FOUNDATION OF MODERN CONTROL THEORY
现代控制理论的基础
Chapter 1
第一章
FOUNDATION OF MODERN CONTROL THEORY
现代控制理论的基础
Chapter 1
第一章
Introduction to Control Systems
控制系统简介
Preview
预览
In this chapter,the development history of control systems is first reviewed.Then the basic difference between conventional control theory and modern control theory is represented,and some basic terminologiesare defined.Subsequently,the design of control system is briefly explained that encompasses conventional control approach and modern control approach.The iterative nature of design allows us to seek satisfied performance specifications by means of educated trial-and-error repetition.Finally,the future evolution of control systems is introduced.
本章首先回顾了控制系统的发展历史。然后, 阐述了传统控制理论与现代控制理论 的根本区别 ,并定义了一些基本术语 。随后, 简要介绍了控制系统的设计,包括常规控制方法和现代控制方法。 设计的迭代性质使我们能够通过有根据的试错重复来寻求满意的性能规格 。最后, 介绍了控制系统的未来发展方向。
Desired Outcomes
期望的结果
Upon completion of Chapter 1,the following objectives should be achieved:
完成第 1 章后 , 应实现以下目标 :
>Be able to recount a brief history of control systems and their role in society.
> 能够简要介绍控制系统的历史及其在社会中的作用 。
Understand the basic difference between modern control theory and conventional
了解现代控制理论与传统控制理论之间的基本区别
control theory.
控制理论。
>Be capable of discussing the future of controls in the context of their evolutionary
> 能够在其进化的背景下讨论控制的未来
pathways.
途径。
Historical Review of Automatic Control Theory
自动控制理论的历史回顾
Automatic control has played a vital role in the advance of engineering and science.In addition to its extreme importance in space-vehicle systems,missile-guidance systems, robotic systems,and the like,automatic control has become an important and integral part of modern manufacturing and industrial processes. For example,automatic control is essential in the numerical control of machine tools in the manufacturing industries,in the
自动控制在工程和科学的进步中发挥了至关重要的作用 。 除了在航天器系统、导弹制导系统、 机器人系统等中极为重要之外,自动控制已成为现代制造和工业流程中重要且不可或缺的一部分 。 例如,自动控制在制造业的机床数控中是必不可少的 ,在
design of autopilot systems in the aerospace industries,and in the design of cars and trucks in the automobile industries.It is also essential in such industrial operations as controlling pressure,temperature,humidity,viscosity,and flow in the process industries.
航空航天工业中的自动驾驶系统设计 ,以及汽车行业的汽车和卡车设计 。它在控制过程工业中的压力、温度、湿度、粘度和流量等工业作中也是必不可少的。
Since advances in the theory and practice of automatic control provide themeans for
由于自动控制理论和实践的进步为
attaining optimal performance of dynamic systems,improving productivity,relieving the drudgery of many routine repetitive manua operations,and more,most engineers and scientists must now have a good understanding of this field.
为了获得动态系统的最佳性能、提高生产力 、减轻许多常规重复作的苦差事等等, 大多数工程师和科学家现在必须对这个领域有很好的了解。
An interesting history of early work on feedback control has been written by O.Mayr (1970),who traces the control of mechanisms to antiquity.Two of the earliest examples are the control of flow rate to regulate a water clock and the control of liquid level in a wine vessel,which is thereby kept full regardless of how many cups are dipped from it.The control of fluid-flow rate is reduced to the control of fluid level,since a small orifice will
O.Mayr (1970) 写了一段关于反馈控制的早期工作的有趣历史,他将机制的控制追溯到古代。最早的两个例子是控制流速以调节水钟和控制酒瓶中的液位 ,因此无论从中浸入多少杯子 ,液体都会保持满。 流体流速的控制简化为液位的控制,因为小孔口将
produce constant flow if the pressure is constant,which is the case if the level of the liquid above the orifice is constant. The mechanism of the liquid-level control invented in antiquityand still used today(for example,in the water tank of the ordinary flush toilet)is the float valve.As the liquid level falls,so does the float,allowing the flow into the tank to increase;as the level rises,the flow is reduced and,if necessary,cut off.Fig.1.l shows how a float valve operates.Notice here that sensor and actuator are not separate devices but, instead,are contained in the carefully shaped float-and-supply-tube combination.
如果压力恒定,则产生恒定流量,如果 孔口上方的液体液位恒定 ,则会出现这种情况 。 古代发明并至今仍在使用的液位控制机构(例如,在普通冲水马桶的水箱中)是 浮球阀。随着液位下降,浮子也下降,从而使进入水箱的流量增加;随着液位的升高, 流量会减少 ,并在必要时切断 。图 1.l 显示了浮球阀的工作原理。请注意,传感器和执行器不是单独的设备 ,而是包含在精心塑造的浮子和供应管组合中 。
Supply
供应
Float
浮
Fig.1.1 Early historical control of liquid level and flow
图 1.1 早期历史液位和流量控制
A more recent invention described by Mayr(1970)is a system,designed by Cornelis Drebbel in about 1620,to control the temperature of a furnace used to heat all incubator shown in Fig.1.2.The furnace consists of a box to contain the fire,with a flue at the top fitted with a damper.Inside the firebox is the double walled incubator box,the hollow walls of which are filled with water to transfer the heat evenly to the incubator.The temperature sensor is a glass vessel filled with alcohol and mercury and placed in the water jacket around the incubator box.As the fire heats the box and water,the alcohol expands
Mayr(1970) 描述的一项较新的发明是 Cornelis Drebbel 在大约 1620 年设计的系统 ,用于控制用于加热所有培养箱的炉子的温度 , 如图 1.2 所示,炉子由一个装有火的盒子组成,顶部有一个装有阻尼器的烟道。火箱内部是双壁培养箱 , 其空心壁上装满水 ,将热量均匀地传递到培养箱。 温度传感器是一个装满酒精和汞的玻璃容器,放置在培养箱周围的水套中。当火加热盒子和水时,酒精会膨胀
Damper
阻尼器
Riser
竖板
Float
浮
Water
水
Flue
烟道
gases Mercury
气体汞
Metal plate Firebox Alcohol
金属板火箱酒精
Fig.1.2 Drebbel's incubator for hatching chicken eggs(Adapted from Mayr,1970)
图 1.2 用于孵化鸡蛋的 Drebbel 孵化器 (改编自 Mayr,1970)
and the riser floats up,lowering the damper on the flue.If the box is too cold,the alcohol contracts,the damper is open,and the fire burns hotter.The desired temperature is set by the length of the riser,which sets the opening of the damper for a given expansion of the alcohol.
立管向上浮动,降低烟道上的阻尼器 。如果盒子太冷,酒精会收缩,阻尼器会打开,火会燃烧得更热。所需的温度由冒口的长度设置 ,该竖置管为给定的酒精膨胀设置阻尼器的打开度。
A famous problem in the chronicles of control systems was the search for a means to control the rotation speed of a shaft.Much early work(Fuller,1976)seems to have been motivated by the desire to automatically control the speed of the grinding stone in a wind- driven flour mill.Of various methods attempted,the one with the most promise used a conical pendulum,or fly-ball governor,to measure the speed of the mill.The sails of the driving windmill were rolled up or let out with ropes and pulleys,much like a window shade,to maintain fixed speed.However,it was adaptation of these principles to the steam engine inthe laboratories of James Watt around 1788 that made the fly-ball governor famous.Fig.1.3 shows a close-up of a fly-ball governor and a sketch of its components.
控制系统编年史中一个著名的问题是寻找一种控制轴转速的方法。许多早期的工作(Fuller,1976)似乎是出于在风力驱动面粉厂 中自动控制磨石速度的愿望。在尝试过的各种方法中, 最有希望使用锥形摆或飞球调速器来测量磨坊的速度。 风车用绳索和滑轮卷起或放出 ,很像窗帘 ,以保持固定速度。然而,正是这些原理在 1788 年左右詹姆斯 · 瓦特 (James Watt) 实验室中对蒸汽机的适应 ,才使飞球调速器闻名遐迩。图 1.3 显示了飞球调速器的特写及其组件的草图。
Pivot
支点
Sleeve
袖
Butterfly valve
蝶阀
0
Bal
球
To engine O Steam
至 发动机 O 蒸汽
inlet
入口
Rotation
旋转
Pulley from
滑轮来自
engine
发动机
Fig.1.3 Operating parts of fly-ball governor
图 1.3 飞球调速器的作部件
The action of the fly-ball governor (also called a centrifugal governor)is simple to describe.Suppose the engine is operating in equilibrium.Two weighted balls spinning around a central shaft can be seen to describe a cone of a given angle with the shaft.When
飞球调速器 (也称为离心调速器) 的动作很容易描述。假设发动机在平衡状态下运行 。 可以看到两个绕中心轴旋转的加重球描述了与轴成给定角度的圆锥体。什么时候
a load is suddenly applied to the engine,its speed will slow,and the balls of the governor will drop to a smaller cone.Thus,the ball angle is used to sense the output speed.This action,through the levers,will open the main valve to the steam chest(which is the actuator)and admit more steam to the engine,restoring most of the lost speed.To hold the steam valve at a new position it is necessary for the fly-balls to rotate at a different angle,implying that the speed under load is not exactly the same as before.We saw this effect earlier with cruise control,where feedback control gave a very small error.To recover the exact same speed in the system,it would require resetting the desired speed setting by changing the length of the rod from the lever to the valve.Subsequent inventors
突然对发动机施加负载,它的速度会减慢, 调速器的球会下降到一个更小的锥体上。因此,球角用于感应输出速度。这个动作,通过杠杆,将打开蒸汽箱(即执行器)的主阀 ,并让更多的蒸汽进入发动机,恢复大部分损失的速度。为了将蒸汽阀 保持在新位置 , 飞球必须以不同的角度旋转 ,这意味着负载下的速度与以前不完全相同 。我们之前在巡航控制中看到了这种效果 ,其中反馈控制给出了一个非常小的误差。要在系统中恢复完全相同的速度, 需要通过改变从杆到阀门的杆的长度来重置所需的速度设置 。后来的发明者
introduced mechanisms that integrated the speed error to provide automatic reset.
引入了集成 SpeedError 以提供自动重置的机制 。
Because Watt was a practical man,like the millwrights before him,he did not engage in theoretical analysis of the governor.Fuller(1976)has traced the early development of control theory to a period of studies from Christian Huygens in 1673 to James Clerk Maxwell in 1868.Fuller gaveparticular credit to the contributions of G.B.Airy,professor of mathematics and astronomy at Cambridge University from 1826 to 1835 and Astronomer Roval at Greenwich Observatory from 1835 to 1881.Airy was concerned with
因为瓦特是一个务实的人,就像他之前的磨坊主一样 ,他没有对总督进行理论分析。Fuller(1976) 将控制理论的早期发展追溯到从 1673 年的 ChristianHuygens 到 1868 年的 JamesClerk Maxwell 的研究时期 。1826 年至 1835 年在剑桥大学任职,1835 年至 1881 年在格林威治天文台担任天文学家 Roval。
speed control;if his telescopes could be rotated counter to the rotation of the earth,a fixed star could be observed for extended periods.Using the centrifugal-pendulum governor,he discovered that it was capable of unstable motion-"and the machine(if I may express myself)became perfectly wild"(Airy,1840;quoted in Fuller,1976).According to Fuller,
速度控制;如果他的望远镜可以逆着地球的自转旋转, 就可以长时间观测一颗固定的恒星 。使用离心摆式调速器,他发现它能够进行不稳定的运动——“机器(如果我可以表达自己的话)变得非常狂野”(Airy,1840;引自 Fuller,1976)。根据 Fuller 的说法 ,
Airy was the first worker to discuss instability in a feedback control system and the first to
Airy 是第一个讨论反馈控制系统中不稳定性的工人 , 也是第一个
analyze such a system using differential equations.These attributes signal the beginnings
使用微分方程分析这样的系统 。这些属性标志着开始
of the study of feedback control dynamics.
反馈控制动力学的研究 。
The first systematic study of the stability of feedback control was apparently given in the paper"On Governors³by J.C.Maxwell(1868).In this paper,Maxwell developed the differential equations of the governor, linearized them about equilibrium,and stated that stability depends on the roots of a certain (characteristic)equation having negative real parts.Maxwell attempted to derive conditions on the coefficients of a polynomial that would hold if all the roots had negative real parts.He was successful only for second-and third-order cases.Determining criteria for stability was the problem for the Adams Prize of l877,which was won by E.J.Routh.His criterion,developed in his essay,remains of sufficient interest that control engineers are still learning how to apply his simple
显然 ,J.C.Maxwell(1868) 的论文“On Governors³”中给出了反馈控制稳定性的第一次系统研究。在本文中,麦克斯韦发展了调速器的微分方程 , 将它们线性化为平衡 ,并指出稳定性取决于具有负实部的某个 (特征)方程的根 。麦克斯韦试图推导出 多项式系数的条件,如果所有根都有负实部 ,则该条件成立。他只在二阶和三阶案件中取得了成功。确定稳定性的标准 是 l877 年亚当斯奖的问题,该奖由 E.J.Routh 获得 。 简单
technique.Analysis of the characteristic equation remained the foundation of control theory until the invention of the electronic feedback amplifier by H.S.Black in 1927 at Bell Telephone Laboratories.
技术。特性方程的分析仍然是控制理论的基础,直到 1927 年 H.S.Black 在贝尔电话实验室发明了电子反馈放大器 。
Shortlyafter publication of Routh's work,the Russian mathematician A.M.Lyapunov (1892)began studying the question of stability of motion.His studies were based on the nonlinear differential equations of motion and also included results for linear equations that are equivalent to Routh's criterion.His work was fundamental to what is now called the state-variable approach to control theory,but it was not introduced into the control literature until about 1958.
在 Routh 的著作发表后不久,俄罗斯数学家 A.M.Lyapunov (1892) 开始研究运动稳定性的问题。他的研究基于运动的非线性微分方程,还包括等效于 Routh 准则的线性方程的结果 。他的工作对现在所谓的 控制理论的状态变量方法奠定了基础 ,但直到 1958 年左右才被引入控制文献 。
The development of the feedback amplifier is briefly described in an interesting article based on a talk by H.W.Bode(1960)reproduced in Bellman and Kalaba(1964).With the introduction of electronic amplifiers,long-distance telephoning became possible in the decades following World War I.However,as distances increased, did the loss of electrical energy;in spite of using larger-diameter wire,increasing numbers of amplifiers were needed to replace the lost energy.Unfortunately,large numbers of amplifiers resulted in much distortion since the small nonlinearity of the vacuum tubes then used in electronic
反馈放大器的发展在一篇有趣的文章中简要介绍了, 该文章基于 H.W.Bode(1960) 的演讲,转载于 Bellman 和 Kalaba(1964)。随着 电子放大器的引入 ,长途电话在第一次世界大战后的几十年里成为可能 ,然而,随着距离的增加, 电能的损失也随之增加 ;尽管使用更大直径的导线, 但需要越来越多的放大器来补充损失的能量。不幸的是,大量的放大器导致了很大的失真 , 因为当时电子中使用的真空管的非线性很小
Chapter 1 lntroduction to Control Systems 5
第 1 章 控制系统简介 5
amplifiers was multiplied many times.To solve the problem of reducing distortion,Black proposed the feedback amplifier.As mentioned earlier in connection with the automobile cruise control,the more we wish to reduce errors (or distortion),the more feedback we need to apply.The loop gain from actuator to plant to sensor to actuator must be made very large.With high gain the feedback loop begins to squeal and is unstable.Here was Maxwell's and Routh's stability problem again except that in this technology the dynamics were so complex(with differential equations of order 50 being common)that Routh's
放大器被倍增了很多倍。为了解决减少失真的问题 ,Black 提出了反馈放大器。如前所述 ,关于汽车巡航控制, 我们越希望减少错误 (或失真),我们需要应用的反馈就越多 。从执行器到被控设备到传感器再到执行器的回路增益必须非常大。在高增益下,feedback loop 开始尖叫并且不稳定 。这里又是 Maxwell 和 Routh 的稳定性问题,只不过在这项技术中 ,动力学非常复杂(50 阶微分方程很常见),以至于 Routh 的
criterion was not
criterion 不是
very
非常
helpful. So the communications engineers at Bell Telephone
有益的。 因此 ,BellTelephone 的通信工程师
Laboratories,familiar with the concept of frequency response and the mathematics of complex variables,turned to complex analysis.In 1932,H.Nyquist published a paper describinghow to determine stabilityfrom a graphical plot of the loop-frequency response.
熟悉 频率响应概念和复变量数学的实验室转向复分析。1932 年,H.Nyquist 发表了一篇论文 ,描述了如何从环路频率响应的图形图确定稳定性 。
From this theory there developed an extensive methodology of feedback amplifier design
从这个理论出发, 发展出了广泛的反馈放大器设计方法
described by Bode(1945)and extensively used still in the design of feedback controls.
由 Bode(1945) 描述 , 并仍然广泛用于反馈控制的设计中。
Simultaneous with the development of the feedback amplifier,feedback control of industrial processes was becoming standard.This field,characterized by processes that are not only highly complex but also nonlinear and subject to relatively long time delays between actuator and sensor, developed proportional-integral-derivative (PID) control. Callender et al.(1936)first described the PID controller.This technology was based on extensive experimental work and simple linearized approximations to the system dynamics.It led to standard experiments suitable to application in the field and eventually to satisfactory"tuning"of the coefficients of the PID controller.Also under development at this time were devices for guiding and controlling aircraft;especially important was the development of sensors for measuring aircraft altitude and speed.An interesting account of this branch of control theory was given by McRuer(1973).
在开发反馈放大器的同时, 工业过程的反馈控制也成为标准。该领域的特点是过程 不仅高度复杂 ,而且非线性 , 并且执行器和传感器之间具有相对较长的时间延迟 ,因此开发了比例积分微分 (PID) 控制。 Callender et al.(1936) 首次描述了 PID 控制器。这项技术基于广泛的实验工作和对系统动力学的简单线性化近似 。它导致了适合现场应用的标准实验 ,并最终对 PID 控制器的系数进行了令人满意的“调整”。此时还在开发用于引导和控制飞机的设备;特别重要的是开发用于测量飞机高度和速度的传感器。McRuer(1973) 对控制理论的这一分支进行了有趣的解释 。
An enormous impulse was given to the field of feedback control during World WarII.
在第二次世界大战期间 , 反馈控制领域受到了巨大的推动 。
In the United States engineers and mathematicians at the MIT Radiation Laboratory combined their knowledge tobring together not only Bode's feedback amplifier theory and the PID control of processes but also the theory of stochastic processes developed by N. Wiener (1930).The result was the development of a comprehensive set of techniques for the design of servomechanisms,as control mechanisms came to be called.Much of this work was collected and published in the records of the Radiation Laboratory by James et al.,1947).
在美国 , 麻省理工学院辐射实验室的工程师和数学家将他们的知识结合起来, 不仅将 Bode 的反馈放大器理论和过程的 PID 控制结合在一起,还结合了 N 开发的随机过程理论。 维纳 (1930 年)。其结果是开发了一套全面的伺服机构设计 技术 ,因此被称为控制机构 。这项工作的大部分由 James 等人收集并发表在辐射实验室的记录中 ,1947 年)。
Another approach to control systems designwas introduced in 1948 by W.R.Evans, who was working in the field of guidance and control of aircraft.Many of his problems involved unstable or neutrally stable dynamics,which made the frequency methods difficult,so he suggested returning to the study of the characteristic equation that had been
另一种控制系统设计方法于 1948 年由 W.R.Evans 提出, 他在飞机制导和控制领域工作 。他的很多问题都涉及不稳定或中性稳定的动力学,这使得频率方法变得困难,因此他建议回到已经
the basis of the work of Maxwell
麦克斯韦的工作基础
and Routh nearly 70 years
和 Routh 近 70 年
earlier.However,Evans
早些时候。然而,埃文斯
the characteristic equation as a parameter was changed.His method,the root locus,is
作为参数的特征方程被改变。他的方法,即根轨迹,是
6 现代控制理论基础(英文版)
suitable for design as
适合设计
today.
今天。
well as for stability analysis and remains an
以及用于稳定性分析 , 并且仍然是一个
important technique
重要技术
classical control theory).
经典控制理论)。
Besides the above-mentioned optimal control of both deterministic and stochastic systems,during the year from 1960 to 1980,adaptive and learning control of complex systems were fully investigated.From 1980 to the present,developments in modern control theory centered on robust control,H…control,and associated topics.
除了 上述对确定性和随机系统的 优化控制外,在 1960 年至 1980 年期间,对复杂系统的自适应和学习控制进行了充分的研究。从 1980 年至今 ,现代控制理论的发展集中在鲁棒控制、H...control 和相关主题。
Now that digital computers have become cheaper and more compact,they are used as
现在数字计算机已经变得更便宜 、 更紧凑,它们被用作
integral parts of control systems.Recent applications of modern control theory include such nonengineering systems as biological,biomedical,economic, and socioeconomic systems.
控制系统的组成部分 。 现代控制理论的最新应用包括生物、生物医学、经济和社会经济系统等非工程系统 。
Modern Control Theory versus Conventional Control Theory
现代控制理论与传统控制理论
Modern control theory
现代控制理论
The modern trend in engineering system is toward greater complexity,due mainly to the requirements of complex tasks and good accuracy.Complex systems may have multiple inputs and multiple outputs and may be time-varying.Because of the necessity of meeting increasingly stringent requirements on the performance of control systems,the increase in system complexity,and easy access to large scale computers,modern control theory,which is a new approach to the analysis and design of complex control systems,has been developed since around 1960,as mentioned above.This new approach is based on the
工程系统的现代趋势是越来越复杂,这主要是由于复杂任务的要求和良好的准确性。复杂系统可能具有多个输入和多个输出,并且可能会随时间变化。由于需要满足对控制系统性能的日益 严格的要求 , 系统复杂性的增加 ,以及大型计算机的便捷访问 ,现代控制理论是一种新的分析和设计方法如上所述 , 自 1960 年左右以来一直开发复杂的控制系统。这种新方法基于
concept of state.The concept of state by itself is not new since it has been in existence for
状态的概念 。 国家的概念本身并不新鲜 , 因为它已经存在了
a long time in the field of classical dynamic and other fields.
长期从事古典动力学等领域 。
Modern control theory versus conventional control theory
现代控制理论与传统控制理论
Modern control theory is contrasted with conventional control theory(or classical control theory)in that the former is applicable to multiple-input-multiple-output systems, which may be linear or nonlinear,time invariant or time-varying,while the latter is applicable only to linear time-invariant single-input-single-output systems.Also,modern control theory is essentially a time-domain approach,while conventional control theory is a complex frequency-domain approach.
现代控制理论与传统控制理论(或经典控制理论) 的对比在于 , 前者适用于多输入多输出系统, 可以是 线性的,也可以是非线性的,时间不变或时变,而后者 仅适用于线性时不变的单输入单输出系统。此外,现代控制理论本质上是一种时域方法,而传统控制理论是一种复杂的频域方法。
Definitions
定义
Before we can discuss control systems,some basic terminologies must be defined.
在我们讨论控制系统之前, 必须定义一些基本术语 。
Controlled variable and manipulated variable.The controlled variable is the quantity or condition that is measured and controlled.The manipulated variable is the quantity or condition that is varied by the controller so as to affect the value of the controlled variable. Normally,the controlled variable is the output of the system.Control means measuring the value of the controlled variable of the system and applying the manipulated variable to the system to correct or limit deviation of the measured value from a desired value.
受控变量和纵变量。受控变量是测量和控制的数量或条件 。 纵变量是由控制器改变以影响受控变量的值的数量或条件 。 通常, 受控变量是系统的输出 。控制是指测量系统受控变量的值 ,并将纵的变量应用于系统 ,以校正或限制测量值与所需值的偏差 。
In studying control engineering,we need to define additional terms that are necessary
在学习控制工程时,我们需要定义必要的其他术语
to describe control systems.
来描述控制系统 。
Plants.A plant may be a piece of equipment,perhaps just a set of machine parts functioning together,the purpose of which is to perform a particular operation.In this book,we shall call any physical object to be controlled(such as a mechanical device,a heating furnace,a chemical reactor,or a spacecraft)a plant.
工厂工厂可以是 一台设备,也许只是一组协同工作的机器部件 , 其目的是执行特定作。 在这本书中 ,我们将任何要控制的物理对象 (例如机械装置、 加热炉、化学反应器或宇宙飞船)称为植物。
Processes. The Merriam-Webster Dictionary defines a process to be a natural, progressively continuing operation or development marked by a series of gradual changes that succeed one another in a relatively fixed way and lead toward a particular result or end; or an artificial or voluntary,progressively continuing operation that consists of a series of controlled actions or movements systematically directed toward a particular result or end.In this book we shall call any operation to be controlled a process.Examples are chemical,economic,and biological processes.
过程。 Merriam-Webster 词典将 过程定义为自然的、 逐步持续的作或发展 , 其标志是一系列逐渐的变化 ,这些变化以相对固定的方式彼此相继 , 并导致特定结果或结束; 或人工的或自愿的、逐渐持续的作 , 由一系列系统地针对特定结果或目的的受控动作或运动组成 。在本书中,我们将任何要控制的作称为一个过程。示例包括化学、经济和生物过程。
Systems.A system is a combination of components that act together and perform a certain objective.A system is not limited to physical ones.The concept of the system can be applied to abstract,dynamic phenomena such as those encountered in economics.The word system should,therefore,be interpreted to imply physical,biological,economic,and the like,systems.
系统。 系统是协同工作并执行特定目标的组件的组合 。系统不仅限于物理系统。 该系统的概念可以应用于抽象的、动态的现象 ,例如经济学中遇到的那些 。 因此, 系统这个词应该被解释为暗示物理的、生物的、经济的等等系统。
Disturbances.A disturbance is a signal that tends to adversely affect the value of the output of a system. If a disturbance is generated within the system,it is called internal, while an external disturbance is generated outside the system and is an input.
干扰干扰是一种倾向于对系统输出值产生不利影响的信号 。 如果系统内部产生干扰,则称为内部干扰, 而外部干扰在系统外部产生 ,称为输入干扰。
8 现代控制理论基础(英文版)
Feedback control.Feedback control refers to an
反馈控制。反馈控制是指
operation that,in the
作中,在
presence of
存在
Design of Control Systems
控制系统设计
Actual control systems are generally nonlinear.However,if they canbe approximated by linear mathematical models,we may use one or more of the well-developed design methods.In a practical sense,the performance specifications given to the particular system suggest which method to use.If the performance specifications are given in terms of transient-response characteristics and/or frequency-domain performance measures,then we have no choice but to use a conventional approach based on the root-locus and/or frequency-response methods(These methods have been presented in classical control theory).If the performance specifications are given as performance indexes in terms of
实际控制系统通常是非线性的。但是,如果它们可以通过线性数学模型进行近似 ,我们可能会使用一种或多种成熟的设计方法。从实际意义上讲 , 给定给特定系统的性能规格表明了使用哪种方法 。如果性能规格是根据瞬态响应特性和/或频域性能度量给出的,那么我们 别无选择 ,只能使用基于根轨迹和/或 频率响应方法(这些方法已在经典控制理论中介绍 )。如果性能指标作为性能指标给出 , 则
state variables,then modern control approaches should be used(These approaches are
state 变量,那么应该使用现代的控制方法 (这些方法是
presented in this book).
在本书中介绍 )。
While control system design via the root-locus and frequency-response approaches is an engineering endeavor,system design in the context of modern control theory(state- space methods) employs mathematical formulations of the problem and applies mathematical theory to design problems in which the system can have multiple inputs and multiple outputs and can be time-varying.By applying modern control theory,the designer is able to start from a performance index,together with constraints imposed on the system,and to proceed to design a stable system by a completely analytical procedure.The advantage of design based on such modern control theory is that it enables the designer to
虽然通过根轨迹和频率响应方法 进行控制系统设计是一项工程工作,但在现代控制理论(状态空间方法) 的背景下 ,系统设计采用了问题的数学公式和将数学理论应用于系统可以具有多个输入和多个输出并且可以随时间变化的设计问题。通过应用现代控制理论,设计人员能够 从性能指标开始 , 结合施加在系统上的约束条件,并完全通过一个完整的分析程序。 基于这种现代控制理论的设计的优势在于 , 它使设计人员能够
produce a control system that is optimal with respect to the performance index considered.
生产一个相对于所考虑的性能指标最佳的控制系统 。
The systems that may be designed by a conventional approach are usually limited to single-input-single-output,linear time-invariantsystems.The designer seeks to satisfy all performance specifications by means of educated trial-and-error repetition.After a system is designed,the designer checks to see if the designed system satisfies all the performance specifications.If it does not,then he repeats the design process by adjusting parameter settings or by changing the system configuration until the given specifications are met.
可能通过传统方法设计的系统通常仅限于单输入-单输出、线性时不变系统。设计师力求通过有 根据的重复试错来满足所有性能规格。 设计系统后,设计人员检查设计的系统是否满足所有性能规范。如果没有 , 则他通过调整参数设置或更改系统配置来重复设计过程 , 直到满足给定的规格 。
Although the design is based on a trial-and-error procedure,the ingenuity and know-how of the designer will play an important role in a successful design.An experienced designer may be able to design an acceptable system without using many trials.
虽然设计是基于试错程序的,但设计师的聪明才智和专业知识将在设计成功中发挥重要作用 。经验丰富的设计人员可能能够在不进行多次试验的情况下设计出可接受的系统 。
It is generally desirable that the designed system should exhibit as small errors as
通常希望设计的系统表现出与
possible in responding to the input signal.In this regard,the damping of the system should be reasonable.The system dynamics should be relatively insensitive tosmall changes in system parameters.The undesirable disturbances should be well attenuated.In general,the
可能响应输入信号。在这方面 , 系统的阻尼应该是合理的。 系统动力学应该对系统参数的微小变化相对不敏感 。 应充分减轻不良干扰 。一般来说 ,
Chapter 1 lntroduction to Control Systems 9
第 1 章 控制系统简介 9
high-frequency portion should attenuate fast so that high-frequency noises (such as sensor noises)can be attenuated.If the noiseor disturbance frequencies are known,notch filters may be used to attenuate these specific frequencies.If the design of the system is boiled
高频部分应快速衰减 , 以便可以衰减高频噪声 (例如传感器噪声)。如果噪声或干扰频率已知 ,可以使用陷波滤波器来衰减这些特定频率。如果系统的设计是煮沸的
down to a few candidates,an optimal choice among them may
下至少数候选人, 其中最优之选
be made from such
由此类制成
considerations as projected overallperformance,cost,space,and weight.
考虑的因素包括预计的整体性能、成本、空间和重量。
Future Evolution of Control Systems
控制系统的未来发展
The continuing goal of control systems is to provide extensive flexibility and a high
控制系统的持续目标是提供广泛的灵活性和较高的
level of
级别
autonomy. Two system concepts are approaching this goa by
自治。 两个系统概念正在通过以下方式接近这个 goa
different
不同
evolutionary pathways,as illustrated in Fig.1.4.Today's industrial robot is perceived as quite autonomous-once it is programmed,further intervention is not normally required. Because of sensory limitations,these robotic systems have limited flexibility in adapting to work environment changes; improving perception is the motivation of computer vision research.The control system is very adaptable,but it relies on human supervision.
进化途径,如图 1.4 所示,今天的工业机器人被认为是 相当自主的——一旦它被编程,通常不需要进一步的干预 。 由于感官限制,这些机器人系统在适应工作环境变化方面的灵活性有限 ; 提高感知是计算机视觉研究的动力 。 控制系统适应性很强 ,但它依赖于人工监督。
Advanced robotic systems
先进的机器人系统
are
是
striving for task adaptability through enhanced sensory
通过增强感官能力努力实现任务适应性
feedback.Research areas concentrating on artificial intelligence,sensor integration, computer vision,and off-line CAD/CAM programming will make systems more universal and economical. Control systems are moving toward autonomous operation as an enhancement to human control.Research in supervisory control,human-machine interface methods,and computer database management are intended to reduce operator burden and improve operator efficiency.Many research activities are common to robotics and control systems and are aimed at reducing implementation cost and expanding the realm of application.These include improved communication methods and advanced programming languages.
反馈。 专注于人工智能、传感器集成、 计算机视觉和离线 CAD/CAM 编程的研究领域将使系统更加通用和经济。 控制系统正在向自主运行发展 , 作为对人工控制的增强。 对监控 、人机界面方法和计算机数据库管理的研究旨在减轻作员的负担并提高作员的效率。许多研究活动 在机器人和控制系统中很常见 ,旨在降低实施成本和扩大应用领域。其中包括改进的通信方法和高级编程语言 。
High Fixed automation Intelligent systems
高度固定自动化智能系统
Extensive flexibility
广泛的灵活性
and autonomy
和自主性
NC machines
数控机床
Improvements:
改进:
Robotics ·Sensors
机器人 · 传感器
Improvements:
改进:
·Languages ·Human-machine Artificial mterface intelligence ·Supervisory
·语言 ·人机交互 人工界面智能监督
control
控制
Power tools O Digital control
电动工具 O 数字控制
systems
系统
Mechanical
机械
master/slave
主/从(Master/Slave)
Hand tools Unilateral
manipulators Control systems
机械手控制系统
O O O (programmable)
OOO (可编程)
Low Extended tools
低扩展工具
Low Flexibility High
低灵活性高
Fig.1.4 Future evolution of control systemsand robotics
图 1.4 控制系统和机器人技术的未来发展
10 现代控制理论基础(英文版)
The easing of human labor by technology,a process that began in prehistory,is entering a new stage.The acceleration in the pace of technological innovation inaugurated by the Industrial Revolution has until recently resulted mainly in the displacement of human muscle power from the tasks of production.The current revolution in computer technology is causing an equally momentous social change,the expansion of information gathering and information processing as computers extend the reach of the human brain.
始于史前时代的技术减轻人类劳动的负担 ,正在进入一个新的阶段。 工业革命开启的技术创新步伐加快 , 直到最近 ,主要导致人类肌肉力量从生产任务中转移 。 当前计算机技术的革命正在引起同样重大的社会变革, 随着计算机扩展了人脑的范围, 信息收集和信息处理的扩展 。
Control systems
控制系统
are
是
used to achieve ① increased productivity and ② improved
用于实现 (1) 提高生产力和 (2) 改进
The theory,practice,and application of automatic control is a large,exciting,and
自动控制的理论、实践和应用是一个大的、令人兴奋的、
extremely useful engineering discipline.One can readily understand the motivation for a
非常有用的工程学科。人们可以很容易地理解
study of modern control systems.
现代控制系统的研究 。
Outline of this Book
本书大纲
In what follows we shall briefly present the arrangements and contents of the book.
在下文中 , 我们将简要介绍本书的安排和内容 。
Chapter l recounts firstly a brief history of control systems and their role in society, and gives the basic difference between modern control theory and conventional control theory.Then design of control systems is introduced.Finally,the future of controls in the
第 l 章首先简要介绍了控制系统的历史及其在社会中的作用 , 并给出了现代控制理论和传统控制理论之间的基本区别 。然后介绍了控制系统的设计 。最后,未来控件在
context of their evolutionary pathways is explained.
解释了它们的进化途径的背景 。
Chapter 2 deals with mathematical modeling of dynamic systems in terms of state space equations firstly.Then state space model of linear dynamic system is represented, and state space representation for block diagram is provided. Subsequently,linear transformation of state space equation is given.Furthermore,state space representation of discrete systems is described.
第 2 章首先从状态空间方程的角度对动态系统进行数学建模 。然后表示线性动态系统的状态空间模型 , 并给出了框图 的状态空间表示 。 随后, 给出了状态空间方程的线性变换。此外, 描述了离散系统的状态空间表示 。
Chapter 3 presents mainly basic materials for the state-space dynamic analysis of control systems.The solution of the time-invariant state equation is derived.This chapter also gives details of transient response analysis with MATLAB.
第 3 章主要介绍了控制系统的状态空间动态分析 的基本材料 。推导了时不变状态方程的解 。本章还详细介绍了使用 MATLAB 进行瞬态响应分析 。
Chapter 4 discusses concepts of controllability and observability,and provides five criteria for complete controllability and observability,respectively.Controllable and observable canonical form are presented.Moreover,principle of duality is explained,and structure decomposition of controllability and observability are analysed.
第 4 章讨论了可控性和可观测性的概念,并分别提供了完全可控性和可观测性的五个标准 。提出了可控和可观察的规范形式 。此外,解释了对偶性原理 , 分析了可控性和可观测性的结构分解。
Chapter 5 presents the Lyapunov stability analysis.Main theorems of Lyapunov's second method are expounded,and the stability of linear time-invariant systems is discussed.
第 5 章介绍了 Lyapunov 稳定性分析。 阐述 了李雅普诺夫第二方法的主要定理 ,讨论了线性时不变系统的稳定性 。
Chapter 6 treats the design of control systems in state space.This chapter begins with
第 6 章讨论了状态空间中的控制系统设计 。本章以
the pole-placement problems,followed by the design of state observers,and discusses with
pole-placement 问题,然后是 stateobservers 的设计,并与
the design of observed-state feedback control system. MATLAB is utilized in solving pole placement problems,and design of state observers. Then quadratic optimal control problems are discussed in detail.Here the Lyapunov's stability approach is utilized to derive the Riccati equation for quadratic optimal control.MATLAB solutions to quadratic optimal control problems are included.At the end of Chapter 6,internal model design is discussed.
观测状态反馈控制系统的设计。MATLAB 用于解决极点放置问题和 状态观测器的设计 。 然后详细讨论了二次最优控制问题 。这里利用 Lyapunov 的稳定性方法推导出二次最优控制的 Riccati 方程。 包括二次最优控制问题的 MATLAB 解。在第 6 章的末尾,讨论了内部模型设计 。
FOUNDATION OF MODERN CONTROL THEORY
现代控制理论的基础
Chapter 2
第 2 章
Modeling In
建模
State
州
Space
空间
Preview
预览
In the conventional control theory we used the Laplace transform to obtain transfer function models representing linear,time-invariant physical systems described by ordinary differential equations.This method is attractive because it provides a practical approach to design and analysis and allows us to utilize block diagrams to interconnect subsystems.In this chapter we turn to an alternative method of system modeling using time-domain methods.As before, we will consider physical systems described by a nth-order ordinary differential equations.Utilizing a set of variables,known as state variables,we can obtain a set of first- order differential equations.We group these first-order differential equations using a compact
在传统的控制理论 中, 我们使用拉普拉斯变换来获得传递函数模型 ,这些模型表示由常微分方程描述的线性、时不变的物理系统 。 这种方法很有吸引力 , 因为它提供了一种实用的设计和分析方法 , 并允许我们利用框图来互连子系统。在本章中 ,我们将介绍一种使用时域方法进行系统建模的替代方法 。和以前一样, 我们将考虑由 n 阶常微分方程描述的物理系统 。利用一组称为状态变量的变量,我们可以获得一组一阶微分方程。我们使用 compact 对这些一阶微分方程进行分组
matrix notation in a model known as the state variable model.The time-domain state variable
矩阵表示法 。 时域状态变量
model lends itself readily to computer solution and analysis.
模型很容易用于计算机求解和分析 。
Outline of the Chapter,Section 2.1 introduces state variable and state space expression. Section 2.2 gives state space representation of linear dynamic system.Section 2.3 provides state space representation for block diagram. Section 2.4 describes linear transformation of state space expression. Section 2.5 discusses the state space representation of discrete systems.Finally,transformation of system models with MATLAB is given in section 2.6.
本章大纲 2.1 节 介绍了状态变量和状态空间表达式。 第 2.2 节给出了线性动态系统的状态空间表示 。第 2.3 节提供了框图的状态空间表示。Section 2.4 描述了状态空间表达式的线性变换。Section 2.5 讨论了 离散系统的状态空间表示 。最后, 第 2.6 节给出了使用 MATLAB 进行系统模型的转换。
Desired Outcomes
期望的结果
Upon completion of Chapter 2,the following objectives should be achieved:
完成第 2 章后 , 应实现以下目标 :
>Understand state variables,state equations,and output equations.
> 支持状态变量、状态方程和输出方程。
>Recognize that state space expressions can describe the dynamic behavior of physical
> 认识到状态空间表达式可以描述物理
systems and can be represented by block diagrams.
系统 , 可以用框图表示 。
>Be capable of establishing state space expressions of linear dynamic systems.
>Be 能够建立线性动态系统的状态空间表达式 。
>Know how to obtain the transfer function(or transfer matrix)from a
%3K 现在如何从
expression,and vice versa.
表达式,反之亦然 。
state space
状态空间
State Variable and State Space Expression
StateVariable 和 StateSpace 表达式
Some basic concept and definitions
一些基本概念和定义
Before we proceed further,we must define state,state variables,state vector,and state
在我们继续之前 , 我们必须定义 state、statevariables、statevector 和 state
space.
空间。
State.The state of a dynamic system is the smallest set of variables(called state variables) such that the knowledge of these variables at t =to,together with the knowledge of the input for t≥t completely determines the behavior of the system for any
状态。 动态系统的状态是最小的变量集 (称为状态变量),使得 这些变量在 t =to 处的知识与 t≥t 的输入知识完全确定任何
time t≥to·
时间 t≥to·
Note that the concept of state is by no means limited to physical systems.It is
请注意 , 状态的概念绝不限于物理系统。它是
applicable to biological systems,economic systems,socialsystems,and others.
适用于生物系统、经济系统、社会系统等 。
State variables.The state variables of a dynamic system are the variables making up
状态变量。 动态系统的状态变量是构成
the smallest set of variables that determine the state of the system.If at least n variables xη,xz………,x…,are needed to completely describe the behavior of a dynamic system(so that once the input is given for t≥t and the initial state att=t,is specified,the future state of the system is completely determined),then such n variables are a set of state variables.
确定系统状态的最小变量集。如果至少需要 n 个变量 xη,xz.........,x...,来完全描述动态系统的行为(这样 ,一旦给出了 t≥t 的输入并指定了初始状态 att=t,系统的未来状态就完全确定了),那么这样的 n 个变量是一组状态变量。
Note that state variables need not be physical measurable or observable quantities.
请注意 , 状态变量不必是物理可测量或可观察的数量。
Variables that do not represent physical quantities and those that are neither measurable nor observable can be chosen as state variables.Such freedom in choosing state variables is an advantage of the state-space methods.Practically,however,it is convenient to choose easily measurable quantities for the state variables,if this is possible at all,because optimal control laws will require the feedback of all state variables with suitable weighting.
不表示物理量的变量以及既不可测量也不可观察的变量可以选择作为状态变量。这种选择状态变量的自由度是状态空间方法的一个优势 。然而,实际上, 如果可能的话,为状态变量选择易于测量的量是很方便的,因为最优控制律需要所有状态的反馈具有适当权重的变量。
State vector.If n state variables are needed to completely describe the behavior of a
State 向量。如果需要 n 个状态变量来完整描述
given system,then these n state variables can be considered the n components of a vector
给定系统,那么这 n 个状态变量可以被认为是一个向量的 n 个分量
x =[xη η]".Such a vector is called a state vector.A state vector is thus a
x=[xηη]”。这样的向量称为状态向量。 因此 , 状态向量是一个
vector that determines uniquely the system state x(t)for any time t≥t,once the state at
唯一确定系统状态 x(t) 的向量对于任何时间 t≥t,一旦状态位于
t=t,is given and the input u (t)for t≥t。is specified.
t=t, 并且 t≥t 的输入 u(t)。。
Statespace.The n-dimensional space whose coordinate axes consist of the x axis,x2 axis,…,xn axis,wherexμ·xzs…,xn,are state variables,is called a state space.Any state can be represented by a point in the state space.
状态空间。 坐标轴由 x 轴、x2 轴,...,xn 轴组成的 n 维空间 ,其中 xμ·xzs...,xn 是状态变量,称为状态空间。任何状态都可以由状态空间中的点表示。
State trajectory.State trajectory is defined as the path produced in the state space by the state vector x(t) as it changes with the passage of time.State space and state trajectory in the two-dimensional case are referred to as the phase plane and phase trajectory,respectively.
状态轨迹。状态轨迹定义为状态向量 x(t) 在状态空间中 产生的路径 , 因为它随时间的变化而变化。在二维情况下 ,状态空间和状态轨迹分别称为相平面和相位轨迹。
State-space equations.In state-space analysis,we are concerned with three types of variables that are involved in the modeling of dynamic systems: input variables,output variables,and state variables.The state-space representation for a given system is not unique,except that the number of state variables is the same for any of the different state-
状态空间方程。在状态空间分析中,我们关注动态系统建模中涉及的三类变量 : 输入变量、输出变量和状态变量。 给定系统的状态空间表示形式不是唯一的,只是状态变量的数量对于任何不同的状态
space representation of the same system.
space 表示 。
The dynamic system must involve elements that memorize the values of the input for t≥t.Since,integrators in a continuous-time control system serve as memory devices,the outputs of such integrators can be considered as the variables that define the internal state of the dynamic system. Thus,the outputs of integrators serve as state variables.The number of state variables to completely define the dynamics of the system is equal to the number of integrators involved in the system.
动态系统必须包含记住 t≥t 的输入值的元素 。由于连续时间控制系统中的积分器充当存储器件, 因此这种积分器的输出可以被视为定义动态系统内部状态的变量。 因此, 积分器的输出充当状态变量。 完全定义系统动力学的状态变量数量等于系统中涉及的积分器数量。
14 现代控制理论基础(英文版)
State space expression
状态空间表达式
Assume that a multiple-input multiple-output system involves n integrators.Assume
假设一个多输入多输出系统涉及 n 个积分器。假设
also that there are
还有
r inputs (t),uq(t),…,u,(t) and m outputs yγ(t),y2(t),…,
r 输入 (t),uq(t),...,u,(t) 和 m 输出 yγ(t),y2(t),...,
ym(t).Define n outputs of the integrators as state variables:x(t),xz(t),…,x,(t).
ym(t) 的将积分器的 n 个输出定义为状态变量:x(t),xz(t),...,x,(t)。
Then the system may be described by
那么系统可以通过以下方式描述
λ(t)=fγ(xμ,xz……x,;μμ·uz…u,;t)
λ(t)=fγ(xm,xz......x,;嗯...u,;t)
x,(t)=fq(xμπz……x,;uμ,uz…*u ;t) (2.1)
x,(t)=fq(xbz......x,;uμ,uz...*u;吨)(2.1)
x,(t)=f,(xγ·xz…x,;μμ,uz……u,;t)
x,(t)=f,(xγ·xz...x,;MM,UZ......u,;t)
The output yγ(t),yq(t),…,ym(t)of the system may be given by
系统的输出 yγ(t),yq(t),...,ym(t) 可以由下式给出
yη(t)=gπ(xμ·x2…*x,;uη,Uz……u,;t)
yη(t)=gπ(xm·x2...*x,?uη,Uz......u,;t)
y,(t)=gq(xμ·x2…*x,;uμ,Uz…*u,;t)
y,(t)=gq(xμ·x2...*x,;uμ,Uz...*u,;t)
(2.2)
If we define | ym xγ(t) | (t)=gm(xμ·x2…x,;μη,Uz…*u,;t) fγ(xμ∝z…,x,;μη,uz……,u,;t) | |||||
x(t)= | 2 (t) | fq(xμx2·,xη;Uη,Uz……,u,;t) f(x,u,t)= | |||||
x,(t) | f,(xμxz,…,,;u[σu2…*,u,;t) | ||||||
yη(t) | gγ(xγ·πz……,x,;μη,uz……,u,;t) u|(t) | ||||||
y(t)= | yz(t) | g(x,u,t)= | gη(xη·xz…,xη;uη,Uz……,u,;t) | u(t)= | U | 2(t) | |
y…(t) | gm(xη·x2³*,xη;uη,U2……,u,;t) | u,(t) |
then Eq.(2.1)and Eq.(2.2)become
则方程(2.1)和方程(2.2)变为
x(t)=f(x,u,t) (2.3)
x(t)=f(x,u,t)(2.3)
y(t)=g(x,u,t) (2.4)
y(t)=g(x,u,t)(2.4)
where Eq.(2.3)is called the state equation and Eq.(2.4)is called the output equation.Eq. (2.3)and Eq.(2.4)together are called state space expression.If vector functions f and/or g involve time t explicitly,then the system is called a time-varying system.
其中 ,方程 (2.3) 称为状态方程,方程 (2.4) 称为输出方程。 (2.3) 和方程 (2.4) 一起称为状态空间表达式。如果向量函数 f 和/或 g 显式涉及时间 t,则该系统称为时变系统。
If Eq.(2.3)and Eq.(2.4) are linearized about the operation state,then we have the
如果方程(2.3)和方程(2.4) 关于运行状态线性化 ,则得到
following linearized state equation and output equation:
线性化状态方程和输出方程如下:
x(t)=A(t)x(t)+B(t)u(t) | (2.5) | |
where A(t)is called the | y(t)=C(t)x(t)+D(t)u(t) state matrix(or system matrix),B(t)the | (2.6) input matrix,C(t)the |
output matrix,and D(t)the direct transmission matrix.A block diagram representation of
output 矩阵,D(t) 为直接传输矩阵。框图表示
Chapter 2 Modeling In State Space 15
第 2 章 在状态空间中建模 15
Eq.(2.5)and Eq.(2.6)is shown in Fig.2.1.
方程(2.5)和方程(2.6) 如图 2.1 所示。
D(t)
D(吨)
u(t)
u(吨)
B(t) X= fdt C(t)
B(t)X=fdtC(t)
A(t)
A(吨)
Fig.2.1 Block diagram of the linear,continuous-time control system represented in state space
图 2.1 状态空间中表示的线性连续时间控制系统框图
If the above-mentioned matrice do not involve time t explicitly then the system is
如果上述矩阵不显式涉及时间 t,则系统为
called a time invariant system.In this case,Eq.(2.5)and Eq.(2.6)can be simplified to
称为时间不变系统。 在这种情况下 ,方程(2.5)和方程(2.6)可以简化为
x(t)=Ax(t)+Bu(t) (2.7)
x(t)=Ax(t)+Bu(t)(2.7)
y(t)=Cx(t)+Du(t) (2.8)
y(t)= Cx(t)+ Du(t)(2.8)
Eq.(2.7)is the state equation of the linear,time invariant system (LTI).Eq.(2.8)is the output equation for the same system.In this book,we shall be concerned mostly with systems described byEq.(2.7)and Eq.(2.8).Because four parameter matrice mentioned above represent the system structure property,for convenience,we use notation ∑(A(t),
方程(2.7)是线性时不变系统 (LTI) 的状态方程。方程(2.8)是 同一系统的输出方程 。在本书中 ,我们将主要 关注 Eq.(2.7)和方程(2.8)。因为上面提到的四个参数矩阵代表了系统结构属性,为了方便起见,我们使用了 notation∑(A(t),
B(t),C(t),D(t))[or(A(t),B(t),C(t),D(t))] and ∑(A,B,C,D)[or(A,B,C,D)] to
B(T),C(T),D(t))[or(A(t),B(t),C(t),D(t))]和 ∑(A,B,C,D)[或(A,B,C,D)]到
stand for linear time-variant system and linear time-invariant system respectively.
分别代表线性时变系统和线性时不变系统 。
The motivation for using the statevariables model is to use a representation of the system dynamic that contains the system's input-output relationship(similar to that of a transfer function)but in terms of a set of n first-order differential equations to represent an n order system.This approach has the following advantages.
使用状态变量模型的动机是使用包含系统输入-输出关系的系统动态表示形式(类似于传递函数的关系),但根据一组 n 个一阶微分方程来表示 n 阶系统。此方法具有以下优点。
>To study more general models.The ordinary differential equations (ODEs)do not have to be linear or stationary.Thus,by studying the equations themselves,we can develop methods that are very general.The solution to a set of first-order differential or difference equations is much easier to determine on a digital computer
> 研究更通用的模型。 常微分方程 (ODE) 不必是线性或平稳的。因此,通过研究方程本身,我们可以开发非常通用的方法 。 一组一阶微分或差分方程的解在数字计算机上更容易确定
than the solution of the equivalent higher-order differential or difference equations. This facilitates computer-aided analysis and design on digital computer for higher- order systems.It is important to note that the Laplace transform/transfer function/ block-diagram approach is inadequate for this purpose.Furthermore,the techniques of state space analysis and design easily extend to systems with multiple inputs and/
比等效的高阶微分或差分方程的解。 这有利于在数字计算机上为高阶系统进行计算机辅助分析和设计 。 需要注意的是, 拉普拉斯变换/传递函数/ 框图方法不足以达到此目的。此外, 状态空间分析和设计技术很容易扩展到具有多个输入和/或或具有多个输入的系统
or multiple outputs.In fact,the analysis of complicated multiple-input-multiple-
或多个输出。 其实, 复杂多输入多
output systems can be carried out by the procedures that
输出系统可以通过以下方式执行
are
是
only slightly more
仅略多
differential equations.
微分方程。
>To give us a compact,standard form for study.The state variable concept greatly simplifies the mathematical notation by utilizing vector matrix notation for the set of first-order equations.The increase in the number of state variables,the number of
> 给我们一个紧凑的、标准的学习表格。状态变量概念通过对一组一阶方程使用向量矩阵表示法 ,大大简化了数学表示法 。状态变量数量增加 , 数量
inputs,or the number of outputs does not increase the complexity of the equations.
inputs,或者 output 的数量不会增加方程的复杂度 。
>To consider the initial conditions of a system.The inclusion of the initial conditions of a system in the analysis of control systems,which is difficult using conventional techniques,can be accounted for readily in the state variable approach.
> 考虑系统的初始条件。 在控制系统分析中包括系统的初始条件 ,这使用传统技术是困难的 ,但可以很容易地用状态变量方法来解释 。
>To introduce the ideas of geometry into dif ferential equations.In physics the plane of position versus velocity of a particle or rigid body is called the phase plane,and the trajectory of the motion can be plotted as a curve in this plane.The state is a generalization of that idea to include more than two dimensions.While we cannot plot more than three dimensions,the concepts of distance,of orthogonal and parallel lines,and other concepts from geometry can be useful in visualizing the solution of an ODE as a path in state space.
>To 将几何学的思想引入不同的 ferential 方程中。在物理学中, 粒子或刚体的位置与速度的关系平面称为相平面, 运动的轨迹可以绘制为该平面上的 曲线 。状态是该思想的概括,包括两个以上的维度。虽然我们不能绘制超过三个维度,但距离、正交和平行线的概念以及几何学中的其他概念可用于将 ODE 的解可视化为状态空间中的路径。
>To help to the study of optimalcontrol.The state variable representation lends
> 有助于研究最优控制。 状态变量表示形式有助于
itself to system synthesis using optimal control techniques.
本身使用最优控制技术进行系统综合 。
>To connect internal and external descriptions.The state of a dynamic system often directly describes the distribution of internal energy in the system.For example,it is common to selectthe following as state variables:position (potential energy), velocity(kinetic energy),capacitor voltage(electric energy),and inductor current (magnetic energy).The internal energy can always be computed from the state variables.By a system of analysis to be described shortly,we can relate the state to the system inputs and outputs and thus connect the internal variables to the external inputs and to the sensed outputs.In contrast,the transfer function relates
> 连接内部和外部描述。 动态系统的状态通常直接描述系统中内能的分布。例如, 通常选择以下作为 状态变量:位置 (势能)、 速度(动能)、电容器电压(电能)和电感电流 (磁能)。 内能总是 可以从状态变量中计算出来。通过稍后要描述的分析系统,我们可以将状态与系统输入和输出联系起来 , 从而将内部变量 连接到外部输入和感应输出。相反 ,传递函数与
only the input to the output and does not show the internal behavior.The state form
仅 input 到 output, 不显示内部行为。 状态形式
keeps the latter information,which is sometimes important.
保留后一个信息,这有时很重要 。
Several remarks about selecting state variable are follows.
以下是有关选择 state 变量的几点说明 。
>The state variable are not necessarily system outputs and may not always be
> 状态变量不一定是系统输出 ,也可能并不总是
accessible,measurable,observable,or controllable.
可访问、可衡量、可观察或可控。
>Selection of state variables is not only alone.That is to say,we can definexμ(t), x,(t),…,x,(t)as aset of state variables,and we can also definezγ(t),xq(t),…, z(t)as another set of state variables for the same system.
%3S 状态变量的选举不仅仅是一个单独的。也就是说 ,我们可以将 xμ(t)、x,(t),...,x,(t)定义为一组状态变量,也可以将 zγ(t),xq(t),..., z(t) 定义为同一系统的另一组状态变量 。
>The number of state variables is only alone for a given system.
> 状态变量的数量仅针对给定系统。
>The number of state variables to be selected is equal to the order of corresponding
> 要选择的状态变量的数量等于相应的
system differential equation.
系统微分方程。
In general,we represent the outputs of stored-energy components(such as capacitor or inductance)as the state variables.Table 2.1 lists some common Energy-storage elements that exist in physical systems and the corresponding energy equations.The physical variable in energy equation for each Energy-storage elements can be selected as a state variable of the system.
通常 ,我们将储能组件(例如电容器或电感)的输出表示为状态变量。表 2.1 列出了物理系统中存在的一些常见储能元件和相应的能量方程。 每个储能单元的能量方程 中的物理变量都可以选择作为系统的状态变量。
Only independent physical variables are chosen to be state variable.Independent
只有独立的物理变量被选为状态变量。独立
physical variables are those state variables that cannot be expressed in terms of the
物理变量是那些不能用
Chapter 2 | Modeling | ln State Space 17 | |
remaining assigned | state variables. Table 2.1 Energy-storage elements | ||
Element | Energy | Physical | variable |
CU 2
有 2
Capacitor C Voltage v
电容器 C 电压 v
2
Inductor L L;² Current i
电感 LL;² 电流 i
2
Mo²
莫²
Mass M Translational velocity v
质量 M 平移速度 v
2
Moment of inertia J
转动惯量 J
Jω²
2
Rotational velocityω
转速 ω
Spring K
弹簧 K
K X²
2
V VP'
在 VP'
Displacement X
位移 X
Fluid compressibility Pressure PL
流体压缩率压力 PL
2K B
2K 乙
Fluid capacitor C=pA oAh² Height h
流体电容器 C=pAoAh² 高度 h
2
Thermal
烫的
capacitor C
电容器 C
Temperature θ
温度 θ
In what follows,we shall present some examples for deriving state equations and
在下文中,我们将介绍一些推导状态方程和
output equations.
输出方程。
Example 2.1 Consider the electrical circuit shown in Fig. L R
例 2.1 考虑图 2 中所示的电路 。LR
O YYY O
YYY 的
2.2.The circuit consists of an inductance L(henry),a
2.2. 该电路由电感 L(henry),a 组成
resistance R (ohm) and a capacitance C(farad).The
电阻 R(ohm) 和电容 C(farad)。这
u,(t)
u,(吨)
i(t)
i(吨)
C 卡u,(t)
C 卡 u,(t)
voltage u_t)is the output.Determine the state-space model Fig.2.2 RLC electric circuit
voltageu_t) 是输出。确定状态空间模型图 2.2RLC 电路
for the circuit.
对于电路。
Solution.As we know,the relationship between the capacitanee's voltage u_(t)and current
Solution.As 我们知道, 电容的电压 u_(t) 和电流之间的关系
i(t)is
i(t)为
du
的
C =i (2.9)
C=i(2.9)
dt
德语
Applying Kirchhoff voltage law to the circuit,we obtain the following equations:
将基尔霍夫电压定律应用于电路,我们得到以下方程:
di
之
L +Ri+u.=u, (2.10)
L+Ri+u.=u,(2.10)
dt
德语
In order to write the equations in the state-space model(i.e.,a set of simultaneous first-order differential equations),we have to select state variables.The following gives four sets of state variables and corresponding four state-space models are established, respectively.
为了在状态空间模型(即一组联立一阶微分方程 ) 中编写方程 ,我们必须选择状态变量。下面给出了四组 状态变量 , 并分别建立了相应的四个状态空间模型 。
Case 1:Let x 1 =u_x2 =i,then we have
情况 1:设 x1=u_x2=i,那么我们有
18 现代控制理论基础(英文版)
1
=c³2
1 R 1
十 L".
Using the state vector matrix differential equation representation,we obtain the following simple representation of the system:
使用状态向量矩阵微分方程表示,我们得到了以下系统的简单表示:
where
哪里
x=Ax+bu,
x=Ax+this,
y=Cx
1
C
A b 1
1 R
L`
C [1
If letx1=i,xz=u_then we have
如果 letx1=i,xz=u_then 我们有
R 1
R1 号
L 1
1 T 2
1 吨 2
十 L U
十 LU
0 0
C
y=[0 1]
2
Case 2:If we select u i as state variables,i.e.,let x =u.x2 =i_then corresponding
情况 2:如果我们选择 u i 作为状态变量,即设 x=u.x2=i_then 对应
state equation is
状态方程为
xη=x2
xh=x2
1 R 1
λ2=-Lc²-LT 2 十LC"r
λ2=-Lc²-LT20 LC“r
Then state space equation can be written as
那么状态空间方程可以写成
1 0
1 1
1 R 十 1 U
1R 十 1U
— LC L
y=[1 o]
Case 3:If we selecti, i dt as state variables,i.e.,let x1 =i,x2 idt,then corresponding
情况 3:如果我们选择 i,i dt 作为状态变量,即设 x1=i,x2idt,那么对应的
state equation is
状态方程为
dx 1
d.x 2
dt
德语
Then state space equation can be written as
那么状态空间方程可以写成
Chapter 2 Modeling ln State Space 19
第 2 章 对 ln 状态空间进行建模 19
R 1 1
L LC 十 L U
LLC 十 LU
2 1 0 2 0
Case 4:letx=rdt+Ri,xε=_frdr=u,ln terms of the system equation
情况 4:letx=rdt+Ri,xε=_frdr=u,ln 系统方程的项
Ljid+Ri=u,
Ljid+Ri=u,
U jrdr
你 jrdr
We can build the following state-space equation
我们可以构建以下状态空间方程
1 R 1
RC L RC
R
十 L U r
x, 1 1 T 2 0
x,1 1T20
RC RC_
y= 1]
2
Example 2.2 Obtain the state equation for the eircuit of Fig.2.3,where iz is considered
例 2.2 得到图 2.3 的 eircuit 的状态方程 ,其中 iz 被考虑
to be the output of this system.
作为此系统的输出 。
u(c)=x3 L,
u(c)=x3 升,
YYY
-i|=x iq=x2
十
e(=uQ C亍 Rz
e(=uQC 亍 Rz
Fig.2.3 An electric circuit
图 2.3 电路
Solution.The assigned state variables are x1
解决方案: 分配的状态变量为 x1
one node equations are written as
单节点方程式写为
=iμ,x2=iz andxs=u_Thus,two loops and
=iμ,x2=izandxs=u_Thus,两个循环和
R|xη+L|x1+x,=u
R|xη+L|x1+x,=u
-xε+L,x,+R2x2=0
-xε+L,x,+R2x2=0
-xγ+x,+Cε。=0
-xγ+x,+Cε。=0
The three state variables are independent,and the system state and output equations are
三个状态变量是独立的, 系统状态和输出方程是
R 1
R1 号
0
L L 1
LL1 号
L,
L
x= 0
1
L, L,
C 一C 0
C 一 C0
y= [O 1 0] x
20 现代控制理论基础(英文版)
where x= x1 2 xs]".
其中 x=x12xs]”。
Example 2.3 Consider the mechanical system shown in Fig.2.4.A damper is a device that provides viscous friction,ordamping.It consists of piston and oil-filled cylinder.Any relative motion between the piston rod and cylinder is resisted by the oil because the oil must flow around the piston(or through orifices provided in the piston)from one side of the piston to the other.The damper essentially absorbs energy.This absorbed energy is dissipated as heat,and the damper does not store any kinetic or potential energy. The damper is also called a dashpot.
例 2.3 考虑图 2.4 所示的机械系统 。阻尼器是一种提供粘性摩擦或阻尼的装置 。它由活塞和充油气缸组成。 活塞杆和气缸之间的任何相对运动都会受到油的抵抗,因为油必须绕过活塞(或通过活塞中提供的孔)从活塞的一侧流到另一侧 。阻尼器本质上是吸收能量。这些吸收的能量以热量的形式消散 , 阻尼器不储存任何动能或势能。 阻尼器也称为 dashpot。
The external force u(t)is the input force to the system,and the displacement y(t)of the mass is the output.The displacement y(t)is measured from the equilibrium position in the absence of the external force.(This system is a single-input-single-output system.)
外力 u(t) 是系统的输入力 , 质量的位移 y(t) 是输出。位移 y(t) 是在没有外力的情况下从平衡位置测量的。该系统是单输入单输出系统。
We assume that the mass is standing still for t≤0.In
我们假设质量在 t≤0 上静止不动。在
this system,m denotes the mass,b denotes the viscous
该系统 ,m 表示质量,b 表示粘性
u(t) friction coefficient,and k denotes the spring constant. We
u(t) frictioncoefficient,k 表示弹簧常数。 我们
assume that the friction force of the damper is proportional
假设阻尼器的摩擦力是成正比的
m
to y(t)and that the spring is a linear one,that is,the spring
到 y(t),并且弹簧是线性的,即 spring
y(t) force is proportional to y(t).Determine the state-space
y(t) 力与 y(t) 成正比 。确定 state-space
b
model for the system.
model 的 model 来执行。
777777 77777
Solution.
溶液。
Applying Newton's second law to the present
将牛顿第二定律应用于现在
Fig.2.4 Spring-mass-damper system,we obtain
图 2.4 弹簧-质量-阻尼系统 ,得到
system my+by+ky=u
系统 my+by+ky=u
The system is second-order one.It means that the system involves two integrators.Let us
该系统是二阶系统。这意味着该系统涉及两个集成商。让我们
define state variables x(t)andxq(t)as
将状态变量 x(t)和 xq(t)定义为
xη(t)=y(t)
xη(t)=y(t)
xη(t)=y(t)
xη(t)=y(t)
Then we obtain
然后我们得到
λ,=-(-ky-by)+ U
m m
米
Or
或
The output equation is
输出方程为
xη=x2
xh=x2
k b 1
一一x2+ U
一一 x2+U
m m m
米 m m
y
In a vector-matrix form,the above equations can be written as
在向量矩阵形式中, 上述方程可以写成
0 1 0
x 1
1 倍
k b 十 1 U (2.11)
kb 十 1U(2.11)
T 2
T2 型
m m m
米 m m
Chapter 2 Modeling In State Space 21
第 2 章状态空间建模 21
The output equation can be written as
输出方程可以写成
1
y=[1
2
(2.12)
Eq.(2.11)is a state equation and Eq.(2.12)is an outputequation for the system. Eq.(2.11)
方程 (2.11) 是状态方程 , 方程 (2.12) 是系统的输出方程 。 方程(2.11)
and Eq.(2.12)are in the standard form.
和 Eq.(2.12) 是标准形式。
x(t)=Ax(t)+Bu(t)
x(t)=Ax(t)+Bu(t)
y(t)=Cx(t)+Du(t)
y(t)=Cx(t)+Du(t)
where
哪里
1 0
A= k b B 1 C=[1 0],D=0
A=k bB1C=[10],D=0
m m m
米 m m
The Fig.2.5 is a block diagram of the mechanical system shown in Fig.2.4.
图 2.5 是图 2.4 所示的机械系统框图 。
U j X2 j
x|=y
k
m
Fig.2.5 Block diagram of the mechanical system.
图 2.5 机械系统框图 。
Notice that the outputs of the integrators are state variables.
请注意 , 积分器的输出是状态变量。
Example 2.4 Consider the system shown in Fig.2.6.The variables of interest are noted
例 2.4 考虑图 2.6 中所示的系统 , 记录了感兴趣的变量
on the figure and defined as
并定义为
Mγ,M,
Mγ,M,
mass
质量
of cart;
推车;
p,q=position of cart;
p,q= 购物车的位置;
u=external force acting on system; k[,kz=spring cons tant; b_·bz=damping coefficient.
u= 作用在系统上的外力 ;k[,kz=弹簧缺点; b_·bz=阻尼系数。
A variety of methods is available for developingthe equations of motion for the two
有多种方法可用于开发两者的运动方程
cars.Here we use the free-bodydiagram approach.The free-body diagram of mass M is
汽车。这里我们使用自由体图方法。 质量 M 的自由体图为
shown in Fig.2.7.
如图 2.7 所示 。
where p,i= velocity M and Mzrespectively.
其中 p,i= 速度 M 和 Mz。
We assume that the cars have negligible rolling friction.We consider any existing rolling friction as lumped into the damping coefficients,b and bz.When using free-body diagrams we can encounter difficulty when assigning direction to the spring force,k(p-
我们假设汽车的滚动摩擦可以忽略不计。我们将任何现有的滚动摩擦都归入阻尼系数 b 和 bz。当使用自由体图时,我们在为弹簧力分配方向时可能会遇到困难 ,k(p-
q),and damping force,b(p-q).Let us consider the mass M first.The position of Mqis denoted by p.The position direction of p is specified by the pointing direction of the arrow (Fig.2.6).Which direction we choose to point the arrow is irrelevant,but once we have specified a direction,the applied forces must be consistent with that direction.
q) 和阻尼力 b(p-q) 的让我们首先考虑质量 M。Mq 的位置用 p 表示,p 的位置方向由箭头的指向方向指定 (图 2.6)。 我们选择指向箭头的方向无关紧要,但是一旦我们指定了方向, 施加的力必须与该方向一致 。
could hold M2
可以容纳 M2
that it cannot move (that is,q=0).
它不能移动 (即 ,q=0)。
22 现代控制理论基础(英文版)
q p
k, k
k,k
NVv M,
NVvM,
Car2
汽车2
Carl
卡尔
M U
bz O O b O O
bzOObOO O
Fig.2.6 Two rolling cars attached with springs and dampers
图 2.6 两辆装有弹簧和减震器的滚动车
k(p-q)-
k(p-q)-
U
b(p-9)=
b(p-9)=
Fig.2.7 Free-body diagram of M
图 2.7M 的自由体图
Then we move the mass in a positive direction.In this case,we selected the positive direction to be to the right.When M is moved to the right,we obtain a reaction force from the spring and damper that resiststhe motion.The direction of the force is in the negative direction,or pointing to the left in the free-body diagram.Thus the spring force is
然后我们将质量沿正方向移动 。在本例中 ,我们选择了向右的正方向。当 M 向右移动时,我们从弹簧和阻尼器中获得抵抗运动的反作用力 。力的方向为负方向,或指向自由体图中的左侧 。因此 , 弹簧力为
f、=-k(p-q)
f、=-k(p-q)
and the damping force is
阻尼力为
fa=-b|()-q)
fa=-b|()-q)
Of course,if q≠0,the spring force is affected.In fact,ifp=q,then the spring is not compressed or stretched,and the spring force is zero.The above discussion applies to mass as well.Now,given the free-body diagram with force and directions appropriately
当然,如果 q≠0,则弹簧力会受到影响。实际上,如果 ifp=q,则弹簧 没有被压缩或拉伸,弹簧力为零。上述讨论也适用于弥撒 。现在,给定具有力和方向的自由体图
applied,we
应用,我们
use
用
Newton's second law(Sum of the forces equals mass of the object
牛顿第二定律(力之和等于物体的质量
multiplied by itsacceleration)to obtain the equation of motion-one equation for each mass.For mass M we have
乘以它的加速度)得到运动方程 - 每个质量的 1 方程 。对于质量 M,我们有
M,≯=∑F=u+f,+fa=u-kγ(p-q)-bγ(b-i)
M,≯=∑F=u+f,+fa=u-kγ(p-q)-bγ(b-i)
Or
或
where
哪里
Mγβ+b|p+kp=u+k[q+b|i (2.13)
Mγβ+b|p+kp=u+k[q+b|i(2.13)
p,q=acceleration M and Mzrespectively.
p,q=加速度 M 和 Mz。
Similarly,for mass M
同样,对于质量 M
2 we have
2 我们有
M,i=k(p-q)+b|(b-q)-k,q-b,i
M,i=k(p-q)+b|(b-q)-k,q-b,i
Or
或
M,i+(k|+kη)q+(b|+b2)²=kηb+b|b (2.14)
M,i+(k|+kη)q+(b|+b2)²=kηb+b|b(2.14)
We now have a model given by the two second-order ordinary differential equations in Eq.
我们现在有一个由 Eq 中的两个二阶常微分方程给出的模型 。
(2.13)and Eq.(2.14).We can start developing a state-space model by defining
(2.13) 和方程 (2.14)。我们可以通过定义
x1 =p
Chapter 2 Modeling ln State Space 23
第 2 章 对 ln 状态空间进行建模 23
2 =q
We could have easily started the process by defining xη=p andxz=q.Clearly the
我们可以通过定义 xη=p 和 xz=q 来轻松开始这个过程 。
state-space model is not unique.
state-space 模型不是唯一的。
Denoting the derivatives of x1 and x 2 as r3 and x4,respectively,it follows that
将 x1 和 x2 的导数分别表示为 r3 和 x4,由此得出
(2.15)
(2.16)
Taking the derivatives of xs andx yields,respectively,
取 xs 和 x 的导数 ,分别得到,
1 k
1 千分
(kγ+k,) (bη+b,). k b
(κγ+k,)(bη+b,). 好的 B
(2.17)
(2.18)
2 M 2
where we use the relationship forp given in Eq.(2.17)and the relationship for q given in
其中 ,我们使用方程(2.17) 中给出的关系式 forp,以及
Eq.(2.18).But,p=x,andq=x_,soEq.(2.17)can be written as
方程 (2.18)。但是,p=x,andq=x_,soEq。(2.17)可以写成
k k b b 1
kk bb 1
1十
1 十
(2.19)
and Eq.(2.18)can
和方程 (2.18) 可以
M,*
be written as
写成
T2 M,*+λ,*+λ,"
T2M,*+λ,*+λ,'
x4 k (kη+k,) b (bγ+b,) (2.20)
x4k(kη+k,)b(bγ+b,)(2.20)
M,*1 M,
2 T3 M, 4
2T3M,4
In matrix form,Eq.(2.15),Eq.(2.16),Eq.(2.19)and Eq.(2.20) can
在矩阵形式中,方程(2.15)、方程(2.16)、方程(2.19)和方程(2.20) 可以
x(t)=Ax(t)+Bu(t)
x(t)=Ax(t)+Bu(t)
be written as
写成
2 q
2 问
3 p
3 人
q
0 0 1 0
00 10
0 0 0 0
000 00
0
k k b, b
好的 ,kb,b
M M 一 M M B 1
M
k 1 (kη+k,) b (bη+b,)
k1(kη+k,)b(bη+b,)
0
M, M,
米、米 、
and u is the external force acting on the system.If we choose p as output,then
u 是作用在系统上的外力。如果我们选择 p 作为输出,则
y=[1 0 0 0]x=Cx
Example 2.5 Fig.2.8represents a two-tank liquid-level control system.
例 2.5 图 2.8 表示一个双罐液位控制系统 。
Definitions of the system parameters are
系统参数的定义是
q:·q1·q2 =rates of flow of fluid,h_,hz =heights of fluid level,
q:·q1·q2= 流体流速 ,h_,Hz= 液位高度 ,
R Rz=flow resistance, Aγ,A2 = cross-sectional tank areas
RRz=流动阻力,Aγ,A2= 储罐横截面积
The following basic linear relationships hold for this system:
以下基本线性关系适用于此系统:
24 现代控制理论基础(英文版)
q,
A|
Az
那
h R h, R, Output flow
hRh,R, 输出流量
q2
问2
Fig.2.8 Liquid-level system and its equivalent electrical analog
图 2.8 液位系统及其等效的电气模拟
h
q R =rate of flow through orifice (2.21)
qR= 流经孔板的流速 (2.21)
q n =(tank input rate of flow)一(tank output rate of flow)
qn=(罐体输入流量)一(罐体输出流量)
=(net tank rate of flow)=Ah (2.22)
=(油箱净流速 )=Ah(2.22)
Applying Eq.(2.22)to tank 1 and tank 2 yields,respectively,
q nl
好吗
=A,h,=q;-qη=q;- (2.23)
=A,h,=q;-qη=q;-(2.23)
q n2 =A,hε=q1-q2=
qn2=A,hε=q1-q2=
hη-h2 h z
HH-H2HZ
R Rz
RR
(2.24)
and h,/q;·
和 h,/q;·
The energy stored in each tank representspotential energy,which is equal topAh²/2, where p is the fluid density coefficient.Since there are two tanks,the system has two energy-storage elements,whose energy-storage variables are h and h,.Lettingx1=h1, T2 =h,,and u=q; in Eq.(2.23)and Eq.(2.24)reveals that x and x2 are independent state variables.Thus,the state equation is
每个罐中储存的能量代表势能,等于 topAh²/2, 其中 p 是流体密度系数。由于有两个储能池, 因此系统有两个储能元件,其储能变量为 h 和 h。Lettingx1=h1, T2 =h,,和 u=q; 在方程(2.23)和方程(2.24)中揭示了 x 和 x2 是独立的状态变量。因此,状态方程为
1 1
RA
RA 类
x= 十 A U
0
R
The level of the two tanks are the outputs of the system.Lettingyi=x1=h and y2
两个水箱的液位是系统的输出 。Lettingyi=x1=h 和 y2
T 2 =h,yields
T2=h,产量
1 0
y=
0 1
wherex=[x1 xz]™,y=[yπ yz]T.
其中 x=[x1 xz]™,y=[y±yz]T.
Example 2.6 The problem of balancing a broomstick ona person's hand is illustrated in Fig.2.9.Assume,for ease,that the pendulum rotates in the x-y plane. The only equilibrium condition isθ(t)=0and d0/dt=0.
例 2.6 将扫帚放在人手上的问题如图 2.9 所示。为方便起见,假设 钟摆在 x-y 平面上旋转 。 唯一的平衡条件是 θ(t)=0 和 d0/dt=0。
The problem of balancing a broomstick on one's hand is not unlike the problem of controlling the attitude of a missile during the initial stages of launch.This problem is the classic and intriguing problem of the inverted pendulum mounted on a cart,as shown in
平衡手上的扫帚问题与 在发射初期控制导弹姿态的问题没有什么不同 。这个问题就是安装在推车上的倒摆的经典而有趣的问题 ,如
Chapter 2 Modeling ln State Space 25
第 2 章 对 ln 状态空间进行建模 25
Fig.2.10.The pendulum is constrained to pivot in the vertical plane.The cart must be moved that mass m is always in an upright position.The state variables must be expressed in terms of the angular rotationθ(t)and the position of the cart y(t).
图 2.10. 钟摆被约束在垂直平面上旋转 。 必须移动小车 ,使质量 m 始终处于直立位置。 状态变量必须用角旋转 θ(t) 和小车的位置 y(t) 来表示。
M my一 Mass m
Mmy 一 Massm
mg
毫克
M u(t)
米 u(吨)
u(t) Frictionless
u(t) 无摩擦
Hand movement O Oy() surface
手部移动 OOy() 表面
Fig.2.9 An inverted pendulum balanced on a Fig.2.10 A cart and an inverted pendulum
图 2.9 在图 2.10 推车和倒摆上平衡的倒摆
person's hand by moving the hand
通过移动手来更改人的手
to reduce θ(t)
降低 θ(t)
The differential equations describing the motion of the system can be obtained by writing the sum of the forces in the horizontal direction and the sum of the moments about the pivot point.We will assume that M>m and the angle of rotation θ is small so that the equations are linear.The sum of the forces in the horizontal direction is
描述 系统运动的微分方程可以通过写下水平方向上的力之和和关于枢轴的力矩之和来获得 点。我们假设 M>m 和旋转角 θ 很小,因此方程是线性的。 水平方向上的力之和为
My+m10-u(t)=0 (2.25)
我的+m10-u(t)=0(2.25)
where u(t)equals the force on the cart,andZ is the distance from the mass m to the pivot
其中 u(t) 等于推车上的力 ,Z 是从质量 m 到枢轴的距离
point.The sum of the torques about the pivot point is
点。 绕枢轴点的扭矩之和为
mly+mt²b-mlg0=0 (2.26)
mly+mt²b-mlg0=0(2.26)
The state variables for thetwo second-order equations are chosen as
两个二阶方程的状态变量选择为
(y,y,θ,b).Then Eq.(2.25)and Eq.(2.26)are written in terms of the state variables as
(y,y,θ,b) 的然后 Eq.(2.25) 和 Eq.(2.26) 根据状态变量写为
M≯,+mlx-u(t)=0 (2.27)
M≯,+mlx-u(t)=0(2.27)
and
和
x,+l&|-gx:=0 (2.28)
x,+l&|-gx:=0(2.28)
To obtain the necessary first-order differential equations,we solve for li in Eq.(2.28)
为了得到必要的一阶微分方程,我们求解方程 (2.28) 中的 li
and substitute into Eq.(2.27)to obtain
并代入方程(2.27)得到
Mλ,+mgx:=u(t) (2.29)
Mλ,+mgx:=u(t)(2.29)
Since M≥m,substitutingx,from Eq.(2.27)intoEq.(2.28),we have
由于 M≥m,代入 x,从 Eq.(2.27)变为 Eq.(2.28),我们有
Ml±(-Mgx:+u(t)=0 (2.30)
毫升±(-Mgx:+u(t)=0(2.30)
Therefore,the four first-order differential equations can be written as
因此, 这四个一阶微分方程可以写成
λ|=x2,立2=-" m g x3
1
十 u(t),
十 u(t),
M
(2.31)
Thus,the system
因此,该系统
x、=xη,
x、=xη,
matrice are
matrix 是
g 1
克 1
M/"(t)
米/“(吨)
26 现代控制理论基础(英文版)
0 1 0 0 0
01000 0
0 0 一mg/M 0 1/M
00 一 mg/M01/M
A B (2.32)
AB (2.32)
0 0 1 0
00 10
0 0 g/l 0 -1/(Ml)
00 克 /升 0-1/(毫升)
Relationship
关系
between transfer functions(or transfer matrix)and
在传递函数(或传递矩阵)和
state-space equations
状态空间方程
Transfer function
传递函数
In some cases,the transfer function matrix will be needed to be evaluated from
在某些情况下 , 需要从
the
这
state-space form and output equation.Inwhat follows we shall show how to derive the
state-space 形式和输出方程。 在下文中 , 我们将展示如何推导
transfer function of a single-input-single-output from the state-space form.
状态空间形式的 single-input-single-output 的传递函数 。
Let us consider the system whose transfer function is given by
让我们考虑一下传递函数由下式给出的系统
Y(s) =G(s) (2.33)
Y(s)=G(s)(2.33)
U(s)
U (s)
This system may be represented in state space by the following equations:
该系统在状态空间中可以用以下方程表示 :
x(t)=Ax(t)+Bu(t) (2.34)
x(t)=Ax(t)+Bu(t)(2.34)
y(t)=Cx(t)+Du(t) (2.35)
y(t)= Cx(t)+ Du(t)(2.35)
where x is the state vector,u is the input,and y is the output.
其中 x 是状态向量,u 是输入,y 是输出。
The Laplace transforms of Eq.(2.34)and Eq.(2.35)are given by
方程(2.34)和方程(2.35) 的拉普拉斯变换由下式给出
sX(s)-x(0)=AX(s)+BU(s) (2.36)
sX(s)-x(0)=AX(s)+BU(s)(2.36)
Y(s)=CX(s)+DU(s) (2.37)
Y(s)=CX(s)+DU(s)(2.37)
Since the transfer function waspreviouslydefined as the ratio of the Laplace transform of the output to the Laplace transform of the input when the initial conditions were zero,we assume that x(0)in Eq.(2.36)is zero.Then we have
由于传递函数之前定义为初始条件为零时输出的拉普拉斯变换与输入的拉普拉斯变换之比 ,因此我们假设方程(2.36) 中的 x(0) 为零。那么我们有
sX(s)-AX(s)=BU(s)
sX(s)-AX(s)=BU(s)
Or
或
(sI-A)X(s)=BU(s)
(sI-A)X(s)=BU(s)
By premultiplying(sI-A)-1 to both sides of this last equation,we obtain
通过将 (sI-A)-1 预乘到最后一个方程的两侧,我们得到
X(s)=(sI-A)³BU(s) (2.38)
X(s)=(sI-A)³BU(s)(2.38)
Where(sI-A)-1 adj(sI-A)
其中(sI-A)-1adj(sI-A)
det(sI-A)
它(sI-A)
By substituting Eq.(2.38)into Eq.(2.37),we get
通过将方程(2.38)代入方程(2.37),我们得到
Y(s)=[C(sI-A)'B+D]U(s) (2.39)
Y(s)=[C(sI-A)'B+D]U(s)(2.39)
Upon comparing Eq.(2.39)with Eq.(2.33),we see that
将方程(2.39)与方程(2.33) 进行比较 , 我们可以看到
G(s)=C(sI-A)-³B+D (2.40)
G(s)=C(sI-A)-³B+D(2.40)
This is the transfer function expression in terms of A,B,C,and D.
这是 A、B、C 和 D 的传递函数表达式 。
Note that the right-hand side of Eq.(2.40)involves(sI-A)-1.Expanding the inverse
请注意 , 方程(2.40)的右侧涉及(sI-A)-1.展开逆函数
into the adjoin and determinant,G(s)can be written as
放入邻接和行列式中,G(s) 可以写成
G(s)=
G(s)=
Cadj(sI-A)B+Ddet(sI-A)
Cadj(sI-A)B+Ddet(sI-A)
det(sl-A)
DET(SL-A)
Chapter 2 Modeling ln State Space 27
第 2 章 对 ln 状态空间进行建模 27
From the last equation,it may be seen that the system poles,usually referred to in state- space analysis as the eigenvalues,may be found by solving the determinant,which will be an nth-order polynomial in s:
从最后一个方程中可以看出 ,系统极点,在状态空间分析中通常称为特征值, 可以通过求解行列式来找到,行列式将是 s 中的 n 阶多项式:
det(sl-A)=0
det(sl-A)=0
Example 2.7 Consider again the mechanical system shown in Fig.2.4.State-space equations for the system are given by Eq.(2.11)and Eq.(2.12).We shall obtain the transfer function for the system from the state-space equations
例 2.7 再次 考虑图 2.4 中所示的机械系统 , 系统的状态空间方程由方程(2.11)和方程(2.12)给出。我们将从状态空间方程中获得系统的传递函数
By substituting A,B,C,and D into Eq.(2.40),we obtain
通过将 A、B、C 和 D 代入方程(2.40),我们得到
G(s)=C(sI-A)-³B+D
G(s)=C(sI-A)-³B+D
0 1 一] 0
01 一 ]0
S 0
S0 (南 0)
1 0] k b
0 S
0 秒
S
[1 0] k
m m m
米 m m
一1 -1
一 1-1
b
S 一
S 一
since
因为
m m mZ
b
一1
一 1
S
1 m
1 米
k b b k k
KBK
m m S
米 m S
2 +"s+∝
2+英寸+∝
m m m
b
S 1 0
1 m
1 米
G(s)=[1 O] 1
G(s)=[1O]1
2 +²b +k k
S S m
SS 米
m m m
米 m m
1
ms 2 +bs+k
硕士 2+BS+K
which is the transfer function of the system.
这就是系统的传递函数 。
Transfer matrix
传输矩阵
Next,consider a multiple-input-multiple-output system. Assume that there are r
接下来,考虑一个多输入多输出系统。 假设有 r
inputsuη,uz……,u, and m outputs yπ·yz·…,ym·Define
输入 uη,uz......,u 和 m 输出 yπ·yz·...,ym·定义
U
y 2
和 2
y= U
Ul 2
蜂巢 2
y U
和 U
The transfer matrix G(s)relates the output Y(s)to the input U(s),or
传递矩阵 G(s) 将输出 Y(s) 与输入 U(s) 相关联,或
Y(s)=G(s)U(s)
Y(s)=G(s)U(s)
where G(s)is given by
其中 G(s) 由
G(s)=C(sI-A)-³B+D
G(s)=C(sI-A)-³B+D
Since the input vector u is r dimensional and the output vector y is m dimensional,the
由于输入向量 u 是 r 维的,而输出向量 y 是 m 维的,因此
transfer matrixG(s)is a m×r matrix.
transfermatrixG(s) 是一个 m×r 矩阵。
28 现代控制理论基础(英文版)
G(s)=
Gω(s) G m2 (s) ·· G mr(s)
Gω(s)Gm2(s)··G 先生
where G,(s)is a scalar function and expresses transfer relationship between jth input and
其中 G,(s)是一个标量函数 , 表示第 j 个输入与
ith output.
ith 输出。
State Space Representation of Linear Dynamic System
线性动态系统的状态空间表示
State space representation of differential equation
微分方程的状态空间表示
A dynamic system consisting of a finite number of lumped elements may be described by ordinary differential equations in which time is the independent variable.By use of vector-matrix notation,an nth-order differential equation may be expressed by a first order
由有限数量的集总元件组成的动态系统可以用常微分方程来描述 ,其中时间是自 变量。 通过使用向量矩阵表示法,n 阶微分方程可以用一阶表示
vector-matrix differential equation.If n elements of the vector are a set of state variables, then the vector-matrix differential equation is a state equation.In this section,we shall present methods for obtaining state space representations of continuous-time systems.
向量-矩阵微分方程。如果向量的 n 个元素是一组状态变量, 则向量-矩阵微分方程是一个状态方程。在本节中,我们将介绍获取连续时间系统的状态空间表示的方法。