Data availability 数据可用性
数据将在请求后提供。
Algorithm 1: The polynomially weighted average forecaster with multiple learning rates (ML-Poly) |
---|
Initialization: and For each instance |
0. pick the learning rates |
1. form the mixture defined component-wise by |
where denotes the vector of non-negative parts of the components of |
2. output prediction |
3. for each expert k update the regret |
Algorithm 1: The polynomially weighted average forecaster with multiple learning rates (ML-Poly) |
---|
Initialization: and For each instance |
0. pick the learning rates |
1. form the mixture defined component-wise by |
where denotes the vector of non-negative parts of the components of |
2. output prediction |
3. for each expert k update the regret |
Table 1. Summary statistics for all variables.
表 1. 所有变量的汇总统计。
Variable 变量 | Mean 均值 | Std.Dev. 标准偏差 | Median 中位数 | Skewness 偏度 | Kurtosis 库特 osis | Jarque-Bera 贾克-贝拉 | ADF tests ADF 测试 |
---|---|---|---|---|---|---|---|
RVD | 2.643 | 3.080 | 1.746 | 3.627 | 20.212 | 18357.367*** | −7.198*** -7.198*** |
RVW | 2.641 | 1.901 | 2.076 | 1.904 | 5.070 | 1590.238*** | −6.259*** -6.259*** |
RVM | 2.644 | 1.391 | 2.271 | 1.078 | 0.946 | 198.212*** | −4.184*** -4.184*** |
RSK | 0.013 | 2.046 | 0.000 | −0.178 -0.178 | 1.677 | 117.814*** | −9.691*** -9.691*** |
RSK-5 | 0.013 | 0.905 | 0.040 | −0.168 -0.168 | 0.388 | 10.880*** | −9.863*** -9.863*** |
RSK-22 | 0.007 | 0.431 | 0.070 | −0.450 -0.450 | −0.228 -0.228 | 31.778*** | −5.493*** -5.493*** |
RKU | 11.510 | 10.970 | 7.565 | 2.618 | 8.934 | 4270.228*** | −9.489*** -9.489*** |
RKU-5 | 11.522 | 4.714 | 11.028 | 0.969 | 1.484 | 235.034*** | −8.209*** -8.209*** |
RKU-22 | 11.501 | 2.535 | 11.662 | −0.143 -0.143 | −0.061 -0.061 | 2.231 | −3.977** -3.977 |
HRSK | −0.872 -0.872 | 111.395 | −0.421 -0.421 | −0.909 -0.909 | 13.946 | 7878.071*** | −9.355*** -9.355*** |
HRSK-5 | −0.903 -0.903 | 48.766 | 0.581 | −0.636 -0.636 | 4.010 | 696.175*** | −9.433*** -9.433*** |
HRSK-22 | −1.202 -1.202 | 24.613 | 0.669 | −0.437 -0.437 | −0.076 -0.076 | 34.135*** | −4.881*** -4.881*** |
HRKU | 406.553 | 829.222 | 103.908 | 4.479 | 27.733 | 33808.896*** | −10.083*** -10.083*** |
HRKU-5 | 407.466 | 359.508 | 314.302 | 2.017 | 5.853 | 1979.390*** | −9.284*** -9.284*** |
HRKU-22 | 406.668 | 174.354 | 405.114 | 0.281 | −0.094 -0.094 | 16.152*** | −4.281*** -4.281*** |
Table 2. Full sample estimation results.
表 2. 全样本估计结果。
MODEL | HAR | HAR-LOW | HAR-ODD | HAR-EVEN | HAR-ALL |
---|---|---|---|---|---|
Panel A: h = 1 图 A:h = 1 | |||||
RVD | 0.151*** | 0.141*** | 0.129*** | 0.160*** | 0.136*** |
RVW | 0.257*** | 0.260*** | 0.252*** | 0.260*** | 0.252*** |
RVM | 0.056 | 0.010 | 0.054 | 0.021 | 0.023 |
RSK | −0.103*** -0.103*** | −0.308*** -0.308*** | −0.275*** -0.275*** | ||
RSK-5 | −0.101** -0.101 | −0.251*** -0.251*** | −0.207** -0.207 | ||
RSK-22 | −0.029 -0.029 | 0.007 | 0.020 | ||
HRSK | 0.233*** | 0.191** | |||
HRSK-5 | 0.157* | 0.098 | |||
HRSK-22 | −0.010 -0.010 | −0.041 -0.041 | |||
RKU | −0.061* -0.061 | 0.019 | 0.017 | ||
RKU-5 | −0.047 -0.047 | 0.140 | 0.193 | ||
RKU-22 | −0.084* -0.084 | −0.237* -0.237 | −0.246* -0.246 | ||
HRKU | −0.077 -0.077 | −0.072 -0.072 | |||
HRKU-5 | −0.188 -0.188 | −0.231* -0.231 | |||
HRKU-22 | 0.157 | 0.157 | |||
Panel B: h = 5 图 B:h = 5 | |||||
RVD | 0.483*** | 0.493*** | 0.456*** | 0.514*** | 0.486*** |
RVW | 0.265*** | 0.250*** | 0.264*** | 0.246*** | 0.243*** |
RVM | 0.115*** | 0.067* | 0.121*** | 0.072* | 0.080* |
RSK | −0.103*** -0.103*** | −0.269*** -0.269*** | −0.225*** -0.225*** | ||
RSK-5 | −0.128*** -0.128*** | −0.290*** -0.290*** | −0.236*** -0.236*** | ||
RSK-22 | −0.016 -0.016 | 0.071 | 0.090 | ||
HRSK | 0.193*** | 0.135* | |||
HRSK-5 | 0.170** | 0.096 | |||
HRSK-22 | −0.056 -0.056 | −0.097 -0.097 | |||
RKU | −0.113*** -0.113*** | −0.059 -0.059 | −0.040 -0.040 | ||
RKU-5 | −0.024 -0.024 | 0.247** | 0.315*** | ||
RKU-22 | −0.121*** -0.121*** | −0.395*** -0.395*** | −0.414*** -0.414*** | ||
HRKU | −0.049 -0.049 | −0.069 -0.069 | |||
HRKU-5 | −0.271** -0.271 | −0.334*** -0.334*** | |||
HRKU-22 | 0.275** | 0.281** | |||
Panel C: h = 22 图 C:h = 22 | |||||
RVD | 0.249*** | 0.239*** | 0.238*** | 0.255*** | 0.241*** |
RVW | 0.161*** | 0.149*** | 0.170*** | 0.146*** | 0.153*** |
RVM | 0.285*** | 0.214*** | 0.290*** | 0.201*** | 0.206*** |
RSK | −0.087*** -0.087*** | −0.199** -0.199 | −0.133* -0.133 | ||
RSK-5 | −0.101*** -0.101*** | −0.100 -0.100 | −0.051 -0.051 | ||
RSK-22 | −0.003 -0.003 | 0.032 | 0.107 | ||
HRSK | 0.123* | 0.053 | |||
HRSK-5 | −0.023 -0.023 | −0.063 -0.063 | |||
HRSK-22 | 0.046 | −0.100 -0.100 | |||
RKU | −0.091** -0.091 | −0.156 -0.156 | −0.127 -0.127 | ||
RKU-5 | −0.019 -0.019 | −0.112 -0.112 | −0.004 -0.004 | ||
RKU-22 | −0.275*** -0.275*** | −0.515*** -0.515*** | −0.565*** -0.565*** | ||
HRKU | 0.077 | 0.044 | |||
HRKU-5 | 0.097 | −0.022 -0.022 | |||
HRKU-22 | 0.256* | 0.288* |
Fig. 1a. Variable importance for four machine learning models based on SHAP in day-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 1a. 基于 SHAP 的四种机器学习模型在日前预测中的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Fig. 1b. Variable importance for four machine learing models based on SHAP in week-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 1b. 基于 SHAP 的四个机器学习模型在一周前预测中的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响的范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Fig. 1c. Variable importance for four machine learning models based on SHAP in month-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 1c. 基于 SHAP 的四种机器学习模型在月度预测中的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Table 3. Out-of-sample forecasting results during COVID-19 based on the rolling window method.
表 3. 基于滚动窗口方法的 COVID-19 期间样本外预测结果。
Table 4. Out-of-sample forecast accuracy (MCS) during COVID-19 based on the rolling window method.
表 4. 基于滚动窗口方法的 COVID-19 期间的样本外预测准确性(MCS)。
Models 模型 | Panel A: h = 1-day 图 A:h = 1 天 | Panel B: h = 1-week 图 B:h = 1 周 | Panel C: h = 1-month 图 C:h = 1 个月 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range 范围 | SemiQ 半定量 | Range 范围 | SemiQ 半定量 | Range 范围 | SemiQ 半定量 | |||||||
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
HAR | 0.035 | 0.271 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-LOW | 0.021 | 0.325 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-ODD | 0.118 | 0.271 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-EVEN | 0.021 | 0.271 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-ALL | 0.035 | 0.271 | 0.000 | 0.000 | 0.075 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-ALL-LASSO | 0.035 | 0.271 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-ALL-EN | 0.035 | 0.271 | 0.000 | 0.000 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-ALL-GBDT | 0.152 | 0.325 | 0.000 | 0.000 | 0.022 | 0.285 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
HAR-ALL-RF | 0.118 | 0.271 | 0.000 | 0.000 | 0.335 | 0.669 | 0.000 | 0.000 | 1.000* | 1.000* | 1.000* | 1.000* |
MEAN | 0.508 | 0.444 | 0.000 | 0.000 | 0.722 | 0.669 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
MEDIAN | 0.921 | 0.736 | 0.000 | 0.000 | 0.722 | 0.961 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
TRIMMED MEAN 修剪均值 | 0.921 | 0.736 | 0.921 | 0.682 | 0.722 | 0.961 | 0.615 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |
DMSPE(1) | 0.715 | 0.736 | 0.000 | 0.000 | 0.722 | 0.848 | 0.615 | 0.961 | 0.001 | 0.000 | 0.001 | 0.000 |
DMSPE(0.9) | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* | 0.001 | 0.000 | 0.000 | 0.000 |
ML-Poly ML-多边形 | 0.035 | 0.271 | 0.000 | 0.000 | 0.335 | 0.669 | 0.000 | 0.000 | 0.336 | 0.471 | 0.336 | 0.471 |
Table 5. Out-of-sample forecasting results during COVID-19 based on the recursive window method.
表 5. 基于递归窗口方法的 COVID-19 期间样本外预测结果。
Table 6. Full sample estimation results of positive volatility.
表 6. 正向波动率的完整样本估计结果。
MODEL | HAR-PRV | HAR-PRV-LOW | HAR-PRV-ODD | HAR-PRV-EVEN | HAR-PRV-ALL |
---|---|---|---|---|---|
Panel A: h = 1 图 A:h = 1 | |||||
PRVD | 0.073* | 0.083 | 0.088* | 0.052 | 0.070 |
PRVW | 0.221*** | 0.247* | 0.242*** | 0.216 | 0.241* |
PRVM | 0.062 | 0.012*** | 0.033 | 0.039*** | 0.012*** |
RSK | −0.122*** -0.122*** | −0.276*** -0.276*** | −0.247*** -0.247*** | ||
RSK-5 | −0.117** -0.117 | −0.164* -0.164 | −0.124 -0.124 | ||
RSK-22 | −0.051 -0.051 | −0.106 -0.106 | −0.101 -0.101 | ||
HRSK | 0.166* | 0.134* | |||
HRSK-5 | 0.038 | −0.021 -0.021 | |||
HRSK-22 | 0.083 | 0.077 | |||
RKU | −0.006 -0.006 | 0.106 | 0.109 | ||
RKU-5 | −0.012 -0.012 | 0.152 | 0.231** | ||
RKU-22 | −0.090 -0.090 | −0.342* -0.342 | −0.347** -0.347 | ||
HRKU | −0.091 -0.091 | −0.107 -0.107 | |||
HRKU-5 | −0.157 -0.157 | −0.243* -0.243 | |||
HRKU-22 | 0.250* | 0.261* | |||
Panel B: h = 5 图 B:h = 5 | |||||
PRVD | 0.481*** | 0.504*** | 0.490*** | 0.473*** | 0.489*** |
PRVW | 0.240*** | 0.266*** | 0.273*** | 0.222*** | 0.258*** |
PRVM | 0.115*** | 0.043 | 0.081* | 0.074* | 0.042 |
RSK | −0.137*** -0.137*** | −0.244*** -0.244*** | −0.200*** -0.200*** | ||
RSK-5 | −0.155*** -0.155*** | −0.239*** -0.239*** | −0.190 -0.190 | ||
RSK-22 | −0.059* -0.059 | −0.102 -0.102 | −0.087 -0.087 | ||
HRSK | 0.125* | 0.066 | |||
HRSK-5 | 0.077 | 0.008 | |||
HRSK-22 | 0.079 | 0.064 | |||
RKU | −0.063* -0.063 | 0.490 | 0.027 | 0.059 | |
RKU-5 | −0.011 -0.011 | 0.273 | 0.198* | 0.280** | |
RKU-22 | −0.136*** -0.136*** | 0.081 | −0.531*** -0.531*** | −0.533*** -0.533*** | |
HRKU | −0.063 -0.063 | −0.117** -0.117 | |||
HRKU-5 | −0.197* -0.197* | −0.290** -0.290 | |||
HRKU-22 | 0.396*** | 0.402*** | |||
Panel C: h = 22 图 C:h = 22 | |||||
PRVD | 0.231*** | 0.241*** | 0.244*** | 0.224*** | 0.241*** |
PRVW | 0.096** | 0.107** | 0.132*** | 0.089* | 0.111** |
PRVM | 0.354*** | 0.242*** | 0.322*** | 0.247*** | 0.235*** |
RSK | −0.127*** -0.127*** | −0.247*** -0.247*** | −0.186** -0.186** | ||
RSK-5 | −0.136*** -0.136*** | −0.191** -0.191 | −0.157* -0.157 | ||
RSK-22 | −0.079* -0.079 | −0.068 -0.068 | 0.023 | ||
HRSK | 0.131* | 0.072 | |||
HRSK-5 | 0.028 | 0.024 | |||
HRSK-22 | 0.064 | −0.092 -0.092 | |||
RKU | −0.075** -0.075 | −0.178* -0.178 | −0.159 -0.159 | ||
RKU-5 | 0.002 | −0.192* -0.192* | −0.118 -0.118 | ||
RKU-22 | −0.313*** -0.313*** | −0.579*** -0.579*** | −0.538*** -0.538*** | ||
HRKU | 0.137 | 0.096 | |||
HRKU-5 | 0.204* | 0.121 | |||
HRKU-22 | 0.293** | 0.235* |
Fig. 2a. Variable importance of positive volatility for four machine learning models based on SHAP in day-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 2a. 基于 SHAP 的四个机器学习模型在日前预测中对正波动性的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响的范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Fig. 2b. Variable importance of positive volatility for four machine learning models based on SHAP in week-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 2b. 基于 SHAP 的四个机器学习模型在周预测中正波动性的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Fig. 2c. Variable importance of positive volatility for four machine learning models based on SHAP in month-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 2c. 基于 SHAP 的四种机器学习模型在月度预测中对正波动性的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响的范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Table 7. Full sample estimation results of negative volatility.
表 7. 负波动率的完整样本估计结果。
MODEL | HAR-NRV | HAR-NRV-LOW | HAR-NRV-ODD | HAR-NRV-EVEN | HAR-NRV-ALL |
---|---|---|---|---|---|
Panel A: h = 1 图 A:h = 1 | |||||
NRVD | 0.118*** | 0.113 | 0.098** | 0.138 | 0.120** |
NRVW | 0.161*** | 0.132** | 0.131** | 0.175*** | 0.132** |
NRVM | 0.091* | 0.076** | 0.119** | 0.061*** | 0.089* |
RSK | −0.032 -0.032 | −0.231** -0.231 | −0.196** -0.196** | ||
RSK-5 | −0.088* -0.088 | −0.303*** -0.303*** | −0.272*** -0.272*** | ||
RSK-22 | −0.002 -0.002 | 0.107 | 0.131 | ||
HRSK | 0.226** | 0.193* | |||
HRSK-5 | 0.234** | 0.202* | |||
HRSK-22 | −0.083 -0.083 | −0.141 -0.141 | |||
RKU | −0.074* -0.074 | 0.000 | −0.047 -0.047 | ||
RKU-5 | −0.045 -0.045 | 0.119 | 0.106 | ||
RKU-22 | −0.078* -0.078 | −0.131 -0.131 | −0.103 -0.103 | ||
HRKU | −0.079 -0.079 | −0.027 -0.027 | |||
HRKU-5 | −0.172 -0.172 | −0.136 -0.136 | |||
HRKU-22 | 0.056 | 0.015 | |||
Panel B: h = 5 图 B:h = 5 | |||||
NRVD | 0.464*** | 0.456*** | 0.428*** | 0.498*** | 0.463*** |
NRVW | 0.195*** | 0.148*** | 0.167*** | 0.199*** | 0.153*** |
NRVM | 0.158*** | 0.164*** | 0.214*** | 0.122*** | 0.177*** |
RSK | −0.064* -0.064 | −0.257*** -0.257*** | −0.215*** -0.215*** | ||
RSK-5 | −0.120*** -0.120*** | −0.337*** -0.337*** | −0.292*** -0.292*** | ||
RSK-22 | 0.041 | 0.230*** | 0.259*** | ||
HRSK | 0.217*** | 0.179** | |||
HRSK-5 | 0.244*** | 0.183** | |||
HRSK-22 | −0.162* -0.162* | −0.232*** -0.232*** | |||
RKU | −0.108*** -0.108*** | −0.076 -0.076 | −0.101 -0.101 | ||
RKU-5 | −0.014 -0.014 | 0.292** | 0.313** | ||
RKU-22 | −0.116*** -0.116*** | −0.268* -0.268 | −0.265* -0.265 | ||
HRKU | −0.040 -0.040 | −0.007 -0.007 | |||
HRKU-5 | −0.319** -0.319 | −0.320** -0.320 | |||
HRKU-22 | 0.149 | 0.124 | |||
Panel C: h = 22 图 C:h = 22 | |||||
NRVD | 0.253*** | 0.235*** | 0.242*** | 0.257*** | 0.239*** |
NRVW | 0.184*** | 0.182*** | 0.185*** | 0.187*** | 0.187*** |
NRVM | 0.233*** | 0.222*** | 0.291*** | 0.169*** | 0.210*** |
RSK | −0.040 -0.040 | −0.128* -0.128 | −0.063 -0.063 | ||
RSK-5 | −0.041 -0.041 | −0.005 -0.005 | 0.061 | ||
RSK-22 | 0.069* | 0.121 | 0.181* | ||
HRSK | 0.099 | 0.024 | |||
HRSK-5 | −0.054 -0.054 | −0.131* -0.131 | |||
HRSK-22 | 0.025 | −0.104 -0.104 | |||
RKU | −0.078* -0.078 | −0.074 -0.074 | −0.056 -0.056 | ||
RKU-5 | −0.035 -0.035 | 0.041 | 0.145 | ||
RKU-22 | −0.226*** -0.226*** | −0.502*** -0.502*** | −0.577*** -0.577*** | ||
HRKU | −0.009 -0.009 | −0.020 -0.020 | |||
HRKU-5 | −0.079 -0.079 | −0.195* -0.195 | |||
HRKU-22 | 0.271* | 0.336** |
Fig. 3a. Variable importance of negative volatility for four machine learning models based on SHAP in day-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 3a. 基于 SHAP 的四个机器学习模型在日前预测中对负波动性的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响的范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Fig. 3b. Variable importance of negative volatility for four machine learning models based on SHAP in week-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 3b. 基于 SHAP 的四个机器学习模型在周预测中负波动性的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Fig. 3c. Variable importance of negative volatility for four machine learning models based on SHAP in month-ahead forecasts. The left side of each model's results are SHAP summary plots, showing the range and distribution of the impacts of the explanatory variable on the RV prediction.
图 3c. 基于 SHAP 的四个机器学习模型在月度预测中对负波动性的变量重要性。每个模型的左侧结果为 SHAP 摘要图,显示了解释变量对 RV 预测影响的范围和分布。
The explanatory variables are listed on the y-axis in the order of significance from top to bottom. The color of each dot is determined by the explanatory variable's value, which ranges from blue (low) to red (high).
解释变量按从上到下的重要性顺序列在 y 轴上。每个点的颜色由解释变量的值决定,其范围从蓝色(低)到红色(高)。
The right side are variable importance of only the higher moments (not considering the lag of RV, i.e. RVD, RVW, RVM) measured by the mean of SHAP absolute values.
右侧为仅考虑高阶矩(不考虑 RV 的滞后,即 RVD、RVW、RVM)的变量重要性,通过 SHAP 绝对值的平均值进行测量。
Table 8. Out-of-sample forecast accuracy (MSE, RMSE, R2oos) based on the rolling window method for positive volatility during COVID-19.
表 8. 基于滚动窗口法对 COVID-19 期间正波动率的样本外预测准确性(均方误差,均方根误差,R 2 oos)。
Table 9. Out-of-sample forecast accuracy for positive volatility based on the rolling window (MCS).
表 9. 基于滚动窗口(MCS)的正波动率样本外预测准确性。
Models 模型 | Panel A: h = 1-day 图 A:h = 1 天 | Panel B: h = 1-week 图 B:h = 1 周 | Panel C: h = 1-month 图 C:h = 1 个月 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range 范围 | SemiQ 半定量 | Range 范围 | SemiQ 半定量 | Range 范围 | SemiQ 半定量 | |||||||
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
HAR-PRV | 0.265 | 0.308 | 0.000 | 0.000 | 0.143 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-LOW | 0.135 | 0.546 | 0.000 | 0.000 | 0.131 | 0.111 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-ODD | 0.149 | 0.308 | 0.000 | 0.000 | 0.131 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-EVEN | 0.135 | 0.308 | 0.000 | 0.000 | 0.131 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-ALL | 0.135 | 0.308 | 0.000 | 0.000 | 0.131 | 0.047 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-LASSO | 0.135 | 0.308 | 0.000 | 0.000 | 0.142 | 0.078 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-EN | 0.149 | 0.308 | 0.000 | 0.000 | 0.131 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-GBDT | 0.993 | 1.000* | 0.000 | 1.000* | 0.143 | 0.078 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-PRV-RF | 0.265 | 0.308 | 0.000 | 0.000 | 0.440 | 0.997 | 0.000 | 0.997 | 1.000* | 1.000* | 1.000* | 1.000* |
MEAN | 0.832 | 0.600 | 0.000 | 0.000 | 0.395 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
MEDIAN | 0.993 | 0.878 | 0.000 | 0.000 | 0.440 | 0.997 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
TRIMMED MEAN 修剪均值 | 1.000* | 0.878 | 1.000* | 0.872 | 1.000* | 0.997 | 1.000* | 0.997 | 0.000 | 0.000 | 0.000 | 0.000 |
DMSPE(1) | 0.897 | 0.684 | 0.000 | 0.000 | 0.440 | 1.000* | 0.000 | 1.000* | 0.000 | 0.000 | 0.001 | 0.000 |
DMSPE(0.9) | 0.951 | 0.878 | 0.000 | 0.000 | 0.440 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ML-Poly ML-多边形 | 0.897 | 0.844 | 0.000 | 0.000 | 0.395 | 0.985 | 0.000 | 0.000 | 0.235 | 0.704 | 0.235 | 0.704 |
Table 10. Out-of-sample forecast accuracy (MSE, RMSE, R2oos) based on the rolling window method for negative volatility during COVID-19.
表 10. 基于滚动窗口法对 COVID-19 期间负波动率的样本外预测准确性(均方误差,均方根误差,R 2 oos)。
Table 11. Out-of-sample forecast accuracy for negative volatility based on the rolling window (MCS).
表 11. 基于滚动窗口(MCS)的负波动率样本外预测准确性。
Models 模型 | Panel A: h = 1-day 图 A:h = 1 天 | Panel B: h = 1-week 图 B:h = 1 周 | Panel C: h = 1-month 图 C:h = 1 个月 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Range 范围 | SemiQ 半定量 | Range 范围 | SemiQ 半定量 | Range 范围 | SemiQ 半定量 | |||||||
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
HAR-NRV | 0.031 | 0.226 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-NRV-LOW | 0.076 | 0.338 | 0.076 | 0.142 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-NRV-ODD | 0.034 | 0.338 | 0.015 | 0.130 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-NRV-EVEN | 0.034 | 0.329 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-NRV-ALL | 1.000* | 1.000* | 1.000* | 1.000* | 0.095 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-NRV-LASSO | 0.034 | 0.226 | 0.015 | 0.000 | 0.003 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-NRV-EN | 0.034 | 0.226 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HAR-NRV-GBDT | 0.031 | 0.338 | 0.000 | 0.130 | 0.014 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
HAR-NRV-RF | 0.031 | 0.226 | 0.000 | 0.000 | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* | 1.000* |
MEAN | 0.031 | 0.329 | 0.015 | 0.000 | 0.869 | 0.208 | 0.381 | 0.106 | 0.000 | 0.000 | 0.000 | 0.000 |
MEDIAN | 0.031 | 0.338 | 0.000 | 0.000 | 0.869 | 0.208 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
TRIMMED MEAN 修剪均值 | 0.031 | 0.338 | 0.015 | 0.130 | 0.869 | 0.218 | 0.381 | 0.153 | 0.000 | 0.000 | 0.001 | 0.000 |
DMSPE(1) | 0.034 | 0.338 | 0.015 | 0.130 | 0.982 | 0.281 | 0.982 | 0.387 | 0.006 | 0.000 | 0.005 | 0.000 |
DMSPE(0.9) | 0.034 | 0.338 | 0.015 | 0.000 | 0.869 | 0.218 | 0.381 | 0.153 | 0.000 | 0.000 | 0.000 | 0.000 |
ML-Poly ML-多边形 | 0.034 | 0.226 | 0.015 | 0.000 | 0.869 | 0.563 | 0.381 | 0.563 | 0.069 | 0.043 | 0.069 | 0.043 |
Table 12. Out-of-sample forecast accuracy (MSE, RMSE, R2oos) based on the recursive window for positive volatility during COVID-19.
表 12. 基于 COVID-19 期间正波动性的递归窗口的样本外预测准确性(均方误差,均方根误差,R 2 oos)。
Table 13. Out-of-sample forecast accuracy (MSE, RMSE, R2oos) based on the recursive window for negative volatility during COVID-19.
表 13. 基于 COVID-19 期间负波动性的递归窗口的样本外预测准确性(均方误差,均方根误差,R 2 oos)。
Multimedia component 1.
Multimedia component 1.