Method 方法 | Criticism 批评 | Consequences 后果 |
Death Penalty [12] 死刑 [12] | - No information is used from infeasible points. It may require initialization of the population and lack of diversity [67]. - 不可行点的信息未被利用。这可能需要初始化种群且存在多样性不足的问题[67]。 | - Consumes many evaluations Low success rate - 消耗大量评估次数 成功率低 |
Static Penalty [68] 静态惩罚[68] | - It is required to set up a high number of penalty parameters. It is also problem-dependent. - 需要设置大量惩罚参数,且这些参数依赖于具体问题。 | Time consuming 耗时 |
Dynamic Penalty [69] 动态惩罚 [69] | - It is hard to drive good dynamic penalty functions in real case. - In some cases, this method converges to either an infeasible or feasible solution that is far from the global optimum [70]; [71] - 在实际案例中设计出良好的动态惩罚函数较为困难。- 在某些情况下,该方法会收敛到不可行解或远离全局最优解的可行解[70][71] | - Premature convergence or even infeasible solution in some cases - 部分情况下会出现早熟收敛甚至不可行解 |
Adaptive Penalty [72] 自适应惩罚函数[72] | Setting the parameters is difficult, such as determining the appropriate generational gap. - It requires the definitions of additional parameters [73]. 参数设置较为困难,例如确定合适的代际间隔。- 需要额外定义参数[73] | Time consuming 耗时 |
Annealing Penalties [74] 退火惩罚项 [74] | - The main disadvantage is its sensitivity to the values of its factors. To handle linear constraints, the user should provide an initial feasible point to the algorithm. - 主要缺点是其对因子值敏感。为处理线性约束,用户需向算法提供初始可行点 | - The performance of the algorithms is not good. 算法性能表现不佳。 |
Self- adaptive Penalty [75][76] 自适应惩罚 [75][76] | - It defines four additional parameters that may affect the fitness function evaluations. - 它定义了可能影响适应度函数评估的四个附加参数。 | - Time consuming & weak or strong penalty during evolution - 进化过程中耗时且存在弱惩罚或强惩罚 |
Segregated genetic algorithm (SGA) [77] 隔离遗传算法(SGA)[77] | - The main difficulty is selecting the penalties for each of the two sub- populations. - 主要难点在于为两个子种群分别选择合适的惩罚系数 | Time consuming 耗时 |
Penalty function based on feasibility [13] 基于可行性的惩罚函数 [13] | The main issue is maintaining diversity in the population, and in some cases, use of a niching method combined with higher-than-usual mutation rates is essential. 主要问题在于维持种群多样性,某些情况下需结合使用小生境方法和高于常规的变异率。 | - Premature convergence - 早熟收敛 |
Method 方法 | Disadvantages 缺点 |
Ensemble method 集成方法 | Although the ensemble CHT has a competitive performance, the method is parameter-dependent. 尽管集成 CHT 方法具有竞争优势,但该方法依赖于参数。 |
Repair method 修复方法 | Repair algorithms are problem-specific and, thus, must be designed for a specific problem. 修复算法针对特定问题设计,因此必须为具体问题量身定制。 |
Feasibility rules 可行性规则 | The method is likely to lead to premature convergence. 该方法可能导致过早收敛。 |
Stochastic ranking 随机排序 | Although the method has been employed in several nature-inspired algorithms, it is not often used for the multiobjective version of the algorithms. 尽管该方法已在多种自然启发算法中得到应用,但较少用于算法的多目标版本。 |
Epsilon-constraint method ε约束法 | In some cases, premature convergence has been reported, while other works report that the method relies on gradient-based mutation. 部分案例中报道了早熟收敛现象,而其他研究指出该方法依赖基于梯度的变异操作。 |
Multiobjective concept 多目标概念 | It may require gradient calculation [30]. 可能需要进行梯度计算[30]。 |
Method 方法 | Source 来源 | Method 方法 | Source 来源 |
KKT points for constrained multiobjective optimization 约束多目标优化的 KKT 点 | [160], [161] | Surrogate-assisted evolutionary algorithm 代用辅助进化算法 | [159] |
IoT and cloud computing 物联网与云计算 | [163] | Purpose-directed two- phase multiobjective differential evolution 目标导向的双阶段多目标差分进化算法 | [162] |
Indicator-based constrained handling technique 基于指标的约束处理技术 | [165] | Directed Weight Vectors 定向权重向量 | [164] |
Decomposition-based algorithm 基于分解的算法 | [117], [167] | Gradient-based repair method 基于梯度的修复方法 | [166] |
Push and pull search embeded 推拉式搜索嵌入 | [169] | Detect and scape strategy 检测与规避策略 | [168] |
Multi-stage evolutionary algorithm 多阶段进化算法 | [171], [172] | Reference points-based method 基于参考点的方法 | [170] |
Partition selection 分区选择 | [174] | multi-objective wireless network optimization using the genetic algorithm 基于遗传算法的多目标无线网络优化 | [173] |
Document type 文献类型 | TP | % | AU | APP | TC2020 | CPP2020 |
Article 期刊文章 | 522 | 71.02 | 1362 | 2.60 | 43,904 | 84.10 |
Proceedings paper 会议论文 | 220 | 29.93 | 469 | 2.13 | 1,543 | 7.01 |
Review 综述 | 16 | 2.17 | 20 | 1.25 | 806 | 50.37 |
Other items 其他项目 | 23 | 3.12 | 134 | 5.82 | 468 | 20.34 |
# | Scopus 斯高帕斯数据库 | #of Documents 文献数量 | # | Scopus 斯高帕斯数据库 | #of documents 文献数量 |
1 | Lecture Notes In Computer 计算机科学讲义 | 117 | 11 | IEEE Access IEEE Access 期刊 | 32 |
2 | Applied Soft Computing Journal 应用软计算期刊 | 57 | 12 | Swarm and Evolutionary 群体与进化计算 | 30 |
3 | "International Journal of Electrical 国际电气工程杂志 | 27 | 13 | Engineering Optimization 工程优化 | 21 |
4 | "Kongzhi Yu Juece Control And "控制与决策" | 13 | 14 | Soft Computing 软计算 | 16 |
5 | Energy Conversion And 能量转换与 | 12 | 15 | Studies In Computational 计算研究 | 16 |
6 | IEEE Transactions On Cybernetics IEEE 网络与系统汇刊 | 12 | 16 | "Advances In Intelligent Systems 智能系统进展 | 15 |
7 | Structural And Multidisciplinary 结构与多学科优化 | 13 | 17 | "Communications In Computer 计算机通信 | 14 |
8 | IEEE Transactions On IEEE 汇刊 | 27 | 18 | Engineering Applications Of 工程应用 | 14 |
9 | Electric Power Systems Research 电力系统研究 | 10 | 19 | Energy 能源 | 13 |
10 | Applied Intelligence 应用智能 | 12 | 20 | Information Sciences 信息科学 | 13 |
# | Web of Science category Web of Science 类别 | TP | AU | APP | TC2020 | CPP2020 |
1 | "Computer Science Artificial Intelligence" "计算机科学 人工智能" | 271 | 628 | 2.31 | 35,074 | 129.42 |
2 | "Engineering Electrical Electronic" "工程学 电气电子" | 171 | 463 | 2.70 | 3,688 | 21.56 |
3 | "Computer Science Interdisciplinary Applications" 计算机科学跨学科应用 | 92 | 243 | 2.64 | 2,691 | 29.25 |
4 | "Operations Research Management Science" "运筹学 管理科学" | 61 | 131 | 2.14 | 1,541 | 25.26 |
5 | "Computer Science Theory Methods" "计算机科学理论与方法" | 171 | 385 | 2.25 | 32,492 | 190.011 |
6 | “Engineering Multidisciplinary” “工程多学科” | 64 | 167 | 2.60 | 2,377 | 37.14 |
7 | "Mathematical interdisciplinary applications" "数学跨学科应用" | 45 | 116 | 2.57 | 645 | 14.33 |
8 | "Energy fuels" "能源燃料" | 41 | 122 | 2.97 | 950 | 23.17 |
9 | "Computer Science Information Systems" "计算机科学信息系统" | 48 | 124 | 2.58 | 746 | 15.54 |
10 | "Automation Control Systems" "自动化控制系统" | 60 | 155 | 2.58 | 1,178 | 19.63 |
# | 1-Word 单字 | Frequency 频率 | 2-Word 双词 | Frequency 频率 | 3-Word 三词 | Frequency 频率 |
1 | Optimization 优化 | 680 | Genetic Algorithms 遗传算法 | 367 | Constraint-Handling Techniques 约束处理技术 | 74 |
2 | Algorithms 算法 | 360 | Constraint Handling 约束处理 | 184 | Particle Swarm Optimization (PSO) 粒子群优化算法(PSO) | 565 |
3 | Scheduling 调度 | 141 | Constrained Optimization 约束优化 | 1071 | Multiobjective Optimization 多目标优化 | 467 |
4 | NSGA-II | 97 | Multiobjective Optimization 多目标优化 | 1339 | Particle Swarm Optimization 粒子群优化 | 205 |
5 | Design 设计 | 96 | Evolutionary Algorithms 进化算法 | 1081 | Constrained multiobjective optimization 约束多目标优化 | 68 |
6 | Algorithm 算法 | 59 | Differential evolution 差分进化 | 208 | Electric Load Dispatching 电力负荷调度 | 66 |
7 | Reliability 可靠性 | 33 | Problem Solving 问题解决 | 239 | Multiobjective optimization problem 多目标优化问题 | 222 |
8 | Investments 投资 | 33 | Multi objective 多目标 | 307 | Differential evolution algorithms 差分进化算法 | 71 |
10 | Benchmarking 基准测试 | 113 | Decision making 决策制定 | 135 | Pareto optimal solutions 帕累托最优解 | 121 |
12 | Costs 成本 | 57 | Pareto Principle 帕累托法则 | 281 | Constrained multiobjective optimizations 约束多目标优化 | 213 |
# | Keywords (Scopus) 关键词(Scopus 数据库) | Frequency 频率 |
1 | Pareto principle 帕累托法则 | 65 |
2 | Genetic algorithms 遗传算法 | 72 |
3 | Differential evolution 差分进化 | 45 |
4 | Particle swarm optimization (PSO) 粒子群优化算法(PSO) | 132 |
5 | Economic and social effects 经济和社会影响 | 34 |
6 | Benchmarking 基准测试 | 32 |
7 | Decision making 决策制定 | 36 |
8 | Energy utilization 能源利用 | 28 |
9 | Scheduling 调度 | 39 |
10 | Pareto optimal solutions 帕累托最优解 | 24 |
# | Research fields (Scopus) 研究领域(Scopus) | (%) Contribution (%) 贡献度 |
1 | Engineering 工程学 | 24.3 |
2 | Computer Science 计算机科学 | 31.8 |
3 | Mathematics 数学 | 17.2 |
4 | Energy 能源 | 5.9 |
5 | Decision Sciences 决策科学 | 4.1 |
6 | Materials Science 材料科学 | 4.1 |
7 | Business, Management and Accounting 商业、管理与会计 | 1 |
8 | Environmental Science 环境科学 | 2.1 |
9 | Physics and Astronomy 物理学与天文学 | 2.8 |
10 | Earth and Planetary Sciences 地球与行星科学 | 1.4 |