HAUSDORFF DIMENSION AND QUASICONFORMAL MAPPINGS HAUSDORFF 维数与拟共形映射
F. W. GEHRING †\dagger AND J. VÄISÄLÄDedicated to the memory of A. S. Besicovitch 为纪念 A. S. Besicovitch
Introduction. In this paper we study what happens to the Hausdorff dimension of a set AA, denoted by H - dim A\operatorname{dim} A, under an nn-dimensional quasiconformal mapping f:D rarrD^(')f: D \rightarrow D^{\prime} with A sub DA \subset D. It is clear that 引言。在本文中,我们研究在 nn 维拟共形映射 f:D rarrD^(')f: D \rightarrow D^{\prime} 作用下,集合 AA 的 Hausdorff 维数 H - dim A\operatorname{dim} A 会发生什么。很明显,
H-dim f[A]=H-dim A\mathrm{H}-\operatorname{dim} f[A]=\mathrm{H}-\operatorname{dim} A
if ff is a diffeomorphism or, more generally, if ff and f^(-1)f^{-1} are locally Lipschitzian. We show first, however, that (1) need not hold if ff is a general quasiconformal mapping. Next we give bounds for H -dim f[A]f[A] in terms of H -dim A,nA, n, and the maximal dilatation of ff. In particular, we prove that H - dim A=0impliesH\operatorname{dim} A=0 \mathrm{implies} \mathrm{H} - dim f[A]=0\operatorname{dim} f[A]=0, and we conjecture that H-dim A=n\mathrm{H}-\operatorname{dim} A=n implies H-dim f[A]=n\mathrm{H}-\operatorname{dim} f[A]=n, or equivalently that H - dim A < n\operatorname{dim} A<n implies H - dim f[A] < n\operatorname{dim} f[A]<n. We establish this conjecture for the case where n=2n=2 and then prove that, for general n,Hn, \mathrm{H} - dim f[A] < n\operatorname{dim} f[A]<n whenever AA is contained in an mm-dimensional hyperplane with m < nm<n. An example shows that H-dim f[A]f[A] can be arbitrarily close to nn, even when AA is a 1 -dimensional segment. 如果 ff 是一个微分同胚,或者更一般地,如果 ff 和 f^(-1)f^{-1} 是局部 Lipschitz 的。然而,我们首先证明,如果 ff 是一个一般的拟共形映射,则 (1) 不一定成立。接下来,我们给出 H-维数 f[A]f[A] 关于 H-维数 A,nA, n 和 ff 的最大扩张的界限。特别地,我们证明了 H- dim A=0impliesH\operatorname{dim} A=0 \mathrm{implies} \mathrm{H} - dim f[A]=0\operatorname{dim} f[A]=0 ,并猜想 H-dim A=n\mathrm{H}-\operatorname{dim} A=n 蕴含 H-dim f[A]=n\mathrm{H}-\operatorname{dim} f[A]=n ,或者等价地,H- dim A < n\operatorname{dim} A<n 蕴含 H- dim f[A] < n\operatorname{dim} f[A]<n 。我们为 n=2n=2 的情况建立了这个猜想,然后证明,对于一般的 n,Hn, \mathrm{H} - dim f[A] < n\operatorname{dim} f[A]<n ,只要 AA 包含在一个 mm 维的超平面中,并且 m < nm<n 。一个例子表明,即使当 AA 是一个一维线段时,H-dim f[A]f[A] 也可以任意接近 nn 。
2. Notation. We shall use the terminology and notation for quasiconformal mappings given in [16]. Moreover, since we are concerned only with local properties which are invariant under Möbius transformations, we shall consider only quasiconformal mappings f:D rarrD^(')f: D \rightarrow D^{\prime} where DD and D^(')D^{\prime} are domains in the non-compact nn-dimensional Euclidean space R^(n)R^{n}. 2. 符号说明。我们将使用文献[16]中给出的拟共形映射的术语和符号。此外,由于我们只关心在 Möbius 变换下保持不变的局部性质,我们将只考虑拟共形映射 f:D rarrD^(')f: D \rightarrow D^{\prime} ,其中 DD 和 D^(')D^{\prime} 是非紧致 nn 维欧几里得空间 R^(n)R^{n} 中的区域。
For a in(0,oo)a \in(0, \infty), the Hausdorff a-dimensional outer measure of a set A subR^(n)A \subset R^{n} is defined as 对于 a in(0,oo)a \in(0, \infty) ,集合 A subR^(n)A \subset R^{n} 的 Hausdorff a 维外测度定义为
H_(a)(A)=lim_(d rarr0)(i n fsum_(i)dia(A_(i))^(a)),H_{a}(A)=\lim _{d \rightarrow 0}\left(\inf \sum_{i} \operatorname{dia}\left(A_{i}\right)^{a}\right),
where the infimum is taken over all countable coverings of AA by sets A_(i)A_{i} with dia(A_(i)) < d\operatorname{dia}\left(A_{i}\right)<d. The Hausdorff dimension of AA is then given by 其中,infimum 是在所有用满足 dia(A_(i)) < d\operatorname{dia}\left(A_{i}\right)<d 的集合 A_(i)A_{i} 对 AA 进行可数覆盖的情况下取的。然后, AA 的 Hausdorff 维数为
H-dim A=i n f{a:H_(a)(A)=0}.\mathrm{H}-\operatorname{dim} A=\inf \left\{a: H_{a}(A)=0\right\} .
Clearly 0 <= H0 \leqslant \mathrm{H}-dim A <= nA \leqslant n. 显然 0 <= H0 \leqslant \mathrm{H} -dim A <= nA \leqslant n 。
3. We shall need the following generalization of a result due to Mori [13; Lemma 4]. 3. 我们需要 Mori [13; 引理 4] 的一个推广结果。
Lemma. Suppose that f:D rarrD^(')f: D \rightarrow D^{\prime} is an nn-dimensional KK-quasiconformal mapping, that UU is a bounded domain with bar(U)sub D\bar{U} \subset D, and that x in Ux \in U. Let 引理。假设 f:D rarrD^(')f: D \rightarrow D^{\prime} 是一个 nn 维的 KK 拟共形映射, UU 是一个有界域,且 bar(U)sub D\bar{U} \subset D ,并且 x in Ux \in U 。令 M=max_(y in del U)|y-x|,m=min_(y in del U)|y-x|,L=max_(y in del U)|f(y)-f(x)|,l=min_(y in del U)|f(y)-f(x)|M=\max _{y \in \partial U}|y-x|, m=\min _{y \in \partial U}|y-x|, L=\max _{y \in \partial U}|f(y)-f(x)|, l=\min _{y \in \partial U}|f(y)-f(x)|.
If the ball B^(n)(f(x),L)B^{n}(f(x), L) is contained in D^(')D^{\prime}, then 如果球 B^(n)(f(x),L)B^{n}(f(x), L) 包含在 D^(')D^{\prime} 中,那么
L <= Cl,L \leqslant C l,
where CC is a finite constant which depends only on n,Kn, K, and M//mM / m. 其中 CC 是一个仅依赖于 n,Kn, K 和 M//mM / m 的有限常数。
Proof. Suppose that l < Ll<L and let RR denote the image under f^(-1)f^{-1} of the spherical ring 证明。假设 l < Ll<L ,并让 RR 表示球环在 f^(-1)f^{-1} 下的像
Then RR is a ring which separates xx and a point y in del Uy \in \partial U from oo\infty and a point z in del Uz \in \partial U. Hence if Gamma\Gamma is the family of arcs joining the components of C(R)C(R) in RR, it follows from the extremal property of the Teichmüller ring in R^(n)[4R^{n}[4 and 14], or from [16; 11.9] that 那么 RR 是一个环,它将 xx 和点 y in del Uy \in \partial U 与 oo\infty 和点 z in del Uz \in \partial U 分开。因此,如果 Gamma\Gamma 是连接 C(R)C(R) 中 RR 的成分的弧族,那么根据 Teichmüller 环在 R^(n)[4R^{n}[4 和 14]中的极值性质,或者根据[16; 11.9],可以得出
where h_(n):(0,oo)rarr(0,oo)h_{n}:(0, \infty) \rightarrow(0, \infty) is positive and decreasing. Then since ff is KK-quasiconformal 其中 h_(n):(0,oo)rarr(0,oo)h_{n}:(0, \infty) \rightarrow(0, \infty) 是正的且递减的。然后由于 ff 是 KK -拟共形的
M(Gamma) <= KM(f[Gamma])=Komega_(n-1)(log((L)/(l)))^(1-n)M(\Gamma) \leqslant K M(f[\Gamma])=K \omega_{n-1}\left(\log \frac{L}{l}\right)^{1-n}
and (4) follows from (5) and (6). 并且(4)由(5)和(6)得出。
4. The Cantor sets C_(s)^(n)C_{s}{ }^{n}. For each integer n >= 1n \geqslant 1 and each s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right) we define a family of Cantor sets C_(s)^(n)C_{s}{ }^{n} as follows. Let QQ denote the closed unit cube 4. 康托集 C_(s)^(n)C_{s}{ }^{n} 。对于每个整数 n >= 1n \geqslant 1 和每个 s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right) ,我们定义一个康托集族 C_(s)^(n)C_{s}{ }^{n} 如下。让 QQ 表示闭单位立方体
choose a collection of 2^(n)2^{n} disjoint closed cubes Q_(i)Q_{i} of side ss in int Q,1 <= i <= 2^(n)Q, 1 \leqslant i \leqslant 2^{n}, oriented so that for each ii there exists a similarity mapping 选择一组 2^(n)2^{n} 个互不相交的闭立方体 Q_(i)Q_{i} ,边长为 ss ,位于整数集 Q,1 <= i <= 2^(n)Q, 1 \leqslant i \leqslant 2^{n} 中,方向使得对于每个 ii ,存在一个相似映射
which maps QQ onto Q_(i)Q_{i}. Such collections of cubes Q_(i)Q_{i} obviously exist for each s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right). Next for each j >= 1j \geqslant 1 let 将 QQ 映射到 Q_(i)Q_{i} 。显然,对于每个 s in(0,(1)/(2))s \in\left(0, \frac{1}{2}\right) ,都存在这样的立方体集合 Q_(i)Q_{i} 。接下来,对于每个 j >= 1j \geqslant 1 ,令
Then {F_(j)}\left\{F_{j}\right\} is a decreasing sequence of compact sets, and each set F_(j)F_{j} is the union of 2^(jn)2^{j n} disjoint closed cubes of side s^(j)s^{j}. Hence 那么 {F_(j)}\left\{F_{j}\right\} 是一个紧集的递减序列,并且每个集合 F_(j)F_{j} 是 2^(jn)2^{j n} 个互不相交的边长为 s^(j)s^{j} 的闭立方体的并集。因此
Theorem. For each integer n >= 2n \geqslant 2 and each pair of such Cantor sets C_(s)^(n)C_{s}{ }^{n} and C_(t)^(n)C_{t}{ }^{n} there exists a quasiconformal mapping f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} which maps C_(s)^(n)C_{s}{ }^{n} onto C_(t)^(n)C_{t}{ }^{n}. 定理。对于每个整数 n >= 2n \geqslant 2 和每一对这样的康托集 C_(s)^(n)C_{s}{ }^{n} 和 C_(t)^(n)C_{t}{ }^{n} ,存在一个拟共形映射 f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} 将 C_(s)^(n)C_{s}{ }^{n} 映射到 C_(t)^(n)C_{t}{ }^{n} 。
Proof. Let g_(i)g_{i} and F_(j),g_(i)^(')F_{j}, g_{i}{ }^{\prime} and F_(j)^(')F_{j}{ }^{\prime} denote respectively the similarity mappings and sets corresponding to the constructions for C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n} given in §4\S 4. Then it is not difficult to see that there exists a piecewise linear homeomorphism f_(1):R^(n)rarrR^(n)f_{1}: R^{n} \rightarrow R^{n} such that f_(1)(x)=xf_{1}(x)=x if x inR^(n)∼Qx \in R^{n} \sim Q and such that for each ii 证明。设 g_(i)g_{i} 、 F_(j),g_(i)^(')F_{j}, g_{i}{ }^{\prime} 和 F_(j)^(')F_{j}{ }^{\prime} 分别表示对应于 §4\S 4 中给出的 C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n} 的相似映射和集合。那么不难看出存在一个分段线性同胚 f_(1):R^(n)rarrR^(n)f_{1}: R^{n} \rightarrow R^{n} ,使得当 x inR^(n)∼Qx \in R^{n} \sim Q 时 f_(1)(x)=xf_{1}(x)=x ,并且对于每个 ii 。
if x ing_(i)[Q]x \in g_{i}[Q]. Then f_(1)f_{1} is KK-quasiconformal for some KK and f_(1)[F_(1)]=F_(1)^(')f_{1}\left[F_{1}\right]=F_{1}{ }^{\prime}. Next define f_(2):R^(n)rarrR^(n)f_{2}: R^{n} \rightarrow R^{n} by setting f_(2)(x)=f_(1)(x)f_{2}(x)=f_{1}(x) if x inR^(n)∼F_(1)x \in R^{n} \sim F_{1} and 如果 x ing_(i)[Q]x \in g_{i}[Q] 。那么 f_(1)f_{1} 是 KK -拟共形的,对于某些 KK 和 f_(1)[F_(1)]=F_(1)^(')f_{1}\left[F_{1}\right]=F_{1}{ }^{\prime} 。接下来定义 f_(2):R^(n)rarrR^(n)f_{2}: R^{n} \rightarrow R^{n} ,通过设置 f_(2)(x)=f_(1)(x)f_{2}(x)=f_{1}(x) 如果 x inR^(n)∼F_(1)x \in R^{n} \sim F_{1} 。
if x ing_(i)[Q]x \in g_{i}[Q]. Then f_(2)f_{2} is a piecewise linear KK-quasiconformal mapping, f_(2)[F_(2)]=F_(2)^(')f_{2}\left[F_{2}\right]=F_{2}{ }^{\prime}, and for each ii and jj 如果 x ing_(i)[Q]x \in g_{i}[Q] 。那么 f_(2)f_{2} 是一个分段线性的 KK -拟共形映射 f_(2)[F_(2)]=F_(2)^(')f_{2}\left[F_{2}\right]=F_{2}{ }^{\prime} ,并且对于每个 ii 和 jj
if x ing_(i)@g_(j)[Q]x \in g_{i} \circ g_{j}[Q]. Continuing in this way, we obtain a sequence of piecewise linear KK-quasiconformal mappings f_(j):R^(n)rarrR^(n)f_{j}: R^{n} \rightarrow R^{n} such that f_(j+1)(x)=f_(j)(x)f_{j+1}(x)=f_{j}(x) in R^(n)∼F_(j)R^{n} \sim F_{j} and f_(j)[F_(j)]=F_(j)^(')f_{j}\left[F_{j}\right]=F_{j}{ }^{\prime}. This sequence converges to a KK-quasiconformal mapping f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} which maps F_(j)F_{j} onto F_(j)^(')F_{j}{ }^{\prime} for each jj. Hence ff maps C_(s)^(n)C_{s}{ }^{n} onto C_(t)^(n)C_{t}{ }^{n}. 如果 x ing_(i)@g_(j)[Q]x \in g_{i} \circ g_{j}[Q] 。继续这种方式,我们得到一个分段的线性 KK -拟共形映射 f_(j):R^(n)rarrR^(n)f_{j}: R^{n} \rightarrow R^{n} 序列,使得 f_(j+1)(x)=f_(j)(x)f_{j+1}(x)=f_{j}(x) 在 R^(n)∼F_(j)R^{n} \sim F_{j} 中,并且 f_(j)[F_(j)]=F_(j)^(')f_{j}\left[F_{j}\right]=F_{j}{ }^{\prime} 。这个序列收敛到一个 KK -拟共形映射 f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} ,它将 F_(j)F_{j} 映射到 F_(j)^(')F_{j}{ }^{\prime} 对每个 jj 。因此 ff 将 C_(s)^(n)C_{s}{ }^{n} 映射到 C_(t)^(n)C_{t}{ }^{n} 。
6. Corollary. For each integer n >= 2n \geqslant 2 and each pair of numbers alpha,beta in(0,n)\alpha, \beta \in(0, n), there exists a quasiconformal mapping f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} and a compact set A subR^(n)A \subset R^{n} such that 6. 推论。对于每个整数 n >= 2n \geqslant 2 和每一对数 alpha,beta in(0,n)\alpha, \beta \in(0, n) ,存在一个拟共形映射 f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} 和一个紧致集 A subR^(n)A \subset R^{n} 使得
Proof. By (7) and (8) we can choose s,t in(0,(1)/(2))s, t \in\left(0, \frac{1}{2}\right) so that for any of the corresponding Cantor sets C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n}, 证明。由 (7) 和 (8) 我们可以选择 s,t in(0,(1)/(2))s, t \in\left(0, \frac{1}{2}\right) 使得对于相应的任何康托集 C_(s)^(n),C_(t)^(n)C_{s}{ }^{n}, C_{t}{ }^{n} ,
Theorem 5 then yields a quasiconformal mapping f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} which maps C_(s)^(n)C_{s}{ }^{n} onto C_(t)^(n)C_{t}{ }^{n}, and (9) follows with A=C_(s)^(n)A=C_{s}{ }^{n}. 定理 5 就给出了一个拟共形映射 f:R^(n)rarrR^(n)f: R^{n} \rightarrow R^{n} 将 C_(s)^(n)C_{s}{ }^{n} 映射到 C_(t)^(n)C_{t}{ }^{n} ,并且 (9) 随着 A=C_(s)^(n)A=C_{s}{ }^{n} 而成立。
7. Remark. The above proof shows that for each alpha in(0,n)\alpha \in(0, n) there exists a set A subR^(n)A \subset R^{n} with H- dim A=alpha\operatorname{dim} A=\alpha such that 7. 注记。上述证明表明,对于每个 alpha in(0,n)\alpha \in(0, n) 都存在一个具有 H- dim A=alpha\operatorname{dim} A=\alpha 的集 A subR^(n)A \subset R^{n} 使得
i n f_(f)H-dim f[A]=0,s u p_(f)H-dim f[A]=n,\inf _{f} \mathrm{H}-\operatorname{dim} f[A]=0, \sup _{f} \mathrm{H}-\operatorname{dim} f[A]=n,
where the infimum and supremum are taken over all quasiconformal mappings f:D rarrD^(')f: D \rightarrow D^{\prime} with A sub DA \subset D. We consider next what can be said if we take the infimum and supremum in (10) over the subclass of mappings f:D rarrD^(')f: D \rightarrow D^{\prime} which are KK quasiconformal for some fixed KK. 在所有满足条件的拟共形映射 f:D rarrD^(')f: D \rightarrow D^{\prime} 上取下确界和上确界。接下来,我们考虑如果我们在(10)中对满足某些固定 KK 的 KK 的子类映射取下确界和上确界,可以得出什么结论。
8. Theorem. If f:D rarrD^(')f: D \rightarrow D^{\prime} is an n-dimensional KK-quasiconformal mapping and if A sub DA \subset D with H-dim A >= alpha > 0\mathrm{H}-\operatorname{dim} A \geqslant \alpha>0, then H-dim f[A] >= beta > 0\mathrm{H}-\operatorname{dim} f[A] \geqslant \beta>0, where 8. 定理。如果 f:D rarrD^(')f: D \rightarrow D^{\prime} 是一个 n 维的 KK -拟共形映射,并且如果 A sub DA \subset D 满足 H-dim A >= alpha > 0\mathrm{H}-\operatorname{dim} A \geqslant \alpha>0 ,那么 H-dim f[A] >= beta > 0\mathrm{H}-\operatorname{dim} f[A] \geqslant \beta>0 ,其中
beta=alphaK^(1//(1-n)) >= alpha//K.\beta=\alpha K^{1 /(1-n)} \geqslant \alpha / K .
Proof. Since AA is the countable union of sets with compact closure in DD, we may assume that AA is contained in a compact subset of DD. Then since f^(-1)f^{-1} is locally 证明。由于 AA 是 DD 中具有紧闭集的集合的可数并,我们可以假设 AA 包含在一个 DD 的紧子集内。然后由于 f^(-1)f^{-1} 在局部
Received 4 November, 1971. 收到于1971年11月4日。 †\dagger This research was supported in part by the National Science Foundation, Contracts GP 7041X and GP 28115. †\dagger 这项研究部分得到了国家科学基金会的支持,合同 GP 7041X 和 GP 28115。
[J. London Math. Soc. (2), 6 (1973), 504-512]