这是用户在 2025-6-6 15:45 为 https://app.immersivetranslate.com/pdf-pro/970078c0-ad25-4dea-a43c-881aea699a27/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

HAUSDORFF DIMENSION AND QUASICONFORMAL MAPPINGS
HAUSDORFF 维数与拟共形映射

F. W. GEHRING \dagger AND J. VÄISÄLÄDedicated to the memory of A. S. Besicovitch
为纪念 A. S. Besicovitch

  1. Introduction. In this paper we study what happens to the Hausdorff dimension of a set A A AA, denoted by H - dim A dim A dim A\operatorname{dim} A, under an n n nn-dimensional quasiconformal mapping f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} with A D A D A sub DA \subset D. It is clear that
    引言。在本文中,我们研究在 n n nn 维拟共形映射 f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} 作用下,集合 A A AA 的 Hausdorff 维数 H - dim A dim A dim A\operatorname{dim} A 会发生什么。很明显,
H dim f [ A ] = H dim A H dim f [ A ] = H dim A H-dim f[A]=H-dim A\mathrm{H}-\operatorname{dim} f[A]=\mathrm{H}-\operatorname{dim} A
if f f ff is a diffeomorphism or, more generally, if f f ff and f 1 f 1 f^(-1)f^{-1} are locally Lipschitzian. We show first, however, that (1) need not hold if f f ff is a general quasiconformal mapping. Next we give bounds for H -dim f [ A ] f [ A ] f[A]f[A] in terms of H -dim A , n A , n A,nA, n, and the maximal dilatation of f f ff. In particular, we prove that H - dim A = 0 implies H dim A = 0 implies H dim A=0impliesH\operatorname{dim} A=0 \mathrm{implies} \mathrm{H} - dim f [ A ] = 0 dim f [ A ] = 0 dim f[A]=0\operatorname{dim} f[A]=0, and we conjecture that H dim A = n H dim A = n H-dim A=n\mathrm{H}-\operatorname{dim} A=n implies H dim f [ A ] = n H dim f [ A ] = n H-dim f[A]=n\mathrm{H}-\operatorname{dim} f[A]=n, or equivalently that H - dim A < n dim A < n dim A < n\operatorname{dim} A<n implies H - dim f [ A ] < n dim f [ A ] < n dim f[A] < n\operatorname{dim} f[A]<n. We establish this conjecture for the case where n = 2 n = 2 n=2n=2 and then prove that, for general n , H n , H n,Hn, \mathrm{H} - dim f [ A ] < n dim f [ A ] < n dim f[A] < n\operatorname{dim} f[A]<n whenever A A AA is contained in an m m mm-dimensional hyperplane with m < n m < n m < nm<n. An example shows that H-dim f [ A ] f [ A ] f[A]f[A] can be arbitrarily close to n n nn, even when A A AA is a 1 -dimensional segment.
如果 f f ff 是一个微分同胚,或者更一般地,如果 f f ff f 1 f 1 f^(-1)f^{-1} 是局部 Lipschitz 的。然而,我们首先证明,如果 f f ff 是一个一般的拟共形映射,则 (1) 不一定成立。接下来,我们给出 H-维数 f [ A ] f [ A ] f[A]f[A] 关于 H-维数 A , n A , n A,nA, n f f ff 的最大扩张的界限。特别地,我们证明了 H- dim A = 0 implies H dim A = 0 implies H dim A=0impliesH\operatorname{dim} A=0 \mathrm{implies} \mathrm{H} - dim f [ A ] = 0 dim f [ A ] = 0 dim f[A]=0\operatorname{dim} f[A]=0 ,并猜想 H dim A = n H dim A = n H-dim A=n\mathrm{H}-\operatorname{dim} A=n 蕴含 H dim f [ A ] = n H dim f [ A ] = n H-dim f[A]=n\mathrm{H}-\operatorname{dim} f[A]=n ,或者等价地,H- dim A < n dim A < n dim A < n\operatorname{dim} A<n 蕴含 H- dim f [ A ] < n dim f [ A ] < n dim f[A] < n\operatorname{dim} f[A]<n 。我们为 n = 2 n = 2 n=2n=2 的情况建立了这个猜想,然后证明,对于一般的 n , H n , H n,Hn, \mathrm{H} - dim f [ A ] < n dim f [ A ] < n dim f[A] < n\operatorname{dim} f[A]<n ,只要 A A AA 包含在一个 m m mm 维的超平面中,并且 m < n m < n m < nm<n 。一个例子表明,即使当 A A AA 是一个一维线段时,H-dim f [ A ] f [ A ] f[A]f[A] 也可以任意接近 n n nn

2. Notation. We shall use the terminology and notation for quasiconformal mappings given in [16]. Moreover, since we are concerned only with local properties which are invariant under Möbius transformations, we shall consider only quasiconformal mappings f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} where D D DD and D D D^(')D^{\prime} are domains in the non-compact n n nn-dimensional Euclidean space R n R n R^(n)R^{n}.
2. 符号说明。我们将使用文献[16]中给出的拟共形映射的术语和符号。此外,由于我们只关心在 Möbius 变换下保持不变的局部性质,我们将只考虑拟共形映射 f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} ,其中 D D DD D D D^(')D^{\prime} 是非紧致 n n nn 维欧几里得空间 R n R n R^(n)R^{n} 中的区域。
For a ( 0 , ) a ( 0 , ) a in(0,oo)a \in(0, \infty), the Hausdorff a-dimensional outer measure of a set A R n A R n A subR^(n)A \subset R^{n} is defined as
对于 a ( 0 , ) a ( 0 , ) a in(0,oo)a \in(0, \infty) ,集合 A R n A R n A subR^(n)A \subset R^{n} 的 Hausdorff a 维外测度定义为
H a ( A ) = lim d 0 ( inf i dia ( A i ) a ) , H a ( A ) = lim d 0 inf i dia A i a , H_(a)(A)=lim_(d rarr0)(i n fsum_(i)dia(A_(i))^(a)),H_{a}(A)=\lim _{d \rightarrow 0}\left(\inf \sum_{i} \operatorname{dia}\left(A_{i}\right)^{a}\right),
where the infimum is taken over all countable coverings of A A AA by sets A i A i A_(i)A_{i} with dia ( A i ) < d dia A i < d dia(A_(i)) < d\operatorname{dia}\left(A_{i}\right)<d. The Hausdorff dimension of A A AA is then given by
其中,infimum 是在所有用满足 dia ( A i ) < d dia A i < d dia(A_(i)) < d\operatorname{dia}\left(A_{i}\right)<d 的集合 A i A i A_(i)A_{i} A A AA 进行可数覆盖的情况下取的。然后, A A AA 的 Hausdorff 维数为
H dim A = inf { a : H a ( A ) = 0 } . H dim A = inf a : H a ( A ) = 0 . H-dim A=i n f{a:H_(a)(A)=0}.\mathrm{H}-\operatorname{dim} A=\inf \left\{a: H_{a}(A)=0\right\} .
Clearly 0 H 0 H 0 <= H0 \leqslant \mathrm{H}-dim A n A n A <= nA \leqslant n.
显然 0 H 0 H 0 <= H0 \leqslant \mathrm{H} -dim A n A n A <= nA \leqslant n

3. We shall need the following generalization of a result due to Mori [13; Lemma 4].
3. 我们需要 Mori [13; 引理 4] 的一个推广结果。
Lemma. Suppose that f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} is an n n nn-dimensional K K KK-quasiconformal mapping, that U U UU is a bounded domain with U ¯ D U ¯ D bar(U)sub D\bar{U} \subset D, and that x U x U x in Ux \in U. Let
引理。假设 f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} 是一个 n n nn 维的 K K KK 拟共形映射, U U UU 是一个有界域,且 U ¯ D U ¯ D bar(U)sub D\bar{U} \subset D ,并且 x U x U x in Ux \in U 。令

M = max y U | y x | , m = min y U | y x | , L = max y U | f ( y ) f ( x ) | , l = min y U | f ( y ) f ( x ) | M = max y U | y x | , m = min y U | y x | , L = max y U | f ( y ) f ( x ) | , l = min y U | f ( y ) f ( x ) | M=max_(y in del U)|y-x|,m=min_(y in del U)|y-x|,L=max_(y in del U)|f(y)-f(x)|,l=min_(y in del U)|f(y)-f(x)|M=\max _{y \in \partial U}|y-x|, m=\min _{y \in \partial U}|y-x|, L=\max _{y \in \partial U}|f(y)-f(x)|, l=\min _{y \in \partial U}|f(y)-f(x)|.
If the ball B n ( f ( x ) , L ) B n ( f ( x ) , L ) B^(n)(f(x),L)B^{n}(f(x), L) is contained in D D D^(')D^{\prime}, then
如果球 B n ( f ( x ) , L ) B n ( f ( x ) , L ) B^(n)(f(x),L)B^{n}(f(x), L) 包含在 D D D^(')D^{\prime} 中,那么
L C l , L C l , L <= Cl,L \leqslant C l,
where C C CC is a finite constant which depends only on n , K n , K n,Kn, K, and M / m M / m M//mM / m.
其中 C C CC 是一个仅依赖于 n , K n , K n,Kn, K M / m M / m M//mM / m 的有限常数。

Proof. Suppose that l < L l < L l < Ll<L and let R R RR denote the image under f 1 f 1 f^(-1)f^{-1} of the spherical ring
证明。假设 l < L l < L l < Ll<L ,并让 R R RR 表示球环在 f 1 f 1 f^(-1)f^{-1} 下的像
R = { y : l < | y f ( x ) | < L } D . R = { y : l < | y f ( x ) | < L } D . R^(')={y:l < |y-f(x)| < L}subD^(').R^{\prime}=\{y: l<|y-f(x)|<L\} \subset D^{\prime} .
Then R R RR is a ring which separates x x xx and a point y U y U y in del Uy \in \partial U from oo\infty and a point z U z U z in del Uz \in \partial U. Hence if Γ Γ Gamma\Gamma is the family of arcs joining the components of C ( R ) C ( R ) C(R)C(R) in R R RR, it follows from the extremal property of the Teichmüller ring in R n [ 4 R n [ 4 R^(n)[4R^{n}[4 and 14], or from [16; 11.9] that
那么 R R RR 是一个环,它将 x x xx 和点 y U y U y in del Uy \in \partial U oo\infty 和点 z U z U z in del Uz \in \partial U 分开。因此,如果 Γ Γ Gamma\Gamma 是连接 C ( R ) C ( R ) C(R)C(R) R R RR 的成分的弧族,那么根据 Teichmüller 环在 R n [ 4 R n [ 4 R^(n)[4R^{n}[4 和 14]中的极值性质,或者根据[16; 11.9],可以得出
M ( Γ ) h n ( | z x | | y x | ) h n ( M m ) M ( Γ ) h n | z x | | y x | h n M m M(Gamma) >= h_(n)((|z-x|)/(|y-x|)) >= h_(n)((M)/(m))M(\Gamma) \geqslant h_{n}\left(\frac{|z-x|}{|y-x|}\right) \geqslant h_{n}\left(\frac{M}{m}\right)
where h n : ( 0 , ) ( 0 , ) h n : ( 0 , ) ( 0 , ) h_(n):(0,oo)rarr(0,oo)h_{n}:(0, \infty) \rightarrow(0, \infty) is positive and decreasing. Then since f f ff is K K KK-quasiconformal
其中 h n : ( 0 , ) ( 0 , ) h n : ( 0 , ) ( 0 , ) h_(n):(0,oo)rarr(0,oo)h_{n}:(0, \infty) \rightarrow(0, \infty) 是正的且递减的。然后由于 f f ff K K KK -拟共形的
M ( Γ ) K M ( f [ Γ ] ) = K ω n 1 ( log L l ) 1 n M ( Γ ) K M ( f [ Γ ] ) = K ω n 1 log L l 1 n M(Gamma) <= KM(f[Gamma])=Komega_(n-1)(log((L)/(l)))^(1-n)M(\Gamma) \leqslant K M(f[\Gamma])=K \omega_{n-1}\left(\log \frac{L}{l}\right)^{1-n}
and (4) follows from (5) and (6).
并且(4)由(5)和(6)得出。

4. The Cantor sets C s n C s n C_(s)^(n)C_{s}{ }^{n}. For each integer n 1 n 1 n >= 1n \geqslant 1 and each s ( 0 , 1 2 ) s 0 , 1 2 s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right) we define a family of Cantor sets C s n C s n C_(s)^(n)C_{s}{ }^{n} as follows. Let Q Q QQ denote the closed unit cube
4. 康托集 C s n C s n C_(s)^(n)C_{s}{ }^{n} 。对于每个整数 n 1 n 1 n >= 1n \geqslant 1 和每个 s ( 0 , 1 2 ) s 0 , 1 2 s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right) ,我们定义一个康托集族 C s n C s n C_(s)^(n)C_{s}{ }^{n} 如下。让 Q Q QQ 表示闭单位立方体
Q = { x = ( x 1 , , x n ) : 0 x i 1 } , Q = x = x 1 , , x n : 0 x i 1 , Q={x=(x_(1),dots,x_(n)):0 <= x_(i) <= 1},Q=\left\{x=\left(x_{1}, \ldots, x_{n}\right): 0 \leqslant x_{i} \leqslant 1\right\},
choose a collection of 2 n 2 n 2^(n)2^{n} disjoint closed cubes Q i Q i Q_(i)Q_{i} of side s s ss in int Q , 1 i 2 n Q , 1 i 2 n Q,1 <= i <= 2^(n)Q, 1 \leqslant i \leqslant 2^{n}, oriented so that for each i i ii there exists a similarity mapping
选择一组 2 n 2 n 2^(n)2^{n} 个互不相交的闭立方体 Q i Q i Q_(i)Q_{i} ,边长为 s s ss ,位于整数集 Q , 1 i 2 n Q , 1 i 2 n Q,1 <= i <= 2^(n)Q, 1 \leqslant i \leqslant 2^{n} 中,方向使得对于每个 i i ii ,存在一个相似映射
g i ( x ) = s x + a i , a i Q g i ( x ) = s x + a i , a i Q g_(i)(x)=sx+a_(i),a_(i)in Qg_{i}(x)=s x+a_{i}, a_{i} \in Q
which maps Q Q QQ onto Q i Q i Q_(i)Q_{i}. Such collections of cubes Q i Q i Q_(i)Q_{i} obviously exist for each s ( 0 , 1 2 ) s 0 , 1 2 s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right). Next for each j 1 j 1 j >= 1j \geqslant 1 let
Q Q QQ 映射到 Q i Q i Q_(i)Q_{i} 。显然,对于每个 s ( 0 , 1 2 ) s 0 , 1 2 s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right) ,都存在这样的立方体集合 Q i Q i Q_(i)Q_{i} 。接下来,对于每个 j 1 j 1 j >= 1j \geqslant 1 ,令
F j = i 1 , , i j = 1 2 n g i 1 g i j [ Q ] F j = i 1 , , i j = 1 2 n g i 1 g i j [ Q ] F_(j)=uuu_(i_(1),dots,i_(j)=1)^(2^(n))g_(i_(1))@dots@g_(i_(j))[Q]F_{j}=\bigcup_{i_{1}, \ldots, i_{j}=1}^{2^{n}} g_{i_{1}} \circ \ldots \circ g_{i_{j}}[Q]
Then { F j } F j {F_(j)}\left\{F_{j}\right\} is a decreasing sequence of compact sets, and each set F j F j F_(j)F_{j} is the union of 2 j n 2 j n 2^(jn)2^{j n} disjoint closed cubes of side s j s j s^(j)s^{j}. Hence
那么 { F j } F j {F_(j)}\left\{F_{j}\right\} 是一个紧集的递减序列,并且每个集合 F j F j F_(j)F_{j} 2 j n 2 j n 2^(jn)2^{j n} 个互不相交的边长为 s j s j s^(j)s^{j} 的闭立方体的并集。因此
C s n = j = 1 F j C s n = j = 1 F j C_(s)^(n)=nnn_(j=1)^(oo)F_(j)C_{s}^{n}=\bigcap_{j=1}^{\infty} F_{j}
is a compact set, and
是一个紧集,并且
H- dim C s n = n log 1 2 log s  H-  dim C s n = n log 1 2 log s " H- "dimC_(s)^(n)=n(log((1)/(2)))/(log s)\text { H- } \operatorname{dim} C_{s}^{n}=n \frac{\log \frac{1}{2}}{\log s}
by, for example, [1; Theorem 3] or [12; Theorem III]. In particular,
例如根据 [1; 定理 3] 或 [12; 定理 III] 可知。特别是
0 < H dim C s . n < n 0 < H dim C s . n < n 0 < H-dimC_(s_(.))^(n) < n0<\mathrm{H}-\operatorname{dim} C_{s_{.}}^{n}<n
and
lim s 0 H dim C s n = 0 , lim s 1 2 H dim C s n = n lim s 0 H dim C s n = 0 , lim s 1 2 H dim C s n = n lim_(s rarr0)H-dimC_(s)^(n)=0,quadlim_(s rarr(1)/(2))H-dimC_(s)^(n)=n\lim _{s \rightarrow 0} \mathrm{H}-\operatorname{dim} C_{s}^{n}=0, \quad \lim _{s \rightarrow \frac{1}{2}} \mathrm{H}-\operatorname{dim} C_{s}^{n}=n
  1. Theorem. For each integer n 2 n 2 n >= 2n \geqslant 2 and each pair of such Cantor sets C s n C s n C_(s)^(n)C_{s}{ }^{n} and C t n C t n C_(t)^(n)C_{t}{ }^{n} there exists a quasiconformal mapping f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} which maps C s n C s n C_(s)^(n)C_{s}{ }^{n} onto C t n C t n C_(t)^(n)C_{t}{ }^{n}.
    定理。对于每个整数 n 2 n 2 n >= 2n \geqslant 2 和每一对这样的康托集 C s n C s n C_(s)^(n)C_{s}{ }^{n} C t n C t n C_(t)^(n)C_{t}{ }^{n} ,存在一个拟共形映射 f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} C s n C s n C_(s)^(n)C_{s}{ }^{n} 映射到 C t n C t n C_(t)^(n)C_{t}{ }^{n}
Proof. Let g i g i g_(i)g_{i} and F j , g i F j , g i F_(j),g_(i)^(')F_{j}, g_{i}{ }^{\prime} and F j F j F_(j)^(')F_{j}{ }^{\prime} denote respectively the similarity mappings and sets corresponding to the constructions for C s n , C t n C s n , C t n C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n} given in § 4 § 4 §4\S 4§. Then it is not difficult to see that there exists a piecewise linear homeomorphism f 1 : R n R n f 1 : R n R n f_(1):R^(n)rarrR^(n)f_{1}: R^{n} \rightarrow R^{n} such that f 1 ( x ) = x f 1 ( x ) = x f_(1)(x)=xf_{1}(x)=x if x R n Q x R n Q x inR^(n)∼Qx \in R^{n} \sim Q and such that for each i i ii
证明。设 g i g i g_(i)g_{i} F j , g i F j , g i F_(j),g_(i)^(')F_{j}, g_{i}{ }^{\prime} F j F j F_(j)^(')F_{j}{ }^{\prime} 分别表示对应于 § 4 § 4 §4\S 4§ 中给出的 C s n , C t n C s n , C t n C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n} 的相似映射和集合。那么不难看出存在一个分段线性同胚 f 1 : R n R n f 1 : R n R n f_(1):R^(n)rarrR^(n)f_{1}: R^{n} \rightarrow R^{n} ,使得当 x R n Q x R n Q x inR^(n)∼Qx \in R^{n} \sim Q f 1 ( x ) = x f 1 ( x ) = x f_(1)(x)=xf_{1}(x)=x ,并且对于每个 i i ii
f 1 ( x ) = g i g i 1 ( x ) f 1 ( x ) = g i g i 1 ( x ) f_(1)(x)=g_(i)^(')@g_(i)^(-1)(x)f_{1}(x)=g_{i}^{\prime} \circ g_{i}^{-1}(x)
if x g i [ Q ] x g i [ Q ] x ing_(i)[Q]x \in g_{i}[Q]. Then f 1 f 1 f_(1)f_{1} is K K KK-quasiconformal for some K K KK and f 1 [ F 1 ] = F 1 f 1 F 1 = F 1 f_(1)[F_(1)]=F_(1)^(')f_{1}\left[F_{1}\right]=F_{1}{ }^{\prime}. Next define f 2 : R n R n f 2 : R n R n f_(2):R^(n)rarrR^(n)f_{2}: R^{n} \rightarrow R^{n} by setting f 2 ( x ) = f 1 ( x ) f 2 ( x ) = f 1 ( x ) f_(2)(x)=f_(1)(x)f_{2}(x)=f_{1}(x) if x R n F 1 x R n F 1 x inR^(n)∼F_(1)x \in R^{n} \sim F_{1} and
如果 x g i [ Q ] x g i [ Q ] x ing_(i)[Q]x \in g_{i}[Q] 。那么 f 1 f 1 f_(1)f_{1} K K KK -拟共形的,对于某些 K K KK f 1 [ F 1 ] = F 1 f 1 F 1 = F 1 f_(1)[F_(1)]=F_(1)^(')f_{1}\left[F_{1}\right]=F_{1}{ }^{\prime} 。接下来定义 f 2 : R n R n f 2 : R n R n f_(2):R^(n)rarrR^(n)f_{2}: R^{n} \rightarrow R^{n} ,通过设置 f 2 ( x ) = f 1 ( x ) f 2 ( x ) = f 1 ( x ) f_(2)(x)=f_(1)(x)f_{2}(x)=f_{1}(x) 如果 x R n F 1 x R n F 1 x inR^(n)∼F_(1)x \in R^{n} \sim F_{1}
f 2 ( x ) = g i f 1 g i 1 ( x ) f 2 ( x ) = g i f 1 g i 1 ( x ) f_(2)(x)=g_(i)^(')@f_(1)@g_(i)^(-1)(x)f_{2}(x)=g_{i}^{\prime} \circ f_{1} \circ g_{i}^{-1}(x)
if x g i [ Q ] x g i [ Q ] x ing_(i)[Q]x \in g_{i}[Q]. Then f 2 f 2 f_(2)f_{2} is a piecewise linear K K KK-quasiconformal mapping, f 2 [ F 2 ] = F 2 f 2 F 2 = F 2 f_(2)[F_(2)]=F_(2)^(')f_{2}\left[F_{2}\right]=F_{2}{ }^{\prime}, and for each i i ii and j j jj
如果 x g i [ Q ] x g i [ Q ] x ing_(i)[Q]x \in g_{i}[Q] 。那么 f 2 f 2 f_(2)f_{2} 是一个分段线性的 K K KK -拟共形映射 f 2 [ F 2 ] = F 2 f 2 F 2 = F 2 f_(2)[F_(2)]=F_(2)^(')f_{2}\left[F_{2}\right]=F_{2}{ }^{\prime} ,并且对于每个 i i ii j j jj
f 2 ( x ) = g i g j g j 1 g i 1 ( x ) f 2 ( x ) = g i g j g j 1 g i 1 ( x ) f_(2)(x)=g_(i)^(')@g_(j)^(')@g_(j)^(-1)@g_(i)^(-1)(x)f_{2}(x)=g_{i}^{\prime} \circ g_{j}^{\prime} \circ g_{j}^{-1} \circ g_{i}^{-1}(x)
if x g i g j [ Q ] x g i g j [ Q ] x ing_(i)@g_(j)[Q]x \in g_{i} \circ g_{j}[Q]. Continuing in this way, we obtain a sequence of piecewise linear K K KK-quasiconformal mappings f j : R n R n f j : R n R n f_(j):R^(n)rarrR^(n)f_{j}: R^{n} \rightarrow R^{n} such that f j + 1 ( x ) = f j ( x ) f j + 1 ( x ) = f j ( x ) f_(j+1)(x)=f_(j)(x)f_{j+1}(x)=f_{j}(x) in R n F j R n F j R^(n)∼F_(j)R^{n} \sim F_{j} and f j [ F j ] = F j f j F j = F j f_(j)[F_(j)]=F_(j)^(')f_{j}\left[F_{j}\right]=F_{j}{ }^{\prime}. This sequence converges to a K K KK-quasiconformal mapping f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} which maps F j F j F_(j)F_{j} onto F j F j F_(j)^(')F_{j}{ }^{\prime} for each j j jj. Hence f f ff maps C s n C s n C_(s)^(n)C_{s}{ }^{n} onto C t n C t n C_(t)^(n)C_{t}{ }^{n}.
如果 x g i g j [ Q ] x g i g j [ Q ] x ing_(i)@g_(j)[Q]x \in g_{i} \circ g_{j}[Q] 。继续这种方式,我们得到一个分段的线性 K K KK -拟共形映射 f j : R n R n f j : R n R n f_(j):R^(n)rarrR^(n)f_{j}: R^{n} \rightarrow R^{n} 序列,使得 f j + 1 ( x ) = f j ( x ) f j + 1 ( x ) = f j ( x ) f_(j+1)(x)=f_(j)(x)f_{j+1}(x)=f_{j}(x) R n F j R n F j R^(n)∼F_(j)R^{n} \sim F_{j} 中,并且 f j [ F j ] = F j f j F j = F j f_(j)[F_(j)]=F_(j)^(')f_{j}\left[F_{j}\right]=F_{j}{ }^{\prime} 。这个序列收敛到一个 K K KK -拟共形映射 f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} ,它将 F j F j F_(j)F_{j} 映射到 F j F j F_(j)^(')F_{j}{ }^{\prime} 对每个 j j jj 。因此 f f ff C s n C s n C_(s)^(n)C_{s}{ }^{n} 映射到 C t n C t n C_(t)^(n)C_{t}{ }^{n}

6. Corollary. For each integer n 2 n 2 n >= 2n \geqslant 2 and each pair of numbers α , β ( 0 , n ) α , β ( 0 , n ) alpha,beta in(0,n)\alpha, \beta \in(0, n), there exists a quasiconformal mapping f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} and a compact set A R n A R n A subR^(n)A \subset R^{n} such that
6. 推论。对于每个整数 n 2 n 2 n >= 2n \geqslant 2 和每一对数 α , β ( 0 , n ) α , β ( 0 , n ) alpha,beta in(0,n)\alpha, \beta \in(0, n) ,存在一个拟共形映射 f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} 和一个紧致集 A R n A R n A subR^(n)A \subset R^{n} 使得
H dim A = α , H dim f [ A ] = β . H dim A = α , H dim f [ A ] = β . H-dim A=alpha,H-dim f[A]=beta.\mathrm{H}-\operatorname{dim} A=\alpha, \mathrm{H}-\operatorname{dim} f[A]=\beta .
Proof. By (7) and (8) we can choose s , t ( 0 , 1 2 ) s , t 0 , 1 2 s,t in(0,(1)/(2))s, t \in\left(0, \frac{1}{2}\right) so that for any of the corresponding Cantor sets C s n , C t n C s n , C t n C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n},
证明。由 (7) 和 (8) 我们可以选择 s , t ( 0 , 1 2 ) s , t 0 , 1 2 s,t in(0,(1)/(2))s, t \in\left(0, \frac{1}{2}\right) 使得对于相应的任何康托集 C s n , C t n C s n , C t n C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n}
H dim C s n = α , H dim C t n = β . H dim C s n = α , H dim C t n = β . H-dimC_(s)^(n)=alpha,H-dimC_(t)^(n)=beta.\mathrm{H}-\operatorname{dim} C_{s}{ }^{n}=\alpha, \mathrm{H}-\operatorname{dim} C_{t}{ }^{n}=\beta .
Theorem 5 then yields a quasiconformal mapping f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} which maps C s n C s n C_(s)^(n)C_{s}{ }^{n} onto C t n C t n C_(t)^(n)C_{t}{ }^{n}, and (9) follows with A = C s n A = C s n A=C_(s)^(n)A=C_{s}{ }^{n}.
定理 5 就给出了一个拟共形映射 f : R n R n f : R n R n f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} C s n C s n C_(s)^(n)C_{s}{ }^{n} 映射到 C t n C t n C_(t)^(n)C_{t}{ }^{n} ,并且 (9) 随着 A = C s n A = C s n A=C_(s)^(n)A=C_{s}{ }^{n} 而成立。

7. Remark. The above proof shows that for each α ( 0 , n ) α ( 0 , n ) alpha in(0,n)\alpha \in(0, n) there exists a set A R n A R n A subR^(n)A \subset R^{n} with H- dim A = α dim A = α dim A=alpha\operatorname{dim} A=\alpha such that
7. 注记。上述证明表明,对于每个 α ( 0 , n ) α ( 0 , n ) alpha in(0,n)\alpha \in(0, n) 都存在一个具有 H- dim A = α dim A = α dim A=alpha\operatorname{dim} A=\alpha 的集 A R n A R n A subR^(n)A \subset R^{n} 使得
inf f H dim f [ A ] = 0 , sup f H dim f [ A ] = n , inf f H dim f [ A ] = 0 , sup f H dim f [ A ] = n , i n f_(f)H-dim f[A]=0,s u p_(f)H-dim f[A]=n,\inf _{f} \mathrm{H}-\operatorname{dim} f[A]=0, \sup _{f} \mathrm{H}-\operatorname{dim} f[A]=n,
where the infimum and supremum are taken over all quasiconformal mappings f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} with A D A D A sub DA \subset D. We consider next what can be said if we take the infimum and supremum in (10) over the subclass of mappings f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} which are K K KK quasiconformal for some fixed K K KK.
在所有满足条件的拟共形映射 f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} 上取下确界和上确界。接下来,我们考虑如果我们在(10)中对满足某些固定 K K KK K K KK 的子类映射取下确界和上确界,可以得出什么结论。

8. Theorem. If f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} is an n-dimensional K K KK-quasiconformal mapping and if A D A D A sub DA \subset D with H dim A α > 0 H dim A α > 0 H-dim A >= alpha > 0\mathrm{H}-\operatorname{dim} A \geqslant \alpha>0, then H dim f [ A ] β > 0 H dim f [ A ] β > 0 H-dim f[A] >= beta > 0\mathrm{H}-\operatorname{dim} f[A] \geqslant \beta>0, where
8. 定理。如果 f : D D f : D D f:D rarrD^(')f: D \rightarrow D^{\prime} 是一个 n 维的 K K KK -拟共形映射,并且如果 A D A D A sub DA \subset D 满足 H dim A α > 0 H dim A α > 0 H-dim A >= alpha > 0\mathrm{H}-\operatorname{dim} A \geqslant \alpha>0 ,那么 H dim f [ A ] β > 0 H dim f [ A ] β > 0 H-dim f[A] >= beta > 0\mathrm{H}-\operatorname{dim} f[A] \geqslant \beta>0 ,其中
β = α K 1 / ( 1 n ) α / K . β = α K 1 / ( 1 n ) α / K . beta=alphaK^(1//(1-n)) >= alpha//K.\beta=\alpha K^{1 /(1-n)} \geqslant \alpha / K .
Proof. Since A A AA is the countable union of sets with compact closure in D D DD, we may assume that A A AA is contained in a compact subset of D D DD. Then since f 1 f 1 f^(-1)f^{-1} is locally
证明。由于 A A AA D D DD 中具有紧闭集的集合的可数并,我们可以假设 A A AA 包含在一个 D D DD 的紧子集内。然后由于 f 1 f 1 f^(-1)f^{-1} 在局部

  1. Received 4 November, 1971.
    收到于1971年11月4日。

    \dagger This research was supported in part by the National Science Foundation, Contracts GP 7041X and GP 28115.
    \dagger 这项研究部分得到了国家科学基金会的支持,合同 GP 7041X 和 GP 28115。

    [J. London Math. Soc. (2), 6 (1973), 504-512]