Cell
Article 品The Code for Facial Identity in the Primate Brain
灵长类动物大脑中的面部身份密码
细胞,第 169 卷,第 6 期,2017 年 6 月 1 日,第 975-977 页
Highlights 突出
- •Facial images can be linearly reconstructed using responses of ∼200 face cells
可以使用 ∼200 个面部细胞的响应线性重建面部图像 - •Face cells display flat tuning along dimensions orthogonal to the axis being coded
面单元沿与正在编码的轴正交的尺寸显示平面调整 - •The axis model is more efficient, robust, and flexible than the exemplar model
轴模型比示例模型更高效、更健壮、更灵活 - •Face patches ML/MF and AM carry complementary information about faces
面孔贴片 ML/MF 和 AM 带有有关面孔的互补信息
Summary 总结
灵长类动物以非凡的速度和可靠性识别复杂的物体,例如面部。在这里,我们揭示了大脑的面部识别密码。猕猴的实验表明,面部斑块中面部和细胞反应之间的转变非常简单。通过将人脸格式化为高维线性空间中的点,我们发现每个人脸细胞的放电速率与传入的人脸刺激在该空间中的单个轴上的投影成正比,从而允许人脸细胞集合编码空间中任何人脸的位置。使用这段代码,我们可以从神经群体反应中精确解码人脸 ,并预测人脸的神经放电率。此外,该代码否定了面部细胞编码特定面部身份的长期假设,通过设计具有截然不同外观的面部来证实,这些面部细胞在单个面部细胞中引发了相同的反应。我们的工作表明,其他对象可以通过类似的公制坐标系进行编码。
PaperClip 回形针
Graphical Abstract 图形摘要
Keywords 关键字
Introduction 介绍
视觉神经科学的一个主要挑战是理解大脑如何表示复杂物体的身份。这个过程被认为发生在颞下 (IT) 皮层,其中神经元携带有关高级对象身份的信息,对不影响身份的各种转换具有不变性(Brincat 和 Connor,2004 年,Ito 等 人,1995 年,Majaj 等 人,2015 年).然而,尽管对 IT 神经元的反应特性进行了数十年的研究,但单个 IT 神经元使用的对象标识的精确代码仍然未知:通常,神经元对广泛的刺激做出反应,并且控制有效刺激集的原理尚不清楚。理想情况下,如果我们对 IT 皮层有充分的了解,那么我们将能够解码 IT 人群响应中呈现的精确对象,并反过来预测 IT 对任意对象的响应。由于视网膜和 IT 皮层之间存在多层计算,因此有人认为可能无法实现简单、明确的 IT 细胞模型(Yamins et al., 2014)。
在这里,我们试图构建一个人脸选择性细胞的显式模型,该模型将使我们能够从面部细胞反应中解码任意的真实面孔,并预测细胞响应任意真实面孔的发射。学习人脸编码有两个独特的优势。首先,猕猴面部贴片系统,即 fMRI 实验中一组对面部具有强烈选择性的区域,提供了一个强大的实验模型来剖析面部表征的机制,因为这些区域包含高浓度的面部选择性细胞(Tsao et al., 2006),并且似乎在面部表征中执行不同的步骤(Freiwald 和 Tsao,2010).其次,作为刺激类别的人脸的同质性允许用描述“面空间”内坐标的相对较小的数字集来表示任意面孔(Beymer 和 Poggio,1996 年,Blanz 和 Vetter,1999 年,Edwards 等 人,1998 年),有助于系统地探索神经元调谐的完整几何形状。
Results
Recording Procedure and Stimulus Generation

Figure S1. Localization of Face Patches, Related to Figure 1

Figure 1. Complementary Representation of Facial Features by AM and ML/MF Populations

Figure S2. Feature Dimensions of Parameterized Face Stimuli, Related to Figure 1
Face Patches ML/MF and AM Carry Complementary Information about Facial Features
Decoding Facial Features Using Linear Regression

Figure 2. Decoding Facial Features Using Linear Regression

Figure 3. Reconstruction of Facial Images Using Linear Regression
Shape of Tuning along Axes Orthogonal to the STA

Figure 4. AM Neurons Display Almost Flat Tuning along Axes Orthogonal to the STA in Face Space

Figure S3. Tuning along Single Axis Orthogonal to STA Is Flatter for AM Neurons Than Control Models Using Exemplars or Max Pooling, Related to Figure 4

Figure S4. Additional Analyses of Tuning along Axes Orthogonal to STA, Related to Figure 4

Figure S5. Adaptation Plays Little Role in Shaping Responses of AM Cells, Related to Figure 4

Figure 5. Responses of AM Cells to Faces Specifically Engineered for Each Cell Confirms the Axis Model
The Axis Coding Model Is Tolerant to View Changes

Figure 6. The Axis Coding Model Is View Tolerant
Computational Advantages of an Axis Metric over a Distance Metric

Figure 7. An Axis-Metric Representation Is More Flexible, Efficient, and Robust for Face Identification

Figure S6. Additional Analyses of Neuronal Dimensionality and Linear Encoding, Related to Figure 7
Discussion

Figure S7. Convolutional Neural Net Trained for View-Invariant Identification Supports Axis Coding, Related to Figure 4
STAR★Methods
Key Resources Table
REAGENT or RESOURCE | SOURCE | IDENTIFIER |
---|---|---|
Deposited Data | ||
FEI face database | http://fei.edu.br/∼cet/facedatabase.html | N/A |
Experimental Models: Organisms/Strains | ||
Rhesus macaques (Macaca mulatta) | UC Davis primate research center | N/A |
Software and Algorithms | ||
MATLAB | MathWorks | http://mathworks.com/ |
MatConvNet | VLFeat | http://www.vlfeat.org/matconvnet |
Other | ||
Tungsten Microelectrode | FHC | Lot #:221355 |
Amazon Turk | https://www.mturk.com/ | N/A |
Contact for Reagent and Resource Sharing
Experimental Model and Subject Details
Method Details
Face Patch Localization
Single-unit recording
Behavioral Task and Visual Stimuli
- a)A set of 16 real face images, and 80 images of objects from nonface categories (fruits, bodies, gadgets, hands, and scrambled images) (Freiwald and Tsao, 2010, Ohayon and Tsao, 2012, Tsao et al., 2006) (Figure S1).
- b)A set of 2000 images of parameterized frontal face stimuli, generated using the active appearance model (Cootes et al., 2001, Edwards et al., 1998) (Figures 1, 2, 3, 4, and S2A).
- c)
- d)A set of 144 images of parameterized frontal face stimuli, generated online using responses of the recorded neuron (Figure 5).
Generation of parameterized face stimuli
Human psychophysics
Quantification and Statistical Analysis
Face selectivity index
Spike triggered average analysis
Statistical significance of tuning along a single axis in the face space
Decoding analysis
Computation of neuronal tuning along axis orthogonal to STA
Model fitting
Neural network modeling
Convolutional neural network modeling
Online generation of facial images based on the responses of face cells
Data and Software Availability
Author Contributions
Acknowledgments
Supplemental Information
Movie S1. Shape and Appearance Transformations, Related to Figure 1. This movie shows a face undergoing only changes in shape parameters, and a face undergoing changes only in appearance parameters.
Movie S2. View-Invariant Sparse AM Neuron, Related to Figure 4. This movie shows responses of a cell in AM to a set of images. The clicks represent the spikes fired by the cell. This cell responded to only one identity, invariant to head orientation.
References
- Beymer and Poggio, 1996Image representations for visual learningScience, 272 (1996), pp. 1905-1909
- Blanz and Vetter, 1999Blanz, V., and Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 187–194.
- Bookstein, 1989Principal warps—thin-plate splines and the decomposition of deformationsIEEE T Pattern Anal, 11 (1989), pp. 567-585
- Brincat and Connor, 2004Underlying principles of visual shape selectivity in posterior inferotemporal cortexNat. Neurosci., 7 (2004), pp. 880-886
- Cootes et al., 2001Active appearance modelsIEEE Trans. Pattern Anal. Mach. Intell., 23 (2001), pp. 681-685
- Cowen et al., 2014Neural portraits of perception: Reconstructing face images from evoked brain activityNeuroimage, 94 (2014), pp. 12-22
- Edwards et al., 1998Edwards, G.J., Taylor, C.J., and Cootes, T.F. (1998). Interpreting face images using active appearance models. Automatic Face and Gesture Recognition - Third IEEE International Conference Proceedings, 300–305.
- Freiwald and Tsao, 2010Functional compartmentalization and viewpoint generalization within the macaque face-processing systemScience, 330 (2010), pp. 845-851
- Freiwald et al., 2009A face feature space in the macaque temporal lobeNat. Neurosci., 12 (2009), pp. 1187-1196
- Grimaldi et al., 2016Anatomical connections of the functionally-defined “face patches” in the macaque monkeyNeuron, 90 (2016), pp. 1325-1342
- Hung et al., 2012Medial axis shape coding in macaque inferotemporal cortexNeuron, 74 (2012), pp. 1099-1113
- Ito et al., 1995Size and position invariance of neuronal responses in monkey inferotemporal cortexJ. Neurophysiol., 73 (1995), pp. 218-226
- Jiang et al., 2008Calculating confidence intervals for prediction error in microarray classification using resamplingStat. Appl. Genet. Mol. Biol., 7 (2008)Article 8
- Kay et al., 2008Identifying natural images from human brain activityNature, 452 (2008), pp. 352-355
- Kumar et al., 2016Kumar, A., Rangjan, R., Patel, V., and Chellappa, R. (2016). Face alignment by local deep descriptor regression. arXiv, arXiv:1601.07950. https://arxiv.org/abs/1601.07950.
- Leopold et al., 2006Norm-based face encoding by single neurons in the monkey inferotemporal cortexNature, 442 (2006), pp. 572-575
- Lin and Tegmark, 2016Lin, H., and Tegmark, M. (2016). Why does deep and cheap learning work so well? arXiv., arXiv:1608.08225. https://arxiv.org/abs/1608.08225.
- Majaj et al., 2015Simple learned weighted sums of inferior temporal neuronal firing rates accurately predict human core object recognition performanceJ. Neurosci., 35 (2015), pp. 13402-13418
- Moeller et al., 2008Patches with links: A unified system for processing faces in the macaque temporal lobeScience, 320 (2008), pp. 1355-1359
- Nestor et al., 2016Feature-based face representations and image reconstruction from behavioral and neural dataProc. Natl. Acad. Sci. USA, 113 (2016), pp. 416-421
- Ohayon and Tsao, 2012MR-guided stereotactic navigationJ. Neurosci. Methods, 204 (2012), pp. 389-397
- Quiroga et al., 2005Invariant visual representation by single neurons in the human brainNature, 435 (2005), pp. 1102-1107
- Riesenhuber and Poggio, 1999Hierarchical models of object recognition in cortexNat. Neurosci., 2 (1999), pp. 1019-1025
- Rigotti et al., 2013The importance of mixed selectivity in complex cognitive tasksNature, 497 (2013), pp. 585-590
- Schwartz et al., 2006Spike-triggered neural characterizationJ. Vis., 6 (2006), pp. 484-507
- Sinha et al., 2006Face recognition by humans: Nineteen results all computer vision researchers should know aboutP. IEEE, 94 (2006), pp. 1948-1962
- Sirovich and Kirby, 1987Low-dimensional procedure for the characterization of human facesJ. Opt. Soc. Am. A, 4 (1987), pp. 519-524
- Tanaka, 1996Inferotemporal cortex and object visionAnnu. Rev. Neurosci., 19 (1996), pp. 109-139
- Tsao et al., 2003Faces and objects in macaque cerebral cortexNat. Neurosci., 6 (2003), pp. 989-995
- Tsao et al., 2006A cortical region consisting entirely of face-selective cellsScience, 311 (2006), pp. 670-674
- Tsao et al., 2008Comparing face patch systems in macaques and humansProc. Natl. Acad. Sci. USA, 105 (2008), pp. 19514-19519
- Turk and Pentland, 1991Turk, M.A., and Pentland, A.P. (1991). Face recognition using Eigenfaces. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 586–591.
- Valentine, 1991A unified account of the effects of distinctiveness, inversion, and race in face recognitionQ. J. Exp. Psychol. A, 43 (1991), pp. 161-204
- Vogels, 2016Sources of adaptation of inferior temporal cortical responsesCortex, 80 (2016), pp. 185-195
- Yamins et al., 2014Performance-optimized hierarchical models predict neural responses in higher visual cortexProc. Natl. Acad. Sci. USA, 111 (2014), pp. 8619-8624
Cited by (415)
Neural Dedifferentiation in the Aging Brain
2019, Trends in Cognitive SciencesCognitive computational neuroscience
2018, Nature NeuroscienceRecurrent world models facilitate policy evolution
2018, Advances in Neural Information Processing Systems
- 3
- Lead Contact