这是用户在 2025-3-12 12:02 为 https://ieeexplore.ieee.org/abstract/document/10868745/keywords#keywords 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
用于动态多无人机路线优化的大数据驱动遗传算法 | IEEE 会议出版物 | IEEE Xplore --- Big Data-Driven Genetic Algorithms for Dynamic Multi-Drone Route Optimization | IEEE Conference Publication | IEEE Xplore

Big Data-Driven Genetic Algorithms for Dynamic Multi-Drone Route Optimization
大数据驱动的动态多无人机路线优化遗传算法


Abstract:

This paper explores a novel approach to optimizing multi-drone delivery routes by integrating genetic algorithms (GA) with big data analytics. By leveraging real-time dat...Show More

Abstract:  抽象的:

This paper explores a novel approach to optimizing multi-drone delivery routes by integrating genetic algorithms (GA) with big data analytics. By leveraging real-time data, such as traffic, weather, and terrain information, the system dynamically adjusts routes, overcoming the limitations of static route planning. Simulations across various scenarios, including high-demand peaks and challenging terrains, demonstrate that the GA significantly improves both delivery efficiency and energy usage. Notably, the system shows strong scalability and adaptability to complex environments. Looking ahead, future research will focus on refining predictive capabilities and extending the system’s application to diverse terrains and evolving regulatory frameworks.
本文探讨了一种通过将遗传算法 (GA) 与大数据分析相结合来优化多无人机配送路线的新方法。通过利用交通、天气和地形信息等实时数据,系统可以动态调整路线,克服静态路线规划的局限性。在各种场景(包括高需求高峰和具有挑战性的地形)中进行的模拟表明,GA 显著提高了配送效率和能源使用率。值得注意的是,该系统表现出强大的可扩展性和对复杂环境的适应性。展望未来,未来的研究将侧重于改进预测能力,并将系统的应用扩展到不同的地形和不断发展的监管框架。
Date of Conference: 06-08 December 2024
会议日期: 2024 年 12 月 6 日至 8 日
Date Added to IEEE Xplore: 11 February 2025
添加至 IEEE Xplore 的日期: 2025 年 2 月 11 日
ISBN Information:  ISBN信息:
Conference Location: Chongqing, China
会议地点:中国重庆

SECTION I.  第一部分

Introduction  介绍

The application of drone delivery networks in logistics represents a transformative step toward increasing the efficiency and accessibility of last-mile delivery services. Multi-drone systems offer significant potential for reducing delivery times, improving resource utilization, and enhancing the reach to remote or otherwise inaccessible areas such as mountainous regions or congested urban environments. As demand for faster, more efficient delivery services continues to rise, multi-drone networks have become an essential tool in modern logistics. However, their full potential of these systems can only be realized through effective route optimization, which must account for real-time environmental changes, such as traffic, weather, and terrain complexity.
无人机配送网络在物流中的应用代表着朝着提高最后一英里配送服务的效率和可达性迈出了变革性的一步。多无人机系统在缩短配送时间、提高资源利用率以及扩大对偏远地区或其他难以到达的地区(如山区或拥挤的城市环境)的覆盖范围方面具有巨大潜力。随着对更快、更高效的配送服务的需求不断增长,多无人机网络已成为现代物流中必不可少的工具。然而,这些系统的全部潜力只有通过有效的路线优化才能实现,而这必须考虑到交通、天气和地形复杂性等实时环境变化。

Efficient route optimization remains a crucial challenge in ensuring the success of multi-drone logistics networks. Traditional static route planning methods struggle to accommodate dynamic changes in traffic patterns, sudden weather shifts, or varying terrain features, especially in complex environments like urban centers or mountainous regions. Without dynamic decision-making capabilities, these systems often result in suboptimal routes, leading to increased delivery times, higher energy consumption, and elevated operational costs. This shortfall is particularly pronounced in multi-drone networks, where coordination between drones is critical to maximizing efficiency across all delivery points.
高效的路线优化仍然是确保多无人机物流网络成功的关键挑战。传统的静态路线规划方法难以适应交通模式的动态变化、突然的天气变化或不同的地形特征,尤其是在城市中心或山区等复杂环境中。如果没有动态决策能力,这些系统通常会导致路线不理想,从而导致配送时间增加、能源消耗增加和运营成本上升。这种不足在多无人机网络中尤为明显,因为无人机之间的协调对于最大限度地提高所有配送点的效率至关重要。

Given these challenges, there is a pressing need for a system that can dynamically adjust drone delivery routes based on real-time conditions. The integration of big data and genetic algorithms (GA) offers a promising solution. Genetic algorithms are uniquely suited to solving complex, multi-objective optimization problems, such as balancing delivery time and energy efficiency. By incorporating real-time traffic, weather, and terrain data, a GA can dynamically adjust drone routes to ensure optimal performance in varying conditions. This approach allows drones to adapt to sudden environmental changes, thereby maintaining operational efficiency and minimizing energy consumption.
鉴于这些挑战,迫切需要一个能够根据实时情况动态调整无人机送货路线的系统。大数据和遗传算法 (GA) 的结合提供了一个有希望的解决方案。遗传算法特别适合解决复杂的多目标优化问题,例如平衡送货时间和能源效率。通过整合实时交通、天气和地形数据,GA 可以动态调整无人机路线,以确保在不同条件下实现最佳性能。这种方法使无人机能够适应突然的环境变化,从而保持运营效率并最大限度地降低能耗。

The primary contribution of this research lies in the development of a dynamic route optimization framework that integrates big data with genetic algorithms. This system continuously processes real-time environmental inputs to adjust delivery routes in complex environments, optimizing both delivery speed and energy consumption. By leveraging genetic algorithms, the framework can manage multiple drones simultaneously, ensuring that routes are dynamically optimized as new data is received. Through comprehensive simulations in both urban and mountainous terrains, this study demonstrates the scalability and effectiveness of the proposed system in real-world applications.
本研究的主要贡献在于开发了一种将大数据与遗传算法相结合的动态路线优化框架。该系统不断处理实时环境输入,以调整复杂环境中的配送路线,从而优化配送速度和能耗。通过利用遗传算法,该框架可以同时管理多架无人机,确保在收到新数据时动态优化路线。通过在城市和山区地形中进行全面模拟,本研究证明了所提出的系统在实际应用中的可扩展性和有效性。

SECTION II.  第二部分

RELATED WORK  相关工作

Research on the application of genetic algorithms (GA) in route optimization and drone delivery systems has seen significant progress, particularly since 2020, building on earlier foundational studies. Savuran and Karakaya (2016) demonstrated the effectiveness of using genetic algorithms to optimize UAV routes, reducing both delivery time and energy consumption [1]. This foundational work paved the way for further developments in GA-based route optimization. Campbell et al. (2017) explored truck-drone collaboration and applied genetic algorithms to reduce delivery time and optimize routes, highlighting the importance of dynamic route planning [2].
遗传算法 (GA) 在路线优化和无人机配送系统中的应用研究取得了重大进展,尤其是在 2020 年以来,这得益于早期的基础研究。Savuran 和 Karakaya (2016) 证明了使用遗传算法优化无人机路线的有效性,既减少了配送时间,又减少了能源消耗[1] 。这项基础工作为基于 GA 的路线优化的进一步发展铺平了道路。Campbell 等人 (2017) 探索了卡车与无人机的协作,并应用遗传算法来缩短配送时间和优化路线,强调了动态路线规划的重要性[2]

Following these early works, Peng et al. (2019) introduced a hybrid GA model for vehicle-assisted multi-drone delivery, achieving enhanced delivery efficiency through heuristic optimization. Post-2020, Katoch et al. (2021) reviewed the applications of GAs in multi-objective optimization, particularly in logistics and route planning. Chen et al. (2021) advanced GA research by integrating machine learning to improve energy efficiency in complex terrains for drone deliveries. Wang et al. (2023) proposed a rescheduling-based GA to optimize dynamic drone delivery routes, enabling real-time adaptation to changes.
在这些早期研究之后,Peng 等人 (2019) 引入了一种用于车辆辅助多无人机配送的混合 GA 模型,通过启发式优化提高了配送效率。2020 年后,Katoch 等人 (2021) 回顾了 GA 在多目标优化中的应用,特别是在物流和路线规划中。Chen 等人 (2021) 通过整合机器学习来推进 GA 研究,以提高无人机配送在复杂地形中的能源效率。Wang 等人 (2023) 提出了一种基于重新调度的 GA 来优化动态无人机配送路线,从而实现实时适应变化。

In the context of big data in logistics, Dong et al. (2021) emphasized how big data analytics can transform logistics by enabling real-time adjustments in freight transportation. Huang and Liu (2022) expanded on this by integrating big data and IoT to improve decision-making for supply chains, particularly in drone delivery networks. Sabet and Farooq (2022) applied big data and GAs to address the Green Vehicle Routing Problem (VRP), focusing on sustainability in logistics.
在物流大数据的背景下,Dong 等人 (2021) 强调了大数据分析如何通过实时调整货运来改变物流。Huang 和 Liu (2022) 通过整合大数据和物联网来改进供应链决策,特别是在无人机配送网络中,从而进一步扩展了这一概念。Sabet 和 Farooq (2022) 应用大数据和 GA 来解决绿色车辆路径问题 (VRP),重点关注物流的可持续性。

These studies strongly support the present research, which integrates genetic algorithms with big data for dynamic multi-drone route optimization. Early work by Savuran and Karakaya (2016) laid the groundwork for GA-based UAV route planning, with Campbell et al. (2017) and Peng et al. (2019) contributing to truck-drone coordination and multi-drone delivery optimization. Post-2020 research by Katoch et al. (2021) and Wang et al. (2023) focused on real-time adaptability, aligning with this study’s emphasis on dynamic optimization. Dong et al. (2021) and Huang and Liu (2022) emphasized the importance of real-time data, while Sabet and Farooq (2022) highlighted the role of sustainability, all reinforcing the potential of GA and big data to improve multi-drone logistics efficiency.
这些研究有力地支持了本研究,该研究将遗传算法与大数据相结合,以实现动态多无人机路线优化。 Savuran 和 Karakaya (2016) 的早期工作为基于 GA 的无人机路线规划奠定了基础,Campbell 等人 (2017) 和 Peng 等人 (2019) 为卡车无人机协调和多无人机配送优化做出了贡献。 Katoch 等人 (2021) 和 Wang 等人 (2023) 在 2020 年后的研究侧重于实时适应性,与本研究对动态优化的强调一致。 Dong 等人 (2021) 和 Huang 和 Liu (2022) 强调了实时数据的重要性,而 Sabet 和 Farooq (2022) 强调了可持续性的作用,所有这些都加强了 GA 和大数据在提高多无人机物流效率方面的潜力。

SECTION III.  第三部分

Methodology  方法论

A. Genetic Algorithm Design
A.遗传算法设计

In this study, we designed a genetic algorithm (GA) to optimize multi-drone delivery routes in a logistics network. The GA structure focuses on encoding drone delivery routes as chromosomes, which represent the sequence of delivery points[3].
在本研究中,我们设计了一种遗传算法(GA)来优化物流网络中的多无人机配送路线。GA 结构侧重于将无人机配送路线编码为染色体,染色体代表配送点的顺序[3]

1) Chromosome Representation
1)染色体表征

Each chromosome represents a potential delivery route, where the sequence of genes (positions) corresponds to specific delivery points. For example, a chromosome [3], [1], [5], [2], [4] indicates that the drone starts at point 3, then proceeds to points 1, 5, 2, and 4 in that order.
每条染色体代表一条潜在的运送路线,其中基因序列(位置)与特定的运送点相对应。例如,染色体 [3][1][5][2][4] 表示无人机从点 3 开始,然后按顺序前往点 1、5、2 和 4。

2) Selection  2)选择

We employed roulette wheel selection to probabilistically select the fittest individuals (routes) from the population. Individuals with shorter delivery times and lower energy consumption have a higher probability of being selected for crossover.
我们采用轮盘赌选择法,从种群中概率性地选出最适合的个体(路线)。配送时间较短、能耗较低的个体被选中进行交叉的概率较高。

3) Crossover  3)交叉

Partially Mapped Crossover (PMX) is used to combine two parent routes, ensuring no duplicated delivery points. This method preserves valuable traits from the parents while introducing diversity in the offspring. For example, a section of genes from parent 1 is copied directly into offspring, and the remaining positions are filled based on the mapping between parents.
部分映射交叉 (PMX)用于组合两个亲本路线,确保没有重复的交付点。这种方法保留了亲本的宝贵特性,同时为后代引入了多样性。例如,将亲本 1 中的一段基因直接复制到后代中,其余位置则根据亲本之间的映射进行填充。

4) Mutation  4)突变

To maintain genetic diversity and avoid premature convergence, we applied a swap mutation, where two delivery points in the route are randomly swapped to explore alternative paths.
为了保持遗传多样性并避免过早收敛,我们采用了交换突变,其中路线中的两个交付点随机交换以探索替代路径。

5) Fitness Function  5)适应度函数

The fitness of each route is evaluated based on a multi-objective optimization formula:

F(x)=w1×TminT(x)+w2×EminE(x)
View SourceRight-click on figure for MathML and additional features. where T(x) is the total delivery time for route x, and E(x)is the total energy consumption. The fitness function balances these two objectives to select the most optimal routes.
基于多目标优化公式评估每条路线的适应度:
F(x)=w1×TminT(x)+w2×EminE(x)
View SourceRight-click on figure for MathML and additional features. 其中 T(x) 是路线 x 的总运送时间,E(x) 是总能耗。适应度函数平衡这两个目标,以选择最优路线。

B. Big Data Integration  B.大数据集成

The integration of real-time traffic, weather, and environmental data allows the GA to dynamically adjust routes based on current conditions. The following sources of big data are used:
实时交通、天气和环境数据的整合使 GA 能够根据当前情况动态调整路线。使用的大数据源如下:

1) Traffic Data  1)交通数据

Real-time traffic congestion levels are used to penalize routes that pass through congested areas, dynamically lowering their fitness score. This encourages the system to favor routes with lighter traffic.
根据实时交通拥堵程度,对经过拥堵区域的路线进行惩罚,动态降低其适应度得分。这鼓励系统优先选择交通流量较小的路线。

2) Weather Data  2)天气数据

Weather conditions, such as wind speed, temperature, and precipitation, are used to adjust both flight time and energy consumption. For instance, adverse weather increases the energy consumption and time taken, and the GA will adjust routes accordingly.
风速、气温、降水等天气条件可用于调整飞行时间和能源消耗。例如,恶劣天气会增加能源消耗和飞行时间,通用航空将据此调整航线。

3) Environmental Data  3)环境数据

Terrain complexity (mountainous vs. urban) and no-fly zones influence route selection. The GA avoids no-fly zones and selects less energy-intensive paths for areas with high terrain complexity.
地形复杂度(山区与城市)和禁飞区会影响路线选择。GA 会避开禁飞区,并为地形复杂度较高的区域选择能耗较低的路径。

C. Integration with Genetic Algorithm
C. 与遗传算法的集成

To dynamically adjust routes, we need to continuously update the fitness function based on the real-time input from the big data sources mentioned above. This is how it works:
为了动态调整路线,我们需要根据上述大数据源的实时输入不断更新适应度函数。它的工作原理如下:

1) Real-Time Data Feed  1)实时数据馈送

Traffic, weather, and geographic/environmental data are streamed into the system via APIs or real-time sensors.
交通、天气和地理/环境数据通过 API 或实时传感器流入系统。

2) Data Processing  2)数据处理

The incoming data is processed to ensure consistency, accuracy, and relevance. This could involve smoothing noisy data or filtering irrelevant updates (e.g., ignoring small temperature changes that don’t impact drone operations)
处理传入的数据以确保一致性、准确性和相关性。这可能涉及平滑噪声数据或过滤不相关的更新(例如,忽略不影响无人机操作的微小温度变化)

3) Algorithm Update  3)算法更新

Traffic Influence: Congestion data can increase the fitness score of less congested routes and decrease it for congested routes[4].
交通影响:拥堵数据可以提高拥堵程度较低的路线的适应度得分,并降低拥堵路线的适应度得分[4]

Weather Influence: High winds or precipitation can decrease the fitness score of routes affected by adverse weather, while favorable conditions (tailwinds) can improve route scores.
天气影响:大风或降水会降低受恶劣天气影响的路线的适应度得分,而有利条件(顺风)可以提高路线得分。

Geographic Influence: Terrain and no-fly zone updates may render certain paths infeasible, forcing the algorithm to eliminate those routes or reroute accordingly.
地理影响:地形和禁飞区更新可能会导致某些路径变得不可行,从而迫使算法消除这些路线或相应地重新规划路线。

4) Re-Optimization  4)重新优化

The algorithm continuously recalculates routes whenever significant changes in traffic, weather, or environmental conditions occur. If a route becomes more favorable due to reduced congestion or better weather, the algorithm promotes it.
每当交通、天气或环境条件发生重大变化时,算法就会不断重新计算路线。如果某条路线因拥堵减少或天气好转而变得更受欢迎,算法就会推广该路线。

The re-optimization happens at regular intervals or in response to major data changes (e.g., sudden traffic jams or storm warnings).
重新优化会定期发生,或者在响应重大数据变化(例如,突然的交通堵塞或暴风雨警告)时发生。

Decision Making: The best route at any given time is the one with the highest fitness score, considering current conditions. The drone's navigation system is updated in real-time based on the algorithm’s output, ensuring that the chosen path is always the most optimal and safest.
决策:在当前条件下,最佳路线是适应度得分最高的路线。无人机的导航系统根据算法的输出实时更新,确保所选路线始终是最优和最安全的。

D. Dynamic Adaptation  D.动态适应

The system adapts in real time by combining GA optimization with real-time big data inputs[5]. When significant changes in traffic, weather, or environment are detected:
该系统通过将遗传算法优化与实时大数据输入相结合,实现实时自适应[5] 。当检测到交通、天气或环境发生重大变化时:

1) Fitness Function Update
1)适应度函数更新

The fitness function recalculates route viability based on real-time inputs. For example, routes passing through traffic jams or high wind areas are given lower scores, while energy-efficient and faster routes are promoted.
适应度函数会根据实时输入重新计算路线可行性。例如,经过交通拥堵或大风区域的路线会获得较低的分数,而节能和更快的路线则会得到推广。

2) Re-Optimization  2)重新优化

The GA continuously generates new delivery routes based on the latest environmental data, ensuring that drones follow the most optimal path under changing conditions. This dynamic adjustment minimizes disruptions and ensures efficient deliveries.
GA 会根据最新的环境数据不断生成新的配送路线,确保无人机在不断变化的条件下遵循最佳路径。这种动态调整可最大限度地减少干扰并确保高效配送。

This real-time adaptation capability is crucial for drone delivery systems operating in complex environments like Shiyan City, ensuring that they can handle the unpredictability of real-world conditions effectively.
这种实时适应能力对于在十堰市等复杂环境中运行的无人机配送系统至关重要,确保它们能够有效地处理现实世界条件的不可预测性。

SECTION IV.  第四部分

Experiments and Results  实验与结果

A. Simulation Setup  A. 模拟设置

We simulated four real-world drone delivery scenarios, including both mountainous and urban conditions, using the following parameters:
我们使用以下参数模拟了四种真实的无人机送货场景,包括山区和城市条件:

  • Battery Life: 30 minutes  电池寿命:30 分钟

  • Payload: 4 kg  有效载荷:4 公斤

  • Flight Speed: 30 km/h  飞行速度:30 公里/小时

  • Energy Consumption: 10 Wh/km
    能耗:10 Wh/km

  • Terrain Complexity: High (Mountainous) and Low (Urban)
    地形复杂度:高(山区)和低(城市)

Scenario 1: Peak Delivery on a Clear Day
场景 1:晴天高峰配送

Weather conditions: Sunny, no wind.
天气状况:晴朗,无风。

Delivery demand: 150 packages per hour.
配送需求:每小时150件包裹。

Main path: High traffic city roads (urban environment).
主要路径:交通繁忙的城市道路(城市环境)。

Mission Objective: The drones must choose the most efficient path to complete multiple deliveries within the 30-minute battery life.
任务目标:无人机必须在 30 分钟的电池寿命内选择最有效的路径完成多次运送。

Simulation Notes: In this simulation, traffic data and delivery demand play critical roles in affecting route optimization. The genetic algorithm will prioritize minimizing delivery time while balancing energy consumption to complete as many deliveries as possible.
模拟说明:在此模拟中,交通数据和配送需求在影响路线优化方面起着关键作用。遗传算法将优先考虑最小化配送时间,同时平衡能源消耗以完成尽可能多的配送。

Scenario 2: Rainy Day Delivery in Mountainous Areas
场景二:山区雨天配送

Weather conditions: Moderate rain, wind speed 10 km/h.
天气情况:中雨,风速10公里/小时。

Terrain complexity: Score of 7, high-altitude mountainous area.
地形复杂程度:得分7,高海拔山区。

Delivery demand: 50 packages per hour.
配送需求:每小时50包。

Mission Objective: The drone must avoid no-fly zones and use the least energy to complete deliveries while navigating through complex terrain and adjusting for weather conditions.
任务目标:无人机必须避开禁飞区,并在穿越复杂地形和适应天气条件的同时使用最少的能量完成运送。

Simulation Notes: This scenario adds an additional layer of complexity with weather and terrain. The genetic algorithm needs to balance avoiding high-energy routes while maintaining delivery efficiency. Weather data (rain and wind) will be integrated to influence the drone's energy consumption and flight path.
模拟说明:此场景增加了天气和地形的复杂性。遗传算法需要在避免高能耗路线的同时保持运输效率。天气数据(雨和风)将被整合以影响无人机的能耗和飞行路径。

Scenario 3: Sudden Peak Demand
场景三:突发峰值需求

Weather conditions: Cloudy, wind speed 5 km/h.
天气情况:多云,风速5公里/小时。

Delivery demand: 300 packages per hour due to sudden activity.
配送需求:由于突发事件,每小时配送包裹 300 个。

Mission Objective: Drones must quickly respond to increased demand by rationally allocating multiple drones to improve delivery efficiency.
任务目标:无人机必须通过合理分配多架无人机来快速响应不断增长的需求,从而提高运送效率。

Simulation Notes: This high-demand scenario tests the system's adaptability. The genetic algorithm needs to split deliveries between multiple drones, optimizing the allocation of tasks based on available resources (battery, flight distance) and maximizing the delivery capacity.
模拟说明:这个高要求场景考验系统的适应性。遗传算法需要在多架无人机之间分配配送任务,根据可用资源(电池、飞行距离)优化任务分配,并最大化配送能力。

Scenario 4: Emergency Return of a Drone Running out of Battery Power
场景四:无人机电量耗尽紧急返航

Weather conditions: Sunny, wind speed 3 km/h.
天气情况:晴朗,风速3公里/小时。

Battery remaining: Less than 20% of battery life.
电池剩余电量:电池寿命少于 20%。

Mission Objective: The drone must find the nearest charging station or return to the departure point to avoid a complete battery drain.
任务目标:无人机必须找到最近的充电站或返回出发点,以避免电池完全耗尽。

Simulation Notes: In this scenario, the system tests emergency return functionality. The genetic algorithm must prioritize finding the nearest charging station or calculating the shortest return route to conserve battery power.
模拟说明:在此场景中,系统测试紧急返回功能。遗传算法必须优先寻找最近的充电站或计算最短返回路线以节省电池电量。

B. Performance Metrics  B. 绩效指标

Define specific metrics to evaluate the success of the simulations:
定义具体指标来评估模拟的成功:

1) Delivery Time  1)交货时间

Definition: The total time it takes for the drone to complete a set of deliveries. Measured in minutes per delivery cycle.
定义:无人机完成一组运送任务所需的总时间。以每个运送周期的分钟数计算。

Importance: Lower delivery times indicate that the algorithm efficiently selected the optimal route in response to traffic, weather, and demand.
重要性:较短的运输时间表明算法能够根据交通、天气和需求有效地选择最佳路线。

2) Energy Efficiency  2)能源效率

Definition: The energy consumed per kilometer (Wh/km) and total energy used in the delivery cycle.
定义: 每公里消耗的能量(Wh/km)和配送周期内使用的总能量。

Importance: Energy efficiency is critical, especially in scenarios with complex terrain and bad weather, as the drone's energy consumption will fluctuate based on the chosen route.
重要性:能源效率至关重要,特别是在地形复杂和天气恶劣的情况下,因为无人机的能耗会根据所选择的路线而波动。

3) Route Optimization  3)路线优化

Definition: The optimization of the delivery route to minimize distance, avoid no-fly zones, and balance traffic.
定义:优化运输路线,以尽量减少距离、避开禁飞区并平衡交通。

Importance: This metric assesses how well the genetic algorithm adapts to changes, such as avoiding congested areas or weather-affected zones, while minimizing overall flight distance.
重要性:该指标评估遗传算法适应变化的能力,例如避开拥挤区域或受天气影响的区域,同时最小化整体飞行距离。

4) Success Rate of Emergency Return
4)紧急返乡成功率

Definition: The percentage of cases where drones successfully return to a charging station or departure point before running out of battery.
定义:无人机在电池耗尽之前成功返回充电站或出发点的情况百分比。

Importance: This metric measures the effectiveness of the algorithm's ability to make critical decisions under time-sensitive conditions.
重要性:该指标衡量算法在时间敏感条件下做出关键决策的能力的有效性。

C. Results  C. 结果

1) Scenario 1: Peak Delivery on a Clear Day
1)场景一:晴天高峰配送

Total Delivery Time: 148.77 minutes
总交付时间:148.77 分钟

Average Energy Consumption per Package: 1.0 Wh
每件包装平均能耗:1.0 Wh

Total Energy Consumption: 150.0 Wh
总能耗:150.0 Wh

Key Result: Under optimal weather conditions and high demand, the GA optimized routes to ensure efficient delivery, minimizing energy consumption and time.
关键结果:在最佳天气条件和高需求下,GA 优化路线以确保高效交付,最大限度地减少能源消耗和时间。

Fig. 1 - 
Simulation Results of Scenario 1
Fig. 1   图 1

Simulation Results of Scenario 1
场景 1 的模拟结果

2) Scenario 2: Rainy Day Delivery in Mountainous Areas
2)场景二:山区雨天配送

Total Delivery Time: 72.75 minutes
总交付时间:72.75 分钟

Average Energy Consumption per Package: 3.6 Wh
每包平均能耗:3.6 Wh

Total Energy Consumption: 180.0 Wh
总能耗:180.0 Wh

Key Result: In this scenario, adverse weather and difficult terrain increased delivery time and energy consumption. The GA successfully avoided no-fly zones and found low-energy paths despite challenging conditions.
主要结果:在这种情况下,恶劣的天气和复杂的地形增加了交付时间和能源消耗。尽管条件十分艰苦,但 GA 成功避开了禁飞区并找到了低能耗路径。

Fig. 2 - 
Simulation Results of Scenario 2
Fig. 2   图 2

Simulation Results of Scenario 2
场景 2 的模拟结果

3) Scenario 3: Sudden Peak Demand
3)场景三:突发峰值需求

Total Delivery Time: 269.83 minutes
总交付时间:269.83 分钟

Average Energy Consumption per Package: 0.5 Wh
每个包装的平均能耗:0.5 Wh

Total Energy Consumption: 150.0 Wh
总能耗:150.0 Wh

Fig. 3 - 
Simulation Results of Scenario 3
Fig. 3   图 3

Simulation Results of Scenario 3
场景 3 的模拟结果

Key Result: The GA efficiently handled the sudden increase in demand by optimizing multiple drones' routes, leading to lower-than-expected energy consumption and rapid deliveries despite high demand.
关键结果:GA 通过优化多架无人机的路线有效处理了需求的突然增加,尽管需求很高,但能源消耗仍低于预期并实现了快速交付。

4) Scenario 4: Emergency Return of a Drone Running out of Battery Power
4)场景四:无人机电量耗尽紧急返航

Total Delivery Time: 79.01 minutes
总交付时间:79.01 分钟

Average Energy Consumption per Package: 0.375 Wh
每包平均能耗:0.375 Wh

Total Energy Consumption: 30.0 Wh
总能耗:30.0 Wh

Key Result: In low-battery conditions, the GA prioritized energy efficiency and successfully returned drones to the nearest charging stations before battery depletion, highlighting the system’s adaptability in emergency situations.
关键结果:在电池电量不足的情况下,GA 优先考虑能源效率,并在电池耗尽之前成功将无人机返回到最近的充电站,突显了该系统在紧急情况下的适应性。

Fig. 4 - 
Simulation Results of Scenario 4
Fig. 4   图 4

Simulation Results of Scenario 4
场景4的模拟结果

D. Summary of Results  D. 结果总结

1) Energy Consumption Reduction
1)减少能源消耗

Highlight how the genetic algorithm optimized the route and reduced energy consumption, especially in complex scenarios like mountainous areas and sudden demand peaks.
强调遗传算法如何优化路线并降低能源消耗,特别是在山区和突然的需求高峰等复杂场景中。

2) Improved Delivery Efficiency
2)提高配送效率

Show how delivery times were significantly shortened in all scenarios, demonstrating the effectiveness of the dynamic route optimization.
展示在所有场景中运输时间如何显著缩短,证明动态路线优化的有效性。

3) Enhanced Decision-Making in Emergency Scenarios
3)增强紧急情况下的决策能力

Demonstrate the system’s ability to react quickly in emergency battery return scenarios, showing a higher success rate compared to non-adaptive methods.
展示系统在紧急电池返回场景中快速反应的能力,与非自适应方法相比显示出更高的成功率。

SECTION V.  第五部分

Discussion  讨论

The research methodology presented in this thesis offers significant improvements and innovations in the field of multi-drone delivery route optimization. By integrating genetic algorithms with big data, this approach allows for real-time dynamic route adjustments, significantly enhancing the system's adaptability. One of the key innovations is the ability to continuously process real-time traffic, weather, and environmental data, which enables the genetic algorithm to optimize delivery times and minimize energy consumption. Unlike traditional static route planning methods, this methodology allows for real-time avoidance of congested areas, high-energy terrain, and adverse weather conditions, resulting in faster and more energy-efficient deliveries. Additionally, the system's scalability is evident in high-demand scenarios, where tasks are successfully distributed across multiple drones without compromising performance. This highlights the algorithm's capability to manage substantial increases in delivery demand, making it well-suited for both urban and rural logistics challenges. Moreover, the focus on energy optimization ensures that the genetic algorithm minimizes energy consumption even in difficult terrains or low-battery conditions, extending the operational range of drones and reducing overall operational costs.These improvements make this methodology a robust and scalable solution for modern logistics.
本论文提出的研究方法在多无人机配送路线优化领域提供了重大改进和创新。通过将遗传算法与大数据相结合,这种方法可以实现实时动态路线调整,从而显著提高系统的适应性。关键创新之一是能够持续处理实时交通、天气和环境数据,这使遗传算法能够优化配送时间并最大限度地降低能耗。与传统的静态路线规划方法不同,这种方法可以实时避开拥堵区域、高能地形和恶劣天气条件,从而实现更快、更节能的配送。此外,该系统的可扩展性在高需求场景中显而易见,在这些场景中,任务可以成功地分布在多架无人机上,而不会影响性能。这凸显了该算法管理配送需求大幅增加的能力,使其非常适合应对城市和农村的物流挑战。此外,对能源优化的关注确保了遗传算法即使在困难的地形或电池电量不足的情况下也能最大限度地降低能源消耗,扩大无人机的运行范围并降低总体运营成本。这些改进使该方法成为现代物流的强大且可扩展的解决方案。

However, the research methodology is not without limitations. Computational complexity poses a challenge, as the genetic algorithm requires considerable computational power to process large-scale data inputs, especially as the number of drones, delivery points, and real-time data sources increases. This complexity could limit the method's applicability in large-scale logistics operations with thousands of delivery points, where computational resources may become a bottleneck. Furthermore, the system's success is heavily dependent on the availability and accuracy of real-time data. In regions where traffic or weather data is unreliable or insufficient, the genetic algorithm's ability to optimize routes in real-time may be compromised, leading to suboptimal performance. This reliance on high-quality data poses challenges for implementation in less-developed areas or regions with poor data infrastructure. Additionally, while the methodology excels in handling predefined scenarios, unexpected real-world conditions or regulatory changes may require further adaptability beyond what is currently embedded in the genetic algorithm. These limitations point to the need for further refinement and consideration in real-world implementations, particularly in enhancing the system's robustness and computational efficiency[6].
然而,该研究方法并非没有局限性。计算复杂性带来了挑战,因为遗传算法需要相当大的计算能力来处理大规模数据输入,尤其是随着无人机、交付点和实时数据源数量的增加。这种复杂性可能会限制该方法在具有数千个交付点的大规模物流业务中的适用性,在这些业务中,计算资源可能成为瓶颈。此外,该系统的成功在很大程度上取决于实时数据的可用性和准确性。在交通或天气数据不可靠或不足的地区,遗传算法实时优化路线的能力可能会受到影响,导致性能不佳。这种对高质量数据的依赖对在欠发达地区或数据基础设施较差的地区实施带来了挑战。此外,虽然该方法在处理预定义场景方面表现出色,但意外的现实条件或监管变化可能需要超出遗传算法目前嵌入的范围的进一步适应性。这些局限性表明需要在实际实现中进一步完善和考虑,特别是在增强系统的鲁棒性和计算效率方面[6]

SECTION VI.  第六部分

Conclusion and Future Work
结论和未来工作

This research has demonstrated that the integration of genetic algorithms (GA) and big data is a highly effective approach for optimizing multi-drone delivery routes. The system's ability to process real-time traffic, weather, and terrain data allows it to adapt swiftly to changing conditions, enhancing delivery efficiency and minimizing energy consumption. By applying GA, the system dynamically adjusted routes across varying scenarios, showing notable improvements in performance, especially in high-demand or challenging environments. The results confirm that this method is not only robust but also scalable, capable of managing both complex terrains and fluctuating operational demands. This approach presents a significant advancement in logistics, offering solutions for improving delivery times while reducing operational costs through energy-efficient drone routing.
这项研究表明,遗传算法 (GA) 与大数据的结合是优化多无人机配送路线的一种高效方法。该系统能够处理实时交通、天气和地形数据,因此能够迅速适应不断变化的条件,提高配送效率并最大限度地降低能耗。通过应用 GA,系统可以动态调整不同场景中的路线,性能显著提高,尤其是在高需求或具有挑战性的环境中。结果证实,该方法不仅稳健,而且可扩展,能够管理复杂地形和波动的运营需求。这种方法代表了物流领域的重大进步,通过节能的无人机路线提供解决方案,缩短配送时间,同时降低运营成本。

Further development of this system should focus on several critical areas to extend its applicability and efficiency. Machine learning models could be incorporated to predict traffic patterns, weather shifts, and demand surges, allowing the system to proactively adjust routes before disruptions occur, thus enhancing both resilience and efficiency. Additionally, expanding the model to operate in more diverse terrains, such as coastal and desert regions where wind or sandstorms may pose operational challenges, would increase its versatility. Enhancing battery management through predictive usage models and more efficient recharging strategies could also further optimize drone operations in low-battery conditions. Moreover, as regulatory environments evolve, future work should focus on creating flexible algorithms that can seamlessly adapt to updated airspace restrictions, ensuring compliance while maintaining high levels of efficiency in drone routing.
该系统的进一步开发应侧重于几个关键领域,以扩展其适用性和效率。可以结合机器学习模型来预测交通模式、天气变化和需求激增,使系统能够在中断发生之前主动调整路线,从而提高弹性和效率。此外,扩展模型以在更多样化的地形上运行,例如风或沙尘暴可能对操作造成挑战的沿海和沙漠地区,将提高其多功能性。通过预测使用模型和更高效的充电策略增强电池管理,也可以进一步优化无人机在低电量条件下的操作。此外,随着监管环境的发展,未来的工作应侧重于创建灵活的算法,这些算法可以无缝适应更新的空域限制,确保合规性,同时保持无人机路线的高效率。

Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
关键词有助于检索结果并提供发现其他相关内容的方法。了解详情。

References

References is not available for this document.