这是用户在 2024-11-19 18:18 为 https://www.science.org/doi/10.1126/science.aaf6644 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
跳至主要内容
主要内容从这里开始
完全访问权限
研究论文

可见光波长的超透镜:衍射极限聚焦和亚波长分辨率成像

科学
3 6月 2016
3526290
页码: 1190-1194

多功能平面光学元件

专门设计的纳米级金属天线或超表面的二维 (2D) 阵列可以将笨重的光学元件缩小到平面器件结构。Khorasaninejad 等人表明,TiO 的纳米级鳍片阵列可以用作高端光学透镜。这种平面设备的大小只有光学物镜的一小部分,可以将您的手机摄像头或隐形眼镜变成复合显微镜。Maguid 等人交错了金属天线的稀疏 2D 阵列,以从一个平面器件结构中获得多功能行为(参见 Litchinitser 的透视)。这种设计的超表面的增强功能可用于传感应用或增加纳米光子网络的通信能力。
科学,本期,第 1190 页和第 1202 页;另见第 1177

抽象

亚波长分辨率成像需要高数值孔径 (NA) 镜头,这些镜头体积庞大且价格昂贵。超表面允许将传统折射光学元件小型化为平面结构。我们表明,高纵横比二氧化钛超构表面可以制造和设计成 NA = 0.8 的超透镜。在 405、532 和 660 nm 波长处展示了衍射极限聚焦,相应的效率为 86、73 和 66%。超透镜可以分辨由亚波长距离隔开的纳米级特征,并提供高达 170× 的放大倍率,其图像质量可与最先进的商业物镜相媲美。我们的结果坚定地确定了超透镜可以在基于激光的显微镜、成像和光谱学中得到广泛的应用。
超表面由界面处的亚波长间隔移相器组成,可以对光的特性进行前所未有的控制 (12),并通过在平面结构中实现多种功能来具有先进的光学技术 (130).各种光学元件,从透镜、全息图和光栅到偏振选择性器件,已经使用硅基 (7-19) 和等离子体超表面 (3421-27) 进行了演示。然而,硅和等离子体材料在可见光范围(400 至 700 nm)内的高固有损耗阻碍了在该区域实现高效的超表面。尽管这一挑战可以通过在可见光谱中使用具有透明窗口的介电材料(例如 GaP、SiN 和 TiO)来部分克服2)实现对光相位的完全控制需要精确的高纵横比纳米结构,而这反过来又受到可用纳米制造方法的限制。最近,我们开发了一种基于二氧化钛 (TiO2) (31) 通过原子层沉积 (ALD) (32) 制备,能够制造在可见光谱中无损的高纵横比超构表面。在这里,我们展示了可见光波长(λ = 405、532 和 660 nm)的高效超透镜,效率高达 86%。它们具有 0.8 的高数值孔径 (NA),能够将光聚焦到衍射极限的光斑中。在各自的设计波长下,这些焦点比市售的高数值孔径物镜 (100× 尼康 CFI 60 的焦点小 ~1.5 倍;NA = 0.8)。使用这些超透镜成像表明,它们可以产生亚波长分辨率,其图像质量可与商用物镜获得的质量相媲美。

平面透镜设计和制造

典型的高数值孔径物镜由精密设计的复合透镜组成,这使得它们体积庞大且价格昂贵,限制了它们的应用,并阻碍了它们集成到紧凑且具有成本效益的系统中。在可见光范围内具有高数值孔径的单片平面透镜在成像、显微镜和光谱学中具有潜在的广泛应用,因此需求量特别大。尽管可见平面透镜可以通过衍射元件实现,但无法实现高数值孔径和效率,因为它们的组成结构是波长尺度的,这妨碍了准确的相位分布。
图 1A 显示了透射式介电超透镜的示意图。超透镜的构建块是高纵横比 TiO2纳米鳍(图 1,B 到 E)。为了像球面透镜一样工作,相位分布φnf(x, y)的超透镜需要遵循 (25)
图 1超透镜的设计和制造。
(A) 超透镜及其构建块 TiO 的示意图2纳米鳍。(B) 超透镜由 TiO 组成2玻璃基板上的纳米鳍片。(CD) 晶胞的侧视图和俯视图,显示纳米翅片的高度 H、宽度 W 和长度 L,晶胞尺寸为 S × S。(E) 纳米鳍片旋转一个角度 θ 来获得所需的相位NF,根据几何 Pancharatnam-Berry 相位。(F) 模拟的偏振转换效率与波长的关系。该效率定义为入射圆偏振光功率转换为具有相反螺旋度的透射光功率的分数。对于这些仿真,在 x 和 y 边界处应用周期性边界条件,在 z 边界处应用完美匹配的层。对于在 λ 处设计的超透镜d= 660 nm(红色曲线),纳米鳍的 W = 85、L = 410 和 H = 600 nm,中心间距 S = 430 nm。对于在 λ 处设计的超透镜d= 532 nm(绿色曲线),纳米翅片的 W = 95、L = 250 和 H = 600 nm,中心间距 S = 325 nm。对于在 λ 处设计的超透镜d= 405 nm(蓝色曲线),纳米翅片的 W = 40,L = 150,H = 600 nm,中心间距 S = 200 nm。(G) 在 660 nm 波长下设计的超透镜的光学图像。比例尺,40 μm。(H) 制造的超透镜的 SEM 显微照片。比例尺,300 nm。
在 Viewer 中打开
φnf(x, y)=2πλd(fx2+y2+f2)
(1)
其中 λd是设计波长,xy 是每个纳米翅片的坐标,f 是焦距。此相位分布是通过每个纳米鳍片在给定坐标 (xy) 处旋转一个角度来实现的θnf(x, y) (图 1E)。在右旋圆偏振入射光的情况下,这些旋转会产生相移,φnf(x, y)=2θnf(x, y),伴随着偏振转换为左旋圆偏振光 (3334)。因此,(xy) 处的每个纳米鳍都旋转了一个角度
θnf(x,y)=πλd(fx2+y2+f2)
(2)
为了最大限度地提高偏振转换效率,纳米鳍片应作为半波片工作 (111321)。这是由于纳米鳍片的不对称横截面产生的双折射,具有适当设计的高度、宽度和长度(图 1、C 和 D)。在图 1F 中使用商用有限差分时域 (FDTD) 求解器(Lumerical Inc.,温哥华)进行的模拟表明,转换效率高达 95%,并且可以通过调整纳米鳍参数来设计出所需波长的超透镜。转换效率计算为具有相反螺旋度的透射光功率与总入射功率的比值。
用各自的设计波长 (λd) 为 660、532 和 405 nm。所有这些超透镜具有相同的直径 240 μm,焦距为 90 μm,因此 NA = 0.8。制造工艺使用电子束光刻技术在光刻胶 (ZEP 520A) 中创建透镜图案。光刻胶的厚度与设计的纳米翅片高度相同,H 和 ALD 随后用于沉积非晶 TiO2到显影的光刻胶上。非晶态 TiO2之所以选择它,是因为它具有较低的表面粗糙度,在可见光波长下没有吸收,并且具有足够高的折射率 (~2.4)。由于 ALD 工艺是保形的,因此需要至少 W/2 的沉积厚度(其中 W 是纳米翅片宽度)才能生产无空隙的纳米翅片 (31)。然而,沉积也会留下 TiO2在光刻胶顶部形成等厚的薄膜,然后通过受控的橡皮布反应离子蚀刻去除。最后,剩余的电子束光刻胶被剥离,只剩下高纵横比的纳米鳍片。图 1 G 和 H 分别显示了制造的超透镜的光学和扫描电子显微镜 (SEM) 图像。超透镜的其他 SEM 显微照片如图 S1 (35) 所示。由于纳米翅片的几何参数是由光刻胶定义的,而不是由自上而下的蚀刻定义的,因此获得了具有 ~90° 垂直侧壁的高纵横比纳米翅片。需要注意的是,使用传统的自上而下的方法(例如,光刻后干法蚀刻)实现这些原子光滑的侧壁非常具有挑战性,因为不可避免的横向蚀刻会导致表面粗糙和锥形/锥形纳米结构。

表征超透镜性能

超透镜的焦点轮廓和效率使用图 S2 所示的实验设置进行测量。图 2A 显示了超透镜在其设计波长 λ 处获得的高度对称焦点d =660 纳米。焦点的垂直切割也显示在图 2G 中,具有衍射限制(λ2×N一个)半峰全宽 (FWHM) 为 450 nm。图 2(B 和 H)显示了在 532 nm 波长下设计的超透镜的焦点及其相应的垂直切口。此外,这种超透镜设计可以扩展到可见光范围的较短波长区域,这在光学的许多领域都非常有趣,例如光刻和光致发光光谱。图 2C 描述了在波长 λ 处设计的超透镜的焦点强度分布d= 405 nm,FWHM 为 280 nm(图 2I)。虽然这个波长非常接近 TiO 的带隙2λg= 360 nm,则吸收损失仍然可以忽略不计 (31)。
图 2三个超透镜的衍射极限焦点 (NA = 0.8) 以及与商业最先进的物镜的比较。
(AC) 在 (A) λ 处设计的超透镜的测量焦点强度分布d= 660B) λd= 532 和 (C) λd= 405 纳米。(DF) 物镜 (100× Nikon CFI 60,NA = 0.8) 在 (D) 660、(E) 532 和 (F) 405 nm 波长下测得的焦点强度分布。(GI) 超透镜焦点的相应垂直切割。在 660、532 和 405 nm 波长下设计的超透镜的 FWHMs 分别为 450、375 和 280 nm。对称光束轮廓和衍射极限焦点尺寸与制造的超透镜的质量和相位实现的精度有关。(JL) 物镜焦点在 (J) 660、(K) 532 和 (L) 405 nm 波长下的相应垂直切割。焦点的 FWHM 在图上标记。这些值是超透镜测量值的 ~1.5 倍。
在 Viewer 中打开
为了将我们的超透镜与市售镜头的性能进行比较,我们选择了最先进的尼康物镜。该物镜的数值孔径与我们的超透镜相同 (0.8),专为可见光而设计。使用与图相同的设置测量物镜在 660、532 和 405 nm 波长下的焦点强度分布。S2(见图 2,D 到 F)。对图 2 中 G 到 I图 2 中 J 到 L 中相应焦点横截面的比较表明,超透镜提供了更小(~1.5 倍)和更对称的焦点。这是可以理解的,因为传统的高数值孔径物镜被设计为在宽带照明下成像。也就是说,需要在入射角范围内针对多个波长校正波前像差,以满足所需视场的行业标准。这通常是通过级联一系列精确对准的复合透镜来实现的。每个单独光学镜头中的制造缺陷和残余像差误差,特别是球面像差,导致焦点尺寸大于理论预测 (36)。相比之下,我们的超透镜设计为具有对于正常入射光的无球面像差的相位分布,这导致在特定设计波长处产生衍射极限光斑 (37)。例如,波像差函数 (WAFRMS) 对于 405、532 和 660 nm 设计的超透镜分别为 0.049λ、0.060λ 和 0.064λ。这些值非常接近完美球面波前的条件 (37)。我们还根据三个超透镜在其设计波长下测得的光束轮廓计算了斯特列尔比,发现它们接近 0.8(参见材料和方法以及图 S3),与观察到的衍射极限聚焦一致。此外,由于使用了几何相位,超透镜的相位分布仅取决于纳米翅片的旋转。这是以非常高的精度控制的,这是电子束光刻的特点。或者,其他高通量光刻方法,如深紫外 (UV),可以提供类似的制造精度。
需要注意的是,尽管超透镜是在特定波长下设计的,但我们仍然在远离设计的波长处观察到波长尺度的焦点。例如,对于设计在 λ 处的超透镜d= 532 nm 时,我们在 λ = 660 和 405 nm 波长下分别测量了 720 nm 和 590 nm 的焦点尺寸(图 S4)。相对于理论衍射极限值,焦点的展宽来自色差,因为超表面本质上是色散的。我们的超透镜中的色差比基于折射光学的透镜更明显,导致焦距与波长相关(图 S5A)。对于激光相关成像、显微镜和光谱学来说,这通常不是问题,因为使用的是线宽较窄的单色光源。例如,在拉曼显微镜/光谱仪中,线宽为几皮米的 532 nm 激光器很常见。在这种情况下,线宽引起的焦点大小的扩大和焦距的变化可以忽略不计。
我们还测量了超透镜的聚焦效率。如图 3A 所示,超透镜设计在 λd= 660 nm 的聚焦效率为 66%,在大多数可见光范围内保持在 50% 以上。图 3A 还显示了在 λ 处设计的超透镜的测得聚焦效率d= 532 纳米。这种超透镜在其设计波长下的聚焦效率为 73%。此外,我们还在焦点周围 40 μm 的跨度内测量了该超透镜在 x-z 横截面上的光束强度分布(图 3B)。补充材料 (35) 中讨论了这种测量的细节(参见图 S2 和材料和方法)。可以忽略不计的背景信号不仅展示了出色的相位实现,其中光束会聚到衍射极限光斑,而且还显示了每个纳米翅片的高转换效率。对于在 405 nm 波长下设计的超透镜,测得的聚焦效率为 86%。后一种测量是使用二极管激光器(Ondax Inc.,Monrovia,CA)完成的,因为我们的可调谐激光器 (SuperK Varia) 可以提供的最短波长为 ~470 nm。所有效率测量均使用右圆偏振入射光进行。然而,通过使用圆形横截面纳米柱实现相位分布,其中相位是通过改变它们的直径来控制的,从而克服了设计的极化敏感性。
图 3超透镜的表征。
(A) 在 660 nm 和 532 nm 波长下设计的超透镜的测量聚焦效率。(Bx-z 平面的强度分布(以 dB 为单位),显示了光束从聚焦前 20 μm 和聚焦后 20 μm 的演变。该测量是在设计在 λ 处的超透镜上进行的d= 532 纳米。入射光的波长为 532 nm。
在 Viewer 中打开

影像学检查

为了展示我们的超透镜在实际成像中的应用,我们制造了一个直径 D = 2 mm、焦距 f = 0.725 mm 的超透镜,NA = 0.8。首先,我们使用 1951 年美国空军 (USAF) 分辨率测试图 (Thorlabs Inc., Jessup, MD) 作为目标对象来表征成像分辨率。测量配置如图 S6 所示。图 4A 显示了超透镜形成的图像。光源是设置为 530 nm、带宽为 5 nm 的可调谐激光器 (SuperK Varia)。由于生成的图像比我们的电荷耦合器件 (CCD) 相机大,因此我们将图像投影到半透明屏幕上,并使用佳能数码单镜头反光 (DSLR) 相机拍摄照片。该物体中最小的特征是宽度为 2.2 μm 且中心到中心距离为 4.4 μm 的线(突出显示区域中的底部元件)。在覆盖可见光谱的波长下也能获得类似的图像质量(图 S7)。最小特征的图像是使用图 4 中 B 到 E 所示的 CCD 相机拍摄的,波长分别为 480、530、590 和 620 nm。很明显,超透镜可以分辨这些微米级的线。我们使用西门子星形目标重复了类似的实验,结果表明所有特征都可以在整个可见光范围内分辨(图 S8 和 S9)。如前所述,超透镜的焦距随着波长的变化而变化,导致放大倍率不同(图 S5B)。在我们的实验装置中,我们将超透镜与镜筒透镜 (f = 100 mm) 一起使用,在 530 nm 处的放大倍率为 138× (100/0.725)。对于 480、590 和 620 nm 的波长,通过比较相机上形成的图像尺寸与 USAF 测试对象的已知物理尺寸的比率,分别获得 124×、152× 和 167× 的放大倍率。
图 4使用设计在 λ 处的超透镜成像d= 532 nm,直径 D = 2 mm,焦距 f = 0.725 mm。
A) 1951 年美国空军分辨率测试图的图像,由数码单反相机拍摄的超透镜形成。激光波长设置为 530 nm。比例尺,40 μm。(BE图 4A 中突出显示区域在 (B) 480、(C) 530、(D) 590 和 (E) 620 nm 波长下的图像。比例尺,5 μm。(FI图 4A 中突出显示区域在 530 nm 中心波长和不同带宽下的图像:(F) 10、(G) 30、(H) 50 和 (I) 100 nm。比例尺,5 μm。(J) FIB 制备的纳米级靶材。相邻空穴之间的最小间隙为 ~800 nm。(K) 超透镜形成的目标物体图像(图 4J)。(L) 由商业最先进的物镜形成的目标物体的图像。比例尺,图 4 中 10 μm,J 到 L。(M) 超透镜形成的图像显示,可以分辨亚波长间隙为 ~450 nm 的空穴。比例尺,500 nm。
在 Viewer 中打开
为了表征色差的影响,我们在 530 nm 处对同一物体进行了成像,同时在不改变超透镜与物体之间的距离的情况下,同时将光源的带宽从 10 nm 变为 100 nm(可调谐激光器的极限)。这些结果如图 4 F 到 I 所示。尽管图像质量会因带宽的增加而略有下降,但即使在 100 nm 的最大带宽下,最小的特征仍然可以分辨。最后,为了将成像质量与传统物镜的成像质量进行比较,我们使用聚焦离子束 (FIB) 制造了一个由间隙为 ~800 nm 的孔阵列组成的 H 形物体。该物体的 SEM 显微照片如图 4J 所示。超透镜形成的图像(图 4K)与相同 NA = 0.8 的 100× 尼康物镜(图 4L)形成的图像质量相当。图像大小的变化来自成像系统放大倍率的差异。我们还测试了超透镜的分辨率极限:可以很好地分辨四个亚波长间隙尺寸为 ~450 nm 的孔(图 4M)。该值与我们的超透镜测得的调制传递函数一致(补充材料和图 S10)。

结束语

使用 TiO 的可见光超透镜2NA = 0.8 且效率高达 86%,表明它们能够在任意设计波长上提供衍射极限焦点,这使其成为光学光刻、激光显微镜和光谱学的理想器件。我们的超透镜提供高达 170× 的放大倍率,并且能够分辨具有亚波长间距的结构,其紧凑的结构可以为许多应用提供便携式/手持式仪器。尽管我们的超光透镜会受到色差的影响,但后者可以通过 (910) 中演示的色散相补偿等方法进行校正。超透镜的单层光刻制造可以利用集成电路制造中使用的现有铸造技术(深紫外步进器),这对于高吞吐量至关重要。

确认

这项工作得到了空军科学研究办公室 (MURI, grant FA9550-14-1-0389)、Charles Stark Draper Laboratory, Inc. (SC001-0000000959) 和 Thorlabs Inc. 的部分支持。WTC 感谢台湾科学技术部 (104-2917-I-564-058) 的博士后奖学金支持。RCD 得到了 Charles Stark Draper 奖学金的支持。AY 感谢哈佛大学约翰 A. 保尔森工程与应用科学学院和新加坡 A*STAR 国家科学奖学金计划。制造工作在 NSF 支持的哈佛纳米系统中心进行。我们感谢 E. 胡 的超连续谱激光器 (NKT “SuperK”)。

补充材料

总结

材料和方法
无花果。S1 至 S10
电影 S1
参考资料 (3839)

资源

文件 (aaf6644movies1.avi)
文件 (khorasaninejad-sm.pdf)

参考资料和注释

1
Yu N. 和 Capasso F.,具有设计师超表面的平面光学。Nat. Mater. 13, 139–150 (2014 年)。
2
Kildishev A. V.、Boltasseva A. 和 Shalaev V. M.,具有超表面的平面光子学。科学 339, 1232009 (2013)。
3
Yu N.、Genevet P.、Kats MA、Aieta F.、Tetienne JP、Capasso F. 和 Gaburro Z.,相位不连续的光传播:反射和折射的广义定律。科学 334, 333–337 (2011)。
4
Ni X.、Emani NK、Kildishev AV、Boltasseva A. 和 Shalaev VM,等离子体纳米天线的宽带光弯曲。科学 335, 427–427 (2012)。
5
Silva A., Monticone F., Castaldi G., Galdi V., Alù A., and Engheta N., Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
6
Monticone F., Estakhri N. M., and Alù A., Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).
7
Jahani S. and Jacob Z., All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).
8
Fattal D., Li J., Peng Z., Fiorentino M., and Beausoleil R. G., Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4, 466–470 (2010).
9
Aieta F., Kats M. A., Genevet P., and Capasso F., Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).
10
Khorasaninejad M., Aieta F., Kanhaiya P., Kats M. A., Genevet P., Rousso D., and Capasso F., Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).
11
Lin D., Fan P., Hasman E., and Brongersma M. L., Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
12
Bomzon Z., Biener G., Kleiner V., and Hasman E., Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002).
13
Khorasaninejad M. and Crozier K. B., Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 5, 5386 (2014).
14
Chong K. E., Staude I., James A., Dominguez J., Liu S., Campione S., Subramania G. S., Luk T. S., Decker M., Neshev D. N., Brener I., and Kivshar Y. S., Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).
15
Arbabi A., Horie Y., Ball A. J., Bagheri M., and Faraon A., Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).
16
Chang-Hasnain C. J., High-contrast gratings as a new platform for integrated optoelectronics. Semicond. Sci. Technol. 26, 014043 (2011).
17
Yang Y., Wang W., Moitra P., Kravchenko I. I., Briggs D. P., and Valentine J., Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).
18
Khorasaninejad M., Zhu W., and Crozier K., Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376–382 (2015).
19
Spinelli P., Verschuuren M. A., and Polman A., Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012).
20
Liu S., Sinclair M. B., Mahony T. S., Jun Y. C., Campione S., Ginn J., Bender D. A., Wendt J. R., Ihlefeld J. F., Clem P. G., Wright J. B., and Brener I., Optical magnetic mirrors without metals. Optica 1, 250–256 (2014).
21
Zheng G., Mühlenbernd H., Kenney M., Li G., Zentgraf T., and Zhang S., Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).
22
Rogers E. T., Lindberg J., Roy T., Savo S., Chad J. E., Dennis M. R., and Zheludev N. I., A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012).
23
Sun S., Yang K. Y., Wang C. M., Juan T. K., Chen W. T., Liao C. Y., He Q., Xiao S., Kung W. T., Guo G. Y., Zhou L., and Tsai D. P., High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).
24
Larouche S., Tsai Y.-J., Tyler T., Jokerst N. M., and Smith D. R., Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).
25
Aieta F., Genevet P., Kats M. A., Yu N., Blanchard R., Gaburro Z., and Capasso F., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).
26
Yin X., Ye Z., Rho J., Wang Y., and Zhang X., Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).
27
Chen W. T., Yang K. Y., Wang C. M., Huang Y. W., Sun G., Chiang I. D., Liao C. Y., Hsu W. L., Lin H. T., Sun S., Zhou L., Liu A. Q., and Tsai D. P., High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014).
28
Grbic A., Jiang L., and Merlin R., Near-field plates: Subdiffraction focusing with patterned surfaces. Science 320, 511–513 (2008).
29
Khorasaninejad M. and Capasso F., broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 15, 6709–6715 (2015).
30
Merlin R., Radiationless electromagnetic interference: Evanescent-field lenses and perfect focusing. Science 317, 927–929 (2007).
32
High A. A., Devlin R. C., Dibos A., Polking M., Wild D. S., Perczel J., de Leon N. P., Lukin M. D., and Park H., Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).
33
Berry M. V., The adiabatic phase and Pancharatnam's phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).
34
S. Pancharatnam, Proceedings of the Indian Academy of Sciences, Section A (Springer, 1956), vol. 44, pp. 398–417.
36
M. Yoshida, U.S. Patent App. 13/760,681, 2013.
37
Aieta F., Genevet P., Kats M., and Capasso F., Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530–31539 (2013).
38
M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 2000).
39
H. Nasse, How to Read MTF Curves (Carl Zeiss Camera Lens Division, 2008).

(0)电子信件

eLetters 是一个持续同行评审的论坛。eLetters 不会经过编辑、校对或索引,但会经过筛选。eLetters 应提供对文章的实质性和学术性评论。嵌入的数字或带有特殊字符的方程式都不能提交,我们通常不鼓励在 eLetters 中使用数字和方程式。如果图表或方程式是必不可少的,请在电子邮件信函的文本中包含指向具有版本控制的公共存储库(如 Zenodo)中带有特殊字符的图形、方程式或全文的链接。在提交电子邮件之前,请阅读我们的服务条款

登录以提交回复

No eLetters have been published for this article yet.

Recommended articles from TrendMD

Information & Authors

Information

Published In

Science
Volume 352 | Issue 6290
3 June 2016

Submission history

Received: 10 March 2016
Accepted: 22 April 2016
Published in print: 3 June 2016

Permissions

Request permissions for this article.

Acknowledgments

This work was supported in part by the Air Force Office of Scientific Research (MURI, grant FA9550-14-1-0389), Charles Stark Draper Laboratory, Inc. (SC001-0000000959), and Thorlabs Inc. W.T.C. acknowledges postdoctoral fellowship support from the Ministry of Science and Technology, Taiwan (104-2917-I-564-058). R.C.D. is supported by a Charles Stark Draper Fellowship. A.Y.Z. thanks Harvard John A. Paulson School of Engineering and Applied Sciences and A*STAR Singapore under the National Science Scholarship scheme. Fabrication work was carried out in the Harvard Center for Nanoscale Systems, which is supported by the NSF. We thank E. Hu for the supercontinuum laser (NKT “SuperK”).

Authors

Affiliations

Notes

*
These authors contributed equally to this work.
Corresponding author. Email: capasso@seas.harvard.edu

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Ultrafast Metaphotonics, Ultrafast Science, 4, (2024)./doi/10.34133/ultrafastscience.0074
    Abstract
  2. The rise of electrically tunable metasurfaces, Science Advances, 10, 34, (2024)./doi/10.1126/sciadv.ado8964
    Abstract
  3. Single 5-centimeter-aperture metalens enabled intelligent lightweight mid-infrared thermographic camera, Science Advances, 10, 27, (2024)./doi/10.1126/sciadv.ado4847
    Abstract
  4. Freeform metasurface color router for deep submicron pixel image sensors, Science Advances, 10, 22, (2024)./doi/10.1126/sciadv.adn9000
    Abstract
  5. Single-shot deterministic complex amplitude imaging with a single-layer metalens, Science Advances, 10, 1, (2024)./doi/10.1126/sciadv.adl0501
    Abstract
  6. High-precision two-dimensional displacement metrology based on matrix metasurface, Science Advances, 10, 2, (2024)./doi/10.1126/sciadv.adk2265
    Abstract
  7. Metalens-Based Compressed Ultracompact Femtophotography: Analytical Modeling and Simulations, Ultrafast Science, 4, (2023)./doi/10.34133/ultrafastscience.0052
    Abstract
  8. Recent Advances and Perspective of Photonic Bound States in the Continuum, Ultrafast Science, 3, (2023)./doi/10.34133/ultrafastscience.0033
    Abstract
  9. Broadband Diffractive Graphene Orbital Angular Momentum Metalens by Laser Nanoprinting, Ultrafast Science, 3, (2023)./doi/10.34133/ultrafastscience.0018
    Abstract
  10. Ultracompact Multimode Meta-Microscope Based on Both Spatial and Guided-Wave Illumination, Advanced Devices & Instrumentation, 4, (2023)./doi/10.34133/adi.0023
    Abstract
  11. See more
Loading...

View Options

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Fig. 1 Design and fabrication of metalenses.
(A) Schematic of the metalens and its building block, the TiO2 nanofin. (B) The metalens consists of TiO2 nanofins on a glass substrate. (C and D) Side and top views of the unit cell showing height H, width W, and length L of the nanofin, with unit cell dimensions S × S. (E) The required phase is imparted by rotation of the nanofin by an angle θnf, according to the geometric Pancharatnam-Berry phase. (F) Simulated polarization conversion efficiency as a function of wavelength. This efficiency is defined as the fraction of the incident circularly polarized optical power that is converted to transmitted optical power with opposite helicity. For these simulations, periodic boundary conditions are applied at the x and y boundaries and perfectly matched layers at the z boundaries. For the metalens designed at λd = 660 nm (red curve), nanofins have W = 85, L = 410, and H = 600 nm, with center-to-center spacing S = 430 nm. For the metalens designed at λd = 532 nm (green curve), nanofins have W = 95, L = 250, and H = 600 nm, with center-to-center spacing S = 325 nm. For the metalens designed at λd = 405 nm (blue curve), nanofins have W = 40, L = 150, and H = 600 nm, with center-to-center spacing S = 200 nm. (G) Optical image of the metalens designed at the wavelength of 660 nm. Scale bar, 40 μm. (H) SEM micrograph of the fabricated metalens. Scale bar, 300 nm.
Fig. 2 Diffraction-limited focal spots of three metalenses (NA = 0.8) and comparison with a commercial state-of-the-art objective.
(A to C) Measured focal spot intensity profile of the metalens designed at (A) λd = 660, (B) λd = 532, and (C) λd = 405 nm. (D to F) Measured focal spot intensity profiles of the objective (100× Nikon CFI 60, NA = 0.8) at wavelengths of (D) 660, (E) 532, and (F) 405 nm. (G to I) Corresponding vertical cuts of the metalenses’ focal spots. Metalenses designed at wavelengths of 660, 532, and 405 nm have FWHMs = 450, 375, and 280 nm, respectively. The symmetric beam profiles and diffraction-limited focal spot sizes are related to the quality of the fabricated metalenses and accuracy of the phase realization. (J to L) Corresponding vertical cuts of the focal spots of the objective, at wavelengths of (J) 660, (K) 532, and (L) 405 nm. FWHMs of the focal spots are labeled on the plots. These values are ~1.5 times as large as those measured for the metalenses.
Fig. 3 Characterization of the metalenses.
(A) Measured focusing efficiency of the metalenses designed at wavelengths of 660 nm and 532 nm. (B) Intensity distribution in dB of the x-z plane, showing the evolution of the beam from 20 μm before and 20 μm after the focus. This measurement was performed on the metalens designed at λd = 532 nm. The wavelength of incident light was 532 nm.
Fig. 4 Imaging with a metalens designed at λd = 532 nm with diameter D = 2 mm and focal length f = 0.725 mm.
(A) Image of 1951 USAF resolution test chart formed by the metalens taken with a DSLR camera. Laser wavelength is set at 530 nm. Scale bar, 40 μm. (B to E) Images of the highlighted region in Fig. 4A at wavelengths of (B) 480, (C) 530, (D) 590, and (E) 620 nm. Scale bar, 5 μm. (F to I) Images of the highlighted region in Fig. 4A at a center wavelength of 530 nm and with different bandwidths: (F) 10, (G) 30, (H) 50, and (I) 100 nm. Scale bar, 5 μm. (J) Nanoscale target prepared by FIB. The smallest gap between neighboring holes is ~800 nm. (K) Image of target object (Fig. 4J) formed by the metalens. (L) Image of target object formed by the commercial state-of-the-art objective. Scale bar, 10 μm in Fig. 4, J to L. (M) Image formed by the metalens shows that holes with subwavelength gaps of ~450 nm can be resolved. Scale bar, 500 nm.

Multimedia

Tables

Share

Share

Copy the article link

Share on social media

References

References

1
Yu N. and Capasso F., Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).
2
Kildishev A. V., Boltasseva A., and Shalaev V. M., Planar photonics with metasurfaces. Science 339, 1232009 (2013).
3
Yu N., Genevet P., Kats M. A., Aieta F., Tetienne J. P., Capasso F., and Gaburro Z., Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011).
4
Ni X., Emani N. K., Kildishev A. V., Boltasseva A., and Shalaev V. M., Broadband light bending with plasmonic nanoantennas. Science 335, 427–427 (2012).
5
Silva A., Monticone F., Castaldi G., Galdi V., Alù A., and Engheta N., Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
6
Monticone F., Estakhri N. M., and Alù A., Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).
7
Jahani S. and Jacob Z., All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).
8
Fattal D., Li J., Peng Z., Fiorentino M., and Beausoleil R. G., Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4, 466–470 (2010).
9
Aieta F., Kats M. A., Genevet P., and Capasso F., Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).
10
Khorasaninejad M., Aieta F., Kanhaiya P., Kats M. A., Genevet P., Rousso D., and Capasso F., Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).
11
Lin D., Fan P., Hasman E., and Brongersma M. L., Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
12
Bomzon Z., Biener G., Kleiner V., and Hasman E., Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002).
13
Khorasaninejad M. and Crozier K. B., Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 5, 5386 (2014).
14
Chong K. E., Staude I., James A., Dominguez J., Liu S., Campione S., Subramania G. S., Luk T. S., Decker M., Neshev D. N., Brener I., and Kivshar Y. S., Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).
15
Arbabi A., Horie Y., Ball A. J., Bagheri M., and Faraon A., Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).
16
Chang-Hasnain C. J., High-contrast gratings as a new platform for integrated optoelectronics. Semicond. Sci. Technol. 26, 014043 (2011).
17
Yang Y., Wang W., Moitra P., Kravchenko I. I., Briggs D. P., and Valentine J., Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).
18
Khorasaninejad M., Zhu W., and Crozier K., Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376–382 (2015).
19
Spinelli P., Verschuuren M. A., and Polman A., Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012).
20
Liu S., Sinclair M. B., Mahony T. S., Jun Y. C., Campione S., Ginn J., Bender D. A., Wendt J. R., Ihlefeld J. F., Clem P. G., Wright J. B., and Brener I., Optical magnetic mirrors without metals. Optica 1, 250–256 (2014).
21
Zheng G., Mühlenbernd H., Kenney M., Li G., Zentgraf T., and Zhang S., Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).
22
Rogers E. T., Lindberg J., Roy T., Savo S., Chad J. E., Dennis M. R., and Zheludev N. I., A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012).
23
Sun S., Yang K. Y., Wang C. M., Juan T. K., Chen W. T., Liao C. Y., He Q., Xiao S., Kung W. T., Guo G. Y., Zhou L., and Tsai D. P., High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).
24
Larouche S., Tsai Y.-J., Tyler T., Jokerst N. M., and Smith D. R., Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).
25
Aieta F., Genevet P., Kats M. A., Yu N., Blanchard R., Gaburro Z., and Capasso F., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).
26
Yin X., Ye Z., Rho J., Wang Y., and Zhang X., Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).
27
Chen W. T., Yang K. Y., Wang C. M., Huang Y. W., Sun G., Chiang I. D., Liao C. Y., Hsu W. L., Lin H. T., Sun S., Zhou L., Liu A. Q., and Tsai D. P., High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014).
28
Grbic A., Jiang L., and Merlin R., Near-field plates: Subdiffraction focusing with patterned surfaces. Science 320, 511–513 (2008).
29
Khorasaninejad M. and Capasso F., broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 15, 6709–6715 (2015).
30
Merlin R., Radiationless electromagnetic interference: Evanescent-field lenses and perfect focusing. Science 317, 927–929 (2007).
32
High A. A., Devlin R. C., Dibos A., Polking M., Wild D. S., Perczel J., de Leon N. P., Lukin M. D., and Park H., Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).
33
Berry M. V., The adiabatic phase and Pancharatnam's phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).
34
S. Pancharatnam, Proceedings of the Indian Academy of Sciences, Section A (Springer, 1956), vol. 44, pp. 398–417.
36
M. Yoshida, U.S. Patent App. 13/760,681, 2013.
37
Aieta F., Genevet P., Kats M., and Capasso F., Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530–31539 (2013).
38
M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 2000).
39
H. Nasse, How to Read MTF Curves (Carl Zeiss Camera Lens Division, 2008).
View figure
Fig. 1
Fig. 1 Design and fabrication of metalenses.
(A) Schematic of the metalens and its building block, the TiO2 nanofin. (B) The metalens consists of TiO2 nanofins on a glass substrate. (C and D) Side and top views of the unit cell showing height H, width W, and length L of the nanofin, with unit cell dimensions S × S. (E) The required phase is imparted by rotation of the nanofin by an angle θnf, according to the geometric Pancharatnam-Berry phase. (F) Simulated polarization conversion efficiency as a function of wavelength. This efficiency is defined as the fraction of the incident circularly polarized optical power that is converted to transmitted optical power with opposite helicity. For these simulations, periodic boundary conditions are applied at the x and y boundaries and perfectly matched layers at the z boundaries. For the metalens designed at λd = 660 nm (red curve), nanofins have W = 85, L = 410, and H = 600 nm, with center-to-center spacing S = 430 nm. For the metalens designed at λd = 532 nm (green curve), nanofins have W = 95, L = 250, and H = 600 nm, with center-to-center spacing S = 325 nm. For the metalens designed at λd = 405 nm (blue curve), nanofins have W = 40, L = 150, and H = 600 nm, with center-to-center spacing S = 200 nm. (G) Optical image of the metalens designed at the wavelength of 660 nm. Scale bar, 40 μm. (H) SEM micrograph of the fabricated metalens. Scale bar, 300 nm.
View figure
Fig. 2
Fig. 2 Diffraction-limited focal spots of three metalenses (NA = 0.8) and comparison with a commercial state-of-the-art objective.
(A to C) Measured focal spot intensity profile of the metalens designed at (A) λd = 660, (B) λd = 532, and (C) λd = 405 nm. (D to F) Measured focal spot intensity profiles of the objective (100× Nikon CFI 60, NA = 0.8) at wavelengths of (D) 660, (E) 532, and (F) 405 nm. (G to I) Corresponding vertical cuts of the metalenses’ focal spots. Metalenses designed at wavelengths of 660, 532, and 405 nm have FWHMs = 450, 375, and 280 nm, respectively. The symmetric beam profiles and diffraction-limited focal spot sizes are related to the quality of the fabricated metalenses and accuracy of the phase realization. (J to L) Corresponding vertical cuts of the focal spots of the objective, at wavelengths of (J) 660, (K) 532, and (L) 405 nm. FWHMs of the focal spots are labeled on the plots. These values are ~1.5 times as large as those measured for the metalenses.
View figure
Fig. 3
Fig. 3 Characterization of the metalenses.
(A) Measured focusing efficiency of the metalenses designed at wavelengths of 660 nm and 532 nm. (B) Intensity distribution in dB of the x-z plane, showing the evolution of the beam from 20 μm before and 20 μm after the focus. This measurement was performed on the metalens designed at λd = 532 nm. The wavelength of incident light was 532 nm.
View figure
Fig. 4
Fig. 4 Imaging with a metalens designed at λd = 532 nm with diameter D = 2 mm and focal length f = 0.725 mm.
(A) Image of 1951 USAF resolution test chart formed by the metalens taken with a DSLR camera. Laser wavelength is set at 530 nm. Scale bar, 40 μm. (B to E) Images of the highlighted region in Fig. 4A at wavelengths of (B) 480, (C) 530, (D) 590, and (E) 620 nm. Scale bar, 5 μm. (F to I) Images of the highlighted region in Fig. 4A at a center wavelength of 530 nm and with different bandwidths: (F) 10, (G) 30, (H) 50, and (I) 100 nm. Scale bar, 5 μm. (J) Nanoscale target prepared by FIB. The smallest gap between neighboring holes is ~800 nm. (K) Image of target object (Fig. 4J) formed by the metalens. (L) Image of target object formed by the commercial state-of-the-art objective. Scale bar, 10 μm in Fig. 4, J to L. (M) Image formed by the metalens shows that holes with subwavelength gaps of ~450 nm can be resolved. Scale bar, 500 nm.
ScienceAdviser

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.