,甚至可能导致患者自杀[ 18 , 19 ]。关注睡眠问题有助于确定抑郁症患者的最佳药物治疗方案。此外,对于孕妇来说,患有睡眠呼吸障碍 (SDB) 的女性有 35% 发生临床妊娠和活产,而没有 SDB 的女性这一比例为 58% [ 20 ]。睡眠障碍也是阿片类药物使用障碍 (OUD) 患者常见的合并症和衰弱症状。对 OUD 相关睡眠问题的潜在机制和有效治疗干预的研究需要对睡眠相关结果和损害进行精确和生理测量 [ 21 ]。
1.3. Summary 1.3.概括
Sleep is a complex physiological behavior, and the physiological signals and sensing techniques associated with sleep are diverse. Sleep problems are very common in the current society. Sleep monitoring technology is also very rich. However, at present, the most accurate monitoring system is for clinical use (in Section 2.1), which is difficult to use in daily life. There is a lot of research space for the technology that allows people to detect long-term sleep at home. This article will start with a brief introduction to professional polysomnography and its limitations. The main part focuses more on how various physiological signals can be monitored in the home. For monitoring that cannot be domesticated at the moment but is of great value, brief introductions and outlook are provided (mainly in Section 3.4, Section 4.7 and Section 5).
睡眠是一种复杂的生理行为,与睡眠相关的生理信号和传感技术多种多样。睡眠问题在当今社会非常普遍。睡眠监测技术也非常丰富。然而,目前最准确的监测系统是用于临床(第2.1节),这在日常生活中很难使用。让人们在家中检测长期睡眠的技术有很大的研究空间。本文将首先简要介绍专业多导睡眠图及其局限性。主要部分更多地关注如何在家中监测各种生理信号。对于目前无法驯化但具有重大价值的监测,提供了简要介绍和展望(主要在第3.4节、第4.7节和第5节)。
Section 2 introduces the standard clinical sleep monitoring technique, followed by the main focus of sleep monitoring: sleep cycles and sleep disorders. Section 3, Section 4 and Section 5 specifically summarize the work related to sleep monitoring. In this paper, we classify the relevant studies into three chapters based on the type of physiological signals collected. Section 3, Section 4 and Section 5 introduce bioelectrical, biomechanical, and biochemical signal monitoring, respectively. The classification is based on the type of signal generated by the body rather than the sensor output. For example, strain gauges are classified as biomechanical signal monitoring because they convert the body’s strain into an electrical signal. Optical sensors, which analyze blood flow rate by detecting reflected light, are also classified as biomechanical signal monitoring; using the same optical sensors to detect oxygen levels in the blood is classified as biochemical signal monitoring. Multi-signal monitoring is summarized in Section 6. Section 7 provides conclusions and discussion.
第2节介绍了标准的临床睡眠监测技术,随后介绍了睡眠监测的主要焦点:睡眠周期和睡眠障碍。第3节、第4节和第5节具体总结了与睡眠监测相关的工作。在本文中,我们根据收集的生理信号类型将相关研究分为三章。第3节、第4节和第5节分别介绍了生物电、生物力学和生化信号监测。分类是基于身体产生的信号类型而不是传感器输出。例如,应变计被归类为生物力学信号监测,因为它们将身体的应变转换为电信号。光学传感器,通过检测反射光来分析血流速度,也属于生物力学信号监测;使用相同的光学传感器来检测血液中的氧含量被归类为生化信号监测。第 6 节总结了多信号监控。第 7 节提供结论和讨论。
2. Sleep Monitoring 2. 睡眠监测
2.1. Polysomnography 2.1.多导睡眠图
At present, the technology of sleep monitoring in the clinic is mature and abundant. A sleep monitoring technology that combines a variety of common sensing methods is called polysomnography (PSG). Standard PSG includes an electroencephalogram (EEG), electrocardiography (ECG), electrooculogram (EOG), and recordings of airflow, respiratory effort, oxygen saturation, and limb electromyography (EMG) [22]. These signals are collected and recorded simultaneously. PSG can detect the occurrence of sleep apnea (SA) or performing sleep stages (Figure 2b,c) [23]. PSG is widely used in hospitals for sleep monitoring. For example, in the intensive care unit (ICU), where special care of the patient is required, very comprehensive monitoring is performed. Methods for assessing and monitoring sleep in the ICU include polysomnography, bispectral indices, behavior charts, nursing assessments, and patient questionnaires [24]. However, technology that allows for long-term sleep detection at home is still necessary. This is for four main reasons.
目前临床上的睡眠监测技术已经成熟、丰富。结合了多种常见传感方法的睡眠监测技术称为多导睡眠图(PSG)。标准PSG包括脑电图(EEG)、心电图(ECG)、眼电图(EOG)以及气流、呼吸努力、氧饱和度和肢体肌电图(EMG)记录[ 22 ]。这些信号被同时收集和记录。 PSG可以检测睡眠呼吸暂停(SA)的发生或执行睡眠阶段(图2b ,c)[ 23 ]。 PSG广泛应用于医院的睡眠监测。例如,在重症监护病房(ICU)中,需要对患者进行特殊护理,需要进行非常全面的监测。 ICU 评估和监测睡眠的方法包括多导睡眠图、脑电双频指数、行为图、护理评估和患者问卷调查[ 24 ]。然而,允许在家中进行长期睡眠检测的技术仍然是必要的。这有四个主要原因。
First, autonomic adaptation processes within the central nervous system are significantly vulnerable when subjects sleep in a sleep laboratory [25]. The test results in the laboratory may not be representative of the state of everyday life. Since it is not convenient for home use, and people are not conscious during sleep, they may not be aware that they are suffering from sleep-related diseases in time. Obstructive sleep apnea (OSA) affects more than 900 million adults globally and can create serious health complications when untreated, while 80% of cases remain undiagnosed [26].
首先,当受试者在睡眠实验室中睡眠时,中枢神经系统内的自主适应过程非常脆弱[ 25 ]。实验室的测试结果可能无法代表日常生活状态。由于家用不方便,而且人们在睡眠时意识不清醒,可能无法及时意识到自己患有与睡眠相关的疾病。阻塞性睡眠呼吸暂停 (OSA) 影响着全球超过 9 亿成年人,如果不及时治疗,可能会造成严重的健康并发症,而 80% 的病例仍未得到诊断 [ 26 ]。
Second, sleep activity is inherently closely related to daytime life and a person’s overall level of health. So, it is not related only to the hospital but to their bedrooms and to their lives in general. Scientists have proven that there is a negative correlation between the number of steps taken for exercise and the onset of sleep apnea. So, sleep monitoring should be part of a complete, daily health test to help most people improve their sleep [27,28,29]. Figure 2a demonstrates the current use of polysomnography, which is not convenient in-home conditions. In the future, well-designed assays using new sleep measures or multimodal mobile wearable devices to assess the three domains of sleep and performance (objective sleep physiology, objective sleep quality, and subjective sleep quality) are needed to assess sleep status better and help people to improve their sleep.
其次,睡眠活动本质上与白天生活和一个人的整体健康水平密切相关。因此,这不仅与医院有关,还与他们的卧室和他们的整体生活有关。科学家已经证明,运动步数与睡眠呼吸暂停的发生呈负相关。因此,睡眠监测应该成为完整的日常健康测试的一部分,以帮助大多数人改善睡眠[ 27,28,29 ]。图 2a展示了目前多导睡眠图的使用,这在家庭条件下并不方便。未来,需要精心设计的检测方法,使用新的睡眠测量或多模式移动可穿戴设备来评估睡眠和表现的三个领域(客观睡眠生理学、客观睡眠质量和主观睡眠质量),以更好地评估睡眠状态并帮助人们改善他们的睡眠。
Third, patients with poorer socioeconomic status may have lower odds of receiving good treatment due to cost and time occupation. Low socioeconomic status and its indicators (income, education, occupation, and employment) negatively correlate with PSG parameters [30]. Disappointingly, existing home-available sleep monitoring techniques yield sleep quality evaluations that do not correlate well with the subjective sleep perception of the user [31].
第三,由于费用和时间占用,社会经济地位较差的患者接受良好治疗的几率可能较低。低社会经济地位及其指标(收入、教育、职业和就业)与 PSG 参数呈负相关[ 30 ]。令人失望的是,现有的家用睡眠监测技术产生的睡眠质量评估与用户的主观睡眠感知没有很好的相关性[ 31 ]。
Finally, nighttime is when many sudden illnesses, such as sudden death, occur. Sudden cardiac death and epilepsy are common causes of sudden death, and most of these sudden deaths occur at rest or during sleep, even in younger age groups [36,37]. OSA is a common sleep breathing disorder. It causes nocturnal hypoxemia, sleep rhythm disorders, etc. OSA is associated with increased cardiovascular and cerebrovascular morbidity and mortality, including sudden cardiac death (SCD) [38,39]. Real-time monitoring is important for preventing sudden cardiac death during sleep.
最后,夜间是许多突发疾病发生的时间,例如猝死。心源性猝死和癫痫是猝死的常见原因,大多数猝死发生在休息或睡眠期间,甚至在较年轻的年龄组中也是如此[ 36 , 37 ]。 OSA 是一种常见的睡眠呼吸障碍。它会导致夜间低氧血症、睡眠节律紊乱等。OSA 与心脑血管发病率和死亡率增加有关,包括心源性猝死(SCD)[ 38 , 39 ]。实时监测对于预防睡眠期间心源性猝死非常重要。
2.2. Sleep Cycle 2.2.睡眠周期
Human sleep is a complex physiological behavior that is complicated to evaluate comprehensively. However, a common evaluation criterion is whether a night’s sleep is characterized by multiple complete and healthy sleep cycles.
人类睡眠是一种复杂的生理行为,难以全面评价。然而,一个常见的评价标准是一晚的睡眠是否具有多个完整且健康的睡眠周期的特征。
Human consciousness can be divided into three states: wakefulness, non-rapid eye movement (NREM or non-REM) sleep (NREMS or non-REMS), and rapid eye movement (REM) sleep (REMS) [40]. NREMS can be further divided into three or four different stages. These stages alternate throughout the night, a phenomenon known as the sleep cycle. A cycle is roughly 2–3 h (Figure 3) [41]. Sleep with several complete sleep cycles is healthy.
人类意识可分为三种状态:清醒状态、非快速眼动睡眠(NREM或non-REM)睡眠(NREMS或非REMS)、快速眼动睡眠(REMS)[ 40 ]。 NREMS可以进一步分为三个或四个不同的阶段。这些阶段在整个晚上交替出现,这种现象称为睡眠周期。一个周期大约为2-3小时(图3 )[ 41 ]。睡眠有几个完整的睡眠周期是健康的。
The wakefulness period is the first stage of sleep when the person is still conscious. The EEG is a low-amplitude mixed-frequency signal with relatively high muscle tone, and the predominant EEG frequency is the alpha rhythm in the wakefulness period [40]. The eyes may move in response to the person’s consciousness.
清醒期是人仍然有意识的睡眠的第一阶段。脑电图是一种低幅度的混频信号,肌张力相对较高,脑电图的主要频率是清醒期的α节律[ 40 ]。眼睛可能会随着人的意识而移动。
When the alpha wave disappears, the person enters NREM sleep, in which the eye moves more slowly. This stage can be further subdivided into three stages according to the depth of sleep. The first one is when the person just enters the sleep state from the waking state when the sleep is very light and can be easily awakened. The second one is the longest and takes up about half of a person’s total sleep time. The third one is the deepest sleep, which has a large number of low-frequency delta waves in the brain waves [43]. This standard was published by the American Academy of Sleep Medicine (AASM) in 2007. The R&K criteria, widely used before that, was proposed in 1968 [44]. In the latter, using the slow wave percentage as a criterion, the stages of deep sleep are further split into S3 (20–50%) and S4 (50%). The difference can be clearly seen in the EEG images, so this classification method is still followed in many studies (in Figure 4) [42].
当阿尔法波消失时,人进入 NREM 睡眠,此时眼睛移动得更慢。此阶段根据睡眠深度又可进一步细分为三个阶段。第一个是人从清醒状态刚刚进入睡眠状态时,睡眠很浅,很容易被惊醒。第二个时间最长,大约占据一个人总睡眠时间的一半。第三种是最深睡眠,脑电波中有大量低频δ波[ 43 ]。该标准由美国睡眠医学会(AASM)于2007年发布。此前广泛使用的R&K标准于1968年提出[ 44 ]。后者以慢波百分比为标准,将深度睡眠阶段进一步分为S3(20-50%)和S4(50%)。在脑电图图像中可以清楚地看到差异,因此许多研究仍然遵循这种分类方法(图4 )[ 42 ]。
In the monitoring of the sleep cycle, REM is a very important stage. It accounts for 20–25% of nighttime sleep in healthy adults [45]. During this sleep stage, the brain is so excited that it is difficult to distinguish the EEG from waking hours while the muscles are most relaxed. This is why REM sleep is also called “paradoxical sleep” [43].
在睡眠周期的监测中,REM是一个非常重要的阶段。它占健康成年人夜间睡眠的 20-25% [ 45 ]。在这个睡眠阶段,大脑非常兴奋,以至于很难将脑电图与清醒时肌肉最放松的时间区分开来。这就是为什么快速眼动睡眠也被称为“矛盾睡眠”[ 43 ]。
REM is considered to be the most unstable period of respiratory and cardiac sleep. Patients with diaphragmatic dysfunction may be particularly at risk due to the reduced tone of the accessory respiratory muscles. In addition, almost all antidepressants inhibit REM sleep [46]. The suppression of REM sleep in depressed patients may be one of the reasons for their poor sleep quality. A significant coupling of REM sleep cycles was observed when couples slept in the same bed. REM sleep may contain feedback to the surrounding environment [47]. Therefore, it is of great significance to monitor the physiological information during REM sleep.
REM 被认为是呼吸和心脏睡眠最不稳定的时期。由于辅助呼吸肌张力减弱,膈肌功能障碍患者可能面临特别高的风险。此外,几乎所有抗抑郁药都会抑制快速眼动睡眠[ 46 ]。抑郁症患者快速眼动睡眠的抑制可能是其睡眠质量差的原因之一。当夫妻睡在同一张床上时,可以观察到快速眼动睡眠周期的显着耦合。快速眼动睡眠可能包含对周围环境的反馈[ 47 ]。因此,监测REM睡眠期间的生理信息具有重要意义。
The technique of performing the classification of sleep stages in clinical practice is well established. Awakening is with high muscle tone, targeted eye movements, and activated cerebral cortex. Non-REM sleep is characterized by moderate muscle tone, no eye movements, and slow EEG waves. REM sleep is characterized by low muscle tone, eye movements, and active cerebral cortex [43]. Thus, polysomnography is the standard gold method for measuring sleep cycles, but it is not convenient. As a result, the vast majority of patients do not receive effective diagnosis and treatment [48].
在临床实践中进行睡眠阶段分类的技术已经很成熟。觉醒需要高肌张力、有针对性的眼球运动和激活的大脑皮层。非快速眼动睡眠的特点是肌张力适中、没有眼球运动、脑电图波缓慢。快速眼动睡眠的特点是低肌张力、眼球运动和活跃的大脑皮层[ 43 ]。因此,多导睡眠图是测量睡眠周期的标准黄金方法,但它并不方便。结果,绝大多数患者没有得到有效的诊断和治疗[ 48 ]。
2.3. Sleep Disorders 2.3.睡眠障碍
The sleep disorders described in Section 1.2 and the sleep cycle abnormalities described in Section 2.2 are both problems with poor quality sleep itself. In addition to these, some sleep problems have additional manifestations. These are also important targets for sleep monitoring.
1.2节中描述的睡眠障碍和2.2节中描述的睡眠周期异常都是睡眠质量本身不佳的问题。除了这些之外,一些睡眠问题还有其他表现。这些也是睡眠监测的重要目标。
The first one is obstructive sleep apnea, which is a common sleep disorder. It is a blockage of the upper airway due to problems with sleep position, tongue position, etc. It may lead to problems such as low blood oxygen and interrupted sleep. Approximately 34% and 17% of middle-aged men and women, respectively, meet the diagnostic criteria for OSA. In contrast, there is a 40–80% prevalence among patients with cardiovascular disease [49]. OSA is one of the most regarded sleep disorders in sleep monitoring.
第一个是阻塞性睡眠呼吸暂停,这是一种常见的睡眠障碍。是由于睡眠姿势、舌位等问题导致上呼吸道堵塞,可能会导致低血氧、睡眠中断等问题。大约 34% 的中年男性和 17% 的中年女性符合 OSA 的诊断标准。相比之下,心血管疾病患者的患病率为 40-80% [ 49 ]。 OSA 是睡眠监测中最受关注的睡眠障碍之一。
The second type is involuntary abnormal physical behavior during sleep. Restless legs syndrome is also one of the important sleep disorder disorders. About 10% of adults have experienced this condition that causes sleep disruption [50,51,52]. This abnormal behavior can affect a person’s quality of sleep and quality of life. Both OSA and restless legs syndrome can be monitored from multiple perspectives. Since there are different detection angles, such as EMG signal, motion, and heart rate (HR), they will appear several times in the text.
第二种是睡眠时不自觉的异常身体行为。不宁腿综合症也是重要的睡眠障碍疾病之一。大约 10% 的成年人经历过这种导致睡眠中断的情况 [ 50 , 51 , 52 ]。这种异常行为会影响一个人的睡眠质量和生活质量。 OSA 和不宁腿综合症都可以从多个角度进行监测。由于存在不同的检测角度,例如肌电信号、运动和心率(HR),因此它们会在文本中出现多次。
Sleep grinding, snoring, and nocturnal erectile dysfunction are also common disorders. However, because there are biomechanical signals that can correspond well, there are separate subsections for each in Section 4.
睡眠困难、打鼾和夜间勃起功能障碍也是常见疾病。然而,由于存在可以很好对应的生物力学信号,因此第 4 节中的每个信号都有单独的小节。
3. Bioelectrical Signal Monitoring
3. 生物电信号监测
In polysomnography, multi-channel EEG signal detection and ECG signal detection are often clinically needed [23,53,54,55]. The simultaneous detection of eye movements with electrooculographic signals is important for monitoring REM sleep. The activity of the human trunk and extremities is also commonly measured by EMG signals. Bioelectric signals can be used for the monitoring of numerous physiological phenomena, and the measurement of bioelectric signals can be achieved by applying electrodes to the skin’s surface as shown in Figure 4 [56,57,58]. This non-invasive, inexpensive, and pervasive detection method has achieved large-scale applications.
在多导睡眠监测中,临床上经常需要多通道脑电信号检测和心电信号检测[ 23,53,54,55 ]。通过眼电信号同时检测眼球运动对于监测快速眼动睡眠非常重要。人体躯干和四肢的活动通常也通过肌电图信号来测量。生物电信号可用于监测多种生理现象,生物电信号的测量可以通过将电极施加到皮肤表面来实现,如图4所示[ 56,57,58 ]。这种非侵入性、廉价且普遍的检测方法已经实现了大规模应用。
However, the wires connected during bioelectric signal acquisition may cause a lot of inconvenience to the person. The need to ensure the effective fit of the electrodes also limits their use in daily life [59]. In recent years, new technologies such as wearable devices, electronic skin, and conductive fabrics have made wireless or even senseless bioelectric signal measurement possible [60,61]. The design at the device, circuit, and algorithm levels has allowed the measurement of wearable bioelectrical signals to be free from problems such as motion artifacts, facilitating the daily use of lay people and greatly expanding its application prospects [62]. In addition to the advancement of measurement technology, the development of theoretical research has also allowed more room for the application of bioelectrical signal measurement in sleep monitoring. More electrical signals related to sleep monitoring, such as electroretinography (ERG) [63], are being reported.
然而,生物电信号采集过程中连接的电线可能会给人带来很多不便。确保电极有效贴合的需要也限制了它们在日常生活中的使用[ 59 ]。近年来,可穿戴设备、电子皮肤、导电织物等新技术使得无线甚至无感的生物电信号测量成为可能[ 60 , 61 ]。器件、电路和算法层面的设计,使得可穿戴生物电信号的测量摆脱了运动伪影等问题,方便了外行人的日常使用,大大拓展了其应用前景[ 62 ]。除了测量技术的进步,理论研究的发展也让生物电信号测量在睡眠监测方面的应用有了更大的空间。正在报道更多与睡眠监测相关的电信号,例如视网膜电图(ERG)[ 63 ]。
This section is divided into a total of six subsections. The first four subsections introduce EEG, ECG, EMG (including EOG), and ERG separately, focusing on the significance and effect of monitoring. Figure 5 illustrates several typical schematic diagrams of bioelectrical signal detection. The electrode techniques used in several monitoring modalities will be summarized in Section 3.6. Section 3.5 is for passive bioelectrical detection.
本节共分为六小节。前四小节分别介绍脑电图、心电图、肌电图(含眼电图)、ERG,重点介绍监测的意义和效果。图5为几种典型的生物电信号检测示意图。几种监测方式中使用的电极技术将在第 3.6 节中进行总结。 3.5节是被动生物电检测。
3.1. Electroencephalography
3.1.脑电图
EEG has long been an important part of sleep monitoring. The changes in brain waves during the various stages of the sleep state have been described in Section 2.2, and this has become a crucial item in sleep monitoring. Brain-wave characteristics are the gold standard for sleep cycle classification. The most accurate sleep staging analysis system is based on EEG, the only single sensing modality capable of identifying all sleep stages [67].
脑电图长期以来一直是睡眠监测的重要组成部分。睡眠状态各阶段脑电波的变化已在2.2节中描述,这已成为睡眠监测中至关重要的项目。脑电波特征是睡眠周期分类的黄金标准。最准确的睡眠分期分析系统基于脑电图,这是唯一能够识别所有睡眠阶段的单一传感方式[ 67 ]。
The brain, as the most important nerve center in the body, has very distinct characteristics during all stages of the sleep cycle and has good results as a sleep monitoring indicator. As shown in Figure 6, the performance of brain waves varies greatly from stage to stage and between different genders [68,69,70], which is why the EEG has become the gold standard for sleep cycle identification. EEG can reflect the effects of previous nights of sleep, over-the-counter and prescription drugs, and even illicit drugs on brain activity during sleep [71]. In 2006, Guilleminault et al. studied the effects of different levels of sound stimulation on human brain waves during sleep and on the performance of sleepiness the next day, examining the analysis of the quality of disturbed sleep at the level of brain waves [72]. In addition to this, many studies have been reported on related detection devices due to the importance of EEG signals in the diagnosis of Alzheimer’s disease, Parkinson’s disease, epilepsy, etc. [73,74].
大脑作为人体最重要的神经中枢,在睡眠周期的各个阶段都有非常鲜明的特征,作为睡眠监测指标有很好的效果。如图6所示,不同阶段、不同性别的脑电波表现差异很大[ 68,69,70 ],这就是为什么脑电图成为识别睡眠周期的金标准。脑电图可以反映前一天晚上的睡眠、非处方药和处方药、甚至非法药物对睡眠期间大脑活动的影响[ 71 ]。 2006 年,Guilleminault 等人。研究了不同水平的声音刺激对人类睡眠时脑电波以及第二天困倦表现的影响,检验了脑电波水平上睡眠不安质量的分析[ 72 ]。除此之外,由于脑电信号在阿尔茨海默病、帕金森病、癫痫等诊断中的重要性,相关检测装置的研究也有很多报道[ 73 , 74 ]。
Miniaturization of traditional electrodes, or home use, allows for wearable EEG monitoring, but the principle remains that electrodes attached to the skin’s surface can pick up electrical signals of neural activity [56]. With the arrival of the new coronary epidemic, many people are less willing to go to the hospital, and home healthcare has become a healthcare trend. In 2020, Arnal et al. fabricated EEG sensors integrated into a headband. The mean percentage error of the EEG signal obtained with PSG monitoring α was 15 ± 3.5%, β was 16 ± 4.3%, λ was 16 ± 6.1%, and theta frequency during sleep was 10 ± 1.4% [75]. In 2021, Hsieh et al. developed a real-time EEG acquisition system for home use and used a deep-learning model that allowed the average absolute error of the wearable device to measure sleep efficiency to be reduced to 1.68% [76]. Studies using machine-learning algorithms for brain-wave recognition and analysis based on the same sensors are beyond the focus of this paper, but these studies are a good example of the significance of brain-wave sensors [77].
传统电极或家用电极的小型化允许可穿戴脑电图监测,但原理仍然是附着在皮肤表面的电极可以拾取神经活动的电信号[ 56 ]。随着新冠疫情的到来,很多人不太愿意去医院,家庭医疗保健已经成为一种医疗保健趋势。 2020 年,Arnal 等人。将脑电图传感器集成到头带中。 PSG监测获得的EEG信号的平均百分比误差α为15±3.5%,β为16±4.3%,λ为16±6.1%,睡眠期间的θ频率为10±1.4%[ 75 ]。 2021 年,Hsieh 等人。开发了家用实时脑电图采集系统,并使用深度学习模型,使可穿戴设备测量睡眠效率的平均绝对误差降低至 1.68% [ 76 ]。基于相同传感器使用机器学习算法进行脑电波识别和分析的研究超出了本文的重点,但这些研究是脑电波传感器重要性的一个很好的例子[ 77 ]。
EEG is the most demanding for signal quality in bioelectrical signal sensing. Very often, there is a balance between wearing comfort and signal quality. Conventional EEG uses patch electrodes that have good signal quality but are not breathable and may cause skin swelling (see Figure 5c). To minimize the effects of contact resistance, Li et al. designed an array of microneedles that can be pierced into the skin and prepared the apparatus on a flexible substrate. The electrodes have record low skin–electrode contact resistance, 1/250th that of conventional electrodes.
脑电图是生物电信号传感中对信号质量要求最高的。很多时候,佩戴舒适度和信号质量之间需要取得平衡。传统脑电图使用的贴片电极具有良好的信号质量,但不透气,可能导致皮肤肿胀(见图5 c)。为了最大限度地减少接触电阻的影响,Li 等人。设计了一系列可以刺入皮肤的微针,并在柔性基板上准备了该装置。该电极具有创纪录的低皮肤电极接触电阻,仅为传统电极的 1/250。
From another improvement perspective, many researchers are exploring more user-friendly forms of wearable sensors. In 2019, Shustak et al. prepared soft, non-gel flexible electrodes with printed electrode technology to improve the comfort of brain-wave detection [61]. In 2017, Nakamura et al. designed the acquisition of brain-wave signals in the ear, which also achieved good results compared to the acquisition of brain-wave signals in the scalp patch [78]. In 2021, da Silva et al. designed flexible printed electrode sensors in the ear using graphene electrodes and combined them with a smartphone for recording and analysis [79].
从另一个改进的角度来看,许多研究人员正在探索更加用户友好的可穿戴传感器形式。 2019 年,舒斯塔克等人。利用印刷电极技术制备了柔软的非凝胶柔性电极,以提高脑电波检测的舒适度[ 61 ]。 2017 年,中村等人。设计了在耳朵中采集脑电波信号,与在头皮贴片中采集脑电波信号相比也取得了很好的效果[ 78 ]。 2021 年,达席尔瓦等人。使用石墨烯电极设计了耳朵中的柔性印刷电极传感器,并将其与智能手机结合起来进行记录和分析[ 79 ]。
Finally, in recent years, implantable brain–computer interfaces have enabled stable monitoring of signals [80,81,82,83]. Although its main application area is to assist people with motor impairments to control assistive devices [80,81], sensors on EEG signals may further advance the development of sleep monitoring technology in the future. Topchiy et al. studied in vivo implanted electrodes to monitor sleep in mice. They experimented with sleep monitoring with implanted electrodes and telemetry and found they could classify sleep stages more effectively than in vitro monitoring devices [84]. As the technology of implanted electrodes matures, this may also be a future technology that can strike a good balance between contact resistance and non-sensory use.
最后,近年来,植入式脑机接口已经实现了信号的稳定监测[ 80、81、82、83 ]。虽然其主要应用领域是帮助运动障碍人士控制辅助设备[ 80 , 81 ],但脑电图信号传感器未来可能会进一步推动睡眠监测技术的发展。托普奇等人。研究了体内植入电极来监测小鼠的睡眠。他们用植入电极和遥测技术进行睡眠监测实验,发现它们可以比体外监测设备更有效地对睡眠阶段进行分类[ 84 ]。随着植入电极技术的成熟,这也可能是未来能够在接触电阻和非感知使用之间取得良好平衡的技术。
3.2. Electrocardiography 3.2.心电图
ECG is an important physiological examination closely related to sleep cycles and sleep apnea [85]. As shown in Figure 7a, the periodic movement of the heart will show different electrical signals and form regular ECG curves [85]. In hospitals, ECGs are collected through specialized equipment with the help of professional staff, but self-monitoring by patients is hardly up to this standard [86]. The fit of wearable device contacts is also a common problem. For this reason, many studies have expanded the relevant algorithms and databases so that testing devices can be adapted to self-testing using devices such as wearables to improve signal-to-noise ratios outside the hospital, exclude motion artifacts [87,88], and more accurately determine the occurrence of phenomena such as arrhythmias [89].
心电图是与睡眠周期和睡眠呼吸暂停密切相关的重要生理检查[ 85 ]。如图7a所示,心脏的周期性运动会表现出不同的电信号并形成规则的心电图曲线[ 85 ]。在医院,心电图是在专业人员的帮助下通过专门设备收集的,但患者的自我监测很难达到这个标准[ 86 ]。可穿戴设备触点的适配也是一个常见问题。为此,许多研究扩展了相关算法和数据库,使测试设备能够适应使用可穿戴设备等设备进行自我测试,以提高医院外的信噪比,排除运动伪影[ 87 , 88 ],并更准确地判断心律失常等现象的发生[ 89 ]。
Wearable ECG allows the detection of sleep apnea. The classification accuracy obtained from the ECG belt has a sensitivity of 70% and a specificity of 74%, while the patched ECG has a sensitivity of 88% [91]. Single-lead ECG, worn on the abdomen, can also be good for detecting sleep apnea index and abnormal breathing [92]. In 2019, Hammour et al. studied in-ear ECG. The delay was reduced by up to 88% [93].
可穿戴心电图可以检测睡眠呼吸暂停。从心电图带获得的分类准确性具有 70% 的敏感性和 74% 的特异性,而补丁心电图的敏感性为 88% [ 91 ]。佩戴在腹部的单导联心电图也有助于检测睡眠呼吸暂停指数和呼吸异常[ 92 ]。 2019 年,Hammour 等人。研究了耳内心电图。延迟减少了高达 88% [ 93 ]。
The electrodes can be kept naturally close to the skin compared to watch-type and headphone-type ECG measurement devices. ECGs on the torso often require patch electrodes, and many electrode materials can be irritating to the body. ECG sensing can be integrated into clothing and localized to locations with good signal-to-noise ratios [94] (Figure 7b).
与手表式和耳机式心电图测量设备相比,电极可以自然地靠近皮肤。躯干心电图通常需要贴片电极,并且许多电极材料会对身体产生刺激。 ECG 传感可以集成到衣服中并定位到具有良好信噪比的位置 [ 94 ](图 7b )。
Compared to EEG, ECG requires less signal quality, so many studies can use non-wearable, skin-tight electrodes. Lim et al. arranged electrodes on a mattress [95]. Won Kyu Lee et al. integrated flexible electrodes into the mattress to collect ECG signals from the skin’s surface after a person lies on it [62]. This avoids the need to wear a dedicated device and is well-suited for sleep scenarios. In 2020, Klum et al. used multimodal ECG and analyzed the effects of different sleeping positions [96]. Left ventricular ejection time and pre-ejection period estimation errors were 10% and 21%.
与脑电图相比,心电图对信号质量的要求较低,因此许多研究可以使用非穿戴式、紧贴皮肤的电极。林等人。将电极布置在床垫上[ 95 ]。李元奎等人。将柔性电极集成到床垫中,以在人躺在床垫上后收集皮肤表面的心电图信号[ 62 ]。这样就无需佩戴专用设备,非常适合睡眠场景。 2020 年,克鲁姆等人。使用多模态心电图并分析不同睡眠姿势的影响[ 96 ]。左心室射血时间和射血前期估计误差分别为10%和21%。
3.3. Electromyography and Electrooculography
3.3.肌电图和眼电图
EMG can conveniently reflect human muscles’ tension and limb activity and assist in measuring sleep cycles. While the monitoring of limb movements is challenged by mechanical sensors or camera sensing (in Section 3), EMG has an irreplaceable role in many fields. For example, it is difficult to monitor eye movements outside of the body because the eyelids obscure them in the human sleep state; nocturnal muscle tensions, such as changes in neck muscle tone, do not manifest as obvious changes in limb position. On the other hand, such muscle behaviors have electrical signals that can penetrate the tissues and be measured on the skin’s surface with good accuracy [97,98]. A variety of new methods of collecting electrical signals on the skin’s surface in Figure 8 enable convenient daily measurements of EMG.
肌电图可以方便地反映人体肌肉的张力和肢体活动,并辅助测量睡眠周期。虽然肢体运动的监测受到机械传感器或摄像头传感(第3节)的挑战,但肌电图在许多领域具有不可替代的作用。例如,在人体睡眠状态下,由于眼睑遮挡,很难监测体外的眼球运动;夜间肌肉紧张,例如颈部肌张力的变化,并不表现为肢体位置的明显变化。另一方面,这种肌肉行为具有可以穿透组织并在皮肤表面上进行高精度测量的电信号[ 97 , 98 ]。图 8中收集皮肤表面电信号的各种新方法可以方便地进行日常肌电图测量。
In 2007, Magosso et al. used electrooculography to assess the sleep cycle, which proved to be very reliable, addressing the high labor cost and inconsistency of previous manual scoring [103]. Eye movement is tracked by several muscles. Skin electrodes affixed to the corners of the eye can pick up electrical signals and thus determine whether eye movement is occurring. Beach et al. achieved comfortable wear of eye movement detection devices by integrating EOG sensors in an eye patch through fabric sensor electrodes made of nylon and graphene. Though, with EOG alone, the accuracy of sleep time calculation is only about 70% [104]. However, EOG can be included in the sleep cycle analysis as an important item in sleep polysomnography.
2007 年,Magosso 等人。使用眼电图来评估睡眠周期,事实证明这是非常可靠的,解决了以前人工评分的高劳动力成本和不一致的问题[ 103 ]。眼球运动由几块肌肉跟踪。贴在眼角的皮肤电极可以接收电信号,从而确定眼球是否发生运动。海滩等人。通过由尼龙和石墨烯制成的织物传感器电极将 EOG 传感器集成在眼罩中,实现了眼动检测设备的舒适佩戴。然而,仅使用 EOG,睡眠时间计算的准确度仅为 70% 左右[ 104 ]。然而,EOG可以作为睡眠多导睡眠图的一个重要项目纳入睡眠周期分析中。
Iranzo et al. used polysomnography to analyze EMG analysis of REM sleep in patients with REM sleep behavior disorders. These patients need more accurate monitoring of their REM sleep. EMG of the cardiac, flexor superficial, and extensor profundus muscles can help in the identification of REM [105]. Maeda used single-channel EMG, which also enabled sleep mydriasis detection with 100% sensitivity and specificity under some conditions, demonstrating that single-channel EMG signals can also be of good monitoring value [106].
伊朗佐等人。使用多导睡眠图对 REM 睡眠行为障碍患者的 REM 睡眠进行肌电图分析。这些患者需要更准确地监测他们的快速眼动睡眠。心脏、浅屈肌和深伸肌的肌电图可以帮助识别 REM [ 105 ]。 Maeda使用单通道肌电图,在某些条件下也能够实现100%灵敏度和特异性的睡眠瞳孔散大检测,证明单通道肌电图信号也可以具有良好的监测价值[ 106 ]。
In 2018, Beniczky et al. used wearable EMG signals to capture the evolution of TCS-related signals on the human surface for the detection of muscle rigidity and epilepsy occurring during sleep [66]. In 2022, Yeung et al. completed the diagnosis of obstructive sleep through muscle electrical signals in the tongue and epiglottis to epiglottal pressure and nasal airflow and then through EMG at the level of muscle movement [107]. The diagnosis of apnea was made by Rebelo after collecting the EMG signals generated by the apical muscles of the tongue and generating electrical signals to stimulate the apical muscles of the tongue to terminate the respiratory obstruction when sleep apnea was detected [108]. In 2018, Yamaguchi et al. designed a wearable miniature EMG system weighing 9 g, including the battery, to assess the occurrence of nocturnal teeth grinding [109] (sleep bruxism is described in detail in Section 3.3). In 2019, Prasad et al. connected the EMG device to a smartphone and used it to assist in monitoring teething behavior [110].
2018 年,贝尼茨基等人。使用可穿戴式 EMG 信号来捕获人体表面 TCS 相关信号的演变,以检测睡眠期间发生的肌肉僵硬和癫痫[ 66 ]。 2022 年,Yeung 等人。通过舌头和会厌中的肌肉电信号到会厌压力和鼻气流,然后通过肌肉运动水平的肌电图完成了阻塞性睡眠的诊断[ 107 ]。 Rebelo在检测到睡眠呼吸暂停时收集舌尖肌产生的肌电信号并产生电信号刺激舌尖肌终止呼吸阻塞后做出呼吸暂停的诊断[ 108 ]。 2018 年,山口等人。设计了一个重 9 g 的可穿戴微型肌电图系统,包括电池,用于评估夜间磨牙的发生情况[ 109 ](睡眠磨牙症在第 3.3 节中有详细描述)。 2019 年,普拉萨德等人。将肌电图设备连接到智能手机并用它来协助监测出牙行为[ 110 ]。
3.4. Electroretinography 3.4.视网膜电图
Among the various types of electrical signals, the study of retinal electrical signals was the latest to begin and has the least application in sleep monitoring. The retinal electrical signal expressed the perception of light by the retina and was first used for the diagnosis of eye diseases [111].
在各类电信号中,视网膜电信号的研究起步最晚,在睡眠监测中的应用最少。视网膜电信号表达了视网膜对光的感知,最初用于眼部疾病的诊断[ 111 ]。
With the development of basic research demonstrating the influence of the light environment on human circadian rhythms, the response of the human nervous system to light became an item in sleep monitoring. In 1994, Galambos et al. found that ERG amplitude during slow-wave sleep was more than twice as high as during wakefulness. Moreover, ERG patterns during REM sleep were different from those during slow-wave sleep. Galambos confirmed that ERG signals are also associated with the sleep cycle [112]. In 2016, Liguori et al. demonstrated that ERGs could differ in patients with obstructive sleep apnea [63]. However, the relationship between fundus disease and sleep needs to be further explored [113] (Figure 9c).
随着基础研究的发展证明光环境对人体昼夜节律的影响,人体神经系统对光的反应成为睡眠监测的一个项目。 1994 年,Galambos 等人。发现慢波睡眠期间的 ERG 幅度是清醒期间的两倍多。此外,快速眼动睡眠期间的 ERG 模式与慢波睡眠期间的 ERG 模式不同。 Galambos 证实 ERG 信号也与睡眠周期相关[ 112 ]。 2016 年,Liguori 等人。证明阻塞性睡眠呼吸暂停患者的 ERG 可能有所不同 [ 63 ]。然而,眼底疾病与睡眠之间的关系还需要进一步探讨[ 113 ](图9c )。
Since ERG often requires electrodes placed on the inner eyelid (Figure 9a), it is more difficult and device-demanding to use than tests such as EOG, which can be applied to the skin. Research is also underway to attach electrodes to the skin around the eye to monitor ERG [115]. However, the signal quality is still not as good as the intraocular type. In addition, the need for ERG signals in sleep monitoring needs to be supported by more studies.
由于 ERG 通常需要将电极放置在内眼睑上(图 9a ),因此与可应用于皮肤的 EOG 等测试相比,使用起来更加困难且对设备要求更高。将电极附着在眼睛周围的皮肤上以监测 ERG 的研究也在进行中 [ 115 ]。然而,信号质量仍然不如眼内式。此外,睡眠监测中ERG信号的需求还需要更多研究的支持。
3.5. Passive Bioelectricity Detection
3.5.被动生物电检测
The electrical signals generated by the nervous system during activity are voltages actively generated by the body. The four previous vignettes are based on this. However, the human body can also be considered as a load consisting of resistance and capacitance, and passive bioelectrical detection is achieved by applying voltage and an electric field.
神经系统在活动过程中产生的电信号是身体主动产生的电压。前面的四个小插曲都是以此为基础的。然而,人体也可以被认为是由电阻和电容组成的负载,通过施加电压和电场来实现被动生物电检测。
Blood pressure (BP) causes changes in the diameter of the blood vessels, which in turn affects the impedance of the tissues. Kireev et al. used graphene electronic skin to detect the impedance between electrodes at different locations on the skin [117]. The signal of impedance change can be detected as blood flow pulses move through the blood vessels. BP was calculated with an accuracy of 0.2 ± 4.5 mm Hg for diastolic pressures and 0.2 ± 5.8 mm Hg for systolic pressures.
血压 (BP) 会导致血管直径发生变化,进而影响组织的阻抗。基里耶夫等人。使用石墨烯电子皮肤来检测皮肤上不同位置的电极之间的阻抗[ 117 ]。当血流脉冲穿过血管时,可以检测到阻抗变化的信号。血压的计算精度为:舒张压为 0.2 ± 4.5 mm Hg,收缩压为 0.2 ± 5.8 mm Hg。
Changes in human posture and position in the external electric field will lead to different polarization responses. By arranging the Wi-Fi device in the room after the placement design, the receiver can detect the human body’s activities. Epilepsy detection with 100% sensitivity is achieved without wearing a human device [118]. This method can also achieve 92% accuracy in the recognition of rhythmic movement disorders [119]. The use of multi-antenna arrays allows for the acquisition of richer electric field information. Yu et al. achieved 81.8% classification of sleep stages and breath detection with an average error of 0.23 bpm based on a multi-antenna Wi-Fi receiver [120].
人体在外部电场中的姿势和位置的变化会导致不同的极化响应。通过放置设计后将Wi-Fi设备放置在房间内,接收器可以检测到人体的活动。无需佩戴人体设备即可实现 100% 灵敏度的癫痫检测 [ 118 ]。该方法在节律性运动障碍的识别上也能达到92%的准确率[ 119 ]。多天线阵列的使用可以获取更丰富的电场信息。于等人。基于多天线 Wi-Fi 接收器,实现了 81.8% 的睡眠阶段分类和呼吸检测,平均误差为 0.23 bpm [ 120 ]。
In these two examples, mechanical changes in the human body cause changes in electrical properties. They are placed in Section 2, as the sensor collects electrical signals directly. More research will be reported in Section 3 on BP and motion.
在这两个例子中,人体的机械变化导致电气特性的变化。它们被放置在第 2 部分,因为传感器直接收集电信号。更多关于 BP 和运动的研究将在第 3 节中报告。
3.6. Summary 3.6.概括
There are similarities in the techniques used to acquire bioelectric signals on the skin’s surface. For example, electrodes used to monitor ECG might also be used to monitor EMG. However, different optimizations are needed in specific daily monitoring contexts.
用于获取皮肤表面生物电信号的技术有相似之处。例如,用于监测心电图的电极也可用于监测肌电图。然而,在特定的日常监控环境中需要不同的优化。
In addition to the sensor itself, the monitoring object’s different back-end algorithm also greatly impacts the detection accuracy. For example, it is unfair to compare the accuracy of one sensor measuring EEG for sleep stage classification with the accuracy of another sensor measuring ECG for heart rate analysis. ECG has a strong regularity and can still measure heart rate with relative ease in the presence of noise interference. However, EEG is inherently more non-smooth and random, and its detection requires a higher signal-to-noise ratio. To focus on the effect of the sensor itself, the signal correlation of EEG acquisition was compared (with the standard Ag/AgCl wet electrode used clinically as a reference) [121].
除了传感器本身之外,监控对象后端算法的不同也极大地影响了检测精度。例如,将一个传感器测量脑电图以进行睡眠阶段分类的准确性与另一传感器测量心电图以进行心率分析的准确性进行比较是不公平的。心电图具有较强的规律性,在有噪声干扰的情况下仍能相对轻松地测量心率。然而,脑电图本质上更加不平滑和随机,其检测需要更高的信噪比。为了关注传感器本身的影响,对脑电采集的信号相关性进行了比较(以临床上使用的标准Ag/AgCl湿电极作为参考)[ 121 ]。
Therefore, it is possible to compare the sensor electrodes that have appeared so far in Table 1.
因此,可以对表1中迄今为止出现的传感器电极进行比较。
Table 1 表格1
Type 类型 | Contact Resistance 接触电阻 | Electrode Size 电极尺寸 | Correlation 相关性 | Feature 特征 | Ref. 参考号 |
---|---|---|---|---|---|
Wet/semi-dry 湿式/半干式 Electrode 电极 | 1.5–130 kΩ 1.5–130kΩ | mm–cm 毫米–厘米 | 60–100% | Most commonly used in clinical practice. 临床实践中最常用。 | [56,75,121] [ 56 , 75 , 121 ] |
Dry electrode 干电极 | 2.5 kΩ–5 MΩ 2.5kΩ–5MΩ | mm–cm 毫米–厘米 | 60–98% | Easiest to use. 最容易使用。 | [121,122] [ 121 , 122 ] |
Conductive fabrics 导电布 | 3.4 kΩ–34 kΩ 3.4kΩ–34kΩ | cm–dm 厘米–分米 | 50–95.6% | The maximum contact resistance min. The same experience as 最大接触电阻最小值相同的经历 regular eye masks and pillowcases. 普通眼罩和枕套。 | [62,95,104,121,123] [ 62 , 95 , 104 , 121 , 123 ] |
Microneedle array 微针阵列 | 14.16–378.18 kΩ cm2 14.16–378.18 kΩ·cm 2 | mm–cm 毫米–厘米 | 60–95% | Minimum contact resistance of in vitro electrodes. 体外电极的最小接触电阻。 | [102,121] [ 102 , 121 ] |
Implantable electrodes 植入式电极 | 100 Ω–34 kΩ 100Ω–34kΩ | μm 微米 | / | Best signal quality. Surgery is 最佳信号质量。手术是 required. 必需的。 | [80,81,82,83,124] [ 80 , 81 , 82 , 83 , 124 ] |
Contact lens electrodes 隐形眼镜电极 | / | mm–cm 毫米–厘米 | / | Dedicated to ERG 致力于ERG | [114] [ 114 ] |
4. Biomechanical Signal Monitoring
4. 生物力学信号监测
In the last section, electrical signals were reviewed. However, many human physiological behaviors and phenomena cannot be fully monitored by electrical signals at present, so the direct detection of mechanical signals in the human body is of irreplaceable significance.
在最后一节中,回顾了电信号。然而,目前人体的许多生理行为和现象还无法完全用电信号来监测,因此直接检测人体内的机械信号具有不可替代的意义。
In the absence of integrated dedicated health sensors, some smartphones determine the length of time a person sleeps based on the amount of time they are stationary [125]. This is one of the simplest ways to analyze sleep based on behavioral science, which is an important sleep monitoring item [126]. Nocturnal motor and nonmotor symptoms and other comorbid sleep disorders can disrupt sleep [127]. Diseases related to limb movement, such as Parkinson’s disease, are closely linked to sleep. This is a very primitive way of recording, but there is a big difference in how people behave during sleep and when awake.
在没有集成专用健康传感器的情况下,一些智能手机根据一个人静止的时间来确定其睡眠时间长度[ 125 ]。这是基于行为科学的最简单的睡眠分析方法之一,是重要的睡眠监测项目[ 126 ]。夜间运动和非运动症状以及其他共病睡眠障碍可能会扰乱睡眠[ 127 ]。与肢体运动有关的疾病,例如帕金森病,与睡眠密切相关。这是一种非常原始的记录方式,但人们在睡眠时和清醒时的行为有很大差异。
This section focuses on sensing sleep-related mechanical signals, including posture, motion, acceleration, respiratory airflow, blood flow, etc.
本节重点传感睡眠相关的机械信号,包括姿势、运动、加速度、呼吸气流、血流等。
4.1. Motion Detection 4.1.运动检测
Limb movement is an important concomitant behavior during sleep; many people experience vigorous limb movement. Based on motion sensors on the wrist, Chun et al. monitored how often people with dermatitis may itch at night, demonstrating the effects of pruritus on sleep [128]. In addition to the common sleep onset tests and sleep stage divisions, some sleep disorders are also reflected in body movements. The most typical one is restless legs syndrome. In 2022, Brooks et al. used conductive fabric to form a capacitance with a person’s body, and the magnitude of this virtual capacitance changed after a change in the person’s posture, which in turn was detected. The potential improvement in diagnostic accuracy for assessing sleep disturbances associated with restless legs syndrome using this method can be estimated at approximately 68.1%, far exceeding the diagnosis of measuring anterior tibial EMG signals [129].
肢体运动是睡眠期间重要的伴随行为;许多人经历过剧烈的肢体运动。 Chun 等人基于手腕上的运动传感器。监测皮炎患者夜间瘙痒的频率,证明瘙痒对睡眠的影响[ 128 ]。除了常见的入睡测试和睡眠阶段划分外,一些睡眠障碍还体现在身体动作上。最典型的就是不宁腿综合症。 2022 年,布鲁克斯等人。利用导电织物与人的身体形成电容,这种虚拟电容的大小随着人的姿势的变化而变化,进而被检测到。使用这种方法评估与不宁腿综合征相关的睡眠障碍的诊断准确性的潜在改进可估计约为 68.1%,远远超过测量胫骨前肌电图信号的诊断[ 129 ]。
Wristband motion sensors are the most common form of sleep monitoring. Accelerometers based on a micro-electro-mechanical system (MEMS) can be combined with everyday wearable items such as watches for wearability (Figure 10a,b). Nomoto et al. analyzed the wearer’s sleep quality and tracked various types of phenomena that affect sleep quality with a wristwatch-based motion sensor worn for a long period [130]. In 2019, Yeom et al. integrated sensors on watches that can analyze sleep apnea and send results in real time to a cell phone [131]. In 2022, Katori et al. analyzed over 100,000 data sets and analyzed the classification of 16 sleep problems [132].
腕带运动传感器是最常见的睡眠监测形式。基于微机电系统 (MEMS) 的加速度计可以与日常可穿戴物品(例如手表)结合使用,以实现可穿戴性(图 10 a、b)。野本等人。分析了佩戴者的睡眠质量,并通过长时间佩戴的基于手表的运动传感器来跟踪影响睡眠质量的各种类型的现象[ 130 ]。 2019 年,Yeom 等人。手表上的集成传感器可以分析睡眠呼吸暂停并将结果实时发送到手机[ 131 ]。 2022 年,Katori 等人。分析了超过 100,000 个数据集并分析了 16 种睡眠问题的分类 [ 132 ]。
Although there are multiple joints between the wrist and torso in sleep staging and the human body, restoring the overall body posture with the wrist is difficult. In 2019, Trevenen et al. attempted to improve the accuracy of recognition with machine-learning algorithms [135]. In the same year, Walch et al. also attempted to analyze raw acceleration data from Apple Watch to analyze sleep, but the specificity was not satisfactory [136]. In 2022, Ode et al. achieved relatively high sensitivity and specificity by designing an acceleration-based long-term sleep–wake cycle classification and estimation algorithm (ACCEL) based on simple arm acceleration sensor results [137]. It shows that recognition rates can be improved by algorithms when sensors can provide limited information, but it is not feasible to compensate only by algorithms hoping to achieve the effect of more sensors.
虽然睡眠分期中手腕和躯干与人体之间存在多个关节,但用手腕恢复整体身体姿势是很困难的。 2019 年,Trevenen 等人。尝试通过机器学习算法提高识别的准确性[ 135 ]。同年,Walch 等人。还尝试分析Apple Watch的原始加速度数据来分析睡眠,但特异性并不令人满意[ 136 ]。 2022 年,Ode 等人。通过根据简单的手臂加速度传感器结果设计基于加速度的长期睡眠-觉醒周期分类和估计算法(ACCEL),实现了相对较高的灵敏度和特异性[ 137 ]。这表明,当传感器能够提供的信息有限时,可以通过算法来提高识别率,但希望通过更多传感器来达到的效果,仅通过算法进行补偿是不可行的。
In addition to the wrist, the chest is also a common location for placing accelerometers to more effectively reflect the human torso’s motion and detect mechanical signals of respiration and heartbeat (described in detail in Section 4.3). In 2017, Razjouyan et al. also demonstrated that a single chest accelerometer for sleep analysis was closer to the polysomnography results than a wrist sensor [138]. In 2021, Chen et al. built a detection system with temporal memory using long- and short-term memory (LSTM) networks after enriching the sensor data types and also achieved good results. The behavioral sensor on the wrist was able to identify sleep data with 92% accuracy [139].
除了手腕之外,胸部也是放置加速度计的常见位置,以更有效地反映人体躯干的运动并检测呼吸和心跳的机械信号(详细描述见4.3节)。 2017 年,Razjouyan 等人。还证明,用于睡眠分析的单个胸部加速度计比手腕传感器更接近多导睡眠图结果[ 138 ]。 2021 年,陈等人。在丰富传感器数据类型后,利用长短期记忆(LSTM)网络构建了具有时间记忆的检测系统,也取得了良好的效果。手腕上的行为传感器能够以 92% 的准确度识别睡眠数据 [ 139 ]。
In addition to the two broad categories mentioned above, the types of sensors for detecting posture and movement are actually very rich in various combinations [140]. Sunderam et al. incorporated MEMS accelerometers in a wearable detector for the head, which aided the training set for partitioning different sleep stages and can potentially be used for neuroprosthetic applications for movement disorders and seizures [141]. Yoshihi et al. achieved a higher accuracy sleep stage analysis based on a single 3D accelerometer of the head [142]. However, the accuracy for sleep stage recognition was only 74.6%. For REM sleep, the accuracy was only 52.7%. Therefore, the wrist and torso are still ideal locations for sensor placement.
除了上面提到的两大类之外,用于检测姿势和运动的传感器类型实际上非常丰富,各种组合[ 140 ]。桑德拉姆等人。将 MEMS 加速度计纳入头部可穿戴探测器中,这有助于训练集划分不同的睡眠阶段,并有可能用于治疗运动障碍和癫痫发作的神经假体应用[ 141 ]。吉日等人。基于头部的单个 3D 加速度计实现了更高精度的睡眠阶段分析 [ 142 ]。然而,睡眠阶段识别的准确率仅为74.6%。对于 REM 睡眠,准确度仅为 52.7%。因此,手腕和躯干仍然是传感器放置的理想位置。
When a person moves, vibrations are transmitted to the bedding. So, it is also common to prevent mechanical sensors in bed sheets, pillows, and other locations (Figure 10c). Umetani et al. integrated an IoT system in a comforter that can measure the person’s movement and the bedding to improve sleep quality and prevent accidents during sleep [143]. Xin et al. used a flexible piezoelectric material, polyvinylidene fluoride, to create a flexible piezoelectric film that was placed on a pillow to convert the human force on the pillow into an electrical signal. These methods avoid the occlusion of the quilt in optical methods [144]. Xu et al. integrated a piezoelectric film in the mattress, using PVDF material, with a sensing area of 0.114 m2 and a thickness of only 0.28 mm [145]. It can detect motion signals in a large area and instantly alert the elderly in case of abnormal sleep.
当人移动时,振动会传递到床上用品。因此,在床单、枕头和其他位置防止机械传感器也很常见(图 10 c)。梅塔尼等人。在被子中集成了物联网系统,可以测量人的运动和床上用品,以改善睡眠质量并防止睡眠期间发生事故[ 143 ]。辛等人。使用柔性压电材料聚偏二氟乙烯制造出柔性压电薄膜,将其放置在枕头上,将人体作用在枕头上的力转换为电信号。这些方法避免了光学方法中被子的遮挡[ 144 ]。徐等人。在床垫中集成了压电薄膜,采用PVDF材料,感应面积为0.114 m 2 ,厚度仅为0.28 mm[ 145 ]。它可以大范围检测运动信号,一旦出现睡眠异常,立即提醒老人。
4.2. Posture Detection 4.2.姿势检测
Sleep position also has a great impact on sleep quality. A person’s tongue may fall under the influence of gravity when relaxed, obstructing the airway in some positions or under specific conditions, which can lead to snoring or even sleep apnea. Since accelerometers can sense the direction of gravity, many of the studies mentioned in the previous section have detected motion along with pose (Figure 11b) [142]. In 2007, Kishimoto et al. placed accelerometers on the user’s chest to accurately distinguish whether the user was in a supine, prone, or lateral sleeping position compared to sensors on the wrist or lateral sleeping position and could analyze the user’s sleep and wake times based on movement [87]. In 2015, Heenam et al. used patch accelerometers and achieved an average agreement of 99.16% for sleep position assessment [146]. Research on pose detection alone also has important implications in Figure 11.
睡眠姿势对睡眠质量也有很大影响。人的舌头在放松时可能会受到重力的影响而下垂,在某些姿势或特定条件下会阻塞气道,从而导致打鼾甚至睡眠呼吸暂停。由于加速度计可以感知重力方向,因此上一节中提到的许多研究都检测到了运动和姿势(图11b )[ 142 ]。 2007 年,岸本等人。将加速度计放置在用户胸部,与手腕上的传感器或侧睡位置相比,可以准确地区分用户是否处于仰卧、俯卧或侧睡位置,并可以根据运动分析用户的睡眠和醒来时间[ 87 ]。 2015 年,Heenam 等人。使用贴片加速度计进行睡眠姿势评估,平均一致性达到 99.16% [ 146 ]。仅对姿势检测的研究在图 11中也具有重要意义。
An infrared camera is an ideal method to analyze human posture. An infrared camera can record human posture without a visible light source, and infrared light has good penetration. Insung et al. used an infrared camera to analyze the effect of sleeping posture improvement on sleep apnea [149]. Cheung et al. used an infrared sensor to monitor the movement of the sleeping elderly and alert the healthcare personnel in times when there is bad activity [150]. Non-contact sleep monitoring based on infrared cameras differed from sleep monitoring devices in the identification of sleep quality by only 4.7%. Infrared array sensors under laboratory conditions are more than 95% accurate in sleep detection [151]. Using infrared sensors together with microwave sensors, the overall accuracy of sleep cycle measurements can be as high as 98% [152].
红外热像仪是分析人体姿势的理想方法。红外摄像机无需可见光源即可记录人体姿态,且红外光具有良好的穿透力。仁成等人。使用红外热像仪分析睡姿改善对睡眠呼吸暂停的影响[ 149 ]。张等人。使用红外传感器来监测熟睡的老年人的运动,并在出现不良活动时提醒医护人员[ 150 ]。基于红外摄像头的非接触式睡眠监测与睡眠监测设备在睡眠质量的识别上仅相差4.7%。实验室条件下的红外阵列传感器睡眠检测准确率超过 95% [ 151 ]。将红外传感器与微波传感器结合使用,睡眠周期测量的总体准确度可高达 98% [ 152 ]。
Force sensors also have many roles in this area. As shown in Figure 11c, a pressure sensor made of a multilayer piezoelectric structure can detect which part of the body is touching the bed and subjected to body gravity [148]. In 2022, Zhang et al. prepared resistive flexible angle sensors using metal foil foils, and the accuracy of flexible wearable sleep posture monitoring devices exceeded 90% [153]. Zhou et al. also achieved sensing of human posture through a bed sheet made of ultra-thin conductive fabric. The sensors can divide the bed into a total of 60 zones and detect in which zones the body’s pressure is located [154].
力传感器在这一领域也发挥着许多作用。如图11c所示,由多层压电结构制成的压力传感器可以检测身体的哪个部分正在接触床并受到身体重力[ 148 ]。 2022 年,Zhang 等人。利用金属箔制备电阻式柔性角度传感器,柔性可穿戴睡眠姿势监测设备的准确度超过90%[ 153 ]。周等人。还通过超薄导电织物制成的床单实现了人体姿势的传感。传感器可以将床分为总共 60 个区域,并检测身体压力位于哪些区域 [ 154 ]。
4.3. Sleep Bruxism Detection
4.3.睡眠磨牙症检测
During sleep, 8% of the population has reported awareness of tooth grinding [155]. Sleep bruxism also represents the third most frequent parasomnia [155]. People in a state of high mental tension and psychological stress may maintain an excited state of the occlusal muscles at night and experience nocturnal teeth-grinding symptoms [155,156,157,158]. Subjects with obstructive sleep apnea syndrome, loud snorers, subjects with moderate daytime sleepiness, heavy alcohol drinkers, caffeine drinkers, and smokers are at higher risk of reporting sleep bruxism [156]. In 2021, Lee et al. integrated sensors such as accelerometers and gyroscopes in a jaw advancement device used to improve sleep apnea to help monitor the occurrence of sleep apnea and teeth grinding and to improve the effectiveness of related treatment devices [159].
在睡眠期间,8% 的人表示有磨牙的意识 [ 155 ]。睡眠磨牙症也是第三种最常见的异态睡眠[ 155 ]。精神高度紧张、心理压力较大的人,夜间可能会保持咬合肌的兴奋状态,出现夜间磨牙症状[ 155、156、157、158 ]。患有阻塞性睡眠呼吸暂停综合征、打鼾者、白天中度嗜睡的受试者、大量饮酒者、咖啡因饮用者和吸烟者出现睡眠磨牙症的风险较高[ 156 ]。 2021 年,Lee 等人。在用于改善睡眠呼吸暂停的下颌推进装置中集成加速度计和陀螺仪等传感器,以帮助监测睡眠呼吸暂停和磨牙的发生,并提高相关治疗装置的有效性[ 159 ]。
Muscle electrical signals can show the activity of local muscles, but mechanical methods can more truly and directly detect the occlusion method of teeth, as shown in Figure 12. D’Addona et al. measured stresses in the human mouth using a Wheatstone bridge to detect changes in resistance and force output from a miniature strain gauge. When a person undergoes nocturnal teeth grinding, the strain gauges are stressed. The resistance changes and is amplified by the Wheatstone bridge into a voltage signal that can be collected [160]. In 2022, Coimbra et al. used light Bragg grating sensors, encapsulated in a PDMS, to also make wearable pressure sensors that detect different signals from a person biting a splint during an episode of teeth grinding [161]. In 2021, Jucevicius et al. used permanent magnets and a triaxial magnetometer. The magnetic field generated by the permanent magnets at the magnetometer changes when the spatial position relationship between the mandible and maxilla changes, based on which the movement of the jaw joint can be monitored [162]. In 2022, O’Hare et al. used pressure sensors to detect the deformation of the occlusal muscles, which are smaller than myoelectric sensors that are smaller and more accurate in the analysis of occlusal forces. The results of these works are difficult to achieve with myoelectric signals and exemplify the need for mechanical sensors [163].
肌肉电信号可以显示局部肌肉的活动情况,但机械方法可以更真实、更直接地检测牙齿的咬合情况,如图12所示。达多纳等人。使用惠斯通电桥测量人体口腔中的应力,以检测微型应变计的阻力和力输出的变化。当一个人在夜间磨牙时,应变计会受到压力。电阻发生变化并被惠斯通电桥放大成可以收集的电压信号[ 160 ]。 2022 年,科英布拉等人。使用封装在 PDMS 中的光布拉格光栅传感器来制造可穿戴压力传感器,该传感器可以检测在磨牙期间咬夹板的人发出的不同信号[ 161 ]。 2021 年,Jucevicius 等人。使用永磁体和三轴磁力计。当下颌和上颌之间的空间位置关系发生变化时,磁力计上的永磁体产生的磁场发生变化,据此可以监测颌关节的运动[ 162 ]。 2022 年,奥黑尔等人。使用压力传感器来检测咬合肌肉的变形,该传感器比肌电传感器更小,在咬合力的分析中更准确。这些工作的结果很难用肌电信号来实现,并且例证了对机械传感器的需求[ 163 ]。
4.4. Mechanical Breath Detection
4.4.机械呼吸检测
In addition to the extreme case of sleep apnea, breathing rate and lung capacity are also important physiological information. In 2003, Atanasov et al. found a strong link between nasal cycles and sleep cycles. It is due to the regular circulation of nasal airflow through the nostrils caused by nasal congestion and congestion. In REM sleep, the nasal cycle is synchronized with the sleep cycle [165]. In 2006, Kohler et al. analyzed the effects of different drugs on nocturnal breathing and sleep by detecting airflow and nasal pressure in the right and left nasal passages with three sensors, respectively. Sleep apnea is a common sleep-related disorder that poses a significant threat to the life and health of patients [166]. There have been many studies to detect the occurrence of sleep apnea by heart rate, blood oxygen, and electromyographic signals, which are described in the corresponding subsection. However, the detection of respiratory airflow remains the essential method. Since mechanical signals are important physiological indicators of the respiratory system, relevant sensing is important for both sleep quality monitoring and guidance of treatment [167].
除了睡眠呼吸暂停这种极端情况外,呼吸频率和肺活量也是重要的生理信息。 2003 年,阿塔纳索夫等人。发现鼻周期和睡眠周期之间存在密切联系。它是由于鼻气流经鼻孔有规律的循环而引起鼻塞、充血。在快速眼动睡眠中,鼻周期与睡眠周期同步[ 165 ]。 2006 年,科勒等人。通过用三个传感器分别检测左右鼻道的气流和鼻压,分析了不同药物对夜间呼吸和睡眠的影响。睡眠呼吸暂停是一种常见的睡眠相关疾病,对患者的生命和健康构成重大威胁[ 166 ]。已有许多研究通过心率、血氧和肌电信号来检测睡眠呼吸暂停的发生,相关小节对此进行了描述。然而,呼吸气流的检测仍然是重要的方法。由于机械信号是呼吸系统的重要生理指标,因此相关传感对于睡眠质量监测和治疗指导都很重要[ 167 ]。
Teichtahl et al. used thermistors and nasal pressure sensors to analyze whether humans were breathing and to assess sleep apnea well [168]. In 2021, Moshizi et al. prepared nano-complex airflow sensors by growing graphene nanosheets on the surface of PDMS with good sensitivity and linearity [169]. NP thermistor is a common respiratory detection sensor. The detection principle is that the air pressure in the nasal cavity and the temperature at the nostril changes when a person is breathing. In 2018, Jiang et al. combined a respiratory monitor with a motion sensor to more comprehensively screen for sleep apnea [170]. The respiratory sensor designed by Vernon et al. takes advantage of the fact that changes in temperature and humidity in the mouth and nose during human breathing affect the signal of the acoustic surface wave sensor, as shown in Figure 13a [171]. Sleep apnea can be captured sensitively.
泰希塔尔等人。使用热敏电阻和鼻压传感器来分析人类是否在呼吸并很好地评估睡眠呼吸暂停[ 168 ]。 2021 年,Moshizi 等人。通过在PDMS表面生长石墨烯纳米片制备了纳米复合气流传感器,具有良好的灵敏度和线性度[ 169 ]。 NP热敏电阻是一种常见的呼吸检测传感器。检测原理是人呼吸时鼻腔内的气压和鼻孔处的温度发生变化。 2018 年,Jiang 等人。将呼吸监测器与运动传感器相结合,可以更全面地筛查睡眠呼吸暂停[ 170 ]。 Vernon 等人设计的呼吸传感器。利用了人类呼吸过程中口鼻温度和湿度的变化影响声表面波传感器的信号,如图13a [ 171 ]所示。可以灵敏地捕获睡眠呼吸暂停。
In addition, breathing behavior can be reflected by detecting thoracic motion. In 2011, Dehkordi et al. obtained signals about breathing by fixing an acceleration sensor on the sternum. It is also possible to correlate the sleeping position and screen for sleep apnea [172]. Jortberg et al. fixed accelerometers on the chest and measured the respiratory rate (RR) with an average error of 1.84 breaths per minute [173]. In 2020, Yuzer et al. placed accelerometers on the diaphragm, which vibrate a motor on the wristband when the respiratory movement of the diaphragm is detected to stop, stimulating the patient to change the sleeping position until breathing resumes [174]. In 2021, Ghahjaverestan et al. measured the range of motion of the abdominal and thoracic cavities with acceleration and position sensors, respectively, to restore the respiratory signal more precisely [175]. Stubbe et al. fixed 12 markers on the user’s thorax, used an infrared camera to locate the markers, and calculated the volume of the thorax, shown in Figure 13b [176]. This method is known as optoelectronic plethysmography (OEP). The spirometry measured by this method has an error of only 0.4% with the spirometer, and the mechanics sensor provides richer information than the bioelectrical signal that can only measure respiratory rate.
此外,呼吸行为可以通过检测胸部运动来反映。 2011 年,Dehkordi 等人。通过在胸骨上固定加速度传感器来获取有关呼吸的信号。还可以将睡眠姿势与睡眠呼吸暂停筛查相关联[ 172 ]。约特伯格等人。将加速度计固定在胸部并测量呼吸频率(RR),平均误差为每分钟 1.84 次呼吸 [ 173 ]。 2020 年,Yuzer 等人。将加速度计放置在隔膜上,当检测到隔膜的呼吸运动停止时,加速度计会振动腕带上的电机,刺激患者改变睡姿直到呼吸恢复[ 174 ]。 2021 年,Ghahjaverestan 等人。分别用加速度和位置传感器测量腹腔和胸腔的运动范围,以更精确地恢复呼吸信号[ 175 ]。斯图贝等人。在用户的胸部固定了12个标记,使用红外相机定位标记,并计算出胸部的体积,如图13b [ 176 ]所示。这种方法被称为光电体积描记法(OEP)。这种方法测量的肺活量与肺活量计的误差仅为0.4%,而且力学传感器比只能测量呼吸频率的生物电信号提供了更丰富的信息。
4.5. Blood Flow Detection
4.5.血流检测
BP and HR vary with circadian rhythms. Prolonged stress may lead to increased HR during sleep [177]. Although heart rate information can also be obtained from ECG, obtaining heart rate in the scheme without bioelectrical sensing is still meaningful. Moreover, continuous blood pressure detection, including sleep time, is relevant for diagnosing and treating hypertension [178]. Blood pressure also rises at the end of obstructive episodes in patients with sleep apnea, which is undoubtedly dangerous for patients with both obstructive sleep apnea and vascular disease such as hypertension [179]. In 2000, Dimsdale et al. studied the effect of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea through nocturnal blood pressure monitoring. The significance of nocturnal blood pressure monitoring was demonstrated [180]. However, with an automated device, early detection techniques were based on measuring the patient’s blood pressure every 15 min. A traditional arm band balloon blood pressure detection method was used. Such a method does not allow continuous monitoring, and the sudden working of the air pump and the squeezed arm can affect the patient’s sleep quality.
血压和心率随昼夜节律变化。长时间的压力可能会导致睡眠期间心率增加[ 177 ]。虽然也可以从心电图中获取心率信息,但在没有生物电传感的方案中获取心率仍然是有意义的。此外,连续血压检测,包括睡眠时间,与诊断和治疗高血压相关[ 178 ]。睡眠呼吸暂停患者在阻塞性发作结束时血压也会升高,这对于同时患有阻塞性睡眠呼吸暂停和高血压等血管疾病的患者来说无疑是危险的[ 179 ]。 2000 年,迪姆斯代尔等人。通过夜间血压监测,研究了持续气道正压通气治疗对阻塞性睡眠呼吸暂停患者血压的影响。夜间血压监测的重要性已得到证实[ 180 ]。然而,使用自动化设备时,早期检测技术是基于每 15 分钟测量一次患者的血压。采用传统的臂带气球血压检测方法。这种方法不能进行连续监测,并且气泵的突然工作和挤压手臂会影响患者的睡眠质量。
In 2006, Kaniusas et al. used a magnetoelastic skin curvature sensor to measure carotid blood pressure, enabling continuous blood pressure measurement at night. However, this method has limited accuracy, with a correlation coefficient of less than 0.9 between measured and reference values [181]. Such stress-based blood pressure sensors can cause discomfort from local compression when worn for long periods, both in the fingers and in the arm. Muscle movement and postural changes can alter the mechanical environment to affect measurements [182]. A more non-sensitive blood pressure monitoring that people can wear for long periods at night and does not interfere with their sleep quality is the only truly usable technology for nighttime blood pressure monitoring.
2006 年,卡尼萨斯等人。使用磁弹性皮肤曲率传感器测量颈动脉血压,实现夜间连续血压测量。然而,该方法的精度有限,测量值与参考值之间的相关系数小于0.9[ 181 ]。这种基于压力的血压传感器在长时间佩戴时,可能会因手指和手臂的局部压迫而引起不适。肌肉运动和姿势变化可以改变机械环境,从而影响测量结果[ 182 ]。一种更加不敏感的血压监测装置,人们可以在夜间长时间佩戴,并且不会干扰他们的睡眠质量,这是夜间血压监测唯一真正可用的技术。
Heart rate and blood flow sensing based on optical signals have the advantages of being non-invasive and having low wearing requirements. Photodensitometry, a technique widely used to monitor blood volume changes according to the Lambert–Beer law, is more suitable for home use [183]. This can be used for heart rate monitoring, allowing sleep staging. A type of blood volume sensor—a technology known as photoplethysmography (PPG)—is also widely used [184]. From this, the heart rate and other physiological parameters can be extracted to inform about user activity, fitness, sleep, and health, as shown in Figure 14. However, sleep staging based solely on heart rate measured by PPG waves has a low classification accuracy of between 55% and 78%. Sleep staging combining exercise and heart rate also has an accuracy of 78.2% and cannot replace sleep polysomnography [185,186]. The recognition accuracy can be improved to more than 93% by machine-learning techniques such as data augmentation and convolutional neural networks [187].
基于光信号的心率和血流传感具有非侵入性、佩戴要求低的优点。光密度测定法是一种根据兰伯特-比尔定律广泛用于监测血容量变化的技术,更适合家庭使用[ 183 ]。这可用于心率监测,从而实现睡眠分级。一种血量传感器——一种称为光电体积描记法(PPG)的技术——也被广泛使用[ 184 ]。由此,可以提取心率和其他生理参数以了解用户活动、健身、睡眠和健康状况,如图14所示。然而,仅根据 PPG 波测量的心率进行睡眠分期的分类准确度较低,在 55% 至 78% 之间。结合运动和心率的睡眠分期也具有 78.2% 的准确度,并且不能取代睡眠多导睡眠图 [ 185 , 186 ]。通过数据增强和卷积神经网络等机器学习技术可以将识别准确率提高到93%以上[ 187 ]。
Although less accurate independently as a basis for sleep staging, several works have reported the detection of blood flow under the skin at night by light sensing and recording the time of pulse passage (PTT), which can restore blood pressure information by biomechanical models. Blood pressure can be calculated by measuring the time the pulse wave travels through the blood vessels [178]. Measurements can be made using the difference in the speed of propagation of the ECG signal and the pulse wave signal. Shahrbabaki et al., based on fixing sensors at the fingertips [190], and Kireev et al., based on electronic skin [117], respectively, achieved reliable nocturnal measuring. Zadi et al. performed the error of blood pressure measurement by PTT in different states, and the mean value of the model residuals was considered to be less than 3.2 mm Hg during both normal breathing and breath-holding maneuvers [191]. Krefting, based on this technique, successfully observed elevated blood pressure due to different postures at night [192]. Carek et al. integrated sensors in underpants, detected the signal when blood pulses flowed through the legs, and correlated with cuffed sensors [193]. PTT-based blood pressure functions have been integrated into smart watches [194].
虽然独立作为睡眠分期的基础不太准确,但有几篇论文报道了通过光传感和记录脉搏通过时间(PTT)来检测夜间皮下血流量,这可以通过生物力学模型恢复血压信息。血压可以通过测量脉搏波穿过血管的时间来计算[ 178 ]。可以利用心电图信号和脉搏波信号的传播速度的差异来进行测量。 Shahrbabaki等人基于将传感器固定在指尖[ 190 ],Kireev等人基于电子皮肤[ 117 ],分别实现了可靠的夜间测量。扎迪等人。等人在不同状态下进行 PTT 血压测量的误差,正常呼吸和屏气动作时模型残差的平均值被认为小于 3.2 mm Hg [ 191 ]。 Krefting基于该技术成功观察到夜间不同姿势导致的血压升高[ 192 ]。卡雷克等人。在内裤中集成传感器,检测血液脉冲流经腿部时的信号,并与袖带传感器相关联[ 193 ]。基于 PTT 的血压功能已集成到智能手表中[ 194 ]。
PTT measurements can also be performed by two mechanical sensors located in different parts of the body. Thin-film piezoelectric sensors give the possibility of wearability of this sensing. Xin et al. achieved blood pressure monitoring with a standard deviation of only 1.7 mm Hg using two flexible sensors made of PVDF piezoelectric material. Resonant amplifier circuits were designed, too [195]. PTT measurements were also implemented by Fan et al. using textile electronics [196].
PTT 测量也可以通过位于身体不同部位的两个机械传感器来执行。薄膜压电传感器使这种传感技术具有耐磨性。辛等人。使用两个由 PVDF 压电材料制成的柔性传感器实现了标准偏差仅为 1.7 mm Hg 的血压监测。还设计了谐振放大器电路[ 195 ]。 Fan 等人也实施了 PTT 测量。使用纺织电子产品[ 196 ]。
Mechanics signals can also be used for heartbeat detection. Heart rate measurements were performed by Sanchez et al. by collecting vibration signals in the chest cavity [197]. Xin et al. collected signals from pulse vibrations using thin films made of flexible piezoelectric materials [144]. The ultra-thin conductive textile bed sheet made by Zhou et al. has a wide operating frequency bandwidth range of 0 Hz to 40 Hz, good mechanical durability, and washability [154]. Its high sensitivity allows the sensor to obtain heart rate measurements with an error of only 1.33% without wearing any wearable device specifically. However, HR detection by mechanical methods is not common because optical sensors have been able to monitor HR effectively and accurately.
力学信号还可用于心跳检测。心率测量由 Sanchez 等人进行。通过收集胸腔中的振动信号[ 197 ]。辛等人。使用由柔性压电材料制成的薄膜收集脉冲振动信号[ 144 ]。 Zhou等人制作的超薄导电纺织床单。具有0 Hz至40 Hz的宽工作频率带宽范围、良好的机械耐用性和耐洗性[ 154 ]。其高灵敏度使得传感器无需专门佩戴任何可穿戴设备即可获得误差仅为1.33%的心率测量值。然而,机械方法的心率检测并不常见,因为光学传感器已经能够有效、准确地监测心率。
In the last method, Van et al. monitored the heart rate of users based on an infrared camera, using three different frequencies of infrared sensors and a broad spectrum of infrared light sources to achieve transmission of the occlusion [198]. The heart rate detection accuracy was 92%. In addition, because the camera does not touch the body at all, it is not disconnected by the person’s movement, as is the case with ECG. After the person’s posture changes, the camera can also be positioned again in time and continue to measure heart rate.
在最后一种方法中,Van 等人。基于红外摄像头监测用户的心率,使用三种不同频率的红外传感器和广谱红外光源来实现遮挡的传输[ 198 ]。心率检测准确率为92%。此外,由于摄像头完全不接触身体,因此不会像心电图那样因人的移动而断开连接。人的姿势发生变化后,摄像头也可以及时重新定位,继续测量心率。
4.6. Acoustic Detection 4.6.声学检测
The human body has many mechano-acoustic (MA) signals [199]. Snoring is a common phenomenon in sleep, which is caused by the poor ventilation of the airway and has a significant impact on the quality of sleep and in some cases may lead to sleep apnea or even asphyxia. Dafna et al. analyzed the sleep of patients with obstructive sleep apnea by recording their sleep sounds [200]. The accuracy of snoring frequency monitoring can be improved from 81% to 89% by presetting age and gender information [201].
人体有许多机械声(MA)信号[ 199 ]。打鼾是睡眠中常见的现象,它是由于呼吸道通气不畅而引起的,对睡眠质量影响很大,有些情况下可能会导致睡眠呼吸暂停甚至窒息。达夫纳等人。通过记录阻塞性睡眠呼吸暂停患者的睡眠声音来分析他们的睡眠情况[ 200 ]。通过预设年龄和性别信息,打鼾频率监测的准确率可以从81%提高到89%[ 201 ]。
Human sleep is also susceptible to the effects of environmental sounds. Many sleep monitoring systems now integrate ambient sound acquisition to help people analyze the causes of poor sleep. Some sounds may prevent a person from falling asleep, while white noise has shown sleep-aiding effects in many studies [202]. Chen et al. integrated ambient sound sensors into the sleep monitoring system, which automatically plays white noise to mask the noise affecting people’s sleep when ambient noise is detected, and the body sensors in the system monitor sleep quality in real time [203].
人类的睡眠也容易受到环境声音的影响。现在许多睡眠监测系统都集成了环境声音采集功能,以帮助人们分析睡眠不佳的原因。有些声音可能会阻止人入睡,而白噪音在许多研究中显示出有助于睡眠的效果[ 202 ]。陈等人。将环境声音传感器集成到睡眠监测系统中,当检测到环境噪音时,系统会自动播放白噪音来掩盖影响人们睡眠的噪音,系统中的身体传感器实时监测睡眠质量[ 203 ]。
If just collecting the sound in the room, perhaps no special equipment is needed. Snoring signals have strong penetration, so sensing these can often be implemented directly with the help of a smartphone [202]. Xin et al. prepared acoustic sensors using flexible piezoelectric films to detect snoring, but there is no significant advantage over existing integrated microphones [144,204].
如果只是采集房间内的声音,或许不需要特殊的设备。打鼾信号具有很强的穿透力,因此感知这些信号通常可以直接借助智能手机来实现[ 202 ]。辛等人。使用柔性压电薄膜制备了声学传感器来检测打鼾,但与现有的集成麦克风相比没有显着优势[ 144 , 204 ]。
However, in some cases, acoustic sensors close to the skin can give more in vivo information. Ghahjaverestan et al. analyzed respiratory airflow by measuring the sound of tracheal airflow through a microphone close to the skin and used it for the assessment of sleep apnea [175]. Li et al. designed a sensor that can be attached to the chest [199]. It is very sensitive to snoring, and the measured frequency information can be interpreted by human anatomy.
然而,在某些情况下,靠近皮肤的声学传感器可以提供更多的体内信息。加哈贾韦雷斯坦等人。通过通过靠近皮肤的麦克风测量气管气流的声音来分析呼吸气流,并将其用于评估睡眠呼吸暂停[ 175 ]。李等人。设计了一种可以附着在胸部的传感器[ 199 ]。它对打鼾非常敏感,测量到的频率信息可以通过人体解剖学来解释。
4.7. Other Mechanical Detection
4.7.其他机械检测
In men, penile engorgement and erection occur during REM sleep and are important physiological phenomena accompanying the sleep cycle [205]. There is also an association between erectile dysfunction and sleep disorders [206,207]. In 2021, Krkovich et al. enabled monitoring of erections during sleep by recording the diameter of the user’s penis. The results obtained made it possible to determine reference values for qualitative and quantitative indicators of PNT in healthy male volunteers [208]. In 2022, Edgar proposed several forms of sensors that could be used to monitor nocturnal sleep erections: a penile arterial pulse for measuring plethysmograph, a displacement sensor to measure axial length, a strain gauge to measure radial stiffness and circumference, and a temperature sensor to measure skin and cavernosal temperature [209]. In 2022, Heo et al. used an electronic fabric strain sensor to replace the bulky and heavy Rigiscan device in Figure 15. By immobilizing carbon nanotubes on the fabric, resistive length, perimeter, and curvature measurements were achieved. The result shows a 1.44% error rate and a cavity radius of 110 to 300.
对于男性来说,阴茎肿胀和勃起发生在快速眼动睡眠期间,是伴随睡眠周期的重要生理现象[ 205 ]。勃起功能障碍和睡眠障碍之间也存在关联[ 206 , 207 ]。 2021 年,克尔科维奇等人。通过记录用户阴茎的直径来监测睡眠期间的勃起。所获得的结果使得确定健康男性志愿者 PNT 定性和定量指标的参考值成为可能[ 208 ]。 2022 年,埃德加提出了几种可用于监测夜间睡眠勃起的传感器:用于测量体积描记器的阴茎动脉脉冲、用于测量轴向长度的位移传感器、用于测量径向刚度和周长的应变仪以及用于测量径向刚度和周长的温度传感器。测量皮肤和海绵体温度[ 209 ]。 2022 年,Heo 等人。使用电子织物应变传感器来取代图 15中笨重的 Rigiscan 设备。通过将碳纳米管固定在织物上,实现了电阻长度、周长和曲率测量。结果显示错误率为 1.44%,腔体半径为 110 至 300。
Rapid eye movements are a hallmark feature of REM sleep and can reflect how neurologically active a person is under that stage of sleep. Although, the occlusion of the eyelids makes eye movements less easily observable, so the EOG in the previous section is a more common way to detect eye movements. Many studies have reported direct mechanical measurements of eye movements. In 2020, Wu et al. designed a smart eye mask [211]. The hydrogel sensor was integrated with a sleep mask for real-time monitoring of human sleep. Compared to the sleep recorded using a popular sleep monitoring mobile app that measures sleep only based on body movements and voices, the sleeping process measured using the smart sleep mask shows much higher reliability for the recognition of REM sleep. In 2021, Dang et al. used an infrared optical sensor integrated with an eyecup to detect eyelid-surface-shaped edges caused by eye movements and used an array of four sensors to each detecting motion in two vertical degrees of freedom [212].
快速眼球运动是快速眼动睡眠的标志特征,可以反映一个人在该睡眠阶段的神经活跃程度。虽然,眼睑的遮挡使得眼球运动不太容易被观察到,所以上一节中的眼电图是检测眼球运动的更常见的方法。许多研究报告了眼球运动的直接机械测量。 2020 年,吴等人。设计了一款智能眼罩[ 211 ]。水凝胶传感器与睡眠面罩集成,可实时监测人体睡眠。与仅根据身体动作和声音测量睡眠的流行睡眠监测移动应用程序记录的睡眠相比,使用智能睡眠面罩测量的睡眠过程在识别快速眼动睡眠方面表现出更高的可靠性。 2021 年,Dang 等人。使用与眼罩集成的红外光学传感器来检测由眼球运动引起的眼睑表面形状的边缘,并使用四个传感器的阵列,每个传感器检测两个垂直自由度的运动[ 212 ]。
The last mechanical signal is the intraocular pressure (IOP). Continuous monitoring of IOP, especially during sleep, remains a great challenge for glaucoma care. Zhang et al. designed contact lenses with integrated strain sensors and induction coils that allow continuous IOP monitoring at night but with some discomfort [213]. However, very mature, formally usable studies have not been reported. The important difficulties are the passive wireless devices and the lack of oxygen caused by wearing the device all night.
最后一个机械信号是眼压 (IOP)。持续监测眼压,尤其是在睡眠期间,仍然是青光眼护理的一个巨大挑战。张等人。设计了带有集成应变传感器和感应线圈的隐形眼镜,可以在夜间连续监测 IOP,但会带来一些不适 [ 213 ]。然而,非常成熟、正式可用的研究尚未见报道。重要的困难是无源无线设备以及整夜佩戴该设备导致的缺氧。
4.8. Summary 4.8.概括
The biomechanical signal monitoring techniques presented in this section are often related to specific behaviors, for example, movement, teeth grinding, restless legs, erections, etc., but also the monitoring of physiological phenomena such as respiration and heartbeat. Since there are major differences in the objects and purposes of detection, it is difficult to compare them at the methodological level from a unified dimension. Table 2 of this section is more like a summary. Sleep stage is an important indicator of sleep monitoring, which also appears in many studies and is therefore listed separately.
本节介绍的生物力学信号监测技术通常与特定行为相关,例如运动、磨牙、不宁腿、勃起等,但也涉及呼吸和心跳等生理现象的监测。由于检测的对象和目的存在较大差异,很难从统一的维度在方法论层面进行比较。本节的表 2更像是一个总结。睡眠阶段是睡眠监测的重要指标,也出现在很多研究中,因此单独列出。
Table 2 表2
Methods/Technology 方法/技术 | Monitoring Objects 监控对象 | Sleep Stage 睡眠阶段 | Accuracy (Error) 准确度(误差) | Feature 特征 | Ref. 参考号 |
---|---|---|---|---|---|
Record the usage time of cell phone keyboard 记录手机键盘的使用时间 | / | Sleep–awake 睡眠-清醒 | (9.83 + 5.40 min) (9.83 + 5.40 分钟) | Related to cell phone usage 与手机使用有关 habits. Does not require any new devices 习惯。不需要任何新设备 | [125] [ 125 ] |
Wristband accelerometers 腕带式加速度计 | 7 types of insomnia 7种失眠类型 | Sleep–awake 睡眠-清醒 | / | / | [132] [ 132 ] |
Wrist accelerometer 手腕加速度计 | / | NREMS | 96.90% | Accuracy for REMS is low, REMS 的准确度较低, comparing different classification algorithms 比较不同的分类算法 | [135] [ 135 ] |
Wrist accelerometer 手腕加速度计 (apple watch) (苹果手表) | / | 3 stages 3个阶段 | 72% | Exercise alone is better than HR alone. The combination can be improved to a certain extent 单独锻炼比单独做心率要好。组合可以得到一定程度的提升 | [136] [ 136 ] |
Wrist accelerometer 手腕加速度计 | / | Sleep–awake 睡眠-清醒 | 91.71% | The algorithm takes into account the tic behavior 该算法考虑了抽动行为 | [137] [ 137 ] |
Wrist accelerometer 手腕加速度计 | / | Sleep–awake 睡眠-清醒 | 95.80% | Use commercial products, add HR analysis 使用商业产品,添加HR分析 | [139] [ 139 ] |
Chest acceleration 胸部加速度 | Sleep position 睡眠姿势 | / | 99.16% | / | [146] [ 146 ] |
Chest acceleration 胸部加速度 | / | Sleep–awake 睡眠-清醒 | 85.80% | 6% higher than wrist under the same conditions 同等条件下比手腕高6% | [138] [ 138 ] |
Wrist and chest orientation 手腕和胸部方向 sensors 传感器 | Sleep position 睡眠姿势 | 95% | The combination of different 不同的组合 positions was compared 位置进行了比较 | [140] [ 140 ] | |
Head accelerometer 头部加速度计 | / | 3 stages 3个阶段 | (2.0–5.2%) with EEG 有脑电图 | Help EEG improve accuracy 帮助脑电图提高准确性 | [141] [ 141 ] |
Head accelerometer 头部加速度计 | / | 4 stages 4个阶段 | 74.6% | [142] [ 142 ] | |
Quilt accelerometer 被子加速度计 | Accidental falls 意外跌倒 | / | / | There is no need to wear 没必要穿 | [143] [ 143 ] |
Smart watches 智能手表 | Posture, movement, sound 姿势、动作、声音 | / | 87–98% | / | [214] [ 214 ] |
Piezoelectric film mattress 压电薄膜床垫 | Abnormal sleep in the elderly 老年人睡眠异常 | / | / | / | [142] [ 142 ] |
Chest and wrist accelerometers 胸部和手腕加速度计 | Sleep position 睡眠姿势 | / | 85% | / | [147] [ 147 ] |
Infrared camera 红外摄像机 | In bed state 处于卧床状态 | / | 99.80% | Non-contact 非接触式 | [150] [ 150 ] |
Infrared array 红外阵列 | Sleep position 睡眠姿势 | / | 95% | Non-contact 非接触式 | [151] [ 151 ] |
Microwave sensor, infrared sensor 微波传感器、红外传感器 | / | 4 stages 4个阶段 | 98.65% + 0.05% | Non-contact 非接触式 | [152] [ 152 ] |
Capacitive, accelerometer 电容式、加速度计 | Restless legs 不安的腿 syndrome 综合症 | Sleep–awake 睡眠-清醒 | 83.72% | / | [129] [ 129 ] |
Ultra-thin smart textiles 超薄智能纺织品 | Sleep position 睡眠姿势 | / | / | Non-contact 非接触式 | [154] [ 154 ] |
Intraoral accelerometer 口内加速度计 | AS, Sleep position AS,睡眠姿势 | / | / | / | [159] [ 159 ] |
Intraoral magnetic sensors 口内磁传感器 | Teeth grinding 磨牙 | / | (0.260 + 0.004 mm) (0.260 + 0.004 毫米) | / | [162] [ 162 ] |
Intraoral pressure sensor 口内压传感器 | Teeth grinding 磨牙 | / | 82.20% | Close to EMG results 接近肌电图结果 | [163] [ 163 ] |
Nasal pressure and oro-nasal thermal sensor 鼻压和口鼻热传感器 | Respiratory events 呼吸事件 | / | Up to 94% 高达94% | / | [168] [ 168 ] |
Airflow, activity 气流、活动 | OSAS | / | 96.50% | / | [170] [ 170 ] |
Chest acceleration 胸部加速度 | Spirometry, RR 肺活量测定法,RR | / | −1.50% | / | [172] [ 172 ] |
Chest acceleration 胸部加速度 | RR | / | (0.26 bpm) (0.26 次/分钟) | / | [173] [ 173 ] |
Accelerometer near the 加速度计附近 diaphragm 隔膜 | SA | / | 100% | Vibrations stimulate the body to change posture 振动刺激身体改变姿势 | [174] [ 174 ] |
Tracheal sound sensor 气管声音传感器 | Breath airflow 呼吸气流 | / | / | / | [175] [ 175 ] |
OEP | RR | / | −0.40% | / | [176] [ 176 ] |
Skin curvature sensor 皮肤曲率传感器 | BP | / | (4 mmHg) (4毫米汞柱) | Poor correlation 相关性差 | [181] [ 181 ] |
PPG | BP, HR 血压、人力资源 | Sleep–awake 睡眠-清醒 | Up to 93% 高达93% | / | [185,187] [ 185 , 187 ] |
PTT | BP | / | (3.2 mmHg) (3.2 毫米汞柱) | / | [117,190,191] [ 117 , 190 , 191 ] |
Chest acceleration 胸部加速度 | HR | / | 95% | / | [197] [ 197 ] |
Infrared camera 红外摄像机 | HR | / | 92% | Non-contact 非接触式 | [198] [ 198 ] |
Microphone 麦克风 | Sleep–awake 睡眠-清醒 | 82.10% | Non-contact 非接触式 | [200] [ 200 ] | |
Microphone 麦克风 | Snoring 打鼾 | / | 89% | Non-contact 非接触式 | [201] [ 201 ] |
Electronic fabric strain sensors 电子织物应变传感器 | Nocturnal erection 夜间勃起 | / | (1.44%) | / | [209] [ 209 ] |
Sensors on contact lenses 隐形眼镜上的传感器 | Eye pressure 眼压 | / | / | Can warn of high eye pressure problems during sleep 可以警告睡眠期间的高眼压问题 | [213] [ 213 ] |
5. Biochemical Signal Detection
5. 生化信号检测
Biochemical tests have important applications in medicine. The physiological activities of the human body, such as immunity, endocrinology, and cellular metabolism, can be realized to a large extent by the detection of the concentration of relevant substances in the body. With the maturity of non-invasive testing technology, wearable health testing devices can also realize chemical sensing. For example, blood drug concentration detection using electrochemistry [215], wearable continuous glucose monitoring [216], etc. These devices can also be used while sleeping, and there have been reports about them [217]. In this paper, we focus on three biochemical assays that are closely related to sleep, shown in Figure 16.
生化测试在医学中具有重要的应用。人体的免疫、内分泌、细胞代谢等生理活动很大程度上可以通过检测体内相关物质的浓度来实现。随着无创检测技术的成熟,可穿戴健康检测设备也可以实现化学传感。例如,利用电化学检测血液药物浓度[ 215 ]、可穿戴式连续血糖监测[ 216 ]等。这些设备也可以在睡眠时使用,并且已有相关报道[ 217 ]。在本文中,我们重点关注与睡眠密切相关的三种生化检测,如图 16所示。
5.1. O2 Level Detection
5.1. O 2水平检测
Blood oxygenation is a common physiological indicator. In 2013, Elizur et al. identified the effects of hypoxemia on glucose metabolism during REM sleep [221]. In 2014, the patterns of brain tissue oxygen content changes in adults and adolescents during different sleep stages were revealed by NIRS [222]. In 2022, Elmenhorst et al. used blood oxygen sensors to analyze the sleep quality of long-haul flight crews at high altitudes and investigated the effect of a hypoxic environment on sleep at high altitudes, which has important implications for civil aviation safety [223,224,225,226].
血氧饱和度是一项常见的生理指标。 2013 年,Elizur 等人。确定了低氧血症对快速眼动睡眠期间葡萄糖代谢的影响[ 221 ]。 2014年,NIRS揭示了成人和青少年不同睡眠阶段脑组织氧含量的变化模式[ 222 ]。 2022 年,Elmenhorst 等人。等利用血氧传感器分析高海拔长途飞行机组的睡眠质量,研究低氧环境对高海拔睡眠的影响,对民航安全具有重要意义[ 223,224,225,226 ]。
The oxygen content of the different parts of human vasculature is different. Easily measured and well-referenced is the percutaneous arterial oxygen saturation (SpO2). Cakmak et al. detected obstructive sleep apnea with the help of an optical blood oxygen sensing device. This relies on the different absorption rates of light by hemoglobin in the human body before and after binding oxygen, which in turn monitors the oxygen content within the blood through a reflected light sensor [227]. The finger is rich in capillaries, which is a common location for blood oxygen detection [226]. The dual-channel continuous oxygen saturation sensor designed by Zhang et al. explored different types of fingers as well as different wearing positions. It ended up with a root-mean-square error of only 1.8 [228]. The correlation coefficient tested by Tran et al. reached 0.93, with a 95% agreement limit of ±2.5% [229].
人体脉管系统不同部位的含氧量是不同的。经皮动脉血氧饱和度 (SpO 2 ) 易于测量且易于参考。卡马克等人。借助光学血氧传感装置检测阻塞性睡眠呼吸暂停。这依赖于人体内血红蛋白在结合氧气之前和之后对光的吸收率不同,进而通过反射光传感器监测血液内的氧含量[ 227 ]。手指富含毛细血管,是血氧检测的常见部位[ 226 ]。张等人设计的双通道连续血氧饱和度传感器。探索不同类型的手指以及不同的佩戴位置。最终的均方根误差仅为 1.8 [ 228 ]。 Tran 等人测试的相关系数。达到 0.93,95% 的一致性限制为 ±2.5% [ 229 ]。
Because optical signals can easily detect oxygen levels in the blood at any capillary, various types of wearable sensing devices can be used. Earlobe sensors [230] and ear canal sensors [231] can be developed without being limited to common locations such as the wrist, as shown in Figure 17. Among them, brain tissue oxygen saturation is very important for the quality of sleep, and Metz et al. designed measurement of this using near-infrared spectroscopy to detect the oxygen saturation of brain tissue before and after human sleep [222,232], since the oxygen content of human arterial and venous vessels is not the same, and the veins at the arms may interfere with the results. Capillary-based monitoring in areas such as between the fingers, which is 2–3% higher than the armed vessel oxygen content test, is more suitable as a measure of sleep apnea [233]. Nabavi et al. used intraoral photoplethysmography and showed more than 96% accuracy in estimating physiological characteristics such as SpO2 compared to conventional monitoring techniques [234].
由于光信号可以轻松检测任何毛细血管中血液中的氧气水平,因此可以使用各种类型的可穿戴传感设备。耳垂传感器[ 230 ]和耳道传感器[ 231 ]的开发可以不限于手腕等常见位置,如图17所示。其中,脑组织氧饱和度对于睡眠质量非常重要,Metz等人。设计了这种测量方法,利用近红外光谱来检测人类睡眠前后脑组织的氧饱和度[ 222 , 232 ],因为人体动脉和静脉血管的氧含量不一样,手臂的静脉可能会干扰结果。在手指之间等区域进行基于毛细管的监测,比武装容器氧含量测试高 2-3%,更适合作为睡眠呼吸暂停的衡量标准 [ 233 ]。纳巴维等人。使用口腔内光电体积描记法,与传统监测技术相比,在估计 SpO 2等生理特征方面显示出超过 96% 的准确度 [ 234 ]。
In 2021, Van et al. used a broad-spectrum infrared light source to enhance the infrared signal and used three infrared cameras with different frequencies to measure the reflected light signal and calculate the blood oxygen concentration. Based on this, non-contact infrared measurements were achieved, avoiding the detachment of the sensing device from the body due to motion. The non-contact oximeter estimated blood oxygen values with an 89% time error within four 4% [198].
2021 年,Van 等人。使用广谱红外光源增强红外信号,并使用三个不同频率的红外摄像头测量反射光信号并计算血氧浓度。以此为基础,实现了非接触式红外测量,避免了传感装置因运动而与人体脱离。非接触式血氧计估计的血氧值的时间误差为 89%,误差在 4% 之内 [ 198 ]。
5.2. CO2 Level Detection
5.2. CO 2水平检测
The carbon dioxide level is another important test. Insufficient sleep breathing at night may cause hypercapnia, leading to respiratory failure. This process occurs mainly due to increased carbon dioxide levels in blood vessels, such as arteries, due to hypoventilation, in relation to the person’s height, body mass index, and the degree of obstruction of the upper airway [235]. In cardiac patients, the partial pressure of carbon dioxide at night alters their pathophysiology during the day and night.
二氧化碳水平是另一个重要的测试。夜间睡眠呼吸不足可能会引起高碳酸血症,导致呼吸衰竭。这一过程的发生主要是由于通气不足导致血管(例如动脉)中二氧化碳水平增加,与人的身高、体重指数和上呼吸道阻塞程度有关[ 235 ]。对于心脏病患者,夜间二氧化碳分压会改变他们白天和夜间的病理生理学。
Ramos et al. measured carbon dioxide levels, volatile organic compounds (VOCs), and air temperature in indoor environments using low-cost gas sensors [236]. Rauhala et al. used electromechanical film sensors, a flexible material that can analyze carbon dioxide concentrations in blood vessels on the skin’s surface through differences in electrical signals of the skin’s surface and analyze increased carbon dioxide concentrations due to sleep apnea [237]. Kang et al. used gas sensors to measure the concentration of breathing gases in human bodies [238]. Chhajed et al. used an earlobe carbon dioxide sensor to monitor nocturnal carbon dioxide concentrations and monitored the effectiveness of positive pressure ventilation for chronic hypercapnia. This took advantage of the fact that small carbon dioxide molecules have high tissue solubility and can diffuse rapidly through the skin [239]. Tipparaju et al. improved the accuracy of a transdermal continuous carbon dioxide sensor by solving humidity interference with a miniature non-dispersive sensor through a hydrophobic membrane, as shown in Figure 18.
拉莫斯等人。使用低成本气体传感器测量室内环境中的二氧化碳水平、挥发性有机化合物(VOC)和空气温度[ 236 ]。劳哈拉等人。使用机电薄膜传感器,这是一种柔性材料,可以通过皮肤表面电信号的差异来分析皮肤表面血管中的二氧化碳浓度,并分析由于睡眠呼吸暂停而增加的二氧化碳浓度[ 237 ]。康等人。使用气体传感器来测量人体呼吸气体的浓度[ 238 ]。查吉德等人。使用耳垂二氧化碳传感器监测夜间二氧化碳浓度,并监测正压通气对慢性高碳酸血症的有效性。这是利用了二氧化碳小分子具有高组织溶解度并且可以通过皮肤快速扩散的事实[ 239 ]。蒂帕拉朱等人。通过疏水膜解决微型非分散传感器的湿度干扰,提高了透皮连续二氧化碳传感器的精度,如图18所示。
5.3. Hormone Detection 5.3.激素检测
The human body has many hormones that play a regulatory role in the sleep process. For example, melatonin plays an important role in regulating circadian rhythms in humans. Through feedback to light, the accumulation of melatonin in the body will make people sleepy [240,241,242]. Melatonin is also now available to treat some insomnias [243]. In addition, diseases such as adrenal hyperplasia or a prolonged state of emergency may lead to an overproduction of hormones such as adrenal hormone, norepinephrine, and adrenocortical. These hormones can put a person in a hyperactive state and cause difficulty falling asleep, poor sleep quality, and easy awakening [244,245].
人体有多种激素在睡眠过程中发挥调节作用。例如,褪黑激素在调节人类昼夜节律方面发挥着重要作用。通过对光的反馈,体内褪黑激素的积累会使人犯困[ 240,241,242 ]。褪黑激素现在也可用于治疗某些失眠症[ 243 ]。此外,肾上腺增生等疾病或长期处于紧急状态,可能会导致肾上腺素、去甲肾上腺素、肾上腺皮质等激素分泌过多。这些激素会使人处于过度活跃的状态,导致入睡困难、睡眠质量差、容易惊醒[ 244 , 245 ]。
Multi-hormones can be detected in human saliva through secretory glands and thus enable non-invasive sensing. Previously, the level of hormone detection in non-invasive samples was mainly performed by sending the samples to the laboratory and detecting them by fluorescent probe method without real time. Massey et al. prepared a non-invasive body fluid sensor based on EG-FET to monitor the cortisol hormone concentration in saliva samples. The detectable cortisol concentration range is currently identified as 27.3 pM–27.3 μM [246]. Shahub et al., on a nanoporous matrix by electrochemical impedance spectroscopy, measured cortisol concentrations in sweat with 100% accuracy and 0% false negatives, with a dynamic range of 8–140 ng/mL [247].
可以通过分泌腺检测人类唾液中的多种激素,从而实现非侵入性传感。此前,无创样本中激素水平的检测主要是将样本送到实验室,采用荧光探针法进行检测,无法实时进行。梅西等人。制备了基于EG-FET的非侵入性体液传感器来监测唾液样本中的皮质醇激素浓度。目前可检测的皮质醇浓度范围为 27.3 pM–27.3 μM [ 246 ]。 Shahub 等人通过电化学阻抗谱在纳米多孔基质上测量了汗液中的皮质醇浓度,准确度为 100%,假阴性率为 0%,动态范围为 8–140 ng/mL [ 247 ]。
Sensor research at the hormone level is less compared to the rest of the field, but with the maturation of wearable chemical sensor technology, the future promises to provide more health information at the secretory system and drug therapy level.
与其他领域相比,激素层面的传感器研究较少,但随着可穿戴化学传感器技术的成熟,未来有望在分泌系统和药物治疗层面提供更多健康信息。
5.4. Prospect of Biochemical Detections
5.4.生化检测前景
Among the studies related to sleep detection, biochemical detection has been significantly less studied than in the previous two sections. This is probably because chemical sensors tend to be more complex. However, there is no substitute for the importance of biochemical signals in sleep monitoring. Melatonin is the most commonly used medication for insomnia, and caffeine intake is the most common method used when people want to stay awake. Biochemical methods are commonly used to treat sleep-related problems. Biochemical-based tests can guide individualized treatment.
与睡眠检测相关的研究中,生化检测的研究明显少于前两节。这可能是因为化学传感器往往更加复杂。然而,生化信号在睡眠监测中的重要性是无可替代的。褪黑激素是治疗失眠最常用的药物,而摄入咖啡因是人们想要保持清醒时最常用的方法。生化方法通常用于治疗与睡眠相关的问题。基于生化的测试可以指导个体化治疗。
By tracking cortisol concentrations, Dornbierer et al. demonstrated that pulsed-release caffeine could help people suffering from insomniac sleep inertia to wake up from sleep faster [248]. In addition, Julia et al. demonstrated that caffeine concentrations in the body could be detected in sweat from the fingertips after coffee consumption [249]. Akiyo et al. used optical methods to measure ATP concentrations in the brains of mice and observed fluctuations in the intoxicated sleep–wake process [250]. This allows analysis of brain activity in terms of energy metabolism and has important implications for some abnormalities in the neurological causes of the brain during sleep.
通过追踪皮质醇浓度,Dornbierer 等人。证明脉冲释放咖啡因可以帮助患有失眠睡眠惯性的人更快地从睡眠中醒来[ 248 ]。此外,朱莉娅等人。研究表明,饮用咖啡后,可以从指尖的汗液中检测到体内的咖啡因浓度[ 249 ]。秋代等人。使用光学方法测量小鼠大脑中的 ATP 浓度,并观察醉酒睡眠-觉醒过程的波动[ 250 ]。这使得可以从能量代谢的角度分析大脑活动,并对睡眠期间大脑神经原因的一些异常具有重要意义。
The related study shown in Figure 19 may not be designed for at-home sleep monitoring, so it is not yet available for people to use daily. This is a valuable direction for future research. With the development of relevant biochemical detection technology, doctors may be able to prescribe more personalized prescriptions or even automatically adjust the use of drugs based on the hormone levels detected in the user’s body each night.
图19所示的相关研究可能不是为家庭睡眠监测而设计的,因此还不能供人们日常使用。这是未来研究的一个有价值的方向。随着相关生化检测技术的发展,医生或许可以根据每晚检测到的用户体内激素水平,开出更加个性化的处方,甚至自动调整药物的使用。
6. Multi-Signal Sleep Monitoring
6. 多信号睡眠监测
Some studies use single signal sensors with algorithms that achieve certain analysis functions. Nowadays, smart detection devices in the market are mainly based on smartwatches and smart bracelets, and the measurement of total sleep time is accurate with good sensor quality. Still, the results of complex analysis, including measuring different sleep stages, are not yet satisfactory [251,252,253,254]. Current consumer sleep-tracking technologies may not be mature in diagnosing sleep disorders, and more multi-signal sensors have much room for research. For example, Figure 20 shows the combined use of an infrared camera and bed sensor.
一些研究使用单信号传感器和算法来实现某些分析功能。目前市场上的智能检测设备主要以智能手表和智能手环为主,总睡眠时间测量准确,传感器质量良好。尽管如此,包括测量不同睡眠阶段在内的复杂分析结果仍不能令人满意[ 251,252,253,254 ]。目前的消费者睡眠追踪技术在诊断睡眠障碍方面可能还不成熟,更多的多信号传感器还有很大的研究空间。例如,图 20显示了红外摄像头和床传感器的组合使用。
6.1. Multi-Signal, Single Physiological Information
6.1.多信号、单一生理信息
The first category uses multiple sensors of different types to jointly analyze a particular physiological activity, such as REM sleep detection, sleep apnea detection, etc. Models that analyze sleep based on individual sensor data may vary with the underlying conditions of different individuals. For example, the EEG sensor and model designed by Sharma et al. achieved an accuracy of 83% in the sleep stage classification test for healthy individuals [256]. However, the same method yielded an accuracy of only 72% for patients with an REM disorder. Different types of sleep-related disorders have an impact on the results. Deep-learning methods have limited effectiveness in solving this problem [35]. In this case, introducing the rest of the sensors for auxiliary classification is often necessary. Another method is to use multiple signals for sleep stage classification.
第一类是使用多个不同类型的传感器来联合分析特定的生理活动,例如快速眼动睡眠检测、睡眠呼吸暂停检测等。基于个体传感器数据分析睡眠的模型可能会随着不同个体的基础状况而有所不同。例如,Sharma 等人设计的脑电图传感器和模型。在健康个体的睡眠阶段分类测试中达到了 83% 的准确率 [ 256 ]。然而,同样的方法对于 REM 障碍患者的准确率仅为 72%。不同类型的睡眠相关疾病会对结果产生影响。深度学习方法在解决这个问题方面效果有限[ 35 ]。在这种情况下,引入其余传感器进行辅助分类往往是必要的。另一种方法是使用多个信号进行睡眠阶段分类。
Sleep apnea, sleep stage division, and other physiologies with multiple signal presentations are the most common. A relatively simple monitoring such as respiratory rate can also be boosted with a multi-channel signal. Combining different broad categories of signals helps better complement each other but also adds more cost and invariance to the use. For the identification of sleep apnea, the best studies have increased the accuracy to 100%. Respiratory rate monitoring can also have an error of less than one per minute. The complete information is provided in Table 3. The future direction of this type of research will be comfortable to wear. In addition, there is still room for improvement in the truth rate of some behavioral monitoring.
睡眠呼吸暂停、睡眠阶段划分和其他具有多种信号呈现的生理现象是最常见的。相对简单的监测(例如呼吸频率)也可以通过多通道信号来增强。组合不同的大类信号有助于更好地相互补充,但也增加了使用的成本和不变性。对于睡眠呼吸暂停的识别,最好的研究已将准确性提高到 100%。呼吸频率监测的误差也可能小于每分钟一次。表 3提供了完整的信息。此类研究的未来方向将是佩戴舒适。此外,部分行为监测的真实率仍有提升空间。
Table 3 表3
Objectives 目标 | Sensors 传感器 | Accuracy (Error) 准确度(误差) | Feature 特征 | Ref. 参考号 |
---|---|---|---|---|
Sleep Apnea 睡眠呼吸暂停 | Nasal airflow sensor, body activity 鼻气流传感器、身体活动 sensor, SpO2 sensor 传感器、SpO 2传感器 | 96.5% | Specificity of 100% 特异性100% | [170] [ 170 ] |
Sleep Apnea 睡眠呼吸暂停 | Utilizing thermocouple; pulse oximeter 采用热电偶;脉搏血氧仪 | 100% | Wireless data sharing 无线数据共享 | [227] [ 227 ] |
SRBD | ECG, microphone 心电图、麦克风 | 89% | [257] [ 257 ] | |
Sleep Stages 睡眠阶段 | EEG EOG 脑电图 | 89.2% | The recognition rate of non-REM sleep stage 1 is low 非快速眼动睡眠第一阶段识别率较低 | [258] [ 258 ] |
Sleep Stages 睡眠阶段 | 3-axis accelerometers, respiratory 3 轴加速度计,呼吸 acoustic sensor, four infrared optical 声学传感器,四个红外光学 sensors 传感器 | / | Integrated into the eye mask 融入眼罩 | [212] [ 212 ] |
Breathing rate 呼吸率 | Bioimpedance sensor, 生物阻抗传感器, temperature sensor 温度感应器 | (0.71 bpm) (0.71 次/分钟) | Effectively in different postures and 有效地在不同的姿势和 dynamic environments 动态环境 | [259] [ 259 ] |
Grinding 磨削 | Masseter pressure sensor, masseter EMG 咬肌压力传感器、咬肌肌电图 | 82.8% | Pressure sensors are less accurate than combined sensing 压力传感器的精度不如组合传感 | [163] [ 163 ] |
Restless Leg Syndrome 不宁腿综合症 | Capacitive sensors; six-axis inertial 电容式传感器;六轴惯性 measurement sensor 测量传感器 | 93.65% | Effectively improve diagnosis rates 有效提高诊断率 | [129] [ 129 ] |
Ventricular 心室 Bigeminy 二联律 | ECG, microphone 心电图、麦克风 | / | The delay was reduced by up to 88% 延迟减少高达 88% | [93] [ 93 ] |
6.2. Single Sensor, Multiple Physiological Information
6.2.单一传感器,多种生理信息
The second category is the implementation of different tests based on single-sensor hardware with different usages. Sometimes the sensor’s response may be related to several different mechanical, biochemical, etc., signals. For example, the PPG sensor can measure blood pressure and heart rate separately when measuring different values. Another example is the limb acceleration signal, which is a superposition of multiple signals such as posture, movement, and respiration and thus can be interpreted with multiple information. So, some studies, although based on different physiological signals, may ultimately be achieved using the same hardware in different ways.
第二类是基于不同用途的单传感器硬件实施不同的测试。有时,传感器的响应可能与几种不同的机械、生化等信号相关。例如,PPG传感器在测量不同值时可以分别测量血压和心率。再比如肢体加速度信号,它是姿势、运动、呼吸等多种信号的叠加,因此可以用多种信息来解释。因此,一些研究虽然基于不同的生理信号,但最终可能会使用相同的硬件以不同的方式实现。
The accuracy of heart rate and blood oxygen monitored by a single sensor has been reported in many studies. However, no new protocols have emerged from such studies, and several major protocols are relatively well-established. More accurate measurements or more comprehensive analyses require multi-bed sensor combinations.
许多研究都报道了通过单个传感器监测心率和血氧的准确性。然而,此类研究尚未出现新的方案,并且几个主要方案已经相对完善。更准确的测量或更全面的分析需要多床传感器组合。
The paper is divided into sections according to physiological signal categories, and this subsection adds results that are somewhat classified from a sensor perspective. Achieving multiple monitoring through a single sensor can significantly reduce costs. The complete information is provided in Table 4. Here, we can see studies that use a single sensor to acquire multiple signals and enhance the correlation between different signals.
本文根据生理信号类别分为几个部分,本小节添加了从传感器角度进行分类的结果。通过单个传感器实现多重监测可以显着降低成本。表 4提供了完整的信息。在这里,我们可以看到使用单个传感器获取多个信号并增强不同信号之间的相关性的研究。
Table 4 表4
Sensor 传感器 | Outputs 输出 | Accuracy (Error) 准确度(误差) | Feature 特征 | Ref. 参考号 |
---|---|---|---|---|
Infrared camera 红外摄像机 | Pulse rate, respiratory rate, blood oxygen 脉率、呼吸频率、血氧 | 92% | No contact 没有联系 | [198] [ 198 ] |
Optical Blood Oximeter 光学血氧仪 | Pulse rate, blood oxygen 脉率、血氧 | / | Vibration makes people adjust their posture when breathing is not good 振动使人在呼吸不好时调整姿势 | [260] [ 260 ] |
Optical Blood Oximeter 光学血氧仪 | Pulse rate, blood oxygen 脉率、血氧 | 99% | [227] [ 227 ] | |
Intraoral 口内 photoplethysmography 光电体积描记法 | Pulse rate, respiration rate, 脉搏率、呼吸率、 respiration pattern, blood oxygen 呼吸模式、血氧 | 96% | [234] [ 234 ] | |
Acoustic sensor 声学传感器 | Pulse rate, respiration rate 脉搏率、呼吸率 | (2.6–3.9 bpm) (2.6–3.9 bpm) | Mild with anatomical structure-based interpretation 轻度,基于解剖结构的解释 | [199] [ 199 ] |
Piezoelectric film 压电薄膜 | Movement, pulse rate, respiratory rate, blood pressure 运动、脉搏频率、呼吸频率、血压 | (3 mm Hg) (3 毫米汞柱) | [195] [ 195 ] | |
Conductive textile 导电纺织品 | Posture, pulse rate, sleep apnea 姿势、脉率、睡眠呼吸暂停 | (1.33%) | Can be washed repeatedly 可反复水洗 | [154] [ 154 ] |
Textile electronics 纺织电子 | Pulse rate, respiration rate, PTT, SAS 脉搏率、呼吸率、PTT、SAS | / | Can be fixed in any position, 可固定在任意位置, washable 可洗的 | [196] [ 196 ] |
6.3. Integrated Sleep Monitoring
6.3.综合睡眠监测
The third category is using multi-signal sensors for a comprehensive sleep quality analysis. It is similar to a PSG system for home use.
第三类是利用多信号传感器进行全面的睡眠质量分析。它类似于家用 PSG 系统。
The ideal product provides professional PSG monitoring under in-home conditions. It includes accurate sleep stage classification and disease diagnosis. It should also be easy to use, inexpensive, and not interfere with sleep. There is much room for improvement in integrated sensing solutions. Some existing commercial solutions appear in the table, with advances in the laboratory.
理想的产品可在家庭条件下提供专业的 PSG 监控。它包括准确的睡眠阶段分类和疾病诊断。它还应该易于使用、价格便宜并且不会干扰睡眠。集成传感解决方案还有很大的改进空间。表中列出了一些现有的商业解决方案,其中包括实验室的进展。
The combinations of signals and sensing modalities are very diverse and difficult to exhaust. The ability to achieve the best-integrated sleep monitoring under home conditions with the lowest cost and most user-friendly combination of sensors is the core research goal. Many researchers have investigated how to improve this combination. The complete information is provided in Table 5. In the table, there is an example of the conclusion that some techniques can detect anomalies earlier than others. Many studies have also been conducted on special populations or commercial devices.
信号和传感方式的组合非常多样化且难以穷尽。能够在家庭条件下以最低的成本和最人性化的传感器组合实现最佳集成的睡眠监测是核心研究目标。许多研究人员研究了如何改进这种组合。表 5提供了完整的信息。表中的一个示例表明某些技术可以比其他技术更早地检测到异常。还针对特殊人群或商业设备进行了许多研究。
Table 5 表5
Sensors 传感器 | Output 输出 | Indicators 指标 | Feature 特征 | Ref. 参考号 |
---|---|---|---|---|
Infrared depth sensor, 红外深度传感器, camera, four-microphone 摄像头、四麦克风 array 大批 | Sleep quality analysis 睡眠质量分析 | / | Automatic play of white noise to 自动播放白噪音 improve sleep quality 改善睡眠质量 | [203] [ 203 ] |
Acceleration sensor, 加速度传感器, temperature sensor, 温度感应器, humidity sensor 湿度传感器 | The movement of the 的运动 person and bedding 人和床上用品 | / | No need to wear wearable devices 无需佩戴可穿戴设备 | [143] [ 143 ] |
Passive infrared sensor, bed sensor (Nokia sleep bed 被动红外传感器、床传感器(诺基亚睡眠床 sensor) 传感器) | Sleep latency, sleep 睡眠潜伏期、睡眠 interruptions, time to wake, sleep efficiency 干扰、起床时间、睡眠效率 | 4.7% robust statistic confidence 4.7% 稳健的统计置信度 | Sleep quality can be effectively assessed 可以有效评估睡眠质量 | [255] [ 255 ] |
Galaxy Watch (PSG sensor, PPG sensor, Galaxy Watch(PSG 传感器、PPG 传感器、 3-axic accelerometer) 三轴加速度计) | Sleep stages, 睡眠阶段, epoch-by-epoch respiratory events classification, snore events classification, blood oxygen 分时期呼吸事件分类、打鼾事件分类、血氧 | 77% accuracy in sleep stages 睡眠阶段准确度为 77% prediction, 80% accuracy in 预测准确率80% epoch-by-epoch respiratory events classification, 60% accuracy in snore events classification 70% accuracy in SpO2 level classification 逐个时期的呼吸事件分类,打鼾事件分类的准确度为 60% SpO 2级别分类的准确度为 70% | Commercial 商业的 integrated wearable devices 集成可穿戴设备 | [261] [ 261 ] |
ECG, accelerometry, 心电图、加速度计、 | Heart rate and 5 ECG characteristics, posture, sleep quality 心率和5个心电图特征、姿势、睡眠质量 | / | Cardiac changes start earlier and last longer than movement 心脏变化比运动开始得更早,持续时间更长 | [262] [ 262 ] |
Single-channel EEG; nasal pressure transducer and thermistor; thoracic and 单通道脑电图;鼻压传感器和热敏电阻;胸部和 abdominal respiratory 腹式呼吸 inductance plethysmograph belts; pulse oximetry; EMG 电感体积描记带;脉搏血氧仪;肌电图 | Sleep-disordered 睡眠障碍 breathing and periodic leg movements 呼吸和周期性腿部运动 | Failure rate was reduced to 19% 故障率降低至19% | / | [263] [ 263 ] |
EDA; ACC; skin temperature sensor 电子设计自动化; ACC;皮肤温度传感器 | Sleep/wake; high/low sleep quality 睡眠/唤醒;高/低睡眠质量 | 92.2% accuracy of sleep–wake, 61.51% accuracy of low sleep quality 睡眠-觉醒准确率92.2%,低睡眠质量准确率61.51% | / | [264] [ 264 ] |
Accelerometer, gyroscope, orientation sensor; 加速度计、陀螺仪、方向传感器; microphone; ambient light sensor 麦克风;环境光传感器 | Sleep posture and habits, environment, sleep quality 睡眠姿势与习惯、环境、睡眠质量 | 98% accuracy of event detection 事件检测准确度达 98% | Identify causes for sleep problems 找出睡眠问题的原因 compared to prior work 与之前的工作相比 | [214] [ 214 ] |
MEMS triaxial MEMS三轴 accelerometer, pressure 加速度计、压力计 sensor 传感器 | Vital signs, snore events, and sleep stages 生命体征、打鼾事件和睡眠阶段 | 97.2% accuracy of snoring, 95.1% 打鼾准确率97.2%、95.1% accuracy of sleep stage 睡眠阶段的准确性 | / | [265] [ 265 ] |
6.4. Summary 6.4.概括
In summary, multi-channel monitoring showed many better results than single channels. EEG and ECG are information-rich sensors, but the combination is still not comparable to professional polysomnography monitoring. More sensing is useful.
综上所述,多通道监测效果比单通道好很多。脑电图和心电图是信息丰富的传感器,但组合仍然无法与专业的多导睡眠图监测相媲美。更多的感应是有用的。
However, sleep monitoring with good results is not a simple combination of sensors in the previous three sections. Random combinations of unrelated sensors or multiple interpretations of individual sensor data may improve classification but with limited results.
然而,取得良好效果的睡眠监测并不是前三节传感器的简单组合。不相关传感器的随机组合或单个传感器数据的多重解释可能会改善分类,但结果有限。
Good combinations of sensors often come from a particular physiological phenomenon or object to be measured, with multiple different facets of performance. Multiple interpretations of data are common since multiple effects inherently modulate a given physiological signal. In this context, the construction of multi-channel detection devices and the development of related algorithms make sense.
良好的传感器组合通常来自特定的生理现象或待测量的对象,具有多个不同方面的性能。对数据的多种解释很常见,因为多种效应本质上调节给定的生理信号。在此背景下,多通道检测装置的构建以及相关算法的开发就有意义。
7. Conclusions and Discussion
7 结论与讨论
Sleep monitoring is important in an era when people are increasingly concerned about their health. Sleep is also related to the function of many body systems, diseases, and health conditions. In addition to the most basic sleep duration and quality records, new tests can help people find the causes that affect sleep. Sleep apnea, sleep grinding, restless legs syndrome, and other disorders affecting sleep have been reported in many tests. Techniques such as blood pressure, environmental, and endocrine monitoring can help give people more insight into the causes of their poor sleep. However, many other triggers of poor sleep still need to be tested only in the hospital, such as white matter hyperplasia of the brain [266].
在人们越来越关注自己健康的时代,睡眠监测非常重要。睡眠还与许多身体系统的功能、疾病和健康状况有关。除了最基本的睡眠时长和质量记录外,新的测试可以帮助人们找到影响睡眠的原因。许多测试都报告了睡眠呼吸暂停、睡眠磨牙、不宁腿综合症和其他影响睡眠的疾病。血压、环境和内分泌监测等技术可以帮助人们更深入地了解睡眠不佳的原因。然而,许多其他导致睡眠不良的诱因仍然需要在医院进行测试,例如大脑白质增生[ 266 ]。
Many wearable devices and bedding for sleep monitoring have been commercialized. However, there is room for further improvement in their accuracy and reliability. The current research, taking PSG as the comparison standard, still fails to reach the accuracy of the clinical level. In addition, the detection effects become even worse when seeking senseless use. The balance between performance, versatility, cost, and ease of use needs to be found to suit the consumer. Professional polysomnography monitoring in the clinical setting also remains difficult to replace.
许多用于睡眠监测的可穿戴设备和床上用品已经商业化。然而,其准确性和可靠性还有进一步提高的空间。目前的研究以PSG为比较标准,仍达不到临床水平的准确性。此外,当寻求无意义的使用时,检测效果会变得更差。需要找到性能、多功能性、成本和易用性之间的平衡,以满足消费者的需求。临床环境中的专业多导睡眠图监测也仍然难以替代。
The development of sleep monitoring technology is the miniaturization, wearability, and senselessness of existing sensors. On the other hand, there is also a need for better models and algorithms to help people improve their health. The development of artificial intelligence has brought greater possibilities for the back-end algorithm of the sensor, but this does not replace the improvement of the sensor itself. There are also many reports of cutting-edge laboratory results, including hormone testing. Future sleep monitoring in home and clinical settings is expected to expand its capabilities further.
睡眠监测技术的发展是现有传感器的小型化、可穿戴化、无感化。另一方面,也需要更好的模型和算法来帮助人们改善健康。人工智能的发展为传感器后端算法带来了更大的可能性,但这并不能取代传感器本身的改进。还有许多关于尖端实验室结果的报告,包括激素测试。未来家庭和临床环境中的睡眠监测预计将进一步扩展其功能。
Funding Statement 资金声明
This research was funded by Tsinghua University Initiative Scientific Research Program.
该研究得到清华大学自主科研计划资助。
Author Contributions 作者贡献
Conceived and designed the review, J.Y. and J.X.; writing—original draft preparation, J.Y.; writing—review and editing, J.X.; supervised the project, T.-L.R. All authors have read and agreed to the published version of the manuscript.
构思并设计了评论、JY 和 JX;写作——初稿准备,JY;写作—审查和编辑,JX;监督该项目,T.-LR 所有作者均已阅读并同意手稿的出版版本。
Footnotes 脚注
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
免责声明/出版商注:所有出版物中包含的声明、意见和数据仅代表个人作者和贡献者的观点,而非 MDPI 和/或编辑的观点。 MDPI 和/或编辑对内容中提及的任何想法、方法、说明或产品造成的任何人员或财产伤害不承担任何责任。
References 参考
1. Neculiciiou VS、Colosi IA、Cosache C.、Sevastre-Berghian A.、Clichici S. 睡觉时间到了?——COVID-19 大流行对睡眠和心理健康影响的回顾。国际。 J.环境。资源。公共卫生。 2022 年; 19 :3497。 DOI:10.3390/ijerph19063497如果:不不不不。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Huang Y.,Zhao N.中国COVID-19爆发期间的广泛性焦虑症、抑郁症状和睡眠质量:一项基于网络的横断面调查。精神病学研究中心。 2020; 288 :112954。 doi:10.1016/j.psychres.2020.112954如果:4.2 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3.Iranzo A.睡眠医学概述。副词。过期。医学。生物。 2022 年; 1384 :3-15。号码:10.1007/978-3-031-06413-5_1如果:不不不不。 [公共医学] [交叉引用] [谷歌学术]
4. Lammers-van der Holst HM, Lammers GJ, van Der Horst GTJ, Chaves I., de Vries RD, GeurtsvanKessel CH, Koch B., van Der Kuy HM 了解睡眠、轮班工作和 COVID-19 疫苗免疫之间的关联反应功效:S-CORE 研究方案。 J.睡眠研究。 2022 年; 31 :e13496。 DOI:10.1111/jsr.13496如果:3.4 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Mohammadi SM、Enshaeifar S.、Hilton A.、Dijk DJ、Wells K。使用单个 2D 红外相机进行临床睡眠姿势检测的迁移学习。 IEEE 传输。神经系统。康复。工程师。 2020; 29 :290–299。编号:10.1109/TNSRE.2020.3048121如果:4.8 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
6. Margherita G., Caffieri A. 大流行期间做梦变化的观察站:实时系统回顾(第 1 部分) J. Sleep Res。 2022:e13742。 DOI:10.1111/jsr.13742如果:3.4 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Kohyama J. 睡眠数量和睡眠质量哪个对健康更重要?孩子们。 2021 年; 8 :542。 doi:10.3390/children8070542如果:2.0 Q2 B4 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Cudney LE、Frey BN、McCabe RE、Green SM 调查健康成人睡眠客观测量与自我报告睡眠质量之间的关系:综述。 J.克林。睡眠医学。 2022 年; 18 :927–936。号码:10.5664/jcsm.9708如果:3.5 Q1 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Cellini N.、Canale N.、Mioni G.、Costa S。意大利 COVID-19 封锁期间睡眠模式、时间感和数字媒体使用的变化。 J.睡眠研究。 2020; 29 :e13074。 DOI:10.1111/jsr.13074如果:3.4 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Gohari A.、Baumann B.、Jen R.、Ayas N. 睡眠不足:流行病学和影响。临床。胸部医学。 2022 年; 43 :189–198。 doi:10.1016/j.ccm.2022.02.001如果:2.8 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
11. Tracy EL、Reid KJ、Baron KG 睡眠与身体活动之间的关系:日常饮酒的调节作用。睡觉。 2021 年; 44 :zsab112。 doi:10.1093/睡眠/zsab112如果:5.3 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Grandner 马睡眠、健康与社会。睡眠医学。临床。 2022 年; 17 :117-139。 doi:10.1016/j.jsmc.2022.03.001如果:3.1 Q2不适用。 [公共医学] [交叉引用] [谷歌学术]
13. Yamazaki EM、Antler CA、Lasek CR、Goel N。在慢性睡眠限制或急性完全睡眠剥夺后的多个恢复夜后,残留的、差异性的神经行为缺陷仍然存在。睡觉。 2021 年; 44 :zsaa224。 doi:10.1093/睡眠/zsaa224 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Kwon A.、Choi Y.、Kim S.、Song K.、Suh J.、Chae HW、Kim HS 青少年的特征睡眠模式和相关肥胖。生活。 2022 年; 12 :1316。号码:10.3390/life12091316 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Armstrong B.、Beets MW、Starrett A.、Brazendale K.、Turner-McGrievy G.、Saelens BE、Pate RR、Youngstedt SD、Maydeu-Olivares A.、Weaver RG 睡眠、久坐行为和适度行为的动态学校期间与非学校期间的剧烈体育活动。睡觉。 2021 年; 44 :zsaa174。 doi:10.1093/睡眠/zsaa174 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Li J.,Vitiello MV,Gooneratne NS 正常衰老中的睡眠。睡眠医学。临床。 2022 年; 17 :161–171。 doi:10.1016/j.jsmc.2022.02.007 。 [公共医学] [交叉引用] [谷歌学术]
17. Baker FC,Lee KA 月经周期对睡眠的影响。睡眠医学。临床。 2022 年; 17 :283-294。 doi:10.1016/j.jsmc.2022.02.004 。 [公共医学] [交叉引用] [谷歌学术]
18. Hutka P.、Krivosova M.、Muchova Z.、Tonhajzerova I.、Hamrakova A.、Mlyncekova Z.、Mokry J.、Ondrejka I.睡眠结构和生理学与抑郁症和抗抑郁药治疗的协会。国际。 J.莫尔。科学。 2021 年; 22 :1333。 DOI:10.3390/ijms22031333如果:4.9 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. McCarthy E.、De Viva JC、Southwick SM、Pietrzak RH 自评睡眠质量可预测美国退伍军人的自杀意念:一项为期 7 年、具有全国代表性的前瞻性队列研究的结果。 J.睡眠研究。 2022 年; 31 :e13447。 DOI:10.1111/jsr.13447如果:3.4 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
20. Walter JR、Lee JY、Snoll B.、Park JB、Kim DH、Xu S.、Barnhart K。使用无线可穿戴传感器诊断患有睡眠呼吸障碍的不孕症患者的妊娠结局。睡眠医学。 2022 年; 100 :511–517。 doi:10.1016/j.sleep.2022.09.026如果:3.8 Q1 B2 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Dunn KE、Finan PH、Huhn AS、Gamaldo C.、Bergeria CL、Strain EC 用于监测阿片类药物戒断患者睡眠情况的无线脑电图 (EEG):可行性和实用性证据。过期。临床。精神药理学。 2021 年; 30 :1016–1023。 doi: 10.1037/pha0000483如果:2.4 Q2 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Elias MN 重症监护室睡眠评估和监测。暴击。护理护士。临床。 N. Am。 2021 年; 33 :109-119。 DOI:10.1016/j.cnc.2021.01.008如果:1.4 Q3 B4 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Rundo JV,唐尼 R.,III。多导睡眠图。见:Levin KH、Chauvel P.,编辑。临床神经生理学:基础和技术方面。第 160 卷。爱思唯尔;荷兰阿姆斯特丹:2019 年。第 381–392 页。 [考研] [谷歌学术]
24. Locihova H.、Axmann K.、Ziakova K. 夜间护理干预对重症监护病房患者的睡眠干扰影响:系统评价。 J.睡眠研究。 2021 年; 30 :e13223。 doi:10.1111/jsr.13223如果:3.4 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
25. Ai S.、Mayo K.、Akifumi K.、Hiroyoshi A.、Masako T.、Takafumi K. 健康适应夜睡眠周期中睡眠阶段动态、脑电图活动和心率变异性的时间进程差异年轻人。正面。生理学。 2021 年; 12 :623401。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
26. Zavanelli N.、Kim H.、Kim J.、Herbert R.、Mahmood M.、Kim Y.-S.、Kwon S.、Bolus NB、Torstrick FB、Lee CSD 等。在家无线监测急性血流动力学紊乱,通过软胸骨贴片检测睡眠呼吸暂停和睡眠阶段。科学。副词。 2021 年; 7 :eabl4146。 DOI:10.1126/sciadv.abl4146如果:11.7 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Dietmann A.、Wenz E.、van Der Meer J.、Ringli M.、Warncke JD、Edwards E.、Schmidt MH、Bernasconi CA、Nirkko A.、Strub M. 等。瑞士原发性嗜睡症和嗜睡症队列研究 (SPHYNCS):一项前瞻性、多中心队列观察性研究的研究方案。 J.睡眠研究。 2021 年; 30 :e13296。 DOI:10.1111/jsr.13296 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Edgar DT、Gill ND、Beaven CM、Zaslona JL、Driller MW 为期 6 周的军事训练课程期间的睡眠持续时间和身体表现。 J.睡眠研究。 2021 年; 30 :e13393。 DOI:10.1111/jsr.13393 。 [公共医学] [交叉引用] [谷歌学术]
29. Karhu T.、Myllymaa S.、Nikkonen S.、Mazzotti DR、Kulkas A.、Toyras J.、Leppanen T. 糖尿病和心血管疾病与间歇性低氧血症的恶化有关。 J.睡眠研究。 2022 年; 31 :e13441。 doi:10.1111/jsr.13441 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Etindele Sosso FA 用多导睡眠图测量睡眠健康差异:初步结果的系统回顾。时钟睡眠。 2022 年; 4 :80–87。 doi: 10.3390/clockssleep4010009 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. McCarter SJ、Hagen PT、St Louis EK、Rieck TM、Haider CR、Holmes DR、Morgenthaler TI 睡眠质量的生理标志:范围界定审查。睡眠医学。 2022 年修订; 64 :101657。 DOI:10.1016/j.smrv.2022.101657 。 [公共医学] [交叉引用] [谷歌学术]
32. Souto CdSF、Paetzold W.、Paul M.、Debener S.、Wolf KI 用于在家自我应用脑电图睡眠监测的预凝胶电极网格。正面。神经科学。 2022 年; 16 :1004。号码:10.3389/fnins.2022.883966 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. Partinen M. 2020 年睡眠研究:与 COVID-19 相关的睡眠障碍。柳叶刀神经醇。 2021 年; 20 :15–17。编号:10.1016/S1474-4422(20)30456-7 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. Siyahjani F.、Molina GG、Barr S.、Mushtaq F。智能床技术针对多导睡眠图的性能评估。传感器。 2022 年; 22 :2605。号码:10.3390/s22072605 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. Hussain I.、Hossain MA、Jany R.、Bari MA、Uddin M.、Kamal AM、Ku Y.、Kim JS 用于预测睡眠阶段的脑电图生物标记物的定量评估。传感器。 2022 年; 22 :3079。号码:10.3390/s22083079 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. Tsuda T.、Fitzgerald KK、Temple J。无结构性心脏病的儿童和年轻人心源性猝死:全面综述。心血管牧师。医学。 2020; 21 :205-216。 doi:10.31083/j.rcm.2020.02.55 。 [公共医学] [交叉引用] [谷歌学术]
37. Verrier RL、Pang TD、Nearing BD、Schachter SC 癫痫心脏:概念和临床证据。癫痫行为。 2020; 105 :106946。 doi:10.1016/j.yebeh.2020.106946 。 [公共医学] [交叉引用] [谷歌学术]
38. Ottaviani G.,Buja LM 意外心源性猝死的病理学:阻塞性睡眠呼吸暂停是挑战的一部分。心血管。病理学。 2020; 47 :107221。 doi:10.1016/j.carpath.2020.107221 。 [公共医学] [交叉引用] [谷歌学术]
39. Fox H.、Rudolph V.、Munt O.、Malouf G.、Graml A.、Bitter T.、Oldenburg O。通过自适应伺服通气呼吸监测早期识别心力衰竭恶化。 J.睡眠研究。 2023; 32 :e13749。 DOI:10.1111/jsr.13749如果:3.4 Q2 B3 。 [公共医学] [交叉引用] [谷歌学术]
40. Feinsilver SH 老年人的正常和异常睡眠。临床。老年医学和。 2021 年; 37 :377–386。 doi:10.1016/j.cger.2021.04.001如果:3.1 Q3 B4 。 [公共医学] [交叉引用] [谷歌学术]
41. De Fazio R.、Mattei V.、Al-Naami B.、De Vittorio M.、Visconti P. 监测与睡眠功能障碍相关的生物物理参数的方法和可穿戴设备:概述。微型机械。 2022 年; 13 :1335。号码:10.3390/mi13081335 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. Sharma M.、Makwana P.、Chad RS、Acharya UR 一种新颖的自动化稳健双通道 EEG 睡眠评分系统,使用最佳半带对线性相位双正交小波滤波器组。应用。英特尔。 2023:1–19。号码:10.1007/s10489-022-04432-0 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. Blumberg MS、Lesku JA、Libourel PA、Schmidt MH、Rattenborg NC 什么是快速眼动睡眠?电流。生物。 2020; 30 :R38–R49。 doi:10.1016/j.cub.2019.11.045 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. Miano S.、Paolino MC、Castaldo R.、Villa MP 睡眠视觉评分:Rechtschaffen 和 Kales 标准与美国睡眠医学会标准在患有阻塞性睡眠呼吸暂停综合征的儿科人群中的比较。临床。神经生理学。 2010; 121 :39-42。 doi:10.1016/j.clinph.2009.09.016 。 [公共医学] [交叉引用] [谷歌学术]
45. Simor P.、van der Wijk G.、Nobili L.、Peigneux P. 快速眼动睡眠的微观结构:为什么是阶段性睡眠和强直性睡眠?睡眠医学。 2020 年修订; 52 :101305。 DOI:10.1016/j.smrv.2020.101305 。 [公共医学] [交叉引用] [谷歌学术]
46. Riemann D.、Krone LB、Wulff K.、Nissen C. 睡眠、失眠和抑郁。神经精神药理学。 2020; 45 :74–89。 DOI:10.1038/s41386-019-0411-y 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. Drews HJ、Wallot S.、Brysch P.、Berger-Johannsen H.、Weinhold SL、Mitkidis P.、Baier PC、Lechinger J.、Roepstorff A.、Goder R. 夫妻同床与增加和增加有关稳定的快速眼动睡眠和睡眠阶段同步。正面。精神病学。 2020; 11 :583。 doi: 10.3389/fpsyt.2020.00583 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
48. Juwonlo S.、Bessam A.、Ibrahim S. 睡眠周期的非侵入性监测:技术审查。生物医学信息。 2022 年; 2 :204-216。 [谷歌学术]
49. Yeghiazarians Y.、Jneid H.、Tietjens JR、Redline S.、Brown DL、El-Sherif N.、Mehra R.、Bozkurt B.、Ndumele CE、Somers VK 等人。阻塞性睡眠呼吸暂停和心血管疾病:美国心脏协会的科学声明。循环。 2021 年; 144 :E56–E67。号码:10.1161/CIR.0000000000000988 。 [公共医学] [交叉引用] [谷歌学术]
50. Phillips B.、Young T.、Finn L.、Asher K.、Hening WA、Purvis C. 成人不宁腿症状的流行病学。拱。实习生。医学。 2000; 160 :2137–2141。 doi:10.1001/archinte.160.14.2137 。 [公共医学] [交叉引用] [谷歌学术]
51. Lavigne GJ,Montplaisir JY 不宁腿综合症和睡眠磨牙症——加拿大人的患病率和关联。睡觉。 1994; 17 :739–743。 [考研] [谷歌学术]
52. Manconi M.、Garcia-Borreguero D.、Schormair B.、Videnovic A.、Berger K.、Ferri R.、Dauvilliers Y. 不宁腿综合征。纳特。牧师迪斯。普里姆。 2021 年; 7:80 。 DOI:10.1038/s41572-021-00311-z 。 [公共医学] [交叉引用] [谷歌学术]
53. Penzel T.、Kantelhardt JW、Bartsch RP、Riedl M.、Kraemer JF、Wessel N.、Garcia C.、Glos M.、Fietze I.、Schobel C. 心率、心电图和心肺耦合的调节在多导睡眠图中观察到。正面。生理学。 2016年; 7 :460。 doi: 10.3389/fphys.2016.00460 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
54. Bloch KE 多导睡眠图:系统评价。技术。卫生保健。 1997; 5 :285–305。编号:10.3233/THC-1997-5403 。 [公共医学] [交叉引用] [谷歌学术]
55. Kushida CA、Littner MR、Morgenthaler T.、Alessi CA、Bailey D.、Coleman J., Jr.、Friedman L.、Hirshkowitz M.、Kapen S.、Kramer M. 等人。多导睡眠图适应症和相关程序的实践参数:2005 年更新。睡眠。 2005年; 28 :499–521。 doi:10.1093/睡眠/28.4.499如果:5.3 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
56. Miettinen T.、Myllymaa K.、Muraja-Murro A.、Westeren-Punnonen S.、Hukkanen T.、Toyras J.、Lappalainen R.、Mervaala E.、Sipila K.、Myllymaa S. 丝网印刷动态电极这套装置可以准确诊断睡眠磨牙症。 J.睡眠研究。 2018; 27 :103-112。 doi:10.1111/jsr.12536 。 [公共医学] [交叉引用] [谷歌学术]
57. Miettinen T.、Myllymaa K.、Westeren-Punnonen S.、Ahlberg J.、Hukkanen T.、Toyras J.、Lappalainen R.、Mervaala E.、Sipila K.、Myllymaa S.等人。使用自用电极组对可能患有睡眠磨牙症的受试者进行家庭多导睡眠监测的成功率和技术质量。 IEEE J.生物医学。健康信息。 2018; 22 :1124–1132。编号:10.1109/JBHI.2017.2741522 。 [公共医学] [交叉引用] [谷歌学术]
58.张 L.,Kumar KS,何 H.,蔡 CJY,何 X.,高 HX,岳 SZ,李 CS,Seet RCS,任 HL,等。完全符合有机标准的干电极可自粘在皮肤上,用于长期运动稳健的表皮生物电势监测。纳特。交流。 2020; 11 :4683。号码:10.1038/s41467-020-18503-8 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
59.吴晓,杨静,潘燕,张晓,罗燕。基于光电体积描记信号的自动睡眠阶段评分。生理学。测量。 2020; 41 :065008。号码:10.1088/1361-6579/ab921d 。 [公共医学] [交叉引用] [谷歌学术]
60. Acar G.、Ozturk O.、Golparvar AJ、Elboshra TA、Böhringer K.、Yapici MK 用于生物电势信号监测的可穿戴和柔性纺织电极:综述。电子产品。 2019; 8 :479。 DOI:10.3390/电子8050479 。 [交叉引用] [谷歌学术]
61. Shustak S.、Inzelberg L.、Steinberg S.、Rand D.、David Pur M.、Hillel I.、Katzav S.、Fahoum F.、De Vos M.、Mirelman A. 等。使用临时纹身脑电图、眼电图和肌电图电极阵列在家监测睡眠:可行性研究。 J.神经工程。 2019; 16 :026024。号码:10.1088/1741-2552/aafa05 。 [公共医学] [交叉引用] [谷歌学术]
62. Lee WK、Lee HJ、Yoon HN、Chung GS、Park KS 用于从布床垫内包含的电容耦合电极测量的心电图的自动噪声消除和峰值检测算法。 J.生物医学。工程师。资源。 2014年; 35 :87-94。 doi:10.9718/JBER.2014.35.4.87 。 [交叉引用] [谷歌学术]
63. Liguori C.、Palmieri MG、Pierantozzi M.、Cesareo M.、Romigi A.、Izzi F.、Marciani MG、Oliva C.、Mercuri NB、Placidi F. 阻塞性睡眠呼吸暂停中的视神经功能障碍:一项电生理学研究。睡觉。 2016年; 39 :19-23。 doi: 10.5665/sleep.5308 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
64. Hsieh H.-Y.,罗 C.-H.,Tai C.-C.。两对电极构成的无线电位差心电图佩戴舒适。 J. 仪器。 2020; 15 :P08011。号码:10.1088/1748-0221/15/08/P08011 。 [交叉引用] [谷歌学术]
65. Lofhede J.、Seoane F.、Thordstein M. 用于脑电图记录的纺织电极——一项试点研究。传感器。 2012年; 12 :16907–16919。号码:10.3390/s121216907 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
66.Beniczky S.、Conradsen I.、Wolf P。使用表面肌电图检测惊厥性癫痫发作。癫痫。 2018; 59 ((补编 S1)):23-29。 doi:10.1111/epi.14048 。 [公共医学] [交叉引用] [谷歌学术]
67. Imtiaz SA 对可穿戴睡眠分期传感技术的系统回顾。传感器。 2021 年; 21 :1562。号码:10.3390/s21051562 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
68. Wichniak A.、Gustavsson K.、Wierzbicka A.、Jernajczyk W.睡眠障碍。爱思唯尔;荷兰阿姆斯特丹:2020 年。 220–238。 [交叉引用] [谷歌学术]
69. Markovic A.、Kaess M.、Tarokh L.青少年睡眠神经生理学的性别差异:一项高密度睡眠脑电图研究。科学。 2020 年代表; 10 :15935。号码:10.1038/s41598-020-72802-0 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
70. Moghadam SM、Nevalainen P.、Stevenson NJ、Vanhatalo S. 睡眠状态趋势 (SST),基于单个 EEG 通道的新生儿睡眠状态波动的床边测量。临床。神经生理学。 2022 年; 143 :75–83。 doi:10.1016/j.clinph.2022.08.022 。 [公共医学] [交叉引用] [谷歌学术]
71. Campbell IG EEG 记录和分析用于睡眠研究。电流。协议。神经科学。 2009年; 49 :10-12。号码:10.1002/0471142301.ns1002s49 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
72. Guilleminault C.、Abad VC、Philip P.、Stoohs R。睡眠期间 CNS 激活与 EEG 唤醒对心率反应和日间测试的影响。临床。神经生理学。 2006年; 117 :731–739。 doi:10.1016/j.clinph.2005.08.035 。 [公共医学] [交叉引用] [谷歌学术]
73. Michel V.、Mazzola L.、Lemesle M.、Vercueil L. 成人长期脑电图:睡眠剥夺脑电图 (SDE)、动态脑电图 (Amb-EEG) 和长期视频脑电图记录 (LTVER)神经生理学。临床。 2015年; 45 :47–64。 doi:10.1016/j.neucli.2014.11.004 。 [公共医学] [交叉引用] [谷歌学术]
74. Hassan AR、Subasi A.、Zhang Y。使用带有自适应噪声的完整集成经验模式分解进行癫痫发作检测。基于知识的系统2020; 191 :105333。 doi:10.1016/j.knosys.2019.105333 。 [交叉引用] [谷歌学术]
75. Arnal PJ、Thorey V.、Debellemaniere E.、Ballard ME、Hernandez AB、Guillot A.、Jourde H.、Harris M.、Guillard M.、Van Beers P. 等。 Drreem 头带与多导睡眠监测仪在脑电图信号采集和睡眠分期方面进行了比较。睡觉。 2020; 43 :zsaa097。 doi:10.1093/睡眠/zsaa097 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
76. Hsieh TH、Liu MH、Kuo CE、Wang YH、Liang SF 基于眼罩和具有深度学习模型的移动设备的家用实时睡眠分级系统。 J.医学。生物。工程师。 2021 年; 41 :659–668。 DOI:10.1007/s40846-021-00649-5 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
77. Yang Y.、Yuan Y.、Zhang G.、Wang H.、Chen Y.-C.、Liu Y.、Tarolli CG、Crepeau D.、Bukartyk J.、Junna MR 等人。利用夜间呼吸信号进行人工智能检测和评估帕金森病。纳特。医学。 2022 年; 28 :2207–2215。 DOI:10.1038/s41591-022-01932-x 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
78. Nakamura T.、Goverdovsky V.、Morrell MJ、Mandic DP 使用耳脑电图进行自动睡眠监测。 IEEE J. 翻译。工程师。健康医学。 2017年; 5 :2800108。编号:10.1109/JTEHM.2017.2702558 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
79. Da Silva Souto CF、Patzold W.、Wolf KI、Paul M.、Matthiesen I.、Bleichner MG、Debener S. 用于在家进行充分睡眠分级的柔性印刷耳脑电图传感器。正面。数字。健康。 2021 年; 3 :688122。 DOI:10.3389/fdgth.2021.688122 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
80. Silversmith DB、Abiri R.、Hardy NF、Natraj N.、Tu-Chan A.、Chang EF、Ganguly K。通过神经图稳定对脑机接口进行即插即用控制。纳特。生物技术。 2021 年; 39 :326–335。号码:10.1038/s41587-020-0662-5 。 [公共医学] [交叉引用] [谷歌学术]
81.Serruya MD、Napoli A.、Satterthwaite N.、Kardine J.、McCoy J.、Grampurohit N.、Talekar K.、Middleton DM、Mohamed F.、Kogan M.等。用于治疗中风相关性瘫痪的神经运动假体:N-of-1 试验。交流。和。 2022 年; 2:37 。号码:10.1038/s43856-022-00105-8 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
82. Vansteensel MJ、Branco MP、Leinders S.、Freudenburg ZF、Schippers A.、Geukes SH、Gaytant MA、Gosselaar PH、Aarnoutse EJ、Ramsey NF 关于植入式通信脑机接口日常生活实施研究的方法学建议对于患有闭锁综合症的人。神经康复。神经修复。 2022 年; 36 :666–677。号码:10.1177/15459683221125788 。 [公共医学] [交叉引用] [谷歌学术]
83. Ji B.,Liang Z.,Yuan X.,Xu H.,Wang M.,Yin E.,Guo Z.,Wang L.,Zhou Y.,Feng H.,等。无线外皮层和皮层内神经元记录系统的最新进展。科学。中国信息网科学。 2022 年; 65 :140401。号码:10.1007/s11432-021-3373-1 。 [交叉引用] [谷歌学术]
84. Topchiy I.、Fink AM、Maki KA、Calik MW 在大鼠中验证 PiezoSleep 评分与 EEG/EMG 睡眠评分。纳特。科学。睡觉。 2022 年; 14 :1877–1886。号码:10.2147/NSS.S381367 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
85. Lee DH、Park T.、Yoo H。用于电生理信号传感的可生物降解聚合物复合材料。聚合物。 2022 年; 14 :2875。 doi: 10.3390/polym14142875 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
86. Fontana P.、Martins NRA、Camenzind M.、Rossi RM、Baty F.、Boesch M.、Schoch OD、Brutsche MH、Annaheim S. 用于夜间监测的纺织 1 导联心电图设备的临床适用性。传感器。 2019; 19 :2436。号码:10.3390/s19112436 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
87. Kishimoto Y.,Kutsuna Y.,Oguri K。通过三轴加速度计检测睡眠期间的运动伪影心电图噪声; IEEE 医学和生物学工程学会第 29 届国际年会论文集;法国里昂。 2007年8月22日至26日;美国新泽西州皮斯卡塔韦:IEEE; 2007 年。第 2669–2672 页。 [考研] [谷歌学术]
88. Huang Y.,Jin T.,Sun C.,Li X.,Yang S.,Zhang Z.使用轻量级卷积神经网络从心冲击图进行高效 J 峰值检测; IEEE 医学与生物学工程学会 (IEEE EMBC) 第 43 届国际年会论文集;墨西哥瓜达拉哈拉。 2021 年 11 月 1 日至 5 日;美国新泽西州皮斯卡塔韦:IEEE; 2021 年。第 269–272 页。 [考研] [谷歌学术]
89. Kumar D.、Puthusserypady S.、Dominguez H.、Sharma K.、Bardram JE CACHET-CADB:情境化动态心电图心律失常数据集。正面。心血管。医学。 2022 年; 9 :893090。 DOI:10.3389/fcvm.2022.893090 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
90.Zhang SP、Chhetry A.、Abu Zahed M.、Sharma S.、Park C.、Yoon S.、Park JY 用于智能医疗保健可穿戴设备的皮肤超薄可拉伸多功能传感器。 NPJ 柔性。电子。 2022 年; 6:11 。号码:10.1038/s41528-022-00140-4 。 [交叉引用] [谷歌学术]
91. Baty F.、Boesch M.、Widmer S.、Annaheim S.、Fontana P.、Camenzind M.、Rossi RM、Schoch OD、Brutsche MH 使用新型可穿戴设备通过心电图监测对睡眠呼吸暂停严重程度进行分类。传感器。 2020; 20 :286。号码:10.3390/s20010286 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
92. Yeo M., Byun H., Lee J., Byun J., Rhee HY, Shin W., Yoon H. 使用深度残差网络通过单导联心电图筛查睡眠呼吸暂停的稳健方法:使用开放数据库和补丁进行评估-键入可穿戴设备数据。 IEEE J.生物医学。健康信息。 2022 年; 26 :5428–5438。编号:10.1109/JBHI.2022.3203560 。 [公共医学] [交叉引用] [谷歌学术]
93. Hammour G.、Yarici M.、von Rosenberg W.,Mandic DP 耳戴式设备:入耳式心电图的可行性和验证; IEEE 医学与生物学工程学会 (EMBC) 第 41 届国际年会论文集;柏林,德国。 2019 年 7 月 23 日至 27 日;美国新泽西州皮斯卡塔韦:IEEE; 2019。第 5777–5780 页。 [考研] [谷歌学术]
94.李敏,熊伟,李燕。基于智能服装的心电信号可穿戴测量。国际。 J.泰莱梅德。应用。 2020; 2020 :6329360。号码:10.1155/2020/6329360 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
95. Lim YG、Kim KK、Park KS 在睡眠期间在床上记录心电图,没有直接皮肤接触。 IEEE 传输。生物医学。工程师。 2007年; 54 :718–725。编号:10.1109/TBME.2006.889194 。 [公共医学] [交叉引用] [谷歌学术]
96. Klum M.、Urban M.、Tigges T.、Pielmus AG、Feldheiser A.、Schmitt T.、Orglmeister R。使用多模态数字贴片听诊器进行可穿戴心肺监测:使用 55 mm 估计 ECG、PEP、LVET 和呼吸单导联心电图和心音图。传感器。 2020; 20 :2033。号码:10.3390/s20072033 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
97. Alvarez-Estevez D.、van Velzen I.、Ottolini-Capellen T.、Kemp B. 用于表征眼电睡眠记录中快速和慢速眼球运动的两个新特征的推导和建模。生物医学。信号处理。控制。 2017年; 35 :87-99。 doi:10.1016/j.bspc.2017.02.014 。 [交叉引用] [谷歌学术]
98. Virkkala J.、Toppila J.、Maasilta P.、Bachour A. 基于眼电图的睡眠呼吸暂停患者睡眠觉醒检测。睡眠呼吸。 2015年; 19 :785–789。号码:10.1007/s11325-014-1060-3 。 [公共医学] [交叉引用] [谷歌学术]
99. Mascia A.、Collu R.、Spanu A.、Fraschini M.、Barbaro M.、Cosseddu P. 基于超薄聚对二甲苯 C 纹身电极的可穿戴系统,用于脑电图记录。传感器。 2023; 23 :766。号码:10.3390/s23020766 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
100. Liu HC,Dong W.,Li YF,Li FQ,Geng JJ,Zhu ML,Chen T.,Zhang HM,Sun LN,Lee CK 表皮 sEMG 纹身样贴片作为患者的新型人机界面失声。微系统。纳恩工程。 2020; 6:16 。号码:10.1038/s41378-019-0127-5 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
101. Yang QS,Liu N.,Yin JJ,Tian H.,Yang Y.,Ren TL 了解负微分电阻石墨烯纺织应变传感器中拉伸响应的起源。 ACS 纳米。 2022 年; 16 :14230–14238。 doi:10.1021/acsnano.2c04348 。 [公共医学] [交叉引用] [谷歌学术]
102. Li J.,Ma Y.,Huang D.,Wang Z.,Zhang Z.,Ren Y.,Hong M.,Chen Y.,Li T.,Shi X.,等。高性能柔性微针阵列作为低阻抗表面生物电干电极,用于可穿戴电生理记录和多导睡眠图。纳米微快报。 2022 年; 14 :132。 DOI:10.1007/s40820-022-00870-0 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
103. Magosso E.、Ursino M.、Zaniboni A.、Provini F.、Montagna P。夜间和 24 小时 EOG 记录中慢眼动的视觉和计算机检测。临床。神经生理学。 2007年; 118 :1122–1133。 doi:10.1016/j.clinph.2007.01.014 。 [公共医学] [交叉引用] [谷歌学术]
104. Pai YS、Bait ML、Lee J.、Xu J.、Peiris RL、Woo W.、Billinghurst M.、Kunze K. NapWell:基于 EOG 的睡眠助手,探索虚拟现实对睡眠开始的影响。虚拟真实。 2021 年; 26 :437–451。 DOI:10.1007/s10055-021-00571-w 。 [交叉引用] [谷歌学术]
105.Iranzo A.、Frauscher B.、Santos H.、Gschliesser V.、Ratti L.、Falkenstetter T.、Sturner C.、Salamero M.、Tolosa E.、Poewe W.等人。 SINBAR 肌电图蒙太奇可用于检测 REM 睡眠行为障碍中发生的运动和声音表现。睡眠医学。 2011;十二:284-288。 doi:10.1016/j.sleep.2010.04.021 。 [公共医学] [交叉引用] [谷歌学术]
106. Maeda M.、Yamaguchi T.、Mikami S.、Yachida W.、Saito T.、Sakuma T.、Nakamura H.、Saito M.、Mizuno M.、Yamada K.等。使用超小型可穿戴肌电图设备进行单通道咬肌肌电图诊断睡眠磨牙症的有效性。 J.假牙。资源。 2020; 64 :90–97。 doi:10.1016/j.jpor.2019.04.003 。 [公共医学] [交叉引用] [谷歌学术]
107. Yeung J.、Burke PGR、Knapman FL、Patti J.、Brown EC、Gandevia SC、Eckert DJ、Butler JE、Bilston LE 人类颏舌肌内区域的任务依赖性神经控制。 J.应用程序。生理学。 2022 年; 132 :527–540。 DOI:10.1152/japplphyol.00478.2021 。 [公共医学] [交叉引用] [谷歌学术]
108. Rebelo J.、Gaspar PD、Soares VNGJ、Caldeira JMLP 阻塞性睡眠呼吸暂停监测和辅助治疗的新型 mHealth 方法。应用。科学。 2022 年; 12 :257。号码:10.3390/app122010257 。 [交叉引用] [谷歌学术]
109. Yamaguchi T.、Mikami S.、Saito M.、Okada K.、Gotouda A。一种新开发的超小型可穿戴肌电图系统,可用于分析全天咬肌活动。 J.假牙。资源。 2018; 62 :110–115。 doi:10.1016/j.jpor.2017.04.001 。 [公共医学] [交叉引用] [谷歌学术]
110. Prasad S.、Paulin M.、Cannon RD、Palla S.、Farella M. 智能手机辅助监测自由活动个体的咀嚼肌活动。临床。口头调查。 2019; 23 :3601–3611。 DOI:10.1007/s00784-018-2785-3 。 [公共医学] [交叉引用] [谷歌学术]
111. Tasker DI、Kinel SG、Tredici TJ 使用 ERG 和 EOG 评估睡眠剥夺对飞行人员视觉功能的影响。航空。太空环境。医学。 1975年; 46 :943–945。 [考研] [谷歌学术]
112. Galambos R.、Juhasz G.、Kekesi AK、Nyitrai G.、Szilagyi N。自然睡眠会改变大鼠视网膜电图。过程。国家。阿卡德。科学。美国。 1994; 91 :5153–5157。 DOI:10.1073/pnas.91.11.5153 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
113. Amis TC, Perri R., Lee S., Wickens M., Liew G., Mitchell P., Kairaitis K., Wheatley JR 视网膜异常虽然在转诊进行多导睡眠图检查的睡眠诊所患者中相对常见,但在很大程度上与睡眠无关- 呼吸紊乱。睡眠呼吸。 2022 年:1–8。 DOI:10.1007/s11325-022-02679-y 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
114. Kim K.、Kim HJ、Zhang H.、Park W.、Meyer D.、Kim MK、Kim B.、Park H.、Xu B.、Kollbaum P. 等。软性隐形眼镜上的全印刷可拉伸角膜传感器,用于无创、无痛眼电诊断。纳特。交流。 2021 年; 12 :1544。号码:10.1038/s41467-021-21916-8 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
115. Kim MJ、Choi KS 便携式视网膜电图的临床疗效。 J.韩国眼科。苏克。 2021 年; 62 :524–530。 doi:10.3341/jkos.2021.62.4.524 。 [交叉引用] [谷歌学术]
116. Moroto N.,Nakakura S.,Tabuchi H.,Mochizuki K.,Manabe Y.,Sakaguchi H.使用多焦视网膜电图确定青光眼阶段。公共科学图书馆一号。 2023; 18 :e0278234。 doi:10.1371/journal.pone.0278234 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
117. Kireev D.、Sel K.、Ibrahim B.、Kumar N.、Akbari A.、Jafari R.、Akinwande D. 通过石墨烯生物阻抗纹身连续无袖监测动脉血压。纳特。纳米技术。 2022 年; 17 :864–870。 DOI:10.1038/s41565-022-01145-w 。 [公共医学] [交叉引用] [谷歌学术]
118. Korany B.,Mostofi Y。使用现成的 WiFi 进行夜间癫痫发作检测。 IEEE 互联网物联网 J.2022 ; 9 :6996–7008。编号:10.1109/JIOT.2021.3115505 。 [交叉引用] [谷歌学术]
119. Liu W.、Chang S.、Liu Y.、Zhang H. Wi-PSG:使用 COTS WiFi 检测节律性运动障碍。 IEEE 互联网物联网杂志, 2021; 8 :4681–4696。编号:10.1109/JIOT.2020.3029266 。 [交叉引用] [谷歌学术]
120. Yu B.、Wang Y.、Niu K.、Zeng Y.、Gu T.、Wang L.、Guan C.、Zhang D. WiFi-Sleep:使用商用 Wi-Fi 设备进行睡眠阶段监测。 IEEE 互联网物联网杂志, 2021; 8 :13900–13913。号码:10.1109/JIOT.2021.3068798 。 [交叉引用] [谷歌学术]
121.刘强,杨连涛,张振林,杨华,张勇,吴金林先进脑电图电极的特点、性能及前景。生物传感器。 2023; 13 :101。号码:10.3390/bios13010101 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
122. Beppler EC、Dieffenderfer JP、Hood CD、Bozkurt A。基于加速度计的行为矫正主动打鼾检测; 2018 年第 40 届 IEEE 医学与生物学工程学会 (EMBC) 工程国际会议论文集;美国夏威夷州檀香山。 2018 年 7 月 18 日至 21 日;第 2881–2884 页。 [公共医学] [交叉引用] [谷歌学术]
123. Spanu A.、Botter A.、Zedda A.、Cerone GL、Bonfiglio A.、Pani D. 使用可拉伸丝网印刷纺织电极的动态表面肌电图。 IEEE 传输。神经系统。康复。工程师。 2021 年; 29 :1661–1668。编号:10.1109/TNSRE.2021.3104972如果:4.8 Q1 B2 。 [公共医学] [交叉引用] [谷歌学术]
124. Benovitski YB、Lai A.、Saunders A.、McGowan CC、Burns O.、Nayagam DAX、Millard R.、Harrison M.、Rathbone GD、Williams RA 等。用于长期脑电图记录的完全植入式头皮下环形电极阵列的临床前安全性研究。 J.神经工程。 2022 年; 19 :036027。号码:10.1088/1741-2552/ac72c1 。 [公共医学] [交叉引用] [谷歌学术]
125. Druijff-van de Woestijne GB、McConchie H.、de Kort YAW、Licitra G.、Zhang C.、Overeem S.、Smolders KCHJ 行为生物识别:使用智能手机键盘活动作为休息活动模式的代理。 J.睡眠研究。 2021 年; 30 :e13285。 DOI:10.1111/jsr.13285 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
126. Evans MA、Buysse DJ、Marsland AL、Wright AGC、Foust J.、Carroll LW、Kohli N.、Mehra R.、Jasper A.、Srinivasan S. 等。对年龄和体动记录仪评估的整个生命周期睡眠特征的荟萃分析。睡觉。 2021 年; 44 :zsab088。 doi:10.1093/睡眠/zsab088 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
127. Suzuki K.帕金森病临床相关睡眠问题的最新更新:叙述性评论。 J·帕克.迪斯。 2021 年; 11 :971-992。 doi:10.3233/JPD-202425 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
128. Chun KS、Kang YJ、Lee JY、Nguyen M.、Lee B.、Lee R.、Jo HH、Allen E.、Chen H.、Kim J. 等。一种贴合皮肤的无线传感器,可客观量化瘙痒症状。科学。 2021 年; 7 :eabf9405。 DOI:10.1126/sciadv.abf9405 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
129. Brooks J.、Feltch C.、Lam J.、Earley C.、Robucci R.、Agarwal S.、Banerjee N. RestEaze:一种表征睡眠期间腿部运动的新兴技术。 J.医学。设备。 2022 年; 16 :021010。号码:10.1115/1.4053160 。 [交叉引用] [谷歌学术]
130. Agrawal RP、Sharma A.、Dua AS、Chandershekhar、Kochar DK、Kothari RP Inolter(草药产品)治疗 2 型糖尿病的随机安慰剂对照试验。 J.副教授。印度医生。 2002年; 50 :391–393。 [考研] [谷歌学术]
131. Woo SI、Lee M.、Yeom H。使用 SpO2 和加速度传感器的简单睡眠呼吸暂停预测设备的研究。国际。 J. 互联网广播。交流。 2019; 11 :71–75。 doi:10.7236/ijibc.2019.11.4.71 。 [交叉引用] [谷歌学术]
132. Katori M.、Shi S.、Ode KL、Tomita Y.、Ueda HR 英国生物银行的 103,200 臂加速数据集揭示了人类睡眠表型的概况。过程。国家。阿卡德。科学。美国。 2022 年; 119 :e2116729119。 DOI:10.1073/pnas.2116729119 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
133.赵X.,王Y.,文东。基于MEMS技术的SOI三轴加速度传感器的制作及特性。微型机械。 2019; 10 :238。号码:10.3390/mi10040238 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
134. L Yong,L Changsheng,Hguanhua。MEMS电容式高g加速度传感器失效效应对极限范围和灵敏度的影响。 J. Phys。会议。序列。 2020; 1635 :012053。号码:10.1088/1742-6596/1635/1/012053 。 [交叉引用] [谷歌学术]
135. Trevenen ML、Turlach BA、Eastwood PR、Straker LM、Murray K。使用隐马尔可夫模型和原始三轴手腕加速测量数据来确定睡眠阶段。奥斯特。 NZJ 统计。 2019; 61 :273–298。 doi:10.1111/anzs.12270 。 [交叉引用] [谷歌学术]
136. Walch O.、Huang Y.、Forger D.、Goldstein C. 使用来自消费者可穿戴设备的原始加速度和光电体积描记法心率数据进行睡眠阶段预测。睡觉。 2019; 42 :zsz180。 doi:10.1093/睡眠/zsz180 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
137. Ode KL, Shi S., Katori M., Mitsui K., Takanashi S., Oguchi R., Aoki D., Ueda HR 一种基于加加速度的算法 ACCEL,用于根据手臂加速度准确分类睡眠-觉醒状态。 i科学。 2022 年; 25 :103727。 DOI:10.1016/j.isci.2021.103727 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
138. Razjouyan J.、Lee H.、Parthasarathy S.、Mohler J.、Sharafkhaneh A.、Najafi B。通过包含来自姿势/睡眠位置变化和身体加速度的信息,使用可穿戴传感器改善睡眠质量评估:胸部的比较磨损的传感器、手腕体动记录仪和多导睡眠图。 J.克林。睡眠医学。 2017年;十三:1301–1310。号码:10.5664/jcsm.6802如果:3.5 Q1 B3 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
139. Chen Z.、Wu M.、Gao K.、Wu J.、Ding J.、Zeng Z.、Li X。一种利用心率变异性和加速度进行睡眠-觉醒检测的新型集成深度学习方法。 IEEE 传输。出现。顶部。计算。英特尔。 2021 年; 5 :803–812。编号:10.1109/TETCI.2020.2996943 。 [交叉引用] [谷歌学术]
140. Jeon S.、Park T.、Paul A.、Lee Y.-S.、Son SH 基于动态状态转换框架的可穿戴睡眠位置跟踪系统。 IEEE 访问。 2019; 7 :135742–135756。号码:10.1109/ACCESS.2019.2942608 。 [交叉引用] [谷歌学术]
141. Sunderam S.、Chernyy N.、Peixoto N.、Mason JP、Weinstein SL、Schiff SJ、Gluckman BJ 使用 MEMS 加速计改进睡眠-觉醒和行为辨别。 J.神经科学。方法。 2007年; 163 :373–383。 doi:10.1016/j.jneumeth.2007.03.007 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
142. Yoshihi M.、Okada S.、Wang T.、Kitajima T.、Makikawa M. 使用头部加速度传感器估计睡眠阶段。传感器。 2021 年; 21 :952。号码:10.3390/s21030952 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
143. Umetani T.、Ishii M.、Tamura Y.、Saiwaki N.、Yokoyama K。基于床上被子多点环境感知的睡眠条件变化检测; 2018 年第 40 届 IEEE 医学与生物学工程学会国际会议论文集;美国夏威夷州檀香山。 2018 年 7 月 18 日至 21 日;第 4997–5001 页。 [公共医学] [交叉引用] [谷歌学术]
144. Xin Y.,Xu Y.,Guo C.,Sun H.,Zhu J.,Liu T.基于压电薄膜传感器的睡眠监测枕头研究。压电声光。 2018; 40 :283–287。 [谷歌学术]
145. Jiyong X.,Yan W.,Bin L.,Lipan B.基于压电薄膜传感器的生命体征监测系统。 J. Phys。会议。序列。 2020; 1633 :012137。号码:10.1088/1742-6596/1633/1/012137 。 [交叉引用] [谷歌学术]
146. Yoon H.、Hwang S.、Jung D.、Choi S.、Joo K.、Choi J.、Lee Y.、Jeong D.-U.、Park K. 使用贴片式加速度计估计睡眠姿势基于设备; IEEE 医学与生物学工程协会 (EMBC) 第 37 届国际年会论文集;意大利米兰。 2015 年 8 月 25 日至 29 日;美国新泽西州皮斯卡塔韦:IEEE; 2015 年。第 4942–4945 页。 [考研] [谷歌学术]
147. Jeng PY、Wang LC、Hu CJ、Wu D. 手腕传感器睡眠姿势监测系统:一种自动标记方法。传感器。 2021 年; 21 :258。号码:10.3390/s21010258 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
148. Suk OY、Hwan KJ、Zhaoqian X.、Seokjoo C.、Hyeonseok H.、Woo JS、Minsu P.、Myeong N.、Raudel A.、Zhen S.等人。无电池无线软传感器,用于对有压力损伤风险的患者进行连续多部位压力和温度测量。纳特。交流。 2021 年; 12 :5008。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
149. Park I., Suzuki C., Suzuki Y., Kawana F., Yajima K., Fukusumi S., Kokubo T., Tokuyama K., Yanagisawa M., Satoh M. 身体枕头使用对睡眠姿势和睡眠的影响健康年轻人的睡眠结构。睡眠医学。资源。 2021 年; 12 :57–63。 DOI:10.17241/smr.2021.00878 。 [交叉引用] [谷歌学术]
150. Cheung JC、Tam EW、Mak AH、Chan TT、Zheng YP 防止长者在宿舍徘徊的夜间监控系统(eNightLog):为期三个月的实地研究。国际。 J.环境。资源。公共卫生。 2022 年; 19 :2103。 DOI:10.3390/ijerph19042103 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
151. Chen Z.,Wang Y. 使用红外热阵列传感器进行睡眠监测;民用、机械和航空航天系统传感器和智能结构技术会议论文集;美国科罗拉多州丹佛市。 2019 年 3 月 4 日至 7 日。 [谷歌学术]
152. Yoon YS、Hahm J.、Kim KK、Park SK、Oh SW 非接触式家用设备估计中年男性的睡眠阶段:初步研究。技术。卫生保健。 2020; 28 :439–446。号码:10.3233/THC-192036 。 [公共医学] [交叉引用] [谷歌学术]
153.张Y.,肖A.,郑T.,肖H.,黄R.睡眠姿势与睡眠质量之间的关系:一项基于灵活传感器的研究。传感器。 2022 年; 22 :6220。号码:10.3390/s22166220 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
154. Zhou Z.,Padgett S.,Cai Z.,Conta G.,Wu Y.,He Q.,Zhang S.,Sun C.,Liu J.,Fan E.,等。单层超柔软可水洗智能纺织品,用于睡眠期间的全方位心冲击描记器、呼吸和姿势监测。比奥森斯。生物电子。 2020; 155 :112064。 doi:10.1016/j.bios.2020.112064 。 [公共医学] [交叉引用] [谷歌学术]
155. Lavigne GJ、Khoury S.、Abe S.、Yamaguchi T.、Raphael K。磨牙症生理学和病理学:临床医生概述。 J.口腔康复。 2008年; 35 :476–494。 doi:10.1111/j.1365-2842.2008.01881.x 。 [公共医学] [交叉引用] [谷歌学术]
156. Ohayon MM、Li KK、Guilleminault C。普通人群睡眠磨牙症的危险因素。胸部。 2001年; 119 :53-61。 doi:10.1378/chest.119.1.53 。 [公共医学] [交叉引用] [谷歌学术]
157. Lavigne GJ、Rompre PH、Montplaisir JY 睡眠磨牙症:对照多导睡眠图研究中临床研究诊断标准的有效性。 J.登特。资源。 1996; 75 :546–552。号码:10.1177/00220345960750010601如果:5.7 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
158. Lobbezoo F.、Ahlberg J.、Raphael KG、Wetselaar P.、Glaros AG、Kato T.、Santiago V.、Winocur E.、De Laat A.、De Leeuw R. 等。关于磨牙症评估的国际共识:正在进行的工作报告。 J.口腔康复。 2018; 45 :837–844。号码:10.1111/joor.12663 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
159.Lee S.-J.、Jeong I.-D.、Kim E.-B.、Park J.-Y.、Jo I.-H.、Han J.-H.、Jung T.-Y.。 s-Guard:多传感器嵌入式阻塞性睡眠呼吸暂停和磨牙症实时数据传输口内矫治器设备。应用。科学。 2021 年; 11 :4182。号码:10.3390/app11094182 。 [交叉引用] [谷歌学术]
160. D'Addona DM、Merenda M.、Della Corte FG 用于口内力监测的电子传感器:最先进的技术和比较;第十二届 CIRP 制造工程智能计算会议 (CIRP ICME) 论文集;意大利那不勒斯。 2019 年 7 月 18 日至 20 日;第 730–733 页。 [谷歌学术]
161. Coimbra W.、Oliveira P.、Marques C.、Leal-Junior A. 用于咬合夹板力强度和位置评估的啁啾光纤布拉格光栅传感器:概念验证。 IEEE 传输。生物医学。工程师。 2022 年:1–8。编号:10.1109/TBME.2022.3212478 。 [公共医学] [交叉引用] [谷歌学术]
162. Jucevicius M.、Oziunas R.、Mazeika M.、Marozas V.、Jegelevicius D. 用于口腔内连续下颌运动跟踪的加速度增强型磁传感器。传感器。 2021 年; 21 :1409。号码:10.3390/s21041409 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
163. O'Hare E.、Cogan JA、Dillon F.、Lowery M.、O'Cearbhaill ED 用于磨牙症检测的口内非咬合 MEMS 传感器。 IEEE Sens.J.2022 ; 22 :153–161。编号:10.1109/JSEN.2021.3128246 。 [交叉引用] [谷歌学术]
164.高静,刘丽,高平,郑宇,侯文,王静。带有压力传感器系统的智能咬合稳定夹板用于磨牙症的诊断和治疗。传感器。 2019; 20:89 。号码:10.3390/s20010089 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
165. Atanasov AT, Dimov PD 鼻和睡眠周期——夜间睡眠期间可能同步。医学。假设。 2003年; 61 :275–277。编号:10.1016/S0306-9877(03)00169-5 。 [公共医学] [交叉引用] [谷歌学术]
166. Adekolu O.,Zinchuk A. 阻塞性睡眠呼吸暂停中的睡眠不足。临床。胸部医学。 2022 年; 43 :353–371。 doi:10.1016/j.ccm.2022.02.013 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
167. Kohler M.、Thurnheer R.、Bloch KE 对鼻气流和电导进行侧面选择性、不引人注目的监测。 J.应用程序。生理学。 2006年; 101 :1760–1765。 doi:10.1152/japplphyol.00517.2006 。 [公共医学] [交叉引用] [谷歌学术]
168. Teichtahl H.、Cunnington D.、Cherry G.、Wang D. 对多导睡眠图呼吸事件进行评分:鼻压和口鼻热传感器记录的实用性。睡眠医学。 2003年; 4 :419–425。号码:10.1016/S1389-9457(03)00106-0 。 [公共医学] [交叉引用] [谷歌学术]
169. Moshizi SA、Abedi A.、Sanaeepur M.、Pastras CJ、Han ZJ、Wu S.、Asadnia M. 用于监测呼吸模式的聚合物压阻气流传感器。 JR Soc 接口。 2021 年; 18 :20210753。 doi:10.1098/rsif.2021.0753 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
170.江平,朱瑞,董晓,常勇。便携式监护仪诊断 OSAS 的生理信号组合模式。睡眠呼吸。 2018; 22 :123-129。 DOI:10.1007/s11325-017-1544-z 。 [公共医学] [交叉引用] [谷歌学术]
171.Vernon J.、Canyelles-Pericas P.、Torun H.、Binns R.、Ng WP、Wu Q.、Fu Y.-Q。使用薄膜声波和开源电子设备进行呼吸监测、睡眠障碍检测和跟踪。纳米技术。概要。工程师。 2022 年; 5 :033002。号码:10.1063/10.0013471 。 [交叉引用] [谷歌学术]
172. Dehkordi PK、Marzencki M.、Tavakolian K.、Kaminska M.、Kaminska B。验证胸骨上切迹加速产生的呼吸信号用于睡眠呼吸暂停检测; IEEE 医学与生物学工程学会 (EMBS) 第 33 届年度国际会议论文集;美国马萨诸塞州波士顿。 2011年8月30日至9月3日;美国新泽西州皮斯卡塔韦:IEEE; 2011 年。第 3824–3827 页。 [考研] [谷歌学术]
173. Jortberg E.、Silva I.、Bhatkar V.、McGinnis RS、Sen-Gupta E.、Morey B.、Wright JA, Jr.、Pindado J.、Bianchi MT 一种新型粘附生物传感器系统,用于检测呼吸、心脏、睡眠期间的肢体运动信号:通过多导睡眠图进行验证。纳特。科学。睡觉。 2018; 10 :397–408。号码:10.2147/NSS.S179588 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
174. Yüzer AH、Sümbül H.、Polat K。基于加速度传感器的新型可穿戴实时睡眠呼吸暂停检测系统。中程弹道导弹。 2020; 41 :39-47。 doi:10.1016/j.irbm.2019.10.007 。 [交叉引用] [谷歌学术]
175. Montazeri Ghahjaverestan N.、Kabir MM、Saha S.、Gavrilovic B.、Zhu K.、Taati B.、Alshaer H.、Yadollahi A。使用睡眠期间气管声音和运动估计相对潮气量和呼吸气流。 J.睡眠研究。 2021 年; 30 :e13279。 DOI:10.1111/jsr.13279 。 [公共医学] [交叉引用] [谷歌学术]
176. Stubbe L.、Houel N.、Cottin F。与肺活量计相比,用于测量呼吸速率的光电体积描记法和心率系统的准确性和可靠性。科学。 2022 年代表; 12 :19255。号码:10.1038/s41598-022-23915-1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
177. Azza Y.、Grueschow M.、Karlen W.、Seifritz E.、Kleim B. 压力如何影响睡眠和心理健康:夜间心率在长期压力期间增加,并与童年创伤暴露相互作用,以预测焦虑。睡觉。 2020; 43 :zsz310。 doi:10.1093/睡眠/zsz310 。 [公共医学] [交叉引用] [谷歌学术]
178. Purcell HJ、Gibbs JS、Coats AJ、Fox KM 动态血压监测和心血管疾病的昼夜节律变化;临床和研究应用。国际。 J.卡迪奥尔。 1992; 36 :135–149。号码:10.1016/0167-5273(92)90001-J 。 [公共医学] [交叉引用] [谷歌学术]
179. Garpestad E.、Ringler J.、Parker JA、Remsburg S.、Weiss JW 睡眠阶段影响对阻塞性呼吸暂停的血流动力学反应。是。 J.呼吸。暴击。护理医学。 1995; 152 :199–203。号码:10.1164/ajrccm.152.1.7599824 。 [公共医学] [交叉引用] [谷歌学术]
180. Dimsdale JE、Loredo JS、Profant J。持续气道正压对血压的影响:安慰剂试验。高血压。 2000; 35 :144–147。号码:10.1161/01.HYP.35.1.144 。 [公共医学] [交叉引用] [谷歌学术]
181. Kaniusas E.、Pfutzner H.、Mehnen L.、Kosel J.、Tellez-Blanco C.、Varoneckas G.、Alonderis A.、Meydan T.、Vazquez M.、Rohn M.等。通过磁致弹性皮肤曲率传感器和心电图连续无干扰监测血压的方法。 IEEE Sens.J.2006 ; 6 :819–828。编号:10.1109/JSEN.2006.874438 。 [交叉引用] [谷歌学术]
182. Kwon Y.、Stafford PL、Lim DC、Park S.、Kim SH、Berry RB、Calhoun DA 睡眠中的血压监测:醒来的时间。血液出版社。监视。 2020; 25 :61-68。号码:10.1097/MBP.0000000000000426 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
183. Downing DT,Stranieri AM 对光密度法薄层色谱定量中兰伯特-比尔定律偏差的修正。 J. Chromatogr。 1980; 192 :208-211。号码:10.1016/S0021-9673(00)81855-5 。 [交叉引用] [谷歌学术]
184. Pereira T.、Tran N.、Gadhoumi K.、Pelter MM、Do DH、Lee RJ、Colorado R.、Meisel K.、Hu X。基于光电体积描记法的心房颤动检测:综述。 NPJ 数字。医学。 2020; 3 :3。 DOI:10.1038/s41746-019-0207-9 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
185. Zhai B.、Perez-Pozuelo I.、Clifton EAD、Palotti J.、Guan Y。理解睡眠:使用运动和心脏感知对大量不同人群进行多模式睡眠阶段分类。过程。 ACM 互动。暴民。可穿戴无处不在的技术。-Imwut。 2020; 4 :1-33。号码:10.1145/3397325 。 [交叉引用] [谷歌学术]
186. Dowling GB 苔藓样糠疹和急性痘痘。过程。 R.苏克。医学。 1945 年; 38 :342–344。号码:10.1177/003591574503800707 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
187. Habib A.、Motin MA、Penzel T.、Palaniswami M.、Yearwood J.、Karmakar C. 从 PPG 信号导出的卷积神经网络在睡眠阶段分类中的性能。 IEEE 传输。生物医学。工程师。 2022 年:1–15。编号:10.1109/TBME.2022.3219863 。 [公共医学] [交叉引用] [谷歌学术]
188. Cano J.、Facila L.、Gracia-Baena JM、Zangroniz R.、Alcaraz R.、Rieta JJ 基于机器学习的结合光电容积描记法和心电图的高血压风险评估中校准的相关性。生物传感器。 2022 年; 12 :289。号码:10.3390/bios12050289 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
189. Fortin J.、Rogge DE、Fellner C.、Flotzinger D.、Grond J.、Lerche K.、Saugel B. 连续无创血压测量的新颖技术。纳特。交流。 2021 年; 12 :1387。号码:10.1038/s41467-021-21271-8 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
190. Shahrbabaki SS、Ahmed B.、Penzel T.、Cvetkovic D. 夜间血压监测中的光电体积描记法导数和脉搏传导时间; IEEE 医学与生物学工程协会 (EMBC) 第 38 届国际年会论文集;美国佛罗里达州奥兰多。 2016 年 8 月 16 日至 20 日;第 2855–2858 页。 [考研] [谷歌学术]
191. Soltan Zadi A.、Alex R.、Zhang R.、Watenpaugh DE、Behbehani K。使用光电体积描记法估计动脉血压特征。计算。生物。医学。 2018; 102 :104-111。 doi:10.1016/j.compbiomed.2018.09.013 。 [公共医学] [交叉引用] [谷歌学术]
192. Jacobs DK,Gates RD 发育基因和后生动物进化的重建 - 进化损失的影响,祖先推断的限制和 2 型错误。积分。比较。生物。 2003年; 43 :11-18。 doi:10.1093/icb/43.1.11 。 [公共医学] [交叉引用] [谷歌学术]
193. England JL, Pande VS 伴侣蛋白内部疏水效应调节的潜力。生物物理学。 J.2008 ; 95 :3391–3399。 doi:10.1529/biophysj.108.131037 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
194. Yen HY、Huang WH 具有血压监测功能的商用智能手表的功效:一项试点随机对照试验。 J.努斯。施。 2022 年; 54 :324–331。号码:10.1111/jnu.12740 。 [公共医学] [交叉引用] [谷歌学术]
195. Xin Y.,Guo C.,Ling Z.,Tian H.,Li X.,Dai Q.基于压电薄膜传感器的可穿戴健康监测体域网络系统。 J.纳特尔。大学。定义。技术。 2016年; 38 :161–167。号码:10.11887/j.cn.201606026 。 [交叉引用] [谷歌学术]
196. Fan W.,He Q.,Meng K.,Tan X.,Zhou Z.,Zhang G.,Yang J.,Wang ZL 用于精确表皮生理信号监测的机织可洗传感器阵列纺织品。科学。副词。 2020; 6 :eaay2840。 DOI:10.1126/sciadv.aay2840 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
197. Morillo D.、Rojas Ojeda JL、Crespo Foix LF、Jimenez A。基于加速度计的睡眠呼吸暂停筛查设备。 IEEE 传输。信息。技术。生物医学。 2010; 14 :491–499。编号:10.1109/TITB.2009.2027231 。 [公共医学] [交叉引用] [谷歌学术]
198. Van Gastel M.、Stuijk S.、Overeem S.、van Dijk JP、van Gilst MM、de Haan G。睡眠期间基于摄像头的生命体征监测——概念验证研究。 IEEE J.生物医学。健康信息。 2021 年; 25 :1409–1418。编号:10.1109/JBHI.2020.3045859 。 [公共医学] [交叉引用] [谷歌学术]
199.Lee K.、Ni X.、Lee JY、Arafa H.、Pe DJ、Xu S.、Avila R.、Irie M.、Lee JH、Easterlin RL 等。通过放置在胸骨上切迹的软无线设备对生理过程和身体运动进行机械声学传感。纳特。生物医学。工程师。 2020; 4 :148–158。 DOI:10.1038/s41551-019-0480-6 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
200.Dafna E.、Tarasiuk A.、Zigel Y。通过睡眠呼吸暂停患者整夜录音进行睡眠质量评估; IEEE 医学与生物学工程学会 (EMBS) 第 34 届年度国际会议论文集;美国加利福尼亚州圣地亚哥。 2012年8月28日至9月1日;美国新泽西州皮斯卡塔韦:IEEE; 2012 年。第 3660–3663 页。 [考研] [谷歌学术]
201. Sowho M.、Sgambati F.、Guzman M.、Schneider H.、Schwartz A。打鼾:噪音污染源和睡眠呼吸暂停预测因子。睡觉。 2020; 43 :zsz305。 doi:10.1093/睡眠/zsz305 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
202. Shin H.,Choi W.,Kim Y.-G.,Cho J.基于个人手持设备的普通睡眠情况打鼾检测的初步研究; IEEE 医学与生物学工程协会 (EMBC) 第 36 届年度国际会议论文集;美国伊利诺伊州芝加哥。 2014 年 8 月 26 日至 30 日;美国新泽西州皮斯卡塔韦:IEEE; 2014年。第3687-3690页。 [考研] [谷歌学术]
203. Chen LCL,Kuan-Wen C. 一种睡眠监测系统,在噪声检测和声音生成方面具有促进睡眠的功能。国际。 J.Adv。计算。科学。应用。 2015年; 6 :175–184。 [谷歌学术]
204. Parker CJ、Baker PJ、Rosse WF 正常和阵发性睡眠性血红蛋白尿红细胞上因子 B 和 H 与 C3b 的结合特征的比较。 J.免疫学。 1983; 131 :2484–2489。 doi:10.4049/jimmunol.131.5.2484 。 [公共医学] [交叉引用] [谷歌学术]
205. Jovanovic UJ 健康男性睡眠期间勃起的周期。脑电图学家。临床。神经生理学。 1969; 27 :626。 [考研] [谷歌学术]
206.张峰,熊勇,秦峰,袁静。睡眠时间短与勃起功能障碍:文献综述。纳特。科学。睡觉。 2022 年; 14 :1945–1961。号码:10.2147/NSS.S375571 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
207. Jankowski JT、Seftel AD、Strohl KP 勃起功能障碍和睡眠相关疾病。 J.乌罗尔。 2008年; 179 :837–841。 doi:10.1016/j.juro.2007.10.024 。 [公共医学] [交叉引用] [谷歌学术]
208. Raff LSR, Andreev UGA, Notov IKN, Khabarova OIK, Demidenko ESD, Nasedkina TVN, Aliev RTA, Erkovich AAE “Androscan MIT”注册员对健康志愿者的夜间阴茎肿胀进行监测,以在多中心研究中建立可靠的正常生理值。泌尿科。 2021 年; 4 :61-67。 doi:10.18565/泌尿科.2021.4.61-67 。 [公共医学] [交叉引用] [谷歌学术]
209. Edgar R.、Trip EJ、Wolterink GJW、Veltink PH、Beck JJH 监测夜间勃起的新方法。国际。 J.进口。资源。 2022 年; 34 :1-7。号码:10.1038/s41443-020-00365-9 。 [公共医学] [交叉引用] [谷歌学术]
210. Heo Y.、Kim J.、Cha C.、Shin K.、Roh J.、Jo J. 用于实时阴茎勃起监测的可穿戴电子纺织品和 CNT 传感器无线测量系统。传感器。 2021 年; 22 :231。号码:10.3390/s22010231 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
211. Wu M.,Chen J.,Ma Y.,Yan B.,Pan M.,Peng Q.,Wang W.,Han L.,Liu J.,Zeng H.超弹性,可拉伸,自愈导电具有可调光学特性的水凝胶,适用于高灵敏度软电子传感器。 J.马特。化学。 A.2020 ; 8 :24718–24733。编号:10.1039/D0TA09735G 。 [交叉引用] [谷歌学术]
212. Dang B.、Dicarlo J.、Lukashov S.、Hinds N.、Reinen J.、Wen B.、Hao T.、Bilal E.、Rogers J. 具有多个传感器的智能睡眠面罩的开发; IEEE 医学与生物学工程学会 (IEEE EMBC) 第 43 届国际年会论文集;墨西哥瓜达拉哈拉。 2021 年 11 月 1 日至 5 日;美国新泽西州皮斯卡塔韦:IEEE; 2021 年。第 7058–7062 页。 [考研] [谷歌学术]
213.Zhang J.、Kim K.、Kim HJ、Meyer D.、Park W.、Lee SA、Dai Y.、Kim B.、Moon H.、Shah JV 等。智能软隐形眼镜可在青光眼护理中连续 24 小时监测眼压。纳特。交流。 2022 年; 13 :5518。号码:10.1038/s41467-022-33254-4如果:14.7 Q1 B1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
214. Liqiong C.,Jiaqi L.,Ju W.,Xiao Jiang C.,Dingyi F.,Zhanyong T.,Nurmi P.,Zheng W.SleepGuard:使用智能手表传感数据捕获丰富的睡眠信息。过程。 ACM 互动。暴民。可穿戴无处不在的技术。 2018; 2 :1-34。号码:10.1145/3264908 。 [交叉引用] [谷歌学术]
215.Teymourian H.、Parrilla M.、Sempionatto JR、Montiel NF、Barfidokht A.、Van Echelpoel R.、De Wael K.、Wang J.用于药物监测和筛查的可穿戴电化学传感器。 ACS Sens.2020 ; 5 :2679–2700。 doi:10.1021/acssensors.0c01318 。 [公共医学] [交叉引用] [谷歌学术]
216.赵X.,张W.,辛S.,余X.,张X.CPAP对2型糖尿病合并阻塞性睡眠呼吸暂停患者血糖波动的影响。睡眠呼吸。 2022 年; 26 :1875–1883。号码:10.1007/s11325-021-02556-0 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
217. Griggs S.、Pignatiello G.、Hickman RL, Jr. 睡眠健康的综合衡量指标与 1 型糖尿病年轻成人的血糖目标实现情况相关。 J.睡眠研究。 2022 年; e13784 :1-9。 DOI:10.1111/jsr.13784 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
218. Tipparaju VV、Mora SJ、Yu J.、Tsow F.、Xian X。基于小型化非色散红外传感器的可穿戴经皮 CO(2) 监测仪。 IEEE Sens.J.2021 ; 21 :17327–17334。编号:10.1109/JSEN.2021.3081696 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
219. Polat EO、Mercier G.、Nikitskiy I.、Puma E.、Galan T.、Gupta S.、Montagut M.、Piqueras JJ、Bouwens M.、Durduran T. 等。用于可穿戴健身监测的柔性石墨烯光电探测器。科学。副词。 2019; 5 :eaaw7846。 DOI:10.1126/sciadv.aaw7846 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
220. Zangheri M.、Cevenini L.、Anfossi L.、Baggiani C.、Simoni P.、Di Nardo F.、Roda A。一种简单而紧凑的智能手机配件,用于基于化学发光的定量侧流免疫分析,用于唾液皮质醇检测。比奥森斯。生物电子。 2015年; 64 :63–68。 doi:10.1016/j.bios.2014.08.048 。 [公共医学] [交叉引用] [谷歌学术]
221. Elizur A.、Maliar A.、Shpirer I.、Buchs AE、Shiloah E.、Rapoport MJ 患有睡眠呼吸暂停的非糖尿病患者夜间血糖变异性降低:一项试点研究。 Isr。医学。副教授。 J.2013 ; 15 :465–469。 [考研] [谷歌学术]
222. Metz AJ、Pugin F.、Huber R.、Achermann P.、Wolf M。青少年睡眠过渡时脑组织氧饱和度的变化。见:Swartz HM、Harrison DK、Bruley DF,编辑。氧气输送至组织 XXXVI。第 812 卷。施普林格;美国纽约州纽约:2014 年。第 279–285 页。 [考研] [谷歌学术]
223. Elmenhorst EM、Rooney D.、Benderoth S.、Wittkowski M.、Wenzel J.、Aeschbach D. 飞行条件下睡眠引起的缺氧:对长途飞行机组人员和乘客的影响和对策。纳特。科学。睡觉。 2022 年; 14 :193-205。号码:10.2147/NSS.S339196 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
224. Nuhr M.、Hoerauf K.、Joldzo A.、Frickey N.、Barker R.、Gorove L.、Puskas T.、Kober A. 紧急运输中前额 SpO 2监测与手指 SpO2 记录的比较。麻醉。 2004年; 59 :390–393。 doi:10.1111/j.1365-2044.2004.03673.x 。 [公共医学] [交叉引用] [谷歌学术]
225. Davies HJ、Williams I.、Peters NS、Mandic DP 入耳式 SpO2:用于核心血氧饱和度的可穿戴式、非侵入式监测工具。传感器。 2020; 20 :4879。号码:10.3390/s20174879 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
226. Martin-Escudero P.、Cabanas AM、Fuentes-Ferrer M.、Galindo-Canales M. 女运动员脉搏血氧饱和度行为:打破神话。生物传感器。 2021 年; 11 :391。号码:10.3390/bios11100391 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
227. Cakmak DD, Eyuboglu BM 便携式阻塞性睡眠呼吸暂停检测和移动监测;智能生物医学和生理传感器技术会议论文集XIV;美国加利福尼亚州阿纳海姆。 2017 年 4 月 9 日至 10 日。[谷歌学术]
228.张 Q.、Arney D.、Goldman JM、Isselbacher EM、Aroundas AA 移动连续血氧饱和度监测系统的设计实施和评估。传感器。 2020; 20 :6581。号码:10.3390/s20226581 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
229. Tran VP, Al-Jumaily AA 用于非接触式睡眠监测氧饱和度的新型氧-血红蛋白模型。 IEEE Sens.J.2019 ; 19 :12325–12332。编号:10.1109/JSEN.2019.2940228 。 [交叉引用] [谷歌学术]
230. Senn O.、Clarenbach CF、Kaplan V.、Maggiorini M.、Bloch KE 通过单个耳垂传感器监测危重疾病或睡眠呼吸暂停患者的二氧化碳张力和动脉氧饱和度。胸部。 2005年; 128 :1291–1296。 doi:10.1378/chest.128.3.1291如果:9.5 Q1 B1 。 [公共医学] [交叉引用] [谷歌学术]
231. Venema B.、Schiefer J.、Blazek V.、Blanik N.、Leonhardt S. 评估创新的入耳式脉搏血氧测定法,以在睡眠期间进行不显眼的心血管和肺部监测。 IEEE J. 翻译。工程师。健康医学。 2013年; 1 :2700208。编号:10.1109/JTEHM.2013.2277870 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
232. Metz AJ、Pugin F.、Huber R.、Achermann P.、Wolf M。青少年夜间脑组织氧饱和度增加。见:VanHuffel S.、Naulaers G.、Caicedo A.、Bruley DF、Harrison DK,编辑。氧气输送至组织 XXXV。第 789 卷。施普林格;美国纽约州纽约:2013 年。第 113-119 页。 [考研] [谷歌学术]
233.Zhang Z.,Qi M.,Hugli G.,Khatami R。手臂可穿戴光学传感器测量的氧饱和度可以用于测量阻塞性睡眠呼吸暂停吗?睡眠医学。 2022 年; 100 :S240。 doi:10.1016/j.sleep.2022.05.643 。 [交叉引用] [谷歌学术]
234.Nabavi S.、Debbarma S.、Bhadra S.用于口内心肺监测的智能下颌前移装置; IEEE 医学与生物学工程学会 (EMBC) 第 42 届国际年会论文集;加拿大魁北克省蒙特利尔。 2020 年 7 月 20 日至 24 日;美国新泽西州皮斯卡塔韦:IEEE; 2020 年。第 4079–4084 页。 [考研] [谷歌学术]
235. O'Donoghue FJ、Catcheside PG、Ellis EE、Grunstein RR、Pierce RJ、Rowland LS、Collins ER、Rochford SE、McEvoy RD,代表澳大利亚无创通气慢性气流受限 (AVCAL) 试验研究人员高碳酸血症睡眠通气不足慢性阻塞性肺疾病:患病率和相关因素。欧元。呼吸。 J.2003 ; 21 :977–984。号码:10.1183/09031936.03.00066802 。 [公共医学] [交叉引用] [谷歌学术]
236. Ramos J.、Belo J.、Silva D.、Diogo C.、Almeida SM、Canha N。室内空气质量对里斯本大学生睡眠质量的影响。大气。污染。资源。 2022 年; 13 :101301。 doi:10.1016/j.apr.2021.101301 。 [交叉引用] [谷歌学术]
237. Rauhala E.、Himanen SL、Saastamoinen A.、Polo O。睡眠呼吸障碍患者的 Emfit 传感器长时间尖峰的特点是经皮二氧化碳增加。生理学。测量。 2007年; 28 :1163–1173。号码:10.1088/0967-3334/28/10/003 。 [公共医学] [交叉引用] [谷歌学术]
238. Kang SW、Chang KS 开发用于无创呼吸监测系统的集成传感器模块。科学评论。仪器。 2013年; 84 :095004。号码:10.1063/1.4821082 。 [公共医学] [交叉引用] [谷歌学术]
239. Chhajed PN、Gehrer S.、Pandey KV、Vaidya PJ、Leuppi JD、Tamm M.、Strobel W。利用经皮二氧化碳图优化无创通气压力。 J.克林。诊断。资源。 2016年; 10 :OC06–OC09。编号:10.7860/JCDR/2016/19911.8514 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
240. Pevet P.、Challet E.、Felder-Schmittbuhl MP 褪黑激素和昼夜节律系统:以睡眠为重点的健康关键。汉德诊所。内罗尔。 2021 年; 179 :331–343。号码:10.1016/B978-0-12-819975-6.00021-2 。 [公共医学] [交叉引用] [谷歌学术]
241. Biggio G.、Biggio F.、Talani G.、Mostallino MC、Aguglia A.、Aguglia E.、Palagini L. 褪黑激素:从神经生物学到治疗。脑。科学2021; 11 :1121。 DOI:10.3390/brainsci11091121 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
242. Reiter AM、Roach GD、Sargent C。夜班前一天晚上:睡眠类型会影响策略性延迟睡眠期间的总睡眠和快速眼动睡眠。 J.睡眠研究。 2022 年; 32 :e13683。 doi:10.1111/jsr.13683 。 [公共医学] [交叉引用] [谷歌学术]
243. Moderie C.、Boudreau P.、Shechter A.、Lesperance P.、Boivin DB 外源性褪黑激素对经前烦躁症女性睡眠和昼夜节律的影响。睡觉。 2021 年; 44 :zsab171。 doi:10.1093/睡眠/zsab171 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
244. Wu Y.,Wang L.,Yang F.,Xi W. 用于睡眠-觉醒调节的神经回路。见:王华,主编。先天行为的神经回路。第 1284 卷。施普林格;新加坡,新加坡:2020 年。第 91-112 页。 [考研] [谷歌学术]
245. Sanchez REA、Kalume F.、de la Iglesia HO 哺乳动物的睡眠时间和生物钟:过去、现在和未来。塞明。细胞开发。生物。 2022 年; 126 :3-14。 DOI:10.1016/j.semcdb.2021.05.034 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
246. Massey R.、Bebe S.、Prakash R. 用于高特异性检测皮质醇的适体增强有机电解质门控 FET 生物传感器。 IEEE Sens. Lett。 2020; 4 :1-4。 doi:10.1109/LSENS.2020.3002446 。 [交叉引用] [谷歌学术]
247. Shahub S.、Upasham S.、Ganguly A.、Prasad S. 用于被动汗液皮质醇检测的机器学习引导电化学传感器。 Sens. 生物传感器。资源。 2022 年; 38 :100527。 DOI:10.1016/j.sbsr.2022.100527 。 [交叉引用] [谷歌学术]
248. Dornbierer DA、Yerlikaya F.、Wespi R.、Boxler MI、Voegel CD、Schnider L.、Arslan A.、Baur DM、Baumgartner MR、Binz TM 等。一种新颖的睡前脉冲释放咖啡因配方可在醒来后立即改善睡眠惰性症状。科学。 2021 年代表; 11 :19734。号码:10.1038/s41598-021-98376-z 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
249. Julia B.、Mathias G.、Laura N.、Benjamin N.、Andrea B.、Astrid S.、Lennart FM、Clemens L.、Lukas J.、Jürgen Z. 等。指汗分析可以对人类进行短时间的代谢生物监测。纳特。交流。 2021 年; 12 :5993。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
250. Akiyo N.、Tomomi T.、Akihiro K.、Hiromi I.、Naoya K.、Andrea T.、Johannes H.、Tohru K.、Tomomi S.、Kazuto M. 等。小鼠皮质兴奋性神经元的细胞内 ATP 水平随睡眠-觉醒状态而变化。交流。生物。 2020; 3 :491。 [ PMC 免费文章] [ PubMed ] [ Google Scholar ]
251.Liang Z.,Chapa Martell MA 消费者活动腕带和可穿戴脑电图用于测量自由生活条件下整体睡眠参数和睡眠结构的有效性。 J. Healthc。信息。资源。 2018; 2 :152–178。 DOI:10.1007/s41666-018-0013-1 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
252. Al Mahmud A.、Wu J.、Mubin O。睡眠管理移动应用程序的范围审查:用户需求和设计考虑因素。正面。精神病学。 2022 年; 13 :1037927。 doi: 10.3389/fpsyt.2022.1037927 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
253. Miller DJ、Roach GD、Lastella M.、Scanlan AT、Bellenger CR、Halson SL、Sargent C。自动检测和估计睡眠的商用可穿戴设备的验证研究。生物传感器。 2021 年; 11 :185。号码:10.3390/bios11060185 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
254. Hamill K.、Jumabhoy R.、Kahawage P.、de Zambotti M.、Walters EM、Drummond SPA 消费者活动跟踪器和研究级活动跟踪器在失眠症 II 中的有效性、潜在临床效用和比较:外部实验室。 J.睡眠研究。 2020; 29 :e12944。 doi:10.1111/jsr.12944 。 [公共医学] [交叉引用] [谷歌学术]
255.Casaccia S.、Braccili E.、Scalise L.、Revel GM 通过被动红外传感器对睡眠相关参数进行实验评估:测量设置、特征提取和不确定性分析。传感器。 2019; 19 :3773。号码:10.3390/s19173773 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
256. Sharma M.、Patel V.、Tiwari J.、Acharya UR 使用基于小波的特征和 EEG 信号的集成学习技术自动表征循环交替模式。诊断。 2021 年; 11 :1380。 DOI:10.3390/诊断11081380 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
257. Proniewska K.、Pregowska A.、Malinowski KP 基于心脏和声学参数以及随机森林的与呼吸系统直接相关的人类生命功能的识别。中程弹道导弹。 2021 年; 42 :174–179。 doi:10.1016/j.irbm.2020.02.006 。 [交叉引用] [谷歌学术]
258.Nonoue S., Mashita M., Haraki S., Mikami A., Adachi H., Yatani H., Yoshida A., Taniike M., Kato T. 使用 EEG 和 EOG 记录系统进行睡眠评估的评分者间可靠性与多导睡眠图相比。睡眠生物学。韵律。 2016年; 15 :39–48。 DOI:10.1007/s41105-016-0078-2 。 [交叉引用] [谷歌学术]
259. Qiu C.,Yuce MR 用于 IoHT 连接呼吸监测的可穿戴生物阻抗胸贴; IEEE 医学与生物学工程学会 (IEEE EMBC) 第 43 届国际年会论文集;墨西哥瓜达拉哈拉。 2021 年 11 月 1 日至 5 日;美国新泽西州皮斯卡塔韦:IEEE; 2021 年。第 6924–6927 页。 [考研] [谷歌学术]
260. Lachenmeier W.,Lachenmeier DW 使用带有触觉反馈的低成本可穿戴设备在家监测氧饱和度,以改善肺癌患者的睡眠质量:案例报告。老年病学。 2022 年; 7:43 。 DOI:10.3390/老年病学7020043 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
261. Fedorin I.、Slyusarenko K。消费者智能手表作为便携式 PSG:基于 LSTM 的神经网络用于睡眠相关生理参数估计; IEEE 医学与生物学工程学会 (IEEE EMBC) 第 43 届国际年会论文集,电子网络;墨西哥瓜达拉哈拉。 2021 年 11 月 1 日至 5 日;美国新泽西州皮斯卡塔韦:IEEE; 2021 年。第 849–852 页。 [考研] [谷歌学术]
262. Rosler L.、van der Lande G.、Leerssen J.、Vandegriffe AG、Lakbila-Kamal O.、Foster-Dingley JC、Albers A.、van Someren E。将心脏监测与体动记录仪相结合有助于动态睡眠期间的夜间唤醒检测失眠评估。睡觉。 2022 年; 45 :zsac031。 doi:10.1093/睡眠/zsac031 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
263. Toedebusch CD、McLeland JS、Schaibley CM、Banks IR、Boyd J.、Morris JC、Holtzman DM、Lucey BP 老年人多模式家庭睡眠监测。 J. 维斯。过期。 2019; 143 :e58823。号码:10.3791/58823 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
264. Gashi S.、Alecci L.、Lascio ED、Debus ME、Gasparini F.、Santini S。使用可穿戴设备进行睡眠阶段和睡眠质量识别的模型个性化的作用。 IEEE 普适计算。 2022 年; 21 :69–77。编号:10.1109/MPRV.2022.3164334 。 [交叉引用] [谷歌学术]
265. He C.,Tan J.,Jian X.,Zhong G.,Cheng L.,Lin J.基于MEMS三轴加速度计和压力传感器的智能柔性生命体征和睡眠监测带。 IEEE 互联网物联网 J.2022 ; 9 :14126–14136。号码:10.1109/JIOT.2022.3146926 。 [交叉引用] [谷歌学术]
266. Thurston RC、Wu M.、Aizenstein HJ、Chang Y.、Mitchell EB、Derby CA、Maki PM 中年女性的睡眠特征和白质高信号。睡觉。 2020; 43 :zsz298。 doi:10.1093/睡眠/zsz298 。 [ PMC 免费文章] [ PubMed ] [ CrossRef ] [ Google Scholar ]
- Abstract
- 1. Introduction
- 2. Sleep Monitoring
- 3. Bioelectrical Signal Monitoring
- 4. Biomechanical Signal Monitoring
- 5. Biochemical Signal Detection
- 6. Multi-Signal Sleep Monitoring
- 7. Conclusions and Discussion
- Funding Statement
- Author Contributions
- Data Availability Statement
- Conflicts of Interest
- Footnotes
- References
来自Biosensors的文章由多学科数字出版研究所 (MDPI)提供