这是用户在 2025-5-5 22:24 为 file:///Users/zoe/Downloads/2206.13802v1.html 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

A Review on Constraint Handling Techniques for Population-based Algorithms: from single-objective to multi- objective optimization
基于种群的算法约束处理技术综述:从单目标到多目标优化


Iman Rahimi 1 ,Amir H. Gandomi 1 ,Fang Chen 1 ,and Efrén Mezura-Montes 2
伊曼·拉希米 1 、阿米尔·H·甘多米 1 、陈芳 1 、埃弗伦·梅祖拉-蒙特斯 2

1 Data Science Institute,Faculty of Engineering &Information Technology,University of Technology
1 数据科学研究所,工程与信息技术学院,悉尼科技大学

Sydney, Australia; iman83@gmail.com , Gandomi@uts.edu.au, fang.chen@uts.edu.au
澳大利亚悉尼;iman83@gmail.com,Gandomi@uts.edu.au,fang.chen@uts.edu.au

2 Artificial Intelligence Research Institute, University of Veracruz, MEXICO, emezura@uv.mx
2 墨西哥韦拉克鲁斯大学人工智能研究所,eme@uv.mx

  • Correspondence: Gandomi@uts.edu.au;
    通讯邮箱:Gandomi@uts.edu.au;

Abstract- Most real-world problems involve some type of optimization that is often constrained. Numerous researches have investigated several techniques to deal with constrained single-objective and multi-objective evolutionary optimization in many fields, including theory and application. Also, this presented study provides a novel analysis of scholarly literature on constraint handling techniques for single-objective and multi-objective population-based algorithms according to the most relevant journals, keywords, authors, and articles. The paper reviews the main ideas of the most state-of-the-art constraint handling techniques in multiobjective population-based optimization, and then the study addresses the bibliometric analysis in the field. The extracted papers include research articles, reviews, book/book chapters, and conference papers published between 2000 and 2020 for the analysis. The results indicate that the constraint handling techniques for multiobjective optimization have received much less attention compared with single-objective optimization. The most promising algorithms for such optimization were determined to be genetic algorithms, differential evolutionary algorithms, and particle swarm intelligence. Additionally, "Engineering," "Computer Science," and " Mathematics" were identified as the top three research fields, in which future research work is anticipated to increase.
摘要——大多数现实世界问题都涉及某种通常带有约束的优化。大量研究已探索了处理约束单目标和多目标进化优化的多种技术,涵盖理论与应用等多个领域。本研究还根据最相关的期刊、关键词、作者和文章,对基于种群的单目标和多目标算法约束处理技术的学术文献进行了新颖的分析。本文回顾了多目标种群优化中最先进约束处理技术的核心思想,随后对该领域的文献计量学分析进行了阐述。提取的文献包括 2000 年至 2020 年间发表的研究论文、综述、书籍/书籍章节及会议论文。结果表明,与单目标优化相比,多目标优化的约束处理技术受到的关注要少得多。 经确定,此类优化问题最具前景的算法包括遗传算法、差分进化算法和粒子群智能算法。此外,"工程学"、"计算机科学"和"数学"被列为未来研究工作量有望增长的三大重点研究领域。

Keywords- Constraint handling technique, Evolutionary Computation, Multiobjective optimization, Population-based algorithms.
关键词- 约束处理技术、进化计算、多目标优化、群体智能算法。

1. Introduction  1. 引言


Most real-world problems are considered as multi-objective optimization problems (MOOPs). No single solution exists for an MOOP, instead different solutions generate trade-offs for different objectives. Furthermore, MOOPs arise in a natural fashion in most disciplines, and solving them has been a challenging issue for researchers. Although a variety of methods have been developed in Operations Research and other fields to address these problems, there is an urgent need for alternative approaches because of the complexities of their solution [1]-[3]. Evolutionary computation (EC) methods have been identified as more effective methods to handle this limitation and are suitable for solving MOOPs, for which the form of the Pareto-optimal front (discontinuity, nonconvexity, etc.) is not important [4], [5]. Moreover, most multiobjective evolutionary algorithms (MOEAs) use the dominance concept [6], [7].
大多数现实世界的问题都被视为多目标优化问题(MOOPs)。对于 MOOP 而言,不存在单一解,不同的解会为不同目标生成权衡方案。此外,MOOPs 在大多数学科中自然出现,解决它们一直是研究人员面临的挑战性问题。尽管运筹学等领域已开发出多种方法来应对这些问题,但由于解决方案的复杂性,迫切需要替代方法[1]-[3]。进化计算(EC)方法已被证明是更有效处理这一局限性的方法,适用于求解 MOOPs,其中帕累托最优前沿的形式(不连续性、非凸性等)并不重要[4][5]。此外,大多数多目标进化算法(MOEAs)都采用支配关系概念[6][7]。

To solve the constrained optimization of all real-world problems, constrained evolutionary algorithm optimization (CEAO) implements an evolutionary algorithm (EA) combining with a constraint handling technique (CHT). In a work by [8], an infeasible individual will be divided into different categories based on their distances to the feasible region, and ranking will be conducted according to the classes. [9] introduced an approach that assigns high and low priorities to constraints and objective functions, respectively. The authors of [10] proposed a CHT that only considers the inequality constraints, wherein the algorithm uses tournament selection that has better convergence properties in comparison to the proportionate selection operator [11]. However, the latter algorithm employs niche count for all populations that may increase the complexity of the computation.
为解决现实世界中的所有约束优化问题,约束进化算法优化(CEAO)通过将进化算法(EA)与约束处理技术(CHT)相结合来实现。在文献[8]的工作中,不可行个体将根据其与可行区域的距离被划分为不同类别,并依据类别进行排序。[9]提出了一种方法,分别为约束条件和目标函数分配高优先级和低优先级。[10]的作者提出了一种仅考虑不等式约束的 CHT,其中算法采用具有比比例选择算子[11]更好收敛特性的锦标赛选择。然而,后一种算法对所有种群采用小生境计数,这可能会增加计算的复杂性。


The authors of [12] Introduced a novel approach that ignores any solution that violates any of the assigned constraints. [13] First proposed the use of a genetic algorithm (GA) population-based approach plus a controlled mutation operator to keep diversity among feasible solutions. The work of [14] proposed a CHT where three different non-dominated rankings of the population are performed, using objective function values, different constraints, and a combination of all objective functions and values. Although the technique can handle the infeasible solutions carefully and maintain diversity in the population, the algorithm performs poorly in terms of choosing parameter values and is computationally expensive. The authors of [15] developed an EA based on the nondominated sorting concept that uses the min-max formulation for constraint handling.
[12]的作者提出了一种新颖的方法,该方法忽略任何违反已分配约束的解决方案。[13]首次提出使用遗传算法(GA)的群体基础方法,加上受控变异算子以保持可行解之间的多样性。[14]的工作提出了一种约束处理技术(CHT),其中对群体执行三种不同的非支配排序,分别使用目标函数值、不同约束以及所有目标函数和值的组合。尽管该技术能够谨慎处理不可行解并保持群体多样性,但该算法在选择参数值方面表现不佳,且计算成本高昂。[15]的作者开发了一种基于非支配排序概念的进化算法(EA),该算法使用最小-最大公式进行约束处理。

The authors of [16] Ran the simulation of the non-dominated sorting genetic algorithm II (NSGAII) on a seven-constrained nonlinear problem, which exhibited better performance than Ray-Tai-Seow's algorithm. The study of [17] conducted an overview and analysis of the most popular CHTs using EAs along with pros and cons. The authors of [18] Combined a penalty function and multiobjective optimization technique, in which the ranking scheme is borrowed from latter technique. The authors of [19] suggested two approaches, namely Objective Exchange Genetic Algorithm and Objective Switching Genetic Algorithm, for solving constrained MOOPs. A new partial order relation from the constraint MOOPs was proposed by [20], under which the Pareto optimum set satisfies the constraints. The research of [21] introduced the Blended Space EA, which uses a rank obtained by blending an individual's rank in the objective space to check dominance.
文献[16]的作者在七约束非线性问题上运行了非支配排序遗传算法 II(NSGAII)的仿真,其性能优于 Ray-Tai-Seow 算法。[17]的研究对基于进化算法的常用约束处理技术进行了综述与分析,并列举了优缺点。[18]的作者结合罚函数与多目标优化技术,其中排序方案借鉴了后者的方法。[19]提出了目标交换遗传算法和目标切换遗传算法两种解决约束多目标优化问题的方法。[20]提出了一种约束多目标优化问题中的新偏序关系,在该关系下帕累托最优解集满足约束条件。[21]的研究引入了混合空间进化算法,通过融合个体在目标空间中的排序等级来检验支配关系。

The authors of [22] Introduced a two-phase algorithm, which separates the objective function and constraints. The work of [23] introduced a MOO-based EA (Cai and Wang method), abbreviated as CW, in addition to three other models for constrained optimization. In the proposed approach, the simplex crossover was used to enrich the exploitation and exploration abilities. The authors of [24] proposed an EA based on evolutionary strategy for constrained multiobjective optimization problems. The method uses a min-max formulation for constraint handling in which feasible individuals and infeasible individuals evolve toward Pareto optimality and feasibility, respectively. The study of [25] suggested Pareto Descent Repair (PDR) to search for feasible solutions out of infeasible individuals. The authors of [26] proposed an adaptive tradeoff model for constrained evolutionary optimization to address three main issues: evaluating an infeasible solution in case the population contains only infeasible solutions; achieving a balance between feasible and infeasible individuals when the population contains both solutions; and selecting the feasible solution in case the population possesses only feasible solutions.
[22]的作者提出了一种两阶段算法,将目标函数与约束条件分离。[23]的研究除提出三种其他约束优化模型外,还引入了一种基于多目标优化(MOO)的进化算法(Cai 和 Wang 方法),简称 CW。该方案采用单纯形交叉算子增强算法的开发与探索能力。[24]的作者针对约束多目标优化问题提出了一种基于进化策略的进化算法,该方法采用极小极大公式处理约束条件,使可行个体与不可行个体分别朝帕累托最优性和可行性方向进化。[25]的研究提出了帕累托下降修复(PDR)方法,用于从不可行个体中搜索可行解。 [26]的作者提出了一种用于约束进化优化的自适应权衡模型,旨在解决三个主要问题:在种群仅包含不可行解时评估不可行解;当种群同时包含可行与不可行个体时实现两者间的平衡;以及在种群仅含可行解时选择可行解。

The authors of [27] Suggested a heuristic hybrid of particle swarm optimization (PSO) and ant colony optimization for the optimum design of trusses, which showed to handle the problem-specific constraints using a fly-back mechanism. The work of [28] suggested an infeasibility-driven EA (IDEA), which is able retain a proportion of infeasible solutions among the population members and preserve diversity compared to NSGAII. The authors of [29] investigated an EA solution for approximate Karush-Kuhn-Tucker (KKT) conditions of smooth problems. The results on some test problems indicate that EA's operators lead the search process to a point close to the KKT point. The authors of [30] discussed the most important techniques, many of which were previously proposed [17], [31]. The previous work also addressed some state-of-the-art constrained handling techniques, including feasibility rules based on GA [13], epsilon constrained method [32], penalty functions [33], [34], and ensemble of constraint-handling methods [35], [36].[37] Introduced an evolutionary scheme for handling boundary constraints and combined it with differential evolution (DE) and compared the proposed method with other boundary constraints handling techniques. The results indicated the proposed approach is much better than the existing methods.
[27]的作者提出了一种启发式混合粒子群优化(PSO)和蚁群优化算法,用于桁架的最优设计,该算法通过回飞机制处理特定问题的约束。[28]的研究提出了一种不可行性驱动的进化算法(IDEA),与 NSGAII 相比,该算法能够在种群成员中保留一定比例的不可行解并保持多样性。[29]的作者研究了一种用于平滑问题近似 Karush-Kuhn-Tucker(KKT)条件的进化算法解决方案。在一些测试问题上的结果表明,进化算法的算子将搜索过程引导至接近 KKT 点的位置。[30]的作者讨论了最重要的技术,其中许多技术是先前提出的[17]、[31]。 先前的工作还涉及了一些最先进的约束处理技术,包括基于遗传算法(GA)的可行性规则[13]、ε约束方法[32]、惩罚函数[33][34]以及约束处理方法的集成[35][36]。[37]提出了一种处理边界约束的进化方案,并将其与差分进化(DE)相结合,同时将所提出的方法与其他边界约束处理技术进行了比较。结果表明,所提出的方法明显优于现有方法。

The authors of [38] Developed a water cycle algorithm, inspired by observations of the water cycle process that could be applied to a number of constraint optimization problems. [39] Introduced a population-based algorithm based on the mine blast explosion concept then applied the proposed approach to some constraint optimization problems in comparison to other well-known optimizers. The authors of [40] used a constraint consensus method that helps an infeasible individual to move towards the feasible region and then combined the method with a memetic algorithm. The research conducted by [41] developed a feasible-guiding strategy to guide the evolution of individuals, in which a revised objective function technique with feasible guiding strategy based on NSGA-II is introduced to handle constrained MOOPs. The study proposed by [42] proposed a class of constraint handling strategies, which infeasible individuals are repaired when they are considered in the search space and explicitly preserve feasibility of the solutions.
[38]的作者受水循环过程的启发,开发了一种可应用于多种约束优化问题的水循环算法。[39]提出了一种基于矿井爆炸概念的群体算法,并将所提出的方法应用于一些约束优化问题,与其他知名优化器进行了比较。[40]的作者采用了一种约束共识方法,帮助不可行个体向可行区域移动,然后将该方法与模因算法相结合。[41]的研究开发了一种可行引导策略来指导个体进化,其中引入了一种基于 NSGA-II 的修正目标函数技术,结合可行引导策略来处理约束多目标优化问题。[42]提出的研究提出了一类约束处理策略,在搜索空间中考虑不可行个体时对其进行修复,并明确保持解的可行性。


The authors of [43] Used a hybrid of PSO and GA to improve the balance between exploration and exploitation by using genetic operators, namely crossover and mutation in PSO. A few years later, [44] extended the parameter-less CHT so as to provide a balance between the feasible and infeasible solutions in a GA population. The authors of [45] proposed a new approach, known as boundary update (BU) technique, which is able to handle constraints directly (i.e. updating variable bounds) and tested the proposed method on several constrained optimization problem. The method proposed by [45] possesses the potential to couple with MOEA.
文献[43]的作者通过将遗传算子(即交叉和变异)引入粒子群优化(PSO),提出了一种 PSO 与遗传算法(GA)的混合方法,以改善探索与开发之间的平衡。几年后,文献[44]扩展了无参数约束处理技术(CHT),旨在实现遗传算法种群中可行解与不可行解之间的平衡。文献[45]的作者提出了一种称为边界更新(BU)的新方法,该方法能直接处理约束条件(即更新变量边界),并在多个约束优化问题上验证了所提方法的有效性。文献[45]提出的方法具有与多目标进化算法(MOEA)耦合的潜力。

It is noteworthy to mention that the majority of the mentioned studies focused on CHTs for single objective optimization with little attention towards multiobjective optimization. This is attributed to fact that most constraint handling methods developed for single objective optimization could be modified for multiobjective optimization as well [30].
值得注意的是,上述大多数研究集中于单目标优化的约束处理技术(CHTs),对多目标优化的关注较少。这归因于为单目标优化开发的大多数约束处理方法经过修改后同样适用于多目标优化[30]。

To attain a better understanding of the research field and to provide new insights from relevant publications, this work aimed to answer the following questions:
为了更深入地理解该研究领域并从相关文献中获取新见解,本研究旨在回答以下问题:

  • RQ1: What are CHTs, and how are they important?
    研究问题 1:什么是 CHT(此处需根据上下文确认具体术语全称),其重要性体现在哪些方面?

  • RQ2: What are the disadvantages of the different CHTs?
    研究问题 2:不同类型的 CHT 存在哪些局限性?

  • RQ3: What are the main topics and keywords regarding constraint handling techniques?
    RQ3:关于约束处理技术的主要议题和关键词有哪些?

  • RQ4: Which journals have the most contributions in the field? Who are the best researchers in the area, and what countries are they from?
    RQ4:哪些期刊在该领域贡献最多?该领域最优秀的研究人员是谁,他们来自哪些国家?

  • RQ5: What are the basic statistics of constraint handling techniques for multiobjective population-bassed algorithms?
    RQ5:多目标群体算法中约束处理技术的基础统计数据是什么?

  • RQ6: What are the most active countries and affiliations in the field?
    RQ6:该领域最活跃的国家和机构有哪些?

  • RQ7: What are the current gaps and future trajectory in the area?
    RQ7:该领域当前存在哪些研究空白及未来发展趋势?

The reminder of the study is as follows. Section 2 describes the research methodology. Section 3 presents the CHTs in EAs. Section 4 describes the CHTs in nature-inspired algorithms. Section 5 addresses the CHTs in multiobjective genetic algorithms. Section 6 presents a summary of novel approaches between 2020 and 2021. Section 7 discusses the scientometric analysis. Section 8 provides a summary of the study along with recommendations for future research. Concluding remarks are offered in the last section.
本研究的后续安排如下:第 2 节阐述研究方法论;第 3 节介绍 EA 中的 CHT 技术;第 4 节描述自然启发算法中的 CHT;第 5 节探讨多目标遗传算法中的 CHT;第 6 节汇总 2020 至 2021 年间的新颖研究方法;第 7 节进行科学计量分析;第 8 节总结研究成果并提出未来研究方向建议;末节给出结论性评述。

2. Research Methodology  2. 研究方法论


The research procedure in this work was divided into five stages (Figure 1). In the first stage, documents from databases were gathered from Scopus and Web of Science (WOS). For this aim, the authors used special keywords, namely (TITLE-ABS-KEY (constrained AND multi AND objective AND evol utionary AND optimization) OR TITLE-ABS-KEY (constraint AND handling AND multi AND o bjective AND evolutionary AND optimization) OR TITLE-ABS-
本研究的工作流程分为五个阶段(图 1)。第一阶段从 Scopus 和 Web of Science(WOS)数据库中收集文献资料。为此,作者使用了特定关键词组合,即(TITLE-ABS-KEY(constrained AND multi AND objective AND evolutionary AND optimization)或 TITLE-ABS-KEY(constraint AND handling AND multi AND objective AND evolutionary AND optimization)或 TITLE-ABS-

KEY (constrained AND multi AND objective AND swarm AND optimization) OR TITLE-ABS-KEY (constraint AND handling AND multi AND o bjective AND swarm AND optimization) to find the related articles published as of May 4, 2021. Supplementary A and B present the data extracted from Scopus and WOS, respectively. Since some of the articles were duplicates, they were identified and removed from the library in stage 2 using Mendeley as a powerful reference manager. Also, in stage 2, some research questions for this study were designed. An overview was initiated in stage 3 with a general illustration of the basic concepts of CHTs and comparison of methods. In stage 4, a social network analysis was performed to provide a scientometric analysis of the documents using VOSviewer [46], [47] and RStudio, which have been identified as powerful tools for scientometric analysis. Also, some interesting analytical features, such as number of pages and authors per article, were conducted in this stage. Moreover, stage 4 required several steps, including co-occurrence, co-authorship, citation, and citation network analyses. In the last stage, the results were obtained to formulate a discussion to answer the proposed research questions. Stage 5 required preparing the findings, identifying important gaps, and determining future research directions.
KEY(constrained AND multi AND objective AND swarm AND optimization)或 TITLE-ABS-KEY(constraint AND handling AND multi AND objective AND swarm AND optimization)用于查找截至 2021 年 5 月 4 日发表的相关文章。补充材料 AB 分别展示了从 Scopus 和 WOS 提取的数据。由于部分文章存在重复,在第二阶段使用 Mendeley 作为强大的参考文献管理器进行了识别并从库中移除。同时,在第二阶段设计了本研究的一些研究问题。第三阶段启动了一个概述,对 CHTs 的基本概念进行了总体说明并比较了方法。第四阶段进行了社交网络分析,使用 VOSviewer[46]、[47]和 RStudio 对文档进行了科学计量分析,这些工具已被认为是科学计量分析的强大工具。此外,此阶段还进行了一些有趣的分析特征,如每篇文章的页数和作者数量。此外,第四阶段需要几个步骤,包括共现分析、合著分析、引用分析和引用网络分析。 在最后阶段,我们获得了相关结果以展开讨论,从而回答所提出的研究问题。第五阶段需要整理研究发现、识别重要空白领域并确定未来的研究方向。




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_3.jpg?x=200&y=200&w=1403&h=650&r=0

Figure 1 Research Procedure
图 1 研究流程

  1. Constraint Handling Methods in Evolutionary Algorithms (RQ1)
    进化算法中的约束处理方法(研究问题 1)


Almost all real-world problems are considered as constraint problems. A general form of a constrained multi-objective optimization problem(CMOOP) is described as follows (Equations 1-3):
几乎所有现实世界问题都被视为约束问题。一个典型的约束多目标优化问题(CMOOP)的一般形式描述如下(公式 1-3):

Maximize (Minimize)(1)  最大化(最小化)(1)

F(x)=(f1(x),,ft(x))

s.t.  约束条件

(2)hi(x)=0i=1,,n

(3)gj(x)0j=1,,m

Where F(x) is the objective vector; and t,n and m are the number of objective function, equality and inequality constraints, respectively. There is no single solution for a MOOP that simultaneously optimizes each objective, instead there exists a number of Pareto optimal solutions. A Pareto front of possible solutions is called optimal or nondominated if improving anyone's objective further would lead to a decrease in other objectives. According to previous surveys [17], [31], a simple taxonomy of the constraint handling methods in nature-inspired optimization algorithms is as follows:
其中 F(x) 是目标向量; t,nm 分别表示目标函数、等式约束和不等式约束的数量。多目标优化问题(MOOP)不存在能同时优化所有目标的单一解,而是存在一系列帕累托最优解。若一个解集的帕累托前沿在进一步优化任一目标时会导致其他目标劣化,则称该解集为最优或非支配解集。根据既往综述[17][31],自然启发式优化算法中约束处理方法的简单分类如下:

1- Penalty functions methods
1- 罚函数法

2- Decoders  2-解码器

3- Special operators  3-特殊运算符

  1. Separation techniques  分离技术

The first and fourth techniques are discussed in details later in the paper. As an example of decoders,[48] proposed a homomorphous mapping (HM) method between an n -dimensional cube and feasible space. The feasible region can be mapped onto a sample space where a population-based algorithm could run a comparative performance [48]-[51]. However, this method requires high computational costs. A special operator is used to preserve the feasibility of a solution or move within a special region [52]-[54]. Nevertheless, this method is hindered by the initialization of feasible solutions in the initial population, which is challenging with highly-constrained optimization problems. In addition, the authors of [55] presented a taxonomy of CHTs in MOEA as follows (Figure 2):
第一和第四种技术将在后文详细讨论。以解码器为例,文献[48]提出了一种 n 维立方体与可行空间之间的同态映射(HM)方法。可行域可映射到样本空间,基于种群的算法可在其中进行性能比较[48]-[51]。但该方法计算成本较高。特殊算子用于保持解的可行性或在特定区域内移动[52]-[54],然而该方法受限于初始种群中可行解的生成,这在高度约束的优化问题中具有挑战性。此外,文献[55]提出了 MOEA 中约束处理技术(CHTs)的分类如下(图 2):

  • Penalty functions  惩罚函数

  • Separation  分离

method  方法

  • Retaining the  保留

infeasible  不可行

solutions  解决方案

  • Hybrid methods  混合方法




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_4.jpg?x=314&y=197&w=1276&h=973&r=0

Figure 2 Taxonomy of different constraint handling methods in MOEA
图 2 MOEA 中各类约束处理方法的分类体系


Generally, penalty function techniques are one of the most simple CHTs. There are several types of penalty functions used with EAs, which the most important ones include [56]:
通常而言,惩罚函数技术是最简单的约束处理技术(CHTs)之一。进化算法中使用的惩罚函数主要有以下几种重要类型[56]:

  • Death penalty  死刑

  • Dynamic penalty  动态惩罚

  • Static penalty  静态惩罚

  • Adaptive penalty  自适应惩罚

  • Stochastic ranking  随机排序

Details regarding the penalty function methods will be discussed in the next section.
关于惩罚函数方法的具体细节将在下一节讨论。

3.1 Penalty function approach
3.1 惩罚函数法

One of the easiest and most common ways to handle constraints in multiobjective evolutionary algorithms is the penalty function method.
处理多目标进化算法中约束条件最简便且常用的方法之一就是惩罚函数法。

From a mathematical point-of-view, two types of penalty functions could be considered as follows:
从数学角度来看,可以考虑以下两种类型的惩罚函数:

  • Interior methods  内点法

  • Exterior methods  外点法

The first type of penalty functions, interior methods, the penalty factor is selected such that the value will be small away from the constraint boundaries and need an initial feasible solution
第一类惩罚函数(内点法)的惩罚因子选择原则是:在远离约束边界时函数值较小,且需要初始可行解

[55], whereas exterior methods do not need an initial feasible solution [5]. Also, it should be noted that some of the infeasible solutions should be retained in the populations so that they are able to converge to a solution, which lies in the boundary between the feasible and infeasible regions [57].
而外点法则不需要初始可行解[5]。还需注意的是,应保留部分不可行解,使种群能够收敛到位于可行域与不可行域边界上的解[57]。

In the penalty function method, any infeasible solution is ignored [58]. First, all constraints should be normalized, and for each solution, the constraint violations are calculated as follows (Equation 4):
惩罚函数法会直接忽略任何不可行解[58]。首先需对所有约束进行归一化处理,并按下式(公式 4)计算每个解的约束违反量:

wj(xi)

(4)


={|g¯(xi)|, if g¯(xi)<00, otherwise 

where g¯(xi) refer to the normalized values for a given constraint g¯j(xi)0,j=1,,J . Once the violations for the constraints are calculated, the values are added to determine the overall violation as follows (Equation 5):
其中 g¯(xi) 表示给定约束 g¯j(xi)0,j=1,,J 的归一化值。计算完各约束的违反值后,通过以下方式将这些值相加以确定总体违反程度(公式 5):


(5)Ω(xi)=j

=j=1Jwj(xi)

Also, a penalty parameter is multiplied to the sum of constraint violations and then added to the objective function values. If a proper penalty parameter is selected, MOEAs will work well; otherwise, a set of infeasible solutions or a poor distribution of solution is possible.
此外,约束违反值的总和会乘以一个惩罚参数,然后加到目标函数值中。若选择合适的惩罚参数,多目标进化算法(MOEAs)将表现良好;否则可能导致不可行解集或解分布不佳的情况。

3.1.1 Static penalty functions
3.1.1 静态惩罚函数


In static penalty proposed by [59], the penalty coefficient increases as a higher level of violation is reached. In fact, penalty functions do not change, a static penalty function is suggested, and several levels of violation are introduced in which the static penalty parameter is changed in case higher levels of violation are achieved [60]. In the static penalty function, the expanded objective function is (Equation 6):
在[59]提出的静态罚函数中,罚系数随违反程度增加而递增。实际上罚函数本身不变,而是建议采用静态罚函数,并引入多个违反等级——当达到更高违反等级时,静态罚参数会相应调整[60]。静态罚函数中的扩展目标函数表达式为(公式 6):

(6)φ(x)=f(x)+

j=1pCkjGj

Where Gj=max{0,gj(x)}β ; and k=1,,1 where 1 presents the number of levels of violation.
其中 Gj=max{0,gj(x)}β ;而 k=1,,1 中的 1 表示违规层级数。

3.1.2 Dynamic penalty functions
3.1.2 动态惩罚函数

In this category, functions are changed based on the iteration number. [61] Proposed the following dynamic penalty function, in which the penalty increased when the iteration number increases.
本类函数会随迭代次数变化而调整。[61]提出以下动态惩罚函数,其惩罚力度随迭代次数增加而递增。

Dynamic multiobjective optimization problems (DMOOPs) involve the simultaneous optimization of different objectives subject to a number of given constraints, where the objective functions, constraints, and/or dimensions of the objective space could change over time. EAs have acquired great attention among researchers for solving the above-mentioned problems.
动态多目标优化问题(DMOOPs)需在满足若干约束条件下同时优化多个目标,其目标函数、约束条件和/或目标空间维度可能随时间变化。进化算法在解决此类问题方面已获得研究者的广泛关注。

3.1.3 Adaptive penalty functions In this category, infeasible individuals are penalized according to the feedback taken from the search process [62]. [63] proposed a CHT based on the adaptive penalty function and distance measure, which both change as the objective function value and constraint violations of an individual varies.
3.1.3 自适应惩罚函数 此类方法根据搜索过程的反馈对不可行个体施加惩罚[62]。[63]提出了一种基于自适应惩罚函数和距离度量的约束处理技术,二者会随着个体的目标函数值及约束违反程度动态调整。

Penalty-based constraint handing for multiobjective optimization is similar to single-objective problems in which a penalty factor is added to all the objectives. [63] Proposed a self-adaptive penalty function, which is suitable for solving constraint multiobjective optimization problems using evolutionary algorithms. In the self-adaptive penalty function method, the amount of penalty added to infeasible individuals are identified by tracking the number of feasible individuals. Also, the method uses improved objective values instead of the original objective function values [64].
多目标优化中的基于惩罚的约束处理方法与单目标问题类似,即在所有目标函数中添加惩罚因子。[63]提出了一种适用于进化算法求解约束多目标优化问题的自适应惩罚函数。该方法通过追踪可行解数量来确定对不可行个体的惩罚量,并使用改进后的目标函数值替代原始目标函数值[64]。

3.1.4 Annealing-based penalty
3.1.4 基于退火的惩罚

functions  函数

[65] Introduced a multiplicative penalty function based on simulated annealing. In this type of penalty function, the temperature is decreased when the iteration number increases, which leads to an increased penalty.
[65] 引入了一种基于模拟退火的乘法惩罚函数。在此类惩罚函数中,温度随迭代次数增加而降低,从而导致惩罚力度增强。

3.1.5 Co-evolutionary-based penalty functions
3.1.5 基于协同进化的惩罚函数

[66] Proposed a co-evolutionary approach in which the population is partitioned into two subpopulations. The first population evolves solutions, and the second population evolves penalty factors. In this approach, the penalty function considers information taken from the amount of constraint violations and a number of violations.
[66]提出了一种协同进化方法,将种群划分为两个子群。第一子群进化解决方案,第二子群进化惩罚因子。该方法中,惩罚函数综合考虑了约束违反程度和违反次数的信息。

There are other types of penalty function methods, which table 1 presents a summary and critique of the techniques for constraint handling.
还存在其他类型的惩罚函数方法,表 1 对这些约束处理技术进行了总结与评述。



Table 1 The important CHTs (penalty function)- RQ2
表 1 重要约束处理技术(CHTs)之惩罚函数 - RQ2

Method  方法Criticism  批评Consequences  后果
Death Penalty [12]  死刑 [12]- No information is used from infeasible points. It may require initialization of the population and lack of diversity [67].
- 不可行点的信息未被利用。这可能需要初始化种群且存在多样性不足的问题[67]。
- Consumes many evaluations Low success rate
- 消耗大量评估次数 成功率低
Static Penalty [68]  静态惩罚[68]- It is required to set up a high number of penalty parameters. It is also problem-dependent.
- 需要设置大量惩罚参数,且这些参数依赖于具体问题。
Time consuming  耗时
Dynamic Penalty [69]  动态惩罚 [69]- It is hard to drive good dynamic penalty functions in real case. - In some cases, this method converges to either an infeasible or feasible solution that is far from the global optimum [70]; [71]
- 在实际案例中设计出良好的动态惩罚函数较为困难。- 在某些情况下,该方法会收敛到不可行解或远离全局最优解的可行解[70][71]
- Premature convergence or even infeasible solution in some cases
- 部分情况下会出现早熟收敛甚至不可行解
Adaptive Penalty [72]  自适应惩罚函数[72]Setting the parameters is difficult, such as determining the appropriate generational gap. - It requires the definitions of additional parameters [73].
参数设置较为困难,例如确定合适的代际间隔。- 需要额外定义参数[73]
Time consuming  耗时
Annealing Penalties [74]  退火惩罚项 [74]- The main disadvantage is its sensitivity to the values of its factors. To handle linear constraints, the user should provide an initial feasible point to the algorithm.
- 主要缺点是其对因子值敏感。为处理线性约束,用户需向算法提供初始可行点
- The performance of the algorithms is not good.
算法性能表现不佳。
Self- adaptive Penalty [75][76]
自适应惩罚 [75][76]
- It defines four additional parameters that may affect the fitness function evaluations.
- 它定义了可能影响适应度函数评估的四个附加参数。
- Time consuming & weak or strong penalty during evolution
- 进化过程中耗时且存在弱惩罚或强惩罚
Segregated genetic algorithm (SGA) [77]
隔离遗传算法(SGA)[77]
- The main difficulty is selecting the penalties for each of the two sub- populations.
- 主要难点在于为两个子种群分别选择合适的惩罚系数
Time consuming  耗时
Penalty function based on feasibility [13]
基于可行性的惩罚函数 [13]
The main issue is maintaining diversity in the population, and in some cases, use of a niching method combined with higher-than-usual mutation rates is essential.
主要问题在于维持种群多样性,某些情况下需结合使用小生境方法和高于常规的变异率。
- Premature convergence  - 早熟收敛


3.2 Separation of objective function and constraints
3.2 目标函数与约束条件的分离


Unlike the penalty function technique, another approach exists that separates the values of objective functions and constraints in the nature-inspired algorithms (NIAs) [78], which is known as separation of objective function and constraints. [79] Initially proposed the idea to divide the search space into two phases. In the first phase, feasible solutions, are found, and in the second phase, optimizing the objective function is considered.
与罚函数技术不同,还存在另一种方法将目标函数值与约束条件在自然启发算法(NIAs)中分离处理[78],这种方法被称为目标函数与约束分离技术。[79]最初提出将搜索空间划分为两个阶段的构想:第一阶段寻找可行解,第二阶段则专注于目标函数的优化。

Representative methods of this type of CHT are as follows:
此类约束处理技术(CHT)的代表性方法如下:

  • Stochastic ranking (SR)  随机排序 (SR)

  • Constraint dominance principle (CDP)
    约束支配原则(CDP)


  • Epsilon CHT

  • Feasibility rules  可行性规则

The next section provides further details about this type of constraint handling method.
下一节将详细介绍此类约束处理方法的更多细节。

3.2.1 Constraint dominance principle In constraint dominance principle (CDP), three feasibility rules are applied to compare any two solutions. If x1 is feasible and x2 is infeasible, then x1 would be better than x2 . If both solutions are infeasible, then the solution with a smaller constraint violation is better. If both are feasible, then the one dominating the other is better. [16] Adopted CDP to handle constraints in NSGAII (NSGAII-CDP), in which the population is divided into feasible and infeasible subpopulations. NSGAII-CDP first selects offspring from the feasible solutions and then selects solutions from the infeasible solutions.[80] Also adopted CDP to handle constraints in the MOEA/D framework.
3.2.1 约束支配原则 在约束支配原则(CDP)中,采用三条可行性规则比较任意两个解:若解 x1 可行而解 x2 不可行,则解 x1 优于解 x2 ;若两解均不可行,则约束违反程度较小的解更优;若两解均可行,则支配解更优。[16] 该研究将 CDP 应用于 NSGAII 算法的约束处理(NSGAII-CDP),将种群划分为可行与不可行子群,优先从可行解中选择后代,再从不可行解中补充选择。[80] 另有研究将 CDP 整合至 MOEA/D 框架处理约束。

3.2.2 &-constrained (EC) Method
3.2.2 带约束(EC)方法


The basic principle of the ε -constrained method, first introduced by [81], is similar to the superiority of feasible solution (SF) proposed by [82] (Eqs. 12-13). The epsilon value is updated until the parameter k reaches the control generations Tc . [83] Embedded the epsilon CHT in MOEA/D so that the epsilon value is set adaptively of r comparison. Also,the violation threshold is based on the type of constraints, size of the feasible space, and the search outcome. In the method proposed by [83], the infeasible solutions with violations less than threshold are identified (Eqs. 7-8).
ε约束方法的基本原理最早由[81]提出,其思想类似于[82]提出的可行解优越性(SF)准则(见公式 12-13)。该算法持续更新ε值直至参数 k 达到控制代数 Tc 。[83]将ε约束处理技术嵌入 MOEA/D 框架,使ε值能根据 r 比较自适应调整。此外,违界阈值设置综合考虑约束类型、可行空间大小及搜索状态。在[83]提出的方法中,会筛选出违界值低于阈值的不可行解(参见公式 7-8)。

(7)ε(0)=V(xθ)

ε(k)(8)

={ε(0)(1kTc)cp,0<k<Tc0,k>Tc

where xθ presents the top θ th individual at initialization; and the cp parameter is selected between [2,10][84] .
其中 xθ 表示初始化阶段排名前 θ 位的个体;cp 参数取值区间为 [2,10][84]

3.2.3 Feasibility rules  3.2.3 可行性规则

The popularity of this method depends on its ability to be coupled to a range of algorithms without announcing new parameters (factors) [30].
该方法的普及性取决于其能与多种算法耦合且无需引入新参数(因子)的能力[30]。

The feasibility rules proposed by [13] are simple, could be integrated into a variety of algorithms without adding new parameters, and thus, are largely used in the research field. [85]-[87] developed feasibility rules for the selection process, which have been adopted by different evolutionary algorithms such as DE, PSO, and GA. According to the number of feasible solutions, the search space could be divided into three phases as follows [84]:
文献[13]提出的可行性规则简单易行,可集成到多种算法中且无需新增参数,因此在研究领域被广泛采用。[85]-[87]开发了用于选择过程的可行性规则,这些规则已被差分进化算法(DE)、粒子群优化(PSO)和遗传算法(GA)等不同进化算法所采纳。根据可行解的数量,搜索空间可分为以下三个阶段[84]:

  • No feasible solution is found.
    未找到可行解。

  • There exists at least one feasible solution.
    至少存在一个可行解。

  • Integrating the parent-offspring population has more feasible solutions than the size of the next generation population.
    整合父代-子代种群所获得的可行解数量多于下一代种群的规模。

The feasibility rules used in multiobjective optimization, also known as the superiority of feasible solution (SF), are addressed as follows [84] (Equation 9):
多目标优化中使用的可行性规则,即可行解优越性(SF),按如下方式处理[84](公式 9):

fitnessm(x)={fm(x) if x is feasible fworst m+v(x) otherwise (9)

where fworst m and v(x) show the mth objective value of the worst feasible solution and the overall constraint violation, respectively.
其中 fworst mv(x) 分别表示最差可行解的第 m 个目标值和总体约束违反程度。

3.2.3.1 Feasibility rules in Differential Evolution (DE)
3.2.3.1 差分进化算法中的可行性规则

Although the feasibility rules introduced by [13] have also been widely used by other researchers in DE [85], [86], [88]-[94], they have been rarely used in multiobjective differential evolution. Particularly, [95] used Pareto dominance in constrained space instead of the sum of constraint violations. Later, [96] adopted the Pareto dominance in Generalized Differential Evolution (GDE), but encountered difficulties when there exist more than three constraints and/or objective functions.
尽管文献[13]提出的可行性规则已被其他研究者广泛应用于差分进化算法[85][86][88]-[94],但在多目标差分进化中鲜少使用。特别是文献[95]采用约束空间中的帕累托支配关系替代约束违反值之和。随后文献[96]在广义差分进化(GDE)中采用了帕累托支配,但当存在超过三个约束和/或目标函数时遇到了困难。

[97] Proposed a scheme for partitioning the objective space using the conflict information for multiobjective optimization. [98] introduced an operational efficient model based on Data Envelopment Analysis (DEA) and introduced DE along with the feasibility rules to optimize the mentioned model. [99] proposed a combined constraint handling framework, known as CCHF, for solving constrained optimization problems, in which the features of two well-known CHTs (i.e. feasibility rules and multiobjective optimization) were addressed in three different situations (feasible situation, infeasible situation, and semi-feasible situation).
[97]提出了一种利用冲突信息对多目标优化的目标空间进行划分的方案。[98]引入了一种基于数据包络分析(DEA)的高效操作模型,并结合可行性规则引入了 DE 来优化上述模型。[99]提出了一个名为 CCHF 的组合约束处理框架,用于求解约束优化问题,该框架在三种不同情境(可行情境、不可行情境和半可行情境)中整合了两种著名 CHT(即可行性规则和多目标优化)的特性。

3.2.3.2 Feasibility rules in PSO [100] Employed feasibility rules as a constraint handling technique to recognize the most competitive PSO variant when solving constrained numerical optimization problems (CNOPs). In the research by [100], local-best was identified to be better than global best PSO. [101] [102] adapted an artificial bee colony algorithm (ABC) to solve CNOPs by using feasibility rules by modifying the probability assignment for the roulette wheel selection.[103] Compared different GA variants using the feasibility rules as the constraint handling method. [104] Introduced a hybrid version of PSO to solve constrained optimization problems and found that the swarm at each generation is split into several sub-swarms. Also, the hybrid version applied the feasibility rules to compare particles in the swarm.
3.2.3.2 PSO 中的可行性规则 [100]采用可行性规则作为约束处理技术,用于在求解约束数值优化问题(CNOPs)时识别最具竞争力的 PSO 变体。在[100]的研究中,发现局部最优 PSO 优于全局最优 PSO。[101][102]通过修改轮盘赌选择的概率分配,采用人工蜂群算法(ABC)结合可行性规则来求解 CNOPs。[103]使用可行性规则作为约束处理方法,比较了不同遗传算法(GA)变体的性能。[104]提出了一种混合 PSO 版本用于求解约束优化问题,发现每一代的群体被分割成若干子群,且该混合版本应用可行性规则来比较群体中的粒子。


3.2.3.3 Feasibility rules in GA [105] Proposed a GA with a new multi-parent crossover for solving constraint optimization problems, in which the feasibility rules were added to handle the constraints. The latter authors also solved constraint numerical optimization problems by using different GA variants along with feasibility rules and found that all GAs perform equally. [22] Introduced a two-phase framework for solving constraint optimization problems. Specifically, the first phase ignores the objective function and the genetic algorithm minimizes the violation of the solutions, while the second phase optimizes bi-objective functions, including the original objective function and constraints satisfaction. Moreover, feasibility rules is applied to assign fitness values to the individuals.
3.2.3.3 遗传算法中的可行性规则 [105]提出了一种采用新型多亲代交叉的遗传算法来解决约束优化问题,其中加入可行性规则以处理约束条件。后者还通过结合不同遗传算法变体与可行性规则求解约束数值优化问题,发现所有遗传算法表现相当。[22]提出了解决约束优化问题的两阶段框架:第一阶段忽略目标函数,遗传算法专注于最小化解的违反程度;第二阶段优化双目标函数(包括原始目标函数和约束满足度)。此外,应用可行性规则为个体分配适应度值。

3.2.3.4 Feasibility rules in other population-based algorithms
3.2.3.4 其他群体智能算法中的可行性规则

Feasibility rules have been adapted to other population-based algorithms, such as artificial immune systems [106]-[111], organizational evolutionary algorithm [112], biogeography-based optimization [113], and bacterial foraging optimization [114].
可行性规则已被应用于人工免疫系统[106]-[111]、组织进化算法[112]、生物地理学优化[113]和细菌觅食优化[114]等群体智能算法。

3.3 Retaining infeasible solutions in the population
3.3 在种群中保留不可行解

Another CHT is used to retain the infeasible individuals in the population. In other words, a constraint multiobjective optimization problem with m objective is transformed to an optimization problem with m+1 objectives,which could save the infeasible solution during the evolution process [28], [115]. [116] proposed a constraint handling technique so that the individuals that possess low Pareto rank and low constraint violation will be chosen.
另一种约束处理技术(CHT)用于保留种群中的不可行个体。换言之,通过将带有 m 目标的约束多目标优化问题转化为具有 m+1 目标的优化问题,可以在进化过程中保留不可行解[28][115]。文献[116]提出了一种约束处理技术,使得具有低帕累托等级和低约束违反的个体被优先选择。

3.4 Hybrid methods  3.4 混合方法

Hybrid methods combine several CHTs to handle constraints. [117] addressed four different hybrid methods in their work: 1) the ensemble of constraint handling method [84] separates the population into three sub-populations; 2) the adaptive trade-off model [118] contains two different CHTs; 3) in the push and pull search [119], the population is pushed to the unconstrained Pareto front (push) then the population is pulled back to the Pareto front (pull); 4) the two-phase framework (ToP) [120] solves a constraint multiobjective optimization problem by first converting the objective functions into a single objective function via the weighting method then, in the second phase, a constrained MOEA is adopted to attain the Pareto feasible solutions. The disadvantages for each category in Figure 1 are summarized in Figure3. The authors of [30] Presented a state-of-the-art taxonomy of CHTs, which is illustrated in Figure 4. Figure 5 presents the different state-of-the-art CHTs that have been used since 2000. As mentioned, [13] first applied feasibility rules to the genetic algorithm. [121] introduced stochastic ranking, which employs a user-defined parameter instead of using penalty factors and is able to control the infeasible solutions based on the sum of constraint violation and objective function values. [33] Proposed the epsilon-constraint method that transforms the constraint optimization problem into an unconstrained problem. [33] Addressed a multi-constrained optimization problem based on the KS function. [122] proposed a boundary search approach inspired by the ant colony metaphor based on conducting a boundary search between a feasible and infeasible solution. [28] Proposed an additional objective to solve a bi-objective optimization problem, where the first objective is the original problem and the second objective is the constraint violation measure. [36] Addressed a combination of four CHTs, namely feasibility rules, stochastic ranking, self-adaptive penalty function and the epsilon-constraint method to solve constraint numerical optimization problems. The first and second techniques are discussed in detail in the next sections, while the other methods presented in Figure 3 have been addressed previously in this study.
混合方法结合了多种约束处理技术(CHT)来处理约束条件。[117]在其工作中探讨了四种不同的混合方法:1)约束处理方法集成[84]将种群划分为三个子种群;2)自适应权衡模型[118]包含两种不同的 CHT;3)在推拉搜索[119]中,种群先被推向无约束帕累托前沿(推阶段),随后被拉回至约束帕累托前沿(拉阶段);4)两阶段框架(ToP)[120]通过权重法首先将多目标函数转化为单目标函数,然后在第二阶段采用约束多目标进化算法(MOEA)获取帕累托可行解。图 1 中各类别的缺点总结于图 3。[30]的作者提出了当前最先进的 CHT 分类法,如图 4 所示。图 5 展示了自 2000 年以来使用的各类前沿 CHT 技术。如前所述,[13]首次将可行性规则应用于遗传算法。 [121]引入了随机排序法,该方法采用用户定义参数而非惩罚因子,并能基于约束违反与目标函数值的总和控制不可行解。[33]提出了ε-约束方法,将约束优化问题转化为无约束问题。[33]基于 KS 函数处理了多约束优化问题。[122]提出受蚁群隐喻启发的边界搜索方法,通过在可行解与不可行解之间进行边界搜索来实现。[28]通过添加第二目标(约束违反度量)来解决双目标优化问题,其中第一目标为原始问题。[36]综合运用四种约束处理技术(可行性规则、随机排序、自适应惩罚函数及ε-约束法)求解约束数值优化问题。前两种技术将在后续章节详细讨论,图 3 所示的其他方法已在本研究前期予以阐述。




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_9.jpg?x=388&y=211&w=1030&h=625&r=0

Figure 3 The main disadvantages of CHTs in MOEA- RQ2
图 3 MOEA-RQ2 中 CHTs 的主要缺点


https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_9.jpg?x=204&y=1418&w=1397&h=212&r=0

Figure 4 State-of-the-art CHTs [30]
图 4 最先进的 CHTs 技术[30]



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_10.jpg?x=204&y=207&w=1388&h=422&r=0

Figure 5 Timeline of different state-of-the-art CHTs
图 5 不同最先进 CHTs 技术的时间线


3.5 Stochastic ranking  3.5 随机排序


[121] proposed the stochastic ranking (SR) approach to balance between the objective and penalty functions stochastically. The method was tested using a strategy evolution on several benchmarks, and the results showed that the method is able to improve the search performance with a user-defined parameter without introducing complicated variation operators. SR has also been coupled with other population-based algorithms, such as ant colony optimization (ACO) [123], [124], differential evolutionary (DE) [125]- [127], and evolutionary programming (EP) [128].
[121]提出了随机排序(SR)方法,以随机方式平衡目标函数与罚函数。该方法通过策略进化在多个基准测试上进行验证,结果表明该方法能够通过用户定义的参数提升搜索性能,且无需引入复杂的变异算子。SR 还与其他群体智能算法相结合,如蚁群优化(ACO)[123][124]、差分进化(DE)[125]-[127]以及进化规划(EP)[128]。

3.6 Ensemble techniques  3.6 集成技术

Ensemble CHTs provide a new research platform to tackle constrained multiobjective optimization problems. Combining several CHTs could improve the capability of an approach compared with a single CHTs [30], [129]. For instance, [130] proposed a combination of four CHTs, namely nondominated sorting, constrained-domination principle, multiple constraint ranking, and dynamic penalty function, and incorporated the proposed technique into an MOEA based on NSGAII. Some other ensemble CHTs have been reported [36], [131], [132]. Although the ensemble CHT has a competetive performance, it suffers from being parameter-dependent.
集成约束处理技术(CHTs)为解决约束多目标优化问题提供了新的研究平台。相较于单一 CHT[30][129],组合多种 CHT 能显著提升算法性能。例如文献[130]提出将非支配排序、约束支配原则、多重约束排序和动态罚函数四种 CHT 技术相结合,并将该技术集成到基于 NSGAII 的多目标进化算法中。其他集成 CHT 方案也见诸报道[36][131][132]。尽管集成 CHT 具有竞争优势,但其性能仍受参数依赖性制约。

3.7 Multiobjective concept
3.7 多目标概念

Based on the multiobjective optimization concept, a constraint single-objective optimization problem is transferred to an unconstrained multiobjective optimization problem [5]. The multiobjective version of the optimization problem possesses an extra objective function, which presents the sum of constraint violation [28], [133]-[135].
基于多目标优化理念,约束单目标优化问题可转化为无约束多目标优化问题[5]。该多目标版本优化问题新增了一个目标函数,用于表征约束违反量总和[28][133]-[135]。

The authors of [136] presented a taxonomy for constraint handling strategies in multiobjective GA, which include:
文献[136]作者提出了多目标遗传算法中约束处理策略的分类体系,主要包括:

  • Penalty function methods  罚函数方法

  • Separation method  分离方法

Special operators  特殊运算符


Repair methods  修复方法


Among these strategies, the penalty function method is not straightforward in multiobjective GA since the fitness assignment is based on the non-dominance rank of a solution rather than its objective function values [137]. Yet, the penalty function method is one of the most popular CHTs in constraint multiobjective optimization. Whenever the multiobjective function and constraint violation for each constraint are assessed, the sum of violations is added to each objective function value considering the multiplication of the penalty parameter [138], [139].[19] Proposed two approaches, namely OEGADO and OSGADO. OEGADO runs several GAs in parallel so that each GA optimizes one objective, whereas OSGADO runs each objective sequentially with a common population for all objectives.
在这些策略中,罚函数法在多目标遗传算法中并不直观,因为适应度分配是基于解的非支配等级而非其目标函数值[137]。然而,罚函数法是约束多目标优化中最流行的约束处理技术之一。每当评估多目标函数和每个约束的约束违反时,将违反总和乘以罚参数后叠加到各目标函数值上[138][139]。[19]提出了两种方法:OEGADO 和 OSGADO。OEGADO 并行运行多个遗传算法,每个算法优化一个目标;而 OSGADO 则采用共享种群的方式依次优化各目标。

3.8 Repair approaches  3.8 修复方案


There are several techniques used as repair algorithms, in which the search space is reduced (since only feasible individuals are considered):
修复算法采用多种技术手段,通过仅考虑可行个体来缩减搜索空间:

  • In the permutation encodings method, each solution of an EA population is simply signified as an ordered list [140], [141].
    在排列编码方法中,进化算法种群的每个解仅表示为有序列表[140][141]。

  • Repair procedures in binary representations, which could be shown as fixing the number of 1s in binary representations and Hopfield networks [142], [143].
    二进制表示中的修复程序,可体现为固定二进制表示中 1s 的数量以及 Hopfield 网络[142][143]的修复。

  • Repair methods in graphs that are represented as spanning trees and repairing graphs [144], [145].
    以生成树形式表示的图结构修复方法及图的修复[144][145]。

  • Repair methods in grouping GAs, which are proper for scenarios that a number of items should be assigned to a set of groups [146], [147]. Pure EAs do not perform well in complex combinatorial problems with a high number of constraints [148], [149]. Single-solution based algorithms (e.g. local search, simulated annealing) have good performance in exploitation, while population-based algorithms (e.g. swarm intelligence, EA are exploration-oriented. In these problems, hybridization of population-based algorithms with single-based algorithms can improve the power of both exploration and exploitation [150]-[152]. A memetic algorithm is a hybridization of an EA and a local search (LS) approach that LS is applied to improve the quality of the fitness function. On the other hand, LS could be used as a CHT [152], i.e. the local repair algorithm only consider feasible individuals leading to reducing the search space. Repair methods could be applied to EAs in several ways, such as in permutation encodings [153], [154], in binary representation [155], and in graphs and trees [156], [157]. Although repair algorithms have numerous advantages, some disadvantages do exist. For instance, repair algorithms are problem-specific and must be designed for a specific problem [158]. Table 2 shows a summary of the disadvantages of the state-of-art CHTs.
    分组遗传算法(GAs)中的修复方法适用于需要将大量项目分配到一组群中的场景[146][147]。纯粹的进化算法(EAs)在具有大量约束的复杂组合问题上表现不佳[148][149]。基于单一解的算法(如局部搜索、模拟退火)在开发(exploitation)方面表现良好,而基于种群的算法(如群体智能、EA)则偏向探索(exploration)。在这些问题中,将基于种群的算法与基于单一解的算法混合使用,可以同时提升探索和开发的能力[150][152]。模因算法(memetic algorithm)是 EA 与局部搜索(LS)方法的混合体,其中 LS 用于提高适应度函数的质量。另一方面,LS 也可用作约束处理技术(CHT)[152],即局部修复算法仅考虑可行个体,从而缩小搜索空间。修复方法可通过多种方式应用于 EAs,例如在排列编码[153][154]、二进制表示[155]以及图和树结构[156][157]中。尽管修复算法具有诸多优势,但也存在一些缺点。 例如,修复算法具有问题针对性,必须针对特定问题进行设计[158]。表 2 总结了当前最先进 CHT 技术的缺点。



Table 2 A summary of disadvantages of the state-of-art CHTs- RQ2
表 2 最先进 CHT 技术缺点总结-RQ2

Method  方法Disadvantages  缺点
Ensemble method  集成方法Although the ensemble CHT has a competitive performance, the method is parameter-dependent.
尽管集成 CHT 方法具有竞争优势,但该方法依赖于参数。
Repair method  修复方法Repair algorithms are problem-specific and, thus, must be designed for a specific problem.
修复算法针对特定问题设计,因此必须为具体问题量身定制。
Feasibility rules  可行性规则The method is likely to lead to premature convergence.
该方法可能导致过早收敛。
Stochastic ranking  随机排序Although the method has been employed in several nature-inspired algorithms, it is not often used for the multiobjective version of the algorithms.
尽管该方法已在多种自然启发算法中得到应用,但较少用于算法的多目标版本。
Epsilon-constraint method
ε约束法
In some cases, premature convergence has been reported, while other works report that the method relies on gradient-based mutation.
部分案例中报道了早熟收敛现象,而其他研究指出该方法依赖基于梯度的变异操作。
Multiobjective concept  多目标概念It may require gradient calculation [30].
可能需要进行梯度计算[30]。


4 Other approaches  4 其他方法


Table 3 provide a summary of novel approaches proposed between 2020 and 2021 to tackle constrained multiobjective optimization problems. Based on Table 3 , there is signs of a renewed interest in constrained multi-objective optimization, even the clear superior amount of research in constrained single-objective optimization.
表 3 总结了 2020 至 2021 年间针对约束多目标优化问题提出的新方法。根据表 3 显示,尽管约束单目标优化研究仍占据明显优势,但约束多目标优化领域正显现出新的研究热潮。


Table 3 Novel approaches for constrained multiobjective optimization problems between 2020 and 2021
表 3 2020 至 2021 年间约束多目标优化问题的新方法

Method  方法Source  来源Method  方法Source  来源
KKT points for constrained multiobjective optimization
约束多目标优化的 KKT 点
[160], [161]Surrogate-assisted evolutionary algorithm
代用辅助进化算法
[159]


IoT and cloud computing  物联网与云计算[163]Purpose-directed two- phase multiobjective differential evolution
目标导向的双阶段多目标差分进化算法
[162]
Indicator-based constrained handling technique
基于指标的约束处理技术
[165]Directed Weight Vectors  定向权重向量[164]
Decomposition-based algorithm
基于分解的算法
[117], [167]Gradient-based repair method
基于梯度的修复方法
[166]
Push and pull search embeded
推拉式搜索嵌入
[169]Detect and scape strategy
检测与规避策略
[168]
Multi-stage evolutionary algorithm
多阶段进化算法
[171], [172]Reference points-based method
基于参考点的方法
[170]
Partition selection  分区选择[174]multi-objective wireless network optimization using the genetic algorithm
基于遗传算法的多目标无线网络优化
[173]


As a general, a taxonomy of CHTs in MOEAs could be summaraized in Figure 6. The CHTs presented in Figure 6 have been explained in detailes in previous sections. As it is mentioned earlier, most of constaint handling techniques developed for single-objective optimization problems can be applied to multi-objective optimization problems. It is worthy to note that among them, stochastic ranking [175][176] [177] [178] [179] [180], penalty function [181][63], multi-objective method [182] [183] [184] [185], Epsilon constrained method [186] [187] [188] [189] [190] [191] [192] [193], transforming method [194] [195] [196] [197] [198] [199] [200] [201] [202], feasibility rules (with a modification) [203][204], hybrid methods [205] [206] [207] [208] [209], and repair operators [210] [211] [212] [213] [214] [215] have been addressed to multi-objective optimization problems.
总体而言,图 6 总结了多目标进化算法中约束处理技术(CHTs)的分类体系。图 6 所示的 CHTs 在前述章节中已详细阐述。如前所述,大多数为单目标优化问题开发的约束处理技术均可应用于多目标优化问题。值得注意的是,其中随机排序[175][176][177][178][179][180]、罚函数法[181][63]、多目标方法[182][183][184][185]、ε约束法[186][187][188][189][190][191][192][193]、转换法[194][195][196][197][198][199][200][201][202]、可行性规则(经修改)[203][204]、混合方法[205][206][207][208][209]以及修复算子[210][211][212][213][214][215]均已应用于多目标优化问题。

5 Benchmark test problems
5 基准测试问题

To measure the performance of the evolutionary algorithms, many benchmark or test problems have been suggested. On the other hand, the benchmark problems help researchers to better understand the strengths and weaknesses of an algorithm. These test problems are classified as single-objective such as Rosenbrock [216], G01-G09 [217]
为评估进化算法的性能,研究者们提出了诸多基准测试问题或测试函数。这些基准问题有助于更深入地理解算法的优势与局限性。此类测试问题可分为单目标类(如 Rosenbrock 函数[216]、G01-G09 系列[217])

,Himmelblau's problem [218], Welded Beam [219], Pressure Vessel [220], Tension-Compression Spring [221],
、Himmelblau 问题[218]、焊接梁设计[219]、压力容器设计[220]、张力-压缩弹簧设计[221]

Speed Reducer [222], Corrugated bulkheads design [223], Heater exchanger [224], Multiple disk clutch brake [225],
、减速器设计[222]、波纹舱壁设计[223]、换热器设计[224]、多盘离合器制动器设计[225]

Rolling element bearing [226], Car side design [227], Stepped beam design problem [228], mult-objective including BNH [229], OSY [230], , ZDT [231], BT [232], Truss2D [233], and many-objective optimization problems for example C-DTLZ [234], WFG[235] , DTLZ [236]. Among the abovementioned test problems, some them are still unconstrained. For more details, it is suggested to the review paper in the field by [235]. 6 Scientometric Analysis
滚动轴承设计[226]、汽车侧面设计[227]、阶梯梁设计问题[228]等单目标问题;多目标问题包括 BNH[229]、OSY[230]、ZDT[231]、BT[232]、Truss2D[233];以及如 C-DTLZ[234]、WFG[235]、DTLZ[236]等超多目标优化问题。上述测试问题中部分仍属无约束优化范畴,更多细节建议参阅该领域综述文献[235]。6 科学计量分析




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_13.jpg?x=197&y=203&w=1966&h=1139&r=0

Figure 6 A generalized taxonomy of CHTS for multiobjective optimization problems
图 6 多目标优化问题中 CHTS 的通用分类体系



(RQ3- RQ6)  (研究问题 3-研究问题 6)


Scientometric analysis is conducted to scientifically measure and analyze the literature in a particular field of study [237]. Bibliometrics is the most famous field of scientometrics that uses statistics to analyze and measure the impacts of books, research articles, conference papers, etc. [238]. Recently, this field of analysis has attracted much attention from researchers and has been used in various literature review fields [239]- [243]. To perform the analysis in this work, VOSviewer [46] and RStudio were used. The following sub-sections provide new insight into the scientometric analysis in the field. 6.1 Citation statistics
科学计量分析旨在通过科学方法对特定研究领域的文献进行量化测量与分析[237]。文献计量学是科学计量学中最著名的分支领域,它运用统计学方法分析书籍、研究论文、会议文献等学术成果的影响力[238]。近年来,该分析方法备受研究者关注,已被广泛应用于各类文献综述领域[239]-[243]。本研究中采用 VOSviewer[46]和 RStudio 软件进行分析。以下小节将就该领域的科学计量分析提供新的见解。6.1 引文统计

Figure 7 displays the trend of published documents, which shows that the number of documents in the field significantly increased from 2003 until the end 2020 (just above 100 documents).
图 7 展示了文献发表趋势,数据显示该领域文献数量自 2003 年起显著增长,直至 2020 年底达到峰值(略高于 100 篇文献)。



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_14.jpg?x=240&y=717&w=1318&h=723&r=0

Figure 7 Trend of published documents
图 7 文献发表趋势


Figure 8 presents combo chart of the number of documents vs. total citations since 2008. In 2020, the most documents and citations were achieved (216 and 7544, respectively). It is apparent that the number of citations has increased dramatically according to the trend. According to the WOS, the numer of citations of the top articles in the field was analyzed and is presented in Supplemenatary C (Figure 1). Of the 735 related documents in WOS, about 45824 citations were identifed from the related papers with an average of 1992.35 citations per year and an average of 62.35 citations per item. [16], [244], and [245] are top 3 cited articles with 20013, 2609, and 1591 citations in WOS, respectively.
图 8 展示了 2008 年以来文献数量与总引用量的组合图表。2020 年达到最高值(216 篇文献和 7544 次引用)。显然,引用量呈急剧上升趋势。根据 WOS 数据,我们分析了该领域高引论文的引用情况(见 Supplementary C 图 1)。在 WOS 收录的 735 篇相关文献中,共识别出 45824 次引用,年均引用 1992.35 次,篇均引用 62.35 次。其中[16]、[244]和[245]分别以 20013 次、2609 次和 1591 次引用位列 WOS 引用量前三。




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_15.jpg?x=227&y=219&w=1346&h=643&r=0

Figure 8 Combo chart of number of documents vs. total citations (Scopus)
图 8 文献数量与总引用量的组合图表(Scopus 数据)


6.2 Statistics based on document types
6.2 基于文献类型的统计分析


Among the document types, including article, proceedings paper, review, and other items indexed by WOS, a total of 735 publications on constraint handling multiobjective population-based optimization algorithms was found (Table 4). From the search, articles were the most popular document type,comprising a total of 522 articles (71.02% of 735 documents) with 2.60 authors per publication (APP). Also, articles as the document type had the highest CPP2020 of 84.10, followed by proceedings papers with TP of 220 (29.93% of contributions and
在 Web of Science 收录的文献类型中(包括期刊论文、会议论文、综述及其他类型),共发现 735 篇关于约束处理多目标群体优化算法的出版物(表 4)。检索结果显示,期刊论文是最主要的文献类型,共计 522 篇(占 735 篇文献的 71.02%),篇均作者数为 2.60 人。其中期刊论文的 2020 年篇均被引次数最高(CPP2020=84.10),其次是会议论文(总发文量 TP=220 篇,占贡献总量的 29.93%)

Table 4 Citations analysis based on document type APP=2.13). Moreover, there is a significant difference between the TC2020 of article and that of proceedings paper.
表 4 基于文献类型的引用分析(APP=2.13)。此外,论文与会议论文的 TC2020 值存在显著差异。

Figure 9 presents the distribution of documents based on different types, according to WOS. It is clear from the figure that conference papers have the most contributions before 2010 followed by articles. However, since 2010, articles have the most contributions in the field. It is also interesting to note that book/book chapters have been published since 2000, however, the most number of book/book chapters have been published after 2010. 6.3 Publication statistics based on journal
图 9 展示了根据 WOS 统计的不同类型文献的分布情况。从图中可以明显看出,在 2010 年之前,会议论文的贡献量最大,其次是期刊文章。然而自 2010 年起,期刊文章成为该领域最主要的贡献来源。值得注意的是,书籍/书籍章节自 2000 年起开始出版,但绝大多数书籍/书籍章节的出版集中在 2010 年之后。6.3 基于期刊的出版统计


Document type  文献类型TP%AUAPPTC2020CPP2020
Article  期刊文章52271.0213622.6043,90484.10
Proceedings paper  会议论文22029.934692.131,5437.01
Review  综述162.17201.2580650.37
Other items  其他项目233.121345.8246820.34

TP, AU, APP, TC2020, and CPP2020 present total number of articles; total number of authors; total number of authors for each publication; total citations from WOS since publication year to the end of 2020; total citations for each paper, respectively; Other items: early access and letters [246].
TP(总论文数)、AU(总作者数)、APP(各出版物作者数)、TC2020(自发表年至 2020 年底的 WOS 总引用数)和 CPP2020(单篇论文引用数)分别表示:文章总数;作者总数;各出版物作者总数;从发表年份至 2020 年底的 Web of Science 总引用次数;各论文的引用次数;其他项目包括:早期访问文献和信件[246]。



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_16.jpg?x=240&y=227&w=1329&h=765&r=0

Figure 9 Type of research outputs
图 9 研究成果类型


Table 5 presents the top 20 journals that have published the greatest number of constraint handling multiobjective population-based algorithms papers based on Scopus. Accordingly, Lecture Notes In Computer Science (117), Applied Soft Computing Journal (57), and Swarm and Evolutionary Computation (30) are most are the most utilized, which predominate in the field of optimization and evolutionary computations.
表 5 展示了基于 Scopus 数据库发表约束处理多目标群体算法论文数量最多的前 20 种期刊。其中,《计算机科学讲义》(117 篇)、《应用软计算杂志》(57 篇)和《群体与进化计算》(30 篇)是该领域最常用的三大期刊,在优化与进化计算领域占据主导地位。

A total of 735 articles were published in 399 journals, which are classified among the 51 WOS categories in SCI-EXPANDED. Table 6 lists the 10 most productive WOS categories. A total of 271 articles (36.87% of 735 articles) were published in the first category (Computer Science Artificial Intelligence),of which 83.39% were published in Engineering Electrical Electronic (23.26%) and Computer Science Theory Methods (23.26%). Comparing the top 10 categories, the highest CPP2020 of articles published in the Computer Science Theory Methods category is 190.011 , which includes the paper entitled: "A fast and elitist multiobjective genetic algorithm: NSGA-II" by [16], and the highest APP for articles published in the Energy Fuels category is 2.97 . each paper, respectively ; Other items: early access and letters [247]
共有 735 篇文章发表在 399 种期刊上,这些期刊分属 SCI-EXPANDED 数据库的 51 个 WOS 类别。表 6 列出了产出量最高的 10 个 WOS 类别。其中第一大类(计算机科学人工智能)发表了 271 篇文章(占 735 篇的 36.87%),其中 83.39% 篇发表于工程电子电气(23.26%)和计算机科学理论方法(23.26%)类别。对比前 10 大类,计算机科学理论方法类别所发表文章的 CPP2020 值最高,达 190.011,包含文献[16]所著题为《一种快速精英多目标遗传算法:NSGA-II》的论文;而能源燃料类别文章的 APP 值最高,为 2.97/篇。其他条目包括:早期访问文献及信件[247]


Table 5 The top 10 sources that have published the greatest number of constraint handling on GA papers (Scopus)
表 5 发表遗传算法约束处理相关论文数量最多的前 10 种来源(Scopus 数据库)

#Scopus  斯高帕斯数据库#of Documents  文献数量#Scopus  斯高帕斯数据库#of documents  文献数量
1Lecture Notes In Computer
计算机科学讲义
11711IEEE Access  IEEE Access 期刊32
2Applied Soft Computing Journal
应用软计算期刊
5712Swarm and Evolutionary  群体与进化计算30
3"International Journal of Electrical
国际电气工程杂志
2713Engineering Optimization  工程优化21


4"Kongzhi Yu Juece Control And
"控制与决策"
1314Soft Computing  软计算16
5Energy Conversion And  能量转换与1215Studies In Computational  计算研究16
6IEEE Transactions On Cybernetics
IEEE 网络与系统汇刊
1216"Advances In Intelligent Systems
智能系统进展
15
7Structural And Multidisciplinary
结构与多学科优化
1317"Communications In Computer
计算机通信
14
8IEEE Transactions On  IEEE 汇刊2718Engineering Applications Of
工程应用
14
9Electric Power Systems Research
电力系统研究
1019Energy  能源13
10Applied Intelligence  应用智能1220Information Sciences  信息科学13

Table 6 The top 10 productive WOS categories
表 6 WOS 类别中产出最高的前 10 个领域

#Web of Science category  Web of Science 类别TPAUAPPTC2020CPP2020
1"Computer Science Artificial Intelligence"
"计算机科学 人工智能"
2716282.3135,074129.42
2"Engineering Electrical Electronic"
"工程学 电气电子"
1714632.703,68821.56
3"Computer Science Interdisciplinary Applications"
计算机科学跨学科应用
922432.642,69129.25
4"Operations Research Management Science"
"运筹学 管理科学"
611312.141,54125.26
5"Computer Science Theory Methods"
"计算机科学理论与方法"
1713852.2532,492190.011
6“Engineering Multidisciplinary”
“工程多学科”
641672.602,37737.14
7"Mathematical interdisciplinary applications"
"数学跨学科应用"
451162.5764514.33
8"Energy fuels"  "能源燃料"411222.9795023.17
9"Computer Science Information Systems"
"计算机科学信息系统"
481242.5874615.54
10"Automation Control Systems"
"自动化控制系统"
601552.581,17819.63

TP, AU, APP, TC2020, and CPP2020 present total number of articles; total number of authors; total number of authors for each publication; total citations from WOS since publication year to the end of 2020; total citations for
TP、AU、APP、TC2020 和 CPP2020 分别表示文章总数;作者总数;每篇出版物的作者人数;自发表年份至 2020 年底的 WOS 总引用次数;以及


Figure 10 provides a comparison of the development trends of the top four productive WOS categories, including "Computer Science Artificial Intelligence", "Engineering Electrical Electronic", "Computer Science Theory Methods", and "Computer Science Interdisciplinary Applications". Between 2001 and 2021, Computer Science Artificial Intelligence was the most predominant category and has possessed the highest number of publications since 2004, excluding the period between 2007 and 2008. The three other categories possess fluctuations between 2001 and 2021, and as of writing this paper, "Computer Science Theory Methods" and "Engineering Electrical Electronic" have the same TP of 171. 6.4 Publication statistics by countries
图 10 对比了四大高产 WOS 类别的发展趋势,包括“计算机科学人工智能”、“工程电子电气”、“计算机科学理论与方法”以及“计算机科学跨学科应用”。2001 至 2021 年间,计算机科学人工智能是最主要的类别,且自 2004 年起(除 2007-2008 年期间外)始终保持最高发文量。其余三个类别在 2001-2021 年间存在波动,截至本文撰写时,“计算机科学理论与方法”与“工程电子电气”的 TP 值同为 171 篇。6.4 国家/地区发文统计



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_17.jpg?x=277&y=1503&w=1268&h=533&r=0

Figure 10 Comparison of the development trends of the top four productive WOS categories
图 10 展示了四大高产出 WOS 类别的发展趋势对比



Figure 11 presents the distribution of documents by the top most active countries in both databases. It is apparent that China, India, and the USA are the top three active countries in the field according to Scopus (respectively), while China, the USA, and India are the top 3 active territories in the field based on WOS, respectively. It is pertinent to mention that the USA is ranked second based on WOS, but India is ranked second according to Scopus. Also, it can be seen that there is a significant difference between the first rank (China) and second rank (India) based on the number of publications indexed by Scopus. Moreover, Figure 12 presents the collaboration among countries, where the links across the circles depict the collaborations, and the size of the circles represents the activities of the countries in the field. The green and yellow colors present the keywords that have been used recently, while the dark blue color indicates those that were used earlier (around 2008).
图 11 呈现了两大数据库中最高产国家的文献分布情况。显然,根据 Scopus 数据,中国、印度和美国是该领域活跃度前三的国家(按此顺序);而基于 WOS 统计,中国、美国和印度则分别位列前三。值得注意的是,美国在 WOS 排名中位居第二,而印度则在 Scopus 排名中位列次席。此外可以看出,根据 Scopus 收录的出版物数量,第一名(中国)与第二名(印度)之间存在显著差距。图 12 进一步展示了国家间的合作网络,其中圆圈间的连线表征合作关系,圆圈大小反映各国在该领域的活跃程度。绿色与黄色代表近期使用的关键词,深蓝色则标识较早时期(约 2008 年)使用的术语。



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_18.jpg?x=238&y=699&w=1331&h=581&r=0

Figure 11 Research output of top 10 most productive countries across all databases
图 11 各数据库中最高产的前 10 个国家的研究成果



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_19.jpg?x=168&y=302&w=1482&h=861&r=0

Figure 12 Country network visualization
图 12 国家合作网络可视化图


Figure 13 displays the growth rate of the top 5 active countries in comparison to the world. While China and the USA have smooth trends between 2000 and 2020, India, the UK, and Australia show some fluctuations. Between 2002 and 2003, India presents the highest growth rate, then the trend continues smoothly until 2014 when it increases until 2015. The trend for the UK shows two growths between 2002- 2003 and 2007-2008. While the number of articles published by Australia is much less than the four other countries, there is a significant rise between 2015 and 2016.
图 13 展示了全球范围内最活跃的 5 个国家的增长率对比。中国和美国在 2000 年至 2020 年间呈现平稳趋势,而印度、英国和澳大利亚则显示出一些波动。2002 至 2003 年间,印度增长率达到峰值,随后趋势平稳直至 2014 年,之后在 2015 年再次上升。英国的趋势显示在 2002-2003 年与 2007-2008 年有两个增长阶段。尽管澳大利亚发表的论文数量远少于其他四个国家,但在 2015 至 2016 年间出现了显著增长。




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_20.jpg?x=209&y=216&w=1377&h=685&r=0

Figure 13 Growth rate of published documents for top 5 countries
图 13 前 5 个国家文献发表增长率


6.5 Statistics based on the subject area
6.5 基于学科领域的统计数据


Figure 14 presents the distribution of articles based on the subject area. Computer science, Engineering, and Mathematics possess the most contributions with 936, 619, and 580 published articles, respectively. Comparatively, Pharmacology, Medicine, and Economics own the least contributions with 1,4, and 6 published documents in the field, respectively. 6.6 Statistics based on authors
图 14 展示了基于学科领域的文章分布情况。计算机科学、工程学和数学领域的贡献最多,分别发表了 936 篇、619 篇和 580 篇文章。相比之下,药理学、医学和经济学领域的贡献最少,分别只有 1 篇、4 篇和 6 篇文献发表。6.6 基于作者的统计数据




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_21.jpg?x=200&y=206&w=1387&h=1084&r=0

Figure 14 Distribution based on the subject area (Scopus)
图 14 基于学科领域的分布情况(Scopus)


Figures 15 shows the top authors with the most publication according to Scopus, (Supplementary C, figure 2 presents statistics based on WOS) . Kalyanmoy Deb from "Michigan State University (USA)", Ray T. from "University of New South Wales (Australia)", and Carlos A. Coello Coello from "Cinvestav-IPN (Mexico)" with 38, 32, and 28 publications are the top 3 authors in the field as indexed by Scopus. WANG Y from "City University Hong Kong (Hong Kong)", Carlos A. Coello Coello from "Cinvestav-IPN (Mexico)", and Ray T. from "University of New South Wales (Australia)" are the top 3 authors in the area with 21, 20, and 17 documents (indexed by WOS), respectively. According to WOS, 1717 authors have worked on constraint multiobjective population-based optimization.
图 15 显示了根据 Scopus 统计的发表文献最多的顶尖作者(补充材料 C 中的图 2 展示了基于 WOS 的统计数据)。来自"密歇根州立大学(美国)"的 Kalyanmoy Deb、来自"新南威尔士大学(澳大利亚)"的 Ray T.以及来自"Cinvestav-IPN(墨西哥)"的 Carlos A. Coello Coello 分别以 38 篇、32 篇和 28 篇文献位列 Scopus 索引该领域前三名。而根据 WOS 统计,来自"香港城市大学(中国香港)"的 WANG Y、来自"Cinvestav-IPN(墨西哥)"的 Carlos A. Coello Coello 以及来自"新南威尔士大学(澳大利亚)"的 Ray T.分别以 21 篇、20 篇和 17 篇文献成为该领域前三的作者。WOS 数据显示,共有 1717 位学者从事约束多目标群体优化领域的研究工作。

In total, 0.5241% of authors own more than 10 documents; 1.6307% possess between 5 and 10 documents; 4.5428% have between 3 and 5 papers; 11.7647% own 2 papers; and 81.5377% possess 1 document (Figure 16). Figure 17 presents the collaboration among the authors, where links across the circles depict the collaborations, and the size of the circles shows the activities of the authors in the field. In addition, the yellow color represents recent activity, and the dark blue color depicts the contributions prior to 2014.
总计有 0.5241%的作者拥有超过 10 篇文献;1.6307%的作者拥有 5 至 10 篇文献;4.5428%的作者拥有 3 至 5 篇论文;11.7647%的作者拥有 2 篇论文;81.5377%的作者拥有 1 篇文献(图 16)。图 17 展示了作者间的合作情况,其中圆圈间的连线表示合作关系,圆圈的大小反映了作者在该领域的活跃程度。此外,黄色代表近期活动,深蓝色则代表 2014 年之前的贡献。




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_22.jpg?x=235&y=218&w=1302&h=778&r=0

Figure 15 The most active authors in the field (Scopus)
图 15 该领域最高产作者统计(Scopus 数据)


https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_22.jpg?x=277&y=1093&w=572&h=723&r=0

Figure 16 Contribution of authors based on the number of documents
图 16 基于文献数量的作者贡献分布



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_23.jpg?x=215&y=348&w=1356&h=726&r=0

Figure 17 Collaboration among the authors (overlay visualization)
图 17 作者合作网络(叠加可视化呈现)


6.7 Statistics on keywords
6.7 关键词统计


Keywords indicate the basic parts of a certain field of research and could offer insight into the organization and knowledge provided in the articles. Figure 18 provides an overlay visualization of the co-occurrence analyses via a network map based on the Scopus database. Each node in the network represents a keyword, and the link between nodes indicates the co-occurrence of the keywords. The top keywords in Scopus include multiobjective optimization, Pareto optimal solution, evolutionary algorithm, artificial intelligence, machine design, stochastic systems, distributed power generation, and reliability. The color of each circle represents the identified cluster, and the size of each circle illustrates the importance of the keywords; in other words, keywords with a larger circle have been used more than others. The green and yellow colors show the keywords that have been used recently, while dark blue color are those that have were used earlier (around 2008). Tables 7 presents the top keywords of 1-word, 2-word, and 3-word lengths extracted from Scopus. Specifically, optimization, algorithm, and scheduling are the top 1-word length keywords indexed by Scopus; genetic algorithm, constraint handling, and constrained optimization are the top 2-word length keywords; and constraint-handling techniques, Particle Swarm Optimization (PSO), and multiobjective optimization are the top 3- word length keywords indexed by Scopus.
关键词反映了特定研究领域的基本组成部分,能揭示文献中提供的知识组织架构。图 18 通过基于 Scopus 数据库的网络图谱,展示了关键词共现分析的叠加可视化结果。网络中的每个节点代表一个关键词,节点间的连线表示关键词的共现关系。Scopus 数据库中高频关键词包括:多目标优化、帕累托最优解、进化算法、人工智能、机械设计、随机系统、分布式发电以及可靠性。圆圈颜色代表所属聚类群组,圆圈大小反映关键词的重要性——即尺寸较大的关键词出现频次更高。绿色与黄色标注的关键词近期使用频率较高,深蓝色标注的关键词则出现较早(约 2008 年)。表 7 列出了从 Scopus 提取的单词、双词及三词长度的高频关键词排名。 具体而言,优化、算法和调度是 Scopus 索引中排名前三的单字长度关键词;遗传算法、约束处理和约束优化是排名前三的双字长度关键词;而约束处理技术、粒子群优化(PSO)和多目标优化则是 Scopus 索引中排名前三的三字长度关键词。




https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_24.jpg?x=201&y=271&w=1379&h=812&r=0

Figure 18 Network visualization of keywords
图 18 关键词网络可视化

Table 7 Top 1-,2-, and 3- word keywords used in the field
表 7 该领域使用频次最高的单字、双字及三字关键词

#1-Word  单字Frequency  频率2-Word  双词Frequency  频率3-Word  三词Frequency  频率
1Optimization  优化680Genetic Algorithms  遗传算法367Constraint-Handling Techniques
约束处理技术
74
2Algorithms  算法360Constraint Handling  约束处理184Particle Swarm Optimization (PSO)
粒子群优化算法(PSO)
565
3Scheduling  调度141Constrained Optimization  约束优化1071Multiobjective Optimization
多目标优化
467
4NSGA-II97Multiobjective Optimization
多目标优化
1339Particle Swarm Optimization
粒子群优化
205
5Design  设计96Evolutionary Algorithms  进化算法1081Constrained multiobjective optimization
约束多目标优化
68
6Algorithm  算法59Differential evolution  差分进化208Electric Load Dispatching
电力负荷调度
66
7Reliability  可靠性33Problem Solving  问题解决239Multiobjective optimization problem
多目标优化问题
222
8Investments  投资33Multi objective  多目标307Differential evolution algorithms
差分进化算法
71
10Benchmarking  基准测试113Decision making  决策制定135Pareto optimal solutions  帕累托最优解121


12Costs  成本57Pareto Principle  帕累托法则281Constrained multiobjective optimizations
约束多目标优化
213


6.8 Publication statistics by number of pages (pages count)
6.8 按页数统计的出版物数据(页数统计)

As of writing this paper, May of 2021, approximately 22395.8 pages of papers on constraint handling multiobjective population-based algorithms were published, with an average of 13.0435 pages per paper. About 22.53931% of the articles possess between 10 and 15 pages; 12.17239% of the manuscripts are between 15 and 20 pages; 39.07979 % of the papers are between 5 and 10 pages; and 67.09377% of the manuscripts are between 5 and 20 pages. Figure 18 presents the distribution of the manuscripts based on page count.
截至撰写本文的 2021 年 5 月,关于约束处理多目标群体算法的论文已发表约 22395.8 页,平均每篇论文 13.0435 页。约 22.53931%的论文页数在 10 至 15 页之间;12.17239%的手稿页数介于 15 至 20 页;39.07979%的论文页数在 5 至 10 页范围内;67.09377%的手稿页数分布在 5 至 20 页区间。图 18 展示了基于页数的手稿分布情况。



https://cdn.noedgeai.com/0196a089-0972-7818-81c3-91a73920519a_25.jpg?x=236&y=732&w=1431&h=665&r=0

Figure 18 Distribution of documents based on page count
图 18 基于页数的文档分布情况


7 Summary and Future Research (RQ7)
7 总结与未来研究方向(研究问题 7)


The paper presents an analysis and overview of CHTs applied to multiobjective population-based algorithms. In the first part of the paper, the main idea of CHTs are defined, and the second part discusses a detailed scientometric analysis in the field. Some important technical points are extracted as follows:
本文对应用于多目标群体算法的约束处理技术进行了分析与综述。论文第一部分明确了约束处理技术的核心概念,第二部分详细讨论了该领域的科学计量分析。提取的重要技术要点如下:

  • In the death penalty method, no information is used from infeasible points.
    在死刑罚函数法中,不可行点的信息未被利用。

  • Static penalty method is problem-dependent and may need several penalty parameters.
    静态罚函数法依赖于具体问题,可能需要多个惩罚参数。

  • Dynamic penalty method may converges to either an infeasible or feasible solution that is far from global optimum.
    动态罚函数法可能收敛于远离全局最优解的可行或不可行解。

  • The main disadvantages of the annealing penalty method is sensitivity to values of its factors.
    退火罚函数法的主要缺点是对其因子取值敏感。

  • Setting parameters in adaptive penalty method is difficult and the method needs the definitions of additional parameters.
    在自适应惩罚方法中设置参数较为困难,且该方法需要定义额外的参数。

  • In the self-adaptive penalty method, the additional parameters may affect the fitness function evaluations.
    在自适应惩罚方法中,额外参数可能会影响适应度函数的评估结果。

  • The main difficulty in SGA is selecting the penalty factors for each sub-population.
    标准遗传算法(SGA)的主要难点在于为每个子种群选择惩罚因子。

  • If the population is completely infeasible, choose the solutions that have a smaller overall constraint violation.
    若种群完全不可行,则选择总体约束违反程度较小的解。

  • Retaining a proportion of infeasible solutions in the population may enhance the convergence and diversity of the algorithm.
    在种群中保留一定比例的不可行解可能有助于提升算法的收敛性和多样性。


  • Two types of CHTs, namely repair research fields in the last three years (2019- methods and special genetic operators, 2021) based on Scopus. Tables 9 and 10 focus only on the feasible space. show the mentioned keywords and research
    两种类型的 CHT,即过去三年(2019-2021 年)基于 Scopus 数据库的修复研究领域方法及特殊遗传算子,仅关注可行空间。表 9 和表 10 展示了所提及的关键词和研究方向。

  • Feasible solutions could be used to repair fields for this time period. It is obvious that infeasible solutions (repairing multiobjective optimization, constraint
    可行解可用于修复该时间段的字段。显然,不可行解(修复多目标优化、约束条件)

population). optimization, and evolutionary algorithms - According to the constraint dominance are the most famous keywords in the last principle, the feasible solution is always three years. It should be noted that CHTs for prefered over the infeasible solution, which may cause loss of important multiobjective optimization have not information from infeasible individuals. received much attention compared with
种群)。优化与进化算法——根据约束支配原则,可行解在过去三年始终是最受关注的关键词。值得注意的是,多目标优化中的约束处理技术(CHTs)相较于单目标优化尚未获得足够重视,这可能导致从不可行个体中丢失重要信息。

  • Retaining a huge number of infeasible single-objective optimization. It is suggested solutions may cause low convergence that researchers focus on such methods in speed. future works. Also, BU technique, which is
    保留大量不可行解可能导致收敛速度低下。建议研究者在未来工作中聚焦此类方法。此外,具备直接处理约束能力的 BU 技术——

  • Although special operators are known to able to handle constraints directly possesses be highly comparative CHT, their the potential to couple with a multiobjective
    尽管已知特殊算子具有高度竞争力的约束处理技术(CHT),但其适用性有限,导致该技术难以运行。更值得关注的是,该技术具备与多目标进化算法(MOEA)耦合的潜力。

applicability is limited, which makes this evolutionary algorithm (MOEA) as well. technique difficult to run. Furthermore, it is suggested to focus on - Decoder is an interesting CHTs, but it constraint handling techniques on many- involves a high computational cost and, thus, is now rarely used. objective optimization problems (with more
解码器是一种有趣的约束处理技术,但其涉及高昂计算成本,因此目前已很少使用。建议重点研究多目标优化问题(涉及更多目标)中的约束处理技术——

  • Although the ensemble CHT has a than three objectives) as it is not received competitive perforemance, the method is much attention. In addition, according to parameter-dependent. Tables 8 and 9, GA, DE, and PSO remain
    尽管集成约束处理技术(CHT)因未达到竞争性性能而拥有超过三个目标,但该方法仍备受关注。此外,根据参数依赖性分析(见表 8 和表 9),遗传算法(GA)、差分进化(DE)和粒子群优化(PSO)仍保持

  • Although the stochastic ranking method the top 3 algorithms, which are expected to has been employed in several nature- be further explored in the future. Moreover, inspired algorithms, it is not often used Engineering, Computer Science, and for the multiobjective version of the Mathematics have been the top 3 research
    尽管随机排序方法在多种自然启发的算法中已被采用,但较少用于多目标版本。工程学、计算机科学和数学是过去两年排名前三的研究领域,预计未来这些领域的研究工作将持续推进。同时建议回顾约束多目标进化算法在

algorithms. fields in the last two years, and it is - Epsilon constraint method has been projected that research work will advance in known as a powerful CHT, however, in some cases, premature convergence has these areas in the future. It is also been reported, while other works report recommended to review the applications of that the method relies on gradient-based constrained multioobjective evolutionary mutation. algorithms in different sectors; including
不同领域的应用。ε约束法虽被视为强效的 CHT 技术,但有研究报道其存在早熟收敛现象,另一些研究指出该方法依赖基于梯度的变异。算法领域的研究预计将在未来取得进展,包括工程设计问题[248]可能需要梯度计算。[248][249][250]调度优化

  • Using multiobjective concept as a CHT engineering design problems[248] may require the gradient calculation. [248][249][250], scheduling optimization
    将多目标概念作为 CHT 应用于工程设计问题[248]可能需要进行梯度计算。[248][249][250]调度优化

  • Recently, feasibility rules have been problems [251] [252] [253][253][254], recognized as one of the most powerful and resource optimization problems [255] CHTs, which are simple and flexible; [256]. however, one of the major disadvantages of this method is premature convergence since this technique favors feasible solutions.
    近来,可行性规则已成为[251][252][253][253][254]等领域中最具挑战性的资源优化问题之一,被公认为最强大且灵活的 CHTs 方法[255][256];然而该方法的主要缺陷在于易陷入早熟收敛,因其倾向于优先保留可行解。

As a future direction, the authors have
作为未来研究方向,作者已

identified the top 5 most-used keywords and
识别出使用频率最高的 5 个关键词


Table 8 Top 5 keywords in 2019 and 2020
表 8 2019 与 2020 年度前 5 大关键词

#Keywords (Scopus)  关键词(Scopus 数据库)Frequency  频率
1Pareto principle  帕累托法则65
2Genetic algorithms  遗传算法72
3Differential evolution  差分进化45


4Particle swarm optimization (PSO)
粒子群优化算法(PSO)
132
5Economic and social effects
经济和社会影响
34
6Benchmarking  基准测试32
7Decision making  决策制定36
8Energy utilization  能源利用28
9Scheduling  调度39
10Pareto optimal solutions  帕累托最优解24

Table 9 Top 5 research fields in 2019 and 2020
表 9 2019 年和 2020 年排名前 5 的研究领域

#Research fields (Scopus)  研究领域(Scopus)(%) Contribution  (%) 贡献度
1Engineering  工程学24.3
2Computer Science  计算机科学31.8
3Mathematics  数学17.2
4Energy  能源5.9
5Decision Sciences  决策科学4.1
6Materials Science  材料科学4.1
7Business, Management and Accounting
商业、管理与会计
1
8Environmental Science  环境科学2.1
9Physics and Astronomy  物理学与天文学2.8
10Earth and Planetary Sciences
地球与行星科学
1.4


8 Discussion and Conclusion
8 讨论与结论


Constraint population-based optimization involves the use of a population-based algorithm in combining with a CHT to solve a constraint optimization problem. This paper presents an analysis and evaluation of the CHTs on multiobjective optimization population-based algorithms, which support evolutionary and swarm intelligence algorithms. To the best of our knowledge, this study is the first analysis of relevant journals evaluated over the most relevant journals, keywords, authors, and articles in this field. All related papers, including research articles, reviews, book/book chapters, conference papers, etc., as of writing this paper, were extracted and analyzed. Publication statistics by year, journal, country, affiliation, author, number of pages, number of authors, and keywords are discussed in this paper as follows:
基于种群的约束优化涉及将种群算法与约束处理技术(CHT)结合以解决约束优化问题。本文对多目标优化种群算法中的 CHT 进行了分析与评估,这些算法支持进化算法和群体智能算法。据我们所知,本研究首次对该领域最具相关性的期刊、关键词、作者和文章进行了系统分析。截至本文撰写时,所有相关论文(包括研究文章、综述、书籍/书籍章节、会议论文等)均被提取并分析。本文按年份、期刊、国家、机构、作者、页数、作者数量和关键词等维度讨论了发表统计数据,具体如下:

  • According to WOS, 45824 citations have been received by the related papers, which is an average of 1992.35 citations per year and an average of 62.35 citations per item in WOS.
    根据 WOS 数据,相关论文共获得 45824 次引用,年均引用 1992.35 次,WOS 中每项文献平均被引 62.35 次。

  • Based on WOS, articles were the most popular document type, with a total of 522 articles (71.02%), and 2.60 authors per publication.
    WOS 数据显示,文章是最受欢迎的文献类型,共计 522 篇(占比 71.02%),每篇出版物平均有 2.60 位作者。

  • Articles as the document type had the highest CPP2020 of 84.10, followed by proceedings papers with TP of 220(29.93% of contributions and APP=2.13) .
    作为文献类型,文章的 CPP2020 值最高,达到 84.10,其次是会议论文集,其贡献占比为 220(29.93%APP=2.13)

  • Conference papers have the most contributions before 2010 followed by articles. However, since 2010, articles have the most contributions in the field.
    2010 年之前会议论文的贡献量最大,其次是文章。然而自 2010 年起,文章成为该领域贡献量最多的文献类型。

  • A total of 271 articles (36.87% of total), with 2.31 authors per publication (on average), were published in the category of Computer Science Artificial Intelligence, according to WOS.
    根据 WOS 数据,计算机科学人工智能类别共发表 271 篇文章(占总数的 36.87%),平均每篇出版物有 2.31 位作者。

  • In total, 271 articles (36.87% of 735 articles) were published in the first category (Computer Science Artificial Intelligence) and a total of 83.39% were published in the first three categories: Engineering Electrical Electronic (23.26%) and Computer Science Theory Methods (23.26%).
    第一类别(计算机科学人工智能)共发表 271 篇文章(占 735 篇文章的 36.87%),前三类别共发表 83.39% 篇:工程电气电子(23.26%)和计算机科学理论与方法(23.26%)。

  • The highest CPP2020 of articles published in Computer Science Theory Methods is 190.011, which includes the paper `"A fast and elitist multiobjective genetic algorithm: NSGA-II"` by [16], and the highest APP for articles published in 'Energy fuels' is 2.97 .
    计算机科学理论与方法类别发表文章的 CPP2020 最高值为 190.011,其中包括文献《"A fast and elitist multiobjective genetic algorithm: NSGA-II"》(作者[16]),而'能源燃料'类别发表文章的 APP 最高值为 2.97。

  • `"Computer Science Artificial Intelligence,"`
    计算机科学人工智能

"Engineering Electrical Electronic," "Computer Science Theory Methods," and "Computer Science Interdisciplinary Applications" were the top 4 productive WOS categories in the field.
"工程电气电子"、"计算机科学理论与方法"和"计算机科学跨学科应用"是该领域 Web of Science 数据库中最高产的 4 个类别。


  • China, USA, and India were the top three active countries in the field according to WOS.
    根据 Web of Science 数据,中国、美国和印度是该领域发文量最高的三个国家。

  • Computer science, Engineering, and Mathematics have the most contributions with 936, 619, and 580 published articles, respectively. Pharmacology, Medicine, and Economics own the least contributions with 1,4 , and 6 published documents in the field, according to Scopus.
    计算机科学、工程学和数学领域的贡献最大,分别发表了 936 篇、619 篇和 580 篇文章。而药理学、医学和经济学的贡献最少,根据 Scopus 数据显示,这三个领域分别只发表了 1 篇、4 篇和 6 篇文献。

  • Kalyanmoy Deb from `"Michigan State University (USA)"`, Ray T. from `"University of New South Wales (Australia)"`, and Carlos A. Coello Coello from `"Cinvestav-IPN (Mexico)"` are the top 3 authors in the field with 38,32 , and 28 publications (indexed by Scopus), respectively. WANG Y from `"City University Hong Kong (Hong Kong)"`, Carlos A. Coello Coello from `"Cinvestav-IPN (Mexico)"`, and Ray T. from `"University of New South Wales (Australia)"` are the top 3 authors in the area with21,20,and 17 documents (indexed by WOS), respectively.
    来自"密歇根州立大学(美国)"的 Kalyanmoy Deb、"新南威尔士大学(澳大利亚)"的 Ray T.和"Cinvestav-IPN(墨西哥)"的 Carlos A. Coello Coello 是该领域发表量前三的作者,分别有 38 篇、32 篇和 28 篇文献(Scopus 索引)。而来自"香港城市大学(香港)"的 WANG Y、"Cinvestav-IPN(墨西哥)"的 Carlos A. Coello Coello 和"新南威尔士大学(澳大利亚)"的 Ray T.则是 Web of Science 数据库中该领域发文量前三的作者,分别有 21 篇、20 篇和 17 篇文献。

  • Almost 0.5241% of authors own more than 10 documents; 1.6307% possess between 5 and 10 documents; 4.5428% have between 3 and 5 papers; 11.7647% of authors own 2 papers; and 81.5377% of authors possess 1 document.
    近 0.5241%的作者拥有超过 10 篇文献;1.6307%的作者拥有 5 至 10 篇文献;4.5428%的作者拥有 3 至 5 篇论文;11.7647%的作者拥有 2 篇论文;而 81.5377%的作者仅拥有 1 篇文献。

  • Approximately 22.53931% of the articles possess between 10 and 15 pages; 12.17239% of the manuscripts are between 15 and 20 pages; 39.07979% of the papers are between 5 and 10 pages; and 67.09377% of the manuscripts are between 5 and 20 pages.
    约 22.53931%的文章篇幅在 10 至 15 页之间; 12.17239% 的手稿篇幅介于 15 至 20 页;39.07979%的论文篇幅为 5 至 10 页;67.09377%的手稿总页数落在 5 至 20 页区间。

Author Contributions: "Conceptualization, Iman Rahimi. and Amir H. Gandomi.; methodology, Iman Rahimi; software, Iman Rahimi; validation, Amir H. Gandomi, Fang Chen. and Efrén Mezura-Montes; formal analysis, Iman Rahimi; data curation, Iman Rahimi; writing-original draft preparation, Iman Rahimi-review and editing, Amir H. Gandomi, Fang Chen. and Efrén Mezura-Montes ;supervision, Amir H. Gandomi, Fang Chen;
作者贡献:"概念设计,Iman Rahimi 与 Amir H. Gandomi;方法论,Iman Rahimi;软件实现,Iman Rahimi;验证,Amir H. Gandomi、Fang Chen 及 Efrén Mezura-Montes;形式分析,Iman Rahimi;数据整理,Iman Rahimi;初稿撰写,Iman Rahimi;审阅与修改,Amir H. Gandomi、Fang Chen 及 Efrén Mezura-Montes;项目监督,Amir H. Gandomi、Fang Chen;"

Funding: "This research received no external funding".
资助声明:"本研究未接受任何外部资金支持"。

Conflicts of Interest: "The authors declare no conflict of interest."
利益冲突声明:'作者声明无利益冲突。'

References  参考文献


[1] R. Behmanesh, I. Rahimi, and A. H. Gandomi, "Evolutionary many-objective algorithms for combinatorial optimization problems: a comparative study," Archives of Computational Methods in Engineering, vol. 28, no. 2, pp. 673-688, 2021.
[1] R. Behmanesh, I. Rahimi 与 A. H. Gandomi 合著,《组合优化问题的进化多目标算法:一项比较研究》,载《工程计算方法档案》,2021 年第 28 卷第 2 期,第 673-688 页。

[2] K. Deb, "Multi-objective optimization. Search methodologies," Search Methodologies. New York: Springer, 2014.
[2] K. Deb,《多目标优化。搜索方法论》,收录于《搜索方法论》。纽约:Springer 出版社,2014 年。

[3] R. T. Marler and J. S. Arora, "Survey of multi-objective optimization methods for engineering," Structural and multidisciplinary optimization, vol. 26, no. 6, pp. 369- 395, 2004.
[3] R. T. Marler 与 J. S. Arora 合著,《工程多目标优化方法综述》,载《结构与多学科优化》,2004 年第 26 卷第 6 期,第 369-395 页。

[4] K. Deb, "Multi-objective optimisation using evolutionary algorithms: an introduction," in Multi-objective evolutionary optimisation for product design and manufacturing, Springer, 2011, pp. 3-34.
[4] K. Deb,《多目标进化优化算法导论》,载于《产品设计与制造中的多目标进化优化》,Springer 出版社,2011 年,第 3-34 页。

[5] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, and others, Evolutionary algorithms for solving multi-objective problems, vol. 5. Springer, 2007.
[5] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen 等,《求解多目标问题的进化算法》第 5 卷,Springer 出版社,2007 年。

[6] J. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched Pareto genetic algorithm for multiobjective optimization," in Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence, 1994, pp. 82-87.
[6] J. Horn, N. Nafpliotis, D. E. Goldberg,《基于生态位帕累托遗传算法的多目标优化》,载于《第一届 IEEE 进化计算会议论文集》(IEEE 世界计算智能大会),1994 年,第 82-87 页。

[7] D. W. Corne, J. D. Knowles, and M. J. Oates, "The Pareto envelope-based selection algorithm for multiobjective optimization," in International conference on parallel problem solving from nature, 2000, pp. 839- 848.
[7] D. W. Corne, J. D. Knowles, M. J. Oates,《基于帕累托包络选择的多目标优化算法》,载于《自然并行问题求解国际会议》,2000 年,第 839-848 页。

[8] T. T. Binh and U. Korn, "MOBES: A multiobjective evolution strategy for constrained optimization problems," in The third international conference on genetic algorithms (Mendel 97), 1997, vol. 25, p. 27.
[8] T. T. Binh 与 U. Korn,《MOBES:一种用于约束优化问题的多目标进化策略》,发表于第三届遗传算法国际会议(Mendel 97),1997 年,第 25 卷,第 27 页。

[9] C. M. Fonseca and P. J. Fleming, "Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation," IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 28, no. 1, pp. 26-37, 1998.
[9] C. M. Fonseca 与 P. J. Fleming,《多目标优化及多约束处理的进化算法研究 I:统一表述》,刊载于《IEEE 系统、人与控制论汇刊-A 辑:系统与人类》,1998 年,第 28 卷第 1 期,第 26-37 页。

[10] F. Jiménez, J. L. Verdegay, and others, "Evolutionary techniques for constrained multiobjective optimization problems," 1999.
[10] F. Jiménez、J. L. Verdegay 等,《约束多目标优化问题的进化技术》,1999 年。

[11] D. E. Goldberg and K. Deb, "A comparative analysis of selection schemes used in genetic algorithms," in Foundations of genetic algorithms, vol. 1, Elsevier, 1991, pp. 69-93.
[11] D. E. Goldberg 与 K. Deb,《遗传算法中选择机制的对比分析》,收录于《遗传算法基础》第 1 卷,Elsevier 出版社,1991 年,第 69-93 页。

[12] C. A. Coello Coello and A. D. Christiansen, "MOSES: A multiobjective optimization tool for engineering design," Engineering Optimization, vol. 31, no. 3, pp. 337-368, 1999.
[12] C. A. 科埃略·科埃略与 A. D. 克里斯蒂安森,《MOSES:一种用于工程设计的多元优化工具》,《工程优化》,第 31 卷第 3 期,第 337-368 页,1999 年。

[13] K. Deb, "An efficient constraint handling method for genetic algorithms," Comput Methods Appl Mech Eng, vol. 186, no. 2-4, pp. 311-338, 2000.
[13] K. Deb,《遗传算法中一种高效的约束处理方法》,《计算机方法应用力学工程》,第 186 卷,第 2-4 期,第 311-338 页,2000 年。

[14] T. Ray, K. Tai, and C. Seow, "An evolutionary algorithm for multiobjective optimization," Eng. Optim, vol. 33, no. 3, pp. 399-424, 2001.
[14] T. 雷、K. 泰与 C. 萧,《一种用于多元优化的进化算法》,《工程优化》,第 33 卷第 3 期,第 399-424 页,2001 年。


[15] F. Jimenez, A. F. Gómez-Skarmeta, G. Sánchez, and K. Deb, "An evolutionary algorithm for constrained multi-objective optimization," in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), 2002, vol. 2, pp. 1133-1138.
[15] F. 希门尼斯、A. F. 戈麦斯-斯卡梅塔、G. 桑切斯与 K. 德布,《一种用于约束多元优化的进化算法》,收录于《2002 年进化计算大会论文集》。CEC'02(分类号 02TH8600),2002 年,第 2 卷,第 1133-1138 页。

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.
[16] K. Deb, A. Pratap, S. Agarwal 和 T. Meyarivan,《一种快速精英多目标遗传算法:NSGA-II》,《IEEE 进化计算汇刊》,第 6 卷第 2 期,第 182-197 页,2002 年。

[17] C. A. C. Coello, "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art," Comput Methods Appl Mech Eng, vol. 191, no. 11-12, pp. 1245-1287, 2002.
[17] C. A. C. Coello,《进化算法中理论与数值约束处理技术综述:最新进展》,《计算机方法应用力学工程》,第 191 卷第 11-12 期,第 1245-1287 页,2002 年。

[18] A. Angantyr, J. Andersson, and J.-O. Aidanpaa, "Constrained optimization based on a multiobjective evolutionary algorithm," in The 2003 Congress on Evolutionary Computation, 2003. CEC'03., 2003, vol. 3, pp. 1560-1567.
[18] A. Angantyr, J. Andersson 和 J.-O. Aidanpaa,《基于多目标进化算法的约束优化》,《2003 年进化计算大会论文集》,2003 年,第 3 卷,第 1560-1567 页。

[19] D. Chafekar, J. Xuan, and K. Rasheed, "Constrained multi-objective optimization using steady state genetic algorithms," in Genetic and Evolutionary Computation Conference, 2003, pp. 813-824.
[19] D. Chafekar, J. Xuan 和 K. Rasheed,《采用稳态遗传算法的约束多目标优化》,《遗传与进化计算会议论文集》,2003 年,第 813-824 页。

[20] X.-F. Zou, M.-Z. Liu, Z.-J. Wu, and L.-S. Kang, "A robust evolutionary algorithm for constrained multi-objective optimization problems," Journal of computer research and development, vol. 41, no. 6, pp. 985-990, 2004.
[20] 邹晓峰、刘明哲、吴志坚、康立山,"一种求解约束多目标优化问题的鲁棒进化算法",《计算机研究与发展》,第 41 卷第 6 期,第 985-990 页,2004 年。

[21] N. Young, "Blended ranking to cross infeasible regions in constrainedmultiobjective problems," in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), 2005, vol. 2, pp. 191-196.
[21] N. Young,"混合排序法跨越约束多目标问题中的不可行区域",载于《国际计算智能建模、控制与自动化会议及智能代理、网络技术与互联网商务国际会议论文集》(CIMCA-IAWTIC'06),2005 年,第 2 卷,第 191-196 页。

[22] S. Venkatraman and G. G. Yen, "A generic framework for constrained optimization using genetic algorithms," IEEE Transactions on Evolutionary Computation, vol. 9, no. 4, pp. 424-435, 2005.
[22] S. Venkatraman、G. G. Yen,"基于遗传算法的约束优化通用框架",《IEEE 进化计算汇刊》,第 9 卷第 4 期,第 424-435 页,2005 年。

[23] Z. Cai and Y. Wang, "A multiobjective optimization-based evolutionary algorithm for constrained optimization," IEEE Transactions on evolutionary computation, vol. 10, no. 6, pp. 658-675, 2006.
[23] 蔡志强、王勇,"基于多目标优化的约束优化进化算法",《IEEE 进化计算汇刊》,第 10 卷第 6 期,第 658-675 页,2006 年。

[24] H.-Q. Min, Y. Zhou, Y. Lu, and J. Jiang, "An evolutionary algorithm for constrained multi-objective optimization problems," in 2006 IEEE Asia-Pacific Conference on Services Computing (APSCC'06), 2006, pp. 667-670.
[24] 闵华清、周永录、卢炎生、江建慧,《约束多目标优化问题的进化算法》,载于《2006 年 IEEE 亚太服务计算会议(APSCC'06)》,2006 年,第 667-670 页。

[25] K. Harada, J. Sakuma, I. Ono, and S. Kobayashi, "Constraint-handling method for multi-objective function optimization: Pareto descent repair operator," in International Conference on Evolutionary Multi-Criterion Optimization, 2007, pp. 156-170.
[25] 原田香、佐久间淳、小野功、小林重信,《多目标函数优化的约束处理方法:帕累托下降修复算子》,载于《国际进化多准则优化会议》,2007 年,第 156-170 页。

[26] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, "An adaptive tradeoff model for constrained evolutionary optimization," IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 80-92, 2008.
[26] 王耀、蔡之华、周永录、曾文华,《约束进化优化的自适应权衡模型》,《IEEE 进化计算汇刊》,第 12 卷第 1 期,2008 年,第 80-92 页。

[27] A. Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Computers & Structures, vol. 87, no. 5-6, pp. 267-283, 2009.
[27] 阿里·卡维、萨塔尔·塔拉塔哈里,《粒子群优化器、蚁群策略与和声搜索方案混合用于桁架结构优化》,《计算机与结构》,第 87 卷第 5-6 期,2009 年,第 267-283 页。

[28] T. Ray, H. K. Singh, A. Isaacs, and W. Smith, "Infeasibility driven evolutionary algorithm for constrained optimization," in Constraint-handling in evolutionary optimization, Springer, 2009, pp. 145-165.
[28] T. Ray, H. K. Singh, A. Isaacs, 和 W. Smith, "用于约束优化的不可行驱动进化算法," 载于《进化优化中的约束处理》, Springer, 2009 年, 第 145-165 页。

[29] R. Tulshyan, R. Arora, K. Deb, and J. Dutta, "Investigating EA solutions for approximate KKT conditions in smooth problems," in Proceedings of the 12th annual conference on Genetic and evolutionary computation, 2010, pp. 689-696.
[29] R. Tulshyan, R. Arora, K. Deb, 和 J. Dutta, "研究光滑问题中近似 KKT 条件的 EA 解," 载于《第 12 届遗传与进化计算年会论文集》, 2010 年, 第 689-696 页。

[30] E. Mezura-Montes and C. A. C. Coello, "Constraint-handling in nature-inspired numerical optimization: past, present and future," Swarm and Evolutionary Computation, vol. 1, no. 4, pp. 173-194, 2011.
[30] E. Mezura-Montes 和 C. A. C. Coello, "自然启发数值优化中的约束处理:过去、现在与未来," 《群体与进化计算》, 第 1 卷第 4 期, 第 173-194 页, 2011 年。

[31] Z. Michalewicz and M. Schoenauer, "Evolutionary algorithms for constrained parameter optimization problems," Evol Comput, vol. 4, no. 1, pp. 1-32, 1996.
[31] Z. Michalewicz 和 M. Schoenauer, "约束参数优化问题的进化算法," 《进化计算》, 第 4 卷第 1 期, 第 1-32 页, 1996 年。

[32] T. Takahama, S. Sakai, and N. Iwane, "Constrained optimization by the $ varepsilon $ constrained hybrid algorithm of particle swarm optimization and genetic algorithm," in Australasian Joint Conference on Artificial Intelligence, 2005, pp. 389-400.
[32] T. Takahama、S. Sakai 与 N. Iwane,《基于粒子群优化与遗传算法混合的ε约束算法求解约束优化问题》,载《Australasian 人工智能联合会议论文集》,2005 年,第 389-400 页。

[33] J. Xiao, J. Xu, Z. Shao, C. Jiang, and L. Pan, "A genetic algorithm for solving multi-constrained function optimization problems based on KS function," in 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 4497-4501.
[33] 肖剑、徐杰、邵志峰、蒋超与潘磊,《基于 KS 函数求解多约束函数优化问题的遗传算法》,载《2007 年 IEEE 进化计算大会论文集》,2007 年,第 4497-4501 页。

[34] K. Deb and R. Datta, "A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach," in IEEE Congress on Evolutionary Computation, 2010, pp. 1-8.
[34] K. Deb 与 R. Datta,《采用混合双目标与罚函数方法快速精确求解约束优化问题》,载《IEEE 进化计算大会论文集》,2010 年,第 1-8 页。

[35] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67-82, 1997.
[35] D. H. Wolpert 与 W. G. Macready,《优化问题中的无免费午餐定理》,载《IEEE 进化计算汇刊》,第 1 卷第 1 期,1997 年,第 67-82 页。

[36] R. Mallipeddi and P. N. Suganthan, "Ensemble of constraint handling techniques," IEEE Transactions on Evolutionary Computation, vol. 14, no. 4, pp. 561-579, 2010.
[36] R. Mallipeddi 与 P. N. Suganthan 合著,《约束处理技术集成》,刊于《IEEE 进化计算汇刊》,第 14 卷第 4 期,第 561-579 页,2010 年。

[37] A. H. Gandomi and X.-S. Yang, "Evolutionary boundary constraint handling scheme," Neural Computing and Applications, vol. 21, no. 6, pp. 1449-1462, 2012.
[37] A. H. Gandomi 与 X.-S. Yang 合著,《进化边界约束处理方案》,刊于《神经计算与应用》,第 21 卷第 6 期,第 1449-1462 页,2012 年。

[38] H. Eskandar, A. Sadollah, A. Bahreininejad, and M. Hamdi, "Water cycle algorithm--A novel metaheuristic optimization method for solving constrained engineering optimization problems," Computers & Structures, vol. 110, pp. 151-166, 2012.
[38] H. Eskandar、A. Sadollah、A. Bahreininejad 和 M. Hamdi 合著,《水循环算法——一种解决约束工程优化问题的新型元启发式优化方法》,刊于《计算机与结构》,第 110 卷,第 151-166 页,2012 年。

[39] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi, "Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems," Applied Soft Computing, vol. 13, no. 5, pp. 2592-2612, 2013.
[39] A. Sadollah、A. Bahreininejad、H. Eskandar 和 M. Hamdi 合著,《矿爆算法:一种解决约束工程优化问题的新型群体智能算法》,刊于《应用软计算》,第 13 卷第 5 期,第 2592-2612 页,2013 年。

[40] N. M. Hamza, R. A. Sarker, D. L. Essam, K. Deb, and S. M. Elsayed, "A constraint consensus memetic algorithm for solving constrained optimization problems," Engineering Optimization, vol. 46, no. 11, pp. 1447- 1464, 2014.
[40] N. M. Hamza, R. A. Sarker, D. L. Essam, K. Deb, 和 S. M. Elsayed, 《一种用于求解约束优化问题的约束共识文化基因算法》,《工程优化》, 卷 46, 期 11, 页 1447-1464, 2014 年。

[41] L. Jiao, J. Luo, R. Shang, and F. Liu, "A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems," Applied Soft Computing, vol. 14, pp. 363- 380, 2014.
[41] L. Jiao, J. Luo, R. Shang, 和 F. Liu, 《采用可行引导策略的改进目标函数法求解约束多目标优化问题》,《应用软计算》, 卷 14, 页 363-380, 2014 年。


[42] N. Padhye, P. Mittal, and K. Deb, "Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization," Computational Optimization and Applications, vol. 62, no. 3, pp. 851-890, 2015.
[42] N. Padhye, P. Mittal, 和 K. Deb, 《实参数进化优化中保持可行性的约束处理策略》,《计算优化与应用》, 卷 62, 期 3, 页 851-890, 2015 年。

[43] H. Garg, "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, vol. 274, pp. 292-305, 2016.
[43] H. Garg, 《一种求解约束优化问题的混合 PSO-GA 算法》,《应用数学与计算》, 卷 274, 页 292-305, 2016 年。

[44] Z. Lu, K. Deb, and H. Singh, "Balancing survival of feasible and infeasible solutions in constraint evolutionary optimization algorithms," in 2018 IEEE Congress on Evolutionary Computation (CEC), 2018, pp. 1-8.
[44] 卢志强、K. Deb 和 H. Singh,《约束进化优化算法中可行解与不可行解的生存平衡》,载于《2018 年 IEEE 进化计算大会(CEC)》,2018 年,第 1-8 页。

[45] A. H. Gandomi and K. Deb, "Implicit constraints handling for efficient search of feasible solutions," Computer Methods in Applied Mechanics and Engineering, vol. 363, p. 112917, 2020, doi: 10.1016/j.cma.2020.112917.
[45] A. H. Gandomi 和 K. Deb,《隐式约束处理以实现可行解的高效搜索》,《计算机方法在应用力学与工程中的应用》,第 363 卷,第 112917 页,2020 年,doi: 10.1016/j.cma.2020.112917。

[46] N. J. Van Eck and L. Waltman, "VOSviewer manual," Leiden: Univeristeit Leiden, vol. 1, no. 1, pp. 1-53, 2013.
[46] N. J. Van Eck 和 L. Waltman,《VOSviewer 使用手册》,莱顿:莱顿大学,第 1 卷,第 1 期,第 1-53 页,2013 年。

[47] N. J. Van Eck and L. Waltman, "Software survey: VOSviewer, a computer program for bibliometric mapping," scientometrics, vol. 84, no. 2, pp. 523-538, 2010.
[47] N. J. Van Eck 和 L. Waltman,《软件综述:文献计量可视化工具 VOSviewer》,《科学计量学》,第 84 卷,第 2 期,第 523-538 页,2010 年。

[48] S. Koziel and Z. Michalewicz, "A decoder-based evolutionary algorithm for constrained parameter optimization problems," in International Conference on Parallel Problem Solving from Nature, 1998, pp. 231- 240.
[48] S.科济尔与 Z.米哈列维奇,《基于解码器的进化算法在约束参数优化问题中的应用》,收录于《自然并行问题求解国际会议》,1998 年,第 231-240 页。

[49] S. Koziel and Z. Michalewicz, "Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization," Evol Comput, vol. 7, no. 1, pp. 19-44, 1999.
[49] S.科济尔与 Z.米哈列维奇,《进化算法、同态映射与约束参数优化》,《进化计算》期刊,第 7 卷第 1 期,1999 年,第 19-44 页。

[50] D. G. Kim and P. Husbands, "Riemann mapping constraint handling method for genetic algorithms," 1997.
[50] D.G.金与 P.赫斯本兹,《遗传算法的黎曼映射约束处理方法》,1997 年。

[51] D. G. Kim and P. Husbands, "Landscape changes and the performance of Mapping Based Constraint handling methods," in International Conference on Parallel Problem Solving from Nature, 1998, pp. 221-229.
[51] D.G.金与 P.赫斯本兹,《基于映射的约束处理方法在景观变化下的性能研究》,收录于《自然并行问题求解国际会议》,1998 年,第 221-229 页。

[52] Z. Michalewicz, Genetic algorithms+ data structures= evolution programs. Springer Science & Business Media, 2013.
[52] Z. Michalewicz,《遗传算法+数据结构=进化程序》,Springer Science & Business Media 出版社,2013 年。

[53] M. Schoenauer and Z. Michalewicz, "Evolutionary computation at the edge of feasibility," in International Conference on Parallel Problem Solving from Nature, 1996, pp. 245-254.
[53] M. Schoenauer 和 Z. Michalewicz 撰写的《可行性边缘的进化计算》,收录于《自然并行问题解决国际会议》,1996 年,第 245-254 页。

[54] M. Schoenauer and Z. Michalewicz, "Boundary Operators for Constrained Parameter Optimization Problems.," in ICGA, 1997, pp. 322-329.
[54] M. Schoenauer 和 Z. Michalewicz 撰写的《约束参数优化问题的边界算子》,收录于《ICGA》,1997 年,第 322-329 页。

[55] C. A. C. Coello, "Constraint-handling techniques used with evolutionary algorithms," in Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2017, pp. 675-701.
[55] C. A. C. Coello 撰写的《与进化算法结合的约束处理技术》,收录于《遗传与进化计算会议论文集》,2017 年,第 675-701 页。

[56] O. Kramer, "A review of constraint-handling techniques for evolution strategies," Applied Computational Intelligence and Soft Computing, vol. 2010, 2010.
[56] O. Kramer,《进化策略中约束处理技术综述》,《应用计算智能与软计算》,第 2010 卷,2010 年。

[57] E. Mezura-Montes and C. A. C. Coello, "A simple multimembered evolution strategy to solve constrained optimization problems," IEEE Transactions on
[57] E. Mezura-Montes 和 C. A. C. Coello,《一种解决约束优化问题的简单多成员进化策略》,《IEEE 进化计算汇刊》

Evolutionary computation, vol. 9, no. 1, pp. 1-17, 2005.
《进化计算》,第 9 卷,第 1 期,第 1-17 页,2005 年。

[58] C. A. C. Coello, A. D. Christiansen, and A. H. Aguirre, "Multiobjective design optimization of counterweight balancing of a robot arm using genetic algorithms," in Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, 1995, pp. 20-23.
[58] C. A. C. Coello、A. D. Christiansen 和 A. H. Aguirre,《基于遗传算法的机器人手臂配重多目标设计优化》,《第七届 IEEE 人工智能工具国际会议论文集》,1995 年,第 20-23 页。

[59] A. Homaifar, C. X. Qi, and S. H. Lai, "Constrained optimization via genetic algorithms," Simulation, vol. 62, no. 4, pp. 242-253, 1994.
[59] A. Homaifar、C. X. Qi、S. H. Lai 著,《基于遗传算法的约束优化》,《仿真》,第 62 卷,第 4 期,第 242-253 页,1994 年。

[60] A. R. Jordehi, "A review on constraint handling strategies in particle swarm optimisation," Neural Computing and Applications, vol. 26, no. 6, pp. 1265- 1275, 2015.
[60] A. R. Jordehi,《粒子群优化中约束处理策略综述》,《Neural Computing and Applications》,第 26 卷第 6 期,第 1265-1275 页,2015 年。

[61] J. A. Joines and C. R. Houck, "On the use of nonstationary penalty functions to solve nonlinear constrained optimization problems with GA's," in Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence, 1994, pp. 579-584.
[61] J. A. Joines 和 C. R. Houck,《利用非静态惩罚函数结合遗传算法求解非线性约束优化问题》,载于《第一届 IEEE 进化计算会议论文集》(IEEE 世界计算智能大会),1994 年,第 579-584 页。

[62] A. Ben Hadj-Alouane and J. C. Bean, "A genetic algorithm for the multiple-choice integer program," Oper Res, vol. 45, no. 1, pp. 92-101, 1997.
[62] A. Ben Hadj-Alouane 和 J. C. Bean,《多选择整数规划的遗传算法》,《Oper Res》,第 45 卷第 1 期,第 92-101 页,1997 年。

[63] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, "Constraint handling in multiobjective evolutionary optimization," IEEE Transactions on Evolutionary Computation, vol. 13, no. 3, pp. 514-525, 2009.
[63] Y. G. Woldesenbet, G. G. Yen 和 B. G. Tessema, 《多目标进化优化中的约束处理》, 《IEEE 进化计算汇刊》, 卷 13, 期 3, 页 514-525, 2009 年。

[64] B. Y. Qu and P. N. Suganthan, "Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods," Engineering Optimization, vol. 43, no. 4, pp. 403-416, 2011.
[64] B. Y. Qu 和 P. N. Suganthan, 《集成多种约束处理方法的约束多目标优化算法》, 《工程优化》, 卷 43, 期 4, 页 403-416, 2011 年。

[65] S. E. Carlson and R. Shonkwiler, "Annealing a genetic algorithm over constraints," in SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), 1998, vol. 4, pp. 3931-3936.
[65] S. E. Carlson 和 R. Shonkwiler, 《在约束上退火遗传算法》, 收录于《SMC'98 会议论文集——1998 年 IEEE 系统、人与控制论国际会议》(分类号 98CH36218), 1998 年, 卷 4, 页 3931-3936。

[66] C. A. C. Coello, "Use of a self-adaptive penalty approach for engineering optimization problems," Computers in Industry, vol. 41, no. 2, pp. 113-127, 2000.
[66] C. A. C. Coello, 《自适应罚函数法在工程优化问题中的应用》, 《工业中的计算机》, 卷 41, 期 2, 页 113-127, 2000 年。

[67] A. K. Morales and C. V. Quezada, "A universal eclectic genetic algorithm for constrained optimization," in Proceedings of the 6th European congress on intelligent techniques and soft computing, 1998, vol. 1, pp. 518- 522.
[67] A. K. 莫拉莱斯与 C. V. 克萨达,《约束优化通用折衷遗传算法》,载《第六届欧洲智能技术与软计算会议论文集》,1998 年,第 1 卷,第 518-522 页。

[68] A. Homaifar, C. X. Qi, and S. H. Lai, "Constrained optimization via genetic algorithms," Simulation, vol. 62, no. 4, pp. 242-253, 1994.
[68] A. Homaifar、C. X. Qi 和 S. H. Lai,《基于遗传算法的约束优化》,《Simulation》第 62 卷第 4 期,第 242-253 页,1994 年。

[69] J. A. Joines and C. R. Houck, "On the use of nonstationary penalty functions to solve nonlinear constrained optimization problems with GA's," in Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence, 1994, pp. 579-584.
[69] J. A. 乔因斯与 C. R. 霍克,《利用非固定惩罚函数结合遗传算法求解非线性约束优化问题》,载《第一届 IEEE 进化计算会议论文集》(IEEE 世界计算智能大会),1994 年,第 579-584 页。

[70] Z. Michalewicz, "Genetic algorithms, numerical optimization, and constraints," in Proceedings of the sixth international conference on genetic algorithms, 1995, vol. 195, pp. 151-158.
[70] Z. 米凯利维茨,《遗传算法、数值优化与约束处理》,载《第六届国际遗传算法会议论文集》,1995 年,第 195 卷,第 151-158 页。

[71] D. Dasgupta and Z. Michalewicz, Evolutionary algorithms in engineering applications. Springer Science & Business Media, 2013.
[71] D. Dasgupta 与 Z. Michalewicz 合著,《工程应用中的进化算法》。Springer Science & Business Media 出版社,2013 年。


[72] A. Ben Hadj-Alouane and J. C. Bean, "A genetic algorithm for the multiple-choice integer program," Oper Res, vol. 45, no. 1, pp. 92-101, 1997.
[72] A. Ben Hadj-Alouane 和 J. C. Bean 发表,《多选择整数规划的遗传算法》,《运筹学》期刊,第 45 卷第 1 期,第 92-101 页,1997 年。

[73] A. E. Eiben and J. K. Van Der Hauw, "Adaptive penalties for evolutionary graph coloring," in European Conference on Artificial Evolution, 1997, pp. 95-106.
[73] A. E. Eiben 与 J. K. Van Der Hauw 合著,《进化图着色的自适应惩罚策略》,收录于《欧洲人工进化会议论文集》,1997 年,第 95-106 页。

[74] K. Watanabe and M. M. A. Hashem, "Evolutionary optimization of constrained problems," in Evolutionary computations, Springer, 2004, pp. 53-64.
[74] K. Watanabe 和 M. M. A. Hashem 著,《约束问题的进化优化》,载于《进化计算》,Springer 出版社,2004 年,第 53-64 页。

[75] C. A. C. Coello, "Self-adaptive penalties for GA-based optimization," in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, vol. 1, pp. 573-580.
[75] C. A. C. Coello 著,《基于遗传算法的自适应惩罚优化》,载于《1999 年进化计算大会论文集-CEC99》(分类号 99TH8406),1999 年,第 1 卷,第 573-580 页。

[76] C. A. C. Coello, "Use of a self-adaptive penalty approach for engineering optimization problems," Computers in Industry, vol. 41, no. 2, pp. 113-127, 2000.
[76] C. A. C. Coello 著,《自适应性惩罚方法在工程优化问题中的应用》,《工业计算机》,第 41 卷第 2 期,2000 年,第 113-127 页。

[77] R. Le Riche, C. Knopf-Lenoir, and R. T. Haftka, "A Segregated Genetic Algorithm for Constrained Structural Optimization.," in ICGA, 1995, pp. 558-565.
[77] R. Le Riche、C. Knopf-Lenoir 和 R. T. Haftka 著,《一种用于约束结构优化的隔离遗传算法》,载于《ICGA》,1995 年,第 558-565 页。

[78] D. Powell and M. M. Skolnick, "Using genetic algorithms in engineering design optimization with nonlinear constraints," in Proceedings of the 5th International conference on Genetic Algorithms, 1993, pp. 424-431.
[78] D. Powell 与 M. M. Skolnick,《在非线性约束条件下使用遗传算法进行工程设计优化》,发表于《第五届国际遗传算法会议论文集》,1993 年,第 424-431 页。

[79] R. Hinterding and Z. Michalewicz, "Your brains and my beauty: parent matching for constrained optimisation," in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), 1998, pp. 810-815.
[79] R. Hinterding 与 Z. Michalewicz,《你的智慧与我的美貌:约束优化中的亲本匹配》,收录于《1998 年 IEEE 进化计算国际会议论文集——IEEE 世界计算智能大会》(分类号 98TH8360),1998 年,第 810-815 页。

[80] M. A. Jan and R. A. Khanum, "A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D," Applied Soft Computing, vol. 13, no. 1, pp. 128-148, 2013.
[80] M. A. Jan 与 R. A. Khanum,《MOEA/D 框架下两种无惩罚参数约束处理技术的研究》,《应用软计算》第 13 卷第 1 期,2013 年,第 128-148 页。

[81] T. Takahama and S. Sakai, "Constrained optimization by varepsilon constrained particle swarm optimizer with varepsilon-level control," in Soft computing as transdisciplinary science and technology, Springer, 2005, pp. 1019-1029.
[81] T. Takahama 与 S. Sakai,《采用 varepsilon 约束粒子群优化器与 varepsilon 级控制的约束优化》,载于《跨学科科学与技术中的软计算》,Springer 出版社,2005 年,第 1019-1029 页。

[82] D. Powell and M. M. Skolnick, "Using genetic algorithms in engineering design optimization with nonlinear constraints," in Proceedings of the 5th International conference on Genetic Algorithms, 1993, pp. 424-431.
[82] D. Powell 与 M. M. Skolnick,《在非线性约束条件下使用遗传算法进行工程设计优化》,发表于《第五届国际遗传算法会议论文集》,1993 年,第 424-431 页。

[83] M. Asafuddoula, T. Ray, R. Sarker, and K. Alam, "An adaptive constraint handling approach embedded MOEA/D," in 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1-8.
[83] M. Asafuddoula、T. Ray、R. Sarker 与 K. Alam,《MOEA/D 框架中嵌入的自适应约束处理方法》,发表于《2012 年 IEEE 进化计算大会》,2012 年,第 1-8 页。

[84] B. Y. Qu and P. N. Suganthan, "Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods," Engineering Optimization, vol. 43, no. 4, pp. 403-416, 2011.
[84] 屈博雅与 P. N. Suganthan,《集成多种约束处理方法的约束多目标优化算法》,《工程优化》,第 43 卷第 4 期,2011 年,第 403-416 页。

[85] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, "Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization," in Proceedings of the 7th annual conference on Genetic and evolutionary computation, 2005, pp. 225-232.
[85] E. Mezura-Montes、J. Velázquez-Reyes 与 C. A. Coello Coello,《结合有希望不可行解与多子代策略的差分进化约束优化方法》,发表于《第七届遗传与进化计算年会论文集》,2005 年,第 225-232 页。

[86] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. C. Coello, "Modified differential evolution for constrained
[86] E. Mezura-Montes、J. Velázquez-Reyes 和 C. A. C. Coello 合著的《Modified differential evolution for constrained》

optimization," in 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 25-32.
优化," in 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 25-32.

[87] E. Mezura-Montes, C. A. C. Coello, and E. I. Tun-Morales, "Simple feasibility rules and differential evolution for constrained optimization," in Mexican International Conference on Artificial Intelligence, 2004, pp. 707-716.
[87] E. Mezura-Montes, C. A. C. Coello, 和 E. I. Tun-Morales, "用于约束优化的简单可行性规则与差分进化算法," in 墨西哥人工智能国际会议, 2004, pp. 707-716.

[88] J. Lampinen, "A constraint handling approach for the differential evolution algorithm," in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), 2002, vol. 2, pp. 1468-1473.
[88] J. Lampinen, "差分进化算法的一种约束处理方法," in 《2002 年进化计算大会论文集》. CEC'02 (Cat. No. 02TH8600), 2002, vol. 2, pp. 1468-1473.

[89] S. Kukkonen and J. Lampinen, "Constrained real-parameter optimization with generalized differential evolution," in 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 207-214.
[89] S. Kukkonen 与 J. Lampinen,《广义差分进化算法在约束实数参数优化中的应用》,收录于《2006 年 IEEE 进化计算国际会议论文集》,2006 年,第 207-214 页。

[90] A. L. Jaimes, C. A. C. Coello, H. Aguirre, and K. Tanaka, "Adaptive objective space partitioning using conflict information for many-objective optimization," in International Conference on Evolutionary Multi-Criterion Optimization, 2011, pp. 151-165.
[90] A. L. Jaimes、C. A. C. Coello、H. Aguirre 和 K. Tanaka,《基于冲突信息的多目标优化目标空间自适应划分方法》,收录于《进化多准则优化国际会议论文集》,2011 年,第 151-165 页。

[91] E. Mezura-Montes and A. G. Palomeque-Ortiz, "Parameter control in differential evolution for constrained optimization," in 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 1375-1382.
[91] E. Mezura-Montes 与 A. G. Palomeque-Ortiz,《差分进化算法参数控制在约束优化中的应用》,收录于《2009 年 IEEE 进化计算大会论文集》,2009 年,第 1375-1382 页。

[92] K. Zielinski, X. Wang, and R. Laur, "Comparison of adaptive approaches for differential evolution," in International Conference on Parallel Problem Solving from Nature, 2008, pp. 641-650.
[92] K. Zielinski、X. Wang 和 R. Laur,《差分进化算法自适应方法的比较研究》,收录于《自然并行问题求解国际会议论文集》,2008 年,第 641-650 页。

[93] K. Zielinski, S. P. Vudathu, and R. Laur, "Influence of different deviations allowed for equality constraints on particle swarm optimization and differential evolution," in Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), Springer, 2008, pp. 249- 259.
[93] K. Zielinski、S. P. Vudathu 和 R. Laur,《允许等式约束存在不同偏差对粒子群优化和差分进化的影响》,载于《自然启发的协同优化策略(NICSO 2007)》,Springer,2008 年,第 249-259 页。

[94] E. Mezura-Montes and A. G. Palomeque-Ortiz, "Self-adaptive and deterministic parameter control in differential evolution for constrained optimization," in Constraint-Handling in Evolutionary Optimization, Springer, 2009, pp. 95-120.
[94] E. Mezura-Montes 和 A. G. Palomeque-Ortiz,《差分进化中约束优化的自适应与确定性参数控制》,载于《进化优化中的约束处理》,Springer,2009 年,第 95-120 页。

[95] J. Lampinen, "A constraint handling approach for the differential evolution algorithm," in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), 2002, vol. 2, pp. 1468-1473.
[95] J. Lampinen,《差分进化算法的约束处理方法》,载于《2002 年进化计算大会论文集(CEC'02)》(分类号 02TH8600),2002 年,第 2 卷,第 1468-1473 页。

[96] S. Kukkonen and J. Lampinen, "Constrained real-parameter optimization with generalized differential evolution," in 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 207-214.
[96] S. Kukkonen 和 J. Lampinen,《基于广义差分进化的约束实数参数优化》,载于《2006 年 IEEE 国际进化计算会议》,2006 年,第 207-214 页。

[97] A. L. Jaimes, C. A. C. Coello, H. Aguirre, and K. Tanaka, "Adaptive objective space partitioning using conflict information for many-objective optimization," in International Conference on Evolutionary Multi-Criterion Optimization, 2011, pp. 151-165.
[97] A. L. 海梅斯, C. A. C. 科埃略, H. 阿吉雷, 与 K. 田中, "基于冲突信息的多目标优化自适应目标空间划分方法," 发表于《国际进化多准则优化会议》, 2011 年, 第 151-165 页.

[98] H. Jiang, "Efficiency measurement and improvement of housing provident fund in China," International Journal of Wireless and Mobile Computing, vol. 12, no. 3, pp. 259-269, 2017.
[98] 江华, "中国住房公积金效率测度与改进研究," 《国际无线与移动计算杂志》, 第 12 卷第 3 期, 第 259-269 页, 2017 年.

[99] C. Si, J. Hu, T. Lan, L. Wang, and Q. Wu, "A combined constraint handling framework: an empirical study," Memetic Computing, vol. 9, no. 1, pp. 69-88, 2017.
[99] C. Si、J. Hu、T. Lan、L. Wang 和 Q. Wu,《组合约束处理框架的实证研究》,《Memetic Computing》第 9 卷第 1 期,第 69-88 页,2017 年。

[100] E. Mezura-Montes and J. I. Flores-Mendoza, "Improved particle swarm optimization in constrained numerical
[100] E. 梅祖拉-蒙特斯 与 J. I. 弗洛雷斯-门多萨, "约束数值优化中改进的粒子群算法"


search spaces," in Nature-inspired algorithms for optimisation, Springer, 2009, pp. 299-332.
搜索空间,《自然启发优化算法中的搜索策略》,Springer 出版社,2009 年,第 299-332 页。

[101] D. Karaboga and B. Basturk, "Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems," in International fuzzy systems association world congress, 2007, pp. 789-798.
[101] D. Karaboga 与 B. Basturk,《人工蜂群(ABC)算法求解约束优化问题》,载于国际模糊系统协会世界大会论文集,2007 年,第 789-798 页。

[102] D. Karaboga and B. Akay, "A modified artificial bee colony (ABC) algorithm for constrained optimization problems," Appl Soft Comput, vol. 11, no. 3, pp. 3021- 3031, 2011.
[102] D. Karaboga 与 B. Akay,《改进人工蜂群(ABC)算法在约束优化问题中的应用》,应用软计算期刊,第 11 卷第 3 期,2011 年,第 3021-3031 页。

[103] S. M. Elsayed, R. A. Sarker, and D. L. Essam, "A comparative study of different variants of genetic algorithms for constrained optimization," in Asia-Pacific Conference on Simulated Evolution and Learning, 2010, pp. 177-186.
[103] S. M. Elsayed、R. A. Sarker 与 D. L. Essam,《遗传算法变体在约束优化中的对比研究》,载于亚太地区模拟进化与学习会议论文集,2010 年,第 177-186 页。

[104] Y. Wang and Z. Cai, "A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems," Frontiers of Computer Science in China, vol. 3, no. 1, pp. 38-52, 2009.
[104] 王勇与蔡志强,“一种求解约束优化问题的混合多群粒子群优化算法”,《中国计算机科学前沿》,第 3 卷第 1 期,第 38-52 页,2009 年。

[105] S. M. Elsayed, R. A. Sarker, and D. L. Essam, "GA with a new multi-parent crossover for constrained optimization," in 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, pp. 857-864.
[105] S. M. Elsayed、R. A. Sarker 与 D. L. Essam,“采用新型多父代交叉的遗传算法求解约束优化问题”,收录于《2011 年 IEEE 进化计算大会(CEC)》,2011 年,第 857-864 页。

[106] N. Cruz-Cortés, "Handling constraints in global optimization using artificial immune systems: A survey," in Constraint-Handling in Evolutionary Optimization, Springer, 2009, pp. 237-262.
[106] N. Cruz-Cortés,“人工免疫系统在全局优化中处理约束的研究综述”,收录于《进化优化中的约束处理》,Springer 出版社,2009 年,第 237-262 页。

[107] P. Hajela and J. Lee, "Constrained genetic search via schema adaptation: an immune network solution," Structural optimization, vol. 12, no. 1, pp. 11-15, 1996.
[107] P. Hajela 与 J. Lee,“基于模式适应的约束遗传搜索:免疫网络解法”,《结构优化》,第 12 卷第 1 期,第 11-15 页,1996 年。

[108] C. A. C. Coello and N. C. Cortés, "A parallel implementation of an artificial immune system to handle constraints in genetic algorithms: Preliminary results," in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), 2002, vol. 1, pp. 819-824.
[108] C. A. C. 科埃略与 N. C. 科尔特斯,《遗传算法中处理约束的人工免疫系统并行实现:初步结果》,收录于《2002 年进化计算大会论文集》。CEC'02(分类号 02TH8600),2002 年,第 1 卷,第 819-824 页。

[109] H. S. Bernardino, H. J. C. Barbosa, and A. C. C. Lemonge, "A hybrid genetic algorithm for constrained optimization problems in mechanical engineering," in 2007 IEEE congress on evolutionary computation, 2007, pp. 646-653.
[109] H. S. 贝尔纳迪诺、H. J. C. 巴尔博萨与 A. C. C. 莱蒙格,《机械工程约束优化问题的混合遗传算法》,收录于《2007 年 IEEE 进化计算大会》,2007 年,第 646-653 页。

[110] V. S. Aragón, S. C. Esquivel, and C. A. C. Coello, "Artificial immune system for solving constrained optimization problems," Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, vol. 11, no. 35, pp. 55-66, 2007.
[110] V. S. 阿拉贡、S. C. 埃斯基维尔与 C. A. C. 科埃略,《求解约束优化问题的人工免疫系统》,《人工智能-伊比利亚美洲人工智能杂志》,第 11 卷,第 35 期,2007 年,第 55-66 页。

[111] V. S. Aragón, S. C. Esquivel, and C. A. C. Coello, "A novel model of artificial immune system for solving constrained optimization problems with dynamic tolerance factor," in Mexican International Conference on Artificial Intelligence, 2007, pp. 19-29.
[111] V. S. 阿拉贡、S. C. 埃斯基维尔与 C. A. C. 科埃略,《一种带动态容差因子的约束优化问题求解新人工免疫系统模型》,收录于《墨西哥国际人工智能会议》,2007 年,第 19-29 页。

[112] J. Liu, W. Zhong, and L. Jiao, "An organizational evolutionary algorithm for numerical optimization," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 4, pp. 1052-1064, 2007.
[112] 刘静、钟伟娇和焦李成,《一种用于数值优化的组织进化算法》,《IEEE 系统、人与控制论汇刊,B 辑(控制论)》,第 37 卷第 4 期,第 1052-1064 页,2007 年。

[113] H. Ma and D. Simon, "Blended biogeography-based optimization for constrained optimization," Engineering Applications of Artificial Intelligence, vol. 24, no. 3, pp. 517-525, 2011.
[113] 马浩和西蒙,《混合生物地理学优化算法在约束优化中的应用》,《人工智能工程应用》,第 24 卷第 3 期,第 517-525 页,2011 年。

[114] E. Mezura-Montes and B. Hernández-Ocaña, "Modified bacterial foraging optimization for engineering design,"
[114] E. 梅祖拉-蒙特斯和 B. 埃尔南德斯-奥卡尼亚,《改进的细菌觅食优化算法在工程设计中的应用》,

in Proceedings of the Artificial Neural Networks in Enginnering Conference (ANNIE'2009), 2009, vol. 19, pp. 357-364.
《工程中人工神经网络国际会议论文集(ANNIE'2009)》,2009 年,第 19 卷,第 357-364 页。

[115] C. Peng, H.-L. Liu, and F. Gu, "An evolutionary algorithm with directed weights for constrained multi-objective optimization," Applied Soft Computing, vol. 60, pp. 613-622, 2017.
[115] 彭超、刘宏立、顾锋,《基于定向权重的约束多目标优化进化算法》,《应用软计算》,第 60 卷,第 613-622 页,2017 年。

[116] W. Ning, B. Guo, Y. Yan, X. Wu, J. Wu, and D. Zhao, "Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm," Engineering Optimization, vol. 49, no. 10, pp. 1645-1664, 2017.
[116] 宁伟、郭斌、闫岩、吴晓、吴健、赵东,《结合改进混合多目标进化算法的约束非支配排序约束多目标优化方法》,《工程优化》,第 49 卷第 10 期,第 1645-1664 页,2017 年。

[117] Y. Yang, J. Liu, and S. Tan, "A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism," Applied Soft Computing, vol. 89, p. 106104, 2020.
[117] 杨阳、刘健、谭帅,《基于分解与动态约束处理机制的约束多目标进化算法》,《应用软计算》,第 89 卷,第 106104 页,2020 年。

[118] J.-P. Li, Y. Wang, S. Yang, and Z. Cai, "A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization," in 2016 IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 4175-4182.
[118] 李建平、王洋、杨森、蔡之,《进化约束多目标优化中约束处理技术的比较研究》,收录于《2016 年 IEEE 进化计算大会(CEC)》,第 4175-4182 页,2016 年。

[119] Z. Fan et al., "Push and pull search for solving constrained multi-objective optimization problems," Swarm Evol Comput, vol. 44, pp. 665-679, 2019.
[119] 范振等,《采用推拉搜索策略求解约束多目标优化问题》,群体与进化计算,卷 44,页 665-679,2019 年。

[120] Z.-Z. Liu and Y. Wang, "Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces," IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 870-884, 2019.
[120] 刘宗泽、王勇,《决策空间与目标空间双重约束下的多目标优化问题处理方法》,IEEE 进化计算汇刊,卷 23,期 5,页 870-884,2019 年。

[121] T. P. Runarsson and X. Yao, "Stochastic ranking for constrained evolutionary optimization," IEEE Transactions on evolutionary computation, vol. 4, no. 3, pp. 284-294, 2000.
[121] T·P·鲁纳尔松、姚新,《约束进化优化的随机排序方法》,IEEE 进化计算汇刊,卷 4,期 3,页 284-294,2000 年。

[122] G. Leguizamon and C. A. C. Coello, "Boundary search for constrained numerical optimization problems with an algorithm inspired by the ant colony metaphor," IEEE transactions on evolutionary computation, vol. 13, no. 2, pp. 350-368, 2008.
[122] G·莱吉萨蒙、C·A·C·科埃略,《受蚁群启发的边界搜索算法求解约束数值优化问题》,IEEE 进化计算汇刊,卷 13,期 2,页 350-368,2008 年。

[123] G. Leguizamón and C. A. C. Coello, "A boundary search based ACO algorithm coupled with stochastic ranking," in 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 165-172.
[123] G. Leguizamón 与 C. A. C. Coello,《基于边界搜索的 ACO 算法与随机排序耦合》,载于 2007 年 IEEE 进化计算大会,2007 年,第 165-172 页。

[124] L. G. Fonseca, P. V. S. Z. Capriles, H. J. C. Barbosa, and A. C. C. Lemonge, "A stochastic rank-based ant system for discrete structural optimization," in 2007 IEEE Swarm Intelligence Symposium, 2007, pp. 68-75.
[124] L. G. Fonseca、P. V. S. Z. Capriles、H. J. C. Barbosa 与 A. C. C. Lemonge,《离散结构优化中基于随机排序的蚁群系统》,载于 2007 年 IEEE 群体智能研讨会,2007 年,第 68-75 页。

[125] R. Liu, Y. Li, W. Zhang, and L. Jiao, "Stochastic ranking based differential evolution algorithm for constrained optimization problem," in Proceedings of the first acm/sigevo summit on genetic and evolutionary computation, 2009, pp. 887-890.
[125] 刘锐、李毅、张伟与焦李成,《基于随机排序的差分进化算法求解约束优化问题》,载于第一届 ACM/SIGEVO 遗传与进化计算峰会论文集,2009 年,第 887-890 页。

[126] J. Liu, Z. Fan, and E. Goodman, "SRaDE: An adaptive differential evolution based on stochastic ranking," in Proceedings of the 11th Annual conference on Genetic and evolutionary computation, 2009, pp. 1871-1872.
[126] 刘健、范展与 E. Goodman,《SRaDE:基于随机排序的自适应差分进化算法》,载于第 11 届遗传与进化计算年会论文集,2009 年,第 1871-1872 页。

[127] Z. Fan, J. Liu, T. Sorensen, and P. Wang, "Improved differential evolution based on stochastic ranking for
[127] 范志强、刘建、T. Sorensen 和王平,『基于随机排序改进差分进化算法用于


robust layout synthesis of MEMS components," IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 937-948, 2008.
MEMS 元件鲁棒布局综合,』《IEEE 工业电子学报》,第 56 卷第 4 期,第 937-948 页,2008 年。

[128] R. Mallipeddi, P. N. Suganthan, and B.-Y. Qu, "Diversity enhanced adaptive evolutionary programming for solving single objective constrained problems," in 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 2106-2113.
[128] R. Mallipeddi、P. N. Suganthan 和曲博洋,『多样性增强的自适应进化规划求解单目标约束问题,』收录于《2009 年 IEEE 进化计算大会》,2009 年,第 2106-2113 页。

[129] A. Vodopija, A. Oyama, and B. Filipič, "Ensemble-based constraint handling in multiobjective optimization," in Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 2072-2075.
[129] A. Vodopija、A. Oyama 和 B. Filipič,『多目标优化中基于集成学习的约束处理,』收录于《遗传与进化计算会议论文集》,2019 年,第 2072-2075 页。

[130] A. Vodopija, A. Oyama, and B. Filipič, "Ensemble-based constraint handling in multiobjective optimization," in Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 2072-2075.
[130] A. Vodopija, A. Oyama, 与 B. Filipič, 《多目标优化中基于集成学习的约束处理》, 收录于《遗传与进化计算会议论文集》, 2019 年, 第 2072-2075 页。

[131] M. F. Tasgetiren, P. N. Suganthan, Q.-K. Pan, R. Mallipeddi, and S. Sarman, "An ensemble of differential evolution algorithms for constrained function optimization," in IEEE congress on evolutionary computation, 2010, pp. 1-8.
[131] M. F. Tasgetiren, P. N. Suganthan, 潘庆凯, R. Mallipeddi, 与 S. Sarman, 《约束函数优化的差分进化算法集成》, 收录于《IEEE 进化计算大会》, 2010 年, 第 1-8 页。

[132] R. Mallipeddi and P. N. Suganthan, "Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems," in IEEE congress on evolutionary computation, 2010, pp. 18 .
[132] R. Mallipeddi 与 P. N. Suganthan, 《采用约束处理技术集成的差分进化算法求解 CEC 2010 基准问题》, 收录于《IEEE 进化计算大会》, 2010 年, 第 18 页。

[133] G. Reynoso-Meza, X. Blasco, J. Sanchis, and M. Mart\'\inez, "Multiobjective optimization algorithm for solving constrained single objective problems," in IEEE congress on evolutionary computation, 2010, pp. 1-7.
[133] G. Reynoso-Meza, X. Blasco, J. Sanchis, 与 M. Martínez, 《求解约束单目标问题的多目标优化算法》, 收录于《IEEE 进化计算大会》, 2010 年, 第 1-7 页。

[134] Y. Wang, H. Liu, Z. Cai, and Y. Zhou, "An orthogonal design based constrained evolutionary optimization algorithm," Engineering Optimization, vol. 39, no. 6, pp. 715-736, 2007.
[134] 王勇、刘辉、蔡志强、周毅,《基于正交设计的约束进化优化算法》,《工程优化》,第 39 卷第 6 期,第 715-736 页,2007 年。

[135] L. D. Li, X. Li, and X. Yu, "A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems," in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 2008, pp. 1528-1535.
[135] 李立东、李旭、余翔,《基于 PSO 算法的多目标约束处理方法在约束工程优化问题中的应用》,收录于《2008 年 IEEE 进化计算大会(IEEE 世界计算智能大会)》,2008 年,第 1528-1535 页。

[136] F. Samanipour and J. Jelovica, "Adaptive repair method for constraint handling in multi-objective genetic algorithm based on relationship between constraints and variables," Applied Soft Computing, vol. 90, p. 106143, 2020.
[136] 法扎德·萨马尼普尔、贾斯敏·耶洛维察,《基于约束与变量关系的多目标遗传算法自适应约束处理方法》,《应用软计算》,第 90 卷,第 106143 页,2020 年。

[137] Q. Long, "A constraint handling technique for constrained multi-objective genetic algorithm," Swarm and Evolutionary Computation, vol. 15, pp. 66-79, 2014.
[137] 龙强,《约束多目标遗传算法的约束处理技术》,《群体与进化计算》,第 15 卷,第 66-79 页,2014 年。

[138] N. Srinivas and K. Deb, "Muiltiobjective optimization using nondominated sorting in genetic algorithms," Evol Comput, vol. 2, no. 3, pp. 221-248, 1994.
[138] N. Srinivas 和 K. Deb,《遗传算法中基于非支配排序的多目标优化方法》,载《演化计算》第 2 卷第 3 期,第 221-248 页,1994 年。

[139] K. Deb, "Multi-objective genetic algorithms: Problem difficulties and construction of test problems," Evol Comput, vol. 7, no. 3, pp. 205-230, 1999.
[139] K. Deb,《多目标遗传算法:问题难点与测试问题构建》,Evol Comput,第 7 卷,第 3 期,第 205-230 页,1999 年。

[140] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary computation 1: Basic algorithms and operators. CRC press, 2018.
[140] T. Bäck、D. B. Fogel 和 Z. Michalewicz,《进化计算 1:基础算法与算子》,CRC 出版社,2018 年。

[141] P. W. Poon and J. N. Carter, "Genetic algorithm crossover operators for ordering applications,"
[141] P. W. Poon 和 J. N. Carter,《面向排序应用的遗传算法交叉算子》,

Computers & Operations Research, vol. 22, no. 1, pp. 135-147, 1995.
《计算机与运筹学》第 22 卷第 1 期,第 135-147 页,1995 年。

[142] C. Y. Ngo and V. O. K. Li, "Fixed channel assignment in cellular radio networks using a modified genetic algorithm," IEEE Transactions on Vehicular Technology, vol. 47, no. 1, pp. 163-172, 1998.
[142] C. Y. Ngo 与 V. O. K. Li,《采用改进遗传算法的蜂窝无线电网络固定信道分配》,《IEEE 车载技术汇刊》第 47 卷第 1 期,第 163-172 页,1998 年。

[143] S. Salcedo-Sanz, G. Camps-Valls, F. Pérez-Cruz, J. Sepúlveda-Sanchis, and C. Bousoño-Calzón, "Enhancing genetic feature selection through restricted search and Walsh analysis," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 4, pp. 398-406, 2004.
[143] S. Salcedo-Sanz、G. Camps-Valls、F. Pérez-Cruz、J. Sepúlveda-Sanchis 与 C. Bousoño-Calzón,《通过受限搜索和沃尔什分析增强遗传特征选择》,《IEEE 系统、人与控制论汇刊》(C 辑:应用与综述)第 34 卷第 4 期,第 398-406 页,2004 年。

[144] B. Dengiz, F. Altiparmak, and A. E. Smith, "Local search genetic algorithm for optimal design of reliable networks," IEEE transactions on Evolutionary Computation, vol. 1, no. 3, pp. 179-188, 1997.
[144] B. Dengiz、F. Altiparmak 与 A. E. Smith,《可靠网络优化设计的局部搜索遗传算法》,《IEEE 进化计算汇刊》第 1 卷第 3 期,第 179-188 页,1997 年。

[145] L. Kou, G. Markowsky, and L. Berman, "A fast algorithm for Steiner trees," Acta Inform, vol. 15, no. 2, pp. 141-145, 1981.
[145] L. Kou、G. Markowsky 和 L. Berman,《斯坦纳树问题的快速算法》,载《信息学报》第 15 卷第 2 期,第 141-145 页,1981 年。

[146] E. Falkenauer, "The grouping genetic algorithms: widening the scope of the GA's," JORBEL-Belgian Journal of Operations Research, Statistics, and Computer Science, vol. 33, no. 1-2, pp. 79-102, 1993.
[146] E. Falkenauer,《分组遗传算法:扩展 GA 的应用范围》,《JORBEL-比利时运筹学、统计与计算机科学杂志》,第 33 卷第 1-2 期,第 79-102 页,1993 年。

[147] L. E. Agust\'\in-Blas, S. Salcedo-Sanz, E. G. Ortiz-Garc\'\ia, A. Portilla-Figueras, and Á. M. Pérez-Bellido, "A hybrid grouping genetic algorithm for assigning students to preferred laboratory groups," Expert Systems with Applications, vol. 36, no. 3, pp. 7234-7241, 2009.
[147] L. E. Agustín-Blas、S. Salcedo-Sanz、E. G. Ortiz-García、A. Portilla-Figueras 和 Á. M. Pérez-Bellido,《一种用于将学生分配到首选实验室组的混合分组遗传算法》,《专家系统及其应用》,第 36 卷第 3 期,第 7234-7241 页,2009 年。

[148] N. Krasnogor and J. Smith, "A tutorial for competent memetic algorithms: model, taxonomy, and design issues," IEEE Transactions on Evolutionary Computation, vol. 9, no. 5, pp. 474-488, 2005.
[148] N. Krasnogor 和 J. Smith,《高效模因算法教程:模型、分类与设计问题》,《IEEE 进化计算汇刊》,第 9 卷第 5 期,第 474-488 页,2005 年。

[149] S. Salcedo-Sanz, "A survey of repair methods used as constraint handling techniques in evolutionary algorithms," Comput Sci Rev, vol. 3, no. 3, pp. 175-192, 2009.
[149] S. Salcedo-Sanz,《进化算法中作为约束处理技术的修复方法综述》,计算机科学评论,第 3 卷第 3 期,第 175-192 页,2009 年。

[150] E.-G. Talbi, "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, vol. 240, no. 1, pp. 171-215, 2016.
[150] E.-G. Talbi,《元启发式与数学规划、约束规划及机器学习的结合》,运筹学年刊,第 240 卷第 1 期,第 171-215 页,2016 年。

[151] J.-Y. Suh and D. Van Gucht, "Incorporating heuristic information into genetic search," 1987.
[151] J.-Y. Suh 与 D. Van Gucht,《将启发式信息融入遗传搜索》,1987 年。

[152] S. Salcedo-Sanz, "A survey of repair methods used as constraint handling techniques in evolutionary algorithms," Comput Sci Rev, vol. 3, no. 3, pp. 175-192, 2009.
[152] S. Salcedo-Sanz,《进化算法中作为约束处理技术的修复方法综述》,计算机科学评论,第 3 卷第 3 期,第 175-192 页,2009 年。

[153] W. K. Lai and G. G. Coghill, "Channel assignment through evolutionary optimization," IEEE Transactions on Vehicular Technology, vol. 45, no. 1, pp. 91-96, 1996.
[153] W. K. Lai 与 G. G. Coghill,《通过进化优化实现信道分配》,《IEEE 车载技术汇刊》,第 45 卷第 1 期,第 91-96 页,1996 年。

[154] P. W. Poon and J. N. Carter, "Genetic algorithm crossover operators for ordering applications," Computers & Operations Research, vol. 22, no. 1, pp. 135-147, 1995.
[154] P. W. Poon 与 J. N. Carter,《用于排序应用的遗传算法交叉算子》,《计算机与运筹学研究》,第 22 卷第 1 期,第 135-147 页,1995 年。

[155] C. Y. Ngo and V. O. K. Li, "Centralized broadcast scheduling in packet radio networks via genetic-fix algorithms," IEEE Transactions on Communications, vol. 51, no. 9, pp. 1439-1441, 2003.
[155] C. Y. Ngo 与 V. O. K. Li,《基于遗传修正算法的分组无线网络集中式广播调度》,《IEEE 通信汇刊》,第 51 卷第 9 期,第 1439-1441 页,2003 年。

[156] H. Esbensen, "Computing near-optimal solutions to the Steiner problem in a graph using a genetic algorithm," Networks, vol. 26, no. 4, pp. 173-185, 1995.
[156] H. Esbensen,《利用遗传算法计算图中 Steiner 问题的近优解》,《网络》,第 26 卷第 4 期,第 173-185 页,1995 年。


[157] B. Dengiz, F. Altiparmak, and A. E. Smith, "Local search genetic algorithm for optimal design of reliable networks," IEEE transactions on Evolutionary Computation, vol. 1, no. 3, pp. 179-188, 1997.
[157] B. Dengiz、F. Altiparmak 和 A. E. Smith,《用于可靠网络优化设计的局部搜索遗传算法》,《IEEE 进化计算汇刊》,第 1 卷第 3 期,第 179-188 页,1997 年。

[158] C. A. C. Coello and A. Carlos, "A survey of constraint handling techniques used with evolutionary algorithms," Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada, 1999.
[158] C. A. C. Coello 和 A. Carlos,《进化算法中约束处理技术综述》,技术报告 Lania-RI-99-04,墨西哥国家高级计算实验室,1999 年。

[159] Q. Gu, Q. Wang, N. N. Xiong, S. Jiang, and L. Chen, "Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems," Complex & Intelligent Systems, pp. 1-20, 2021.
[159] 顾庆、王强、Xiong N. N.、姜山和陈龙,《代理辅助进化算法求解昂贵约束多目标离散优化问题》,《复杂与智能系统》,第 1-20 页,2021 年。

[160] G. Eichfelder and L. Warnow, "Proximity measures based on KKT points for constrained multi-objective optimization," Journal of Global Optimization, vol. 80, no. 1, pp. 63-86, 2021.
[160] G. Eichfelder 和 L. Warnow,《基于 KKT 点的约束多目标优化邻近度量》,《全局优化杂志》,第 80 卷第 1 期,第 63-86 页,2021 年。

[161] E. Constantin, "Second-order optimality conditions in locally Lipschitz inequality-constrained multiobjective optimization," Journal of Optimization Theory and Applications, vol. 186, no. 1, pp. 50-67, 2020.
[161] E. Constantin,《局部 Lipschitz 不等式约束多目标优化中的二阶最优性条件》,《Journal of Optimization Theory and Applications》,第 186 卷,第 1 期,第 50-67 页,2020 年。

[162] K. Yu, J. Liang, B. Qu, and C. Yue, "Purpose-directed two-phase multiobjective differential evolution for constrained multiobjective optimization," Swarm and Evolutionary Computation, vol. 60, p. 100799, 2021.
[162] K. Yu、J. Liang、B. Qu、C. Yue,《面向目标的两阶段多目标差分进化算法求解约束多目标优化问题》,《Swarm and Evolutionary Computation》,第 60 卷,第 100799 页,2021 年。

[163] G. Peng, H. Wu, H. Wu, and K. Wolter, "Constrained Multi-objective Optimization for IoT-enabled Computation Offloading in Collaborative Edge and Cloud Computing," IEEE Internet of Things Journal, 2021.
[163] G. Peng、H. Wu、H. Wu、K. Wolter,《面向物联网的协同边缘与云计算中计算卸载的约束多目标优化》,《IEEE Internet of Things Journal》,2021 年。

[164] C. Peng, H.-L. Liu, and E. D. Goodman, "A cooperative evolutionary framework based on an improved version of directed weight vectors for constrained multiobjective optimization with deceptive constraints," IEEE Transactions on Cybernetics, 2020.
[164] C. Peng, H.-L. Liu, and E. D. Goodman, "基于改进版定向权重向量的合作进化框架用于带欺骗性约束的约束多目标优化," IEEE Transactions on Cybernetics, 2020.

[165] J. Yuan, H.-L. Liu, Y.-S. Ong, and Z. He, "Indicator-based Evolutionary Algorithm for Solving Constrained Multi-objective Optimization Problems," IEEE Transactions on Evolutionary Computation, 2021.
[165] J. Yuan, H.-L. Liu, Y.-S. Ong, 和 Z. He, "基于指标的进化算法求解约束多目标优化问题," IEEE Transactions on Evolutionary Computation, 2021.

[166] V. H. Cantú, A. Ponsich, and C. Azzaro-Pantel, "On the use of Gradient-Based Repair Method for Solving Constrained Multiobjective Optimization Problems—A Comparative Study," in Constraint Handling in Metaheuristics and Applications, Springer, 2021, pp. 119-149.
[166] V. H. Cantú、A. Ponsich 和 C. Azzaro-Pantel,《关于使用基于梯度的修复方法解决约束多目标优化问题的比较研究》,收录于《元启发式算法中的约束处理及其应用》,Springer,2021 年,第 119-149 页。

[167] C. Peng, H.-L. Liu, and E. D. Goodman, "Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance," Swarm and Evolutionary Computation, vol. 55, p. 100676, 2020.
[167] C. Peng, H.-L. Liu, and E. D. Goodman, "处理具有不平衡约束的多目标优化问题及其对进化算法性能的影响," Swarm and Evolutionary Computation, vol. 55, p. 100676, 2020.

[168] Q. Zhu, Q. Zhang, and Q. Lin, "A constrained multiobjective evolutionary algorithm with detect-and-escape strategy," IEEE Transactions on Evolutionary Computation, vol. 24, no. 5, pp. 938-947, 2020.
[168] 朱庆、张强和林钦,《一种基于检测-逃逸策略的约束多目标进化算法》,《IEEE 进化计算汇刊》,第 24 卷第 5 期,第 938-947 页,2020 年。

[169] Z. Fan et al., "Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems," Swarm and Evolutionary Computation, vol. 54, p. 100651, 2020.
[169] 范志等,《嵌入 M2M 框架的推拉搜索算法求解约束多目标优化问题》,《群体与进化计算》,第 54 卷,第 100651 页,2020 年。

[170] M. Abdel-Basset, R. Mohamed, and M. Abouhawwash, "Balanced multi-objective optimization algorithm using
[170] M. Abdel-Basset, R. Mohamed, 和 M. Abouhawwash, "使用平衡多目标优化算法

improvement based reference points approach," Swarm and Evolutionary Computation, vol. 60, p. 100791, 2021.
,《群体与进化计算》,第 60 卷,第 100791 页,2021 年。

[171] H. Ma, H. Wei, Y. Tian, R. Cheng, and X. Zhang, "A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints," Information Sciences, vol. 560, pp. 68-91, 2021.
[171] 马浩、魏宏、田毅、程荣与张旭合著,《信息科学》2021 年第 560 卷《复杂约束下多目标优化的多阶段进化算法》,页码 68-91。

[172] Y. Tian, Y. Zhang, Y. Su, X. Zhang, K. C. Tan, and Y. Jin, "Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization," IEEE Transactions on Cybernetics, 2021.
[172] 田毅、张宇、苏阳、张旭、谭建成与金烨合著,《IEEE 控制论汇刊》2021 年刊载《约束多目标进化优化中目标优化与约束满足的平衡》。

[173] S. E. Bouzid, Y. Seresstou, K. Raoof, M. N. Omri, M. Mbarki, and C. Dridi, "MOONGA: multi-objective optimization of wireless network approach based on genetic algorithm," IEEE Access, vol. 8, pp. 105793- 105814, 2020.
[173] 布兹德·S·E、塞雷斯托·Y、拉奥夫·K、奥姆里·M·N、姆巴基·M 与德里迪·C 合著,《IEEE Access》2020 年第 8 卷《基于遗传算法的无线网络多目标优化方法 MOONGA》,页码 105793-105814。

[174] Y. Yang, J. Liu, and S. Tan, "A partition-based constrained multi-objective evolutionary algorithm," Swarm and Evolutionary Computation, p. 100940, 2021.
[174] 杨阳、刘健与谭松合著,《群体与进化计算》2021 年刊载《基于分区的约束多目标进化算法》,页码 100940。

[175] H. Geng, M. Zhang, L. Huang, and X. Wang, "Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization," in Asia-Pacific Conference on Simulated Evolution and Learning, 2006, pp. 336-344.
[175] 耿辉、张敏、黄立与王旭合著,《不可行精英与随机排序选择在约束多目标进化优化中的应用》,收录于《亚太模拟进化与学习会议论文集》,2006 年,第 336-344 页。

[176] H. Geng, M. Zhang, L. Huang, and X. Wang, "Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization," in Asia-Pacific Conference on Simulated Evolution and Learning, 2006, pp. 336-344.
[176] 耿辉、张敏、黄立与王旭合著,《不可行精英与随机排序选择在约束多目标进化优化中的应用》,收录于《亚太模拟进化与学习会议论文集》,2006 年,第 336-344 页。

[177] M. A. Jan and R. A. Khanum, "A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D," Applied Soft Computing, vol. 13, no. 1, pp. 128-148, 2013.
[177] M·A·简与 R·A·卡努姆合著,《MOEA/D 框架下两种无惩罚参数约束处理技术的研究》,发表于《应用软计算》第 13 卷第 1 期,2013 年,第 128-148 页。

[178] W.-Q. Ying, W.-P. He, Y.-X. Huang, D.-T. Li, and Y. Wu, "An adaptive stochastic ranking mechanism in MOEA/D for constrained multi-objective optimization," in 2016 International Conference on Information System and Artificial Intelligence (ISAI), 2016, pp. 514-518.
[178] 应文清、何文平、黄永新、李大涛与吴毅合著,《MOEA/D 中基于自适应随机排序机制的约束多目标优化方法》,收录于《2016 年信息系统与人工智能国际会议(ISAI)论文集》,2016 年,第 514-518 页。

[179] Z.-Z. Liu, Y. Wang, and B.-C. Wang, "Indicator-based constrained multiobjective evolutionary algorithms," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 9, pp. 5414-5426, 2019.
[179] 刘志强、王毅、王宝存,《基于指标的约束多目标进化算法》,《IEEE 系统、人与控制论汇刊:系统卷》,第 51 卷第 9 期,第 5414-5426 页,2019 年。

[180] Q. Gu, Q. Wang, N. N. Xiong, S. Jiang, and L. Chen, "Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems," Complex & Intelligent Systems, pp. 1-20, 2021.
[180] 顾强、王琦、熊宁宁、姜山、陈磊,《代理辅助进化算法求解昂贵约束多目标离散优化问题》,《复杂与智能系统》,第 1-20 页,2021 年。

[181] D. Chafekar, J. Xuan, and K. Rasheed, "Constrained multi-objective optimization using steady state genetic algorithms," in Genetic and Evolutionary Computation Conference, 2003, pp. 813-824.
[181] 达文·查菲卡、轩健、拉希德·卡西姆,《基于稳态遗传算法的约束多目标优化》,《遗传与进化计算会议论文集》,2003 年,第 813-824 页。

[182] T. Ray, H. K. Singh, A. Isaacs, and W. Smith, "Infeasibility driven evolutionary algorithm for constrained optimization," in Constraint-handling in evolutionary optimization, Springer, 2009, pp. 145-165.
[182] 塔潘·雷、辛格·H·K、伊萨克斯·A、史密斯·W,《不可行性驱动的约束优化进化算法》,载《进化优化中的约束处理》,施普林格出版社,2009 年,第 145-165 页。

[183] A. Isaacs, T. Ray, and W. Smith, "Blessings of maintaining infeasible solutions for constrained multi-objective optimization problems," in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 2008, pp. 2780-2787.
[183] A. Isaacs、T. Ray 和 W. Smith,《在约束多目标优化问题中保持不可行解的优势》,发表于《2008 年 IEEE 进化计算大会(IEEE 世界计算智能大会)》,2008 年,第 2780-2787 页。


[184] Q. Long, "A constraint handling technique for constrained multi-objective genetic algorithm," Swarm and Evolutionary Computation, vol. 15, pp. 66-79, 2014.
[184] 龙强,《一种用于约束多目标遗传算法的约束处理技术》,《群体与进化计算》,第 15 卷,第 66-79 页,2014 年。

[185] Y. Zhou, M. Zhu, J. Wang, Z. Zhang, Y. Xiang, and J. Zhang, "Tri-goal evolution framework for constrained many-objective optimization," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 8, pp. 3086-3099, 2018.
[185] 周毅、朱明、王军、张政、向勇和张军,《面向约束多目标优化的三目标进化框架》,《IEEE 系统、人与控制论汇刊:系统》,第 50 卷第 8 期,第 3086-3099 页,2018 年。

[186] D. K. Saxena, T. Ray, K. Deb, and A. Tiwari, "Constrained many-objective optimization: A way forward," in 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 545-552.
[186] D. K. Saxena、T. Ray、K. Deb 和 A. Tiwari,《约束多目标优化:前进之路》,发表于《2009 年 IEEE 进化计算大会》,2009 年,第 545-552 页。

[187] S. Zapotecas Martinez, A. Arias Montano, and C. A. Coello Coello, "Constrained multi-objective aerodynamic shape optimization via swarm intelligence," in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014, pp. 81-88.
[187] S. Zapotecas Martinez、A. Arias Montano 和 C. A. Coello Coello,《基于群体智能的约束多目标气动外形优化》,载《2014 年遗传与进化计算年会论文集》,2014 年,第 81-88 页。

[188] R. L. Becerra, C. A. Coello Coello, A. G. Hernández-D\'\iaz, R. Caballero, and J. Molina, "Alternative techniques to solve hard multi-objective optimization problems," in Proceedings of the 9th annual conference on Genetic and evolutionary computation, 2007, pp. 754-757.
[188] R. L. Becerra、C. A. Coello Coello、A. G. Hernández-D\'\iaz、R. Caballero 和 J. Molina,《解决复杂多目标优化问题的替代技术》,载《第 9 届遗传与进化计算年会论文集》,2007 年,第 754-757 页。

[189] Z. Yang, X. Cai, and Z. Fan, "Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results," in Proceedings of the companion publication of the 2014 annual conference on genetic and evolutionary computation, 2014, pp. 1181-1186.
[189] 杨志、蔡翔和范舟,《约束多目标优化问题的ε约束法:初步成果》,载《2014 年遗传与进化计算年会附属出版物》,2014 年,第 1181-1186 页。

[190] S. Z. Martinez and C. A. C. Coello, "A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization," in 2014 IEEE Congress on evolutionary computation (CEC), 2014, pp. 429-436.
[190] S. Z. Martinez 和 C. A. C. Coello,《基于分解的约束多目标进化算法》,载《2014 年 IEEE 进化计算大会(CEC)》,2014 年,第 429-436 页。

[191] Z. Fan et al., "An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems," in 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1-8.
[191] 范志强等, "MOEA/D 中嵌入改进的ε约束处理方法用于约束多目标优化问题," 发表于《2016 年 IEEE 计算智能系列研讨会(SSCI)》, 2016 年, 第 1-8 页。

[192] Y. Yang, J. Liu, S. Tan, and H. Wang, "A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio," Applied Soft Computing, vol. 80, pp. 42-56, 2019.
[192] 杨勇等, "针对低可行率约束多目标优化问题的多目标差分进化算法," 《应用软计算》, 第 80 卷, 第 42-56 页, 2019 年。

[193] S. Zapotecas-Mart\'\inez and A. Ponsich, "Constraint handling within moea/d through an additional scalarizing function," in Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 2020, pp. 595- 602.
[193] S. Zapotecas-Martínez 与 A. Ponsich, "通过附加标量化函数在 MOEA/D 中实现约束处理," 发表于《2020 年遗传与进化计算会议论文集》, 2020 年, 第 595-602 页。

[194] Y. Yang, J. Liu, and S. Tan, "A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism," Applied Soft Computing, vol. 89, p. 106104, 2020.
[194] 杨勇等, "基于分解和动态约束处理机制的约束多目标进化算法," 《应用软计算》, 第 89 卷, 第 106104 页, 2020 年。

[195] Y. Yang, J. Liu, and S. Tan, "A partition-based constrained multi-objective evolutionary algorithm," Swarm and Evolutionary Computation, vol. 66, p. 100940, 2021.
[195] 杨勇、刘健与谭少华,《基于分区的约束多目标进化算法》,《群体与进化计算》,第 66 卷,第 100940 页,2021 年。

[196] B. Liu, H. Ma, X. Zhang, and Y. Zhou, "A memetic coevolutionary differential evolution algorithm for
[196] 刘斌、马浩、张旭与周勇,《一种基于模因协同进化差分算法的约束优化方法》,载于

constrained optimization," in 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 2996-3002.
《2007 年 IEEE 进化计算大会》,2007 年,第 2996-3002 页。

[197] Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, "A coevolutionary framework for constrained multiobjective optimization problems," IEEE Transactions on Evolutionary Computation, vol. 25, no. 1, pp. 102-116, 2020.
[197] 田雨、张涛、肖俊、张旭与金耀,《约束多目标优化问题的协同进化框架》,《IEEE 进化计算汇刊》,第 25 卷第 1 期,第 102-116 页,2020 年。

[198] K. Li, R. Chen, G. Fu, and X. Yao, "Two-archive evolutionary algorithm for constrained multiobjective optimization," IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 303-315, 2018.
[198] 李康, 陈锐, 傅冠雄, 姚新, '面向约束多目标优化的双档案进化算法,' 《IEEE 进化计算汇刊》, 卷 23, 期 2, 页 303-315, 2018.

[199] J. Wang, Y. Li, Q. Zhang, Z. Zhang, and S. Gao, "Cooperative multiobjective evolutionary algorithm with propulsive population for constrained multiobjective optimization," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.
[199] 王健, 李毅, 张强, 张钊, 高松, '采用推进种群的协作式多目标进化算法求解约束多目标优化问题,' 《IEEE 系统、人与控制论汇刊: 系统》, 2021.

[200] Z.-Z. Liu, B.-C. Wang, and K. Tang, "Handling Constrained Multiobjective Optimization Problems via Bidirectional Coevolution," IEEE Transactions on Cybernetics, 2021.
[200] 刘志强, 王丙春, 唐珂, '基于双向协同进化的约束多目标优化问题处理方法,' 《IEEE 控制论汇刊》, 2021.

[201] Z. Fan et al., "Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems," Swarm and Evolutionary Computation, vol. 54, p. 100651, 2020.
[201] 范政等, ' M2M 框架中嵌入推拉搜索策略求解约束多目标优化问题,' 《群体与进化计算》, 卷 54, 页 100651, 2020.

[202] H. Wang, T. Cai, K. Li, and W. Pedrycz, "Constraint handling technique based on Lebesgue measure for constrained multiobjective particle swarm optimization algorithm," Knowledge-Based Systems, vol. 227, p. 107131, 2021.
[202] 王 H, 蔡 T, 李 K, 和 W. Pedrycz, "基于勒贝格测度的约束多目标粒子群优化算法约束处理技术," 基于知识的系统, 卷 227, 页 107131, 2021 年.

[203] A. Oyama, K. Shimoyama, and K. Fujii, "New constraint-handling method for multi-objective and multi-constraint evolutionary optimization," Trans Jpn Soc Aeronaut Space Sci, vol. 50, no. 167, pp. 56-62, 2007.
[203] 小山 A, 下山 K, 和藤井 K, "多目标多约束进化优化的新约束处理方法," 日本航空宇宙学会汇刊, 卷 50, 期 167, 页 56-62, 2007 年.

[204] F. Jimenez, A. F. Gómez-Skarmeta, G. Sánchez, and K. Deb, "An evolutionary algorithm for constrained multi-objective optimization," in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), 2002, vol. 2, pp. 1133-1138.
[204] F. Jimenez, A. F. Gómez-Skarmeta, G. Sánchez, 和 K. Deb, "一种用于约束多目标优化的进化算法," 收录于 2002 年进化计算大会论文集. CEC'02 (分类号 02TH8600), 2002 年, 卷 2, 页 1133-1138.

[205] F. Caraffini, F. Neri, G. Iacca, and A. Mol, "Parallel memetic structures," Information Sciences, vol. 227, pp. 60-82, 2013.
[205] F. Caraffini, F. Neri, G. Iacca, 和 A. Mol, "并行模因结构," 信息科学, 卷 227, 页 60-82, 2013 年.

[206] F. Caraffini, F. Neri, and L. Picinali, "An analysis on separability for memetic computing automatic design," Information Sciences, vol. 265, pp. 1-22, 2014.
[206] F. Caraffini, F. Neri, 与 L. Picinali, 《模因计算自动设计中的可分离性分析》, 《信息科学》, 卷 265, 页 1-22, 2014 年。

[207] S. Datta, A. Ghosh, K. Sanyal, and S. Das, "A radial boundary intersection aided interior point method for multi-objective optimization," Information Sciences, vol. 377, pp. 1-16, 2017.
[207] S. Datta, A. Ghosh, K. Sanyal, 与 S. Das, 《基于径向边界交点辅助内点法的多目标优化方法》, 《信息科学》, 卷 377, 页 1-16, 2017 年。

[208] V. Morovati and L. Pourkarimi, "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, vol. 273, no. 1, pp. 44- 57, 2019.
[208] V. Morovati 与 L. Pourkarimi, 《Zoutendijk 方法在约束多目标优化问题求解中的扩展》, 《欧洲运筹学杂志》, 卷 273, 期 1, 页 44-57, 2019 年。

[209] L. Uribe, A. Lara, and O. Schütze, "On the efficient computation and use of multi-objective descent directions within constrained MOEAs," Swarm and Evolutionary Computation, vol. 52, p. 100617, 2020.
[209] L. Uribe, A. Lara, 与 O. Schütze, 《约束多目标进化算法中高效计算与使用多目标下降方向的研究》, 《群体与进化计算》, 卷 52, 页 100617, 2020 年。

[210] K. Harada, J. Sakuma, I. Ono, and S. Kobayashi, "Constraint-handling method for multi-objective function optimization: Pareto descent repair operator," in
[210] 原田香、佐久间淳、小野泉、小林重信,《多目标函数优化的约束处理方法:帕累托下降修复算子》,收录于


International Conference on Evolutionary Multi-Criterion Optimization, 2007, pp. 156-170.
《进化多准则优化国际会议论文集》,2007 年,第 156-170 页。

[211] F. Qian, B. Xu, R. Qi, and H. Tianfield, "Self-adaptive differential evolution algorithm with α -constrained-domination principle for constrained multi-objective optimization," Soft Computing, vol. 16, no. 8, pp. 1353- 1372, 2012.
[211] 钱锋、徐博、齐瑞、田洪野,《基于 α 约束支配原则的自适应差分进化算法求解约束多目标优化问题》,载《软计算》,第 16 卷第 8 期,2012 年,第 1353-1372 页。

[212] X. Yu, X. Yu, Y. Lu, G. G. Yen, and M. Cai, "Differential evolution mutation operators for constrained multi-objective optimization," Applied Soft Computing, vol. 67, pp. 452-466, 2018.
[212] 余翔、余雪峰、卢彦、G. G. Yen、蔡明,《面向约束多目标优化的差分进化变异算子》,载《应用软计算》,第 67 卷,2018 年,第 452-466 页。

[213] B.-Y. Qu and P. N. Suganthan, "Constrained multi-objective optimization algorithm with diversity enhanced differential evolution," in IEEE Congress on Evolutionary Computation, 2010, pp. 1-5.
[213] 屈宝元与 P. N. Suganthan 合著,《基于多样性增强差分进化的约束多目标优化算法》,发表于 IEEE 进化计算大会,2010 年,第 1-5 页。

[214] Y.-N. Wang, L.-H. Wu, and X.-F. Yuan, "Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure," Soft Computing, vol. 14, no. 3, pp. 193-209, 2010.
[214] 王亚南、吴立辉、袁晓峰合著,《基于精英存档与拥挤熵多样性测度的多目标自适应差分进化算法》,刊于《软计算》第 14 卷第 3 期,2010 年,第 193-209 页。

[215] Y. Liu, X. Li, and Q. Hao, "A new constrained multi-objective optimization problems algorithm based on group-sorting," in Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 221-222.
[215] 刘洋、李翔、郝强合著,《一种基于分组排序的约束多目标优化问题新算法》,发表于遗传与进化计算会议附属会议论文集,2019 年,第 221-222 页。

[216] H. Rosenbrock, "An automatic method for finding the greatest or least value of a function," The Computer Journal, vol. 3, no. 3, pp. 175-184, 1960.
[216] H. Rosenbrock 著,《寻找函数极值的自动方法》,刊于《计算机杂志》第 3 卷第 3 期,1960 年,第 175-184 页。

[217] Z. Michalewicz, "Genetic algorithms, numerical optimization, and constraints," in Proceedings of the sixth international conference on genetic algorithms, 1995, vol. 195, pp. 151-158.
[217] Z. Michalewicz,《遗传算法、数值优化与约束处理》,收录于《第六届遗传算法国际会议论文集》,1995 年,第 195 卷,第 151-158 页。

[218] D. M. Himmelblau, "Applied Nonlinear Programming McGraw-Hill Book Company," New York, 1972.
[218] D. M. Himmelblau,《应用非线性规划》,McGraw-Hill 图书公司,纽约,1972 年。

[219] S. S. Rao, Engineering optimization: theory and practice. John Wiley & Sons, 2019.
[219] S. S. Rao,《工程优化:理论与实践》,John Wiley & Sons 出版社,2019 年。

[220] E. Sandgren, "Nonlinear integer and discrete programming in mechanical design optimization," 1990.
[220] E. Sandgren,《机械设计优化中的非线性整数与离散规划》,1990 年。

[221] J. S. Arora, "Introduction to Optimum Design, McGraw-Hill, New York, 1989".
[221] J. S. Arora,《优化设计导论》,McGraw-Hill 出版社,纽约,1989 年。

[222] J. Golinski, "An adaptive optimization system applied to machine synthesis," Mechanism and Machine Theory, vol. 8, no. 4, pp. 419-436, 1973.
[222] J. Golinski,“应用于机器综合的自适应优化系统”,《机构与机器理论》,第 8 卷第 4 期,第 419-436 页,1973 年。

[223] D. Kvalie, "Optimization of plane elastic grillages," PhD Thesis, Norges Teknisk Naturvitenskapelige Universitet, Norway, 1967.
[223] D. Kvalie,《平面弹性格栅的优化》,博士论文,挪威科技大学,挪威,1967 年。

[224] X.-S. Yang and A. H. Gandomi, "Bat algorithm: a novel approach for global engineering optimization," Eng Comput (Swansea), 2012.
[224] 杨新社与 A. H. Gandomi,“蝙蝠算法:一种全局工程优化的新方法”,《工程计算》(斯旺西),2012 年。

[225] G. Steven, "Evolutionary algorithms for single and multicriteria design optimization. A. Osyczka. Springer Verlag, Berlin, 2002, ISBN 3-7908-1418-01," Structural and Multidisciplinary Optimization, vol. 24, no. 1, pp. 8889,2002 .
[225] G. Steven,《单目标与多目标设计优化的进化算法》,A. Osyczka 著,Springer Verlag 出版社,柏林,2002 年,ISBN 3-7908-1418-01,《结构与多学科优化》,第 24 卷第 1 期,pp. 8889,2002

[226] W. Changsen and C. Wan, Analysis of rolling element bearings. Wiley-Blackwell, 1991.
[226] W. Changsen 与 C. Wan,《滚动轴承分析》,Wiley-Blackwell 出版社,1991 年。

[227] B. D. Youn and K. K. Choi, "A new response surface methodology for reliability-based design optimization," Comput Struct, vol. 82, no. 2-3, pp. 241-256, 2004.
[227] B. D. Youn 与 K. K. Choi,《基于可靠性的设计优化新响应面方法》,《计算机与结构》,第 82 卷第 2-3 期,页码 241-256,2004 年。

[228] G. Vanderplaats, "Very large scale optimization," in 8th symposium on multidisciplinary analysis and optimization, 2002, p. 4809.
[228] G. Vanderplaats,《超大规模优化》,收录于《第八届多学科分析与优化研讨会论文集》,2002 年,第 4809 页。

[229] T. T. Binh and U. Korn, "MOBES: A multiobjective evolution strategy for constrained optimization problems," in The third international conference on genetic algorithms (Mendel 97), 1997, vol. 25, p. 27.
[229] T. T. Binh 与 U. Korn,《MOBES:一种用于约束优化问题的多目标进化策略》,发表于第三届国际遗传算法会议(Mendel 97),1997 年,第 25 卷,第 27 页。

[230] A. Osyczka and S. Kundu, "A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm," Structural optimization, vol. 10, no. 2, pp. 94-99, 1995.
[230] A. Osyczka 与 S. Kundu,《采用简单遗传算法解决广义多准则优化问题的新方法》,载《结构优化》,1995 年,第 10 卷第 2 期,第 94-99 页。

[231] E. Zitzler, K. Deb, and L. Thiele, "Comparison of multiobjective evolutionary algorithms: Empirical results," Evol Comput, vol. 8, no. 2, pp. 173-195, 2000.
[231] E. Zitzler、K. Deb 和 L. Thiele,《多目标进化算法的比较:实证结果》,《进化计算》,第 8 卷第 2 期,pp. 173-195,2000 年。

[232] H. Li, Q. Zhang, and J. Deng, "Biased multiobjective optimization and decomposition algorithm," IEEE Trans Cybern, vol. 47, no. 1, pp. 52-66, 2016.
[232] 李辉、张强与邓杰,《偏置多目标优化与分解算法》,载《IEEE 控制论汇刊》,2016 年,第 47 卷第 1 期,第 52-66 页。

[233] K. Deb and A. Srinivasan, "Innovization: Innovating design principles through optimization," in Proceedings of the 8th annual conference on Genetic and evolutionary computation, 2006, pp. 1629-1636.
[233] K. Deb 与 A. Srinivasan 合著,《通过优化实现创新设计原则的"创新化"方法》,收录于《第 8 届遗传与进化计算年会论文集》,2006 年,第 1629-1636 页。

[234] H. Jain and K. Deb, "An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach," IEEE Transactions on evolutionary computation, vol. 18, no. 4, pp. 602-622, 2013.
[234] H. Jain 与 K. Deb 合著,《基于参考点的非支配排序多目标进化算法第二部分:约束处理与自适应扩展》,刊载于《IEEE 进化计算汇刊》第 18 卷第 4 期,2013 年,第 602-622 页。

[235] S. Huband, P. Hingston, L. Barone, and L. While, "A review of multiobjective test problems and a scalable test problem toolkit," IEEE Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477-506, 2006.
[235] S. Huband、P. Hingston、L. Barone 及 L. While 合著,《多目标测试问题综述及可扩展测试问题工具包》,刊载于《IEEE 进化计算汇刊》第 10 卷第 5 期,2006 年,第 477-506 页。

[236] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, "Scalable test problems for evolutionary multiobjective optimization," in Evolutionary multiobjective optimization, Springer, 2005, pp. 105-145.
[236] K. Deb、L. Thiele、M. Laumanns 及 E. Zitzler 合著,《进化多目标优化的可扩展测试问题集》,收录于《进化多目标优化》Springer 出版社,2005 年,第 105-145 页。

[237] L. Leydesdorff and S. Milojević, "Scientometrics," arXiv preprint arXiv:1208.4566, 2012.
[237] L. Leydesdorff 和 S. Milojević,《科学计量学》,arXiv 预印本 arXiv:1208.4566,2012 年。

[238] D. Childress, "Citation tools in academic libraries: Best practices for reference and instruction," Reference & User Services Quarterly, vol. 51, no. 2, p. 143, 2011.
[238] D. 柴尔德里斯,《高校图书馆引文工具:参考咨询与教学的最佳实践》,《参考与用户服务季刊》第 51 卷第 2 期第 143 页,2011 年。

[239] C. A. Estabrooks et al., "The intellectual structure and substance of the knowledge utilization field: A longitudinal author co-citation analysis, 1945 to 2004," Implementation Science, vol. 3, no. 1, p. 49, 2008.
[239] C. A. 埃斯特布鲁克斯等,《知识利用领域的知识结构与实质:1945 至 2004 年的作者共被引纵向分析》,《实施科学》第 3 卷第 1 期第 49 页,2008 年。

[240] I. Rahimi, A. Ahmadi, A. F. Zobaa, A. Emrouznejad, and S. H. E. Abdel Aleem, "Big data optimization in electric power systems: A review," CRC Press, 2017.
[240] I. 拉希米、A. 艾哈迈迪、A. F. 佐巴、A. 埃姆鲁兹贾德与 S. H. E. 阿卜杜勒·阿利姆,《电力系统中的大数据优化:综述》,CRC 出版社,2017 年。

[241] B. Müßigmann, H. von der Gracht, and E. Hartmann, "Blockchain technology in logistics and supply chain management-a bibliometric literature review from 2016 to january 2020," IEEE Transactions on Engineering Management, vol. 67, no. 4, pp. 988-1007, 2020.
[241] B. Müßigmann, H. von der Gracht 和 E. Hartmann,《区块链技术在物流与供应链管理中的应用——2016 年至 2020 年 1 月的文献计量综述》,《IEEE 工程管理汇刊》,第 67 卷第 4 期,第 988-1007 页,2020 年。

[242] S. Neelam and S. K. Sood, "A scientometric review of global research on smart disaster management," IEEE Transactions on Engineering Management, vol. 68, no. 1, pp. 317-329, 2020.
[242] S. Neelam 和 S. K. Sood,《全球智能灾害管理研究的科学计量评述》,《IEEE 工程管理汇刊》,第 68 卷第 1 期,第 317-329 页,2020 年。

[243] A. H. Gandomi, A. Emrouznejad, and I. Rahimi, "Evolutionary Computation in Scheduling: A Scientometric Analysis," Evolutionary Computation in Scheduling, pp. 1-10, 2020.
[243] A. H. Gandomi, A. Emrouznejad 和 I. Rahimi,《调度中的进化计算:科学计量分析》,《调度中的进化计算》,第 1-10 页,2020 年。

[244] S. Das and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art," IEEE transactions on evolutionary computation, vol. 15, no. 1, pp. 4-31, 2010.
[244] S. Das 和 P. N. Suganthan,《差分进化算法:技术发展现状综述》,《IEEE 进化计算汇刊》,第 15 卷第 1 期,第 4-31 页,2010 年。


[245] K. Deb and H. Jain, "An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints," IEEE transactions on evolutionary computation, vol. 18, no. 4, pp. 577-601, 2013.
[245] K. Deb 和 H. Jain,《基于参考点的非支配排序多目标进化算法第一部分:解决带边界约束问题》,《IEEE 进化计算汇刊》,第 18 卷第 4 期,第 577-601 页,2013 年。

[246] H. Chen and Y. S. Ho, "Highly cited articles in biomass research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, vol. 49, pp. 12-20, 2015, doi: 10.1016/j.rser.2015.04.060.
[246] 陈红 和 何毓嵩,《生物质研究领域高被引论文的文献计量分析》,《可再生与可持续能源评论》,第 49 卷,第 12-20 页,2015 年,doi:10.1016/j.rser.2015.04.060。

[247] Y.-S. Ho, "Top-cited articles in chemical engineering in Science Citation Index Expanded: A bibliometric analysis," Chinese Journal of Chemical Engineering, vol. 20, no. 3, pp. 478-488, 2012.
[247] 何毓嵩,《SCI 扩展版中化学工程领域高被引论文的文献计量分析》,《中国化学工程学报》,第 20 卷第 3 期,第 478-488 页,2012 年。

[248] L. v Santana-Quintero, A. G. Hernández-D\'\iaz, J. Molina, C. A. C. Coello, and R. Caballero, "DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems," Computers & Operations Research, vol. 37, no. 3, pp. 470-480, 2010.
[248] L. v Santana-Quintero, A. G. Hernández-D\'\iaz, J. Molina, C. A. C. Coello 和 R. Caballero,《DEMORS:一种结合差分进化与粗糙集理论的约束多目标优化混合算法》,《计算机与运筹学》,第 37 卷第 3 期,第 470-480 页,2010 年。

[249] M. A. Tawhid and V. Savsani, "A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems," Applied Intelligence, vol. 48, no. 10, pp. 3762-3781, 2018.
[249] M. A. Tawhid 和 V. Savsani, "一种基于人工藻类的多目标工程设计问题优化新算法," 《应用智能》, 卷 48, 期 10, 页 3762-3781, 2018.

[250] Y. Yang, J. Liu, S. Tan, and H. Wang, "Application of constrained multi-objective evolutionary algorithm in multi-source compressed-air pipeline optimization problems," IFAC-PapersOnLine, vol. 51, no. 18, pp. 168-173, 2018.
[250] 杨勇, 刘杰, 谭帅, 王浩, "约束多目标进化算法在多源压缩空气管道优化问题中的应用," 《IFAC 在线论文集》, 卷 51, 期 18, 页 168-173, 2018.

[251] Z. Ma and Y. Wang, "Shift-Based Penalty for Evolutionary Constrained Multiobjective Optimization and Its Application," IEEE Transactions on Cybernetics, 2021.
[251] 马志强, 王岩, "进化约束多目标优化中的偏移惩罚机制及其应用," 《IEEE 控制论汇刊》, 2021.

[252] X. Yu, X. Yu, Y. Lu, G. G. Yen, and M. Cai, "Differential evolution mutation operators for constrained multi-objective optimization," Applied Soft Computing, vol. 67, pp. 452-466, 2018.
[252] 余翔, 余晓峰, 卢毅, G. G. Yen, 蔡铭, "约束多目标优化中的差分进化变异算子研究," 《应用软计算》, 卷 67, 页 452-466, 2018.

[253] M.-R. Chen, G.-Q. Zeng, and K.-D. Lu, "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, vol. 143, pp. 277-294, 2019.
[253] 陈明瑞、曾国庆、陆克东,《基于约束多目标种群极值优化的可再生能源经济-排放调度》,《可再生能源》,第 143 卷,第 277-294 页,2019 年。

[254] M. A. El-Shorbagy and A. A. Mousa, "Constrained multiobjective equilibrium optimizer algorithm for solving combined economic emission dispatch problem," Complexity, vol. 2021, 2021.
[254] M. A. El-Shorbagy 和 A. A. Mousa,《用于求解组合经济排放调度问题的约束多目标平衡优化器算法》,《复杂性》,2021 卷,2021 年。

[255] K. Li, R. Chen, G. Fu, and X. Yao, "Two-archive evolutionary algorithm for constrained multiobjective optimization," IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 303-315, 2018.
[255] 李凯、陈锐、傅冠群、姚新,《基于双档案进化算法的约束多目标优化》,《IEEE 进化计算汇刊》,第 23 卷第 2 期,第 303-315 页,2018 年。

[256] C. Wang and R. Xu, "An angle based evolutionary algorithm with infeasibility information for constrained many-objective optimization," Applied Soft Computing, vol. 86, p. 105911, 2020.
[256] 王超、徐荣,《融合不可行性信息的基于角度约束多目标优化进化算法》,《应用软计算》,第 86 卷,第 105911 页,2020 年。