这是用户在 2024-8-24 19:44 为 https://arxiv.org/html/2403.19491?_immersive_translate_auto_translate=1 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
License: CC BY 4.0 授权协议: CC BY 4.0
arXiv:2403.19491v1 [gr-qc] 28 Mar 2024
arXiv:2403.19491v1 [gr-qc] 2024 年 3 月 28 日

Effects of lunisolar perturbations on TianQin constellation: An analytical model
阴阳扰动对天琴星座的影响:一个解析模型

Bobing Ye yebb5@mail.sysu.edu.cn    Xuefeng Zhang zhangxf38@sysu.edu.cn MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics
&\&& School of Physics and Astronomy, Frontiers Science Center for TianQin,
Gravitational Wave Research Center of CNSA, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People’s Republic of China
(May 2, 2024) (5月 2, 2024)
Abstract 抽象

TianQin is a proposed space-based gravitational-wave observatory mission that critically relies on the stability of an equilateral-triangle constellation. Comprising three satellites in high Earth orbits of a 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km radius, this constellation’s geometric configuration is significantly affected by gravitational perturbations, primarily originating from the Moon and the Sun. In this paper, we present an analytical model to quantify the effects of lunisolar perturbations on the TianQin constellation, derived using Lagrange’s planetary equations. The model provides expressions for three kinematic indicators of the constellation: arm-lengths, relative line-of-sight velocities, and breathing angles. Analysis of these indicators reveals that lunisolar perturbations can distort the constellation triangle, resulting in three distinct variations: linear drift, bias, and fluctuation. Furthermore, it is shown that these distortions can be optimized to display solely fluctuating behavior, under certain predefined conditions. These results can serve as the theoretical foundation for numerical simulations and offer insights for engineering a stable constellation in the future.
“天琴”是一项拟议的天基引力波天文台任务,它严重依赖于等边三角形星座的稳定性。该星座由三颗位于半径 1 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT 公里的地球高轨道上的卫星组成,其几何结构受到引力扰动的显着影响,引力扰动主要源自月球和太阳。在本文中,我们提出了一个解析模型来量化阴阳扰动对天琴星座的影响,该模型使用拉格朗日行星方程推导。该模型提供了星座的三个运动学指标的表达式:臂长、相对视距速度和呼吸角。对这些指标的分析表明,阴阳扰动会扭曲星座三角形,导致三种不同的变化:线性漂移、偏差和波动。此外,结果表明,在某些预定义条件下,这些失真可以优化为仅显示波动行为。这些结果可以作为数值模拟的理论基础,并为未来设计稳定的星座提供见解。

preprint: APS/123-QED
预印本:APS/123-QED

I Introduction I 引言

The successful detection of gravitational waves (GWs) by the ground-based observatory LIGO [1] has opened up the era of GW astronomy. To detect GWs in the millihertz range (0.1 mHz–1 Hz), known for its rich sources and to circumvent the impact of seismic noise, space-based GW observatories are highly favored [2, 3]. For such observatories, proposed projects include LISA [4, 5], DECIGO [6], TianQin [7], Taiji [8], etc. Among these, TianQin is a geocentric space-based GW observatory mission that consists of three drag-free controlled satellites with an orbital radius of 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km [7]. The three satellites form a nearly equilateral-triangle constellation, standing almost vertical to the ecliptic, and they employ high-precision laser-ranging interferometry to measure distance changes between satellites for the detection of GWs. The mission will bring rich science prospects to GW astronomy [9, 10, 11].
地面天文台 LIGO [1] 成功探测到引力波 (GW),开启了 GW 天文学的时代。为了探测以丰富的来源而闻名的毫赫兹范围(0.1 mHz–1 Hz)的 GW 并规避地震噪声的影响,天基 GW 天文台受到高度青睐 [23]。对于此类天文台,拟议的项目包括 LISA [45]、DECIGO [6]、天琴 [7]、太极 [8] 等。其中,“天琴”是一项地心天基GW天文台任务,由三颗轨道半径为 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT 公里的无阻力受控卫星组成[7]。这三颗卫星形成一个几乎等边三角形的星座,几乎垂直于黄道,它们采用高精度激光测距干涉测量法测量卫星之间的距离变化,以检测 GW。该任务将为 GW 天文学带来丰富的科学前景 [91011]。

TianQin, as well as other three-satellite GW missions, relies crucially on the stability of an equilateral-triangle constellation [3, 7]. Unequal variations in the three arm-lengths of the constellation prevent the cancellation of laser frequency noise, which has a profound impact on the design of frequency stabilization systems and requires time-delay interferometry (TDI) [12, 13, 14]. The relative line-of-sight velocities between satellites induce Doppler frequency shifts, affecting phase meter bandwidth and ultra-stable oscillator design [15]. Moreover, changes in the three breathing angles of the triangle directly influence the design of telescopes and beam pointing mechanisms [7]. It is crucial to minimize variations in the triangular constellation, as indicated by these three kinematic indicators.
“天琴”以及其他三颗卫星的 GW 任务在很大程度上依赖于等边三角形星座的稳定性 [37]。星座三个臂长的不相等变化阻止了激光频率噪声的抵消,这对稳频系统的设计有深远的影响,需要时延干涉测量法 (TDI) [121314]。卫星之间的相对视距速度会引起多普勒频移,影响相位计带宽和超稳定振荡器设计 [15]。此外,三角形三个呼吸角的变化直接影响望远镜和光束指向机构的设计 [7]。正如这三个运动学指标所表明的那样,尽量减少三角形星座的变化至关重要。

Analytical analysis of satellite motion and constellation variations holds significant importance [16, 17, 18, 19, 20, 17]. To identify orbits with minimal variations in the constellation, extensive efforts have been dedicated to numerical orbit optimization and analysis (for a review, see Ref. [19]). The use of analytical models, as opposed to numerical simulations, allows for deeper physical insights and often yields clearer solutions for issues related to satellite motion [16, 17]. Moreover, these analytical models provide the basis for further numerical simulations, enhancing orbit optimization efficiency [18, 19]. They also enable theoretical studies on inter-satellite optical links and light propagation [20, 17].
卫星运动和星座变化的分析具有重要意义[161718, 192017]。为了确定星座中变化最小的轨道,人们投入了大量精力进行数值轨道优化和分析(综述见参考文献 [19])。与数值模拟相反,使用分析模型可以获得更深入的物理见解,并且通常可以为与卫星运动相关的问题提供更清晰的解决方案[16,17]。 此外,这些解析模型为进一步的数值模拟提供了基础,提高了轨道优化效率 [1819]。它们还有助于对星间光链路和光传播进行理论研究 [2017]。

Concerning analytical efforts, Ref. [21] first presented the analytical coordinates of the TianQin satellites, based on unperturbed Keplerian orbits, which showed that the arm-lengths of the constellation remain constant when orbital eccentricities are ignored. Furthermore, the leading-order effect of the third-body perturbation was considered to derive expressions for both arm-lengths and breathing angles [22]. These expressions were constructed iteratively, assuming circular orbits, and they were used to study the impact of initial orbit errors. Moreover, the effect of the Earth’s non-spherical gravitational perturbation was analyzed in [23], with a particular focus on its influence on inter-satellite range acceleration noise.
在分析工作方面,参考文献[21]首先提出了天琴卫星的解析坐标,该坐标基于未受扰动的开普勒轨道,结果表明,当忽略轨道偏心率时,星座的臂长保持不变。此外,第三体扰动的超前序效应被认为可以推导出臂长和呼吸角的表达式 [22]。这些表达式是迭代构建的,假设圆轨道,它们被用来研究初始轨道误差的影响。此外,在 [23] 中分析了地球非球面引力扰动的影响,特别关注其对星间距离加速度噪声的影响。

The analytical investigation into the influence of gravitational perturbations on the TianQin constellation is incomplete. Existing models have neglected the satellite’s orbital eccentricity, a crucial factor for constellation stability [24, 25]. Moreover, relying solely on the leading-order lunar perturbation is insufficient to address the high-altitude TianQin orbits. These issues highlight the necessity for an analytical study to develop a more explicit and higher-precision model.
关于引力扰动对天琴星座影响的分析研究尚不完整。现有的模型忽略了卫星的轨道偏心率,这是星座稳定性的一个关键因素[24,25]。 此外,仅仅依靠超前阶月球扰动不足以解决高空天琴轨道的问题。这些问题凸显了分析研究开发更明确和更高精度模型的必要性。

In the exploration of three-satellite constellations in heliocentric GW missions, such as LISA [26, 20, 27, 28, 29, 30, 18] and Taiji [17, 31], expressions for these three indicators have been derived and analyzed using either Keplerian orbits or perturbation solutions of satellite orbits. Valuable references are also found in geocentric satellite formation missions, including NASA’s four-satellite Magnetospheric Multiscale (MMS) mission [16], and extensive studies on third-body perturbations in general satellites (see [32] and references therein). Perturbation solutions for third-body effects can be derived by solving Lagrange’s planetary equations [33], where the perturbative potential depends on the orbital elements of both the satellite and perturbing bodies. To directly obtain solutions with instantaneous elements, perturbation methods [33, 34, 35, 36], especially the mean element method [34, 35], are utilized. This method employs a slowly precessing elliptical orbit as a reference, effectively reducing errors in analytical solutions.
在日心GW任务中对三星星座的探索中,如LISA [26202728293018] 和太极[1731],已经推导出了这三个指标的表达式,并使用开普勒轨道或卫星轨道的扰动解进行了分析。在地心卫星编队任务中也发现了有价值的参考资料,包括NASA的四颗卫星磁层多尺度(MMS)任务[16],以及对通用卫星中第三体扰动的广泛研究(见[32]和其中的参考文献)。第三体效应的扰动解可以通过求解拉格朗日行星方程 [33] 来推导出,其中扰动势取决于卫星和扰动体的轨道元件。为了直接获得瞬时单元的解,使用了微扰法 [33343536],尤其是均元法 [3435]。该方法采用慢进椭圆轨道作为参考,有效减少了解析解中的误差。

In this work, we will construct an analytical model for the TianQin constellation. To address its near-circular, high Earth orbits, we utilize singularity-free Lagrange equations while accounting for lunar, solar perturbations, and Earth’s J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT perturbation. This model will then be used to analyze and optimize the three kinematic indicators. Additionally, to facilitate the perturbation-inclusive study, the unperturbed Keplerian orbits of TianQin satellites will also be presented.
在这项工作中,我们将为天琴座构建一个解析模型。为了解决其近圆形的高地球轨道问题,我们利用了无奇点的拉格朗日方程,同时考虑了月球、太阳的扰动和地球 J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT 的扰动。然后,该模型将用于分析和优化三个运动指标。此外,为了促进包含微扰的研究,还将介绍天琴卫星的未扰动开普勒轨道。

The paper is organized as follows. In Sec. II, we introduce the Keplerian orbits of the satellites and present the design of the nominal equilateral-triangle constellation. The gravitational perturbations on the constellation are studied in Sec. III. In Sec. IV, we make the concluding remarks.
本文的组织结构如下。在第二部分,我们介绍了卫星的开普勒轨道,并介绍了名义等边三角形星座的设计。星座上的引力扰动在第三节中进行了研究。 在第四节中,我们做了结束语。

II Fundamentals of stable TianQin constellation
、稳定天琴座的基本原理

In this section, we describe the motion of TianQin satellites in the geocentric ecliptic coordinate system and present the orbit design of satellites for a stable equilateral-triangle constellation.
本节描述了天琴卫星在地心黄道坐标系中的运动,并介绍了稳定等边三角形星座的卫星轨道设计。

II.1 Keplerian orbits of satellites
II.1 卫星的开普勒轨道

Within the central gravitational field of the Earth, satellite moves in a Keplerian orbit, as illustrated in Fig. 1.
在地球的中心引力场内,卫星在开普勒轨道上移动,如图 1 所示。1.

Refer to caption
Figure 1: Depiction of the TianQin constellation in the geocentric ecliptic coordinate system. The ecliptic plane is spanned by the x𝑥xitalic_x and y𝑦yitalic_y axes, with the x𝑥xitalic_x-axis directed toward the vernal equinox. The figure also illustrates the orbital coordinate system {X,Y,Z}𝑋𝑌𝑍\{X,Y,Z\}{ italic_X , italic_Y , italic_Z } for SC1, where the X𝑋Xitalic_X-axis points toward the perigee of the satellite’s orbit, and the Z𝑍Zitalic_Z-axis (not shown) is perpendicular to the orbital plane. The angles i𝑖iitalic_i, ΩΩ\Omegaroman_Ω, ω𝜔\omegaitalic_ω, and ν𝜈\nuitalic_ν denote the orbital inclination, longitude of ascending node, argument of perigee, and true anomaly, respectively. Specifically, i=94.7𝑖superscript94.7i=94.7^{\circ}italic_i = 94.7 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT and Ω=210.4Ωsuperscript210.4\Omega=210.4^{\circ}roman_Ω = 210.4 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT are set to orient the TianQin detector plane toward the reference source, the white-dwarf binary RX J0806.3+1527.
图 1: 天琴座在地心黄道坐标系中的描述。黄道平面由 x𝑥xitalic_xy𝑦yitalic_y 轴跨越, x𝑥xitalic_x 其中 -轴指向春分。该图还说明了 SC1 的轨道坐标系 {X,Y,Z}𝑋𝑌𝑍\{X,Y,Z\}{ italic_X , italic_Y , italic_Z } ,其中 X𝑋Xitalic_X -轴指向卫星轨道的近地点, Z𝑍Zitalic_Z 而 -轴(未显示)垂直于轨道平面。角度 i𝑖iitalic_iΩΩ\Omegaroman_Ωω𝜔\omegaitalic_ων𝜈\nuitalic_ν 分别表示轨道倾角、升交点的经度、近地点的参数和真实异常。具体来说, i=94.7𝑖superscript94.7i=94.7^{\circ}italic_i = 94.7 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT 并将 Ω=210.4Ωsuperscript210.4\Omega=210.4^{\circ}roman_Ω = 210.4 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT 天琴探测器平面定向到参考源,即白矮星双星 RX J0806.3+1527。

{X,Y,Z}𝑋𝑌𝑍\{X,Y,Z\}{ italic_X , italic_Y , italic_Z } is the orbital right-handed coordinate system, with the origin at the Earth’s center of mass. The satellite’s orbital plane is same as the X𝑋Xitalic_X-Y𝑌Yitalic_Y plane, where the X𝑋Xitalic_X-axis points toward the perigee. In this system, the satellite’s Cartesian coordinates (X,Y,Z,X˙,Y˙,Z˙)𝑋𝑌𝑍˙𝑋˙𝑌˙𝑍(X,Y,Z,\dot{X},\dot{Y},\dot{Z})( italic_X , italic_Y , italic_Z , over˙ start_ARG italic_X end_ARG , over˙ start_ARG italic_Y end_ARG , over˙ start_ARG italic_Z end_ARG ) can be denoted as [35, 33]:
{X,Y,Z}𝑋𝑌𝑍\{X,Y,Z\}{ italic_X , italic_Y , italic_Z } 是轨道右手坐标系,原点位于地球质心。卫星的轨道平面与 X𝑋Xitalic_X - Y𝑌Yitalic_Y 平面相同,其中 X𝑋Xitalic_X -轴指向近地点。在这个系统中,卫星的笛卡尔坐标 (X,Y,Z,X˙,Y˙,Z˙)𝑋𝑌𝑍˙𝑋˙𝑌˙𝑍(X,Y,Z,\dot{X},\dot{Y},\dot{Z})( italic_X , italic_Y , italic_Z , over˙ start_ARG italic_X end_ARG , over˙ start_ARG italic_Y end_ARG , over˙ start_ARG italic_Z end_ARG ) 可以表示为 [3533]

{X=rcosν=a(cosEe),Y=rsinν=a1e2sinE,Z=0,X˙=μarsinE,Y˙=μar1e2cosE,Z˙=0,cases𝑋𝑟𝜈𝑎𝐸𝑒𝑌𝑟𝜈𝑎1superscript𝑒2𝐸𝑍0˙𝑋𝜇𝑎𝑟𝐸˙𝑌𝜇𝑎𝑟1superscript𝑒2𝐸˙𝑍0\displaystyle\left\{\begin{array}[]{l}X=r\cos\nu=a(\cos E-e),\vskip 3.0pt plus% 1.0pt minus 1.0pt\\ Y=r\sin\nu=a\sqrt{1-e^{2}}\sin E,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ Z=0,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \dot{X}=-\frac{\sqrt{\mu a}}{r}\sin E,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \dot{Y}=\frac{\sqrt{\mu a}}{r}\sqrt{1-e^{2}}\cos E,\vskip 3.0pt plus 1.0pt % minus 1.0pt\\ \dot{Z}=0,\end{array}\right.{ start_ARRAY start_ROW start_CELL italic_X = italic_r roman_cos italic_ν = italic_a ( roman_cos italic_E - italic_e ) , end_CELL end_ROW start_ROW start_CELL italic_Y = italic_r roman_sin italic_ν = italic_a square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_sin italic_E , end_CELL end_ROW start_ROW start_CELL italic_Z = 0 , end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_X end_ARG = - divide start_ARG square-root start_ARG italic_μ italic_a end_ARG end_ARG start_ARG italic_r end_ARG roman_sin italic_E , end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_Y end_ARG = divide start_ARG square-root start_ARG italic_μ italic_a end_ARG end_ARG start_ARG italic_r end_ARG square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_cos italic_E , end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_Z end_ARG = 0 , end_CELL end_ROW end_ARRAY (7)

with r𝑟ritalic_r representing the geocentric radius, ν𝜈\nuitalic_ν the true anomaly, a𝑎aitalic_a the semimajor axis, e𝑒eitalic_e the orbital eccentricity, μ=GMe𝜇𝐺subscript𝑀e\mu=GM_{\text{e}}italic_μ = italic_G italic_M start_POSTSUBSCRIPT e end_POSTSUBSCRIPT the Earth’s gravitational constant, and E𝐸Eitalic_E the eccentric anomaly. E𝐸Eitalic_E satisfies Kepler’s equation,
代表 r𝑟ritalic_r 地心半径、 ν𝜈\nuitalic_ν 真实异常、 a𝑎aitalic_a 长半轴、 e𝑒eitalic_e 轨道偏心率、 μ=GMe𝜇𝐺subscript𝑀e\mu=GM_{\text{e}}italic_μ = italic_G italic_M start_POSTSUBSCRIPT e end_POSTSUBSCRIPT 地球引力常数和 E𝐸Eitalic_E 偏心异常。 E𝐸Eitalic_E 满足 Kepler 方程,

EesinE=M,𝐸𝑒𝐸𝑀\displaystyle E-e\sin E=M,italic_E - italic_e roman_sin italic_E = italic_M , (8)

where M𝑀Mitalic_M denotes the mean anomaly. Specifically, M𝑀Mitalic_M is given by M=n(ttp)𝑀𝑛𝑡subscript𝑡pM=n\,(t-t_{\text{p}})italic_M = italic_n ( italic_t - italic_t start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) in the two-body problem, with the mean motion n𝑛nitalic_n and the passing time of the perigee tpsubscript𝑡pt_{\text{p}}italic_t start_POSTSUBSCRIPT p end_POSTSUBSCRIPT. Equation (8), which is a transcendental equation, can be solved iteratively, resulting in the following expression [21]:
其中 M𝑀Mitalic_M 表示均值距平。具体来说, M𝑀Mitalic_MM=n(ttp)𝑀𝑛𝑡subscript𝑡pM=n\,(t-t_{\text{p}})italic_M = italic_n ( italic_t - italic_t start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) 在双体问题中给出,具有近地点的平均运动 n𝑛nitalic_n 和通过时间 tpsubscript𝑡pt_{\text{p}}italic_t start_POSTSUBSCRIPT p end_POSTSUBSCRIPT 。方程 (8) 是一个超越方程,可以迭代求解,得到以下表达式 [21]

E=M+esinM+e2cosMsinM+𝒪(e3).𝐸𝑀𝑒𝑀superscript𝑒2𝑀𝑀𝒪superscript𝑒3\displaystyle E=M+e\sin M+e^{2}\cos M\sin M+\mathcal{O}(e^{3}).italic_E = italic_M + italic_e roman_sin italic_M + italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos italic_M roman_sin italic_M + caligraphic_O ( italic_e start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) . (9)

By substituting Eq. (9) into Eq. (7), one can obtain the explicit coordinates (X,Y,Z,X˙,Y˙,Z˙)𝑋𝑌𝑍˙𝑋˙𝑌˙𝑍(X,Y,Z,\dot{X},\dot{Y},\dot{Z})( italic_X , italic_Y , italic_Z , over˙ start_ARG italic_X end_ARG , over˙ start_ARG italic_Y end_ARG , over˙ start_ARG italic_Z end_ARG ).
通过将方程 (9) 代入方程 (7),可以得到显式坐标 (X,Y,Z,X˙,Y˙,Z˙)𝑋𝑌𝑍˙𝑋˙𝑌˙𝑍(X,Y,Z,\dot{X},\dot{Y},\dot{Z})( italic_X , italic_Y , italic_Z , over˙ start_ARG italic_X end_ARG , over˙ start_ARG italic_Y end_ARG , over˙ start_ARG italic_Z end_ARG )

The orbital planes may not be identical for the three TianQin satellites. Thus, the geocentric ecliptic coordinate system {x,y,z}𝑥𝑦𝑧\{x,y,z\}{ italic_x , italic_y , italic_z } is also employed, where the x𝑥xitalic_x-y𝑦yitalic_y plane is the ecliptic plane. The x𝑥xitalic_x-axis points toward the vernal equinox, and the z𝑧zitalic_z-axis is normal to the ecliptic plane. The coordinates (x,y,z)𝑥𝑦𝑧(x,y,z)( italic_x , italic_y , italic_z ) and (x˙,y˙,z˙)˙𝑥˙𝑦˙𝑧(\dot{x},\dot{y},\dot{z})( over˙ start_ARG italic_x end_ARG , over˙ start_ARG italic_y end_ARG , over˙ start_ARG italic_z end_ARG ) in this system can be obtained by (X,Y,Z)𝑋𝑌𝑍(X,Y,Z)( italic_X , italic_Y , italic_Z ) and (X˙,Y˙,Z˙)˙𝑋˙𝑌˙𝑍(\dot{X},\dot{Y},\dot{Z})( over˙ start_ARG italic_X end_ARG , over˙ start_ARG italic_Y end_ARG , over˙ start_ARG italic_Z end_ARG ) through the following transformation [35, 33]:
三颗天琴卫星的轨道平面可能并不相同。因此,还采用了地心黄道坐标系 {x,y,z}𝑥𝑦𝑧\{x,y,z\}{ italic_x , italic_y , italic_z } ,其中 x𝑥xitalic_x - y𝑦yitalic_y 平面是黄道平面。 x𝑥xitalic_x -轴指向春分, z𝑧zitalic_z -轴垂直于黄道平面。在这个系统中,坐标 (x,y,z)𝑥𝑦𝑧(x,y,z)( italic_x , italic_y , italic_z )(x˙,y˙,z˙)˙𝑥˙𝑦˙𝑧(\dot{x},\dot{y},\dot{z})( over˙ start_ARG italic_x end_ARG , over˙ start_ARG italic_y end_ARG , over˙ start_ARG italic_z end_ARG ) 可以通过以下变换 [3533] 获得 (X,Y,Z)𝑋𝑌𝑍(X,Y,Z)( italic_X , italic_Y , italic_Z ) (X˙,Y˙,Z˙)˙𝑋˙𝑌˙𝑍(\dot{X},\dot{Y},\dot{Z})( over˙ start_ARG italic_X end_ARG , over˙ start_ARG italic_Y end_ARG , over˙ start_ARG italic_Z end_ARG )

[xyz]=Rz(Ω)Rx(i)Rz(ω)[XYZ],matrix𝑥𝑦𝑧subscript𝑅𝑧Ωsubscript𝑅𝑥𝑖subscript𝑅𝑧𝜔matrix𝑋𝑌𝑍\displaystyle\begin{bmatrix}x\\ y\\ z\end{bmatrix}=R_{z}(-\Omega)R_{x}(-i)R_{z}(-\omega)\begin{bmatrix}X\\ Y\\ Z\end{bmatrix},[ start_ARG start_ROW start_CELL italic_x end_CELL end_ROW start_ROW start_CELL italic_y end_CELL end_ROW start_ROW start_CELL italic_z end_CELL end_ROW end_ARG ] = italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( - roman_Ω ) italic_R start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( - italic_i ) italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( - italic_ω ) [ start_ARG start_ROW start_CELL italic_X end_CELL end_ROW start_ROW start_CELL italic_Y end_CELL end_ROW start_ROW start_CELL italic_Z end_CELL end_ROW end_ARG ] , (10)
[x˙y˙z˙]=Rz(Ω)Rx(i)Rz(ω)[X˙Y˙Z˙],matrix˙𝑥˙𝑦˙𝑧subscript𝑅𝑧Ωsubscript𝑅𝑥𝑖subscript𝑅𝑧𝜔matrix˙𝑋˙𝑌˙𝑍\displaystyle\begin{bmatrix}\dot{x}\\ \dot{y}\\ \dot{z}\end{bmatrix}=R_{z}(-\Omega)R_{x}(-i)R_{z}(-\omega)\begin{bmatrix}\dot{% X}\\ \dot{Y}\\ \dot{Z}\end{bmatrix},[ start_ARG start_ROW start_CELL over˙ start_ARG italic_x end_ARG end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_y end_ARG end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_z end_ARG end_CELL end_ROW end_ARG ] = italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( - roman_Ω ) italic_R start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( - italic_i ) italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( - italic_ω ) [ start_ARG start_ROW start_CELL over˙ start_ARG italic_X end_ARG end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_Y end_ARG end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_Z end_ARG end_CELL end_ROW end_ARG ] , (11)

where ΩΩ\Omegaroman_Ω, i𝑖iitalic_i, and ω𝜔\omegaitalic_ω denote the satellite’s longitude of the ascending node, inclination, and argument of perigee, respectively. Additionally, Rz(γ)subscript𝑅𝑧𝛾R_{z}(\gamma)italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_γ ) and Rx(γ)subscript𝑅𝑥𝛾R_{x}(\gamma)italic_R start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_γ ) are the rotation matrices that rotate vectors by an angle γ𝛾\gammaitalic_γ about the zlimit-from𝑧z-italic_z - or xlimit-from𝑥x-italic_x -axis,
其中 ΩΩ\Omegaroman_Ω ,、 i𝑖iitalic_iω𝜔\omegaitalic_ω 分别表示卫星的升交点经度、倾角和近地点参数。此外, Rz(γ)subscript𝑅𝑧𝛾R_{z}(\gamma)italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_γ )Rx(γ)subscript𝑅𝑥𝛾R_{x}(\gamma)italic_R start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_γ ) 是将向量绕 zlimit-from𝑧z-italic_z - or xlimit-from𝑥x-italic_x - 轴旋转一定角度 γ𝛾\gammaitalic_γ 的旋转矩阵,

Rz(γ)=[cosγsinγ0sinγcosγ0001],subscript𝑅𝑧𝛾matrix𝛾𝛾0𝛾𝛾0001\displaystyle R_{z}(\gamma)=\begin{bmatrix}\cos\gamma&\sin\gamma&0\\ -\sin\gamma&\cos\gamma&0\\ 0&0&1\end{bmatrix},italic_R start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_γ ) = [ start_ARG start_ROW start_CELL roman_cos italic_γ end_CELL start_CELL roman_sin italic_γ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - roman_sin italic_γ end_CELL start_CELL roman_cos italic_γ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ] , (12)
Rx(γ)=[1000cosγsinγ0sinγcosγ].subscript𝑅𝑥𝛾matrix1000𝛾𝛾0𝛾𝛾\displaystyle R_{x}(\gamma)=\begin{bmatrix}1&0&0\\ 0&\cos\gamma&\sin\gamma\\ 0&-\sin\gamma&\cos\gamma\end{bmatrix}.italic_R start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_γ ) = [ start_ARG start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL roman_cos italic_γ end_CELL start_CELL roman_sin italic_γ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - roman_sin italic_γ end_CELL start_CELL roman_cos italic_γ end_CELL end_ROW end_ARG ] . (13)

Combining Eqs. (7) and (9)-(13), the position vector and velocity vector of SCk𝑘kitalic_k (k=1𝑘1k=1italic_k = 1, 2, 3), 𝐫k=(xk,yk,zk)subscript𝐫𝑘subscript𝑥𝑘subscript𝑦𝑘subscript𝑧𝑘\mathbf{r}_{k}=(x_{k},y_{k},z_{k})bold_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) and 𝐫˙k=(x˙k,y˙k,z˙k)subscript˙𝐫𝑘subscript˙𝑥𝑘subscript˙𝑦𝑘subscript˙𝑧𝑘\mathbf{\dot{r}}_{k}=(\dot{x}_{k},\dot{y}_{k},\dot{z}_{k})over˙ start_ARG bold_r end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( over˙ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , over˙ start_ARG italic_y end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , over˙ start_ARG italic_z end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), are given by
组合方程。(7) 和 (9)-(13),则 SC k𝑘kitalic_kk=1𝑘1k=1italic_k = 1 , 2, 3) 𝐫k=(xk,yk,zk)subscript𝐫𝑘subscript𝑥𝑘subscript𝑦𝑘subscript𝑧𝑘\mathbf{r}_{k}=(x_{k},y_{k},z_{k})bold_r start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )𝐫˙k=(x˙k,y˙k,z˙k)subscript˙𝐫𝑘subscript˙𝑥𝑘subscript˙𝑦𝑘subscript˙𝑧𝑘\mathbf{\dot{r}}_{k}=(\dot{x}_{k},\dot{y}_{k},\dot{z}_{k})over˙ start_ARG bold_r end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( over˙ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , over˙ start_ARG italic_y end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , over˙ start_ARG italic_z end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) 的位置矢量和速度矢量由下式给出

{xk=ak[cosΩkcosλkcosiksinΩksinλk+12ek(cosΩkfc1kcosiksinΩkfs1k)]+𝒪(ek2),yk=ak[sinΩkcosλk+cosikcosΩksinλk+12ek(sinΩkfc1k+cosikcosΩkfs1k)]+𝒪(ek2),zk=ak(siniksinλk+12eksinikfs1k)+𝒪(ek2),x˙k=μak[cosΩksinλkcosiksinΩkcosλk+ek(cosΩkfs2kcosiksinΩkfc2k)]+𝒪(ek2),y˙k=μak[sinΩksinλk+cosikcosΩkcosλk+ek(sinΩkfs2k+cosikcosΩkfc2k)]+𝒪(ek2),z˙k=μak(sinikcosλk+eksinikfc2k)+𝒪(ek2),\displaystyle\left\{\begin{array}[]{l}\displaystyle x_{k}=a_{k}[\cos\Omega_{k}% \cos\lambda_{k}-\cos i_{k}\sin\Omega_{k}\sin\lambda_{k}\vskip 3.0pt plus 1.0pt% minus 1.0pt\\ \displaystyle\phantom{x_{k}=}+\frac{1}{2}e_{k}(\cos\Omega_{k}\,f_{\text{c1}k}-% \cos i_{k}\sin\Omega_{k}\,f_{\text{s1}k})]+\mathcal{O}(e^{2}_{k}),\vskip 3.0pt% plus 1.0pt minus 1.0pt\\ \displaystyle y_{k}=a_{k}[\sin\Omega_{k}\cos\lambda_{k}+\cos i_{k}\cos\Omega_{% k}\sin\lambda_{k}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \displaystyle\phantom{y_{k}=}+\frac{1}{2}e_{k}(\sin\Omega_{k}\,f_{\text{c1}k}+% \cos i_{k}\cos\Omega_{k}\,f_{\text{s1}k})]+\mathcal{O}(e^{2}_{k}),\vskip 3.0pt% plus 1.0pt minus 1.0pt\\ \displaystyle z_{k}=a_{k}(\sin i_{k}\sin\lambda_{k}+\frac{1}{2}e_{k}\sin i_{k}% \,f_{\text{s1}k})+\mathcal{O}(e^{2}_{k}),\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \displaystyle\dot{x}_{k}=\frac{\sqrt{\mu}}{\sqrt{a_{k}}}[-\cos\Omega_{k}\sin% \lambda_{k}-\cos i_{k}\sin\Omega_{k}\cos\lambda_{k}\vskip 3.0pt plus 1.0pt % minus 1.0pt\\ \displaystyle\phantom{\dot{x}_{k}=}+e_{k}(-\cos\Omega_{k}\,f_{\text{s2}k}-\cos i% _{k}\sin\Omega_{k}\,f_{\text{c2}k})]+\mathcal{O}(e^{2}_{k}),\vskip 3.0pt plus % 1.0pt minus 1.0pt\\ \displaystyle\dot{y}_{k}=\frac{\sqrt{\mu}}{\sqrt{a_{k}}}[-\sin\Omega_{k}\sin% \lambda_{k}+\cos i_{k}\cos\Omega_{k}\cos\lambda_{k}\vskip 3.0pt plus 1.0pt % minus 1.0pt\\ \displaystyle\phantom{\dot{y}_{k}=}+e_{k}(-\sin\Omega_{k}\,f_{\text{s2}k}+\cos i% _{k}\cos\Omega_{k}\,f_{\text{c2}k})]+\mathcal{O}(e^{2}_{k}),\vskip 3.0pt plus % 1.0pt minus 1.0pt\\ \displaystyle\dot{z}_{k}=\frac{\sqrt{\mu}}{\sqrt{a_{k}}}(\sin i_{k}\cos\lambda% _{k}+e_{k}\sin i_{k}\,f_{\text{c2}k})+\mathcal{O}(e^{2}_{k}),\end{array}\right.{ start_ARRAY start_ROW start_CELL italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT [ roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT c1 italic_k end_POSTSUBSCRIPT - roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT s1 italic_k end_POSTSUBSCRIPT ) ] + caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , end_CELL end_ROW start_ROW start_CELL italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT [ roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT c1 italic_k end_POSTSUBSCRIPT + roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT s1 italic_k end_POSTSUBSCRIPT ) ] + caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , end_CELL end_ROW start_ROW start_CELL italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_sin italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT s1 italic_k end_POSTSUBSCRIPT ) + caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG italic_μ end_ARG end_ARG start_ARG square-root start_ARG italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG end_ARG [ - roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL + italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( - roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT s2 italic_k end_POSTSUBSCRIPT - roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT c2 italic_k end_POSTSUBSCRIPT ) ] + caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_y end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG italic_μ end_ARG end_ARG start_ARG square-root start_ARG italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG end_ARG [ - roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL + italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( - roman_sin roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT s2 italic_k end_POSTSUBSCRIPT + roman_cos italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT c2 italic_k end_POSTSUBSCRIPT ) ] + caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_z end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG italic_μ end_ARG end_ARG start_ARG square-root start_ARG italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG end_ARG ( roman_sin italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT c2 italic_k end_POSTSUBSCRIPT ) + caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , end_CELL end_ROW end_ARRAY (24)

where 哪里

λk:=Mk+ωk,assignsubscript𝜆𝑘subscript𝑀𝑘subscript𝜔𝑘\displaystyle\lambda_{k}:=M_{k}+\omega_{k},italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT := italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , (25)

fc1k:=cos(2λkωk)3cosωkassignsubscript𝑓c1𝑘2subscript𝜆𝑘subscript𝜔𝑘3subscript𝜔𝑘f_{\text{c1}k}:=\cos(2\lambda_{k}-\omega_{k})-3\cos\omega_{k}italic_f start_POSTSUBSCRIPT c1 italic_k end_POSTSUBSCRIPT := roman_cos ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - 3 roman_cos italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, fs1k:=sin(2λkωk)3sinωkassignsubscript𝑓s1𝑘2subscript𝜆𝑘subscript𝜔𝑘3subscript𝜔𝑘f_{\text{s1}k}:=\sin(2\lambda_{k}-\omega_{k})-3\sin\omega_{k}italic_f start_POSTSUBSCRIPT s1 italic_k end_POSTSUBSCRIPT := roman_sin ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - 3 roman_sin italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, fc2k:=cos(2λkωk)assignsubscript𝑓c2𝑘2subscript𝜆𝑘subscript𝜔𝑘f_{\text{c2}k}:=\cos(2\lambda_{k}-\omega_{k})italic_f start_POSTSUBSCRIPT c2 italic_k end_POSTSUBSCRIPT := roman_cos ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), and fs2k:=sin(2λkωk)assignsubscript𝑓s2𝑘2subscript𝜆𝑘subscript𝜔𝑘f_{\text{s2}k}:=\sin(2\lambda_{k}-\omega_{k})italic_f start_POSTSUBSCRIPT s2 italic_k end_POSTSUBSCRIPT := roman_sin ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ). Define σ{a,e,i,Ω,ω,λ}𝜎𝑎𝑒𝑖Ω𝜔𝜆\sigma\in\{a,e,i,\Omega,\omega,\lambda\}italic_σ ∈ { italic_a , italic_e , italic_i , roman_Ω , italic_ω , italic_λ }, σk(t)subscript𝜎𝑘𝑡\sigma_{k}(t)italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) in Eq. (24) are straightforwardly determined in the two-body problem by
fc1k:=cos(2λkωk)3cosωkassignsubscript𝑓c1𝑘2subscript𝜆𝑘subscript𝜔𝑘3subscript𝜔𝑘f_{\text{c1}k}:=\cos(2\lambda_{k}-\omega_{k})-3\cos\omega_{k}italic_f start_POSTSUBSCRIPT c1 italic_k end_POSTSUBSCRIPT := roman_cos ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - 3 roman_cos italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT fc2k:=cos(2λkωk)assignsubscript𝑓c2𝑘2subscript𝜆𝑘subscript𝜔𝑘f_{\text{c2}k}:=\cos(2\lambda_{k}-\omega_{k})italic_f start_POSTSUBSCRIPT c2 italic_k end_POSTSUBSCRIPT := roman_cos ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )fs1k:=sin(2λkωk)3sinωkassignsubscript𝑓s1𝑘2subscript𝜆𝑘subscript𝜔𝑘3subscript𝜔𝑘f_{\text{s1}k}:=\sin(2\lambda_{k}-\omega_{k})-3\sin\omega_{k}italic_f start_POSTSUBSCRIPT s1 italic_k end_POSTSUBSCRIPT := roman_sin ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - 3 roman_sin italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPTfs2k:=sin(2λkωk)assignsubscript𝑓s2𝑘2subscript𝜆𝑘subscript𝜔𝑘f_{\text{s2}k}:=\sin(2\lambda_{k}-\omega_{k})italic_f start_POSTSUBSCRIPT s2 italic_k end_POSTSUBSCRIPT := roman_sin ( 2 italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .定义 σ{a,e,i,Ω,ω,λ}𝜎𝑎𝑒𝑖Ω𝜔𝜆\sigma\in\{a,e,i,\Omega,\omega,\lambda\}italic_σ ∈ { italic_a , italic_e , italic_i , roman_Ω , italic_ω , italic_λ }σk(t)subscript𝜎𝑘𝑡\sigma_{k}(t)italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) 在方程(24)中直接由下式确定

σk(t)=σ0k+διnk(tt0),for Keplerian orbit,subscript𝜎𝑘𝑡subscript𝜎0𝑘subscript𝛿𝜄subscript𝑛𝑘𝑡subscript𝑡0for Keplerian orbit\displaystyle\sigma_{k}(t)=\sigma_{0k}+\delta_{\iota}n_{k}(t-t_{0}),\qquad% \text{for Keplerian orbit},italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) = italic_σ start_POSTSUBSCRIPT 0 italic_k end_POSTSUBSCRIPT + italic_δ start_POSTSUBSCRIPT italic_ι end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , for Keplerian orbit , (26)

where 哪里

σ0k:=σk(t0),δι={1,σ=λ,0,σλ.formulae-sequenceassignsubscript𝜎0𝑘subscript𝜎𝑘subscript𝑡0subscript𝛿𝜄cases1𝜎𝜆0𝜎𝜆\sigma_{0k}:=\sigma_{k}(t_{0}),\qquad\delta_{\iota}=\left\{\begin{array}[]{ll}% 1,&\sigma=\lambda,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ 0,&\sigma\neq\lambda.\end{array}\right.italic_σ start_POSTSUBSCRIPT 0 italic_k end_POSTSUBSCRIPT := italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , italic_δ start_POSTSUBSCRIPT italic_ι end_POSTSUBSCRIPT = { start_ARRAY start_ROW start_CELL 1 , end_CELL start_CELL italic_σ = italic_λ , end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL italic_σ ≠ italic_λ . end_CELL end_ROW end_ARRAY (27)

Note that Eq. (24) remains valid even when considering gravitational perturbations, with the only change being the replacement of σk(t)subscript𝜎𝑘𝑡\sigma_{k}(t)italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) in Eq. (26) with the corresponding perturbation solution.
请注意,即使考虑引力扰动,方程(24)仍然有效,唯一的变化是用相应的扰动解替换了方程(26σk(t)subscript𝜎𝑘𝑡\sigma_{k}(t)italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) 中的方程。

II.2 Orbit design of the TianQin constellation
二.2 天琴座的轨道设计

The TianQin constellation is composed of three satellites in geocentric orbits, forming a triangular configuration which continuously evolves in geometry over time. The closer the configuration change approaches an equilateral triangle, the more it aids in alleviating design constraints on measurement system instruments. Therefore, it is essential to find a constellation design with minimal variations.
天琴星座由三颗位于地心轨道上的卫星组成,形成一个三角形结构,随着时间的推移,几何结构不断演变。配置更改越接近等边三角形,就越有助于减轻测量系统仪器的设计限制。因此,找到变化最小的星座设计至关重要。

The constellation is considered more stable if it is closer to an equilateral triangle. There are three main kinematic indicators to characterize the stability, namely, the arm-length Lijsubscript𝐿𝑖𝑗L_{ij}italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT, relative line-of-sight velocity between satellites vijsubscript𝑣𝑖𝑗v_{ij}italic_v start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT, and breathing angle αksubscript𝛼𝑘\alpha_{k}italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT,
如果星座更靠近等边三角形,则认为它更稳定。有三个主要的运动学指标来表征稳定性,即臂长 Lijsubscript𝐿𝑖𝑗L_{ij}italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT 、卫星 vijsubscript𝑣𝑖𝑗v_{ij}italic_v start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT 之间的相对视线速度和呼吸角 αksubscript𝛼𝑘\alpha_{k}italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT

Lijsubscript𝐿𝑖𝑗\displaystyle L_{ij}italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT =|𝐫i𝐫j|,absentsubscript𝐫𝑖subscript𝐫𝑗\displaystyle=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|,= | bold_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - bold_r start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT | , (28)
vijsubscript𝑣𝑖𝑗\displaystyle v_{ij}italic_v start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT =L˙ij,absentsubscript˙𝐿𝑖𝑗\displaystyle=\dot{L}_{ij},= over˙ start_ARG italic_L end_ARG start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT , (29)
αksubscript𝛼𝑘\displaystyle\alpha_{k}italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT =arccosLki2+Lkj2Lij22LkiLkj,absentsuperscriptsubscript𝐿𝑘𝑖2superscriptsubscript𝐿𝑘𝑗2superscriptsubscript𝐿𝑖𝑗22subscript𝐿𝑘𝑖subscript𝐿𝑘𝑗\displaystyle=\arccos\frac{L_{ki}^{2}+L_{kj}^{2}-L_{ij}^{2}}{2L_{ki}L_{kj}},= roman_arccos divide start_ARG italic_L start_POSTSUBSCRIPT italic_k italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_L start_POSTSUBSCRIPT italic_k italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_L start_POSTSUBSCRIPT italic_k italic_i end_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_k italic_j end_POSTSUBSCRIPT end_ARG , (30)

where i𝑖iitalic_i, j𝑗jitalic_j, and k𝑘kitalic_k take values 1, 2, or 3 and ijk𝑖𝑗𝑘i\neq j\neq kitalic_i ≠ italic_j ≠ italic_k. Substituting Eq. (24) into Eqs. (28)-(30), one can obtain the explicit expressions, for these three kinematic indicators, with forms Lij(σi(t),σj(t))subscript𝐿𝑖𝑗subscript𝜎𝑖𝑡subscript𝜎𝑗𝑡L_{ij}(\sigma_{i}(t),\sigma_{j}(t))italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) ), vij(σi(t),σj(t))subscript𝑣𝑖𝑗subscript𝜎𝑖𝑡subscript𝜎𝑗𝑡v_{ij}(\sigma_{i}(t),\sigma_{j}(t))italic_v start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) ), and αk(σk(t),σi(t),σj(t))subscript𝛼𝑘subscript𝜎𝑘𝑡subscript𝜎𝑖𝑡subscript𝜎𝑗𝑡\alpha_{k}(\sigma_{k}(t),\sigma_{i}(t),\sigma_{j}(t))italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) ), respectively.
其中 i𝑖iitalic_ij𝑗jitalic_j , 和 k𝑘kitalic_k 取值 1、2 或 3 和 ijk𝑖𝑗𝑘i\neq j\neq kitalic_i ≠ italic_j ≠ italic_k 。将方程 (24) 代入方程。(28)-(30) 中,对于这三个运动指示符,可以分别获得 、 和 vij(σi(t),σj(t))subscript𝑣𝑖𝑗subscript𝜎𝑖𝑡subscript𝜎𝑗𝑡v_{ij}(\sigma_{i}(t),\sigma_{j}(t))italic_v start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) ) αk(σk(t),σi(t),σj(t))subscript𝛼𝑘subscript𝜎𝑘𝑡subscript𝜎𝑖𝑡subscript𝜎𝑗𝑡\alpha_{k}(\sigma_{k}(t),\sigma_{i}(t),\sigma_{j}(t))italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) ) 、 的 Lij(σi(t),σj(t))subscript𝐿𝑖𝑗subscript𝜎𝑖𝑡subscript𝜎𝑗𝑡L_{ij}(\sigma_{i}(t),\sigma_{j}(t))italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) , italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) ) 显式表达式。

To maintain the constellation as an equilateral triangle, i.e. L12(t)=L13(t)=L23(t)subscript𝐿12𝑡subscript𝐿13𝑡subscript𝐿23𝑡L_{12}(t)=L_{13}(t)=L_{23}(t)italic_L start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_t ) = italic_L start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_t ) = italic_L start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ( italic_t ), the orbits of the three satellites need to be purposefully designed. One intuitive orbit design involves circular orbits for the satellites in the point-mass gravitational field of the Earth:
为了保持星座为等边三角形 L12(t)=L13(t)=L23(t)subscript𝐿12𝑡subscript𝐿13𝑡subscript𝐿23𝑡L_{12}(t)=L_{13}(t)=L_{23}(t)italic_L start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_t ) = italic_L start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_t ) = italic_L start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ( italic_t ) ,即三颗卫星的轨道需要有目的地设计。一种直观的轨道设计涉及卫星在地球点质量引力场中的圆形轨道:

e1(t)=e2(t)=e3(t)=0,subscript𝑒1𝑡subscript𝑒2𝑡subscript𝑒3𝑡0\displaystyle e_{1}(t)=e_{2}(t)=e_{3}(t)=0,italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) = italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_t ) = 0 , (31)

while ensuring that they share the same orbit size, lie in the same orbital plane, and are phased 120 degrees apart from each other:
同时确保它们具有相同的轨道大小,位于相同的轨道平面上,并且彼此相距 120 度:

{a1(t)=a2(t)=a3(t),i1(t)=i2(t)=i3(t),Ω1(t)=Ω2(t)=Ω3(t),λk(t)=2π3(k1)+λ1(t).casessubscript𝑎1𝑡subscript𝑎2𝑡subscript𝑎3𝑡subscript𝑖1𝑡subscript𝑖2𝑡subscript𝑖3𝑡subscriptΩ1𝑡subscriptΩ2𝑡subscriptΩ3𝑡subscript𝜆𝑘𝑡2𝜋3𝑘1subscript𝜆1𝑡\displaystyle\left\{\begin{array}[]{l}a_{1}(t)=a_{2}(t)=a_{3}(t),\vskip 3.0pt % plus 1.0pt minus 1.0pt\\ i_{1}(t)=i_{2}(t)=i_{3}(t),\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \Omega_{1}(t)=\Omega_{2}(t)=\Omega_{3}(t),\vskip 3.0pt plus 1.0pt minus 1.0pt% \\ \lambda_{k}(t)=\frac{2\pi}{3}(k-1)+\lambda_{1}(t).\end{array}\right.{ start_ARRAY start_ROW start_CELL italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) = italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) = italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_t ) , end_CELL end_ROW start_ROW start_CELL italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) = italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) = italic_i start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_t ) , end_CELL end_ROW start_ROW start_CELL roman_Ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) = roman_Ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) = roman_Ω start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_t ) , end_CELL end_ROW start_ROW start_CELL italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_k - 1 ) + italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) . end_CELL end_ROW end_ARRAY (36)

The above requirements on the inter-satellite parameters can be achieved in the two-body problem, if the initial orbital elements σ0ksubscript𝜎0𝑘\sigma_{0k}italic_σ start_POSTSUBSCRIPT 0 italic_k end_POSTSUBSCRIPT in Eq. (26) are set to
如果方程(26)中的初始轨道单元 σ0ksubscript𝜎0𝑘\sigma_{0k}italic_σ start_POSTSUBSCRIPT 0 italic_k end_POSTSUBSCRIPT 设置为

σ0k=σo+δι2π3(k1),subscript𝜎0𝑘subscript𝜎osubscript𝛿𝜄2𝜋3𝑘1\displaystyle\sigma_{0k}=\sigma_{\text{o}}+\delta_{\iota}\frac{2\pi}{3}(k-1),italic_σ start_POSTSUBSCRIPT 0 italic_k end_POSTSUBSCRIPT = italic_σ start_POSTSUBSCRIPT o end_POSTSUBSCRIPT + italic_δ start_POSTSUBSCRIPT italic_ι end_POSTSUBSCRIPT divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_k - 1 ) , (37)

where the parameters with subscript “o” are the nominal ones of the TianQin constellation. For instance, these values can be chosen as ao=105subscript𝑎osuperscript105a_{\text{o}}=10^{5}italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km, eo=0subscript𝑒o0e_{\text{o}}=0italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 0, and io=94.7subscript𝑖osuperscript94.7i_{\text{o}}=94.7^{\circ}italic_i start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 94.7 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, Ωo=210.4subscriptΩosuperscript210.4\Omega_{\text{o}}=210.4^{\circ}roman_Ω start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 210.4 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, respectively establishing the orbit size and orienting the orbital plane perpendicular to J0806 [7, 24]. The initial value λosubscript𝜆o\lambda_{\text{o}}italic_λ start_POSTSUBSCRIPT o end_POSTSUBSCRIPT associated with the orbit phase is typically selected to be any value within the range of 0superscript00^{\circ}0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT to 120superscript120120^{\circ}120 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, or it may be specifically designated to avoid Moon eclipses [37].
其中带下标 “o” 的参数是天琴座的名义参数。例如,这些值可以选择为 ao=105subscript𝑎osuperscript105a_{\text{o}}=10^{5}italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km、 eo=0subscript𝑒o0e_{\text{o}}=0italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 0 、 和 io=94.7subscript𝑖osuperscript94.7i_{\text{o}}=94.7^{\circ}italic_i start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 94.7 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPTΩo=210.4subscriptΩosuperscript210.4\Omega_{\text{o}}=210.4^{\circ}roman_Ω start_POSTSUBSCRIPT o end_POSTSUBSCRIPT = 210.4 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT ,分别建立轨道大小和垂直于 J0806 的轨道平面 [724]。与轨道相位相关的初始值 λosubscript𝜆o\lambda_{\text{o}}italic_λ start_POSTSUBSCRIPT o end_POSTSUBSCRIPT 通常选择为 0superscript00^{\circ}0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT120superscript120120^{\circ}120 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT 范围内的任何值,或者可以专门指定以避免月食 [37]。

To analyze additional nominal orbit design allowing for e0𝑒0e\neq 0italic_e ≠ 0 and quantify the impact of eccentricity on the three indicators, the constraint specified by Eq. (31) is relaxed. Subsequently, employing only Eq. (36) or Eq. (37) (for σ{a,i,Ω,λ}𝜎𝑎𝑖Ω𝜆\sigma\in\{a,i,\Omega,\lambda\}italic_σ ∈ { italic_a , italic_i , roman_Ω , italic_λ }), the variations of these indicators in the two-body problem, up to the first order of e𝑒eitalic_e, can be expressed as
为了分析允许 e0𝑒0e\neq 0italic_e ≠ 0 和量化偏心率对三个指标影响的额外标称轨道设计,式(31)规定的约束是放宽的。随后,仅使用方程(36)或方程(37)(for σ{a,i,Ω,λ}𝜎𝑎𝑖Ω𝜆\sigma\in\{a,i,\Omega,\lambda\}italic_σ ∈ { italic_a , italic_i , roman_Ω , italic_λ } ),这些指标在两体问题中的变化,直到 e𝑒eitalic_e 的一阶,可以表示为

Lijkepl(t)=superscriptsubscript𝐿𝑖𝑗kepl𝑡absent\displaystyle L_{ij}^{\text{kepl}}(t)=italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl end_POSTSUPERSCRIPT ( italic_t ) = 3ao+72ao[eisin(Mi+β)\displaystyle~{}\sqrt{3}a_{\text{o}}+\frac{\sqrt{7}}{2}a_{\text{o}}[-e_{i}\sin% \left(M_{i}+\beta\right)square-root start_ARG 3 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT + divide start_ARG square-root start_ARG 7 end_ARG end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT [ - italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_sin ( italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_β )
+ejsin(Mjβ)],\displaystyle+e_{j}\sin\left(M_{j}-\beta\right)],+ italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT roman_sin ( italic_M start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_β ) ] , (38)
vijkepl(t)=superscriptsubscript𝑣𝑖𝑗kepl𝑡absent\displaystyle v_{ij}^{\text{kepl}}(t)=italic_v start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl end_POSTSUPERSCRIPT ( italic_t ) = 0+72aono[eicos(Mi+β)\displaystyle~{}0+\frac{\sqrt{7}}{2}a_{\text{o}}n_{\text{o}}[-e_{i}\cos\left(M% _{i}+\beta\right)0 + divide start_ARG square-root start_ARG 7 end_ARG end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT o end_POSTSUBSCRIPT [ - italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_cos ( italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_β )
+ejcos(Mjβ)],\displaystyle+e_{j}\cos\left(M_{j}-\beta\right)],+ italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT roman_cos ( italic_M start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_β ) ] , (39)
αkkepl(t)=superscriptsubscript𝛼𝑘kepl𝑡absent\displaystyle\alpha_{k}^{\text{kepl}}(t)=italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl end_POSTSUPERSCRIPT ( italic_t ) = π3+73ekcosMksinβ𝜋373subscript𝑒𝑘subscript𝑀𝑘𝛽\displaystyle~{}\frac{\pi}{3}+\frac{\sqrt{7}}{3}e_{k}\cos M_{k}\sin\betadivide start_ARG italic_π end_ARG start_ARG 3 end_ARG + divide start_ARG square-root start_ARG 7 end_ARG end_ARG start_ARG 3 end_ARG italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_cos italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_sin italic_β
76ei[sin(Miβ)+2sin(Mi+β)]76subscript𝑒𝑖delimited-[]subscript𝑀𝑖𝛽2subscript𝑀𝑖𝛽\displaystyle-\frac{\sqrt{7}}{6}e_{i}[\sin\left(M_{i}-\beta\right)+2\sin\left(% M_{i}+\beta\right)]- divide start_ARG square-root start_ARG 7 end_ARG end_ARG start_ARG 6 end_ARG italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ roman_sin ( italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_β ) + 2 roman_sin ( italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_β ) ]
+76ej[2sin(Mjβ)+sin(Mj+β)],76subscript𝑒𝑗delimited-[]2subscript𝑀𝑗𝛽subscript𝑀𝑗𝛽\displaystyle+\frac{\sqrt{7}}{6}e_{j}[2\sin\left(M_{j}-\beta\right)+\sin\left(% M_{j}+\beta\right)],+ divide start_ARG square-root start_ARG 7 end_ARG end_ARG start_ARG 6 end_ARG italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT [ 2 roman_sin ( italic_M start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_β ) + roman_sin ( italic_M start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_β ) ] , (40)

where Mi(t)=2π3(i1)+λ1(t)ωisubscript𝑀𝑖𝑡2𝜋3𝑖1subscript𝜆1𝑡subscript𝜔𝑖M_{i}(t)=\frac{2\pi}{3}(i-1)+\lambda_{1}(t)-\omega_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_i - 1 ) + italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) - italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and β:=arccos27assign𝛽27\beta:=\arccos\frac{2}{\sqrt{7}}italic_β := roman_arccos divide start_ARG 2 end_ARG start_ARG square-root start_ARG 7 end_ARG end_ARG, with the indices i𝑖iitalic_i, j𝑗jitalic_j, and k𝑘kitalic_k using cyclic indexing (i,j,k=1231𝑖𝑗𝑘1231i,\,j,\,k=1\to 2\to 3\to 1italic_i , italic_j , italic_k = 1 → 2 → 3 → 1). If we further set e1=e2=e3eo0subscript𝑒1subscript𝑒2subscript𝑒3subscript𝑒o0e_{1}=e_{2}=e_{3}\equiv e_{\text{o}}\neq 0italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≡ italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT ≠ 0 and ω1=ω2=ω3subscript𝜔1subscript𝜔2subscript𝜔3\omega_{1}=\omega_{2}=\omega_{3}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, then it follows that
其中 Mi(t)=2π3(i1)+λ1(t)ωisubscript𝑀𝑖𝑡2𝜋3𝑖1subscript𝜆1𝑡subscript𝜔𝑖M_{i}(t)=\frac{2\pi}{3}(i-1)+\lambda_{1}(t)-\omega_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_i - 1 ) + italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) - italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPTβ:=arccos27assign𝛽27\beta:=\arccos\frac{2}{\sqrt{7}}italic_β := roman_arccos divide start_ARG 2 end_ARG start_ARG square-root start_ARG 7 end_ARG end_ARG ,带有索引 i𝑖iitalic_ij𝑗jitalic_j ,并使用 k𝑘kitalic_k 循环索引 ( i,j,k=1231𝑖𝑗𝑘1231i,\,j,\,k=1\to 2\to 3\to 1italic_i , italic_j , italic_k = 1 → 2 → 3 → 1 )。如果我们进一步设置 e1=e2=e3eo0subscript𝑒1subscript𝑒2subscript𝑒3subscript𝑒o0e_{1}=e_{2}=e_{3}\equiv e_{\text{o}}\neq 0italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≡ italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT ≠ 0ω1=ω2=ω3subscript𝜔1subscript𝜔2subscript𝜔3\omega_{1}=\omega_{2}=\omega_{3}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ,则

Lijkepl-A(t)=3ao32aoeocosMk,superscriptsubscript𝐿𝑖𝑗kepl-A𝑡3subscript𝑎o32subscript𝑎osubscript𝑒osubscript𝑀𝑘\displaystyle L_{ij}^{\text{kepl-A}}(t)=\sqrt{3}a_{\text{o}}-\frac{\sqrt{3}}{2% }a_{\text{o}}e_{\text{o}}\cos M_{k},italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl-A end_POSTSUPERSCRIPT ( italic_t ) = square-root start_ARG 3 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT - divide start_ARG square-root start_ARG 3 end_ARG end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT roman_cos italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , (41)
vijkepl-A(t)=0+32aonoeosinMk,superscriptsubscript𝑣𝑖𝑗kepl-A𝑡032subscript𝑎osubscript𝑛osubscript𝑒osubscript𝑀𝑘\displaystyle v_{ij}^{\text{kepl-A}}(t)=0+\frac{\sqrt{3}}{2}a_{\text{o}}n_{% \text{o}}e_{\text{o}}\sin M_{k},italic_v start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl-A end_POSTSUPERSCRIPT ( italic_t ) = 0 + divide start_ARG square-root start_ARG 3 end_ARG end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT o end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT roman_sin italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , (42)
αkkepl-A(t)=π332eocosMk,superscriptsubscript𝛼𝑘kepl-A𝑡𝜋332subscript𝑒osubscript𝑀𝑘\displaystyle\alpha_{k}^{\text{kepl-A}}(t)=\frac{\pi}{3}-\frac{\sqrt{3}}{2}e_{% \text{o}}\cos M_{k},italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl-A end_POSTSUPERSCRIPT ( italic_t ) = divide start_ARG italic_π end_ARG start_ARG 3 end_ARG - divide start_ARG square-root start_ARG 3 end_ARG end_ARG start_ARG 2 end_ARG italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT roman_cos italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , (43)

where Mk(t)=2π3(k1)+M1(t)subscript𝑀𝑘𝑡2𝜋3𝑘1subscript𝑀1𝑡M_{k}(t)=\frac{2\pi}{3}(k-1)+M_{1}(t)italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_k - 1 ) + italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ). Equations (41)-(43) indicate that, at the zeroth order of e𝑒eitalic_e, the three TianQin satellites can form a constant equilateral triangle. However, when accounting for eccentricity, as observed in perturbed orbits, the constellation’s evolution deviates from the ideal equilateral triangle, exhibiting periodic variations.
其中 Mk(t)=2π3(k1)+M1(t)subscript𝑀𝑘𝑡2𝜋3𝑘1subscript𝑀1𝑡M_{k}(t)=\frac{2\pi}{3}(k-1)+M_{1}(t)italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_k - 1 ) + italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) . 方程 (41)-(43) 表明,在 的零阶 e𝑒eitalic_e 处,三颗天琴卫星可以形成一个恒定的等边三角形。然而,当考虑到在扰动轨道上观察到的偏心率时,星座的演化偏离了理想的等边三角形,表现出周期性变化。

The close-to-circular orbits, as inspired by Eqs. (31) and (36) for Keplerian orbits, are currently employed in TianQin orbit studies (see, e.g., [21, 24, 13, 38, 39, 40, 41, 42]). It is worth noting that, to obtain the nominal equilateral triangle configuration, there is another option: elliptical frozen orbits. From Eqs. (38)-(40), if e1=e2=e3eo0subscript𝑒1subscript𝑒2subscript𝑒3subscript𝑒o0e_{1}=e_{2}=e_{3}\equiv e_{\text{o}}\neq 0italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≡ italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT ≠ 0, and M1=M2=M3subscript𝑀1subscript𝑀2subscript𝑀3M_{1}=M_{2}=M_{3}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, namely ωk=ω1+2π3(k1)subscript𝜔𝑘subscript𝜔12𝜋3𝑘1\omega_{k}=\omega_{1}+\frac{2\pi}{3}(k-1)italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_k - 1 ), then Lijkepl-B(t)3ao3aoeocosE1(t)superscriptsubscript𝐿𝑖𝑗kepl-B𝑡3subscript𝑎o3subscript𝑎osubscript𝑒osubscript𝐸1𝑡L_{ij}^{\text{kepl-B}}(t)\equiv\sqrt{3}a_{\text{o}}-\sqrt{3}a_{\text{o}}e_{% \text{o}}\cos E_{1}(t)italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl-B end_POSTSUPERSCRIPT ( italic_t ) ≡ square-root start_ARG 3 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT - square-root start_ARG 3 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT roman_cos italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ), representing an equilateral-triangle constellation with three arm-lengths that vary synchronously. Preliminary numerical simulation results show that the long-term stability of the constellation, based on this design, is not as favorable as that of the close-to-circular orbits. Furthermore, the impact of this design on other aspects of the mission, such as point-ahead angle variations associated with the finite speed of light, requires further assessment. In this paper, we focus on the study of a three-satellite constellation with close-to-circular orbits.
受 Eqs 启发的接近圆形的轨道。(31) 和 (36) 目前用于天琴轨道研究(参见 [2124133839404142])。值得注意的是,要获得名义上的等边三角形构型,还有另一种选择:椭圆冻结轨道。来自 Eqs.(38)-(40),如果 e1=e2=e3eo0subscript𝑒1subscript𝑒2subscript𝑒3subscript𝑒o0e_{1}=e_{2}=e_{3}\equiv e_{\text{o}}\neq 0italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≡ italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT ≠ 0 ,和 M1=M2=M3subscript𝑀1subscript𝑀2subscript𝑀3M_{1}=M_{2}=M_{3}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ,即 ωk=ω1+2π3(k1)subscript𝜔𝑘subscript𝜔12𝜋3𝑘1\omega_{k}=\omega_{1}+\frac{2\pi}{3}(k-1)italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + divide start_ARG 2 italic_π end_ARG start_ARG 3 end_ARG ( italic_k - 1 ) ,则 Lijkepl-B(t)3ao3aoeocosE1(t)superscriptsubscript𝐿𝑖𝑗kepl-B𝑡3subscript𝑎o3subscript𝑎osubscript𝑒osubscript𝐸1𝑡L_{ij}^{\text{kepl-B}}(t)\equiv\sqrt{3}a_{\text{o}}-\sqrt{3}a_{\text{o}}e_{% \text{o}}\cos E_{1}(t)italic_L start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT kepl-B end_POSTSUPERSCRIPT ( italic_t ) ≡ square-root start_ARG 3 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT - square-root start_ARG 3 end_ARG italic_a start_POSTSUBSCRIPT o end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT o end_POSTSUBSCRIPT roman_cos italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) ,代表一个等边三角形星座,具有三个同步变化的臂长。初步数值模拟结果表明,基于此设计的星座的长期稳定性不如接近圆形的轨道。此外,这种设计对任务其他方面的影响,例如与有限光速相关的前方角度变化,需要进一步评估。在本文中,我们专注于研究具有接近圆形轨道的三卫星星座。

III Effects of lunisolar perturbations on TianQin constellation
、阴阳扰动对天秦星座的影响

The TianQin constellation is subject not only to the central gravitational attraction but also to gravitational perturbations. These perturbations can distort the carefully designed equilateral-triangle configuration. To gain a more accurate understanding of the TianQin constellation’s variations, it is crucial to account for these gravitational perturbations.
天琴座不仅受中心引力的影响,还受引力扰动的影响。这些扰动会扭曲精心设计的等边三角形构型。为了更准确地了解天琴座的变化,考虑这些引力扰动至关重要。

The primary perturbations originate from the Moon and the Sun, with magnitudes of approximately 4×1044superscript1044\times 10^{-4}4 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT and 2×1042superscript1042\times 10^{-4}2 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT, respectively [33]. In this section, we collectively address the point mass effects of these two perturbing bodies. Furthermore, we also incorporate the secular perturbation arising from the third most significant perturbation, Earth’s J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT perturbation, which has a magnitude of 6×1066superscript1066\times 10^{-6}6 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT. Other perturbations, e.g., the higher-degree non-spherical gravity fields of the Earth, have a minor impact on satellite positions and constellation stability. As illustrated in Fig. 2, these perturbations lead to deviations of approximately 3.3 km in satellite positions, ±2.2plus-or-minus2.2\pm 2.2± 2.2 km in arm-lengths, ±0.0020plus-or-minus0.0020\pm 0.0020± 0.0020 m/s in relative velocities, and ±0.0012plus-or-minussuperscript0.0012\pm 0.0012^{\circ}± 0.0012 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT in breathing angles over a 5-year period. In contrast to Refs. [21, 22, 23, 36, 16, 32], the perturbation solutions developed in this study offer explicit expressions with improved precision, enabling a more precise description of the distinctive 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km-radius orbits relevant to space-based GW detection.
主要扰动起源于月球和太阳,震等分别约为 4×1044superscript1044\times 10^{-4}4 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT2×1042superscript1042\times 10^{-4}2 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT [33]。在本节中,我们将共同讨论这两个扰动体的点质量效应。此外,我们还考虑了由第三个最显著的扰动,即地球 J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT 的扰动引起的长期扰动,其震级为 6×1066superscript1066\times 10^{-6}6 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT 。其他扰动,例如地球的更高程度的非球形重力场,对卫星位置和星座稳定性影响较小。如图所示。2,这些扰动导致卫星位置偏差约为 3.3 km,臂长偏差约为 km, ±2.2plus-or-minus2.2\pm 2.2± 2.2 ±0.0020plus-or-minus0.0020\pm 0.0020± 0.0020 相对速度偏差为 m/s, ±0.0012plus-or-minussuperscript0.0012\pm 0.0012^{\circ}± 0.0012 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT 呼吸角偏差为 5 年。与 Refs 相反。 [212223361632],本研究开发的扰动解决方案提供了明确的表达式,精度更高,能够更精确地描述与天基GW探测相关的不同 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km半径轨道。

Figure 2: Time evolution of deviations between the simplified (SNM) and high-precision (HPNM) numerical models for satellite positions and three indicators. SNM incorporates the point-mass gravity fields of the Earth, Moon, and Sun, as well as the Earth’s J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. HPNM additionally considers the higher-degree non-spherical gravity fields of the Earth and the point-mass gravity fields of other planets (for further details, see Appendix B.3). In these plots, red corresponds to SC1, v23subscript𝑣23v_{23}italic_v start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT, L23subscript𝐿23L_{23}italic_L start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT, or α1subscript𝛼1\alpha_{1}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT; green represents SC2, v31subscript𝑣31v_{31}italic_v start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT, L31subscript𝐿31L_{31}italic_L start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT, or α2subscript𝛼2\alpha_{2}italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT; and blue indicates SC3, v12subscript𝑣12v_{12}italic_v start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT, L12subscript𝐿12L_{12}italic_L start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT, or α3subscript𝛼3\alpha_{3}italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. The initial orbital elements used are the same as those presented in Table 6.
图 2: 卫星位置和三个指标的简化 (SNM) 和高精度 (HPNM) 数值模型之间偏差的时间演变。SNM 包含地球、月球和太阳的点质量重力场,以及地球的 J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .HPNM 还考虑了地球的更高阶非球形重力场和其他行星的点质量重力场(有关详细信息,请参阅附录 B.3)。在这些图中,红色对应于 SC1、 v23subscript𝑣23v_{23}italic_v start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPTL23subscript𝐿23L_{23}italic_L start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPTα1subscript𝛼1\alpha_{1}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ;绿色代表 SC2、 v31subscript𝑣31v_{31}italic_v start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPTL31subscript𝐿31L_{31}italic_L start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPTα2subscript𝛼2\alpha_{2}italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ;蓝色表示 SC3、 v12subscript𝑣12v_{12}italic_v start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPTL12subscript𝐿12L_{12}italic_L start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPTα3subscript𝛼3\alpha_{3}italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT 。使用的初始轨道元件与表 6 中所示的相同。

III.1 Dynamic model
三.1 动态模型

The gravitational potential U𝑈Uitalic_U acting on a satellite can be expressed as
作用在卫星上的引力势 U𝑈Uitalic_U 可以表示为

U=U0+,U0=μr,formulae-sequence𝑈subscript𝑈0subscript𝑈0𝜇𝑟\displaystyle U=U_{0}+\mathcal{R},\qquad U_{0}=\frac{\mu}{r},italic_U = italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + caligraphic_R , italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG italic_μ end_ARG start_ARG italic_r end_ARG , (44)

where U0subscript𝑈0U_{0}italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the gravitational potential of a pointlike Earth, and \mathcal{R}caligraphic_R represents a perturbative potential describing the satellite’s perturbed motion. Under the influence of \mathcal{R}caligraphic_R, the evolution of the satellite’s orbital elements is governed by Lagrange’s planetary equations [43],
其中 U0subscript𝑈0U_{0}italic_U start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 是点状地球的引力势,表示 \mathcal{R}caligraphic_R 描述卫星扰动运动的扰动势。在 \mathcal{R}caligraphic_R 的影响下,卫星轨道元件的演化受拉格朗日行星方程 [43] 的控制,

dadt=𝑑𝑎𝑑𝑡absent\displaystyle\frac{da}{dt}=divide start_ARG italic_d italic_a end_ARG start_ARG italic_d italic_t end_ARG = 2naλ,2𝑛𝑎𝜆\displaystyle~{}\frac{2}{na}\frac{\partial\mathcal{R}}{\partial\lambda},divide start_ARG 2 end_ARG start_ARG italic_n italic_a end_ARG divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_λ end_ARG , (45)
didt=𝑑𝑖𝑑𝑡absent\displaystyle\frac{di}{dt}=divide start_ARG italic_d italic_i end_ARG start_ARG italic_d italic_t end_ARG = 1na2eˇsini[cosi(ξηηξ+λ)\displaystyle~{}\frac{1}{na^{2}\check{e}\sin i}\left[\cos i\left(\xi\frac{% \partial\mathcal{R}}{\partial\eta}-\eta\frac{\partial\mathcal{R}}{\partial\xi}% +\frac{\partial\mathcal{R}}{\partial\lambda}\right)\right.divide start_ARG 1 end_ARG start_ARG italic_n italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_e end_ARG roman_sin italic_i end_ARG [ roman_cos italic_i ( italic_ξ divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_η end_ARG - italic_η divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_ξ end_ARG + divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_λ end_ARG )
Ω],\displaystyle\left.-\frac{\partial\mathcal{R}}{\partial\Omega}\right],- divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ roman_Ω end_ARG ] , (46)
dΩdt=𝑑Ω𝑑𝑡absent\displaystyle\frac{d\Omega}{dt}=divide start_ARG italic_d roman_Ω end_ARG start_ARG italic_d italic_t end_ARG = 1na2eˇsinii,1𝑛superscript𝑎2ˇ𝑒𝑖𝑖\displaystyle~{}\frac{1}{na^{2}\check{e}\sin i}\frac{\partial\mathcal{R}}{% \partial i},divide start_ARG 1 end_ARG start_ARG italic_n italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_e end_ARG roman_sin italic_i end_ARG divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_i end_ARG , (47)
dξdt=𝑑𝜉𝑑𝑡absent\displaystyle\frac{d\xi}{dt}=divide start_ARG italic_d italic_ξ end_ARG start_ARG italic_d italic_t end_ARG = eˇna2ηξeˇna2(1+eˇ)λ+ηcosidΩdt,ˇ𝑒𝑛superscript𝑎2𝜂𝜉ˇ𝑒𝑛superscript𝑎21ˇ𝑒𝜆𝜂𝑖𝑑Ω𝑑𝑡\displaystyle-\frac{\check{e}}{na^{2}}\frac{\partial\mathcal{R}}{\partial\eta}% -\xi\frac{\check{e}}{na^{2}(1+\check{e})}\frac{\partial\mathcal{R}}{\partial% \lambda}+\eta\cos i\frac{d\Omega}{dt},- divide start_ARG overroman_ˇ start_ARG italic_e end_ARG end_ARG start_ARG italic_n italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_η end_ARG - italic_ξ divide start_ARG overroman_ˇ start_ARG italic_e end_ARG end_ARG start_ARG italic_n italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 + overroman_ˇ start_ARG italic_e end_ARG ) end_ARG divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_λ end_ARG + italic_η roman_cos italic_i divide start_ARG italic_d roman_Ω end_ARG start_ARG italic_d italic_t end_ARG , (48)
dηdt=𝑑𝜂𝑑𝑡absent\displaystyle\frac{d\eta}{dt}=divide start_ARG italic_d italic_η end_ARG start_ARG italic_d italic_t end_ARG = eˇna2ξηeˇna2(1+eˇ)λξcosidΩdt,ˇ𝑒𝑛superscript𝑎2𝜉𝜂ˇ𝑒𝑛superscript𝑎21ˇ𝑒𝜆𝜉𝑖𝑑Ω𝑑𝑡\displaystyle~{}\frac{\check{e}}{na^{2}}\frac{\partial\mathcal{R}}{\partial\xi% }-\eta\frac{\check{e}}{na^{2}(1+\check{e})}\frac{\partial\mathcal{R}}{\partial% \lambda}-\xi\cos i\frac{d\Omega}{dt},divide start_ARG overroman_ˇ start_ARG italic_e end_ARG end_ARG start_ARG italic_n italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_ξ end_ARG - italic_η divide start_ARG overroman_ˇ start_ARG italic_e end_ARG end_ARG start_ARG italic_n italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 + overroman_ˇ start_ARG italic_e end_ARG ) end_ARG divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_λ end_ARG - italic_ξ roman_cos italic_i divide start_ARG italic_d roman_Ω end_ARG start_ARG italic_d italic_t end_ARG , (49)
dλdt=𝑑𝜆𝑑𝑡absent\displaystyle\frac{d\lambda}{dt}=divide start_ARG italic_d italic_λ end_ARG start_ARG italic_d italic_t end_ARG = n2naa+eˇna2(1+eˇ)(ξξ+ηη)𝑛2𝑛𝑎𝑎ˇ𝑒𝑛superscript𝑎21ˇ𝑒𝜉𝜉𝜂𝜂\displaystyle~{}n-\frac{2}{na}\frac{\partial\mathcal{R}}{\partial a}+\frac{% \check{e}}{na^{2}(1+\check{e})}\left(\xi\frac{\partial\mathcal{R}}{\partial\xi% }+\eta\frac{\partial\mathcal{R}}{\partial\eta}\right)italic_n - divide start_ARG 2 end_ARG start_ARG italic_n italic_a end_ARG divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_a end_ARG + divide start_ARG overroman_ˇ start_ARG italic_e end_ARG end_ARG start_ARG italic_n italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 + overroman_ˇ start_ARG italic_e end_ARG ) end_ARG ( italic_ξ divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_ξ end_ARG + italic_η divide start_ARG ∂ caligraphic_R end_ARG start_ARG ∂ italic_η end_ARG )
cosidΩdt,𝑖𝑑Ω𝑑𝑡\displaystyle-\cos i\frac{d\Omega}{dt},- roman_cos italic_i divide start_ARG italic_d roman_Ω end_ARG start_ARG italic_d italic_t end_ARG , (50)

where eˇ:=1e2assignˇ𝑒1superscript𝑒2\check{e}:=\sqrt{1-e^{2}}overroman_ˇ start_ARG italic_e end_ARG := square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG, and new variables ξ𝜉\xiitalic_ξ and η𝜂\etaitalic_η are introduced,
其中 eˇ:=1e2assignˇ𝑒1superscript𝑒2\check{e}:=\sqrt{1-e^{2}}overroman_ˇ start_ARG italic_e end_ARG := square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , 和 新变量 ξ𝜉\xiitalic_ξη𝜂\etaitalic_η 被引入,

ξ:=ecosω,η:=esinω,formulae-sequenceassign𝜉𝑒𝜔assign𝜂𝑒𝜔\displaystyle\xi:=e\cos\omega,\qquad\eta:=e\sin\omega,italic_ξ := italic_e roman_cos italic_ω , italic_η := italic_e roman_sin italic_ω , (51)

to avoid the singularity at e=0𝑒0e=0italic_e = 0. When =00\mathcal{R}=0caligraphic_R = 0, the solutions to Eqs. (45)-(50) revert to the Keplerian case discussed in Sec. II.1.
为了避免 处 e=0𝑒0e=0italic_e = 0 的奇点。当 =00\mathcal{R}=0caligraphic_R = 0 , 方程的解 程.(45)-(50) 回到第 II.1 节讨论的 Keplerian 案。

For TianQin orbits with an orbital radius of 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km, the perturbative potential \mathcal{R}caligraphic_R predominantly encompasses the perturbation effects arising from the Sun, Moon, and Earth’s J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term, as expressed in the following expressions:
对于轨道半径为 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT km 的天琴轨道,扰动势 \mathcal{R}caligraphic_R 主要包括由太阳、月亮和地球 J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT 项引起的扰动效应,如以下表达式所示:

=s+m+J2subscriptssubscriptmsubscriptsubscript𝐽2\displaystyle\mathcal{R}=\mathcal{R}_{\text{s}}+\mathcal{R}_{\text{m}}+% \mathcal{R}_{J_{2}}caligraphic_R = caligraphic_R start_POSTSUBSCRIPT s end_POSTSUBSCRIPT + caligraphic_R start_POSTSUBSCRIPT m end_POSTSUBSCRIPT + caligraphic_R start_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT (52)

with [33]
[33]

s=μ2r2r233cos2ψ212,subscriptssubscript𝜇2superscript𝑟2superscriptsubscript𝑟233superscript2subscript𝜓212\displaystyle\mathcal{R}_{\text{s}}=\frac{\mu_{2}r^{2}}{r_{2}^{3}}\frac{3\cos^% {2}\psi_{2}-1}{2},caligraphic_R start_POSTSUBSCRIPT s end_POSTSUBSCRIPT = divide start_ARG italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG divide start_ARG 3 roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_ARG start_ARG 2 end_ARG , (53)
m=μ3r3N=2𝒩(rr3)NPN(cosψ3),subscriptmsubscript𝜇3subscript𝑟3superscriptsubscript𝑁2𝒩superscript𝑟subscript𝑟3𝑁subscript𝑃𝑁subscript𝜓3\displaystyle\mathcal{R}_{\text{m}}=\frac{\mu_{3}}{r_{3}}\sum_{N=2}^{\mathcal{% N}}\left(\frac{r}{r_{3}}\right)^{N}P_{N}(\cos\psi_{3}),caligraphic_R start_POSTSUBSCRIPT m end_POSTSUBSCRIPT = divide start_ARG italic_μ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG ∑ start_POSTSUBSCRIPT italic_N = 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT caligraphic_N end_POSTSUPERSCRIPT ( divide start_ARG italic_r end_ARG start_ARG italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( roman_cos italic_ψ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) , (54)
J2=μRe2r3J23sin2φ12,subscriptsubscript𝐽2𝜇superscriptsubscript𝑅e2superscript𝑟3subscript𝐽23superscript2𝜑12\displaystyle\mathcal{R}_{\!J_{2}}=-\frac{\mu R_{\text{e}}^{2}}{r^{3}}J_{2}% \frac{3\sin^{2}\varphi-1}{2},caligraphic_R start_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = - divide start_ARG italic_μ italic_R start_POSTSUBSCRIPT e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT divide start_ARG 3 roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_φ - 1 end_ARG start_ARG 2 end_ARG , (55)

where μ2=GMssubscript𝜇2𝐺subscript𝑀s\mu_{2}=GM_{\text{s}}italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_G italic_M start_POSTSUBSCRIPT s end_POSTSUBSCRIPT and μ3=GMmsubscript𝜇3𝐺subscript𝑀m\mu_{3}=GM_{\text{m}}italic_μ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_G italic_M start_POSTSUBSCRIPT m end_POSTSUBSCRIPT are the gravitational constants of the Sun and the Moon, respectively. r2subscript𝑟2r_{2}italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and r3subscript𝑟3r_{3}italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT denote the geocentric distances of the Sun and the Moon. Moreover, PN(x)subscript𝑃𝑁𝑥P_{N}(x)italic_P start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( italic_x ) is the Legendre polynomial of degree N𝑁Nitalic_N, with 𝒩=6𝒩6\mathcal{N}=6caligraphic_N = 6 signifying the truncation degree. The derivation of Eq. (54) is presented in Appendix B.1, suggesting that employing Legendre polynomial expansions is more advantageous than the original square root form (Eq. (117)) for solving Lagrange’s equations. Additionally, Resubscript𝑅eR_{\text{e}}italic_R start_POSTSUBSCRIPT e end_POSTSUBSCRIPT stands for the equatorial radius of the Earth, and J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT represents the second zonal harmonic coefficient. Furthermore, ψ2subscript𝜓2\psi_{2}italic_ψ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is the angular separation of the Sun and the satellite as observed from the Earth’s center,
其中 μ2=GMssubscript𝜇2𝐺subscript𝑀s\mu_{2}=GM_{\text{s}}italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_G italic_M start_POSTSUBSCRIPT s end_POSTSUBSCRIPTμ3=GMmsubscript𝜇3𝐺subscript𝑀m\mu_{3}=GM_{\text{m}}italic_μ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_G italic_M start_POSTSUBSCRIPT m end_POSTSUBSCRIPT 分别是太阳和月亮的引力常数。 r2subscript𝑟2r_{2}italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTr3subscript𝑟3r_{3}italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT 表示太阳和月亮的地心距离。此外, PN(x)subscript𝑃𝑁𝑥P_{N}(x)italic_P start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( italic_x ) 是度 N𝑁Nitalic_N 的勒让德多项式,表示 𝒩=6𝒩6\mathcal{N}=6caligraphic_N = 6 截断度。方程(54)的推导见附录 B.1,表明采用勒让德多项式展开比原始平方根形式(方程(117))更有利于求解拉格朗日方程。此外, Resubscript𝑅eR_{\text{e}}italic_R start_POSTSUBSCRIPT e end_POSTSUBSCRIPT